WO2016114316A1 - Lead-acid battery, micro-hybrid vehicle, and vehicle having idling stop system - Google Patents

Lead-acid battery, micro-hybrid vehicle, and vehicle having idling stop system Download PDF

Info

Publication number
WO2016114316A1
WO2016114316A1 PCT/JP2016/050870 JP2016050870W WO2016114316A1 WO 2016114316 A1 WO2016114316 A1 WO 2016114316A1 JP 2016050870 W JP2016050870 W JP 2016050870W WO 2016114316 A1 WO2016114316 A1 WO 2016114316A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
negative electrode
positive electrode
electrode material
mass
Prior art date
Application number
PCT/JP2016/050870
Other languages
French (fr)
Japanese (ja)
Inventor
康平 島田
柴原 敏夫
隆之 木村
近藤 隆文
和也 丸山
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2016569487A priority Critical patent/JP6432609B2/en
Publication of WO2016114316A1 publication Critical patent/WO2016114316A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead storage battery, a micro hybrid vehicle, and an idling stop system vehicle.
  • ISS cars idling stop system cars
  • the lead storage battery that is used as described above is used in a partially charged state called PSOC (Partial State Of Charge).
  • PSOC Partial State Of Charge
  • Lead acid batteries have a shorter life when used under PSOC than when used in a fully charged state.
  • Patent Document 1 in order to improve the charging efficiency and life performance of the battery when used under PSOC, the ratio of the active material in the positive electrode plate is changed by changing the conditions of battery case formation.
  • a technique for adjusting the surface area to 5.5 m 2 / g or more is disclosed.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a lead storage battery capable of obtaining excellent charge acceptability.
  • An object of the present invention is to provide a micro hybrid vehicle and an ISS vehicle including the lead storage battery.
  • the present inventors have found that the above problem can be solved by using a positive electrode material having a specific specific surface area, a negative electrode material containing a specific component, and an electrolytic solution.
  • the lead storage battery according to the present invention is a lead storage battery including a positive electrode, a negative electrode, and an electrolyte solution
  • the positive electrode includes a current collector (positive electrode current collector) and a positive electrode material held by the current collector.
  • the negative electrode has a current collector (negative electrode current collector) and a negative electrode material held by the current collector, and the specific surface area of the positive electrode material is 11 m 2 / g or more.
  • the negative electrode material contains a negative electrode active material and ketjen black (registered trademark, hereinafter the same), and the electrolytic solution contains aluminum ions.
  • the lead storage battery of the present invention excellent charge acceptability can be obtained. Moreover, according to the lead acid battery which concerns on this invention, it can suppress that the lifetime of the lead acid battery used under PSOC becomes short. According to the lead acid battery of the present invention, especially after the charge and discharge are repeated to some extent from the initial state and the active material is sufficiently activated, the SOC (State Of) which tends to be low in the ISS car and the micro hybrid car. Charge) can be maintained at an appropriate level. Furthermore, when the sulfation described above occurs, other battery performance (discharge characteristics, cycle characteristics, etc.) may be reduced, but according to the lead storage battery according to the present invention, excellent charge acceptance and other excellent Both battery performance (discharge characteristics, cycle characteristics, etc.) can be achieved. Such a lead storage battery is particularly excellent as an application for an ISS vehicle, a micro hybrid vehicle, or the like.
  • the negative electrode material preferably further contains a bisphenol-based resin having at least one selected from the group consisting of a sulfone group and a sulfonate group. In this case, further excellent charge acceptability can be obtained.
  • the negative electrode material preferably further contains at least one selected from the group consisting of lignin sulfonic acid and lignin sulfonate. Thereby, the discharge characteristics can be further improved.
  • the specific gravity of the electrolytic solution is preferably 1.24 to 1.33 (20 ° C. conversion). In this case, charge acceptability, discharge characteristics, and cycle characteristics can be further improved in a balanced manner.
  • the content of the ketjen black is preferably 0.01 to 2% by mass based on the total mass of the negative electrode material. Thereby, cycle characteristics, discharge characteristics, and charge acceptability can be further improved in a balanced manner.
  • the specific surface area of the negative electrode material is preferably 0.5 to 1.2 m 2 / g. Thereby, it is possible to achieve both excellent charge acceptability and other excellent battery performances (discharge characteristics, cycle characteristics, etc.) even better.
  • the concentration of the aluminum ions in the electrolytic solution is preferably 0.01 to 0.2 mol / L. Thereby, charge acceptability and cycle characteristics can be further improved.
  • the micro hybrid vehicle and the ISS vehicle according to the present invention include the lead storage battery.
  • the lead storage battery according to the present invention can be suitably used in an ISS vehicle, a micro hybrid vehicle, or the like as a liquid lead storage battery in which charging is performed intermittently and high rate discharge is performed under PSOC.
  • an application of a lead storage battery to a micro hybrid vehicle can be provided.
  • ADVANTAGE OF THE INVENTION According to this invention, the application of the lead storage battery to an ISS vehicle can be provided.
  • the lead storage battery according to the present embodiment includes, for example, an electrode (electrode plate or the like), an electrolytic solution (dilute sulfuric acid or the like), and a separator.
  • the electrode has a positive electrode (positive electrode plate or the like) and a negative electrode (negative electrode plate or the like).
  • Examples of the lead storage battery according to this embodiment include a liquid lead storage battery, a control valve type lead storage battery, a sealed lead storage battery, and the like, and a liquid lead storage battery is preferable.
  • the positive electrode has a current collector (positive electrode current collector) and a positive electrode material held by the current collector.
  • the negative electrode has a current collector (negative electrode current collector) and a negative electrode material held by the current collector.
  • the positive electrode material and the negative electrode material are, for example, electrode materials after chemical conversion (for example, in a fully charged state).
  • the electrode material unformed positive electrode material and unformed negative electrode material
  • contains a raw material of an electrode active material positive electrode active material and negative electrode active material.
  • the current collector constitutes a conductive path for current from the electrode material.
  • the same configuration as that of a conventional lead storage battery can be used.
  • the micro hybrid vehicle and the ISS vehicle according to the present embodiment include the lead storage battery according to the present embodiment.
  • the specific surface area of the positive electrode material is 11 m 2 / g or more.
  • the negative electrode material contains at least (A) a negative electrode active material and (B) ketjen black, and may further contain an additive as necessary.
  • the electrolytic solution contains aluminum ions.
  • the positive electrode material contains a positive electrode active material.
  • the positive electrode active material can be obtained by aging and drying a positive electrode material paste containing a raw material for the positive electrode active material to obtain an unformed positive electrode active material and then forming an unformed positive electrode active material.
  • the positive electrode active material after chemical conversion preferably contains ⁇ -lead dioxide ( ⁇ -PbO 2 ), and may further contain ⁇ -lead dioxide ( ⁇ -PbO 2 ).
  • ⁇ -PbO 2 ⁇ -lead dioxide
  • lead powder is mentioned.
  • the lead powder for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ).
  • Red lead as a raw material of the positive electrode active material (Pb 3 O 4) may be used.
  • the unformed positive electrode material preferably contains an unformed positive electrode active material containing tribasic lead sulfate as a main component.
  • the average particle diameter of the positive electrode active material is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.7 ⁇ m or more, from the viewpoint of further improving charge acceptance and cycle characteristics.
  • the average particle diameter of the positive electrode active material is preferably 2.5 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1.5 ⁇ m or less from the viewpoint of further improving the cycle characteristics.
  • the average particle diameter of the positive electrode active material is an average particle diameter of the positive electrode active material in the positive electrode material after chemical conversion.
  • the average particle diameter of the positive electrode active material is, for example, the long side of all active material particles in the image of a scanning electron micrograph (1000 times) in the range of 10 ⁇ m in length ⁇ 10 ⁇ m in the positive electrode material at the center of the positive electrode after chemical conversion It can be obtained as a numerical value obtained by arithmetically averaging the length (maximum particle size) value.
  • the content of the positive electrode active material is preferably 95% by mass or more based on the total mass of the positive electrode material from the viewpoint of further excellent battery characteristics (capacity, low-temperature high-rate discharge performance, charge acceptance, cycle characteristics, etc.), 97 The mass% or more is more preferable, and 99 mass% or more is still more preferable.
  • the upper limit of the content of the positive electrode active material may be 100% by mass or less.
  • the content of the positive electrode active material is the content of the positive electrode active material in the positive electrode material after chemical conversion.
  • the positive electrode material may further contain an additive.
  • the additive include carbon materials (carbonaceous conductive material, excluding carbon fibers), reinforcing short fibers, and the like.
  • the carbon material include carbon black and graphite.
  • Examples of carbon black include furnace black (Ketjen black, etc.), channel black, acetylene black, thermal black, and the like.
  • Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
  • the lower limit of the specific surface area of the positive electrode material is 11 m 2 / g or more from the viewpoint of obtaining excellent charge acceptability.
  • the specific surface area of the positive electrode material is preferably 11.5 m 2 / g or more, more preferably 12 m 2 / g or more, from the viewpoint of obtaining further excellent charge acceptance.
  • the upper limit of the specific surface area of the cathode material from the viewpoint of excellent practical point of view and utilization, preferably 20 m 2 / g or less, more preferably 15 m 2 / g or less, more preferably 13m 2 / g or less .
  • the specific surface area of the cathode material is preferably 11 ⁇ 20m 2 / g, more preferably from 11.5 ⁇ 15m 2 / g, more preferably 12 ⁇ 13m 2 / g.
  • the specific surface area of the positive electrode material is the specific surface area of the positive electrode material after chemical conversion.
  • the specific surface area of the positive electrode material is, for example, a method of adjusting the amount of dilute sulfuric acid and water added when preparing the positive electrode material paste described below, a method of refining the active material at the stage of the unformed positive electrode active material, and chemical conversion conditions It can be adjusted by a method of changing.
  • the specific surface area of the positive electrode material can be measured by, for example, the BET method.
  • the BET method is a method in which an inert gas (for example, nitrogen gas) having a known molecular size is adsorbed on the surface of a measurement sample, and the surface area is obtained from the adsorption amount and the area occupied by the inert gas. This is a general method for measuring the surface area. Specifically, it is measured based on the following BET equation.
  • P / P o is satisfied be in the range of 0.05-0.35.
  • symbol is as follows.
  • P Adsorption equilibrium pressure when in an adsorption equilibrium state at a constant temperature
  • P o Saturated vapor pressure at the adsorption temperature
  • V Adsorption amount at the adsorption equilibrium pressure
  • m Monomolecular layer adsorption amount (a gas molecule is a single molecule on a solid surface) Adsorption amount when layer is formed)
  • C BET constant (parameter relating to the interaction between the solid surface and the adsorbent)
  • Equation (2) By transforming equation (1) (dividing the numerator denominator on the left side by P), the following equation (2) is obtained.
  • V adsorption amount
  • P / P o the relationship between the adsorption amount
  • V the adsorption amount
  • P / P o the relative pressure
  • Equation (2) the left side of Equation (2) and P / Po are plotted.
  • the gradient is s
  • the following formula (3) is derived from the formula (2).
  • the intercept i the intercept i and the gradient s are as shown in the following formula (4) and the following formula (5), respectively.
  • the total surface area S total (m 2 ) of the sample is obtained by the following formula (9), and the specific surface area S (m 2 / g) is obtained by the following formula (10) from the total surface area S total .
  • N denotes the Avogadro's number
  • a CS shows the adsorption cross sectional area (m 2)
  • M indicates the molecular weight.
  • w shows a sample amount (g).
  • the porosity of the positive electrode material is preferably 50% by volume or more, and more preferably 55% by volume or more from the viewpoint of increasing the capacity of the dilute sulfuric acid in the pores (holes) in the positive electrode material and increasing the capacity.
