WO2016114819A1 - Compositions et méthodes pour traiter et détecter des cancers - Google Patents

Compositions et méthodes pour traiter et détecter des cancers Download PDF

Info

Publication number
WO2016114819A1
WO2016114819A1 PCT/US2015/040199 US2015040199W WO2016114819A1 WO 2016114819 A1 WO2016114819 A1 WO 2016114819A1 US 2015040199 W US2015040199 W US 2015040199W WO 2016114819 A1 WO2016114819 A1 WO 2016114819A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
cancer
antibodies
ssea
antigen
Prior art date
Application number
PCT/US2015/040199
Other languages
English (en)
Inventor
Chi-Huey Wong
Tsui-Ling Hsu
Yi-Wei LOU
Chih-Wei Lin
Shihh-Chi YEH
Chung-Yi Wu
Han-Chung Wu
Original Assignee
Academia Sinica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/599,174 external-priority patent/US9982041B2/en
Priority claimed from PCT/US2015/032745 external-priority patent/WO2015184009A1/fr
Priority to AU2015377230A priority Critical patent/AU2015377230A1/en
Priority to KR1020177022487A priority patent/KR20170098954A/ko
Priority to CN201580073451.0A priority patent/CN107406495B/zh
Priority to ES15878250T priority patent/ES2902032T3/es
Application filed by Academia Sinica filed Critical Academia Sinica
Priority to JP2017537359A priority patent/JP2018509385A/ja
Priority to CA2972067A priority patent/CA2972067A1/fr
Priority to EP15878250.8A priority patent/EP3245225B1/fr
Priority to DK15878250.8T priority patent/DK3245225T3/da
Publication of WO2016114819A1 publication Critical patent/WO2016114819A1/fr
Priority to IL253162A priority patent/IL253162A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]