  • limiting in particular in the upper limit of the porosity of a positive electrode material 70 volume% or less from the viewpoint which the amount of impregnation of the dilute sulfuric acid to the void
  • the upper limit of the porosity is more preferably 60% by volume or less from a practical viewpoint.
  • the porosity of the positive electrode material is the porosity of the positive electrode material after chemical conversion.
  • the porosity of the positive electrode material is, for example, a value (ratio based on volume) obtained from mercury porosimeter measurement.
  • the porosity of the positive electrode material can be adjusted by, for example, the amount of dilute sulfuric acid added when producing the positive electrode material paste.
  • the negative electrode active material can be obtained by chemical conversion of an unformed negative electrode active material after obtaining an unformed negative electrode active material by aging and drying a negative electrode material paste containing a raw material of the negative electrode active material.
  • Examples of the negative electrode active material after chemical conversion include spongy lead. The spongy lead tends to react with dilute sulfuric acid in the electrolyte and gradually change to lead sulfate (PbSO 4 ).
  • Examples of the raw material for the negative electrode active material include lead powder.
  • the lead powder for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ).
  • the unformed negative electrode active material is composed of, for example, basic lead sulfate, metallic lead, and a lower oxide.
  • the average particle diameter of the negative electrode active material is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.6 ⁇ m or more, from the viewpoint of further improving charge acceptance and cycle characteristics.
  • the average particle diameter of the negative electrode active material is preferably 2 ⁇ m or less, more preferably 1.8 ⁇ m or less, and even more preferably 1.5 ⁇ m or less from the viewpoint of further improving cycle characteristics.
  • the average particle diameter of the negative electrode active material is an average particle diameter of the negative electrode active material in the negative electrode material after chemical conversion.
  • the average particle diameter of the negative electrode active material is, for example, the long side of all the active material particles in the scanning electron micrograph (1000 times) image of the negative electrode material in the central part of the negative electrode after chemical conversion in the range of 10 ⁇ m in length ⁇ 10 ⁇ m in width. It can be obtained as a numerical value obtained by arithmetically averaging the length (maximum particle size) value.
  • the content of the negative electrode active material is preferably 93% by mass or more based on the total mass of the negative electrode material, from the viewpoint of further excellent battery characteristics (capacity, low-temperature high-rate discharge performance, charge acceptance, cycle characteristics, etc.), 95 More preferably, it is more preferably 98% by mass or more.
  • the upper limit of the content of the negative electrode active material may be less than 100% by mass.
  • the said content of a negative electrode active material is content of the negative electrode active material in the negative electrode material after chemical conversion.
  • Ketjen black has a hollow shell-like structure, a large number of primary particles per unit mass, and a large specific surface area.
  • Examples of the ketjen black include “Carbon ECP600JD” manufactured by Lion Specialty Chemicals Co., Ltd.
  • Ketjen Black DBP oil absorption is preferably 100 to 600 mL / 100 g, more preferably 300 to 600 mL / 100 g.
  • the DBP oil absorption of ketjen black may be 400 to 600 mL / 100 g.
  • Ketjen Black having a DBP oil absorption in such a range is excellent in conductivity and easily forms a conductive network in the negative electrode material, and can further improve charge acceptance.
  • the DBP oil absorption can be measured according to ASTM D2414.
  • the upper limit of the average particle diameter of ketjen black is preferably 100 ⁇ m or less, and preferably 50 ⁇ m or less from the viewpoint of excellent ease of incorporation into lead sulfate generated during discharge and the improvement of affinity with lead sulfate. Is more preferably 20 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the lower limit of the average particle diameter of ketjen black is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and further preferably 0.5 ⁇ m or more from a practical viewpoint.
  • commercially available ketjen black is in a state in which primary particles are aggregated (secondary particles).
  • ketjen black When primary particles of ketjen black are in an aggregated state, from the viewpoint of further improving cycle characteristics, discharge characteristics and charge acceptance, pulverize until the average particle size is 10 ⁇ m or less before preparing the negative electrode material paste. Alternatively, it is preferable to add ketjen black to the paste after stirring with a small amount of water. Such treatment increases the affinity for lead sulfate and facilitates the effect of ketjen black.
  • the average particle diameter of ketjen black can be determined in accordance with, for example, the laser diffraction / scattering method described in JISM8511 (2014). Specifically, a commercially available surfactant polyoxyethylene octylphenyl ether (for example, Roche Diagnostics) is used as a dispersant using a laser diffraction / scattering particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd .: Microtrack 9220FRA). An appropriate amount of ketjen black is put into an aqueous solution containing 0.5% by volume of Triton X-100 manufactured by Co., Ltd., followed by irradiation with 40 W ultrasonic waves for 180 seconds while stirring. The calculated median diameter (D50) is taken as the average particle diameter of Ketjen Black.
  • the average particle diameter of ketjen black may be an average particle diameter obtained before chemical conversion or may be an average particle diameter obtained after chemical conversion.
  • the content of ketjen black is preferably 0.01% by mass or more, preferably 0.03% by mass or more, based on the total mass of the negative electrode material, from the viewpoint of further improving the cycle characteristics, discharge characteristics and charge acceptance. Is more preferable, and 0.05 mass% or more is still more preferable.
  • the content of ketjen black may be 0.1% by mass or more.
  • the content of ketjen black is preferably 2% by mass or less, more preferably 1.5% by mass or less, based on the total mass of the negative electrode material, from the viewpoint of further improving the cycle characteristics, discharge characteristics and charge acceptance. 0.5% by mass or less is more preferable.
  • the content of ketjen black may be 0.3% by mass or less.
  • the content of ketjen black is preferably 0.01 to 2% by mass, preferably 0.03 to 1%, based on the total mass of the negative electrode material, from the viewpoint of further improving the cycle characteristics, discharge characteristics and charge acceptance. 0.5% by mass is more preferable, 0.03 to 0.5% by mass is still more preferable, and 0.05 to 0.5% by mass is particularly preferable.
  • the content of ketjen black may be 0.1 to 0.3% by mass.
  • the content of ketjen black is the content of ketjen black in the negative electrode material after chemical conversion.
  • the negative electrode material is a resin having at least one selected from the group consisting of sulfone groups (sulfonic acid groups, sulfo groups) and sulfonic acid groups, from the viewpoint of further improving charge acceptability, discharge characteristics, and cycle characteristics. It is preferable to further contain (a resin having a sulfone group and / or a sulfonate group).
  • a bisphenol resin having at least one selected from the group consisting of a sulfone group and a sulfonate group (a bisphenol resin having a sulfone group and / or a sulfonate group.
  • bisphenol resin simply referred to as “bisphenol resin”
  • Lignin sulfonic acid Lignin sulfonic acid
  • lignin sulfonate Lignin sulfonic acid
  • lignin sulfonate Lignin sulfonic acid
  • lignin sulfonate Lignin sulfonic acid
  • lignin sulfonate Lignin sulfonic acid
  • lignin sulfonate and the like.
  • bisphenol-based resins are preferable, (c1) bisphenol-based compounds, (c2) aminoalkyl sulfonic acids, aminoalkyl sulfonic acid derivatives, aminoaryl sulfonic acids
  • a bisphenol-based resin that is a condensate of at least one selected from the group consisting of acid derivatives and at least one selected from the group consisting of (c3) formaldehyde and formaldehyde derivatives is more preferable.
  • the bisphenol resin that is the condensate of (c1) to (c3) will be described in detail.
  • (C1) component bisphenol compound
  • a bisphenol-based compound is a compound having two hydroxyphenyl groups.
  • Component (c1) includes 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”), bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) ethane.
  • Bisphenol S 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) butane, bis (4- Hydroxyphenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) sulfone (hereinafter, "Bisphenol S").
  • (C1) A component can be used individually by 1 type or in combination of 2 or more types.
  • bisphenol A is preferable from the viewpoint of further excellent charge acceptance
  • bisphenol S is preferable from the viewpoint of further excellent discharge characteristics.
  • the component (c1) it is preferable to use bisphenol A and bisphenol S in combination from the viewpoint that the cycle characteristics, the discharge characteristics, and the charge acceptability are easily improved in a balanced manner.
  • the blending amount of bisphenol A for obtaining a bisphenol-based resin is 70 mol% or more based on the total amount of bisphenol A and bisphenol S from the viewpoint of easily improving the cycle characteristics, discharge characteristics and charge acceptability in a balanced manner. Is more preferable, 75 mol% or more is more preferable, and 80 mol% or more is still more preferable.
  • the blending amount of bisphenol A is preferably 99 mol% or less, more preferably 98 mol% or less, based on the total amount of bisphenol A and bisphenol S, from the viewpoint that the cycle characteristics, discharge characteristics and charge acceptance are easily improved in a balanced manner. More preferably, it is 97 mol% or less.
  • aminoalkylsulfonic acid aminoalkylsulfonic acid, aminoalkylsulfonic acid derivative, aminoarylsulfonic acid and aminoarylsulfonic acid derivative
  • aminoalkylsulfonic acid examples include aminomethanesulfonic acid, 2-aminoethanesulfonic acid, 3-aminopropanesulfonic acid, 2-methylaminoethanesulfonic acid and the like.
  • aminoalkyl sulfonic acid derivatives include compounds in which a hydrogen atom of aminoalkyl sulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, and a sulfone group (—SO 3 H) of aminoalkyl sulfonic acid.
  • alkyl group for example, an alkyl group having 1 to 5 carbon atoms
  • —SO 3 H sulfone group
  • alkali metal salts in which hydrogen atoms are substituted with alkali metals (for example, sodium and potassium).
  • aminoarylsulfonic acid examples include aminobenzenesulfonic acid and aminonaphthalenesulfonic acid.
  • aminoarylsulfonic acid derivatives examples include aminobenzenesulfonic acid derivatives and aminonaphthalenesulfonic acid derivatives.
  • aminobenzene sulfonic acid examples include 2-aminobenzene sulfonic acid (also known as alternilic acid), 3-aminobenzene sulfonic acid (also known as metanylic acid), 4-aminobenzene sulfonic acid (also known as sulfanilic acid), and the like.
  • aminobenzenesulfonic acid derivative a compound in which a part of hydrogen atoms of aminobenzenesulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, a sulfone group of aminobenzenesulfonic acid (—SO 3 And an alkali metal salt (sodium salt, potassium salt, etc.) in which the hydrogen atom of H) is substituted with an alkali metal (for example, sodium and potassium).
  • an alkyl group for example, an alkyl group having 1 to 5 carbon atoms
  • an alkali metal salt sodium salt, potassium salt, etc.
  • Examples of the compounds in which some hydrogen atoms of aminobenzenesulfonic acid are substituted with alkyl groups include 4- (methylamino) benzenesulfonic acid, 3-methyl-4-aminobenzenesulfonic acid, and 3-amino-4-methylbenzene.
  • Examples include sulfonic acid, 4- (ethylamino) benzenesulfonic acid, and 3- (ethylamino) -4-methylbenzenesulfonic acid.
  • Examples of the compound in which the hydrogen atom of the sulfone group of aminobenzenesulfonic acid is replaced with an alkali metal include sodium 2-aminobenzenesulfonate, sodium 3-aminobenzenesulfonate, sodium 4-aminobenzenesulfonate, 2-aminobenzenesulfone.
  • Examples include potassium acid, potassium 3-aminobenzenesulfonate, and potassium 4-aminobenzenesulfonate.