Definitions

  • Antibodies that bind to Globo H, SSEA-3 and/or SSEA-4, are disclosed herein, as well as related compositions and methods of use. Methods of use include, without limitation, cancer therapies and diagnostics.
  • GBM Glioblastoma multiforme
  • GBM is notoriously resistant to most anti-cancer drugs and extremely infiltrative, which hampers complete surgical resection, and therefore most patients develop tumor recurrence or progression even after multiple therapies. Because of the high mortality, new therapeutic approaches, such as immunotherapy and gene therapy, have been proposed for the treatment of GBM (Meyer MA (2008) Malignant gliomas in adults. N Engl J Med 359(17): 1850; author reply 1850): 166-193). GBM is notoriously resistant to most anti-cancer drugs and extremely infiltrative, which hampers complete surgical resection, and therefore most patients develop tumor recurrence or progression even after multiple therapies. Because of the high mortality, new therapeutic approaches, such as immunotherapy and gene therapy, have been proposed for the treatment of GBM (Meyer MA (2008) Malignant gliomas in adults. N Engl J Med
  • Altered glycosylation is a feature of cancer cells, and several glycan structures are well-known tumor markers (Meezan E, Wu HC, Black PH, & Robbins PW (1969) Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by sephadex chromatography. Biochemistry 8(6):2518-2524; Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A 99(16): 10231-10233).
  • Gangliosides are normally observed in neural systems, and are found to be elevated in tumors, particularly the complex gangliosides associated with malignancy (Birkle S, Zeng G, Gao L, Yu RK, & Aubry J (2003) Role of tumor-associated gangliosides in cancer progression. Biochimie 85(3-4):455-463).
  • the GSLs of globo-series feature a Galal-4Gal linkage to lactosylceramides, and this linkage is catalyzed by lactosylceramide 4-alpha-galactosyltransferase (A4GALT). While globotriosylceramide (Gb3Cer) and globoside (Gb4Cer) constitute the basis of P-blood group system (Schenkel-Brunner H (1995) P System.
  • Globo-series GSLs have also been observed in tumors: Globo H (fucosyl Gb5Cer) is overexpressed in many epithelial cancers, such as ovarian, gastric, prostate, lung, breast, and pancreatic cancers (Zhang S, et al. (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int J Cancer 73(l):42-49);
  • SSEA-3, SSEA-4 and Globo H are expressed not only on breast cancer cells, but also on breast cancer stem cells (Chang WW, et al. (2008) Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci U S A 105(33): ! 1667-1 1672; Huang YL, et al. (2013) Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc Natl Acad Sci U S A 1 10(7):2517-2522).
  • Globo H, SSEA-3 and SSEA-4 are aberrantly expressed in a broad spectrum of cancers, but not on normal cells.
  • Cancers cells expressing Globo H, SSEA-3 and SSEA-4 include, but are not limited to, brain cancer, lung cancer, breast cancer, oral cancer, esophageal cancer, stomach cancer, liver cancer, bile duct cancer, bone cancer (osteosarcoma), skin cancer, pancreatic cancer, colon cancer, kidney cancer, cervical cancer, ovarian cancer and prostate cancer.
  • the disclosure provides affinity-matured SSEA-3/SSEA-4/Globo H antibodies. These antibodies have increased affinity and specificity for SSEA-3/SSEA-4/Globo H. This increase in affinity and sensitivity permits the molecules of the invention to be used for applications and methods that are benefited by (a) the increased sensitivity of the molecules of the invention and/or (b) the tight binding of SSEA-3/SSEA-4/Globo H by the molecules of the invention.
  • SSEA-3/SSEA-4/Globo H antibodies that are useful for treatment of SSEA-3/SSEA-4/Globo H-mediated disorders in which a partial or total blockade of one or more SSEA-3/SSEA-4/Globo H activities is desired.
  • the antigen e
  • SSEA-3/SSEA-4/Globo H antibodies of the invention are used to treat cancer.
  • the anti- SSEA-3/SSEA-4/Globo H antibodies of the invention permit the sensitive and specific detection of the epitopes in immunoassays, for example, immunoprecipitations, sandwich immunoassays, ELISAs, or immunomicroscopy without the need for mass spectrometry or genetic manipulation. In turn, this provides a significant advantage in both observing and elucidating the normal functioning of these pathways and in detecting when the pathways are functioning aberrantly.
  • SSEA4/SSEA3/Globo H are three glycans that are specifically expressed for cancer cells and cancer stem cells. Knockdown of beta-3-GalT5, the key enzyme for the synthesis of these three glycolipids, causes apoptosis of cancer cells, but not normal cells.
  • antibodies especially glycoantibodies against SSEA4 preferentially or specifically and/or against SSEA3/SSEA4/Globo H simultaneously are effective cancer therapeutic agents.
  • the three glycans, SSEA4/SSEA3/Globo H, especially SSEA3, are useful as cancer stem cell markers.
  • SSEA4 and/or SSEA4/SSEA3/Globo H in combination are useful as therapeutic targets for the treatment of different cancers, including for example, brain cancer, lung cancer, breast cancer, oral cancer, esophageal cancer, stomach cancer, liver cancer, bile duct cancer, skin cancer, bone cancer (osteosarcoma), pancreatic cancer, colon cancer, kidney cancer, cervical cancer, ovarian cancer and prostate cancer.
  • human or humanized therapeutic antibodies against SSEA4 expressed on the cell surface of these exemplary cancer types are provided.
  • SSEA3/SSEA4/Globo H simultaneously expressed on the cell surface of these exemplary cancer types are provided.
  • the present disclosure features an isolated antibody specific to SSEA-4.
  • the anti-SSEA-4 antibody binds to Neu5Aca2 ⁇ 3Galpl ⁇ 3GalNAc i ⁇ 3Gak*l ⁇ 4Galpl ⁇ 4Glcpi (SSEA-4 hexasaccharide).
  • the antibody is capable of binding toNeu5Gc ⁇ x2 ⁇ 3Galpl ⁇ 3GalNAc l ⁇ 3Galal ⁇ 4Gaipi ⁇ 4Glcpi (an analogue of SSEA-4 hexasaccharide).
  • Another aspect of the present disclosure features an isolated antibody specific to SSEA-4 and fragments thereof.
  • the anti-SSEA-4 antibody binds to Neu5Aca2 ⁇ 3Gaipi ⁇
  • the antibody is capable of binding to Neu5Aca2 ⁇ 3Gai i ⁇ 3GalNAcpl ⁇ 3Gai i.
  • the antibody is capable of binding toNeu5Gca2 ⁇ 3Galpl ⁇ 3GalNAcpl ⁇ 3Galal ⁇ 4Galpl ⁇ 4Glc i(an analogue of SSEA-4 hexasaccharide).
  • the present disclosure provides an isolated antibody, or antigen-binding fragment thereof, comprising H-CDRl, H-CDR2, and H-CDR3 selected from (i)-(iii) as set forth in Table 17-4 (Fig. 17):
  • H-CDR2 selected from SEQ ID NO: 153;
  • L-CDR1 , L-CDR2 and L-CDR3 selected from (iv)-(vi):
  • the present disclosure provides an isolated antibody, or antigen-binding fragment thereof, comprising VH having SEQ ID NO: 147 or SEQ ID No: 137 and VL having SEQ ID No: 148 or SEQ ID No: 138.
  • the present disclosure provides an isolated antibody or antigen-binding fragment wherein the antibody or the antigen binding fragment further comprises H-FR1, H-FR2, H- FR3, and HFR4 selected from (i)-(iv) as set forth in 17-4 (Fig. 17):
  • H-FR1 selected from SEQ ID NO: 159;
  • H-FR2 selected from SEQ ID NO: 160;
  • H-FR3 selected from SEQ ID NO: 161 ;
  • H-FR4 selected from SEQ ID NO: 162; respectively;
  • L-FR1, L-FR2, L-FR3 and L-FR4 selected from (v)-(viii):
  • the present disclosure provides an isolated antibody, or antigen-binding fragment thereof, comprising H-CDRl , H-CDR2, and H-CDR3 selected from (i)-(iii) as set forth in Fig. 16A:
  • H-CDRl selected from SEQ ID NO:52 or SEQ ID NO:56;
  • H-CDR2 selected from of SEQ ID NO:54 or SEQ ID NO:58;
  • H-CDR3 selected from SEQ ID NO:60 or SEQ ID NO:63, respectively;
  • L-CDR1, L-CDR2 and L-CDR3 selected from (iv)-(vi):
  • L-CDR1 selected from SEQ ID NO:66 or SEQ ID NO:70;
  • L-CDR2 selected from SEQ ID NO:68 or SEQ ID NO:72;
  • the isolated antibody or antigen-binding fragment further comprising H-FR1, H-FR2, H- FR3, and HFR4 selected from (i)-(iv) as set forth in Fig. 16A:
  • H-FR1 selected from SEQ ID NO:51 or SEQ ID NO:55;
  • H-FR2 selected from SEQ ID NO:53 or SEQ ID NO:57;
  • H-FR3 selected from SEQ ID NO:59 or SEQ ID NO:62,
  • H-FR4 selected from SEQ ID NO:61 or SEQ ID NO:64, respectively;
  • L-FR1 , L-FR2, L-FR3 and L-FR4 selected from (v)-(viii):
  • L-FR1 selected from SEQ ID NO:65. or SEQ ID NO:69;
  • L-FR2 selected from SEQ ID NO:67 or SEQ ID NO:71 ;
  • L-FR3 selected from SEQ ID NO:73, or SEQ ID NO:76,
  • L-FR4 selected from SEQ ID NO:75, or SEQ ID NO:78, respectively.
  • Exemplary antibodies described herein can have one or more characteristics of:
  • a) is a recombinant antibody, a monoclonal antibody, a chimeric antibody, a humanized antibody, a human antibody, an antibody fragment, a bispecific antibody, a monospecific antibody, a monovalent antibody, an IgGl antibody, an IgG2 antibody, or derivative of an antibody;
  • b) is a human, murine, humanized, or chimeric antibody, antigen-binding fragment, or derivative of an antibody;
  • c) is a single-chain antibody fragment, a multibody, a Fab fragment, and/or an immunoglobulin of the IgG, IgM, IgA, IgE, IgD isotypes and/or subclasses thereof;
  • d) has one or more of the following characteristics: (i) mediates ADCC and/or CDC of cancer cells; (ii) induces and/or promotes apoptosis of cancer cells; (iii) inhibits proliferation of target cells of cancer cells; (iv) induce
  • any of the antibodies described herein can be generated as Fab or single chain by phage display antibody library or single B cells using the B cells from patients or recovered patients or healthy persons.
  • the present disclosure provides therapeutic methods that include administering to a subject in need of such treatment a therapeutically effective amount of a composition that includes one or more antibodies described herein.
  • the subject e.g., a human patient
  • the subject in need of the treatment is diagnosed with, suspected of having, or at risk for cancer.
  • the cancer include, but are not limited to, brain cancer, lung cancer, breast cancer, oral cancer, esophagus cancer, stomach cancer, liver cancer, bile duct cancer, pancreatic cancer, colon cancer, kidney cancer, cervical cancer, ovarian cancer and prostate cancer.
  • the cancer is brain cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, or pancreatic cancer.
  • the cancer is brain cancer or glioblastoma multiforme (GBM) cancer.
  • the antibody is capable of targeting SSEA-4-expressing cancer cells.
  • the treatment results in reduction of tumor size, elimination of malignant cells, prevention of metastasis, prevention of relapse, reduction or killing of disseminated cancer, prolongation of survival and/or prolongation of time to tumor cancer progression.
  • the treatment further comprises administering an additional therapy to said subject prior to, during or subsequent to said administering of the antibodies.
  • the additional therapy is treatment with a chemotherapeutic agent.
  • the additional therapy is radiation therapy.
  • the present disclosure features a method for diagnosing cancer in a subject, comprising (a) applying a composition that can include one or more monoclonal antibodies that detect expression of a panel of markers consisting of GM3, GM2, GM1, GDI , GDla, GD3, GD2, GTlb, A2B5, LeX, sLeX, LeY, SSEA-3, SSEA-4, Globo H, TF, Tn, sTn, CD44, CD24, CD45, CD90, CD133 to a cell or tissue sample obtained from the subject; (b) assaying the binding of the monoclonal antibody to the cell or the tissue sample; and (c) comparing the binding with a normal control to determine the presence of the cancer in the subject.
  • a composition that can include one or more monoclonal antibodies that detect expression of a panel of markers consisting of GM3, GM2, GM1, GDI , GDla, GD3, GD2, GTlb, A2B5, LeX, sLe
  • Examples of the cancer for detection and diagnosis include, but are not limited to, brain cancer, lung cancer, breast cancer, oral cancer, esophagus cancer, stomach cancer, liver cancer, bile duct cancer, pancreatic cancer, colon cancer, kidney cancer, cervical cancer, ovarian cancer and prostate cancer.
  • the cancer is brain cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, or pancreatic cancer.
  • the cancer is brain cancer or glioblastoma multiforme (GBM) cancer
  • the antibody is an anti-SSEA-4 monoclonal antibody.
  • the present disclosure features pharmaceutical compositions for use in treating cancer, such as brain cancer, lung cancer, breast cancer, oral cancer, esophagus cancer, stomach cancer, liver cancer, bile duct cancer, pancreatic cancer, colon cancer, kidney cancer, cervical cancer, ovarian cancer and prostate cancer, etc.
  • the pharmaceutical composition comprises any of the antibodies or nucleic acid encoding such and a pharmaceutically acceptable carrier, and uses of such pharmaceutical compositions in manufacturing a medicament for treating cancer.
  • FIGs. 1A-1B The binding characteristics of anti-SSEA-4 mAb to GBM cell lines.
  • FIG. 1 A Schematic diagram of the biosynthesis of globoseries GSLs. SSEA-3, the precursor of SSEA-4 and Globo H, is synthesized from globoside. Glycosidic linkages and graphic notations are labelled (Glc, glucose; Gal, galactose; GalNAc, N-acetylgalactosamine; Fuc, fucose; NeuAc, N-acetylneuraminic acid).
  • Glc glucose
  • Gal galactose
  • GalNAc N-acetylgalactosamine
  • Fuc fucose
  • NeuAc N-acetylneuraminic acid
  • GBM cells were stained with Alexa Fluor 488-conjuagated MC813-70 and the staining intensity was analyzed with flow cytometry. All the cells examined were GBM cell lines except SVG pl2, which is a normal human fetal glial cell line transformed with SV40 large T antigen. The histograms of the cells stained with MC813-70 and isotype control are shown in gray and white, respectively.
  • Figs. 2A-2H Glycan binding profiles of antibodies.
  • the glycan microarrays on glass slides were interacted with Alexa Flour 647-conjugated antibody (10 ⁇ g/mL) and read in an array scanner at 635 nm. Data are presented as mean ⁇ SD.
  • FIG. 2A binding profile of mAb 273
  • FIG. 2B binding profile of mAb 651
  • Fig. 2C binding profile of mAb VK9
  • Fig. 2D binding profile of mAb Mbrl
  • Fig. 2E binding profile of mAb 45
  • Fig. 2F binding profile of mAb 46(Fig. 2G) binding profile of mAb 48(Fig.
  • FIG. 3A-3B HPTLC immunostaining and MALDI-MS profiles of gangliosides from GBM cell lines.
  • FIG. 3A Gangliosides were separated on an HPTLC plate and detected with MC813-70 mAb.
  • Gangliosides from 2012Ep human embryonal carcinoma cell line
  • YAC-1 mouse lymphoma cell line
  • SSEA-4 with different chain lengths of fatty acids migrated as two close bands.
  • the extracted gangliosides from DBTRG GBM cells were permethylated and analyzed by MALDI-MS.
  • FIGs. 4A-4C Expression profile of SSEA-4 in GBM. Representative images of normal brain tissues (Fig. 4A) and GBM (Fig. 4B) after immunohistochemical staining with
  • MC-813-70 The inset in panel B shows a magnified picture of the small rectangular area. Scale bar, 100 ⁇ .
  • Fig. 4C Statistical results of SSEA-4 IHC. The staining intensity of GBM specimens was graded as 0 (negative, i), 1+ (weak, ii), 2+ (moderate, iii), and 3+ (strong, iv).
  • Figs. 5A-5B Complement dependent cytotoxicity (CDC) effects of anti-SSEA-4.
  • FIG. 5A MC813-70 on GBM.
  • GBM cell lines were treated with 20 ⁇ mL and rabbit complement to observe MC813-70-induced cell lysis.
  • the CDC activity of MC813-70 was measured by lactate dehydrogenase (LDH) release assay as described in "Materials and
  • Fig. 5B mAb 273 on MCF-7 in vitro.
  • Fig. 5C mAbs 46 and 48 on human pancreatic cancer cells BxPC3 in vitro. Aliquots of tumor cells (10 4 cells) were incubated with 80 ⁇ of antibody at various concentrations in the presence of 20 ⁇ of human-serum or rabbit serum as complement source for 2 hour at 37°C. Cytotoxicity was determined within the tumor cell population after addition of 7-amino-actinomycin D (7-AAD).
  • Fig. 6 Inhibition of DBTRG tumor growth by anti-SSEA-4.
  • Male nude mice were inoculated with DBTRG cells on the right flank at day 0, intraperitoneally administered with MC813-70 or mouse IgG3 isotype control (200 ⁇ g per dose) at day 11, 15, and 19, and sacrificed at day 31.
  • FIGs. 7A-7D Binding of antibodies to cancer cells.
  • FIG. 7A Breast cancer cells MCF-7 were stained with mAb 273.
  • FIG. 7B Pancreatic cancer cells (HP AC and BxPC3) and breast cancer cells MCF-7 were stained with mAb 45.
  • FIG. 7C Pancreatic cancer cells (HP AC and BxPC3) and breast cancer cells MCF-7 were stained with mAb 46.
  • FIG. 7D Pancreatic cancer cells (HPAC and BxPC3) and breast cancer cells MCF-7 were stained with mAb 48. These cells were stained with Alexa Fluor 488-conjuagated antibodies and the staining intensity was analyzed with flow cytometry. The cells stained with mAbs and isotype controls are shown in blue and red, respectively.
  • Fig. 8 Comparison of amino acid sequences mAb 45 (SEQ ID NOS 23 and 24, respectively, in order of appearance), mAb 46 (SEQ ID NOS 33 and 34, respecively, in order of appearance) and mAb 48 (SEQ ID NOS 43 and 44, respectively, in order of appearance).
  • ClustalW uses progressive alignment methods.
  • Fig. Human IgG antibody expression vector.
  • FIGs. 10A-10B Biopanning for SSEA-4 by phage-displayed human nai've scFv library. Selection of phage-displayed scFv that bound to SSEA-4. A phage-displayed human na'ive scFv library was used to select phages that bound to SSEA-4-PEG-conjugated Dynabeads. The recovery rate of the phages was increased after the fifth round of biopanning compared to first round. PBS (Fig. 10A) and PBS containing 0.01% Tween20 (Fig. 10B) was used as wash buffer system during biopanning process.
  • FIGs. 11A-11D Screening of phage-displayed scFv that bound to SSEA-4 by ELISA.
  • Fig. 12 Comparison of the binding activity of anti-SSEA-4 phage clones to Globo-series glycans.
  • ELISA was performed to examine the binding of anti-SSEA-4 phage clones to SSEA-4-BSA, Globo H-BSA and SSEA-3-BSA.
  • Commercial anti-SSEA-4 mouse monoclonal antibody (MC813-70) and control phage (Con-phage) were used as a positive and negative control, respectively.
  • the pMC48 is the phage-displayed scFv format of anti-SSEA-4 mouse mAb created by Dr. Wong's Lab.
  • A490 absorbance at 490 nm
  • Figs. 13A-13B Analysis of the binding activity of p2-78 hAb by ELISA.
  • Fig. 13 A The purity of IgG was analyzed by SDS-PAGE with coomassie blue staining.
  • Fig. 13B ELISA was performed to examine the binding of 1 ⁇ g/ml anti-SSEA-4 hAb to the glycans as figure indicated.
  • Commercial anti-SSEA-4 mouse monoclonal antibody MC813-70; 0.5 ⁇ g/ml
  • normal human IgG (NHIgG) were used as a positive and negative control, respectively.
  • H.C. heavy chain.
  • L.C. light chain.
  • A490 absorbance at 490 nm
  • FIG.l4A-14B Analysis of the binding activity of p2-78 hAb by glycan array.
  • FIG. 14A The commercially available IgM antibody, MC631 (5 ⁇ / ⁇ ⁇ ), was used as a positive control.
  • FIG. 14B The p2-78 hAb (7.5 ⁇ ) recognized SSEA4, Sialyl-SSEA4, SSEA4Gc, and Gb5 (SSEA3), and GloboH.
  • Figs.l5A-15B Binding assay of hMC48 scFv phage clones.
  • Figs. 16A-16B Complementary-determining regions 1-3 (CDRl-3), and framework regions 1-4 (FW1-4) for both the V H and VL domains from exemplary antibody clones are shown. The variable domains were aligned by IMGT database.
  • Fig. 16B Complementary-determining regions 1-3 (CDRl-3), and framework regions 1-4 (FW1-4) for both the VH and VL domains are shown. The variable domains were aligned by IMGT database.
  • Figure 17 Illustrates exemplary amino acid and nucleotide sequences of exemplary glycoantibody variants based on mouse monoclonal antibody MC48 (MC48 is an exemplary anti-SSEA-4 mouse monoclonal antibody used for humanization).
  • the exemplary humanized glycoantibody variants are generated as set forth in the examples sections. Tables 17-1 to 17-4 describes exemplary humanized glycoantibody sequences obained from each corresponding round of humanization.
  • Figure 18 Binding assay of hMC48 scFv phage clones. The binding activity of humanized MC48 clones was examined by ELISA. The 4 th scFv phage clone of humanized MC48 variant could bind to SSEA-4 (A) in a dose-dependent manner but not to BSA control protein (B).
  • antibody methods and compositions directed to the markers for use in diagnosing and treating a broad spectrum of cancers are provided.
  • anti-SSEA-4 antibodies were developed and disclosed herein. Methods of use include, without limitation, cancer therapies and diagnostics.
  • the antibodies described herein can bind to a broad spectrum of Globo H, SSEA3 and SSEA-4-expressing cancer cells, thereby facilitating cancer diagnosis and treatment.
  • Cells that can be targeted by the antibodies include carcinomas, such as those in brain, lung, breast, mouse, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervix, ovary, prostate cancer, etc.
  • glycocan refers to a polysaccharide, or oligosaccharide. Glycan is also used herein to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, glycolipid, glycopeptide, glycoproteome, peptidoglycan, lipopolysaccharide or a proteoglycan. Glycans usually consist solely of O-glycosidic linkages between
  • cellulose is a glycan (or more specifically a glucan) composed of R-l,4-linked D-glucose
  • chitin is a glycan composed of 6-l,4-linked
  • Glycans can be homo or heteropolymers of monosaccharide residues, and can be linear or branched. Glycans can be found attached to proteins as in glycoproteins and proteoglycans. They are generally found on the exterior surface of cells. O- and N-linked glycans are very common in eukaryotes but may also be found, although less commonly, in prokaryotes. N-Linked glycans are found attached to the R-group nitrogen (N) of asparagine in the sequon. The sequon is a Asn-X-Ser or Asn-X-Thr sequence, where X is any amino acid except praline.
  • the term "antigen" is defined as any substance capable of eliciting an immune response.
  • immunogenicity refers to the ability of an immunogen, antigen, or vaccine to stimulate an immune response.
  • CD Id refers to a member of the CD1 (cluster of
  • CD Id presented lipid antigens activate natural killer T cells.
  • CD Id has a deep antigen-binding groove into which glycolipid antigens bind.
  • CD Id molecules expressed on dendritic cells can bind and present glycolipids, including alpha-GalCer analogs such as C34.
  • epitope is defined as the parts of an antigen molecule which contact the antigen binding site of an antibody or a T cell receptor.
  • vaccine refers to a preparation that contains an antigen, consisting of whole disease-causing organisms (killed or weakened) or components of such organisms, such as proteins, peptides, or polysaccharides, that is used to confer immunity against the disease that the organisms cause.
  • Vaccine preparations can be natural, synthetic or derived by recombinant DNA technology.
  • the term "antigen specific” refers to a property of a cell population such that supply of a particular antigen, or a fragment of the antigen, results in specific cell proliferation.
  • the term “specifically binding,” refers to the interaction between binding pairs (e.g., an antibody and an antigen). In various instances, specifically binding can be embodied by an affinity constant of about 10-6 moles/liter, about 10-7 moles/liter, or about 10-8 moles/liter, or less.
  • An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with research, diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or
  • the antibody will be purified (1) to greater than 95% by weight of antibody as determined by, for example, the Lowry method, and in some embodiments more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of, for example, a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using, for example, Coomassie blue or silver stain.
  • Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
  • substantially equivalent denotes a sufficiently high degree of similarity between two numeric values (for example, one associated with a molecule and the other associated with a reference/comparator molecule) such that one of skill in the art would consider the difference between the two values to be of little or no biological and/or statistical significance within the context of the biological characteristic measured by said values (e.g., Kd values, anti-viral effects, etc.).
  • the difference between said two values is, for example, less than about 50%, less than about 40%, less than about 30%, less than about 20%, and/or less than about 10%) as a function of the value for the reference/comparator molecule.
  • the phrase "substantially reduced,” or “substantially different”, as used herein, denotes a sufficiently high degree of difference between two numeric values (generally one associated with a molecule and the other associated with a reference/comparator molecule) such that one of skill in the art would consider the difference between the two values to be of statistical significance within the context of the biological characteristic measured by said values (e.g., Kd values).
  • the difference between said two values is, for example, greater than about 10%, greater than about 20%, greater than about 30%, greater than about 40%, and/or greater than about 50% as a function of the value for the reference/comparator molecule.
  • Binding affinity generally refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, "binding affinity” refers to intrinsic binding affinity which reflects a 1 : 1 interaction between members of a binding pair (e.g., antibody and antigen).
  • the affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd). Affinity can be measured by common methods known in the art, including those described herein.
  • Low-affinity antibodies generally bind antigen slowly and tend to dissociate readily, whereas high-affinity antibodies generally bind antigen faster and tend to remain bound longer.
  • a variety of methods of measuring binding affinity are known in the art, any of which can be used for purposes of the present invention. Specific illustrative embodiments are described in the following.
  • the "Kd" or "Kd value” according to this invention is measured by a radiolabeled antigen binding assay (RIA) performed with the Fab version of an antibody of interest and its antigen as described by the following assay.
  • RIA radiolabeled antigen binding assay
  • Solution binding affinity of Fabs for antigen is measured by equilibrating Fab with a minimal concentration of (125I)-labeled antigen in the presence of a titration series of unlabeled antigen, then capturing bound antigen with an anti-Fab antibody-coated plate (Chen, et al., (1999) J. Mol Biol 293:865-881).
  • microtiter plates (Dynex) are coated overnight with 5 g/ml of a capturing anti-Fab antibody (Cappel Labs) in 50 mM sodium carbonate (pH 9.6), and subsequently blocked with 2% (w/v) bovine serum albumin in PBS for two to five hours at room temperature (approximately 23° C).
  • a non-adsorbent plate (Nunc #269620) 100 pM or 26 pM [125I]-antigen are mixed with serial dilutions of a Fab of interest (e.g., consistent with assessment of an anti-VEGF antibody, Fab-12, in Presta et al., (1997) Cancer Res.
  • the Fab of interest is then incubated overnight; however, the incubation may continue for a longer period (e.g., 65 hours) to insure that equilibrium is reached. Thereafter, the mixtures are transferred to the capture plate for incubation at room temperature (e.g., for one hour). The solution is then removed and the plate washed eight times with 0.1% Tween-20 in
  • the Kd or Kd value is measured by using surface plasmon resonance assays using a BIAcoreTM-2000 or a
  • CM5 carboxymethylated dextran biosensor chips
  • EDC hydrochloride
  • NHS N-hydroxysuccinimide
  • Antigen is diluted with 10 mM sodium acetate, pH 4.8, to 5 Mg/ml ( " 0.2 ⁇ ) before injection at a flow rate of 5 ⁇ /minute to achieve approximately 10 response units (RU) of coupled protein.
  • a spectrometer such as a stop-flow equipped spectrophometer (Aviv Instruments) or a 8000-series SLM-Aminco spectrophotometer (ThermoSpectronic) with a stirred cuvette.
  • an "on-rate” or “rate of association” or “association rate” or “kon” according to this invention can also be determined with the same surface plasmon resonance technique described above using a BIAcoreTM-2000 or a BIAcoreTM-3000 (BlAcore, Inc., Piscataway,
  • CM5 chips 10 response units (RU).
  • carboxymethylated dextran biosensor chips CM5, BlAcore Inc.
  • EDC N-ethyl-N' -(3-dimethylaminopropyl)-carbodiimide hydrochloride
  • NHS N-hydroxysuccinimide
  • Antigen is diluted with 10 n M sodium acetate, pH 4.8, to 5 g/ml ( " 0.2 ⁇ ) before injection at a flow rate of 5 ⁇ /minute to achieve approximately 10 response units (RU) of coupled protein.
  • koff are calculated using a simple one-to-one Langmuir binding model (BIAcore Evaluation Software version 3.2) by simultaneously fitting the association and dissociation sensorgram.
  • the equilibrium dissociation constant (Kd) was calculated as the ratio koff/kon. See, e.g., Chen, Y., et al., (1999)J. Mol Biol 293:865-881.
  • a 20 nM anti-antigen antibody (Fab form) in PBS, pH 7.2 in the presence of increasing concentrations of antigen as measured in a spectrometer, such as a stop-flow equipped spectrophometer (Aviv Instruments) or a 8000-series SLM-Aminco spectrophotometer (Thermo Spectronic) with a stirred cuvette.
  • a spectrometer such as a stop-flow equipped spectrophometer (Aviv Instruments) or a 8000-series SLM-Aminco spectrophotometer (Thermo Spectronic) with a stirred cuvette.
  • vector is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • plasmid refers to a circular double stranded DNA loop into which additional DNA segments may be ligated.
  • phage vector Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome.
  • viral vector is capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
  • vectors e.g., non-episomal mammalian vectors
  • vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
  • certain vectors are capable of directing the expression of genes to which they are operatively linked.
  • Such vectors are referred to herein as "recombinant expression vectors” (or simply, “recombinant vectors”).
  • expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
  • plasm id and vector may be used interchangeably as the plasmid is the most commonly used form of vector.
  • Polynucleotide refers to polymers of nucleotides of any length, and include DNA and RNA.
  • the nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a polymer by DNA or RNA polymerase, or by a synthetic reaction.
  • a polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs. If present, modification to the nucleotide structure may be imparted before or after assembly of the polymer.
  • the sequence of nucleotides may be interrupted by non-nucleotide components.
  • a polynucleotide may be further modified after synthesis, such as by conjugation with a label.
  • Other types of modifications include, for example, "caps,” substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, ply-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals
  • any of the hydroxyl groups ordinarily present in the sugars may be replaced, for example, by phosphonate groups, phosphate groups, protected by standard protecting groups, or activated to prepare additional linkages to additional nucleotides, or may be conjugated to solid or semi-solid supports.
  • the 5' and 3' terminal OH can be phosphorylated or substituted with amines or organic capping group moieties of from 1 to 20 carbon atoms.
  • Other hydroxyls may also be derivatized to standard protecting groups.
  • Polynucleotides can also contain analogous forms of ribose or deoxyribose sugars that are generally known in the art, including, for example, 2'-0-methyl-, 2'-0-allyl, 2'-fluoro- or 2'-azido-ribose, carbocyclic sugar analogs, a-anomeric sugars, epimeric sugars such as arabinose, xyloses or lyxoses, pyranose sugars, furanose sugars, sedoheptuloses, acyclic analogs and basic nucleoside analogs such as methyl riboside.
  • One or more phosphodiester linkages may be replaced by alternative linking groups. These alternative linking groups include, but are not limited to, embodiments wherein phosphate is replaced by P(0)S ("thioate”), P(S)S ("dithioate”), "(0)NR2 ("amidate”), P(0)R,
  • each R or R' is independently H or substituted or unsubstituted alkyl (1-20 C) optionally containing an ether (— O— ) linkage, aryl, alkenyl, cycloalkyl, cycloalkenyl or araldyl. Not all linkages in a polynucleotide need be identical. The preceding description applies to all polynucleotides referred to herein, including RNA and DNA.
  • oligonucleotide and “polynucleotide” are not mutually exclusive. The description above for polynucleotides is equally and fully applicable to oligonucleotides.
  • Antibodies (Abs) and “immunoglobulins” (Igs) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules which generally lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myelomas.
  • antibody and “immunoglobulin” are used interchangeably in the broadest sense and include monoclonal antibodies (e.g., full length or intact monoclonal antibodies), polyclonal antibodies, monovalent, multivalent antibodies, multispecific antibodies (e.g., bispecific antibodies so long as they exhibit the desired biological activity) and may also include certain antibody fragments (as described in greater detail herein).
  • An antibody can be chimeric, human, humanized and/or affinity matured.
  • variable region or “variable domain” of an antibody refers to the amino-terminal domains of heavy or light chain of the antibody. These domains are generally the most variable parts of an antibody and contain the antigen-binding sites.
  • variable refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework (FR).
  • CDRs complementarity-determining regions
  • FR framework
  • the variable domains of native heavy and light chains each comprise four FR regions, largely adopting a beta-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the beta-sheet structure.
  • the CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al, Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, Md. (1991)).
  • the constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.
  • Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual "Fc” fragment, whose name reflects its ability to crystallize readily.
  • Pepsin treatment yields an F(ab')2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
  • Fv is the minimum antibody fragment which contains a complete
  • this region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association.
  • one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a "dimeric" structure analogous to that in a two-chain Fv species. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer.
  • the six CDRs confer antigen-binding specificity to the antibody.
  • the Fab fragment also contains the constant domain of the light chain and the first constant domain (CHI) of the heavy chain.
  • Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CHI domain including one or more cysteines from the antibody hinge region.
  • Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group.
  • F(ab')2 antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
  • the "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa ( ⁇ ) and lambda ( ⁇ ), based on the amino acid sequences of their constant domains.
  • antibodies can be assigned to different classes.
  • immunoglobulins There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgGl, IgG2, IgG3, IgG4, IgAl, and IgA2.
  • the heavy chain constant domains that correspond to the different classes of immunoglobulins are called a
  • An antibody may be part of a larger fusion molecule, formed by covalent or non-covalent association of the antibody with one or more other proteins or peptides.
  • full length antibody intact antibody
  • whole antibody are used herein interchangeably, to refer to an antibody in its substantially intact form, not antibody fragments as defined below.
  • Antibody fragments comprise only a portion of an intact antibody, wherein the portion retains at least one, and as many as most or all, of the functions normally associated with that portion when present in an intact antibody.
  • an antibody fragment comprises an antigen binding site of the intact antibody and thus retains the ability to bind antigen.
  • an antibody fragment for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half life modulation, ADCC function and complement binding.
  • an antibody fragment is a monovalent antibody that has an in vivo half life substantially similar to an intact antibody.
  • such an antibody fragment may comprise an antigen binding arm linked to an Fc sequence capable of conferring in vivo stability to the fragment.
  • the term "monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, e.g., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts or comprising only homogeneous glycoform profile (having only a single glycan or single glycan profile on a glycoantibody in a population).
  • homogeneous antibody composition to enhance the effector functions by using the 2,3- and 2,6-sialyl and defucosylated complex bi-antennary glycans at the Fc-297 position are described in US 12/959, 351 .
  • the modifier "monoclonal” indicates the character of the antibody as not being a mixture of discrete antibodies.
  • Such monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target, wherein the target-binding polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence from a plurality of polypeptide sequences.
  • the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones or recombinant DNA clones.
  • the selected target binding sequence can be further altered, for example, to improve affinity for the target, to humanize the target binding sequence, to improve its production in cell culture, to reduce its immunogenicity in vivo, to create a multispecific antibody, etc., and that an antibody comprising the altered target binding sequence is also a monoclonal antibody of this invention.
  • an antibody comprising the altered target binding sequence is also a monoclonal antibody of this invention.
  • polyclonal antibody preparations which typically include different antibodies directed against different determinants (epitopes)
  • each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen.
  • the monoclonal antibody preparations are advantageous in that they are typically uncontaminated by other immunoglobulins.
  • the modifier "monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of techniques, including, for example, the hybridoma method (e.g., Kohler et al., Nature, 256: 495 (1975); Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed.
  • the monoclonal antibodies herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA 81 :6851-6855 (1984)).
  • Humanized forms of non-human (e.g., murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin.
  • a humanized antibody is a human immunoglobulin (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and/or capacity.
  • donor antibody such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and/or capacity.
  • framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
  • humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance.
  • the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a
  • substantially all of the FRs are those of a human immunoglobulin sequence.
  • the humanized antibody optionally will also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
  • Fc immunoglobulin constant region
  • hypervariable region when used herein refers to the regions of an antibody variable domain which are hypervariable in sequence and/or form structurally defined loops.
  • antibodies comprise six hypervariable regions; three in the VH (HI, H2, H3), and three in the VL (LI, L2, L3).
  • a number of hypervariable region delineations are in use and are encompassed herein.
  • the Kabat Complementarity Determining Regions are based on sequence variability and are the most commonly used (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
  • Chothia refers instead to the location of the structural loops (Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)).
  • the AbM hypervariable regions represent a compromise between the Kabat CDRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software.
  • the "contact" hypervariable regions are based on an analysis of the available complex crystal structures. The residues from each of these hypervariable regions are noted below.
  • Hypervariable regions may comprise "extended hypervariable regions” as follows: 24-36 or 24-34 (LI), 46-56 or 50-56 or 49-56 (L2) and 89-97 or 89-96 (L3) in the VL and 26-35 (HI), 50-65 or 49-65 (H2) and 93-102, 94- 102, or 95-102 (H3) in the VH.
  • the variable domain residues are numbered according to Kabat et al., supra, for each of these definitions.
  • variable domain residue numbering as in Kabat or "amino acid position numbering as in Kabat,” and variations thereof, refers to the numbering system used for heavy chain variable domains or light chain variable domains of the compilation of antibodies in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991). Using this numbering system, the actual linear amino acid sequence may contain fewer or additional amino acids corresponding to a shortening of, or insertion into, a FR or HVR of the variable domain.
  • a heavy chain variable domain may include a single amino acid insert (residue 52a according to Kabat) after residue 52 of H2 and inserted residues (e.g. residues 82a, 82b, and 82c, etc. according to Kabat) after heavy chain FR residue 82.
  • the Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a "standard" Kabat numbered sequence.
  • Single-chain Fv or “scFv” antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain.
  • the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding.
  • a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding.
  • diabodies refers to small antibody fragments with two amino acids
  • antigen-binding sites which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH-VL).
  • VH heavy-chain variable domain
  • VL light-chain variable domain
  • VH-VL polypeptide chain
  • a "human antibody” is one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human and/or has been made using any of the techniques for making human antibodies as disclosed herein. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen-binding residues.
  • an "affinity matured" antibody is one with one or more alterations in one or more HVRs thereof which result in an improvement in the affinity of the antibody for antigen, compared to a parent antibody which does not possess those alteration(s).
  • an affinity matured antibody has nanomolar or even picomolar affinities for the target antigen.
  • Affinity matured antibodies are produced by procedures known in the art. Marks et al.
  • a “blocking” antibody or an “antagonist” antibody is one which inhibits or reduces biological activity of the antigen it binds. Certain blocking antibodies or antagonist antibodies substantially or completely inhibit the biological activity of the antigen.
  • An "agonist antibody”, as used herein, is an antibody which mimics at least one of the functional activities of a polypeptide of interest.
  • a “disorder” is any condition that would benefit from treatment with an antibody of the invention. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question.
  • disorders to be treated herein include cancer.
  • cell proliferative disorder and “proliferative disorder” refer to disorders that are associated with some degree of abnormal cell proliferation. In one
  • the cell proliferative disorder is cancer.
  • Tumor refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • cancer refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • cancer refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • cancer cancer
  • cancer cancer and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation. Examples of cancer include, but are not limited to, carcinoma, lymphoma (e.g., Hodgkin's and non-Hodgkin's lymphoma), blastema, sarcoma, and leukemia.
  • lymphoma e.g., Hodgkin's and non-Hodgkin's lymphoma
  • blastema sarcoma
  • leukemia
  • cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, leukemia and other lymphoproliferative disorders, and various types of head and neck cancer.
  • treatment refers to clinical intervention in an attempt to alter the natural course of the individual or cell being treated, and can be performed either for prophylaxis or during the course of clinical pathology. Desirable effects of treatment include preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease, preventing or decreasing
  • antibodies of the invention are used to delay development of a disease or disorder.
  • an "individual” or a “subject” is a vertebrate.
  • the vertebrate is a mammal. Mammals include, but are not limited to, farm animals (such as cows), sport animals, pets (such as cats, dogs, and horses), primates, mice and rats.
  • the vertebrate is a human.
  • mammal for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. In certain embodiments, the mammal is human.
  • an “effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.
  • a “therapeutically effective amount” of a substance/molecule of the invention may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the substance/molecule, to elicit a desired response in the individual.
  • a therapeutically effective amount is also one in which any toxic or detrimental effects of the substance/molecule are outweighed by the therapeutically beneficial effects.
  • a “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount would be less than the therapeutically effective amount.
  • cytotoxic agent refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells.
  • the term is intended to include radioactive isotopes (e.g., At211, 1131, 1125, Y90, Rel 86, Rel 88, Sml53, Bi212, P32, Pb212 and radioactive isotopes of Lu), chemotherapeutic agents (e.g., methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolyticenzymes, antibiotics, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof, and the various antit
  • a "chemotherapeutic agent” is a chemical compound useful in the treatment of cancer.
  • chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN® cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL®); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue
  • dynemicin including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, caminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicm, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin,
  • urethan especially T-2 toxin, verracurin A, roridin A and anguidine
  • urethan vindesine (ELDISINE ® , FILDESIN ® ); dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C” ); thiotepa; taxoids, e.g., TAXOL® paclitaxel (Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANETM Cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, 111.), and
  • TAXOTERE® doxetaxel (Rhone-Poulenc Rorer, Antony, France); chloranbucil; gemcitabine
  • GEMZAR® 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine (VELBAN®); platinum; etoposide (VP-16); ifosfamide;
  • NAVELBINE® novantrone
  • edatrexate daunomycin
  • aminopterin ibandronate
  • topoisomerase inhibitor RFS 2000 difluoromethylomithine (DMFO); retinoids such as retinoic acid; capecitabine (XELODA®); pharmaceutically acceptable salts, acids or derivatives of any of the above; as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, vincristine, and prednisolone, and FOLFOX, an abbreviation for a treatment regimen with oxaliplatin
  • the triple-targeting antibody specifically binds to Fucal ⁇ 2Galpl ⁇ 3GalNAc ⁇ l ⁇ 3Galal ⁇ 4Gai i ⁇ 4Glcpl (Globo H hexasaccharide) and Galpl ⁇ 3GalNAcpi ⁇ 3Galal ⁇ 4Galpl ⁇ 4Glcpl (SSEA-3 pentasaccharide) and Neu5Aca2 ⁇ 3Galpl ⁇ 3GalNAc l ⁇ 3Galctl ⁇ 4Galpl ⁇ 4Glcpl (SSEA-4 hexasaccharide).
  • the triple-targeting antibody is mAb 651.
  • the mAb 651 is a mouse monoclonal antibody, produced by the hybridoma cell line.
  • the triple-targeting antibody described herein can contain the same VH and VL chains as antibody MC651. Antibodies binding to the same epitope as MC651 are also within the scope of this disclosure.
  • One aspect of the present disclosure features the new antibodies dual-targeting Globo H and SSEA3.
  • the dual-targeting antibody specifically binds to Fucal ⁇ 2Gai i ⁇ 3GalNAcpl ⁇ 3Galal ⁇ 4Galpl ⁇ 4Glcpl (Globo H hexasaccharide) and Galpl ⁇
  • the dual-targeting antibody is mAb 273.
  • the mAb 273 is a mouse monoclonal antibody, produced by the hybridoma cell line.
  • the dual-targeting antibodies described herein can contain the same VH and VL chains as antibody MC273. Antibodies binding to the same epitope as MC273 are also within the scope of this disclosure.
  • the anti-SSEA-4 antibody binds to Neu5Aca2 ⁇ 3Galpl ⁇ 3GalNAcpl ⁇ 3Galal ⁇ 4Galpl ⁇ 4Glcpi (SSEA-4 hexasaccharide).
  • the antibody is capable of binding Neu5Gca2 ⁇ 3Galpl ⁇ 3GalNAcpl ⁇ 3Galal ⁇ 4Galpl ⁇ 4Glcpl (an analogue of SSEA-4 hexasaccharide).
  • the antibody is not a mouse IgG3 (e.g., mAb
  • the antibody is not amouse IgM(e.g., anti-RMl).
  • the antibodies include, but are not limited to, mAbs 45 and 48.
  • Monoclonal antibodyMC45 is an anti-SSEA-4 mouse monoclonal antibody, produced by the hybridoma cell line.
  • the anti-SSEA-4 antibody described herein can contain the same V H and V L chains as antibody MC45.
  • Antibodies binding to the same epitope as MC45 are
  • Monoclonal antibody MC48 is produced by the hybridoma cell line.
  • the anti-SSEA-4 antibody described herein can contain the same V H and V L chains as antibody MC48 or variants thereof. Antibodies binding to the same epitope as MC48 are also within the scope of this disclosure.
  • One aspect of the present disclosure provides humanized glycoantibodies based on the modification of the MC48. Exemplars and their amino acid and nucleic acid structures/sequences are provided below:
  • Antibody MC48 (1 st )
  • One aspect of the present disclosure features the new antibodies that bind to SSEA-4 and fragments thereof.
  • the anti-SSEA-4 antibody binds to Neu5Aca2 ⁇ 3Galpl ⁇ 3GalNAcpl ⁇ 3Galal ⁇ 4Gaipi ⁇ 4Glcpl (SSEA-4 hexasaccharide) and Neu5Aca2 ⁇
  • the antibody is capable of Neu5Gcct2 ⁇ 3Galpl ⁇ 3GalNAcpl ⁇ 3Galal ⁇ 4Galpl ⁇ 4Glcpl(an analogue of SSEA-4 hexasaccharide).
  • the antibody is mAb 46.
  • Monoclonal antibodyMC46 is produced by the hybridoma cell line.
  • the anti-SSEA-4 antibody described herein can contain the same VH and VL chains as antibody MC46.
  • Antibodies binding to the same epitope as MC46 are also within the scope of this disclosure.
  • a "MC45 antibody” or “mAb 45” or “antibody from clone MC45” refers to an antibody expressed by clone 45 or to an antibody synthesized in other manners, but having the same CDRs and optionally, the same framework regions as the antibody expressed by clone MC45.
  • antibodies MC46 mAb 46 or clone 46
  • MC48 mAb 48 or clone 48
  • MC273 mAb 273 or clone 273
  • MC651 mAb 651 or clone 651
  • Table 6 Comparison of Binding Epitope and Isotype of Antibodies
  • any of the antibodies described herein can be a full length antibody or an antigen-binding fragment thereof.
  • the antigen binding fragment is a Fab fragment, a F(ab')2 fragment, or a single-chain Fv fragment.
  • the antigen binding fragment is a Fab fragment, a F(ab')2 fragment, or a single-chain Fv fragment.
  • the isolated antibody is a human antibody, a humanized antibody, a chimeric antibody, or a single-chain antibody.
  • a) is a recombinant antibody, a monoclonal antibody, a chimeric antibody, a humanized antibody, a human antibody, an antibody fragment, a bispecific antibody, a monospecific antibody, a monovalent antibody, an IgGl antibody, an IgG2 antibody, or derivative of an antibody;
  • b) is a human, murine, humanized, or chimeric antibody, antigen-binding fragment, or derivative of an antibody;
  • c) is a single-chain antibody fragment, a multibody, a Fab fragment, and/or an immunoglobulin of the IgG, IgM, IgA, IgE, IgD isotypes and/or subclasses thereof;
  • d) has one or more of the following characteristics: (i) mediates ADCC and/or CDC of cancer cells; (ii) induces and/or promotes apoptosis of cancer cells; (iii) inhibits proliferation of target cells of cancer cells; (iv) induce
  • the binding of the antibodies to their respective antigens is specific.
  • the term "specific” is generally used to refer to the situation in which one member of a binding pair will not show any significant binding to molecules other than its specific binding partner (s) and e.g. has less than about 30%, preferably 20%, 10%, or 1 % cross-reactivity with any other molecule other than those specified herein.
  • the antibodies are suitable bind to its target epitopes with a high affinity (low KD value), and preferably KD is in the nanomolar range or lower. Affinity can be measured by methods known in the art, such as, for example; surface plasmon resonance.
  • Exemplary Antibodies capable of binding to the Globo H epitopes and SSEA-4 epitopes described herein can be made by any method known in the art. See, for example, Harlow and Lane, (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York.
  • Exemplary Polyclonal antibodies against the anti-Globo Hand anti-SSEA-4 antibodies may be prepared by collecting blood from the immunized mammal examined for the increase of desired antibodies in the serum, and by separating serum from the blood by any conventional method.
  • Polyclonal antibodies include serum containing the polyclonal antibodies, as well as the fraction containing the polyclonal antibodies may be isolated from the serum.
  • Polyclonal antibodies are generally raised in host animals (e.g., rabbit, mouse, horse, or goat) by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl 2 , etc.
  • a protein that is immunogenic in the species to be immunized e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin
  • Any mammalian animal may be immunized with the antigen for producing the desired antibodies.
  • animals of Rodentia, Lagomorpha, or Primates can be used.
  • Animals of Rodentia include, for example, mouse, rat, and hamster.
  • Animals of Lagomorpha include, for example, rabbit.
  • Animals of Primates include, for example, a monkey of Catarrhini (old world monkey) such as Macaca fascicularis, rhesus monkey, baboon, and chimpanzees.
  • antigens may be diluted and suspended in an appropriate amount of phosphate buffered saline (PBS), physiological saline, etc.
  • PBS phosphate buffered saline
  • the antigen suspension may be mixed with an appropriate amount of a standard adjuvant, such as Freund's complete adjuvant, made into emulsion, and then administered to mammalian animals.
  • Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining 1 mg or 1 ⁇ g of the peptide or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's incomplete adjuvant.
  • Animals can be boosted until the titer plateaus by several administrations of antigen mixed with an appropriately amount of Freund's incomplete adjuvant every 4 to 21 days. Animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. An appropriate carrier may also be used for immunization. After immunization as above, serum is examined by a standard method for an increase in the amount of desired antibodies. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.
  • antibodies can be made by the conventional hybridoma technology. Kohler et al., Nature, 256:495 (1975). In the hybridoma method, a mouse or other appropriate host animal, such as a hamster or rabbit, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro.
  • immune cells are collected from the mammal immunized with the antigen and checked for the increased level of desired antibodies in the serum as described above, and are subjected to cell fusion.
  • the immune cells used for cell fusion are preferably obtained from spleen.
  • Other preferred parental cells to be fused with the above immunocyte include, for example, myeloma cells of mammalians, and more preferably myeloma cells having an acquired property for the selection of fused cells by drugs.
  • Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium.
  • preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-1 1 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 cells available from the American Type Culture Collection, Rockville, Md. USA.
  • Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies ( ozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).
  • the above immunocyte and myeloma cells can be fused according to known methods, for example, the method of Milstein et al. (Galfre et al., Methods Enzymol. 73:3-46, 1981). Lymphocytes are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).
  • a suitable fusing agent such as polyethylene glycol
  • Resulting hybridomas obtained by the cell fusion may be selected by cultivating them in a standard selection medium, such as HAT medium (hypoxanthine, aminopterin, and thymidine containing medium).
  • HAT medium hyperxanthine, aminopterin, and thymidine containing medium.
  • the cell culture is typically continued in the HAT medium for several days to several weeks, the time being sufficient to allow all the other cells, with the exception of the desired hybridoma (non-fused cells), to die. Then, the standard limiting dilution is performed to screen and clone a hybridoma cell producing the desired antibody.
  • the hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
  • a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
  • the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
  • [00194] Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen.
  • the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay. Measurement of absorbance in enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), radioimmunoassay (RIA), and/or
  • immunofluorescence may be used to measure the antigen binding activity of the antibody of the invention.
  • the antibody of the present invention is immobilized on a plate, protein of the invention is applied to the plate, and then a sample containing a desired antibody, such as culture supernatant of antibody producing cells or purified antibodies, is applied. Then, a secondary antibody that recognizes the primary antibody and is labeled with an enzyme, such as alkaline phosphatase, is applied, and the plate is incubated. Next, after washing, an enzyme substrate, such as p-nitrophenyl phosphate, is added to the plate, and the absorbance is measured to evaluate the antigen binding activity of the sample.
  • an enzyme substrate such as p-nitrophenyl phosphate
  • a fragment of the protein such as a C-terminal or N-terminal fragment may be used in this method.
  • BIAcore Pharmacia
  • the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al, Anal. Biochem., 107:220 (1980).
  • the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).
  • Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium.
  • the monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • the hybridoma cells may be grown in vivo as ascites tumors in an animal.
  • the obtained hybridomas can be subsequently transplanted into the abdominal cavity of a mouse and the ascites are harvested.
  • the obtained monoclonal antibodies can be purified by, for example, ammonium sulfate precipitation, a protein A or protein G column, DEAE ion exchange chromatography, or an affinity column to which the protein of the present invention is coupled.
  • the antibody of the present invention can be used not only for purification and detection of the protein of the present invention, but also as a candidate for agonists and antagonists of the protein of the present invention.
  • this antibody can be applied to the antibody treatment for diseases related to the protein of the present invention.
  • the monoclonal antibodies thus obtained can be also recombinantly prepared using genetic engineering techniques (see, for example, Borrebaeck C. A. K. and Larrick J. W. Therapeutic Monoclonal Antibodies, published in the United Kingdom by MacMillan Publishers LTD, 1990).
  • a DNA encoding an antibody may be cloned from an immune cell, such as a hybridoma or an immunized lymphocyte producing the antibody, inserted into an appropriate vector, and introduced into host cells to prepare a recombinant antibody.
  • the present invention also provides recombinant antibodies prepared as described above.
  • a human antibody or a humanized antibody is preferable for reducing immunogenicity.
  • transgenic animals having a repertory of human antibody genes may be immunized with an antigen selected from a protein, protein expressing cells, or their lysates.
  • Antibody producing cells are then collected from the animals and fused with myeloma cells to obtain hybridoma, from which human antibodies against the protein can be prepared.
  • an immune cell such as an immunized lymphocyte, producing antibodies may be immortalized by an oncogene and used for preparing monoclonal antibodies.
  • DNA encoding the monoclonal antibodies can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
  • the hybridoma cells serve as a preferred source of such DNA.
  • the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • DNAs encoding the antibodies produced by the hybridoma cells described above can be genetically modified, via routine technology, to produce genetically engineered antibodies.
  • Genetically engineered antibodies such as humanized antibodies, chimeric antibodies, single-chain antibodies, and bi-specific antibodies, can be produced via, e.g., conventional recombinant technology.
  • the DNA can then be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences, Morrison et al, (1984) Proc. Nat. Acad. Sci. 81 :6851, or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
  • genetically engineered antibodies such as "chimeric” or "hybrid” antibodies; can be prepared that have the binding specificity of a target antigen.
  • non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one
  • antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
  • Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents.
  • immunotoxins may be constructed using a disulfide-exchange reaction or by forming a thioether bond.
  • suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.
  • a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321 :522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239: 1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
  • humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
  • humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • variable domains both light and heavy
  • the choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity.
  • the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences.
  • the human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., J. Immunol., 151 :2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)).
  • Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains.
  • the same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad Sci. USA, 89:4285 (1992); Prestaetal., J. Immnol., 151 :2623 (1993)).
  • humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences.
  • Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
  • Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i. e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.
  • FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved.
  • the CDR residues are directly and most substantially involved in influencing antigen binding.
  • transgenic animals e.g., mice
  • transgenic animals e.g., mice
  • the homozygous deletion of the antibody heavy-chain joining region (3 ⁇ 4) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production.
  • Human antibodies can also be derived from phage-display libraries (Hoogenboom et al., J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581-597 (1991)).
  • nucleic acid encoding the anti-Globo Hand anti-SSEA-4 antibodies described herein including heavy chain, light chain, or both
  • vectors such as expression vectors comprising one or more of the nucleic acids, and host cells comprising one or more of the vectors are also within the scope of the present disclosure.
  • a vector comprising a nucleic acid comprising a nucleotide sequence encoding either the heavy chain variable region or the light chain variable region of an anti-SSEA-4 antibody as described herein.
  • the vector comprises nucleotide sequences encoding both the heavy chain variable region and the light chain variable region, the expression of which can be controlled by a single promoter or two separate promoters. Also provided here are methods for producing any of the anti-Globo Hand anti-SSEA-4 antibodies as described herein, e.g., via the recombinant technology described in this section.
  • Fully human antibodies can be obtained by using commercially available mice that have been engineered to express specific human
  • Transgenic animals that are designed to produce a more desirable (e.g., fully human antibodies) or more robust immune response may also be used for generation of humanized or human antibodies.
  • Examples of such technology are Xenomouse R TM from Amgen, Inc. (Fremont, Calif.) and HuMAb-Mouse R TM and TC MouseTM from Medarex, Inc. (Princeton, N.J.).
  • antibodies may be made recombinantly by phage display technology. See, for example, U.S. Pat. Nos. 5,565,332; 5,580,717; 5,733,743; and 6,265,150; and Winter et al., (1994) Annu. Rev. Immunol.
  • phage display technology (McCafferty et al., (1990) Nature 348:552-553) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors.
  • Antigen-binding fragments of an intact antibody can be prepared via routine methods.
  • F(ab')2 fragments can be produced by pepsin digestion of an antibody molecule, and Fab fragments that can be generated by reducing the disulfide bridges of F(ab')2 fragments.
  • the anti-Globo Hand anti-SSEA-4 antibodies described herein can be isolated from antibody phage libraries (e.g., single-chain antibody phage libraries) generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990). Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol Biol., 222:581-597 (1991).
  • Antibodies obtained as described herein may be purified to homogeneity.
  • the separation and purification of the antibody can be performed according to separation and purification methods used for general proteins.
  • the antibody may be separated and isolated by the appropriately selected and combined use of column
  • the concentration of the antibodies obtained as above may be determined by the measurement of absorbance, Enzyme-linked immunosorbent assay (ELISA), or so on.
  • Exemplary chromatography with the exception of affinity includes, for example, ion-exchange chromatography, hydrophobic chromatography, gel filtration, reverse-phase chromatography, adsorption chromatography, and the like (Strategies for Protein Purification and
  • the antibodies can be characterized using methods well known in the art. For example, one method is to identify the epitope to which the antigen binds, or "epitope mapping.” There are many methods known in the art for mapping and characterizing the location of epitopes on proteins, including solving the crystal structure of an antibody-antigen complex, competition assays, gene fragment expression assays, and synthetic peptide-based assays, as described, for example, in Chapter 11 of Harlow and Lane, Using Antibodies, a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1999. In an additional example, epitope mapping can be used to determine the sequence to which an antibody binds.
  • the epitope can be a linear epitope, i.e., contained in a single stretch of amino acids, or a conformational epitope formed by a three-dimensional interaction of amino acids that may not necessarily be contained in a single stretch (primary structure linear sequence).
  • Peptides of varying lengths can be isolated or synthesized (e.g., recombinantly) and used for binding assays with an antibody.
  • the epitope to which the antibody binds can be determined in a systematic screening by using overlapping peptides derived from the target antigen sequence and determining binding by the antibody.
  • the gene fragment expression assays the open reading frame encoding the target antigen is fragmented either randomly or by specific genetic constructions and the reactivity of the expressed fragments of the antigen with the antibody to be tested is determined.
  • the gene fragments may, for example, be produced by PCR and then transcribed and translated into protein in vitro, in the presence of radioactive amino acids.
  • the binding of the antibody to the radioactively labeled antigen fragments is then determined by immunoprecipitation and gel electrophoresis.
  • Certain epitopes can also be identified by using large libraries of random peptide sequences displayed on the surface of phage particles (phage libraries). Alternatively, a defined library of overlapping peptide fragments can be tested for binding to the test antibody in simple binding assays.
  • mutagenesis of an antigen binding domain can be performed to identify residues required, sufficient, and/or necessary for epitope binding.
  • domain swapping experiments can be performed using a mutant of a target antigen in which various residues in the binding epitope for the candidate antibody have been replaced (swapped) with sequences from a closely related, but antigenically distinct protein (such as another member of the neurotrophin protein family). By assessing binding of the antibody to the mutant target protein, the importance of the particular antigen fragment to antibody binding can be assessed.
  • competition assays can be performed using other antibodies known to bind to the same antigen to determine whether an antibody binds to the same epitope (e.g., the MC45 antibody described herein) as the other antibodies. Competition assays are well known to those of skill in the art.
  • compositions preferably comprise at least one
  • compositions disclosed herein form the "active compound,” also referred to as the "active agent.”
  • pharmaceutically acceptable carrier includes solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions.
  • a pharmaceutical composition is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration.
  • Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol, or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates, or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • the parenteral preparation can be enclosed in ampoules, disposable syringes, or multiple dose vials made of glass or plastic.
  • compositions comprising at least one anti-SSEA-3/SSEA-4/Globo H antibody or at least one polynucleotide comprising sequences encoding an anti-SSEA-3/SSEA-4/Globo H antibody are provided.
  • a composition may be a pharmaceutical composition.
  • compositions comprise one or more antibodies that bind to one or more SSEA-3/SSEA-4/Globo H and/or one or more polynucleotides comprising sequences encoding one or more antibodies that bind to one or more SSEA-3/SSEA-4/Globo H.
  • suitable carriers such as pharmaceutically acceptable excipients including buffers, which are well known in the art.
  • Isolated antibodies and polynucleotides are also provided. In certain aspects,
  • the isolated antibodies and polynucleotides are substantially pure.
  • anti-SSEA-3/SSEA-4/Globo H antibodies are monoclonal.
  • fragments of the anti-SSEA-3/SSEA-4/Globo H antibodies e.g., Fab,
  • Fab'-SH and F(ab')2 fragments are provided. These antibody fragments can be created by traditional means, such as enzymatic digestion, or may be generated by recombinant techniques. Such antibody fragments may be chimeric, humanized, or human. These fragments are useful for the diagnostic and therapeutic purposes set forth below.
  • a variety of methods are known in the art for generating phage display libraries from which an antibody of interest can be obtained.
  • One method of generating antibodies of interest is through the use of a phage antibody library as described in Lee et al., J. Mol. Biol. (2004), 340(5): 1073-93.
  • the anti-SSEA-3/SSEA-4/Globo H antibodies of the invention can be made by using combinatorial libraries to screen for synthetic antibody clones with the desired activity or activities.
  • synthetic antibody clones are selected by screening phage libraries containing phage that display various fragments of antibody variable region (Fv) fused to phage coat protein. Such phage libraries are panned by affinity chromatography against the desired antigen. Clones expressing Fv fragments capable of binding to the desired antigen are adsorbed to the antigen and thus separated from the non-binding clones in the library. The binding clones are then eluted from the antigen, and can be further enriched by additional cycles of antigen adsorption/elution.
  • Fv antibody variable region
  • any of the anti-SSEA-3/SSEA-4/Globo H antibodies of the invention can be obtained by designing a suitable antigen screening procedure to select for the phage clone of interest followed by construction of a full length anti-SSEA-3/SSEA-4/Globo H antibody clone using the Fv sequences from the phage clone of interest and suitable constant region (Fc) sequences described in abat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, NIH Publication 91-3242, Bethesda Md. (1991), vols. 1-3.
  • the antigen-binding domain of an antibody is formed from two variable (V) regions of about 1 10 amino acids, one each from the light (VL) and heavy (VH) chains, that both present three hypervariable loops or complementarity-determining regions (CDRs).
  • Variable domains can be displayed functionally on phage, either as single-chain Fv (scFv) fragments, in which VH and VL are covalently linked through a short, flexible peptide, or as Fab fragments, in which they are each fused to a constant domain and interact non-covalently, as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994).
  • scFv encoding phage clones and Fab encoding phage clones are collectively referred to as "Fv phage clones" or "Fv clones”.
  • Repertoires of VH and VL genes can be separately cloned by polymerase chain reaction (PCR) and recombined randomly in phage libraries, which can then be searched for antigen-binding clones as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994).
  • Libraries from immunized sources provide high-affinity antibodies to the immunogen without the requirement of constructing hybridomas.
  • the naive repertoire can be cloned to provide a single source of human antibodies to a wide range of non-self and also self antigens without any immunization as described by Griffiths et al., EMBO J, 12: 725-734 (1993).
  • naive libraries can also be made synthetically by cloning the unrearranged V-gene segments from stem cells, and using PCR primers containing random sequence to encode the highly variable CDR3 regions and to accomplish rearrangement in vitro as described by Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992).
  • Filamentous phage is used to display antibody fragments by fusion to the minor coat protein pill.
  • the antibody fragments can be displayed as single chain Fv fragments, in which VH and VL domains are connected on the same polypeptide chain by a flexible polypeptide spacer, e.g. as described by Marks et al., J. Mol. Biol., 222: 581-597 (1991), or as Fab fragments, in which one chain is fused to pill and the other is secreted into the bacterial host cell periplasm where assembly of a Fab-coat protein structure which becomes displayed on the phage surface by displacing some of the wild type coat proteins, e.g. as described in
  • nucleic acids encoding antibody gene fragments are obtained from immune cells harvested from humans or animals. If a library biased in favor of
  • SSEA-3/SSEA-4/Globo H to generate an antibody response
  • spleen cells and/or circulating B cells or other peripheral blood lymphocytes (PBLs) are recovered for library construction.
  • PBLs peripheral blood lymphocytes
  • a human antibody gene fragment library biased in favor of anti-human SSEA-3/SSEA-4/Globo H clones is obtained by generating an anti-human
  • the generation of human antibody-producing transgenic mice is described below.
  • Additional enrichment for anti-SSEA-3/SSEA-4/Globo H reactive cell populations can be obtained by using a suitable screening procedure to isolate B cells expressing SSEA-3/SSEA-4/Globo H-specific antibody, e.g., by cell separation with
  • spleen cells and/or B cells or other PBLs from an unimmunized donor provides a better representation of the possible antibody repertoire, and also permits the construction of an antibody library using any animal (human or non-human) species in which SSEA-3/SSEA-4/Globo H is not antigenic.