  • aminonaphthalenesulfonic acid examples include 4-amino-1-naphthalenesulfonic acid (p-form), 5-amino-1-naphthalenesulfonic acid (ana-form), 1-amino-6-naphthalenesulfonic acid ( ⁇ -form) 5-amino-2-naphthalenesulfonic acid), 6-amino-1-naphthalenesulfonic acid ( ⁇ -form), 6-amino-2-naphthalenesulfonic acid (amphi-form), 7-amino-2-naphthalenesulfone Acid, aminonaphthalene monosulfonic acid such as 8-amino-1-naphthalenesulfonic acid (peri-form), 1-amino-7-naphthalenesulfonic acid (kata-form, 8-amino-2-naphthalenesulfonic acid); 1 -Amino-3,8-naphthalenedisulfonic acid, 3-amin
  • aminonaphthalenesulfonic acid derivative examples include compounds in which a part of hydrogen atoms of aminonaphthalenesulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, a sulfone group of aminonaphthalenesulfonic acid (—SO 3 And an alkali metal salt (sodium salt, potassium salt, etc.) in which the hydrogen atom of H) is substituted with an alkali metal (for example, sodium and potassium).
  • an alkyl group for example, an alkyl group having 1 to 5 carbon atoms
  • an alkali metal salt sodium salt, potassium salt, etc.
  • a component can be used individually by 1 type or in combination of 2 or more types.
  • As the component (c2) 4-aminobenzenesulfonic acid is preferable from the viewpoint of further improving cycle characteristics and charge acceptability.
  • the amount of the component (c2) for obtaining the bisphenol-based resin is preferably 0.5 mol or more, more preferably 0.6 mol or more, with respect to 1 mol of the component (c1). 0.8 mol or more is more preferable, and 0.9 mol or more is particularly preferable.
  • Component (c2) is blended in an amount of preferably 1.3 mol or less, more preferably 1.2 mol or less, and 1.1 mol or less with respect to 1 mol of component (c1), from the viewpoint that the cycle characteristics and discharge characteristics can be further improved. Is more preferable.
  • (C3) component formaldehyde and formaldehyde derivatives
  • formaldehyde formaldehyde in formalin (for example, an aqueous solution of 37% by mass of formaldehyde) may be used.
  • formaldehyde derivatives include paraformaldehyde, hexamethylenetetramine, and trioxane.
  • C3 A component can be used individually by 1 type or in combination of 2 or more types. You may use formaldehyde and a formaldehyde derivative together.
  • Paraformaldehyde has, for example, a structure represented by the following general formula (I). HO (CH 2 O) n1 H (I) [In the formula (I), n1 represents an integer of 2 to 100. ]
  • the amount of the component (c3) in terms of formaldehyde to obtain the bisphenol-based resin is preferably 2 mol or more, and 2.2 mol or more with respect to 1 mol of the component (c1). Is more preferable, and 2.4 mol or more is still more preferable.
  • the amount of the (c3) component in terms of formaldehyde is preferably 3.5 mol or less and more preferably 3.2 mol or less with respect to 1 mol of the component (c1). 3 mol or less is more preferable.
  • the bisphenol-based resin preferably has at least one of a structural unit represented by the following general formula (II) and a structural unit represented by the following general formula (III).
  • X 2 represents a divalent group
  • a 2 represents an alkylene group having 1 to 4 carbon atoms or an arylene group
  • R 21 , R 23 and R 24 are each independently Represents an alkali metal or hydrogen atom
  • R 22 represents a methylol group (—CH 2 OH)
  • n21 represents an integer of 1 to 150
  • n22 represents an integer of 1 to 3
  • n23 represents 0 Or 1 is shown.
  • the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted with an alkyl group having 1 to 5 carbon atoms.
  • X 3 represents a divalent group
  • a 3 represents an alkylene group having 1 to 4 carbon atoms or an arylene group
  • R 31 , R 33 and R 34 are each independently selected.
  • R 32 represents a methylol group (—CH 2 OH)
  • n31 represents an integer of 1 to 150
  • n32 represents an integer of 1 to 3
  • n33 represents 0 Or 1 is shown.
  • the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted with an alkyl group having 1 to 5 carbon atoms.
  • the ratio of the structural unit represented by the formula (II) and the structural unit represented by the formula (III) is not particularly limited, and may vary depending on synthesis conditions and the like.
  • a resin having only one of the structural unit represented by the formula (II) and the structural unit represented by the formula (III) may be used.
  • Examples of X 2 and X 3 include alkylidene groups (methylidene group, ethylidene group, isopropylidene group, sec-butylidene group, etc.), cycloalkylidene groups (cyclohexylidene group, etc.), phenylalkylidene groups (diphenylmethylidene group).
  • a phenylsulfonyl group, and the like; a sulfonyl group, and the isopropylidene group (—C (CH 3 ) 2 —) is preferable from the viewpoint of further excellent charge acceptance, and from the viewpoint of further excellent discharge characteristics.
  • a sulfonyl group (—SO 2 —) is preferred.
  • X 2 and X 3 may be substituted with a halogen atom such as a fluorine atom.
  • a halogen atom such as a fluorine atom.
  • the hydrocarbon ring may be substituted with an alkyl group or the like.
  • Examples of A 2 and A 3 include alkylene groups having 1 to 4 carbon atoms such as a methylene group, an ethylene group, a propylene group, and a butylene group; and divalent arylene groups such as a phenylene group and a naphthylene group.
  • the arylene group may be substituted with an alkyl group or the like.
  • Examples of the alkali metal for R 21 , R 23 , R 24 , R 31 , R 33 and R 34 include sodium and potassium.
  • n21 and n31 are preferably 1 to 150, more preferably 10 to 150, from the viewpoint of further excellent cycle characteristics and solubility in a solvent.
  • n22 and n32 are preferably 1 or 2, and more preferably 1, from the viewpoint that the cycle characteristics, the discharge characteristics, and the charge acceptability are easily improved in a balanced manner.
  • n23 and n33 change with manufacturing conditions, 0 is preferable from a viewpoint which is further excellent in cycling characteristics and the storage stability of bisphenol-type resin.
  • the method for producing a bisphenol-based resin includes a resin production step of obtaining a bisphenol-based resin by reacting the component (c1), the component (c2) and the component (c3).
  • the bisphenol-based resin can be obtained, for example, by reacting the component (c1), the component (c2) and the component (c3) in a reaction solvent.
  • the reaction solvent is preferably water (for example, ion exchange water).
  • an organic solvent, a catalyst, an additive, or the like may be used.
  • the blending amount of the component (c2) is 0.5 to 1.3 mol with respect to 1 mol of the component (c1)
  • the blending amount of the component (c3) is (C1)
  • An embodiment in which the amount is 2 to 3.5 mol in terms of formaldehyde with respect to 1 mol of the component is preferable.
  • Preferred blending amounts of the component (c2) and the component (c3) are the ranges described above for the blending amounts of the component (c2) and the component (c3).
  • the bisphenol-based resin is preferably obtained by reacting the component (c1), the component (c2) and the component (c3) under basic conditions (alkaline conditions) from the viewpoint that a sufficient amount of bisphenol-based resin can be easily obtained.
  • basic conditions alkaline conditions
  • the basic compound include sodium hydroxide, potassium hydroxide, sodium carbonate and the like.
  • a basic compound can be used individually by 1 type or in combination of 2 or more types.
  • sodium hydroxide and potassium hydroxide are preferable from the viewpoint of excellent reactivity.
  • the pH of the reaction solution at the start of the reaction is preferably alkaline (exceeding 7) from the viewpoint of suppressing the side reaction from proceeding while the bisphenol-based resin formation reaction proceeds, and is 7.1 or more Is more preferable, and 7.2 or more is still more preferable.
  • the pH of the reaction solution is preferably 12 or less, more preferably 10 or less, and even more preferably 9 or less from the viewpoint of suppressing the hydrolysis of the group derived from the component (c2) of the bisphenol resin.
  • the pH of the reaction solution can be measured, for example, with a twin pH meter AS-212 manufactured by Horiba, Ltd. The pH is defined as the pH at 25 ° C.
  • the blending amount of the strongly basic compound is preferably 1.01 mol or more, more preferably 1.02 mol or more with respect to 1 mol of the sulfone group contained in the component (c2). 1.03 mol or more is still more preferable.
  • the compounding amount of the strongly basic compound is preferably 1.1 mol or less, more preferably 1.08 mol or less, still more preferably 1.07 mol or less with respect to 1 mol of the sulfone group contained in the component (c2).
  • the strongly basic compound include sodium hydroxide and potassium hydroxide.
  • the synthesis reaction of the bisphenol-based resin is sufficient if the (c1) component, the (c2) component, and the (c3) component are reacted to obtain a bisphenol-based resin.
  • the (c1) component, the (c2) component, and the (c3) The components may be reacted simultaneously, or the remaining one component may be reacted after reacting two of the components (c1), (c2) and (c3).
  • the synthesis reaction of the bisphenol-based resin is preferably performed in two steps as follows.
  • a solvent such as water
  • a basic compound such as water
  • aminoalkyl sulfonic acid and / or aminoaryl sulfonic acid are mixed.
  • the hydrogen atom of the sulfone group in the acid is substituted with an alkali metal or the like to obtain an alkali metal salt of aminoalkyl sulfonic acid and / or aminoaryl sulfonic acid (aminoalkyl sulfonic acid derivative and / or aminoaryl sulfonic acid derivative).
  • the temperature of the reaction system is preferably 0 ° C. or higher, more preferably 25 ° C. or higher, from the viewpoint of excellent solubility of aminoalkylsulfonic acid and / or aminoarylsulfonic acid in a solvent (such as water).
  • the temperature of the reaction system is preferably 80 ° C. or less, more preferably 70 ° C. or less, and still more preferably 65 ° C. or less from the viewpoint of suppressing side reactions.
  • the reaction time is, for example, 5 to 30 minutes.
  • the components (c1) and (c3) are added to the reaction product obtained in the first stage and subjected to a condensation reaction to obtain a bisphenol-based resin.
  • the temperature of the reaction system is preferably 75 ° C. or higher, more preferably 85 ° C. or higher, and still more preferably 87 ° C. or higher, from the viewpoint of excellent reactivity of the components (c1), (c2) and (c3).
  • the temperature of the reaction system is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and still more preferably 93 ° C. or lower, from the viewpoint of suppressing side reactions.
  • the reaction time is, for example, 5 to 20 hours.
  • a bisphenol-based resin is obtained in a reaction product (for example, a reaction solution) obtained by reacting the component (c1), the component (c2) and the component (c3), and the reaction product is dried to obtain a solvent (water, etc.)
  • the component (c3) of the reaction may be removed.
  • the reaction product obtained by the method for producing a bisphenol-based resin may be used as it is for the production of an electrode to be described later, or the bisphenol-based resin obtained by drying the reaction product is dissolved in a solvent (water or the like). It may be used for the manufacture of an electrode to be described later.
  • At least one selected from the group consisting of lignin sulfonic acid and lignin sulfonate is preferable, and lignin sulfonate is more preferable from the viewpoint of further improving discharge characteristics.
  • the lignin sulfonate that is the component (C) include alkali metal salts in which the hydrogen atom of the sulfone group (—SO 3 H) of lignin sulfonic acid is substituted with an alkali metal.
  • alkali metal salt include sodium salt and potassium salt.
  • the weight average molecular weight of the component (C) is preferably 15000 or more and more preferably 30000 or more from the viewpoint that the cycle characteristics are easily improved by suppressing the elution of the component (C) from the electrode to the electrolyte in the lead storage battery.
  • 40000 or more is further preferable, and 50000 or more is particularly preferable.
  • the weight average molecular weight of the component (C) is preferably 70000 or less, more preferably 65000 or less, from the viewpoint that the cycle characteristics are easily improved by suppressing the decrease in the adsorptivity to the electrode active material and the dispersibility.