  • stem cells are harvested from the subject to provide nucleic acids encoding unrearranged antibody gene segments.
  • the immune cells of interest can be obtained from a variety of animal species, such as human, mouse, rat, lagomorpha, luprine, canine, feline, porcine, bovine, equine, and avian species, etc.
  • Nucleic acid encoding antibody variable gene segments are recovered from the cells of interest and amplified.
  • the desired DNA can be obtained by isolating genomic DNA or mRNA from lymphocytes followed by polymerase chain reaction (PCR) with primers matching the 5' and 3' ends of rearranged VH and VL genes as described in Orlandi et al., Proc. Natl. Acad. Sci.
  • V genes can be amplified from cDNA and genomic DNA, with back primers at the 5' end of the exon encoding the mature V-domain and forward primers based within the J-segment as described in Orlandi et al. (1989) and in Ward et al., Nature, 341 : 544-546 (1989).
  • back primers can also be based in the leader exon as described in Jones et al., Biotechnol., 9: 88-89 (1991), and forward primers within the constant region as described in Sastry et al., Proc. Natl. Acad. Sci. (USA), 86: 5728-5732 (1989).
  • degeneracy can be incorporated in the primers as described in Orlandi et al. (1989) or Sastry et al. (1989).
  • the library diversity is maximized by using PCR primers targeted to each V-gene family in order to amplify all available VH and VL arrangements present in the immune cell nucleic acid sample, e.g. as described in the method of Marks et al., J. Mol. Biol, 222: 581-597 (1991) or as described in the method of Orum et al., Nucleic Acids Res., 21 : 4491-4498 (1993).
  • rare restriction sites can be introduced within the PCR primer as a tag at one end as described in Orlandi et al. (1989), or by further PCR amplification with a tagged primer as described in Clackson et al., Nature, 352: 624-628 (1991).
  • VH-gene segments can be derived in vitro from V gene segments. Most of the human VH-gene segments have been cloned and sequenced (reported in Tomlinson et al., J. Mol. Biol., 227: 776-798 (1992)), and mapped (reported in Matsuda et al., Nature Genet., 3: 88-94 ( 993); these cloned segments (including all the major conformations of the HI and H2 loop) can be used to generate diverse VH gene repertoires with PCR primers encoding H3 loops of diverse sequence and length as described in Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992). VH repertoires can also be made with all the sequence diversity focused in a long H3 loop of a single length as described in Barbas et al.,
  • VK and VK segments have been cloned and sequenced (reported in Williams and Winter, Eur. J. Immunol., 23: 1456-1461 (1993)) and can be used to make synthetic light chain repertoires. Synthetic V gene repertoires, based on a range of VH and VL folds, and L3 and H3 lengths, will encode antibodies of considerable structural diversity. Following amplification of V-gene encoding DNAs, germline V-gene segments can be rearranged in vitro according to the methods of Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992).
  • Repertoires of antibody fragments can be constructed by combining VH and VL gene repertoires together in several ways. Each repertoire can be created in different vectors, and the vectors recombined in vitro, e.g., as described in Hogrefe et al., Gene, 128: 119-126 (1993), or in vivo by combinatorial infection, e.g., the loxP system described in Waterhouse et al., Nucl.
  • the repertoires may be cloned sequentially into the same vector, e.g. as described in Barbas et al., Proc. Natl. Acad. Sci. USA, 88: 7978-7982 (1991), or assembled together by PC and then cloned, e.g. as described in Clackson et al., Nature, 352: 624-628 (1991).
  • PCR assembly can also be used to join VH and VL DNAs with DNA encoding a flexible peptide spacer to form single chain Fv (scFv) repertoires.
  • scFv single chain Fv
  • "in cell PCR assembly” is used to combine VH and VL genes within lymphocytes by PCR and then clone repertoires of linked genes as described in Embleton et al., Nucl. Acids Res., 20:
  • Screening of the libraries can be accomplished by any art-known technique.
  • SSEA-3/SSEA-4/Globo H targets can be used to coat the wells of adsorption plates, expressed on host cells affixed to adsorption plates or used in cell sorting, or conjugated to biotin for capture with streptavidin-coated beads, or used in any other art-known method for panning phage display libraries.
  • the phage library samples are contacted with immobilized
  • SSEA-3/SSEA-4/Globo H under conditions suitable for binding of at least a portion of the phage particles with the adsorbent. Normally, the conditions, including pH, ionic strength, temperature and the like are selected to mimic physiological conditions.
  • the phages bound to the solid phase are washed and then eluted by acid, e.g. as described in Barbas et al., Proc. Natl. Acad. Sci. USA, 88: 7978-7982 (1991), or by alkali, e.g. as described in Marks et al., J. Mol. Biol., 222: 581-597 (1991), or by SSEA-3/SSEA-4/Globo H antigen competition, e.g. in a procedure similar to the antigen competition method of Clackson et al., Nature, 352: 624-628 (1991). Phages can be enriched from about 20x to about 1,000-fold in a single round of selection.
  • the enriched phages can be grown in bacterial culture and subjected to further rounds of selection.
  • the efficiency of selection depends on many factors, including the kinetics of dissociation during washing, and whether multiple antibody fragments on a single phage can simultaneously engage with antigen.
  • Antibodies with fast dissociation kinetics (and weak binding affinities) can be retained by use of short washes, multivalent phage display and high coating density of antigen in solid phase. The high density not only stabilizes the phage through multivalent interactions, but favors rebinding of phage that has dissociated.
  • SSEA-3/SSEA-4/Globo H The high affinity-binding phages can then be captured by streptavidin-coated paramagnetic beads.
  • streptavidin-coated paramagnetic beads Such "equilibrium capture” allows the antibodies to be selected according to their affinities of binding, with sensitivity that permits isolation of mutant clones with as little as two-fold higher affinity from a great excess of phages with lower affinity.
  • Conditions used in washing phages bound to a solid phase can also be manipulated to discriminate on the basis of dissociation kinetics.
  • Anti-SSEA-3/SSEA-4/Globo H clones may be activity selected.
  • the invention provides anti-SSEA-3/SSEA-4/Globo H antibodies that block the binding between a SSEA-3/SSEA-4/Globo H ligand and SSEA-3/SSEA-4/Globo H, but do not block the binding between a SSEA-3/SSEA-4/Globo H ligand and a second protein.
  • Fv clones corresponding to such anti-SSEA-3/SSEA-4/Globo H antibodies can be selected by (1) isolating anti-SSEA-3/SSEA-4/Globo H clones from a phage library as described in Section B(I)(2) above, and optionally amplifying the isolated population of phage clones by growing up the population in a suitable bacterial host; (2) selecting SSEA-3/SSEA-4/Globo H and a second protein against which blocking and non-blocking activity, respectively, is desired; (3) adsorbing the anti-SSEA-3/SSEA-4/Globo H phage clones to immobilized SSEA-3/SSEA-4/Globo H; (4) using an excess of the second protein to elute any undesired clones that recognize
  • clones with the desired blocking/non-blocking properties can be further enriched by repeating the selection procedures described herein one or more times.
  • DNA encoding the Fv clones of the invention is readily isolated and sequenced using conventional procedures (e.g. by using oligonucleotide primers designed to specifically amplify the heavy and light chain coding regions of interest from hybridoma or phage DNA template). Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of the desired monoclonal antibodies in the recombinant host cells.
  • host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein
  • DNA encoding the Fv clones of the invention can be combined with known DNA sequences encoding heavy chain and/or light chain constant regions (e.g. the appropriate DNA sequences can be obtained from Kabat et al., supra) to form clones encoding full or partial length heavy and/or light chains.
  • constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species.
  • a Fv clone derived from the variable domain DNA of one animal (such as human) species and then fused to constant region DNA of another animal species to form coding sequence(s) for "hybrid", full length heavy chain and/or light chain is included in the definition of "chimeric” and "hybrid” antibody as used herein.
  • a Fv clone derived from human variable DNA is fused to human constant region DNA to form coding sequence(s) for all human, full or partial length heavy and/or light chains.
  • the antibodies produced by naive libraries can be of moderate affinity (Kd - 1 of about 106 to 107 M- l), but affinity maturation can also be mimicked in vitro by constructing and reselecting from secondary libraries as described in Winter et al. (1994), supra.
  • mutation can be introduced at random in vitro by using error-prone polymerase (reported in Leung et al., Technique, 1 : 1 1-15 (1989)) in the method of Hawkins et al., J. Mol. Biol, 226: 889-896 (1992) or in the method of Gram et al., Proc. Natl. Acad. Sci.
  • affinity maturation can be performed by randomly mutating one or more CDRs, e.g. using PCR with primers carrying random sequence spanning the CDR of interest, in selected individual Fv clones and screening for higher affinity clones.
  • WO 9607754 published 14 Mar. 1996) described a method for inducing mutagenesis in a complementarity determining region of an immunoglobulin light chain to create a library of light chain genes.
  • VH or VL domains selected by phage display with repertoires of naturally occurring V domain variants obtained from unimmunized donors and screen for higher affinity in several rounds of chain reshuffling as described in Marks et al., Biotechnol., 10: 779-783 (1992).
  • This technique allows the production of antibodies and antibody fragments with affinities in the 10-9 M range.
  • one aspect of the present disclosure features an isolated antibody triple-targeting Globo H, SSEA3 and SSEA-4.
  • the triple-targeting antibody specifically binds to Fucal ⁇ 2Gal l ⁇ 3GalNAcpl ⁇ 3Galal ⁇ 4Gal l ⁇ 4Glcpl (Globo H hexasaccharide) and Galpl ⁇ 3GalNAcpl ⁇ 3Galal ⁇ 4Galpl ⁇ 4Glcpl (SSEA-3 pentasaccharide) and
  • the triple-targeting antibody is mAb 651.
  • Another aspect of the present disclosure features an isolated antibody dual-targeting Globo H and SSEA3.
  • the dual-targeting antibody specifically binds to Fucal ⁇ 2Galpl ⁇ 3GalNAcpl ⁇ 3Galal ⁇ 4Galpl ⁇ 4Glcpl (Globo H hexasaccharide) and Galpl ⁇ 3GalNAc i ⁇ 3Galal ⁇ 4Galpl ⁇ 4Glcpl (SSEA-3 pentasaccharide).
  • the dual-targeting antibody is mAb 273.
  • the present disclosure features an isolated antibody specific to SSEA-4.
  • the anti-SSEA-4 antibody binds to Neu5Aca2 ⁇ 3Galpl ⁇ 3GalNAcpl ⁇ 3Galal ⁇ 4Gaipi ⁇ 4 ⁇ 1 ⁇ 1 (SSEA-4 hexasaccharide).
  • the antibody is capable of binding Neu5Gca2 ⁇ 3GaIpl ⁇ 3GalNAcpi ⁇ 3Galal ⁇ 4Gal l ⁇ 4Glcpl (an analogue of SSEA-4 hexasaccharide).
  • the antibody is not a mouse IgG3(e.g., mAb MC-831 -70), and the antibody is not a mouse IgM(e.g., anti-RMl).
  • the antibodies include, but are not limited to, mAbs 45 and 48.
  • Another aspect of the present disclosure features an isolated antibody specific to SSEA-4 and fragments thereof.
  • the anti-SSEA-4 antibody binds to Neu5Aca2 ⁇ 3Gai i ⁇ 3GalNAcpl ⁇ 3Galocl ⁇ 4Gaipi ⁇ 4Glcpi (SSEA-4 hexasaccharide) and Neu5Acct2 ⁇ 3Gaipi ⁇ 3GalNAcpl ⁇ 3 Gala 1 (fragment of SSEA-4 hexasaccharide).
  • the antibody is capable of Neu5Aca2 ⁇ 3Gaipi ⁇ 3GalNAcpi ⁇ 3Gaipi .
  • the antibody is capable of Neu5Gca2 ⁇ 3GaU31 ⁇ 3GalNAc l ⁇ 3Galal ⁇ 4Galpl ⁇ 4Glcpl(an analogue of SSEA-4 hexasaccharide)
  • the antibody is mAb 46.
  • Antibodies triple-targeting Globo H, SSEA-3 and SSEA-4, antibodies dual-targeting Globo H and SSEA-3, and anti-SSEA-4 antibodies were developed and disclosed herein.
  • the antibodies according to the disclosure can be used in therapeutics, diagnosis or as a research tool.
  • one aspect of the present disclosure relates to a composition of a homogeneous population of monoclonal antibodies comprising a single, uniform N-glycan on Fc, wherein the structure is an optimized N-glycan structure for enhancing the efficacy of effector cell function.
  • the N-glycan is attached to the Asn-297 of the Fc region.
  • N-glycan consists of the structure of Sia2(a2-6)Gal 2 GlcNAc2Man 3 GlcNAc2.
  • the glycoantibodies described herein may be produced in vitro.
  • the glycoantibodies may be generated by Fc glycoengineering.
  • the glycoantibodies are enzymatically or chemoenzymatically engineered from the monoclonal antibodies obtained by mammalian cell culturing.
  • the Fc region of the glycoantibodies described herein exhibits an increased binding affinity for FcyRIIA or FcyRIIIA relative to a wild-type Fc region in the corresponding monoclonal antibodies.
  • the glycoantibodies described herein exhibit an enhanced antibody-dependent cell mediated cytotoxicity (ADCC) activity relative to wild-type immunoglobulins.
  • the glycoantibodies are selected from a group consisting of human IgGl, IgG2, IgG3, and IgG4.
  • the monoclonal antibodies may be humanized, human or chimeric.
  • glycoantibodies described herein may bind to an antigen associated with cancers, autoimmune disorders, inflammatory disorders or infectious diseases.
  • exemplary cancer associated antigens can include, for example, Globo-H, SSEA-3, SSEA-4.
  • the antibodies disclosed herein can detect glycan variants and derivatives.
  • the reducing end of the glycan is free or linked to a tail which is natural (e.g. SSEA4 glycolipid) or non-natural (e.g. a linker for making glycan array or for conjugation for diagnostic purposes). All these derivatives can be recognized by the antibody.
  • the antibodies of this invention can therefore detect not only the glycan described herein, but also oxidized variants thereof.
  • the antibodies of this invention can also detect conjugation products to said oxidized variants.
  • the disclosure provides isolated humanized monoclonal glycoantibody that specifically binds to Neu5Aca2 ⁇ 3Galpl ⁇ 3GalNAcpi ⁇ 3Galal ⁇ 4Gaipi ⁇ 4Glcpi , and oxidized variants thereof, and conjugation products to said oxidized variants, and oxidized variants thereof, and conjugation products to said oxidized variants ; wherein said oxidized variants are the conversion products of the glycan primary alcohols to carbonyls, and wherein the conjugation products are the conversion products of carbonyls to imines with a primary or secondary amine moiety.
  • the glycans comprising primary alcohols can be converted to an oxidized variant by methods known to those skilled in the art.
  • a primary alcohol on a galactose can be converted to an aldehyde by contacting the glycan with an oxidant, e.g. sodium periodate (sodium m-periodate), or another salt of periodate (e.g., potassium, ammonium, manganese, lithium).
  • an oxidant e.g. sodium periodate (sodium m-periodate), or another salt of periodate (e.g., potassium, ammonium, manganese, lithium).
  • an oxidant e.g. sodium periodate (sodium m-periodate)
  • another salt of periodate e.g., potassium, ammonium, manganese, lithium
  • the concentration of oxidant can be 1 micromolar, 5 micromolar, 10 micromolar, 25 micromolar, 50 micromolar, 100 micromolar, 200 micromolar, 500 micromolar, 750 micromolar, 1 millimolar, 5 millimolar, 10 millimolar, 25 millimolar, 50 millimolar, 100 millimolar, or 500 millimolar in water or a suitable buffer.
  • the temperature can be from 5 to 45 degrees Celsius, preferably 15 to 40 degrees Celsius, more preferably 35 to 40 degrees
  • the reaction time can be from 10 seconds to 20 minutes, preferably from 30 seconds to 10 minutes.
  • Suitable buffers can include or exclude saline, phosphate, CHES, MES, borate, acetate, carbonate, formate, citrate, oxalate.
  • mildly acidic buffers are preferred.
  • buffers without TRIS or glycine or free sugars are used as these will compete in the reaction.
  • the conversion can be purified by dialysis or centrifugal dialysis by methods known those skilled in the art.
  • the conjugation products can be formed from the reaction of the oxidized products with an appropriate amine, hydrazine, hydrazide, or oxo-amine by methods known to those skilled in the art, and as described in G. Hermanson, Bioconjugate Techniques, 3 rd Ed., ISBN: 978-0-12-382239-0, Academic Press, 2013, herein incorporated by reference.
  • a primary amine can be reacted to a glycan with a single aldehyde functional group formed from the periodate-oxidized primary alcohol of a galactose within the glycan.
  • the net product would be an imine.
  • the imine can be optionally further reduced to an alcohol by methods known the those skilled in the art, e.g. cyanoborohydride reduction, to form a more stable conjugation product to hydrolysis.
  • the amine, hydrazine, hydrazide, or oxo-amine can be further covalently linked to an array, a reporter molecule, or a biotin for further modification of the conjugation product.
  • the reporter molecule can be a fluorescent molecule.
  • the reporter molecule can be a radiolabeled molecule.
  • the reporter molecule can be a molecule with a unique spectral characteristic (e.g., IR spectra, Raman spectra, or NMR spectra).
  • the array can be a solid surface, a chemically modified surface, a polymer-coated surface, a bead, a gel, a particle, or a nanoparticle.
  • the nanoparticle can be fluorescent or exhibit photoluminescence.
  • the conjugation products can be the conversion products of carbonyls to imines with a primary or secondary amine moiety.
  • the invention provides affinity-matured SSEA-3/SSEA-4/Globo H antibodies. These antibodies have increased affinity and specificity for SSEA-3/SSEA-4/Globo H. This increase in affinity and sensitivity permits the molecules of the invention to be used for applications and methods that are benefited by (a) the increased sensitivity of the molecules of the invention and/or (b) the tight binding of SSEA-3/SSEA-4/Globo H by the molecules of the invention.
  • SSEA4/SSEA3/GloboH are three glycans that are specifically expressed for cancer cells and cancer stem cells.
  • Knockdown of beta-3-GalT5 the key enzyme for the synthesis of these three glycolipids, causes apoptosis of cancer cells, but not normal cells.
  • Antibodies especially glycoantibodies against SSEA4 preferentially or specifically and/or against SSEA3/SSEA4/GloboH simultaneously are effective cancer therapeutic agents.
  • the three glycans, SSEA4/SSEA3/GloboH, especially SSEA3, are useful as cancer stem cell markers.
  • SSEA4 and/or SSEA4/SSEA3/GloboH in combination are useful as therapeutic targets for the treatment of different cancers, including for example, brain cancer, lung cancer, breast cancer, oral cancer, esophageal cancer, stomach cancer, liver cancer, bile duct cancer, pancreatic cancer, colon cancer, kidney cancer, bone cancer (osteosarcoma), skin cancer, cervical cancer, ovarian cancer, and prostate cancer.
  • different cancers including for example, brain cancer, lung cancer, breast cancer, oral cancer, esophageal cancer, stomach cancer, liver cancer, bile duct cancer, pancreatic cancer, colon cancer, kidney cancer, bone cancer (osteosarcoma), skin cancer, cervical cancer, ovarian cancer, and prostate cancer.
  • human or humanized therapeutic antibodies against SSEA4 expressed on the cell surface of these exemplary cancer types are provided.
  • human or humanized therapeutic antibodies against SSEA3/SSEA4/Globo-H simultaneously expressed on the cell surface of these exemplary cancer types are provided.
  • the present disclosure is also directed to immunogenic conjugate compositions targeting the SSEA-3/SSEA-4/Globo H associated epitopes (natural and modified) which can elicit antibodies and/or binding fragment production useful for modulating the globoseries glycosphingolipid synthesis.
  • the present disclosure is also directed to the method of using the compositions described herein for the treatment or detection of
  • SSEA-3/SSEA-4/Globo H antibodies that are useful for treatment of SSEA-3/SSEA-4/Globo H-mediated disorders in which a partial or total blockade of one or more SSEA-3/SSEA-4/Globo H activities is desired.
  • the anti SSEA-3/SSEA-4/Globo H antibodies of the invention are used to treat cancer.
  • the anti- SSEA-3/SSEA-4/Globo H antibodies of the invention permit the sensitive and specific detection of the epitopes in immunoassays such as sandwich assays, immunoprecipitations, ELISAs, or immunomicroscopy without the need for mass spectrometry or genetic manipulation. In turn, this provides a significant advantage in both observing and elucidating the normal functioning of these pathways and in detecting when the pathways are functioning aberrantly.
  • the SSEA-3/SSEA-4/Globo H antibodies of the invention can also be used to determine the role in the development and pathogenesis of disease.
  • the SSEA-3/SSEA-4/Globo H antibodies of the invention can be used to determine whether the TACAs are normally temporally expressed which can be correlated with one or more disease states.
  • the SSEA-3/SSEA-4/Globo H antibodies of the invention can further be used to treat diseases in which one or more SSEA-3/SSEA-4/Globo Hs are aberrantly regulated or aberrantly functioning without interfering with the normal activity of SSEA-3/SSEA-4/Globo Hs for which the anti-SSEA-3/SSEA-4/Globo H antibodies of the invention are not specific.
  • the anti- SSEA-3/SSEA-4/Globo H antibodies of the invention find utility as reagents for detection of cancer states in various cell types and tissues.
  • the present anti- SSEA-3/SSEA-4/Globo H antibodies are useful for the development of SSEA-3/SSEA-4/Globo H antagonists with blocking activity patterns similar to those of the subject antibodies of the invention.
  • anti- SSEA-3/SSEA-4/Globo H antibodies of the invention can be used to determine and identify other antibodies that have the same SSEA-3/SSEA-4/Globo H binding characteristics and/or capabilities of blocking SSEA-3/SSEA-4/Globo H- pathways.
  • anti- SSEA-3/SSEA-4/Globo H antibodies of the invention can be used to identify other anti-SSEA-3/SSEA-4/Globo H antibodies that bind substantially the same antigenic determinant(s) of SSEA-3/SSEA-4/Globo H as the antibodies exemplified herein, including linear and conformational epitopes.
  • the anti-SSEA-3/SSEA-4/Globo H antibodies of the invention can be used in assays based on the physiological pathways in which SSEA-3/SSEA-4/Globo H is involved to screen for small molecule antagonists of SSEA-3/SSEA-4/Globo H which will exhibit similar pharmacological effects in blocking the binding of one or more binding partners to
  • the anti-S SEA-3/S SEA-4/Globo H antibodies of the invention can be made by using combinatorial libraries to screen for synthetic antibody clones with the desired activity or activities.
  • synthetic antibody clones are selected by screening phage libraries containing phage that display various fragments of antibody variable region (Fv) fused to phage coat protein.
  • Fv antibody variable region
  • Clones expressing Fv fragments capable of binding to the desired antigen are adsorbed to the antigen and thus separated from the non-binding clones in the library. The binding clones are then eluted from the antigen, and can be further enriched by additional cycles of antigen adsorption/elution.
  • any of the anti-SSEA-3/SSEA-4/Globo H antibodies of the invention can be obtained by designing a suitable antigen screening procedure to select for the phage clone of interest followed by construction of a full length anti-SSEA-3/SSEA-4/Globo H antibody clone using the Fv sequences from the phage clone of interest and suitable constant region (Fc) sequences described in Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, NIH Publication 91-3242, Bethesda Md. (1991), vols. 1-3.
  • anti-SSEA-3/SSEA-4/Globo H antibodies of the invention are monoclonal. Also encompassed within the scope of the invention are antibody fragments such as Fab, Fab', Fab'-SH and F(ab')2 fragments, and variations thereof, of the
  • anti-SSEA-3/SSEA-4/Globo H antibodies provided herein. These antibody fragments can be created by traditional means, such as enzymatic digestion, or may be generated by recombinant techniques. Such antibody fragments may be chimeric, human or humanized. These fragments are useful for the experimental, diagnostic, and therapeutic purposes set forth herein.
  • Monoclonal antibodies can be obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts.
  • the modifier "monoclonal" indicates the character of the antibody as not being a mixture of discrete antibodies.
  • the anti-SSEA-3/SSEA-4/Globo H monoclonal antibodies of the invention can be made using a variety of methods known in the art, including the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or alternatively they may be made by recombinant DNA methods (e.g., U.S. Pat. No. 4,816,567).
  • nucleic acid encoding it is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression.
  • DNA encoding the antibody is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody).
  • Many vectors are available. The choice of vector depends in part on the host cell to be used.
  • Host cells include, but are not limited to, cells of either prokaryotic or eukaryotic (generally mammalian) origin. It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species.
  • Polynucleotide sequences encoding polypeptide components of the antibody of the invention can be obtained using standard recombinant techniques. Desired polynucleotide sequences may be isolated and sequenced from antibody producing cells such as hybridoma cells. Alternatively, polynucleotides can be synthesized using nucleotide synthesizer or PCR techniques. Once obtained, sequences encoding the polypeptides are inserted into a recombinant vector capable of replicating and expressing heterologous polynucleotides in prokaryotic hosts. Many vectors that are available and known in the art can be used for the purpose of the present invention.
  • Selection of an appropriate vector will depend mainly on the size of the nucleic acids to be inserted into the vector and the particular host cell to be transformed with the vector.
  • Each vector contains various components, depending on its function (amplification or expression of heterologous polynucleotide, or both) and its compatibility with the particular host cell in which it resides.
  • the vector components generally include, but are not limited to: an origin of replication, a selection marker gene, a promoter, a ribosome binding site (RBS), a signal sequence, the heterologous nucleic acid insert and a transcription termination sequence.
  • plasmid vectors containing replicon and control sequences which are derived from species compatible with the host cell are used in connection with these hosts.
  • the vector ordinarily carries a replication site, as well as marking sequences which are capable of providing phenotypic selection in transformed cells.
  • E. coli is typically transformed using pBR322, a plasmid derived from an E. coli species.
  • pBR322 contains genes encoding ampicillin (Amp) and tetracycline (Tet) resistance and thus provides easy means for identifying transformed cells.
  • pBR322 its derivatives, or other microbial plasmids or bacteriophage may also contain, or be modified to contain, promoters which can be used by the microbial organism for expression of endogenous proteins.
  • promoters which can be used by the microbial organism for expression of endogenous proteins. Examples of pBR322 derivatives used for expression of particular antibodies are described in detail in Carter et al., U.S. Pat. No. 5,648,237.
  • phage vectors containing replicon and control sequences that are compatible with the host microorganism can be used as transforming vectors in connection with these hosts.
  • bacteriophage such as AGEMTM-1 1 may be utilized in making a recombinant vector which can be used to transform susceptible host cells such as E. coli LE392.
  • the expression vector of the invention may comprise two or more
  • a promoter is an untranslated regulatory sequence located upstream (5') to a cistron that modulates its expression.
  • Prokaryotic promoters typically fall into two classes, inducible and constitutive.
  • Inducible promoter is a promoter that initiates increased levels of transcription of the cistron under its control in response to changes in the culture condition, e.g. the presence or absence of a nutrient or a change in temperature.
  • a large number of promoters recognized by a variety of potential host cells are well known.
  • the selected promoter can be operably linked to cistron DNA encoding the light or heavy chain by removing the promoter from the source DNA via restriction enzyme digestion and inserting the isolated promoter sequence into the vector of the invention.
  • Both the native promoter sequence and many heterologous promoters may be used to direct amplification and/or expression of the target genes.
  • heterologous promoters are utilized, as they generally permit greater transcription and higher yields of expressed target gene as compared to the native target polypeptide promoter.
  • Promoters suitable for use with prokaryotic hosts include the PhoA promoter, the ⁇ -galactamase and lactose promoter systems, a tryptophan (trp) promoter system and hybrid promoters such as the tac or the trc promoter.
  • trp tryptophan
  • other promoters that are functional in bacteria such as other known bacterial or phage promoters
  • Their nucleotide sequences have been published, thereby enabling a skilled worker operably to ligate them to cistrons encoding the target light and heavy chains (Siebenlist et al. (1980) Cell 20: 269) using linkers or adaptors to supply any required restriction sites.
  • each cistron within the recombinant vector comprises a secretion signal sequence component that directs translocation of the expressed polypeptides across a membrane.
  • the signal sequence may be a component of the vector, or it may be a part of the target polypeptide DNA that is inserted into the vector.
  • the signal sequence selected for the purpose of this invention should be one that is recognized and processed (i.e. cleaved by a signal peptidase) by the host cell.
  • the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group consisting of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II (STII) leaders, LamB, PhoE, PelB, OmpA and MBP.
  • STII heat-stable enterotoxin II
  • LamB, PhoE, PelB, OmpA and MBP are STII signal sequences or variants thereof.
  • the production of the immunoglobulins according to the invention can occur in the cytoplasm of the host cell, and therefore does not require the presence of secretion signal sequences within each cistron.
  • immunoglobulin light and heavy chains are expressed, folded and assembled to form functional immunoglobulins within the cytoplasm.
  • Certain host strains e.g., the E. coli trxB- strains
  • Antibodies of the invention can also be produced by using an expression system in which the quantitative ratio of expressed polypeptide components can be modulated in order to maximize the yield of secreted and properly assembled antibodies of the invention. Such modulation is accomplished at least in part by simultaneously modulating translational strengths for the polypeptide components.
  • TIR translational initiation region
  • a series of amino acid or nucleic acid sequence variants can be created with a range of translational strengths, thereby providing a convenient means by which to adjust this factor for the desired expression level of the specific chain.
  • TIR variants can be generated by conventional mutagenesis techniques that result in codon changes which can alter the amino acid sequence. In certain embodiments, changes in the nucleotide sequence are silent. Alterations in the TIR can include, for example, alterations in the number or spacing of
  • One method for generating mutant signal sequences is the generation of a "codon bank" at the beginning of a coding sequence that does not change the amino acid sequence of the signal sequence (i.e., the changes are silent). This can be accomplished by changing the third nucleotide position of each codon; additionally, some amino acids, such as leucine, serine, and arginine, have multiple first and second positions that can add complexity in making the bank.
  • This method of mutagenesis is described in detail in Yansura et al. (1992) METHODS: A Companion to Methods in
  • a set of vectors is generated with a range of TIR strengths for each cistron therein. This limited set provides a comparison of expression levels of each chain as well as the yield of the desired antibody products under various TIR strength combinations.
  • TIR strengths can be determined by quantifying the expression level of a reporter gene as described in detail in Simmons et al. U.S. Pat. No. 5,840,523. Based on the translational strength comparison, the desired individual TIRs are selected to be combined in the expression vector constructs of the invention.
  • Prokaryotic host cells suitable for expressing antibodies of the invention include Archaebacteria and Eubacteria, such as Gram-negative or Gram-positive organisms.
  • useful bacteria include Escherichia (e.g., E. coli), Bacilli (e.g., B. subtilis), Enterobacteria, Pseudomonas species (e.g., P. aeruginosa), Salmonella typhimurium, Serratia marcescans, Klebsiella, Proteus, Shigella, Rhizobia, Vitreoscilla, or Paracoccus.
  • gram-negative cells are used.
  • E. coli cells are used as hosts for the invention. Examples of E.
  • coli strains include strain W3110 (Bachmann, Cellular and Molecular Biology, vol. 2 (Washington, D.C.: American Society for Microbiology, 1987), pp. 1190-1219; ATCC Deposit No. 27,325) and derivatives thereof, including strain 33D3 having genotype
  • E. coli ⁇ 1776 ATCC 31,537) and E. coli RV308 (ATCC 31,608) are also suitable. These examples are illustrative rather than limiting. Methods for constructing derivatives of any of the above-mentioned bacteria having defined genotypes are known in the art and described in, for example, Bass et al., Proteins, 8:309-314 (1990). It is generally necessary to select the appropriate bacteria taking into consideration replicability of the replicon in the cells of a bacterium. For example, E.
  • coli, Serratia, or Salmonella species can be suitably used as the host when well known plasmids such as pBR322, pBR325, pACYC177, or pKN410 are used to supply the replicon.
  • plasmids such as pBR322, pBR325, pACYC177, or pKN410 are used to supply the replicon.
  • the host cell should secrete minimal amounts of proteolytic enzymes, and additional protease inhibitors may desirably be incorporated in the cell culture.
  • Host cells are transformed with the above-described expression vectors and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • Transformation means introducing DNA into the prokaryotic host so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant.
  • transformation is done using standard techniques appropriate to such cells.
  • the calcium treatment employing calcium chloride is generally used for bacterial cells that contain substantial cell-wall barriers.
  • Another method for transformation employs polyethylene glycol/DMSO.
  • Yet another technique used is electroporation.
  • Prokaryotic cells used to produce the polypeptides of the invention are grown in media known in the art and suitable for culture of the selected host cells.
  • suitable media include luria broth (LB) plus necessary nutrient supplements.
  • the media also contains a selection agent, chosen based on the construction of the expression vector, to selectively permit growth of prokaryotic cells containing the expression vector. For example, ampicillin is added to media for growth of cells expressing ampicillin resistant gene.
  • any necessary supplements besides carbon, nitrogen, and inorganic phosphate sources may also be included at appropriate concentrations introduced alone or as a mixture with another supplement or medium such as a complex nitrogen source.
  • the culture medium may contain one or more reducing agents selected from the group consisting of glutathione, cysteine, cystamine, thioglycollate, dithioerythritol and dithiothreitol.
  • the prokaryotic host cells are cultured at suitable temperatures.
  • E. coli growth for example, growth occurs at a temperature range including, but not limited to, about 20° C. to about 39° C, about 25° C. to about 37° C, and at about 30° C.
  • the pH of the medium may be any pH ranging from about 5 to about 9, depending mainly on the host organism.
  • the pH can be from about 6.8 to about 7.4, or about 7.0.
  • an inducible promoter is used in the expression vector of the invention, protein expression is induced under conditions suitable for the activation of the promoter.
  • PhoA promoters are used for controlling transcription of the polypeptides.
  • the transformed host cells are cultured in a phosphate-limiting medium for induction.
  • the phosphate-limiting medium is the C.R.A.P medium (see, e.g., Simmons et al., J. Immunol. Methods (2002), 263: 133-147).
  • a variety of other inducers may be used, according to the vector construct employed, as is known in the art.
  • the expressed polypeptides of the present invention are secreted into and recovered from the periplasm of the host cells.
  • Protein recovery typically involves disrupting the microorganism, generally by such means as osmotic shock, sonication or lysis. Once cells are disrupted, cell debris or whole cells may be removed by centrifugation or filtration. The proteins may be further purified, for example, by affinity resin chromatography. Alternatively, proteins can be transported into the culture media and isolated therein. Cells may be removed from the culture and the culture supernatant being filtered and concentrated for further purification of the proteins produced. The expressed polypeptides can be further isolated and identified using commonly known methods such as polyacrylamide gel electrophoresis (PAGE) and Western blot assay.
  • PAGE polyacrylamide gel electrophoresis
  • antibody production is conducted in large quantity by a fermentation process.
  • Various large-scale fed-batch fermentation procedures are available for production of recombinant proteins.
  • Large-scale fermentations have at least 1000 liters of capacity, for example about 1,000 to 100,000 liters of capacity. These fermentors use agitator impellers to distribute oxygen and nutrients, especially glucose (a common carbon/energy source).
  • Small scale fermentation refers generally to fermentation in a fermentor that is no more than approximately 100 liters in volumetric capacity, and can range from about 1 liter to about 100 liters.
  • induction of protein expression is typically initiated after the cells have been grown under suitable conditions to a desired density, e.g., an OD550 of about 180-220, at which stage the cells are in the early stationary phase.
  • a desired density e.g., an OD550 of about 180-220
  • inducers may be used, according to the vector construct employed, as is known in the art and described above. Cells may be grown for shorter periods prior to induction. Cells are usually induced for about 12-50 hours, although longer or shorter induction time may be used.
  • various fermentation conditions can be modified.
  • additional vectors overexpressing chaperone proteins such as Dsb proteins (DsbA, DsbB, DsbC, DsbD and or DsbG) or FkpA (a peptidylprolyl cis,trans-isomerase with chaperone activity) can be used to co-transform the host prokaryotic cells.
  • the chaperone proteins have been demonstrated to facilitate the proper folding and solubility of heterologous proteins produced in bacterial host cells. Chen et al.
  • host strains deficient for proteolytic enzymes can be used for the present invention.
  • host cell strains may be modified to effect genetic mutation(s) in the genes encoding known bacterial proteases such as Protease III, OmpT, DegP, Tsp, Protease I, Protease Mi, Protease V, Protease VI and combinations thereof.
  • E. coli protease-deficient strains are available and described in, for example, Joly et al. (1998), supra; Georgiou et al., U.S. Pat. No. 5,264,365; Georgiou et al., U.S. Pat. No. 5,508, 192; Hara et al., Microbial Drug Resistance, 2:63-72 (1996).
  • E. coli strains deficient for proteolytic enzymes and transformed with plasmids overexpressing one or more chaperone proteins are used as host cells in the expression system of the invention.
  • the antibody protein produced herein is further purified to obtain preparations that are substantially homogeneous for further assays and uses.
  • Standard protein purification methods known in the art can be employed. The following procedures are exemplary of suitable purification procedures: fractionation on immunoaffinity or ion-exchange columns, ethanol precipitation, reverse phase HPLC, chromatography on silica or on a cation-exchange resin such as DEAE, chromatofocusing, SDS-PAGE, ammonium sulfate precipitation, and gel filtration using, for example, Sephadex G-75.
  • Protein A immobilized on a solid phase is used for immunoaffinity purification of the antibody products of the invention.
  • Protein A is a 41 kD cell wall protein from Staphylococcus aureas which binds with a high affinity to the Fc region of antibodies. Lindmark et al (1983) J. Immunol. Meth. 62: 1-13.
  • the solid phase to which Protein A is immobilized can be a column comprising a glass or silica surface, or a controlled pore glass column or a silicic acid column. In some applications, the column is coated with a reagent, such as glycerol, to possibly prevent nonspecific adherence of contaminants.
  • the preparation derived from the cell culture as described above can be applied onto a Protein A immobilized solid phase to allow specific binding of the antibody of interest to Protein A.
  • the solid phase would then be washed to remove contaminants non-specifically bound to the solid phase.
  • the antibody of interest is recovered from the solid phase by elution.
  • the vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.
  • a vector for use in a eukaryotic host cell may also contain a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide of interest.
  • the heterologous signal sequence selected generally is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell.
  • mammalian signal sequences as well as viral secretory leaders, for example, the herpes simplex gD signal are available.
  • the DNA for such precursor region is ligated in reading frame to DNA encoding the antibody.
  • an origin of replication component is not needed for mammalian expression vectors.
  • the SV40 origin may typically be used only because it contains the early promoter.
  • Selection genes may contain a selection gene, also termed a selectable marker.
  • Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, where relevant, or (c) supply critical nutrients not available from complex media.
  • One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin, mycophenolic acid and hygromycin.
  • Suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the antibody nucleic acid, such as DHFR, thymidine kinase, metallothionein-I and -II (e.g., primate metallothionein genes), adenosine deaminase, ornithine decarboxylase, etc.
  • cells transformed with the DHFR selection gene may first be identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR.
  • Mtx methotrexate
  • Appropriate host cells when wild-type DHFR is employed include, for example, the Chinese hamster ovary (CHO) cell line deficient in DHFR activity (e.g., ATCC CRL-9096).
  • host cells particularly wild-type hosts that contain endogenous DHFR transformed or co-transformed with DNA sequences encoding an antibody, wild-type
  • DHFR protein and another selectable marker such as aminoglycoside 3 '-phosphotransferase
  • APH can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Pat. No. 4,965, 199.
  • a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Pat. No. 4,965, 199.
  • Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to nucleic acid encoding a polypeptide of interest (e.g., an antibody).
  • Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CNCAAT region where N may be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence.
  • Antibody polypeptide transcription from vectors in mammalian host cells can be controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, or from heat-shock promoters, provided such promoters are compatible with the host cell systems.
  • viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40),
  • the early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication.
  • the immediate early promoter of the human cytomegalovirus is conveniently obtained as a Hindlll E restriction fragment.
  • a system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No. 4,419,446. A modification of this system is described in U.S. Pat. No. 4,601,978.
  • an enhancer from a eukaryotic cell virus examples include the SV40 enhancer on the late side of the replication origin (bp
  • the enhancer may be spliced into the vector at a position 5' or 3' to the antibody polypeptide-encoding sequence, but is generally located at a site 5' from the promoter.
  • Expression vectors used in eukaryotic host cells will typically also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding an antibody.
  • One useful transcription termination component is the bovine growth hormone polyadenylation region. See W094/1 1026 and the expression vector disclosed therein.
  • Suitable host cells for cloning or expressing the DNA in the vectors herein include higher eukaryote cells described herein, including vertebrate host cells. Propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad.
  • SV40 monkey kidney CV1 line transformed by SV40
  • human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)
  • baby hamster kidney cells BHK
  • mice Sertoli cells TM4, Mather, Biol. Reprod. 23 :243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al, Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
  • Host cells are transformed with the above-described expression or cloning vectors for antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • the host cells used to produce an antibody of this invention may be cultured in a variety of media.
  • Commercially available media such as Ham's F10 (Sigma), Minimal Essential
  • U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Pat. Re. 30,985 may be used as culture media for the host cells.
  • any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCINTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art.
  • the culture conditions such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • the antibody can be produced by using recombinant techniques.
  • the particulate debris either host cells or lysed fragments, are generally removed, for example, by centrifugation or ultrafiltration.
  • supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon
  • a protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
  • the antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity
  • affinity reagents such as protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody.
  • Protein A can be used to purify antibodies that are based on human ⁇ , ⁇ 2, or ⁇ 4 heavy chains
  • Protein G is recommended for all mouse isotypes and for human ⁇ 3 (Guss et al., EMBO J. 5: 15671575 (1986)).
  • the matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose.
  • the antibody comprises a CH3 domain
  • the Bakerbond ABXTM resin J. T. Baker, Phillipsburg, N.J.
  • Other techniques for protein purification such as fractionation on an
  • the mixture comprising the antibody of interest and contaminants may be subjected to further purification steps, as necessary, for example by low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, generally performed at low salt concentrations (e.g., from about 0-0.25M salt).
  • Antibodies of the invention can be characterized for their physical/chemical properties and biological functions by various assays known in the art.
  • Purified antibodies can be further characterized by a series of assays including, but not limited to, N-terminal sequencing, amino acid analysis, non-denaturing size exclusion high pressure liquid chromatography (HPLC), mass spectrometry, ion exchange chromatography and papain digestion.
  • assays including, but not limited to, N-terminal sequencing, amino acid analysis, non-denaturing size exclusion high pressure liquid chromatography (HPLC), mass spectrometry, ion exchange chromatography and papain digestion.
  • antibodies are analyzed for their biological activity.
  • antibodies of the invention are tested for their antigen binding activity.
  • the antigen binding assays that are known in the art and can be used herein include without limitation any direct or competitive binding assays using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich” immunoassays, immunoprecipitation assays, fluorescent immunoassays, chemiluminescent immunoassays, nanoparticle immunoassays, aptamer immunoassays, and protein A immunoassays.
  • Antibody Fragments [00356] The present invention encompasses antibody fragments. In certain circumstances there are advantages of using antibody fragments, rather than whole antibodies. The smaller size of the fragments allows for rapid clearance, and may lead to improved access to solid tumors.
  • F(ab')2 fragments can be isolated directly from recombinant host cell culture.
  • Fab and F(ab')2 fragment with increased in vivo half-life comprising salvage receptor binding epitope residues are described in U.S. Pat. No. 5,869,046.
  • Other techniques for the production of antibody fragments will be apparent to the skilled practitioner.
  • the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Pat. Nos. 5,571,894; and 5,587,458.
  • Fv and sFv are the only species with intact combining sites that are devoid of constant regions; thus, they are suitable for reduced nonspecific binding during in vivo use.
  • sFv fusion proteins may be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. See Antibody Engineering, ed. Borrebaeck, supra.
  • the antibody fragment may also be a "linear antibody", e.g., as described in U.S. Pat. No. 5,641 ,870 for example. Such linear antibody fragments may be monospecific or bispecific.
  • the invention encompasses humanized antibodies.
  • Various methods for humanizing non-human antibodies are known in the art.
  • a humanized antibody can have one or more amino acid residues introduced into it from a source which is non-human.
  • humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
  • humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • variable domains both light and heavy
  • the choice of human variable domains, both light and heavy, to be used in making the humanized antibodies can be important to reduce antigenicity.
  • sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences.
  • the human sequence which is closest to that of the rodent is then accepted as the human framework for the humanized antibody (Sims et al. (1993) J. Immunol. 151 :2296; Chothia et al. (1987) J. Mol. Biol. 196:901.
  • Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains.
  • the same framework may be used for several different humanized antibodies (Carter et al. (1992) Proc. Natl. Acad. Sci. USA, 89:4285; Presta et al. (1993) J. Immunol., 151 :2623.
  • humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences.
  • Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
  • Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.
  • FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved.
  • the hypervariable region residues are directly and most substantially involved in influencing antigen binding.
  • Human anti-SSEA-3/SSEA-4/Globo H antibodies of the invention can be constructed by combining Fv clone variable domain sequence(s) selected from human-derived phage display libraries with known human constant domain sequences(s) as described above.
  • human monoclonal anti-SSEA-3/SSEA-4/Globo H antibodies of the invention can be made by the hybridoma method.
  • Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described, for example, by Kozbor J. Immunol., 133: 3001 (1984); Brön et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987); and Boerner et al, J. Immunol, 147: 86 (1991).
  • transgenic animals e.g. mice
  • transgenic animals e.g. mice
  • Gene shuffling can also be used to derive human antibodies from non-human, e.g. rodent, antibodies, where the human antibody has similar affinities and specificities to the starting non-human antibody.
  • this method which is also called “epitope imprinting"
  • either the heavy or light chain variable region of a non-human antibody fragment obtained by phage display techniques as described above is replaced with a repertoire of human V domain genes, creating a population of non-human chain/human chain scFv or Fab chimeras.
  • Bispecific antibodies are monoclonal antibodies that have binding specificities for at least two different antigens.
  • bispecific antibodies are human or humanized antibodies.
  • one of the binding specificities is for
  • bispecific antibodies may bind to two different antibodies
  • Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')2 bispecific antibodies).
  • bispecific antibodies Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305: 537 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule, which is usually done by affinity
  • antibody variable domains with the desired binding specificities are fused to immunoglobulin constant domain sequences.
  • the fusion for example, is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions.
  • the first heavy-chain constant region (CHI) containing the site necessary for light chain binding, is present in at least one of the fusions.
  • DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in
  • the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121 :210 (1986).
  • the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture.
  • the interface comprises at least a part of the CH3 domain of an antibody constant domain.
  • one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan).
  • Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
  • Bispecific antibodies include cross-linked or "heteroconjugate" antibodies.
  • one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin.
  • Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/00373, and EP 03089).
  • Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
  • bispecific antibodies can be prepared using chemical linkage.
  • Brennan et al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation.
  • the Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives.
  • One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody.
  • the bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.
  • bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol.,
  • the "diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments.
  • the fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain.
  • VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites.
  • Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., J.
  • Antibodies with more than two valencies are contemplated.
  • trispecific antibodies can be prepared. Tutt et al. J. Immunol. 147: 60 (1991).
  • a multivalent antibody may be internalized (and/or catabolized) faster than a bivalent antibody by a cell expressing an antigen to which the antibodies bind.
  • the antibodies of the present invention can be multivalent antibodies (which are other than of the IgM class) with three or more antigen binding sites (e.g. tetravalent antibodies), which can be readily produced by recombinant expression of nucleic acid encoding the polypeptide chains of the antibody.
  • the multivalent antibody can comprise a dimerization domain and three or more antigen binding sites.
  • the dimerization domain comprises (or consists of), for example, an Fc region or a hinge region.
  • the antibody will comprise an Fc region and three or more antigen binding sites amino-terminal to the Fc region.
  • a multivalent antibody comprises (or consists of), for example, three to about eight, or four antigen binding sites.
  • the multivalent antibody comprises at least one polypeptide chain (for example, two polypeptide chains), wherein the polypeptide chain(s) comprise two or more variable domains.
  • the polypeptide chain(s) may comprise VDl-(Xl)n-VD2-(X2)n-Fc, wherein VD1 is a first variable domain, VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, XI and X2 represent an amino acid or polypeptide, and n is 0 or 1.
  • the polypeptide chain(s) may comprise: VH-CH1 -flexible linker-VH-CHl-Fc region chain; or
  • the multivalent antibody herein may further comprise at least two (for example, four) light chain variable domain polypeptides.
  • the multivalent antibody herein may, for instance, comprise from about two to about eight light chain variable domain polypeptides.
  • the light chain variable domain polypeptides contemplated here comprise a light chain variable domain and, optionally, further comprise a CL domain.
  • amino acid sequence modification(s) of the antibodies described herein are contemplated.
  • Amino acid sequence variants of the antibody are prepared by introducing appropriate nucleotide changes into the antibody nucleic acid, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics.
  • the amino acid alterations may be introduced in the subject antibody amino acid sequence at the time that sequence is made.
  • a useful method for identification of certain residues or regions of the antibody that are preferred locations for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells (1989) Science, 244: 1081-1085.
  • a residue or group of target residues are identified (e.g., charged residues such as Arg, Asp, His, Lys, and Glu) and replaced by a neutral or negatively charged amino acid (e.g., alanine or polyalanine) to affect the interaction of the amino acids with antigen.
  • Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution.
  • the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed immunoglobulins are screened for the desired activity.
  • Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues.
  • terminal insertions include an antibody with an N-terminal methionyl residue or the antibody fused to a cytotoxic polypeptide.
  • Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody.
  • variants are an amino acid substitution variant. These variants have at least one amino acid residue in the antibody molecule replaced by a different residue.
  • the sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative substitutions are shown in Table A under the heading of "preferred substitutions". If such substitutions result in a change in biological activity, then more substantial changes, denominated "exemplary substitutions" in Table A, or as further described below in reference to amino acid classes, may be introduced and the products screened. [00383] TABLE A
  • Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
  • Amino acids may be grouped according to similarities in the properties of their side chains (in A. L. Lehninger, in Biochemistry, second ed., pp. 73-75, Worth Publishers, New York (1975)):
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, into the remaining (non-conserved) sites.
  • substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody).
  • a parent antibody e.g. a humanized or human antibody
  • the resulting variant(s) selected for further development will have modified (e.g., improved) biological properties relative to the parent antibody from which they are generated.
  • a convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino acid substitutions at each site.
  • the antibodies thus generated are displayed from filamentous phage particles as fusions to at least part of a phage coat protein (e.g., the gene III product of Ml 3) packaged within each particle.
  • the phage-displayed variants are then screened for their biological activity (e.g. binding affinity) as herein disclosed.
  • scanning mutagenesis e.g., alanine scanning
  • contact residues and neighboring residues are candidates for substitution according to techniques known in the art, including those elaborated herein.
  • Nucleic acid molecules encoding amino acid sequence variants of the antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the antibody.
  • the Fc region variant may comprise a human Fc region sequence (e.g., a human IgGl, IgG2, IgG3 or IgG4 Fc region) comprising an amino acid modification (e.g. a substitution) at one or more amino acid positions including that of a hinge cysteine.
  • a human Fc region sequence e.g., a human IgGl, IgG2, IgG3 or IgG4 Fc region
  • an amino acid modification e.g. a substitution
  • the invention provides immunoconjugates, or antibody-drug conjugates (ADC), comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, a drug, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
  • a cytotoxic agent such as a chemotherapeutic agent, a drug, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
  • Toxins used in antibody-toxin conjugates include bacterial toxins such as diphtheria toxin, plant toxins such as ricin, small molecule toxins such as geldanamycin (Mandler et al (2000) Jour, of the Nat. Cancer Inst. 92(19): 1573-1581 ; Mandler et al (2000) Bioorganic & Med. Chem. Letters 10: 1025-1028; Mandler et al (2002) Bioconjugate Chem. 13:786-791), maytansinoids (EP 1391213; Liu et al., (1996) Proc. Natl. Acad. Sci.
  • cytotoxic drugs tend to be inactive or less active when conjugated to large antibodies or protein receptor ligands.
  • Antibodies of the invention can be further modified to contain additional nonproteinaceous moieties that are known in the art and readily available.
  • the moieties suitable for derivatization of the antibody are water soluble polymers.
  • water soluble polymers include, but are not limited to, polyethylene glycol (PEG), copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-l ,3-dioxolane, poly-l,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), and dextran or poly(n-vinyl pyrrolidone)polyethylene glycol, propropylene glycol homopolymers, prolypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g.
  • Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water.
  • the polymer may be of any molecular weight, and may be branched or unbranched.
  • the number of polymers attached to the antibody may vary, and if more than one polymer is attached, the polymers can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of the antibody to be improved, whether the antibody derivative will be used in a therapy under defined conditions, etc.
  • conjugates of an antibody and nonproteinaceous moiety that may be selectively heated by exposure to radiation are provided.
  • the nonproteinaceous moiety is a carbon nanotube (Kam et al, Proc. Natl. Acad. Sci. 102:
  • the radiation may be of any wavelength, and includes, but is not limited to, wavelengths that do not harm ordinary cells, but which heat the nonproteinaceous moiety to a temperature at which cells proximal to the antibody-nonproteinaceous moiety are killed.
  • Therapeutic formulations comprising an antibody of the invention are prepared for storage by mixing the antibody having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of aqueous solutions, lyophilized or other dried formulations.
  • Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, histidine and other organic acids; antioxidants including ascorbic acid and methionine;
  • preservatives such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine;
  • monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEENTM, PLURONICSTM or polyethylene glycol (PEG).
  • chelating agents such as EDTA
  • sugars such as sucrose, mannitol, trehalose or sorbitol
  • salt-forming counter-ions such as sodium
  • metal complexes e.g., Zn-protein complexes
  • non-ionic surfactants such as TWEENTM, PLURONICSTM or polyethylene glycol (PEG).
  • the formulation herein may also contain more than one active compound as necessary for the particular indication being treated, including, but not limited to those with complementary activities that do not adversely affect each other. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
  • the active ingredients may also be entrapped in microcapsule prepared, for example, by coacervation techniques or by interfacial polymerization, for example,
  • hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
  • macroemulsions for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
  • formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
  • Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the immunoglobulin of the invention, which matrices are in the form of shaped articles, e.g., films, or microcapsule. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides
  • copolymers of L-glutamic acid and ⁇ ethyl-L-glutamate copolymers of L-glutamic acid and ⁇ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.
  • encapsulated immunoglobulins When encapsulated immunoglobulins remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C, resulting in a loss of biological activity and possible changes in immunogenic ity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S— S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
  • An antibody of the invention may be used in, for example, in vitro, ex vivo and in vivo therapeutic methods.
  • Antibodies of the invention can be used as an antagonist to partially or fully block the specific antigen activity in vitro, ex vivo and/or in vivo.
  • at least some of the antibodies of the invention can neutralize antigen activity from other species.
  • antibodies of the invention can be used to inhibit a specific antigen activity, e.g., in a cell culture containing the antigen, in human subjects or in other mammalian subjects having the antigen with which an antibody of the invention cross-reacts (e.g. chimpanzee, baboon, marmoset, cynomolgus and rhesus, pig or mouse).
  • an antibody of the invention can be used for inhibiting antigen activities by contacting the antibody with the antigen such that antigen activity is inhibited.
  • the antigen is a human protein molecule.
  • an antibody of the invention can be used in a method for inhibiting an antigen in a subject suffering from a disorder in which the antigen activity is detrimental, comprising administering to the subject an antibody of the invention such that the antigen activity in the subject is inhibited.
  • the antigen is a human protein molecule and the subject is a human subject.
  • the subject can be a mammal expressing the antigen with which an antibody of the invention binds.
  • the subject can be a mammal into which the antigen has been introduced (e.g., by administration of the antigen or by expression of an antigen transgene).
  • An antibody of the invention can be administered to a human subject for therapeutic purposes.
  • an antibody of the invention can be administered to a non-human mammal expressing an antigen with which the antibody cross-reacts (e.g., a primate, pig or mouse) for veterinary purposes or as an animal model of human disease. Regarding the latter, such animal models may be useful for evaluating the therapeutic efficacy of antibodies of the- invention (e.g., testing of dosages and time courses of administration).
  • Antibodies of the invention can be used to treat, inhibit, delay progression of, prevent/delay recurrence of, ameliorate, or prevent diseases, disorders or conditions associated with abnormal expression and/or activity of SSEA-3/SSEA-4/Globo Hs and
  • SSEA-3/SSEA-4/Globo Hated proteins including but not limited to cancer, muscular disorders, ubiquitin-pathway-related genetic disorders, immune/inflammatory disorders, neurological disorders, and other ubiquitin pathway-related disorders.
  • a blocking antibody of the invention is specific for a
  • an immunoconjugate comprising an antibody of the invention conjugated with a cytotoxic agent is administered to the patient.
  • the immunoconjugate and/or antigen to which it is bound is/are internalized by cells expressing one or more proteins on their cell surface which are associated with
  • the cytotoxic agent targets or interferes with nucleic acid in the target cell.
  • examples of such cytotoxic agents include any of the chemotherapeutic agents noted herein (such as a maytansinoid or a calicheamicin), a radioactive isotope, or a ribonuclease or a DNA endonuclease.
  • Antibodies of the invention can be used either alone or in combination with other compositions in a therapy.
  • an antibody of the invention may be co-administered with another antibody, and/or adjuvant/therapeutic agents (e.g., steroids).
  • an antibody of the invention may be combined with an anti-inflammatory and/or antiseptic in a treatment scheme, e.g. in treating any of the diseases described herein, including cancer, muscular disorders, ubiquitin-pathway-related genetic disorders, immune/inflammatory disorders, neurological disorders, and other ubiquitin pathway-related disorders.
  • Such combined therapies noted above include combined administration (where the two or more agents are included in the same or separate formulations), and separate administration, in which case, administration of the antibody of the invention can occur prior to, and/or following,
  • An antibody of the invention can be administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, and intranasal, and, if desired for local treatment, intralesional administration.
  • Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration.
  • the antibody is suitably administered by pulse infusion, particularly with declining doses of the antibody. Dosing can be by any suitable route, e.g. by injections, such as intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.
  • an antibody of the invention can be expressed intracellularly as an intrabody.
  • intrabody refers to an antibody or antigen-binding portion thereof that is expressed intracellularly and that is capable of selectively binding to a target molecule, as described in Marasco, Gene Therapy 4: 11-15 (1997); Kontermann, Methods 34: 163-170 (2004); U.S. Pat. Nos.
  • Intracellular expression of an intrabody is effected by introducing a nucleic acid encoding the desired antibody or
  • nucleic acids comprising, but not limited to, microinjection, ballistic injection, electroporation, calcium phosphate precipitation, liposomes, and transfection with retroviral, adenoviral, adeno-associated viral and vaccinia vectors carrying the nucleic acid of interest.
  • One or more nucleic acids encoding all or a portion of an anti-SSEA-3/SSEA-4/Globo H antibody of the invention can be delivered to a target cell, such that one or more intrabodies are expressed which are capable of intracellular binding to a SSEA-3/SSEA-4/Globo H and modulation of one or more SSEA-3/SSEA-4/Globo H-mediated cellular pathways.
  • Antibodies can possess certain characteristics that enhance delivery of antibodies into cells, or can be modified to possess such characteristics. Techniques for achieving this are known in the art. For example, cationization of an antibody is known to facilitate its uptake into cells (see, e.g., U.S. Pat. No. 6,703,019). Lipofections or liposomes can also be used to deliver the antibody into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is generally advantageous. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence.
  • Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993).
  • modulator polypeptides into target cells can be enhanced by methods known in the art.
  • certain sequences such as those derived from HIV Tat or the Antennapedia homeodomain protein are able to direct efficient uptake of heterologous proteins across cell membranes. See, e.g., Chen et al., Proc. Natl. Acad. Sci. USA (1999), 96:4325-4329.
  • certain embodiments of the invention provide for the antibody or antigen-binding fragment thereof to traverse the blood-brain barrier.
  • Certain neurodegenerative diseases are associated with an increase in permeability of the blood-brain barrier, such that the antibody or antigen-binding fragment can be readily introduced to the brain.
  • the blood-brain barrier remains intact, several art-known approaches exist for transporting molecules across it, including, but not limited to, physical methods, lipid-based methods, and receptor and channel-based methods.
  • Circumvention methods include, but are not limited to, direct injection into the brain (see, e.g., Papanastassiou et al., Gene Therapy 9: 398-406 (2002)), interstitial infusion/convection-enhanced delivery (see, e.g., Bobo et al., Proc. Natl. Acad. Sci. USA 91 : 2076-2080 (1994)), and implanting a delivery device in the brain (see, e.g., Gill et al., Nature Med. 9: 589-595 (2003); and Gliadel WafersTM, Guildford
  • Methods of creating openings in the barrier include, but are not limited to, ultrasound (see, e.g., U.S. Patent Publication No. 2002/0038086), osmotic pressure (e.g., by administration of hypertonic mannitol (Neuwelt, E. A., Implication of the Blood-Brain Barrier and its Manipulation, Vols 1 & 2, Plenum Press, N.Y. (1989))), permeabilization by, e.g., bradykinin or permeabilizer A-7 (see, e.g., U.S. Pat. Nos.
  • Lipid-based methods of transporting the antibody or antigen-binding fragment across the blood-brain barrier include, but are not limited to, encapsulating the antibody or antigen-binding fragment in liposomes that are coupled to antibody binding fragments that bind to receptors on the vascular endothelium of the blood-brain barrier (see, e.g., U.S. Patent Application Publication No. 20020025313), and coating the antibody or antigen-binding fragment in low-density lipoprotein particles (see, e.g., U.S. Patent Application Publication No. 20040204354) or apolipoprotein E (see, e.g., U.S. Patent Application Publication No.
  • antigen-binding fragment across the blood-brain barrier include, but are not limited to, using glucocorticoid blockers to increase permeability of the blood-brain barrier (see, e.g., U.S. Patent Application Publication Nos. 2002/0065259, 2003/0162695, and 2005/0124533); activating potassium channels (see, e.g., U.S. Patent Application Publication No. 2005/0089473), inhibiting ABC drug transporters (see, e.g., U.S. Patent Application Publication No.
  • the antibody composition of the invention would be formulated, dosed, and administered in a fashion consistent with good medical practice.
  • Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners.
  • the antibody need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question.
  • the effective amount of such other agents depends on the amount of antibodies of the invention present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein, or about from 1 to 99% of the dosages described herein, or in any dosage and by any route that is empirically/clinically determined to be appropriate.
  • an antibody of the invention when used alone or in combination with other agents such as chemotherapeutic agents, will depend on the type of disease to be treated, the type of antibody, the severity and course of the disease, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician.
  • the antibody is suitably administered to the patient at one time or over a series of treatments. Depending on the type and severity of the disease, about 1 ⁇ g/kg to 15 mg/kg (e.g.
  • 0.1 mg/kg- 10 mg/kg) of antibody can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion.
  • One typical daily dosage might range from about 1 Mg/kg to 100 mg/kg or more, depending on the factors mentioned above.
  • the treatment would generally be sustained until a desired suppression of disease symptoms occurs.
  • One exemplary dosage of the antibody would be in the range from about 0.05 mg/kg to about 10 mg/kg.
  • one or more doses of about 0.5 mg/kg, 2.0 mg/kg, 4.0 mg/kg or 10 mg/kg (or any combination thereof) may be administered to the patient.
  • Such doses may be administered intermittently, e.g.
  • An initial higher loading dose, followed by one or more lower doses may be administered.
  • An exemplary dosing regimen comprises administering an initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg/kg of the antibody.
  • an article of manufacture containing materials useful for the treatment, prevention and/or diagnosis of the disorders described above comprises a container and a label or package insert on or associated with the container.