  • it is 62000 or less.
  • the weight average molecular weight of the component (C) can be measured, for example, by gel permeation chromatography (hereinafter referred to as “GPC”) under the following conditions.
  • GPC conditions Apparatus: High performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation) Pump: PU-2080 Differential refractometer: RI-2031 Detector: UV-visible spectrophotometer UV-2075 ( ⁇ : 254 nm)
  • Eluent methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min
  • Molecular weight standard sample Polyethylene glycol (molecular weight: 1.10 ⁇ 10 6 , 5.80 ⁇ 10 5 , 2.
  • the content of the component (C) is preferably 0.01% by mass or more in terms of resin solid content, based on the total mass of the negative electrode material, from the viewpoint of further improving discharge characteristics. 05 mass% or more is more preferable, and 0.1 mass% or more is still more preferable.
  • the content of the component (C) is preferably 2% by mass or less, more preferably 1% by mass or less, in terms of resin solid content, based on the total mass of the negative electrode material, from the viewpoint of further excellent charge acceptance. A mass% or less is more preferable.
  • a resin composition containing the component (C) (for example, a liquid resin solution at 25 ° C.) may be used.
  • the resin composition may further contain a solvent.
  • the resin composition may be a reaction product obtained in the resin production process, and is a composition obtained by mixing the component (C) and other components after the resin production process (for example, using the component (C) as a solvent.
  • a resin solution obtained by dissolution, and a composition obtained by mixing the component (C) with the component (A) and the component (B) may be used.
  • the solvent include water (for example, ion exchange water) and an organic solvent.
  • the solvent contained in the resin composition may be a reaction solvent used to obtain the component (C) (such as a bisphenol-based resin).
  • the pH of the resin composition (for example, a resin solution that is liquid at 25 ° C.) is alkaline (greater than 7) from the viewpoint of excellent solubility of the component (C) (bisphenol resin, etc.) in a solvent (water, etc.). Is preferably 7.1 or more.
  • the pH of the resin composition is preferably 14 or less from the viewpoint of excellent workability during electrode paste preparation.
  • the pH of the resin composition is preferably in the above range.
  • the pH of the resin composition can be measured, for example, with a twin pH meter AS-212 manufactured by Horiba, Ltd. The pH is defined as the pH at 25 ° C.
  • the negative electrode material may further contain an additive.
  • the additive include barium sulfate, carbon materials (carbonaceous conductive material, excluding carbon fibers), reinforcing short fibers, and the like.
  • the carbon material include carbon black and graphite.
  • Examples of carbon black include furnace black (excluding components corresponding to ketjen black), channel black, acetylene black, thermal black, and the like.
  • Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
  • the specific surface area of the negative electrode material is preferably 0.5 m 2 / g or more from the viewpoint of achieving both excellent charge acceptance and other excellent battery performance (discharge characteristics, cycle characteristics, etc.), 55 m 2 / g or more is more preferable, and 0.6 m 2 / g or more is still more preferable.
  • the specific surface area of the negative electrode material is preferably 1.2 m 2 / g or less from the viewpoint of achieving both excellent charge acceptability and other excellent battery performances (discharge characteristics, cycle characteristics, etc.). 0m more preferably 2 / g or less, 0.8 m 2 / g or less is more preferable.
  • the specific surface area of the negative electrode material may be 0.7 m 2 / g or less.
  • the specific surface area of the negative electrode material is 0.5 to 1.2 m 2 / g from the viewpoint of further achieving both excellent charge acceptance and other excellent battery performance (discharge characteristics, cycle characteristics, etc.). it is preferable, more preferably 0.55 to 1.2 more preferably 0.6 ⁇ 1.0m 2 / g, particularly preferably 0.6 ⁇ 0.8m 2 / g.
  • the specific surface area of the negative electrode material may be 0.6 to 0.7 m 2 / g.
  • the specific surface area of the negative electrode material is the specific surface area of the negative electrode material after chemical conversion.
  • the specific surface area of the negative electrode material changes, for example, the method of adjusting the amount of dilute sulfuric acid and water added when preparing the negative electrode material paste, the method of refining the active material at the stage of the unformed negative electrode active material, and the chemical conversion conditions It can adjust by the method of making it.
  • the specific surface area of the negative electrode material can be measured by, for example, the BET method.
  • Examples of the method for producing the current collector include a casting method and an expanding method.
  • Examples of the material of the current collector include a lead-calcium-tin alloy and a lead-antimony alloy. A small amount of selenium, silver, bismuth or the like can be added to these.
  • the manufacturing method or material of the current collector for the positive electrode and the negative electrode may be the same or different from each other.
  • the method for manufacturing a lead storage battery according to the present embodiment includes, for example, an electrode manufacturing process for obtaining electrodes (positive electrode and negative electrode) and an assembly process for obtaining a lead storage battery by assembling constituent members including the electrodes.
  • an electrode material paste (a positive electrode material paste and a negative electrode material paste) into a current collector (for example, a cast lattice body and an expanded lattice body), aging and drying are performed to thereby form an unformed electrode.
  • the positive electrode material paste contains, for example, a raw material (lead powder or the like) of the positive electrode active material, and may further contain other additives.
  • the negative electrode material paste contains a raw material for the negative electrode active material (lead powder, etc.) and ketjen black, and preferably contains a component (C) (bisphenol resin, etc.) as a dispersant. An agent may be further contained.
  • a positive electrode material paste for obtaining a positive electrode material having a specific surface area of 11 m 2 / g or more can be obtained by, for example, the following method.
  • lead (Pb 3 O 4 ) may be used as a raw material for the positive electrode active material from the viewpoint of shortening the chemical formation time.
  • (1) Method of using lead powder as a raw material for the positive electrode active material A reinforcing short fiber is added to the lead powder and dry mixed. Next, 5-10% by mass of water and 28-40% by mass of dilute sulfuric acid (specific gravity 1.28) are added to the mixture containing the lead powder and kneaded to prepare a positive electrode material paste.
  • the said compounding quantity of water and dilute sulfuric acid is a compounding quantity on the basis of the total mass of lead powder and the reinforcing short fiber.
  • the dilute sulfuric acid (specific gravity 1.28) is preferably added gradually in several steps in order to reduce heat generation. In the production of the positive electrode material paste, rapid heat generation forms a sparse positive electrode material, and the bonding force between the active materials in the lifetime decreases. Therefore, it is desirable to suppress heat generation as much as possible.
  • lead tan (Pb 3 O 4 ) and first dilute sulfuric acid (specific gravity 1.3 to 1.4) 20 to 25 mass% are mixed and then kneaded.
  • second dilute sulfuric acid specifically gravity 1.45 to 1.6
  • lead dioxide (PbO 2 ) and lead sulfate (PbSO 4 ) which are reaction products of red lead and dilute sulfuric acid, are generated.
  • the blending amounts of the first and second dilute sulfuric acids are based on the total mass of lead powder and reinforcing short fibers used when preparing the paste A and the red lead used when preparing the paste B. It is the compounding quantity which was made.
  • the paste B is added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste.
  • the ratio of the lead powder contained in paste A and the lead powder contained in paste B (lead powder / lead powder) is 90/10 to 80/20 in mass ratio. It is preferable to adjust to.
  • the total amount of water is preferably 4.5 to 7.0% by mass based on the total mass of lead powder, reinforcing short fibers and red lead.
  • water here does not include water in dilute sulfuric acid.
  • An unformed positive electrode can be obtained by filling the positive electrode material paste into the current collector and then aging and drying.
  • the blending amount of the reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the positive electrode active material (lead powder, etc.) 0.05 to 0.3% by mass is more preferable.
  • aging conditions for obtaining an unformed positive electrode 15 to 60 hours are preferable in an atmosphere of a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%.
  • the drying conditions are preferably 45 to 80 ° C. and 15 to 30 hours.
  • the negative electrode material paste can be obtained, for example, by the following method. First, the mixture is obtained by adding the component (B) and additives (reinforcing short fibers, barium sulfate, etc.) to the raw material of the negative electrode active material (component (A)) and dry-mixing them. Next, a solvent (water such as ion-exchanged water or an organic solvent) is added to the mixture and kneaded. At this time, the component (C) may be further added together with the component (B). And a negative electrode material paste is obtained by adding dilute sulfuric acid and kneading. An unformed negative electrode can be obtained by filling the negative electrode material paste into the current collector and then aging and drying.
  • a solvent water such as ion-exchanged water or an organic solvent
  • (A) component, (B) component, and (C) component may be added and mixed sequentially, (B) component, (C) component, and a small amount of water are mixed, and the secondary of Ketjen Black After the state of the aggregate is melted, the mixture of the component (B) and the component (C) and the component (A) may be mixed. Thereby, the effect of (B) component can fully be acquired.
  • the blending amount of each component is preferably in the following range.
  • the blending amount of component (C) is preferably 0.01 to 2.0% by mass in terms of resin solids, based on the total mass of the negative electrode active material (lead powder, etc.). 0 mass% is more preferred, 0.1 to 0.5 mass% is still more preferred, and 0.1 to 0.3 mass% is particularly preferred.
  • the blending amount of the carbon material is preferably 0.1 to 3% by mass, and more preferably 0.2 to 1.4% by mass, based on the total mass of the negative electrode active material (such as lead powder).
  • the blending amount of the reinforcing short fibers is preferably 0.05 to 0.3% by mass, more preferably 0.05 to 0.2% by mass based on the total mass of the raw material of the negative electrode active material (lead powder or the like).
  • the compounding amount of barium sulfate is preferably 0.01 to 2.0% by mass, more preferably 0.3 to 2.0% by mass, based on the total mass of the raw material of the negative electrode active material (lead powder or the like).
  • the amount of ketjen black is 0.01% by mass or more based on the total mass of the negative electrode active material (lead powder, etc.) from the viewpoint of improving the balance of cycle characteristics, discharge characteristics and charge acceptance.
  • 0.03 mass% or more is more preferable, and 0.05 mass% or more is still more preferable.
  • 0.1 mass% or more may be sufficient as the said compounding quantity of ketjen black.
  • the amount of ketjen black is preferably 2% by mass or less, based on the total mass of the negative electrode active material (lead powder, etc.), from the viewpoint of further improving the cycle characteristics, discharge characteristics, and charge acceptance. 1.5 mass% or less is more preferable, and 0.5 mass% or less is still more preferable.
  • 0.3 mass% or less may be sufficient as the said compounding quantity of ketjen black.
  • the amount of ketjen black is 0.01 to 2% by mass, based on the total mass of the negative electrode active material (lead powder, etc.), from the viewpoint of further improving the cycle characteristics, discharge characteristics and charge acceptance. Is preferable, 0.03 to 1.5% by mass is more preferable, 0.03 to 0.5% by mass is further preferable, and 0.05 to 0.5% by mass is particularly preferable.
  • the amount of ketjen black may be 0.1 to 0.3% by mass.
  • the temperature is 45 to 65 ° C. and the humidity is 70 to 98 RH% for 15 to 30 hours.
  • the drying conditions are preferably 45 to 60 ° C. and 15 to 30 hours.
  • the unformed negative electrode and the unformed positive electrode produced as described above are alternately stacked via separators, and the current collectors of the same polarity electrodes are connected (welded, etc.) with a strap.
  • An electrode group is obtained.
  • This electrode group is arranged in a battery case to produce an unformed battery.
  • an electrolytic solution dilute sulfuric acid
  • a direct current is applied to form a battery case.
  • the lead acid battery can be obtained by adjusting the specific gravity of the electrolyte after the formation to an appropriate specific gravity.