  • Suitable containers include, for example, bottles, vials, syringes, etc.
  • the containers may be formed from a variety of materials such as glass or plastic.
  • the container holds a composition which is by itself or when combined with another composition effective for treating, preventing and/or diagnosing the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
  • At least one active agent in the composition is an antibody of the invention.
  • the label or package insert indicates that the composition is used for treating the condition of choice.
  • the article of manufacture may comprise (a) a first container with a composition contained therein, wherein the composition comprises an antibody of the invention; and (b) a second container with a composition contained therein, wherein the composition comprises a further cytotoxic or otherwise therapeutic agent.
  • the article of manufacture in this embodiment of the invention may further comprise a package insert indicating that the compositions can be used to treat a particular condition.
  • the article of manufacture may further comprise a second (or third) container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
  • BWFI bacteriostatic water for injection
  • phosphate-buffered saline such as bac
  • the subject being treated is a mammal.
  • the subject is a human.
  • the subject is a domesticated animal, such as a dog, cat, cow, pig, horse, sheep, or goat.
  • the subject is a companion animal such as a dog or cat.
  • the subject is a livestock animal such as a cow, pig, horse, sheep, or goat.
  • the subject is a zoo animal.
  • the subject is a research animal such as a rodent, dog, or non-human primate.
  • the subject is a non-human transgenic animal such as a transgenic mouse or transgenic pig.
  • pre-lyophilized formulation can be produced.
  • the antibody for preparing the formulation is preferably essentially pure and desirably essentially homogeneous (i.e. free from contaminating proteins etc).
  • Essentially pure protein means a composition comprising at least about 90% by weight of the protein, based on total weight of the composition, preferably at least about 95% by weight.
  • Essentially homogeneous protein means a composition comprising at least about 99% by weight of protein, based on total weight of the composition.
  • the protein is an antibody.
  • the amount of antibody in the pre-lyophilized formulation is determined taking into account the desired dose volumes, mode(s) of administration etc.
  • the protein of choice is an intact antibody (a full-length antibody)
  • from about 2 mg/niL to about 50 mg/niL, preferably from about 5 mg/mL to about 40 mg/mL and most preferably from about 20-30 mg/mL is an exemplary starting protein concentration.
  • the protein is generally present in solution.
  • the protein may be present in a pH-buffered solution at a pH from about 4-8, and preferably from about 5-7.
  • Exemplary buffers include histidine, phosphate, Tris, citrate, succinate and other organic acids.
  • the buffer concentration can be from about 1 mM to about 20 mM, or from about 3 mM to about 15 mM, depending, for example, on the buffer and the desired isotonicity of the formulation (e.g. of the reconstituted formulation).
  • the preferred buffer is histidine in that, as demonstrated below, this can have lyoprotective properties.
  • Succinate was shown to be another useful buffer.
  • the lyoprotectant is added to the pre-lyophilized formulation.
  • the lyoprotectant is a non-reducing sugar such as sucrose or trehalose.
  • the amount of lyoprotectant in the pre-lyophilized formulation is generally such that, upon reconstitution, the resulting formulation will be isotonic. However, hypertonic reconstituted formulations may also be suitable. In addition, the amount of lyoprotectant must not be too low such that an unacceptable amount of degradation/aggregation of the protein occurs upon lyophilization.
  • lyoprotectant concentrations in the pre-lyophilized formulation are from about 10 mM to about 400 mM, and preferably from about 30 mM to about 300 mM, and most preferably from about 50 mM to about 100 mM.
  • the ratio of protein to lyoprotectant is selected for each protein and lyoprotectant combination.
  • the molar ratio of lyoprotectant to antibody may be from about 100 to about 1500 moles lyoprotectant to 1 mole antibody, and preferably from about 200 to about 1000 moles of lyoprotectant to 1 mole antibody, for example from about 200 to about 600 moles of lyoprotectant to 1 mole antibody.
  • a surfactant to the pre-lyophilized formulation.
  • the surfactant may be added to the lyophilized formulation and/or the reconstituted formulation.
  • exemplary surfactants include nonionic surfactants such as polysorbates (e.g. polysorbates 20 or 80);
  • poloxamers e.g. poloxamer 188
  • Triton sodium dodecyl sulfate (SDS); sodium laurel sulfate; sodium octyl glycoside; lauryl-, myristyl-, linoleyl-, or stearyl-sulfobetaine; lauryl-, myristyl-, linoleyl- or stearyl-sarcosine; linoleyl-, myristyl-, or cetyl-betaine; lauroamidopropyl-, cocamidopropyl-, linoleamidopropyl-, myristamidopropyl-, palnidopropyl-, or
  • isostearamidopropyl-betaine e.g lauroamidopropyl
  • myristamidopropyl-, palmidopropyl-, or isostearamidopropyl-dimethylamine sodium methyl cocoyl-, or disodium methyl oleyl-taurate
  • MONAQUATTM series Mona Industries, Inc., Paterson, N.J.
  • polyethyl glycol, polypropyl glycol, and copolymers of ethylene and propylene glycol e.g. Pluronics, PF68 etc.
  • the amount of surfactant added is such that it reduces aggregation of the reconstituted protein and minimizes the formation of particulates after reconstitution.
  • the surfactant may be present in the pre-lyophilized formulation in an amount from about 0.001-0.5%, and preferably from about 0.005-0.05%.
  • a mixture of the lyoprotectant such as sucrose or trehalose
  • a bulking agent e.g. mannitol or glycine
  • the bulking agent may allow for the production of a uniform lyophilized cake without excessive pockets therein etc.
  • compositions such as those described in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980) may be included in the pre-lyophilized formulation (and/or the lyophilized formulation and/or the reconstituted formulation) provided that they do not adversely affect the desired characteristics of the formulation.
  • Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed and include; additional buffering agents; preservatives; co-solvents; antioxidants including ascorbic acid and methionine; chelating agents such as EDTA; metal complexes (e.g. Zn-protein complexes); biodegradable polymers such as polyesters; and/or salt-forming counterions such as sodium.
  • compositions and formulations described herein are preferably stable.
  • a “stable" formulation/composition is one in which the antibody therein essentially retains its physical and chemical stability and integrity upon storage.
  • Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991) and Jones, A. Adv. Drug Delivery Rev. 10: 29-90 (1993). Stability can be measured at a selected temperature for a selected time period.
  • the formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to, or following, lyophilization and reconstitution. Alternatively, sterility of the entire mixture may be accomplished by autoclaving the ingredients, except for protein, at about 120° C. for about 30 minutes, for example. [00466] After the protein, lyoprotectant and other optional components are mixed together, the formulation is lyophilized. Many different freeze-dryers are available for this purpose such as Hull50® (Hull, USA) or GT20® (Leybold-Heraeus, Germany) freeze-dryers.
  • Freeze-drying is accomplished by freezing the formulation and subsequently subliming ice from the frozen content at a temperature suitable for primary drying. Under this condition, the product temperature is below the eutectic point or the collapse temperature of the formulation. Typically, the shelf temperature for the primary drying will range from about -30 to 25° C. (provided the product remains frozen during primary drying) at a suitable pressure, ranging typically from about 50 to 250 mTorr.
  • the formulation, size and type of the container holding the sample (e.g., glass vial) and the volume of liquid will mainly dictate the time required for drying, which can range from a few hours to several days (e.g. 40-60hrs).
  • a secondary drying stage may be carried out at about 0-40° C, depending primarily on the type and size of container and the type of protein employed. However, it was found herein that a secondary drying step may not be necessary.
  • the shelf temperature throughout the entire water removal phase of lyophilization may be from about 15-30° C. (e.g., about 20° C).
  • the time and pressure required for secondary drying will be that which produces a suitable lyophilized cake, dependent, e.g., on the temperature and other parameters.
  • the secondary drying time is dictated by the desired residual moisture level in the product and typically takes at least about 5 hours (e.g. 10-15 hours).
  • the pressure may be the same as that employed during the primary drying step.
  • Freeze-drying conditions can be varied depending on the formulation and vial size.
  • the container in which reconstitution of the protein is to be carried out may, for example, be a 3, 5, 10, 20, 50 or 100 cc vial.
  • lyophilization will result in a lyophilized formulation in which the moisture content thereof is less than about 5%, and preferably less than about 3%.
  • the lyophilized formulation may be reconstituted with a diluent such that the protein concentration in the reconstituted formulation is at least 50 mg/niL, for example from about 50 mg/mL to about 400 mg/mL, more preferably from about 80 mg/mL to about 300 mg/niL, and most preferably from about 90 mg/mL to about 150 mg/mL.
  • a diluent such that the protein concentration in the reconstituted formulation is at least 50 mg/niL, for example from about 50 mg/mL to about 400 mg/mL, more preferably from about 80 mg/mL to about 300 mg/niL, and most preferably from about 90 mg/mL to about 150 mg/mL.
  • Such high protein concentrations in the reconstituted formulation are considered to be particularly useful where subcutaneous delivery of the reconstituted formulation is intended.
  • concentrations of the protein in the reconstituted formulation may be desired (for example from about 5-50 mg/mL, or from about 10-40 mg/mL protein in the reconstituted formulation).
  • the protein concentration in the reconstituted formulation is significantly higher than that in the
  • the protein concentration in the reconstituted formulation may be about 2-40 times, preferably 3-10 times and most preferably 3-6 times (e.g. at least three fold or at least four fold) that of the pre-lyophilized formulation.
  • Reconstitution generally takes place at a temperature of about 25° C. to ensure complete hydration, although other temperatures may be employed as desired.
  • the time required for reconstitution will depend, e.g., on the type of diluent, amount of excipient(s) and protein.
  • Exemplary diluents include sterile water, bacteriostatic water for injection (BWFI), a pH buffered solution (e.g. phosphate-buffered saline), sterile saline solution, Ringer's solution or dextrose solution.
  • BWFI bacteriostatic water for injection
  • pH buffered solution e.g. phosphate-buffered saline
  • sterile saline solution e.g. phosphate-buffered saline
  • Ringer's solution or dextrose solution e.g. sterile saline
  • the diluent optionally contains a preservative. Exemplary preservatives have been
  • the amount of preservative employed is determined by assessing different preservative concentrations for compatibility with the protein and preservative efficacy testing.
  • the preservative is an aromatic alcohol (such as benzyl alcohol)
  • it can be present in an amount from about 0.1-2.0% and preferably from about 0.5-1.5%, but most preferably about 1.0-1.2%.
  • the reconstituted formulation has less than 6000 particles per vial which are >10 ⁇ size.
  • Described herein are therapeutic methods that include administering to a subject in need of such treatment a therapeutically effective amount of a composition that includes one or more antibodies described herein.
  • the subject in need of the treatment is diagnosed with, suspected of having, or at risk for cancer.
  • the cancer include, but are not limited to, brain cancer, lung cancer, breast cancer, oral cancer, esophagus cancer, stomach cancer, liver cancer, bile duct cancer, pancreas cancer, colon cancer, kidney cancer, cervix cancer, ovary cancer and prostate cancer.
  • the cancer is brain cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, or pancreas cancer.
  • the cancer is brain cancer or glioblastoma multiforme (GBM) cancer.
  • the antibody is capable of targeting Globo H, SSEA-3 and SSEA-4-expressing cancer cells. In some embodiments, the antibody is capable of targeting Globo H and SSEA on cancer cells. In some embodiments, the antibody is capable of targeting SSEA in cancers.
  • the antibody is atriple-targeting antibody against Globo H, SSEA-3 and SSEA-4.
  • the antibodies are a mixture of a dual-targeting antibody against Globo H and SSEA-3, and an anti-SSEA-4 antibody.
  • the antibodies are a mixture of a triple-targeting antibody against Globo H, SSEA-3 and SSEA-4, and an anti-SSEA-4 antibody.
  • the antibody is a mixture of an anti-Globo H, an anti-SSEA-3 and an anti-SSEA-4 antibody.
  • the antibody is a mixture of an anti-Globo H and an anti-SSEA-4 antibody.
  • the antibody is an anti-SSEA-4 antibody.
  • the treatment results in reduction of tumor size, elimination of malignant cells, prevention of metastasis, prevention of relapse, reduction or killing of disseminated cancer, prolongation of survival and/or prolongation of time to tumor cancer progression.
  • the treatment further comprises administering an additional therapy to said subject prior to, during or subsequent to said administering of the antibodies.
  • the additional therapy is treatment with a chemotherapeutic agent.
  • the additional therapy is radiation therapy.
  • the methods of the invention are particularly advantageous in treating and preventing early stage tumors, thereby preventing progression to the more advanced stages resulting in a reduction in the morbidity and mortality associated with advanced cancer.
  • the methods of the invention are also advantageous in preventing the recurrence of a tumor or the regrowth of a tumor, for example, a dormant tumor that persists after removal of the primary tumor, or in reducing or preventing the occurrence of a tumor.
  • the methods as disclosed herein are useful for the treatment or prevention of a cancer, for example where a cancer is characterized by increased Globo H, SSEA-3 and/or SSEA-4 expression.
  • the cancer comprises a cancer stem cell.
  • the cancer is a pre-cancer, and/or a malignant cancer and/or a therapy resistant cancer.
  • the cancer is a brain cancer.
  • the cancer may be a solid tumor, e.g., such as, breast cancer, colorectal cancer, rectal cancer, lung cancer, renal cell cancer, a glioma (e.g., anaplastic astrocytoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma,
  • a solid tumor e.g., such as, breast cancer, colorectal cancer, rectal cancer, lung cancer, renal cell cancer
  • a glioma e.g., anaplastic astrocytoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma
  • the cancer is a brain cancer or GBM.
  • an effective amount of the pharmaceutical composition/formulation described above, containing at least one antibody described herein can be administered to a subject (e.g., a human) in need of the treatment via a suitable route, such as intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerebrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, inhalation or topical routes.
  • nebulizers for liquid formulations including jet nebulizers and ultrasonic nebulizers are useful for administration.
  • Liquid formulations can be directly nebulized and lyophilized powder can be nebulized after reconstitution.
  • the antibodies can be aerosolized using a fluorocarbon formulation and a metered dose inhaler, or inhaled as a lyophilized and milled powder.
  • the subject to be treated by the methods described herein can be a mammal, more preferably a human.
  • Mammals include, but are not limited to, farm animals, sport animals, pets, primates, horses, dogs, cats, mice and rats.
  • a human subject who needs the treatment may be a human patient having, at risk for, or suspected of having cancer, which include, but not limited to, brain cancer, lung cancer, breast cancer, oral cancer, esophagus cancer, stomach cancer, liver cancer, bile duct cancer, pancreas cancer, colon cancer, kidney cancer, cervix cancer, ovary cancer and prostate cancer.
  • a subject having cancer can be identified by routine medical examination.
  • an effective amount refers to the amount of each active agent required to confer therapeutic effect on the subject, either alone or in combination with one or more other active agents. Effective amounts vary, as recognized by those skilled in the art, depending on the particular condition being treated, the severity of the condition, the individual patient parameters including age, physical condition, size, gender and weight, the duration of the treatment, the nature of concurrent therapy (if any), the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose of the individual components or combinations thereof be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a patient may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reasons.
  • Empirical considerations such as the half-life, generally will contribute to the determination of the dosage.
  • antibodies that are compatible with the human immune system such as humanized antibodies or fully human antibodies, may be used to prolong half-life of the antibody and to prevent the antibody being attacked by the host's immune system.
  • Frequency of administration may be determined and adjusted over the course of therapy, and is generally, but not necessarily, based on treatment and/or suppression and/or amelioration and/or delay of cancer.
  • sustained continuous release formulations of the antibodies described herein may be appropriate.
  • formulations and devices for achieving sustained release are known in the art.
  • dosages for an antibody as described herein may be determined empirically in individuals who have been given one or more administration(s) of the antibody. Individuals are given incremental dosages of the antibody.
  • an indicator of the disease e.g., cancer
  • an indicator of the disease can be followed according to routine practice.
  • an initial candidate dosage can be about 2 mg/kg.
  • a typical daily dosage might range from about any of 0.1 ⁇ g/kg to 3 ⁇ g/kg to 30 ⁇ g/kg to 300 ⁇ g/kg to 3 mg/kg, to 30 mg/kg to 100 mg/kg or more, depending on the factors mentioned above.
  • the treatment is sustained until a desired suppression of symptoms occurs or until sufficient therapeutic levels are achieved to alleviate cancer, or a symptom thereof.
  • An exemplary dosing regimen comprises administering an initial dose of about 2 mg/kg, followed by a weekly maintenance dose of about 1 mg/kg of the antibody, or followed by a maintenance dose of about 1 mg/kg every other week.
  • other dosage regimens may be useful, depending on the pattern of pharmacokinetic decay that the practitioner wishes to achieve. For example, dosing from one-four times a week is contemplated. In some embodiments, dosing ranging from about 3 ⁇ g/mg to about 2 mg/kg (such as about 3 ⁇ g mg, about 10 ⁇ g/mg, about 30 ⁇ g/mg, about 100 ⁇ g/mg, about 300 ⁇ g/mg, about 1 mg/kg, and about 2 mg/kg) may be used.
  • dosing frequency is once every week, every 2 weeks, every 4 weeks, every 5 weeks, every 6 weeks, every 7 weeks, every 8 weeks, every 9 weeks, or every 10 weeks; or once every month, every 2 months, or every 3 months, or longer.
  • the progress of this therapy is easily monitored by conventional techniques and assays.
  • the dosing regimen (including the antibody used) can vary over time.
  • an antibody described herein will depend on the specific antibody (or compositions thereof) employed, the type and severity of the cancer, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician.
  • the administration of the antibodies described herein may be essentially continuous over a preselected period of time or may be in a series of spaced dose, e.g., either before, during, or after developing cancer.
  • treating refers to the application or administration of a composition including one or more active agents to a subject, who has cancer, a symptom of cancer, or a predisposition toward cancer, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect cancer, the symptom of cancer, or the predisposition toward cancer.
  • Alleviating cancer includes delaying the development or progression of cancer, or reducing cancer severity. Alleviating cancer does not necessarily require curative results. As used therein, "delaying" the development of cancer means to defer, hinder, slow, retard, stabilize, and/or postpone progression of cancer. This delay can be of varying lengths of time, depending on the history of cancer and/or individuals being treated.
  • a method that "delays" or alleviates the development of cancer, or delays the onset of cancer is a method that reduces probability (the risk) of developing one or more symptoms of cancer in a given time frame and/or reduces extent of the symptoms in a given time frame, when compared to not using the method. Such comparisons are typically based on clinical studies, using a number of subjects sufficient to give a statistically significant result.
  • “Development” or “progression” of cancer means initial manifestations and/or ensuing progression of cancer. Development of cancer can be detectable and assessed using standard clinical techniques as well known in the art. However, development also refers to progression that may be undetectable. For purpose of this disclosure, development or progression refers to the biological course of the symptoms. “Development” includes occurrence, recurrence, and onset. As used herein "onset” or “occurrence” of cancer includes initial onset and/or recurrence.
  • compositions can be administered via other conventional routes, e.g., administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
  • parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional, and intracranial injection or infusion techniques.
  • injectable depot routes of administration such as using 1-, 3-, or 6-month depot injectable or biodegradable materials and methods.
  • Injectable compositions may contain various carriers such as vegetable oils, dimethylactamide, dimethyformamide, ethyl lactate, ethyl carbonate, isopropyl myristate, ethanol, and polyols (glycerol, propylene glycol, liquid polyethylene glycol, and the like).
  • water soluble antibodies can be administered by the drip method, whereby a pharmaceutical formulation containing the antibody and a physiologically acceptable excipients is infused.
  • Physiologically acceptable excipients may include, for example, 5% dextrose, 0.9% saline, Ringer's solution or other suitable excipients.
  • Intramuscular preparations e.g., a sterile formulation of a suitable soluble salt form of the antibody
  • a pharmaceutical excipient such as Water-for-Injection, 0.9% saline, or 5% glucose solution.
  • Described herein is a method for diagnosing cancer in a subject, comprising (a) applying a composition that includes one or more monoclonal antibodies that detect expression of a panel of markers consisting of GM3, GM2, GM1, GDI, GDI a, GD3, GD2, GTlb, A2B5, LeX, sLeX, LeY, SSEA-3, SSEA-4, Globo H, TF, Tn, sTn, CD44, CD24, CD45, CD90, CD133 to a cell or tissue sample obtained from the subject; (b) assaying the binding of the monoclonal antibody to the cell or the tissue sample; and (c) comparing the binding with a normal control to determine the presence of the cancer in the subject.
  • a composition that includes one or more monoclonal antibodies that detect expression of a panel of markers consisting of GM3, GM2, GM1, GDI, GDI a, GD3, GD2, GTlb, A2B5, LeX,
  • Examples of the cancer for detection and diagnosis include, but are not limited to, brain cancer, lung cancer, breast cancer, oral cancer, esophagus cancer, stomach cancer, liver cancer, bile duct cancer, pancreas cancer, colon cancer, kidney cancer, cervix cancer, ovary cancer and prostate cancer.
  • the cancer is brain cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, or pancreas cancer.
  • the markers consist of GM2, GM1 , GDI a, GTlb, A2B5, Tf, Tn, Globo H, SSEA3, SSEA4, CD24, CD44 and CD90. In some embodiments,
  • thecomposition includes a plurality of monoclonal antibodies capable of detecting GM2, GM1, GDI a, GTlb, A2B5, Tf, Tn, Globo H, SSEA3, SSEA4, CD24, CD44 and CD90.
  • the antibody is capable of detecting Globo H, SSEA-3 and SSEA-4-expressing cancer cells. In some embodiments, the antibody is capable ofdetecting Globo H and SSEA on cancer cells. In some embodiments, the antibody is capable ofdetecting SSEA in cancers. In some embodiments, the cancer is brain cancer or glioblastoma multiforme (GBM) cancer, and the antibody is an anti-SSEA-4 monoclonal antibody.
  • GBM glioblastoma multiforme
  • Globo H, SSEA-3 and/or SSEA-4-specific monoclonal antibodies can be used alone or in combination for in vitro and in vivo diagnostic assays to detect Globo H, SSEA-3 and SSEA-4-expressing cancer cells (e.g., GBM, certain solid tumor cells, and hematopoietic cancer cells as indicated herein).
  • cancer cells e.g., GBM, certain solid tumor cells, and hematopoietic cancer cells as indicated herein.
  • a sample e.g., blood sample or tissue biopsy
  • a sample can be obtained from a patient and contacted with a triple-targeting antibody against Globo H, SSEA-3 and SSEA-4, or a Globo H/SSEA-3 dual-targeting antibody in combination with an anti-SSEA-4, and the presence of Globo H, SSEA-3 and SSEA-4 expressing cancer cells in the patient sample can be determined by detecting antibody binding.
  • Antibody binding can be detected directly (e.g., where the antibody itself is labeled) or by using a second detection agent, such as a secondary antibody.
  • the detectable label can be associated with an antibody of the invention, either directly, or indirectly, e.g., via a chelator or linker.
  • Globo H, SSEA-3 and/or SSEA-4 specific monoclonal antibodies are contacted with a biological sample from an individual having or suspected of having cancer, and antibody binding to a cell in the sample is determined when higher or lower than normal antibody binding indicates that the individual has cancer.
  • the biological sample is a blood sample or blood fraction (e.g., serum, plasma, platelets, red blood cells, white blood cells).
  • the biological sample is a tissue sample (biopsy), e.g., from a suspected tumor site, or from a tissue that is known to be affected, e.g., to determine the boundaries of a known tumor.
  • the biological sample is obtained from a site of inflammation.
  • Biopsies are typically performed to obtain samples from tissues, i.e., non-fluid cell types.
  • the biopsy technique applied will depend on the tissue type to be evaluated (e.g., breast, skin, colon, prostate, kidney, lung, bladder, lymph node, liver, bone marrow, airway or lung). In the case of a cancer the technique will also depend on the size and type of the tumor (e.g., solid, suspended, or blood), among other factors. Biopsy techniques are discussed, for example, in Harrison's Principles of Internal Medicine, Kasper, et al., eds., 16th ed., 2005, Chapter 70, and throughout Part V.
  • any method of detecting antibody binding to a cell in a sample can be used for the present diagnostic assays.
  • Methods of detecting antibody binding are well known in the art, e.g., flow cytometry, fluorescent microscopy, ELISAs, etc.
  • the method comprises preparing the biological sample for detection prior to the determining step. For example, a subpopulation of cells (e.g., white blood cells) can be separated from the rest of the sample from the individual (e.g., other blood components) or cells in a tissue can be suspended for easier detection.
  • the percentage of Globo H/SSEA-3/SSEA-4 expressing cells in the sample is determined and compared to a control, e.g., a sample from an individual or group of individuals that are known to have cancer (positive control) or from an individual or group of individuals that are known not to have cancer (normal, non-disease, or negative control).
  • a control e.g., a sample from an individual or group of individuals that are known to have cancer (positive control) or from an individual or group of individuals that are known not to have cancer (normal, non-disease, or negative control).
  • the control is a standard range of Globo H/SSEA-3/SSEA-4 expression established for a given tissue. A higher or lower than normal percentage of Globo H/SSEA-3/SSEA-4 expressing cells, or higher or lower expression level, indicates that the individual has cancer.
  • kits for detecting Globo H, SSEA-3 and SSEA-4 in a biological sample such as a blood sample or tissue sample.
  • a biological sample such as a blood sample or tissue sample.
  • a biopsy can be performed to obtain a tissue sample for histological examination.
  • a blood sample can be obtained to detect the presence of Globo H, SSEA-3 and SSEA-4.
  • Kits for detecting a polypeptide will typically comprise one or more antibodies that specifically bind Globo H, SSEA-3 and SSEA-4, such as any of the antibodies disclosed herein.
  • the antibodies are labeled (for example, with a fluorescent, radioactive, or an enzymatic label).
  • kits includes instructional materials disclosing means of use of one or more antibodies that specifically bind Globo H, SSEA-3 and SSEA-4.
  • kits may also include additional components to facilitate the particular application for which the kit is designed.
  • the kit may additionally contain means of detecting a label (such as enzyme substrates for enzymatic labels, filter sets to detect fluorescent labels, appropriate secondary labels such as a secondary antibody, or the like).
  • the kits may additionally include buffers and other reagents routinely used for the practice of a particular method. Such kits and appropriate contents are well known to those of skill in the art.
  • the antibodies can be conjugated to other compounds including, but not limited to, enzymes, magnetic beads, colloidal magnetic beads, haptens, fluorochromes, metal compounds, radioactive compounds or drugs.
  • the antibodies can also be utilized in immunoassays such as but not limited to radioimmunoassays (RIAs), enzyme linked
  • ELISA immunosorbent assays
  • FACS fluorescence activated cell sorting
  • a FACS employs a plurality of color channels, low angle and obtuse light-scattering detection channels, and impedance channels, among other more sophisticated levels of detection, to separate or sort cells (see U.S. Patent No. 5, 061,620).
  • Any of the monoclonal antibodies that bind to Globo H, SSEA-3 and SSEA-4, as disclosed herein, can be used in these assays.
  • the antibodies can be used in a conventional immunoassay, including, without limitation, an ELISA, an RIA, FACS, tissue
  • Another aspect of the present disclosure features a method for staging and/or determining prognosis of tumorsin a human patient, the method comprising: (a) applying a composition that includes one or more antibodies that detect the expression of markers consisting of SSEA-3, SSEA-4 and Globo H to a cell or tissue sample obtained from the patient; (b) assaying the binding of the monoclonal antibodies to the cell or the tissue sample; (c) comparing the expression level of the markers in the test sample with the level in a reference sample, and (d) determining the stage and/or prognosis of tumors in the patient based upon the outcome identified in step (c).
  • the cancer is brain cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, or pancreas cancer. In some preferred
  • the cancer is brain cancer or GBM.
  • the antibody is capable of detecting Globo H, SSEA-3 and SSEA-4 expressing cancer cells. In some embodiments, the antibody is capable ofdetecting Globo H and SSEA on cancer cells. In some embodiments, the antibody is capable ofdetecting SSEA in cancers.
  • the cancer is brain cancer or glioblastoma multiforme (GBM) cancer, and the antibody is an anti-SSEA-4 monoclonal antibody. In some embodiments, the antibody is an anti-SSEA-4 when the cancer is brain cancer or GBM.
  • Another aspect of the present invention features the isolation of GBM stem cells, and more particularly to GBM stem cells positive for markers GD2 + SSEA4 + CD133 + .
  • Disclosed herein include methods for the isolation, enrichment, and self-renewal of stem cells from GBM tumor cells, using cell surface markers GD2, SSEA4 and CD133 and flow cytometry to separate stem cells from other cells.
  • a composition comprising an isolated population of
  • GD2 + SSEA4 + CD133 + GBM stem cells is disclosed herein.
  • CSCs cancer stem-like cells
  • GD2 a b series disialoganglioside, prominently expresses on the surface of neurosphere cultured from different GBM cell lines.
  • GD2 has been found to express markedly in neuroblastomas, melanomas and some other tumors.
  • GD2 distribution is restricted in neurons, skin melanocytes, and sensory nerve fibers. Therefore, the restricted expression of GD2 in normal tissues makes it appropriate to be the therapeutic targets.
  • GD2 also presents on the surface of the mouse and human neural stem cells. Most importantly, GD2 can identify the breast cancer stem cells.
  • GSCs glioblastoma stem cells
  • glycan epitopes were analyzed by flow cytometry in four human GBM cell lines: G5T, LN-18, U-138 and U-251.
  • the glycan epitopes examined include O-linked glycans (Tn, sTn, TF), Lewis antigens (Le x , Le y and sLe x ), complex gangliosides [GM2, GM1, GDI a, GD3, GD2, GTlb and A2B5 (c-series gangliosides)], and globo-series GSLs (SSEA-3, SSEA-4 and Globo H; Fig. 1A).
  • SVG pi 2 an immortalized human fetal glia cell, showed a very weak MC813-70 staining signal, but no MC631 or VK-9 staining signal (Fig. 1). These results indicated that most of the GBM cell lines examined were positively stained by anti-SSEA-4 antibody using MC813-70 as an example.
  • EXAMPLE 2 Verification of SSEA-4 expression in GBM Cancer Cells
  • MC813-70 recognized two gangliosides (due to a different chain length of fatty acids) on TLC from DBTRG and D54MG, but not GBM 8901 cells (Fig. 3 A).
  • the positions of the immuno-reactive double bands in GBM gangliosides were the same as in the gangliosides purified from 2102Ep cells (Fig.
  • embryonal carcinoma cells known to express a high level of SSEA-4 glycolipid (Kannagi R, et al. (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2(12):2355-2361). A double-band developed at a shorter distance than MC813-70 positive glycolipid was detected by MC813-70 in YAC-1 cells (Fig.
  • GMlb is a major ganglioside
  • Zarei M Muthing J, Peter-Katalinic J, & Bindila L (2010) Separation and identification of GMlb pathway Neu5Ac- and Neu5Gc gangliosides by on-line nanoHPLC-QToF MS and tandem MS: toward glycolipidomics screening of animal cell lines.
  • Glycobiology 20(1): 118-126 supporting that MC813-70 harbors a weak cross-reactivity toward GMlb.
  • Immunoblotting with MC631 revealed that it could also recognize MC813-70 positive glycolipid with a lower affinity than MC813-70 did.
  • the gangliosides developed on TLC plate were treated with a2,3 -sialidase or the sialidase that cleaves all linkages of sialic acids, and blotted with MC813-70 and MC631. The results showed that the
  • EXAMPLE 3 Expression of SSEA-4 in GBM Tissues
  • SSEA-4 is a widely used marker for stem cells, but the information about the expression of SSEA-4 in GBM tissues as well as normal brain tissues is not known.
  • SSEA-4 is overexpressed in clinical GBM specimens, in addition to GBM cell lines, we analyzed the expression of SSEA-4 among astrocytomas from grade I to IV and normal brain tissues by immunohistochemistry on human tissue microarrays (Fig. 4). We found that 38 out of 55 GBM tissue specimens (69%) were positive for MC813-70 staining, and around half of GBM specimens were intensely stained (>2+). As shown in the positive specimens, SSEA-4 was situated on the plasma membrane of GBM cells.
  • EXAMPLE 4 Anti-SSEA-4 Mediates CDC against GBM Cell Lines
  • MC813-70-mediated CDC did not kill two GBM cell lines, Hs683 and U87, which expressed low or no SSEA-4. Therefore, the level of MC813-70 mediated CDC positively correlated with the expression level of SSEA-4 in each GBM cell line.
  • EXAMPLE 5 Anti-SSEA-4 Suppresses Brain Tumor Growth In Vivo
  • MC813-70 was administered to the nude mice injected with DBTRG cells subcutaneous ly, when the tumors grew to palpable bumps (15-30 mm3at day 1 1 post-injection). MC813-70 (200 g) was given intraperitoneally to each mouse every four days for a total of three times, with an irrelevant mouse IgG3 (isotype control) injected in parallel for comparison. The experiment revealed that the administration of MC813-70 could inhibit DBTRG tumor growth (Fig. 6). The growth of DBTRG tumors were completely suppressed in two of three mice treated with MC813-70, and the third mice developed tumor after the cease of antibody treatment.
  • SSEA-4-expressing GBM tumors possibly through CDC and antibody-dependent cell-mediated cytotoxicity (ADCC) in vivo.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • EXAMPLE 6 Expression of Globo H, SSEA3 and SSEA-4 on Various Cancer Cell Lines
  • SSEA-4 has been reported to be expressed on renal carcinoma (Saito S, et al. (1997) Expression of globo-series gangliosides in human renal cell carcinoma. Jpn J Cancer Res 88(7):652-659), basaloid lung cancer (Gottschling S, et al. (2013) Stage-specific embryonic antigen-4 is expressed in basaloid lung cancer and associated with poor prognosis. Eur Respir J 41(3):656-663), epithelial ovarian carcinoma (Ye F, Li Y, Hu Y, Zhou C, & Chen H (2010) Stage-specific embryonic antigen 4 expression in epithelial ovarian carcinoma.