  • the electrolytic solution contains, for example, dilute sulfuric acid and aluminum ions, and can be obtained by mixing dilute sulfuric acid and aluminum sulfate powder.
  • Aluminum sulfate to be dissolved in the electrolytic solution can be added as an anhydride or a hydrate.
  • the specific gravity after chemical conversion of the electrolytic solution is preferably in the following range.
  • the specific gravity of the electrolytic solution is preferably 1.24 or more, more preferably 1.25 or more, and even more preferably 1.255 or more from the viewpoint of suppressing osmotic short-circuiting or freezing and further improving discharge characteristics.
  • the specific gravity of the electrolytic solution is preferably 1.33 or less, more preferably 1.30 or less, and even more preferably 1.29 or less, from the viewpoint of further improving charge acceptability and cycle characteristics.
  • the specific gravity of the electrolytic solution is 1.27 or less, lead sulfate generated by discharge is easily dissolved in the electrolytic solution, and charge acceptability can be further improved.
  • the specific gravity of the electrolytic solution is preferably 1.24 to 1.33, more preferably 1.24 to 1.30, still more preferably 1.25 to 1.30, and 1.255 to 1.29. Is particularly preferable, and 1.255 to 1.27 is very preferable.
  • the value of the specific gravity of the electrolytic solution can be measured by, for example, a floating hydrometer or a digital hydrometer manufactured by Kyoto Electronics Industry Co., Ltd.
  • the concentration of aluminum ions in the electrolytic solution is preferably 0.01 mol / L or more, based on the total amount of the electrolytic solution, from the viewpoint of further improving charge acceptability and cycle characteristics, and 0.02 mol. / L or more is more preferable, and 0.03 mol / L or more is more preferable.
  • the aluminum ion concentration may be 0.04 mol / L or more, 0.05 mol / L or more, or 0.06 mol / L or more.
  • the aluminum ion concentration of the electrolytic solution is preferably 0.2 mol / L or less, more preferably 0.15 mol / L or less, based on the total amount of the electrolytic solution, from the viewpoint of further improving charge acceptance and cycle characteristics. More preferably, it is 13 mol / L or less.
  • the aluminum ion concentration may be 0.1 mol / L or less. From these viewpoints, the aluminum ion concentration of the electrolytic solution is preferably from 0.01 to 0.2 mol / L, more preferably from 0.02 to 0.15 mol / L, based on the total amount of the electrolytic solution, from 0.03 to 0.13 mol / L is more preferable.
  • the aluminum ion concentration may be 0.04 to 0.1 mol / L, 0.05 to 0.1 mol / L, or 0.06 to 0.1 mol / L. .
  • the aluminum ion concentration of the electrolytic solution can be measured by, for example, ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
  • the electrolyte solution concentration at the lower part of the battery becomes higher, whereas the specific gravity of the electrolyte solution at the upper part of the battery becomes lower, resulting in non-uniform electrolyte concentration called “stratification”.
  • the specific gravity of the electrolyte solution at the upper part of the battery becomes lower, resulting in non-uniform electrolyte concentration called “stratification”.
  • crystalline lead sulfate that does not easily return to the original state even when charged is generated, and the reaction area of the active material decreases. Thereby, performance deterioration occurs in a life test in which charge and discharge are repeated.
  • the aluminum ion concentration of the electrolytic solution is in the predetermined range, sulfate ions are strongly attracted by the electrostatic attraction of aluminum ions, so that it is presumed that stratification is less likely to occur.
  • the battery case can accommodate electrodes (electrode plates, etc.) inside.
  • the battery case preferably has a box body whose upper surface is opened and a lid body that covers the upper surface of the box body from the viewpoint of easily accommodating the electrode.
  • an adhesive, heat welding, laser welding, ultrasonic welding, or the like can be appropriately used for bonding the box and the lid.
  • the shape of the battery case is not particularly limited, but a rectangular shape is preferable so that an ineffective space is reduced when an electrode (a plate plate or the like) is accommodated.
  • the material of the battery case is not particularly limited, but it needs to be resistant to an electrolytic solution (such as dilute sulfuric acid).
  • Specific examples of the battery case material include PP (polypropylene), PE (polyethylene), and ABS resin.
  • PP is advantageous in terms of acid resistance, workability and cost.
  • PP is advantageous in terms of workability as compared with ABS resin, which is difficult to thermally weld the battery case and the lid.
  • the box and the lid may be made of the same material or different materials.
  • materials having the same thermal expansion coefficient are preferable from the viewpoint of not generating excessive stress.
  • separator examples include a microporous polyethylene sheet; a nonwoven fabric made of glass fiber and synthetic resin.
  • Chemical conversion conditions and specific gravity of dilute sulfuric acid can be adjusted according to the properties of the electrode active material.
  • the chemical conversion treatment is not limited to being performed after the assembly process, and may be performed by immersing a large number of electrodes after aging and drying in the electrode manufacturing process together in a chemical conversion tank (tank chemical conversion).
  • the first mixture was mixed and stirred at 25 ° C. for 30 minutes. Subsequently, the following components were charged into the first mixed liquid to obtain a second mixed liquid.
  • Bisphenol A 0.96 mol [219.2 parts by mass]
  • Bisphenol S 0.04 mol [10.4 parts by mass]
  • Paraformaldehyde manufactured by Mitsui Chemicals: 3.00 mol [90.9 parts by mass] (formaldehyde conversion)
  • the bisphenol-based resin contained in the resin solution was isolated by low temperature drying (60 ° C., 6 hours), and the weight average molecular weight was measured by GPC under the following conditions.
  • the weight average molecular weight of the bisphenol-based resin was 53900.
  • Example 1 [Production of positive electrode plate] First, 0.25 mass% of acrylic fibers (based on the total mass of the lead powder) were added to the lead powder as a reinforcing short fiber and dry mixed. Next, 8% by mass of water is added to the mixture containing the lead powder (standard: lead powder, reinforcing short fibers, and the total mass of the red lead used when preparing the paste B described later). A paste A was prepared by kneading.
  • the red lead (Pb 3 O 4 ) and 17% by mass of the first dilute sulfuric acid (specific gravity 1.35) were mixed and then kneaded.
  • 6% by mass of second dilute sulfuric acid (specific gravity 1.50) was added and then kneaded to prepare paste B.
  • the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the lead powder and the short fiber for reinforcement which were used when producing the above-mentioned paste A, and the red lead used when producing the paste B. The amount is based on the total mass.
  • the paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste.
  • the total amount of water was 6.9% by mass based on the total mass of lead powder, reinforcing short fibers and red lead.
  • the paste B was added stepwise in order to avoid a rapid temperature rise.
  • the positive electrode material paste was filled in an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process.
  • the grid body (current collector) filled with the positive electrode material paste was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the unchemically formed positive electrode plate.
  • Electrode plate Lead powder was used as a raw material for the negative electrode active material. 0.1% by mass of reinforcing short fibers (acrylic fibers), 1.0% by mass of barium sulfate, Ketjen Black (manufactured by Lion Specialty Chemicals, Inc., trade name: Carbon ECP600JD, DBP oil absorption: 489 mL / 100 g ) was added to the lead powder and then dry mixed (the blending amount is based on the total mass of the negative electrode active material). Next, the resin solution containing the bisphenol-based resin obtained above is 0.2% by mass (standard: total mass of raw materials for the negative electrode active material) and 10% by mass of water (standard: negative electrode active material).
  • the negative electrode material paste was produced by kneading.
  • the negative electrode material paste was filled in an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process.
  • the grid body (current collector) filled with the negative electrode material paste was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 20 hours. Then, it dried and produced the unchemically formed negative electrode plate.
  • the ketjen black was pulverized before dry mixing to adjust the average particle size to 5 ⁇ m.
  • the average particle diameter of ketjen black was calculated by the following method.
  • the average particle diameter of ketjen black was determined according to the laser diffraction / scattering method described in JIS M8511 (2014). Specifically, a commercially available surfactant polyoxyethylene octylphenyl ether (Roche Diagnostics Co., Ltd.) is used as a dispersant, using a laser diffraction / scattering particle size distribution measuring device (manufactured by Nikkiso Co., Ltd .: Microtrack 9220FRA).
  • ketjen black was put into an aqueous solution containing 0.5% by volume of Triton X-100), and 40 W ultrasonic waves were irradiated for 180 seconds while stirring, and measurement was performed.
  • the calculated median diameter (D50) was taken as the average particle diameter of Ketjen Black.
  • Dilute sulfuric acid having a specific gravity of 1.200 in which aluminum sulfate anhydride was dissolved so that the aluminum ion concentration was 0.06 mol / L was injected into this battery. After standing for 1 hour, a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours.
  • the specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
  • the content of ketjen black based on the total mass of the negative electrode material after chemical conversion was 0.2% by mass.
  • a sample for measuring the specific surface area was prepared by the following procedure. First, the formed battery was disassembled, the electrode plates (positive electrode plate and negative electrode plate) were taken out, washed with water, and dried at 50 ° C. for 24 hours. Next, 2 g of an electrode material (a positive electrode material and a negative electrode material) was collected from the center of the electrode plate and dried at 130 ° C. for 30 minutes to prepare a measurement sample.
  • the specific surface areas of the positive electrode material and the negative electrode material after chemical conversion were calculated according to the BET method by measuring the nitrogen gas adsorption amount at a liquid nitrogen temperature by a multipoint method while cooling the measurement sample prepared above with liquid nitrogen.
  • the measurement conditions are as follows. As a result of measurement in this manner, the specific surface area of the positive electrode material was 11.5 m 2 / g. Moreover, the specific surface area of the negative electrode material was 0.61 m 2 / g.
  • Apparatus Macsorb1201 (manufactured by Mountec Co., Ltd.) Degassing time: 10 minutes at 130 ° C. Cooling: 5 minutes with liquid nitrogen Adsorbed gas flow rate: 25 mL / min
  • the measurement sample was produced by the following procedure. First, the formed battery was disassembled, the positive electrode plate was taken out, washed with water, and dried at 50 ° C. for 24 hours. Next, 3 g of a positive electrode material lump was collected from the center of the positive electrode plate. The mass was crushed into small pieces having a maximum diameter of about 5 mm, and a total of 3 g of the small pieces was put into a measuring cell. And based on the following conditions, the porosity of the positive electrode material after chemical conversion was measured using the mercury porosimeter. The porosity of the positive electrode material was 53.5% by volume.
  • Example 2 A lead-acid battery was produced in the same manner as in Example 1 except that the positive electrode plate was produced as follows.
  • the red lead (Pb 3 O 4 ) and 19% by mass of the first dilute sulfuric acid (specific gravity 1.35) were mixed and then kneaded.
  • 9.7% by mass of second dilute sulfuric acid (specific gravity 1.50) was added and then kneaded to prepare paste B.
  • the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the lead powder and the short fiber for reinforcement which were used when producing the above-mentioned paste A, and the red lead used when producing the paste B. The amount is based on the total mass.
  • the paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste.
  • the total amount of water was 5.3% by mass based on the total mass of lead powder, reinforcing short fibers, and red lead.
  • the paste B was added stepwise in order to avoid a rapid temperature rise.
  • the positive electrode material paste was filled into an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the unchemically formed positive electrode plate.
  • the specific surface area and porosity of the positive electrode material were measured in the same manner as in Example 1.
  • Example 3 A lead-acid battery was produced in the same manner as in Example 1 except that the positive electrode plate was produced as follows.
  • the red lead (Pb 3 O 4 ) and the first dilute sulfuric acid (specific gravity 1.35) 21.5 mass% were mixed and then kneaded.
  • 15% by mass of second dilute sulfuric acid (specific gravity 1.50) was added and then kneaded to prepare paste B.
  • the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the lead powder and the short fiber for reinforcement which were used when producing the above-mentioned paste A, and the red lead used when producing the paste B. The amount is based on the total mass.
  • the paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste.
  • the total amount of water was 4.6% by mass based on the total mass of lead powder, reinforcing short fibers and red lead.
  • the paste B was added stepwise in order to avoid a rapid temperature rise.
  • the positive electrode material paste was filled in an expandable current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process, it was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the unchemically formed positive electrode plate.
  • the specific surface area and porosity of the positive electrode material were measured in the same manner as in Example 1.
  • Example 4 A lead storage battery was produced in the same manner as in Example 1 except that the addition amount of aluminum sulfate anhydride was changed as follows when the battery was assembled.
  • a 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301 and a K42 size lead acid battery for ISS vehicles) was assembled in the same manner as in Example 1.
  • a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours.
  • the specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
  • Example 5 A lead storage battery was produced in the same manner as in Example 1 except that the addition amount of aluminum sulfate anhydride was changed as follows when the battery was assembled.
  • a 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301 and a K42 size lead acid battery for ISS vehicles) was assembled in the same manner as in Example 1.
  • a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours.
  • the specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
  • Example 6 A lead storage battery was produced in the same manner as in Example 1 except that the specific gravity of the electrolytic solution (dilute sulfuric acid) was changed as follows when the battery was assembled.
  • a 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301 and a K42 size lead acid battery for ISS vehicles) was assembled in the same manner as in Example 1.
  • a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours.
  • the specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
  • Example 7 A lead storage battery was produced in the same manner as in Example 1 except that the specific gravity of the electrolytic solution (dilute sulfuric acid) was changed as follows when the battery was assembled.
  • a 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301 and a K42 size lead acid battery for ISS vehicles) was assembled in the same manner as in Example 1.
  • a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours.
  • the specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
  • Example 8 A lead-acid battery was produced in the same manner as in Example 1 except that the negative electrode plate was produced as follows.
  • Electrode Plate of Example 8 Lead powder was used as a raw material for the negative electrode active material. 0.2% by mass of the above-obtained bisphenol-based resin, 0.1% by mass of reinforcing short fibers (acrylic fibers), 1.0% by mass of barium sulfate, Ketjen Black (Lion Specialty) ⁇ Chemicals Co., Ltd., trade name: Carbon ECP600JD) containing 0.2% by mass was added to the lead powder and then dry-mixed (the compounding amount is based on the total mass of the negative electrode active material) Amount).
  • Example 9 A lead-acid battery was prepared in the same manner as in Example 1 except that sodium lignin sulfonate (manufactured by Nippon Paper Industries Co., Ltd., trade name “Vanilex N”) was used in place of the bisphenol-based resin during the production of the negative electrode plate. .
  • sodium lignin sulfonate manufactured by Nippon Paper Industries Co., Ltd., trade name “Vanilex N”
  • Example 1 A lead-acid battery was produced in the same manner as in Example 1 except that the positive electrode plate was produced as follows.
  • the compounding quantity of the said dilute sulfuric acid is a compounding quantity on the basis of the total mass of the lead powder used when producing the above-mentioned paste A and paste B, a red lead, a reinforcing short fiber, and sodium sulfate.
  • the paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste.
  • the total amount of water was 9.2% by mass based on the total mass of lead powder, red lead, reinforcing short fibers, and sodium sulfate.
  • the paste B was added stepwise in order to avoid a rapid temperature rise.
  • the positive electrode material paste was filled into an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the unchemically formed positive electrode plate.
  • the specific surface area and porosity of the positive electrode material were measured in the same manner as in Example 1.
  • Example 2 A lead storage battery was produced in the same manner as in Example 1 except that the positive electrode plate was produced in the same manner as in Comparative Example 1 and the negative electrode plate was produced in the same manner as in Example 8. The specific surface area and porosity of the positive electrode material and the specific surface area of the negative electrode material were measured in the same manner as in Example 1.
  • Example 3 A lead-acid battery was produced in the same manner as in Example 1 except that the positive electrode plate was produced as follows.
  • the positive electrode material paste was filled into an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the unchemically formed positive electrode plate.
  • the specific surface area and porosity of the positive electrode material were measured in the same manner as in Example 1.
  • Example 4 A lead-acid battery was produced in the same manner as in Example 1 except that the negative electrode plate was produced as follows.
  • Lead powder was used as a raw material for the negative electrode active material. 0.2% by mass of the bisphenol-based resin obtained above in terms of solid content, 0.1% by mass of reinforcing short fibers (acrylic fibers), 1.0% by mass of barium sulfate, furnace black (manufactured by Cabot Corporation, A mixture containing 0.2% by mass of trade name: Vulcan XC72) was added to the lead powder and then dry-mixed (the compounding amount is based on the total mass of the raw material of the negative electrode active material).
  • Example 5 A lead-acid battery was produced in the same manner as in Example 1 except that aluminum sulfate anhydride was not used at the time of assembling the battery as described below.
  • a 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301 and a K42 size lead acid battery for ISS vehicles) was assembled in the same manner as in Example 1.
  • Dilute sulfuric acid having a specific gravity of 1.220 was poured into this battery.
  • a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours.
  • the specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
  • Comparative Example 6 A lead-acid battery was produced in the same manner as in Comparative Example 5 except that the negative electrode plate was produced in the same manner as in Comparative Example 4. The specific surface area of the negative electrode material was measured in the same manner as in Example 1. The specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
  • discharge characteristics As discharge characteristics, a constant current discharge was performed at 150 A at ⁇ 15 ° C., and the discharge duration until the battery voltage reached 1.0 V was measured. Relative evaluation was made with the measurement result of Comparative Example 1 as 100. The longer the discharge duration, the better the battery.
  • the ISS cycle characteristics were measured as follows. The ambient temperature was adjusted so that the battery temperature was 25 ° C. 7200 cycles of a test in which a constant current / constant voltage charge of 100 A-2.33 V-60 seconds after a constant current discharge of 45 A-59 seconds and a constant current discharge of 300 A-1 seconds were performed as one cycle were performed. .
  • This test is a cycle test that simulates the use of lead-acid batteries in ISS cars. In this cycle test, since the amount of charge is small with respect to the amount of discharge, if the charging is not performed completely, the charging gradually becomes insufficient. As a result, the first-second voltage when the discharge current is 300 A for 1 second is gradually reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The purpose of the present invention is to provide a lead-acid battery that can achieve excellent charge acceptance. The present invention pertains to a lead-acid battery provided with a positive electrode, a negative electrode, and an electrolyte, wherein: the positive electrode has a current collector and a positive-electrode material held by the current collector; the negative electrode has a current collector and a negative-electrode material held by the current collector; the positive-electrode material has a specific surface area of 11 m2/g or more; the negative-electrode material contains a negative-electrode active material and Ketjenblack; and the electrolyte contains aluminum ions.

Description

鉛蓄電池、マイクロハイブリッド車及びアイドリングストップシステム車Lead acid battery, micro hybrid vehicle and idling stop system vehicle
 本発明は、鉛蓄電池、マイクロハイブリッド車及びアイドリングストップシステム車に関する。 The present invention relates to a lead storage battery, a micro hybrid vehicle, and an idling stop system vehicle.
 近年、自動車においては、大気汚染防止又は地球温暖化防止のため、様々な燃費向上対策が検討されている。燃費向上対策を施した自動車としては、例えば、エンジンの動作時間を少なくするアイドリングストップシステム車(以下、「ISS車」という)、エンジンの動力によるオルタネータの発電を低減する発電制御車等のマイクロハイブリッド車が検討されている。 In recent years, various measures for improving fuel efficiency have been studied for automobiles in order to prevent air pollution or global warming. Examples of automobiles with measures to improve fuel efficiency include micro-hybrids such as idling stop system cars (hereinafter referred to as “ISS cars”) that reduce engine operating time and power generation control cars that reduce alternator power generation by engine power. Cars are being considered.
 ISS車では、エンジンの始動回数が多くなるため、鉛蓄電池の大電流放電が繰り返される。また、ISS車及び発電制御車では、オルタネータによる発電量が少なくなり、鉛蓄電池の充電が間欠的に行われるため充電が不充分となる。 In ISS cars, the number of engine starts increases, so the large current discharge of the lead storage battery is repeated. Further, in the ISS car and the power generation control car, the amount of power generated by the alternator is reduced, and the lead storage battery is charged intermittently, so that the charge is insufficient.
 前記のような使われ方をする鉛蓄電池は、PSOC(Partial State Of Charge)と呼ばれる部分充電状態で使用されることになる。鉛蓄電池は、PSOC下で使用されると、満充電状態で使用される場合よりも寿命が短くなる。 The lead storage battery that is used as described above is used in a partially charged state called PSOC (Partial State Of Charge). Lead acid batteries have a shorter life when used under PSOC than when used in a fully charged state.
 また、近年、欧州では、マイクロハイブリッド車の制御に則した、充放電サイクル中における鉛蓄電池の充電性が重要視されており、このような形態のDCA(Dynamic Charge Acceptance)評価が規格化されつつある。つまり、前記のような鉛蓄電池の使われ方は重要視されてきている。 In recent years, in Europe, the chargeability of lead-acid batteries during charge / discharge cycles in accordance with the control of micro-hybrid vehicles has been emphasized, and DCA (Dynamic Charge Acceptance) evaluation in this form is being standardized. is there. In other words, the use of lead-acid batteries as described above has been regarded as important.
 これに対し、下記特許文献1には、PSOC下で使用される場合の電池の充電効率と寿命性能とを向上させるために、電槽化成の条件を変更することで正極板における活物質の比表面積を5.5m/g以上に調整する技術が開示されている。 On the other hand, in Patent Document 1 below, in order to improve the charging efficiency and life performance of the battery when used under PSOC, the ratio of the active material in the positive electrode plate is changed by changing the conditions of battery case formation. A technique for adjusting the surface area to 5.5 m 2 / g or more is disclosed.
国際公開第2012/042917号International Publication No. 2012/042917
 ところで、完全な充電が行われず充電が不足した状態で鉛蓄電池が使用される場合には、電池内の電極(極板等)における上部と下部との間で、電解液である希硫酸の濃淡差が生じる成層化現象が起こる。これは、完全な充電が行われないために、電解液の撹拌が不充分になるからである。この場合、電極下部の希硫酸の濃度が高くなりサルフェーションが発生する。サルフェーションは、放電生成物である硫酸鉛が充電状態に戻りにくい現象である。そのため、サルフェーションが発生すると、電極上部のみが集中的に反応するようになる。その結果、電極上部において、活物質間の結びつきが弱くなる等の劣化が進み、集電体から活物質が剥離して、電池性能低下及び早期寿命に至る。 By the way, when a lead-acid battery is used in a state where charging is not complete and charging is insufficient, the concentration of dilute sulfuric acid, which is an electrolyte, between the upper part and the lower part of the electrode (electrode plate, etc.) in the battery A stratification phenomenon occurs where a difference occurs. This is because the electrolyte solution is not sufficiently stirred because complete charging is not performed. In this case, the concentration of dilute sulfuric acid in the lower part of the electrode becomes high and sulfation occurs. Sulfation is a phenomenon in which lead sulfate, which is a discharge product, is difficult to return to a charged state. Therefore, when sulfation occurs, only the upper part of the electrode reacts intensively. As a result, deterioration such as weakening of the connection between the active materials progresses at the upper part of the electrode, and the active material peels from the current collector, leading to a decrease in battery performance and an early life.