Abstract

L'invention concerne une composition pharmaceutique comprenant des anticorps ou des fragments de liaison à l'antigène de ceux-ci qui se lient à globo H, SSEA3, et SSEA-4, ainsi que des méthodes d'utilisation de celle-ci. Les méthodes d'utilisation comprennent, entre autres, des thérapies anticancéreuses et des diagnostics du cancer. Les anticorps selon l'invention peuvent se lier à certaines surfaces de cellules cancéreuses. Des cibles d'anticorps, citées à titre d'exemple, selon l'invention peuvent comprendre des carcinomes, tels que ceux touchant le cerveau, la peau, les os, les poumons, les seins, l'œsophage, l'estomac, le foie, le conduit biliaire, le pancréas, le côlon, le rein, le col de l'utérus, les ovaires, et/ou le cancer de la prostate.
PCT/US2015/040199 2014-01-16 2015-07-13 Compositions et méthodes pour traiter et détecter des cancers WO2016114819A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DK15878250.8T DK3245225T3 (da) 2014-05-27 2015-07-13 Sammensætninger og fremgangsmåder til behandling og detektering af cancere
EP15878250.8A EP3245225B1 (fr) 2014-05-27 2015-07-13 Compositions et méthodes pour traiter et détecter des cancers
KR1020177022487A KR20170098954A (ko) 2014-05-27 2015-07-13 암의 치료 및 검출을 위한 조성물 및 방법
CN201580073451.0A CN107406495B (zh) 2014-05-27 2015-07-13 治疗及检测癌症的组合物及方法
ES15878250T ES2902032T3 (es) 2014-01-16 2015-07-13 Composiciones y procedimientos para el tratamiento y detección de cánceres
AU2015377230A AU2015377230A1 (en) 2014-01-16 2015-07-13 Compositions and methods for treatment and detection of cancers
JP2017537359A JP2018509385A (ja) 2014-05-27 2015-07-13 がんの処置および検出のための組成物および方法
CA2972067A CA2972067A1 (fr) 2014-01-16 2015-07-13 Compositions et methodes pour traiter et detecter des cancers
IL253162A IL253162A0 (en) 2014-01-16 2017-06-25 Devices and methods for the treatment of cancers and discoveries

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
USPCT/US2015/011748 2015-01-16
US14/599,174 2015-01-16
US14/599,174 US9982041B2 (en) 2014-01-16 2015-01-16 Compositions and methods for treatment and detection of cancers
PCT/US2015/011748 WO2015109180A2 (fr) 2014-01-16 2015-01-16 Compositions et méthodes pour traiter et détecter des cancers
US14/723,297 2015-05-27
PCT/US2015/032745 WO2015184009A1 (fr) 2014-05-27 2015-05-27 Compositions et procédés concernant des glycoformes universelles pour une efficacité d'anticorps améliorée
USPCT/US2015/032745 2015-05-27
US14/723,297 US10023892B2 (en) 2014-05-27 2015-05-27 Compositions and methods relating to universal glycoforms for enhanced antibody efficacy

Publications (1)

Publication Number Publication Date
WO2016114819A1 true WO2016114819A1 (fr) 2016-07-21

Family

ID=56408927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/040199 WO2016114819A1 (fr) 2014-01-16 2015-07-13 Compositions et méthodes pour traiter et détecter des cancers

Country Status (1)

Country Link
WO (1) WO2016114819A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201242A (zh) * 2017-06-22 2020-05-26 财团法人生物技术开发中心 不对称异二聚fc-scfv融合抗globo h及抗cd3双特异性抗体及其在癌症治疗上的用途
JP2020524669A (ja) * 2017-06-15 2020-08-20 ディベロップメント センター フォー バイオテクノロジーDevelopment Center For Biotechnology 抗globo h抗体を含有する抗体−薬物コンジュゲートおよびその使用

Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
EP0003089A1 (fr) 1978-01-06 1979-07-25 Bernard David Séchoir pour feuilles imprimées par sérigraphie
USRE30985E (en) 1978-01-01 1982-06-29 Serum-free cell culture media
US4419446A (en) 1980-12-31 1983-12-06 The United States Of America As Represented By The Department Of Health And Human Services Recombinant DNA process utilizing a papilloma virus DNA as a vector
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4601978A (en) 1982-11-24 1986-07-22 The Regents Of The University Of California Mammalian metallothionein promoter system
WO1987000195A1 (fr) 1985-06-28 1987-01-15 Celltech Limited Culture de cellules animales
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
WO1990003430A1 (fr) 1988-09-23 1990-04-05 Cetus Corporation Milieu de culture de cellules pour l'amelioration de la croissance des cellules, de la longivite de la culture et de l'expression du produit
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
US4965199A (en) 1984-04-20 1990-10-23 Genentech, Inc. Preparation of functional human factor VIII in mammalian cells using methotrexate based selection
US4975278A (en) 1988-02-26 1990-12-04 Bristol-Myers Company Antibody-enzyme conjugates in combination with prodrugs for the delivery of cytotoxic agents to tumor cells
EP0404097A2 (fr) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Récepteurs mono- et oligovalents, bispécifiques et oligospécifiques, ainsi que leur production et application
WO1991000360A1 (fr) 1989-06-29 1991-01-10 Medarex, Inc. Reactifs bispecifiques pour le traitement du sida
US5004697A (en) 1987-08-17 1991-04-02 Univ. Of Ca Cationized antibodies for delivery through the blood-brain barrier
WO1991010741A1 (fr) 1990-01-12 1991-07-25 Cell Genesys, Inc. Generation d'anticorps xenogeniques
US5061620A (en) 1990-03-30 1991-10-29 Systemix, Inc. Human hematopoietic stem cell
WO1992000373A1 (fr) 1990-06-29 1992-01-09 Biosource Genetics Corporation Production de melanines a l'aide de microorganismes transformes
US5112596A (en) 1990-04-23 1992-05-12 Alkermes, Inc. Method for increasing blood-brain barrier permeability by administering a bradykinin agonist of blood-brain barrier permeability
WO1992009690A2 (fr) 1990-12-03 1992-06-11 Genentech, Inc. Methode d'enrichissement pour des variantes de l'hormone de croissance avec des proprietes de liaison modifiees
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
WO1993001161A1 (fr) 1991-07-11 1993-01-21 Pfizer Limited Procede de preparation d'intermediaires de sertraline
WO1993006213A1 (fr) 1991-09-23 1993-04-01 Medical Research Council Production d'anticorps chimeriques - une approche combinatoire
WO1993008829A1 (fr) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions induisant la destruction de cellules infectees par l'hiv
WO1993016185A2 (fr) 1992-02-06 1993-08-19 Creative Biomolecules, Inc. Proteine de liaison biosynthetique pour marqueur de cancer
US5264365A (en) 1990-11-09 1993-11-23 Board Of Regents, The University Of Texas System Protease-deficient bacterial strains for production of proteolytically sensitive polypeptides
US5268164A (en) 1990-04-23 1993-12-07 Alkermes, Inc. Increasing blood-brain barrier permeability with permeabilizer peptides
WO1994004690A1 (fr) 1992-08-17 1994-03-03 Genentech, Inc. Immunoadhesines bispecifiques
WO1994011026A2 (fr) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Application therapeutique d'anticorps chimeriques et radio-marques contre l'antigene a differentiation restreinte des lymphocytes b humains pour le traitement du lymphome des cellules b
WO1996007754A1 (fr) 1994-09-02 1996-03-14 The Scripps Research Institute Procedes de production de banques d'anticorps au moyen de chaines legeres d'immunoglobuline universelles ou rendues alleatoires
US5508192A (en) 1990-11-09 1996-04-16 Board Of Regents, The University Of Texas System Bacterial host strains for producing proteolytically sensitive polypeptides
US5545807A (en) 1988-10-12 1996-08-13 The Babraham Institute Production of antibodies from transgenic animals
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US5569825A (en) 1990-08-29 1996-10-29 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
WO1996034096A1 (fr) 1995-04-28 1996-10-31 Abgenix, Inc. Anticorps humains derives de xeno-souris immunisees
WO1996033735A1 (fr) 1995-04-27 1996-10-31 Abgenix, Inc. Anticorps humains derives d'une xenosouris immunisee
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
US5580717A (en) 1990-05-01 1996-12-03 Affymax Technologies N.V. Recombinant library screening methods
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5639635A (en) 1994-11-03 1997-06-17 Genentech, Inc. Process for bacterial production of polypeptides
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
US5648237A (en) 1991-09-19 1997-07-15 Genentech, Inc. Expression of functional antibody fragments
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1998024893A2 (fr) 1996-12-03 1998-06-11 Abgenix, Inc. MAMMIFERES TRANSGENIQUES POSSEDANT DES LOCI DE GENES D'IMMUNOGLOBULINE D'ORIGINE HUMAINE, DOTES DE REGIONS VH ET Vλ, ET ANTICORPS PRODUITS A PARTIR DE TELS MAMMIFERES
US5840523A (en) 1995-03-01 1998-11-24 Genetech, Inc. Methods and compositions for secretion of heterologous polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6004940A (en) 1992-07-17 1999-12-21 Dana-Farber Cancer Institute, Inc. Intracellular targeting of endogenous proteins
US6027888A (en) 1996-04-05 2000-02-22 Board Of Regents, The University Of Texas System Methods for producing soluble, biologically-active disulfide-bond containing eukaryotic proteins in bacterial cells
US6083715A (en) 1997-06-09 2000-07-04 Board Of Regents, The University Of Texas System Methods for producing heterologous disulfide bond-containing polypeptides in bacterial cells
US6265150B1 (en) 1995-06-07 2001-07-24 Becton Dickinson & Company Phage antibodies
US20020025313A1 (en) 1992-07-27 2002-02-28 Micklus Michael J. Targeting of liposomes to the blood-brain barrier
US20020038086A1 (en) 2000-07-27 2002-03-28 Hynynen Kullervo H. Blood-brain barrier opening
US20020065259A1 (en) 2000-08-30 2002-05-30 Schatzberg Alan F. Glucocorticoid blocking agents for increasing blood-brain barrier permeability
US20030073713A1 (en) 2000-10-30 2003-04-17 Schoenhard Grant L. Inhibitors of ABC drug transporters at the blood-brain barrier
US20030083299A1 (en) 2000-11-04 2003-05-01 Ferguson Ian A. Non-invasive delivery of polypeptides through the blood-brain barrier
US20030104402A1 (en) 2001-01-23 2003-06-05 University Of Rochester Methods of producing or identifying intrabodies in eukaryotic cells
US20030129186A1 (en) 2001-07-25 2003-07-10 Biomarin Pharmaceutical Inc. Compositions and methods for modulating blood-brain barrier transport
US20030162695A1 (en) 2002-02-27 2003-08-28 Schatzberg Alan F. Glucocorticoid blocking agents for increasing blood-brain barrier permeability
WO2003077945A1 (fr) 2002-03-14 2003-09-25 Medical Research Council Anticorps intracellulaires
EP1391213A1 (fr) 2002-08-21 2004-02-25 Boehringer Ingelheim International GmbH Compositions et méthodes pour le traitement du cancer en utilisant un conjugué d'un anticorps contre le CD44 avec un maytansinoide et des agents chimiothérapeutiques
US6703019B1 (en) 1991-04-30 2004-03-09 Bernard Malfroy-Camine Cationized antibodies against intracellular proteins
US20040131692A1 (en) 2001-05-05 2004-07-08 Joerg Kreuter Nanoparticles made of protein with coupled apolipoprotein e for penetration of the blood-brain barrier and methods for the production thereof
US20040204354A1 (en) 2002-12-03 2004-10-14 Thomas Nelson Artificial low-density lipoprotein carriers for transport of substances across the blood-brain barrier
US20050089473A1 (en) 2003-09-10 2005-04-28 Cedars-Sinai Medical Center Potassium channel mediated delivery of agents through the blood-brain barrier
US20100068806A1 (en) * 2007-01-18 2010-03-18 Suomen Punainen Risti, Veripalvelu Novel methods and reagents directed to production of cells
US20110263828A1 (en) * 2009-12-02 2011-10-27 Academia Sinica Methods for modifying human antibodies by glycan engineering
US20120328646A1 (en) * 2008-06-16 2012-12-27 Academia Sinica Globo H and Related Anti-Cancer Vaccines with Novel Glycolipid Adjuvants