 そのため、最近の鉛蓄電池においては、PSOC下で使用された場合の電池の寿命性能を向上させるため、上記特許文献1等の従来の技術と比較して充電受け入れ性を向上させることが極めて重要な課題となっている。 Therefore, in recent lead-acid batteries, in order to improve the battery life performance when used under PSOC, it is extremely important to improve the charge acceptability compared to the conventional technology such as Patent Document 1 above. It has become a challenge.
 本発明は、前記事情を鑑みてなされたものであり、優れた充電受け入れ性を得ることが可能な鉛蓄電池を提供することを目的とする。本発明は、前記鉛蓄電池を備えるマイクロハイブリッド車及びISS車を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a lead storage battery capable of obtaining excellent charge acceptability. An object of the present invention is to provide a micro hybrid vehicle and an ISS vehicle including the lead storage battery.
 これに対し、本発明者らは、特定の比表面積を有する正極材と、特定の構成成分を含有する負極材及び電解液とを用いることにより、前記課題を解決できることを見出した。 On the other hand, the present inventors have found that the above problem can be solved by using a positive electrode material having a specific specific surface area, a negative electrode material containing a specific component, and an electrolytic solution.
 すなわち、本発明に係る鉛蓄電池は、正極、負極及び電解液を備える鉛蓄電池であって、前記正極が、集電体(正極集電体)と、当該集電体に保持された正極材と、を有し、前記負極が、集電体(負極集電体)と、当該集電体に保持された負極材と、を有し、前記正極材の比表面積が11m/g以上であり、前記負極材が負極活物質及びケッチェンブラック(登録商標、以下同様)を含有し、前記電解液がアルミニウムイオンを含有する。 That is, the lead storage battery according to the present invention is a lead storage battery including a positive electrode, a negative electrode, and an electrolyte solution, and the positive electrode includes a current collector (positive electrode current collector) and a positive electrode material held by the current collector. The negative electrode has a current collector (negative electrode current collector) and a negative electrode material held by the current collector, and the specific surface area of the positive electrode material is 11 m 2 / g or more. The negative electrode material contains a negative electrode active material and ketjen black (registered trademark, hereinafter the same), and the electrolytic solution contains aluminum ions.
 本発明に係る鉛蓄電池によれば、優れた充電受け入れ性を得ることができる。また、本発明に係る鉛蓄電池によれば、PSOC下で使用される鉛蓄電池の寿命が短くなることを抑制することができる。本発明に係る鉛蓄電池によれば、特に、初期の状態からある程度の充放電が繰り返されて活物質が充分に活性化した後において、ISS車及びマイクロハイブリッド車では低くなりがちなSOC(State Of Charge)を適正なレベルに維持することができる。さらに、上述したサルフェーションが発生すると、他の電池性能(放電特性、サイクル特性等)が低下する場合があるが、本発明に係る鉛蓄電池によれば、優れた充電受け入れ性と、他の優れた電池性能(放電特性、サイクル特性等)とを両立することができる。このような鉛蓄電池は、ISS車、マイクロハイブリッド車等の用途として特に優れる。 According to the lead storage battery of the present invention, excellent charge acceptability can be obtained. Moreover, according to the lead acid battery which concerns on this invention, it can suppress that the lifetime of the lead acid battery used under PSOC becomes short. According to the lead acid battery of the present invention, especially after the charge and discharge are repeated to some extent from the initial state and the active material is sufficiently activated, the SOC (State Of) which tends to be low in the ISS car and the micro hybrid car. Charge) can be maintained at an appropriate level. Furthermore, when the sulfation described above occurs, other battery performance (discharge characteristics, cycle characteristics, etc.) may be reduced, but according to the lead storage battery according to the present invention, excellent charge acceptance and other excellent Both battery performance (discharge characteristics, cycle characteristics, etc.) can be achieved. Such a lead storage battery is particularly excellent as an application for an ISS vehicle, a micro hybrid vehicle, or the like.
 なお、PSOC下で使用される鉛蓄電池の寿命が短くなる理由について、充電が不足している状態で充放電を繰り返すと、放電の際に負極(負極板等)に生成する硫酸鉛が粗大化し、充電生成物である金属鉛に硫酸鉛が戻り難くなるためと考えられる。これに対し、本発明に係る鉛蓄電池においては、下記(1)~(3)の理由により、充電受け入れ性が向上すると共に、鉛蓄電池の寿命が短くなることを抑制することができると推測される。
 (1)正極材の比表面積の増大によって電流密度が低下し、充電過電圧が低下することで充電が起こりやすくなる。
 (2)ケッチェンブラックは有効な導電ネットワークの形成性に優れるため、絶縁性の硫酸鉛から金属鉛への反応(充電)が起こりやすくなる。
 (3)アルミニウムイオンによって硫酸イオンの拡散性が向上することにより、硫酸鉛が電解液中に溶解しやすくなり、充電が促進される。
Regarding the reason why the life of lead-acid batteries used under PSOC is shortened, if charging and discharging are repeated in a state where charging is insufficient, lead sulfate produced on the negative electrode (negative electrode plate, etc.) becomes coarse during discharge. This is thought to be because lead sulfate is difficult to return to the lead metal as the charge product. On the other hand, in the lead storage battery according to the present invention, it is presumed that the charge acceptability is improved and the life of the lead storage battery can be suppressed from shortening for the following reasons (1) to (3). The
(1) The current density is reduced by increasing the specific surface area of the positive electrode material, and charging is likely to occur because the charging overvoltage is reduced.
(2) Since ketjen black is excellent in the formation of an effective conductive network, a reaction (charging) from insulating lead sulfate to metallic lead tends to occur.
(3) By improving the diffusibility of sulfate ions by aluminum ions, lead sulfate is easily dissolved in the electrolytic solution, and charging is promoted.
 前記負極材は、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有するビスフェノール系樹脂を更に含有することが好ましい。この場合、更に優れた充電受け入れ性を得ることができる。 The negative electrode material preferably further contains a bisphenol-based resin having at least one selected from the group consisting of a sulfone group and a sulfonate group. In this case, further excellent charge acceptability can be obtained.
 前記負極材は、リグニンスルホン酸及びリグニンスルホン酸塩からなる群より選ばれる少なくとも一種を更に含有することが好ましい。これにより、放電特性を更に向上させることができる。 The negative electrode material preferably further contains at least one selected from the group consisting of lignin sulfonic acid and lignin sulfonate. Thereby, the discharge characteristics can be further improved.
 前記電解液の比重は、1.24~1.33(20℃換算)であることが好ましい。この場合、充電受け入れ性、放電特性及びサイクル特性を更にバランス良く向上させることができる。 The specific gravity of the electrolytic solution is preferably 1.24 to 1.33 (20 ° C. conversion). In this case, charge acceptability, discharge characteristics, and cycle characteristics can be further improved in a balanced manner.
 前記ケッチェンブラックの含有量は、負極材の全質量を基準として0.01~2質量%であることが好ましい。これにより、サイクル特性、放電特性及び充電受け入れ性を更にバランス良く向上させることができる。 The content of the ketjen black is preferably 0.01 to 2% by mass based on the total mass of the negative electrode material. Thereby, cycle characteristics, discharge characteristics, and charge acceptability can be further improved in a balanced manner.
 前記負極材の比表面積は、0.5~1.2m/gであることが好ましい。これにより、優れた充電受け入れ性と、他の優れた電池性能(放電特性、サイクル特性等)とを更に良好に両立させることができる。 The specific surface area of the negative electrode material is preferably 0.5 to 1.2 m 2 / g. Thereby, it is possible to achieve both excellent charge acceptability and other excellent battery performances (discharge characteristics, cycle characteristics, etc.) even better.
 前記電解液における前記アルミニウムイオンの濃度は、0.01~0.2mol/Lであることが好ましい。これにより、充電受け入れ性及びサイクル特性を更に向上させることができる。 The concentration of the aluminum ions in the electrolytic solution is preferably 0.01 to 0.2 mol / L. Thereby, charge acceptability and cycle characteristics can be further improved.
 本発明に係るマイクロハイブリッド車及びISS車は、前記鉛蓄電池を備える。 The micro hybrid vehicle and the ISS vehicle according to the present invention include the lead storage battery.
 本発明によれば、優れた充電受け入れ性を得ることができる。また、本発明によれば、優れた充電受け入れ性と、他の優れた電池性能(放電特性、サイクル特性等)とを両立することができる。本発明に係る鉛蓄電池は、充電が間欠的に行われ、PSOC下で高率放電が行われる液式鉛蓄電池として、ISS車、マイクロハイブリッド車等において好適に用いることができる。 According to the present invention, excellent charge acceptability can be obtained. In addition, according to the present invention, it is possible to achieve both excellent charge acceptance and other excellent battery performance (discharge characteristics, cycle characteristics, etc.). The lead storage battery according to the present invention can be suitably used in an ISS vehicle, a micro hybrid vehicle, or the like as a liquid lead storage battery in which charging is performed intermittently and high rate discharge is performed under PSOC.
 本発明によれば、マイクロハイブリッド車への鉛蓄電池の応用を提供できる。本発明によれば、ISS車への鉛蓄電池の応用を提供できる。 According to the present invention, an application of a lead storage battery to a micro hybrid vehicle can be provided. ADVANTAGE OF THE INVENTION According to this invention, the application of the lead storage battery to an ISS vehicle can be provided.
 以下、本発明の実施形態について詳細に説明する。なお、比重は、温度によって変化するため、本明細書においては20℃で換算した比重と定義する。 Hereinafter, embodiments of the present invention will be described in detail. In addition, since specific gravity changes with temperature, in this specification, it defines as specific gravity converted at 20 degreeC.
<鉛蓄電池、マイクロハイブリッド車及びISS車>
 本実施形態に係る鉛蓄電池は、例えば、電極(電極板等)、電解液(希硫酸等)及びセパレータを備えている。電極は、正極(正極板等)及び負極(負極板等)を有している。本実施形態に係る鉛蓄電池としては、液式鉛蓄電池、制御弁式鉛蓄電池、密閉式鉛蓄電池等が挙げられ、液式鉛蓄電池が好ましい。正極は、集電体(正極集電体)と、当該集電体に保持された正極材と、を有している。負極は、集電体(負極集電体)と、当該集電体に保持された負極材と、を有している。本実施形態において正極材及び負極材は、例えば、化成後(例えば満充電状態)の電極材である。電極材が未化成である場合、電極材(未化成の正極材及び未化成の負極材)は、電極活物質(正極活物質及び負極活物質)の原料等を含有している。集電体は、電極材からの電流の導電路を構成する。鉛蓄電池の基本構成としては、従来の鉛蓄電池と同様の構成を用いることができる。本実施形態に係るマイクロハイブリッド車及びISS車は、本実施形態に係る鉛蓄電池を備える。
<Lead battery, micro hybrid vehicle and ISS vehicle>
The lead storage battery according to the present embodiment includes, for example, an electrode (electrode plate or the like), an electrolytic solution (dilute sulfuric acid or the like), and a separator. The electrode has a positive electrode (positive electrode plate or the like) and a negative electrode (negative electrode plate or the like). Examples of the lead storage battery according to this embodiment include a liquid lead storage battery, a control valve type lead storage battery, a sealed lead storage battery, and the like, and a liquid lead storage battery is preferable. The positive electrode has a current collector (positive electrode current collector) and a positive electrode material held by the current collector. The negative electrode has a current collector (negative electrode current collector) and a negative electrode material held by the current collector. In the present embodiment, the positive electrode material and the negative electrode material are, for example, electrode materials after chemical conversion (for example, in a fully charged state). When the electrode material is unformed, the electrode material (unformed positive electrode material and unformed negative electrode material) contains a raw material of an electrode active material (positive electrode active material and negative electrode active material). The current collector constitutes a conductive path for current from the electrode material. As a basic configuration of the lead storage battery, the same configuration as that of a conventional lead storage battery can be used. The micro hybrid vehicle and the ISS vehicle according to the present embodiment include the lead storage battery according to the present embodiment.