Patent Citations (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
USRE30985E (en) 1978-01-01 1982-06-29 Serum-free cell culture media
EP0003089A1 (fr) 1978-01-06 1979-07-25 Bernard David Séchoir pour feuilles imprimées par sérigraphie
US4419446A (en) 1980-12-31 1983-12-06 The United States Of America As Represented By The Department Of Health And Human Services Recombinant DNA process utilizing a papilloma virus DNA as a vector
US4601978A (en) 1982-11-24 1986-07-22 The Regents Of The University Of California Mammalian metallothionein promoter system
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4965199A (en) 1984-04-20 1990-10-23 Genentech, Inc. Preparation of functional human factor VIII in mammalian cells using methotrexate based selection
WO1987000195A1 (fr) 1985-06-28 1987-01-15 Celltech Limited Culture de cellules animales
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
US5004697A (en) 1987-08-17 1991-04-02 Univ. Of Ca Cationized antibodies for delivery through the blood-brain barrier
US4975278A (en) 1988-02-26 1990-12-04 Bristol-Myers Company Antibody-enzyme conjugates in combination with prodrugs for the delivery of cytotoxic agents to tumor cells
WO1990003430A1 (fr) 1988-09-23 1990-04-05 Cetus Corporation Milieu de culture de cellules pour l'amelioration de la croissance des cellules, de la longivite de la culture et de l'expression du produit
US5545807A (en) 1988-10-12 1996-08-13 The Babraham Institute Production of antibodies from transgenic animals
EP0404097A2 (fr) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Récepteurs mono- et oligovalents, bispécifiques et oligospécifiques, ainsi que leur production et application
WO1991000360A1 (fr) 1989-06-29 1991-01-10 Medarex, Inc. Reactifs bispecifiques pour le traitement du sida
WO1991010741A1 (fr) 1990-01-12 1991-07-25 Cell Genesys, Inc. Generation d'anticorps xenogeniques
US5061620A (en) 1990-03-30 1991-10-29 Systemix, Inc. Human hematopoietic stem cell
US5268164A (en) 1990-04-23 1993-12-07 Alkermes, Inc. Increasing blood-brain barrier permeability with permeabilizer peptides
US5112596A (en) 1990-04-23 1992-05-12 Alkermes, Inc. Method for increasing blood-brain barrier permeability by administering a bradykinin agonist of blood-brain barrier permeability
US5506206A (en) 1990-04-23 1996-04-09 Alkermes, Inc. Increasing blood-brain barrier permeability with permeabilizer peptides
US5580717A (en) 1990-05-01 1996-12-03 Affymax Technologies N.V. Recombinant library screening methods
WO1992000373A1 (fr) 1990-06-29 1992-01-09 Biosource Genetics Corporation Production de melanines a l'aide de microorganismes transformes
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5569825A (en) 1990-08-29 1996-10-29 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
US5508192A (en) 1990-11-09 1996-04-16 Board Of Regents, The University Of Texas System Bacterial host strains for producing proteolytically sensitive polypeptides
US5264365A (en) 1990-11-09 1993-11-23 Board Of Regents, The University Of Texas System Protease-deficient bacterial strains for production of proteolytically sensitive polypeptides
WO1992009690A2 (fr) 1990-12-03 1992-06-11 Genentech, Inc. Methode d'enrichissement pour des variantes de l'hormone de croissance avec des proprietes de liaison modifiees
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
US5686416A (en) 1991-04-23 1997-11-11 Alkermes, Inc. Increasing blood-brain barrier permeability with permeabilizer peptides
US6703019B1 (en) 1991-04-30 2004-03-09 Bernard Malfroy-Camine Cationized antibodies against intracellular proteins
WO1993001161A1 (fr) 1991-07-11 1993-01-21 Pfizer Limited Procede de preparation d'intermediaires de sertraline
US5648237A (en) 1991-09-19 1997-07-15 Genentech, Inc. Expression of functional antibody fragments
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993006213A1 (fr) 1991-09-23 1993-04-01 Medical Research Council Production d'anticorps chimeriques - une approche combinatoire
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
WO1993008829A1 (fr) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions induisant la destruction de cellules infectees par l'hiv
WO1993016185A2 (fr) 1992-02-06 1993-08-19 Creative Biomolecules, Inc. Proteine de liaison biosynthetique pour marqueur de cancer
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US6329173B1 (en) 1992-07-17 2001-12-11 Dana-Farber Cancer Institute, Inc. Method of intracellular binding target molecules
US6004940A (en) 1992-07-17 1999-12-21 Dana-Farber Cancer Institute, Inc. Intracellular targeting of endogenous proteins
US20020025313A1 (en) 1992-07-27 2002-02-28 Micklus Michael J. Targeting of liposomes to the blood-brain barrier
WO1994004690A1 (fr) 1992-08-17 1994-03-03 Genentech, Inc. Immunoadhesines bispecifiques
WO1994011026A2 (fr) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Application therapeutique d'anticorps chimeriques et radio-marques contre l'antigene a differentiation restreinte des lymphocytes b humains pour le traitement du lymphome des cellules b
WO1996007754A1 (fr) 1994-09-02 1996-03-14 The Scripps Research Institute Procedes de production de banques d'anticorps au moyen de chaines legeres d'immunoglobuline universelles ou rendues alleatoires
US5639635A (en) 1994-11-03 1997-06-17 Genentech, Inc. Process for bacterial production of polypeptides
US5840523A (en) 1995-03-01 1998-11-24 Genetech, Inc. Methods and compositions for secretion of heterologous polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
WO1996033735A1 (fr) 1995-04-27 1996-10-31 Abgenix, Inc. Anticorps humains derives d'une xenosouris immunisee
WO1996034096A1 (fr) 1995-04-28 1996-10-31 Abgenix, Inc. Anticorps humains derives de xeno-souris immunisees
US6265150B1 (en) 1995-06-07 2001-07-24 Becton Dickinson & Company Phage antibodies
US6027888A (en) 1996-04-05 2000-02-22 Board Of Regents, The University Of Texas System Methods for producing soluble, biologically-active disulfide-bond containing eukaryotic proteins in bacterial cells
WO1998024893A2 (fr) 1996-12-03 1998-06-11 Abgenix, Inc. MAMMIFERES TRANSGENIQUES POSSEDANT DES LOCI DE GENES D'IMMUNOGLOBULINE D'ORIGINE HUMAINE, DOTES DE REGIONS VH ET Vλ, ET ANTICORPS PRODUITS A PARTIR DE TELS MAMMIFERES
US6083715A (en) 1997-06-09 2000-07-04 Board Of Regents, The University Of Texas System Methods for producing heterologous disulfide bond-containing polypeptides in bacterial cells
US20020038086A1 (en) 2000-07-27 2002-03-28 Hynynen Kullervo H. Blood-brain barrier opening
US20020065259A1 (en) 2000-08-30 2002-05-30 Schatzberg Alan F. Glucocorticoid blocking agents for increasing blood-brain barrier permeability
US20030073713A1 (en) 2000-10-30 2003-04-17 Schoenhard Grant L. Inhibitors of ABC drug transporters at the blood-brain barrier
US20030083299A1 (en) 2000-11-04 2003-05-01 Ferguson Ian A. Non-invasive delivery of polypeptides through the blood-brain barrier
US20030104402A1 (en) 2001-01-23 2003-06-05 University Of Rochester Methods of producing or identifying intrabodies in eukaryotic cells
US20040131692A1 (en) 2001-05-05 2004-07-08 Joerg Kreuter Nanoparticles made of protein with coupled apolipoprotein e for penetration of the blood-brain barrier and methods for the production thereof
US20030129186A1 (en) 2001-07-25 2003-07-10 Biomarin Pharmaceutical Inc. Compositions and methods for modulating blood-brain barrier transport
US20050124533A1 (en) 2002-02-27 2005-06-09 Schatzberg Alan F. Glucocorticoid blocking agents for increasing blood-brain barrier permeability stan-261con
US20030162695A1 (en) 2002-02-27 2003-08-28 Schatzberg Alan F. Glucocorticoid blocking agents for increasing blood-brain barrier permeability
WO2003077945A1 (fr) 2002-03-14 2003-09-25 Medical Research Council Anticorps intracellulaires
EP1391213A1 (fr) 2002-08-21 2004-02-25 Boehringer Ingelheim International GmbH Compositions et méthodes pour le traitement du cancer en utilisant un conjugué d'un anticorps contre le CD44 avec un maytansinoide et des agents chimiothérapeutiques
US20040204354A1 (en) 2002-12-03 2004-10-14 Thomas Nelson Artificial low-density lipoprotein carriers for transport of substances across the blood-brain barrier
US20050089473A1 (en) 2003-09-10 2005-04-28 Cedars-Sinai Medical Center Potassium channel mediated delivery of agents through the blood-brain barrier
US20100068806A1 (en) * 2007-01-18 2010-03-18 Suomen Punainen Risti, Veripalvelu Novel methods and reagents directed to production of cells
US20120328646A1 (en) * 2008-06-16 2012-12-27 Academia Sinica Globo H and Related Anti-Cancer Vaccines with Novel Glycolipid Adjuvants
US20110263828A1 (en) * 2009-12-02 2011-10-27 Academia Sinica Methods for modifying human antibodies by glycan engineering

Non-Patent Citations (151)

* Cited by examiner, † Cited by third party
Title
"Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
"GenBank", Database accession no. AY577298
"Harrison's Principles of Internal Medicine", 2005
"Peptide and Protein Drug Delivery", 1991, MARCEL DEKKER, INC., pages: 247 - 301
"Remington's Pharmaceutical Sciences", 1980
A. L. LEHNINGER: "Biochemistry", 1975, WORTH PUBLISHERS, pages: 73 - 75
ABRAHMSEN ET AL., EMBO J., vol. I - II, 1985, pages 3901
AGNEW, CHEM. INTL. ED. ENGL., vol. 33, 1994, pages 183 - 186
AJIT VARKI: "Symbols Nomenclatures for Glycan Representation", PROTEOMICS, vol. 9, no. 24, December 2009 (2009-12-01), pages 5398 - 5399
ARIE ET AL., MOL. MICROBIOL., vol. 39, 2001, pages 199 - 210
B. PERBAL, A PRACTICAL GUIDE TO MOLECULAR CLONING, 1984
BALDWIN ET AL., LANCET, 15 March 1986 (1986-03-15), pages 603 - 05
BARBAS ET AL., PROC NAT. ACAD. SCI. USA, vol. 113, 1994, pages 3809 - 3813
BARBAS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 88, 1991, pages 7978 - 7982
BARNES ET AL., ANAL. BIOCHEM., vol. 102, 1980, pages 255
BASS ET AL., PROTEINS, vol. 8, 1990, pages 309 - 314
BERRA BGAINI SMRIBONI L: "Correlation between ganglioside distribution and histological grading of human astrocytomas", INT J CANCER, vol. 36, no. 3, 1985, pages 363 - 366
BIRKLE SZENG GGAO LYU RKAUBRY J: "Role of tumor-associated gangliosides in cancer progression", BIOCHIMIE, vol. 85, no. 3-4, 2003, pages 455 - 463
BOBO ET AL., PROC. NATL. ACAD. SCI. USA, vol. 91, 1994, pages 2076 - 2080
BOERNER ET AL., J. IMMUNOL., vol. 147, 1991, pages 60
BOTHMANNPLUCKTHUN, J. BIOL. CHEM., vol. 275, 2000, pages 17106 - 17113
BRENNAN ET AL., SCIENCE, vol. 229, 1985, pages 81
BRODEUR ET AL.: "Monoclonal Antibody Production Techniques and Applications", vol. 2, 1987, AMERICAN SOCIETY FOR MICROBIOLOGY, pages: 1190 - 1219
BRUGGERMANN ET AL., YEAR IN IMMUNO, vol. 7, 1993, pages 33
BRUGGERMANN ET AL., YEAR IN IMMUNOL., vol. 7, 1993, pages 33
CARTER ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 163 - 167
CARTER ET AL., PROC. NATL. ACAD SCI. USA, vol. 89, 1992, pages 4285
CARTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 4285 - 3580
CHANG WW ET AL.: "Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis.", PROC NATL ACAD SCI USA, vol. 105, no. 33, 2008, pages 11667 - 11672, XP009124986, DOI: 10.1073/pnas.0804979105
CHEN ET AL., J BIO CHEM, vol. 274, 1999, pages 19601 - 19605
CHEN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 96, 1999, pages 4325 - 4329
CHENY. ET AL., J. MOL BIOL, vol. 293, 1999, pages 865 - 881
CHOTHIA ET AL., J. MOL. BIOL., vol. 196, 1987, pages 901 - 917
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628
CUNNINGHAMWELLS, SCIENCE, vol. 244, 1989, pages 1081 - 1085
EMBLETON ET AL., NUCL. ACIDS RES., vol. 20, 1992, pages 3831 - 3837
ENGELS ET AL., AGNEW. CHEM. INT. ED. ENGL., vol. 28, 1989, pages 716 - 734
FELLOUSE, PROC. NATL. ACAD. SCI. USA, vol. 101, no. 34, 2004, pages 12467 - 12472
FISHWILD ET AL., NATURE BIOTECHNOL., vol. 14, 1996, pages 826 - 851
FREDMAN P ET AL.: "Potential ganglioside antigens associated with human gliomas", NEUROL RES, vol. 8, no. 2, 1986, pages 123 - 126
FREDMAN PVON HOLST HCOLLINS VPDELLHEDEN BSVENNERHOLM L: "Expression of gangliosides GD3 and 3'-isoLMl in autopsy brains from patients with malignant tumors", J NEUROCHEM, vol. 60, no. 1, 1993, pages 99 - 105
FREDMAN PVON HOLST HCOLLINS VPGRANHOLM LSVENNERHOLM L: "Sialyllactotetraosylceramide, a ganglioside marker for human malignant gliomas", J NEUROCHEM, vol. 50, no. 3, 1988, pages 912 - 919
GALFRE ET AL., METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46
GILL ET AL., NATURE MED., vol. 9, 2003, pages 589 - 595
GOTTSCHLING S ET AL.: "Stage-specific embryonic antigen-4 is expressed in basaloid lung cancer and associated with poor prognosis", EUR RESPIR J, vol. 41, no. 3, 2013, pages 656 - 663, XP055142330, DOI: 10.1183/09031936.00225711
GRAHAM ET AL., J. GEN VIROL., vol. 36, 1977, pages 59
GRIFFITHS ET AL., EMBO J, vol. 12, 1993, pages 725 - 734
GRUBER ET AL., J. IMMUNOL., vol. 152, 1994, pages 5368
GUSS ET AL., EMBO J., vol. 5, 1986, pages 15671575 - 103
HAKOMORI S: "Glycosylation defining cancer malignancy: new wine in an old bottle", PROC NATL ACAD SCI USA, vol. 99, no. 16, 2002, pages 10231 - 10233
HAKOMORI SZHANG Y: "Glycosphingolipid antigens and cancer therapy", CHEM BIOL, vol. 4, no. 2, 1997, pages 97 - 104, XP009010432, DOI: 10.1016/S1074-5521(97)90253-2
HAM ET AL., METH. ENZ., vol. 58, 1979, pages 44
HARA ET AL., MICROBIAL DRUG RESISTANCE, vol. 2, 1996, pages 63 - 72
HARRIS, BIOCHEM. SOC. TRANSACTIONS, vol. 23, 1995, pages 1035 - 1038
HINMAN ET AL., CANCER RES., vol. 53, 1993, pages 3336 - 3342
HOGREFE ET AL., GENE, vol. 128, 1993, pages 119 - 126
HOOGENBOOM ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 597
HOOGENBOOM ET AL., NUCL. ACIDS RES., vol. 1-3, 1991, pages 4133 - 4137
HUANG YL ET AL.: "Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer", PROC NATL ACAD SCI U S A, vol. 110, no. 7, 2013, pages 2517 - 2522, XP055394157, DOI: 10.1073/pnas.1222649110
HUANG YL ET AL.: "Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer", PROC NATL ACAD SCI USA, vol. 110, no. 7, 2013, pages 2517 - 2522, XP055394157, DOI: 10.1073/pnas.1222649110
HURLEGROSS, CURR. OP. BIOTECH., vol. 5, 1994, pages 428 - 433
JACKSON ET AL., J. IMMUNOL., vol. 154, no. 7, 1995, pages 3310 - 2004
JAKOBOVITS ET AL., NATURE, vol. 362, 1993, pages 255 - 258
JAKOBOVITS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 7889 - 7893
JONES ET AL., BIOTECHNOL., vol. 9, 1991, pages 88 - 89
JONES ET AL., NATURE, vol. I-IV, 1986, pages 522 - 525
JONES, A., ADV. DRUG DELIVERY REV., vol. 10, 1993, pages 29 - 90
KAM ET AL., PROC. NATL. ACAD. SCI., vol. 102, 2005, pages 11600 - 11605
KANNAGI R ET AL.: "Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells", EMBO J, vol. 2, no. 12, 1983, pages 2355 - 2361, XP008102258
KATO Y ET AL.: "GMab-1, a high-affinity anti-3'-isoLMl/3',6'-isoLDl IgG monoclonal antibody, raised in lacto-series ganglioside-defective knockout mice", BIOCHEM BIOPHYS RES COMMUN, vol. 391, no. 1, 2010, pages 750 - 755
KOHLER ET AL., NATURE, vol. 256, 1975, pages 495
KONTERMANN, METHODS, vol. 34, 2004, pages 163 - 170
KOSTELNY ET AL., J. IMMUNOL., vol. 148, no. 5, 1992, pages 1547 - 1553
KOZBOR, J. IMMUNOL., vol. 133, 1984, pages 3001
LAU KSDENNIS JW: "N-Glycans in cancer progression", GLYCOBIOLOGY, vol. 18, no. 10, 2008, pages 750 - 760
LEE ET AL., J. IMMUNOL. METHODS, vol. 284, no. 1-2, 2004, pages 119 - 132
LEUNG ET AL., TECHNIQUE, vol. 1, 1989, pages 11 - 15
LINDMARK ET AL., J. IMMUNOL. METH., vol. 62, 1983, pages 1 - 13
LIU ET AL., PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 8618 - 8623
LODE ET AL., CANCER RES., vol. 58, 1998, pages 2928
LONBERG ET AL., NATURE, vol. 368, 1994, pages 812 - 813
LONBERGHUSZAR, INTERN. REV. IMMUNOL., vol. 13, 1995, pages 65 - 93
LOUIS DN ET AL.: "The 2007 WHO classification of tumours of the central nervous system", ACTA NEUROPATHOL, vol. 114, no. 2, 2007, pages 97 - 109, XP055450017, DOI: 10.1007/s00401-007-0243-4
MANDLER ET AL., BIOCONJUGATE CHEM., vol. 13, 2002, pages 786 - 791
MANDLER ET AL., BIOORGANIC & MED. CHEM. LETTERS, vol. 10, 2000, pages 1025 - 1028
MANDLER ET AL., JOUR. OF THE NAT. CANCER INST., vol. 92, no. 19, 2000, pages 1573 - 1581
MANSSON JE ET AL.: "Characterization of new gangliosides of the lactotetraose series in murine xenografts of a human glioma cell line", FEBS LETT, vol. 201, no. 1, 1986, pages 109 - 113, XP025592230, DOI: 10.1016/0014-5793(86)80580-4
MARASCO, GENE THERAPY, vol. 4, 1997, pages 11 - 15
MARKS ET AL., BIO. TECHNOLOGY, vol. 10, 1992, pages 779 - 783
MARKS ET AL., BIOTECHNOL., vol. 10, 1992, pages 779 - 783
MARKS ET AL., J. MOL BIOL., vol. 222, 1991, pages 581 - 597
MATHER ET AL., ANNALS N.Y. ACAD. SCI., vol. 383, 1982, pages 44 - 68
MATHER, BIOL. REPROD., vol. 23, 1980, pages 243 - 251
MATSUDA ET AL., NATURE GENET., vol. 3, 1993, pages 88 - 94
MCCAFFERTY ET AL., NATURE, vol. 348, 1990, pages 552 - 554
MEEZAN EWU HCBLACK PHROBBINS PW: "Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by sephadex chromatography", BIOCHEMISTRY, vol. 8, no. 6, 1969, pages 2518 - 2524
METHODS IN ENZYMOLOGY, vol. 44, 1976
MEYER MA: "Malignant gliomas in adults", N ENGL J MED, vol. 359, no. 17, 2008, pages 1850
MILSTEINCUELLO, NATURE, vol. 305, 1983, pages 537
MORIMOTO ET AL., JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS, vol. 24, 1992, pages 107 - 117
MORRISON ET AL., PROC. NAT. ACAD. SCI., vol. 81, 1984, pages 6851
MORRISON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 - 6855
NEUBERGER ET AL., NATURE, vol. 314, 1984, pages 452
NEUWELT, E. A.: "Implication of the Blood-Brain Barrier and its Manipulation", vol. 1 & 2, 1989, PLENUM PRESS
NICULESCU-DUVAZSPRINGER, ADV. DRG DEL. REV., vol. 26, 1997, pages 151 - 172
NOTO Z ET AL.: "CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics", ORAL ONCOL, 2013
ORLANDI ET AL., PROC. NATL. ACAD. SCI. (USA, vol. 86, 1989, pages 5728 - 5732
ORUM ET AL., NUCLEIC ACIDS RES., vol. 21, 1993, pages 4491 - 4498
PAPANASTASSIOU ET AL., GENE THERAPY, vol. 9, 2002, pages 398 - 406
PLUCKTHUN, IMMUNOL. REV., vol. 130, 1992, pages 151 - 188
PLUCKTHUN, IMMUNOL. REVS, vol. 130, 1992, pages 151
PRESTA ET AL., CANCER RES., vol. 57, 1997, pages 4593 - 4599
PRESTA ET AL., J. IMMNOL., vol. 151, 1993, pages 2623
PRESTA ET AL., J. IMMUNOL., vol. 151, 1993, pages 2623
PRESTA, CURR. OP. STRUCT. BIOL., vol. 2, 1992, pages 593 - 596
PROBAPLUCKTHUN, GENE, vol. 159, 1995, pages 203 - 155
REYES ET AL., NATURE, vol. 297, 1982, pages 598 - 601
RIECHMANN ET AL., NATURE, vol. 154 and 155, 1988, pages 323 - 327
ROWLAND ET AL., CANCER IMMUNOL. IMMUNOTHER., vol. 21, 1986, pages 183 - 87
SAITO S ET AL.: "Expression of globo-series gangliosides in human renal cell carcinoma", JPN J CANCER RES, vol. 88, no. 7, 1997, pages 652 - 659
See also references of EP3245225A4 *
SELL S: "Cancer-associated carbohydrates identified by monoclonal antibodies", HUM PATHOL, vol. 21, no. 10, 1990, pages 1003 - 1019, XP026242978, DOI: 10.1016/0046-8177(90)90250-9
SHALABY ET AL., J. EXP. MED., vol. 175, 1992, pages 217 - 225
SIDHU ET AL., J. MOL. BIOL., vol. 340, no. 5, 2004, pages 1073 - 1093
SIEBENLIST ET AL., CELL, vol. 20, 1980, pages 269
SIMMONS ET AL., J. IMMUNOL. METHODS, vol. 263, 2002, pages 133 - 147
SKERRA ET AL., CURR. OPINION IN IMMUNOL., vol. 5, 1993, pages 256 - 262
SURESH ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1986, pages 210
SVENNERHOLM L ET AL.: "Human brain gangliosides: developmental changes from early fetal stage to advanced age", BIOCHIM BIOPHYS ACTA, vol. 1005, no. 2, 1989, pages 109 - 117, XP023577891, DOI: 10.1016/0005-2760(89)90175-6
SYRIGOSEPENETOS, ANTICANCER RESEARCH, vol. 19, 1999, pages 605 - 614
TAYLOR-PAPADIMITRIOU JEPENETOS AA: "Exploiting altered glycosylation patterns in cancer: progress and challenges in diagnosis and therapy.", TRENDS BIOTECHNOL, vol. 12, no. 6, 1994, pages 227 - 233, XP023595355, DOI: 10.1016/0167-7799(94)90121-X
THORPE ET AL.: "Monoclonal Antibodies '84: Biological And Clinical Applications", 1985, article "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", pages: 475 - 506
TOMLINSON ET AL., J. MOL. BIOL., vol. 227, 1992, pages 776 - 798
TRAUNECKER ET AL., EMBO J., vol. 10, 1991, pages 3655
TRAYLOR TDHOGAN EL: "Gangliosides of human cerebral astrocytomas", J NEUROCHEM, vol. 34, no. 1, 1980, pages 126 - 131
URLAUB ET AL., PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4216
VAN BEEK WPSMETS LAEMMELOT P: "Increased sialic acid density in surface glycoprotein of transformed and malignant cells--a general phenomenon?", CANCER RES, vol. 33, no. 11, 1973, pages 2913 - 2922
VAN MEIR EG ET AL.: "Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma", CA CANCER J CLIN, 2010, pages 60
VASWANIHAMILTON, ANN. ALLERGY, ASTHMA & IMMUNOL., vol. 1, 1998, pages 105 - 115
VERHOEYEN ET AL., SCIENCE, vol. 239, 1988, pages 1534 - 1536
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546
WATERHOUSE ET AL., NUC. ACIDS. RES., vol. 21, 1993, pages 2265 - 2266
WATERHOUSE ET AL., NUCL. ACIDS RES., vol. 21, 1993, pages 2265 - 2266
WILLIAMSWINTER, EUR. J. IMMUNOL., vol. 23, 1993, pages 1456 - 1461
WINTER ET AL., ANN. REV. IMMUNOL., vol. 12, 1994, pages 433 - 455
WINTER ET AL., ANNU. REV. IMMUNOL., vol. 12, 1994, pages 433 - 455
YANSURA ET AL., METHODS: A COMPANION TO METHODS IN ENZYMOL., vol. 4, 1992, pages 151 - 158
YATES AJBECKER LESACHS LA: "Brain tumors in childhood", CHILDS BRAIN, vol. 5, no. 1, 1979, pages 31 - 39
YE FLI YHU YZHOU CCHEN H: "Stage-specific embryonic antigen 4 expression in epithelial ovarian carcinoma", INT J GYNECOL CANCER, vol. 20, no. 6, 2010, pages 958 - 964
ZAREI MMUTHING JPETER-KATALINIC JBINDILA L: "Separation and identification of GMlb pathway Neu5Ac- and Neu5Gc gangliosides by on-line nanoHPLC-QToF MS and tandem MS: toward glycolipidomics screening of animal cell lines", GLYCOBIOLOGY, vol. 20, no. 1, 2010, pages 118 - 126
ZHANG S ET AL.: "Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides", INT J CANCER, vol. 73, no. 1, 1997, pages 42 - 49, XP055550796, DOI: 10.1002/(SICI)1097-0215(19970926)73:1<42::AID-IJC8>3.0.CO;2-1

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524669A (ja) * 2017-06-15 2020-08-20 ディベロップメント センター フォー バイオテクノロジーDevelopment Center For Biotechnology 抗globo h抗体を含有する抗体−薬物コンジュゲートおよびその使用
JP7264831B2 (ja) 2017-06-15 2023-04-25 ディベロップメント センター フォー バイオテクノロジー 抗globo h抗体を含有する抗体-薬物コンジュゲートおよびその使用
CN111201242A (zh) * 2017-06-22 2020-05-26 财团法人生物技术开发中心 不对称异二聚fc-scfv融合抗globo h及抗cd3双特异性抗体及其在癌症治疗上的用途

Similar Documents

Publication Publication Date Title
US20190177435A1 (en) Compositions and methods for treatment and detection of cancers
US9975965B2 (en) Compositions and methods for treatment and detection of cancers
EP3245225B1 (fr) Compositions et méthodes pour traiter et détecter des cancers
US20190085062A1 (en) Compositions and methods for treatment and detection of cancers
US11041017B2 (en) Antibodies, pharmaceutical compositions and methods
US10118969B2 (en) Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
WO2016123591A2 (fr) Compositions et méthodes de traitement et de détection de cancers
US20180339061A1 (en) Antibodies, pharmaceutical compositions and methods
US20190389963A1 (en) Combination therapy by using anti-globo h or anti-ssea-4 antibody with anti-negative immune check points antibody
WO2016114819A1 (fr) Compositions et méthodes pour traiter et détecter des cancers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2972067

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 253162

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2015377230

Country of ref document: AU

Date of ref document: 20150713

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017537359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015878250

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177022487

Country of ref document: KR

Kind code of ref document: A