 本実施形態において、正極材の比表面積は、11m/g以上である。負極材は、(A)負極活物質及び(B)ケッチェンブラックを少なくとも含有し、必要に応じて添加剤を更に含有していてもよい。電解液はアルミニウムイオンを含有している。 In the present embodiment, the specific surface area of the positive electrode material is 11 m 2 / g or more. The negative electrode material contains at least (A) a negative electrode active material and (B) ketjen black, and may further contain an additive as necessary. The electrolytic solution contains aluminum ions.
(正極材)
[正極活物質]
 正極材は、正極活物質を含有している。正極活物質は、正極活物質の原料を含む正極材ペーストを熟成及び乾燥することにより未化成の正極活物質を得た後に未化成の正極活物質を化成することで得ることができる。化成後の正極活物質は、β-二酸化鉛(β-PbO)を含むことが好ましく、α-二酸化鉛(α-PbO)を更に含んでいてもよい。正極活物質の原料としては、特に制限はなく、例えば鉛粉が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。正極活物質の原料として鉛丹(Pb)を用いてもよい。未化成の正極材は、主成分として、三塩基性硫酸鉛を含む未化成の正極活物質を含有することが好ましい。
(Positive electrode material)
[Positive electrode active material]
The positive electrode material contains a positive electrode active material. The positive electrode active material can be obtained by aging and drying a positive electrode material paste containing a raw material for the positive electrode active material to obtain an unformed positive electrode active material and then forming an unformed positive electrode active material. The positive electrode active material after chemical conversion preferably contains β-lead dioxide (β-PbO 2 ), and may further contain α-lead dioxide (α-PbO 2 ). There is no restriction | limiting in particular as a raw material of a positive electrode active material, For example, lead powder is mentioned. As the lead powder, for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ). Red lead as a raw material of the positive electrode active material (Pb 3 O 4) may be used. The unformed positive electrode material preferably contains an unformed positive electrode active material containing tribasic lead sulfate as a main component.
 正極活物質の平均粒径は、充電受け入れ性及びサイクル特性が更に向上する観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.7μm以上が更に好ましい。正極活物質の平均粒径は、サイクル特性が更に向上する観点から、2.5μm以下が好ましく、2μm以下がより好ましく、1.5μm以下が更に好ましい。正極活物質の前記平均粒径は、化成後の正極材における正極活物質の平均粒径である。正極活物質の平均粒径は、例えば、化成後の正極中央部の正極材における縦10μm×横10μmの範囲の走査型電子顕微鏡写真(1000倍)の画像内における全ての活物質粒子の長辺長さ(最大粒径)の値を算術平均化した数値として得ることができる。 The average particle diameter of the positive electrode active material is preferably 0.3 μm or more, more preferably 0.5 μm or more, and even more preferably 0.7 μm or more, from the viewpoint of further improving charge acceptance and cycle characteristics. The average particle diameter of the positive electrode active material is preferably 2.5 μm or less, more preferably 2 μm or less, and even more preferably 1.5 μm or less from the viewpoint of further improving the cycle characteristics. The average particle diameter of the positive electrode active material is an average particle diameter of the positive electrode active material in the positive electrode material after chemical conversion. The average particle diameter of the positive electrode active material is, for example, the long side of all active material particles in the image of a scanning electron micrograph (1000 times) in the range of 10 μm in length × 10 μm in the positive electrode material at the center of the positive electrode after chemical conversion It can be obtained as a numerical value obtained by arithmetically averaging the length (maximum particle size) value.
 正極活物質の含有量は、電池特性(容量、低温高率放電性能、充電受け入れ性、サイクル特性等)に更に優れる観点から、正極材の全質量を基準として、95質量%以上が好ましく、97質量%以上がより好ましく、99質量%以上が更に好ましい。正極活物質の含有量の上限は、100質量%以下であってもよい。正極活物質の前記含有量は、化成後の正極材における正極活物質の含有量である。 The content of the positive electrode active material is preferably 95% by mass or more based on the total mass of the positive electrode material from the viewpoint of further excellent battery characteristics (capacity, low-temperature high-rate discharge performance, charge acceptance, cycle characteristics, etc.), 97 The mass% or more is more preferable, and 99 mass% or more is still more preferable. The upper limit of the content of the positive electrode active material may be 100% by mass or less. The content of the positive electrode active material is the content of the positive electrode active material in the positive electrode material after chemical conversion.
[正極添加剤]
 正極材は、添加剤を更に含有していてもよい。添加剤としては、炭素材料(炭素質導電材。炭素繊維を除く)、補強用短繊維等が挙げられる。炭素材料としては、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、ファーネスブラック(ケッチェンブラック等)、チャンネルブラック、アセチレンブラック、サーマルブラック等が挙げられる。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等が挙げられる。
[Positive electrode additive]
The positive electrode material may further contain an additive. Examples of the additive include carbon materials (carbonaceous conductive material, excluding carbon fibers), reinforcing short fibers, and the like. Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black (Ketjen black, etc.), channel black, acetylene black, thermal black, and the like. Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
[正極材の物性]
 正極材の比表面積の下限は、優れた充電受け入れ性を得る観点から、11m/g以上である。正極材の比表面積は、更に優れた充電受け入れ性を得る観点から、11.5m/g以上が好ましく、12m/g以上がより好ましい。正極材の比表面積の上限に制限はないが、実用的な観点及び利用率に優れる観点から、20m/g以下が好ましく、15m/g以下がより好ましく、13m/g以下が更に好ましい。これらの観点から、正極材の比表面積は、11~20m/gが好ましく、11.5~15m/gがより好ましく、12~13m/gが更に好ましい。正極材の前記比表面積は、化成後の正極材の比表面積である。正極材の比表面積は、例えば、後述する正極材ペーストを作製する際の希硫酸及び水の添加量を調整する方法、未化成の正極活物質の段階で活物質を微細化させる方法、化成条件を変化させる方法等により調整することができる。
[Physical properties of positive electrode material]
The lower limit of the specific surface area of the positive electrode material is 11 m 2 / g or more from the viewpoint of obtaining excellent charge acceptability. The specific surface area of the positive electrode material is preferably 11.5 m 2 / g or more, more preferably 12 m 2 / g or more, from the viewpoint of obtaining further excellent charge acceptance. Although there is no limit to the upper limit of the specific surface area of the cathode material, from the viewpoint of excellent practical point of view and utilization, preferably 20 m 2 / g or less, more preferably 15 m 2 / g or less, more preferably 13m 2 / g or less . From these viewpoints, the specific surface area of the cathode material is preferably 11 ~ 20m 2 / g, more preferably from 11.5 ~ 15m 2 / g, more preferably 12 ~ 13m 2 / g. The specific surface area of the positive electrode material is the specific surface area of the positive electrode material after chemical conversion. The specific surface area of the positive electrode material is, for example, a method of adjusting the amount of dilute sulfuric acid and water added when preparing the positive electrode material paste described below, a method of refining the active material at the stage of the unformed positive electrode active material, and chemical conversion conditions It can be adjusted by a method of changing.
 正極材の比表面積は、例えば、BET法で測定することができる。BET法は、一つの分子の大きさが既知の不活性ガス(例えば窒素ガス)を測定試料の表面に吸着させ、その吸着量と不活性ガスの占有面積とから表面積を求める方法であり、比表面積の一般的な測定手法である。具体的には、以下のBET式に基づいて測定する。 The specific surface area of the positive electrode material can be measured by, for example, the BET method. The BET method is a method in which an inert gas (for example, nitrogen gas) having a known molecular size is adsorbed on the surface of a measurement sample, and the surface area is obtained from the adsorption amount and the area occupied by the inert gas. This is a general method for measuring the surface area. Specifically, it is measured based on the following BET equation.
 下記式(1)の関係式は、P/Pが0.05~0.35の範囲でよく成立する。なお、式(1)中、各符号の詳細は下記のとおりである。
 P:一定温度で吸着平衡状態であるときの吸着平衡圧
 P:吸着温度における飽和蒸気圧
 V:吸着平衡圧Pにおける吸着量
 V:単分子層吸着量(気体分子が固体表面で単分子層を形成したときの吸着量)
 C:BET定数(固体表面と吸着物質との間の相互作用に関するパラメータ)
Relationship of the following formula (1), P / P o is satisfied be in the range of 0.05-0.35. In addition, in Formula (1), the detail of each code | symbol is as follows.
P: Adsorption equilibrium pressure when in an adsorption equilibrium state at a constant temperature P o : Saturated vapor pressure at the adsorption temperature V: Adsorption amount at the adsorption equilibrium pressure P V m : Monomolecular layer adsorption amount (a gas molecule is a single molecule on a solid surface) Adsorption amount when layer is formed)
C: BET constant (parameter relating to the interaction between the solid surface and the adsorbent)
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)を変形する(左辺の分子分母をPで割る)ことにより下記式(2)が得られる。測定に用いる比表面積計では、吸着占有面積が既知のガス分子を試料に吸着させ、その吸着量(V)と相対圧力(P/P)との関係を測定する。測定したVとP/Pより、式(2)の左辺とP/Pをプロットする。ここで、勾配がsであるとすると、式(2)より下記式(3)が導かれる。切片がiであるとすると、切片i及び勾配sは、それぞれ下記式(4)及び下記式(5)のとおりとなる。 By transforming equation (1) (dividing the numerator denominator on the left side by P), the following equation (2) is obtained. In the specific surface area meter used for the measurement, gas molecules having a known adsorption occupation area are adsorbed on the sample, and the relationship between the adsorption amount (V) and the relative pressure (P / P o ) is measured. From the measured V and P / Po , the left side of Equation (2) and P / Po are plotted. Here, assuming that the gradient is s, the following formula (3) is derived from the formula (2). Assuming that the intercept is i, the intercept i and the gradient s are as shown in the following formula (4) and the following formula (5), respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(4)及び式(5)を変形すると、それぞれ下記式(6)及び式(7)が得られ、単分子層吸着量Vを求める下記式(8)が得られる。すなわち、ある相対圧力P/Pにおける吸着量Vを数点測定し、プロットの勾配及び切片を求めると、単分子層吸着量Vが求まる。 When Expression (4) and Expression (5) are modified, the following Expression (6) and Expression (7) are obtained, respectively, and the following Expression (8) for obtaining the monomolecular layer adsorption amount V m is obtained. That is, when the adsorption amount V at a certain relative pressure P / Po is measured at several points and the slope and intercept of the plot are obtained, the monomolecular layer adsorption amount V m is obtained.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 試料の全表面積Stotal(m)は、下記式(9)で求められ、比表面積S(m/g)は、全表面積Stotalより下記式(10)で求められる。なお、式(9)中、Nは、アボガドロ数を示し、ACSは、吸着断面積(m)を示し、Mは、分子量を示す。また、式(10)中、wは、サンプル量(g)を示す。 The total surface area S total (m 2 ) of the sample is obtained by the following formula (9), and the specific surface area S (m 2 / g) is obtained by the following formula (10) from the total surface area S total . In the formula (9), N denotes the Avogadro's number, A CS shows the adsorption cross sectional area (m 2), M indicates the molecular weight. Moreover, in Formula (10), w shows a sample amount (g).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 正極材の多孔度は、正極材中の空孔部(孔)に希硫酸が入り込む領域が多くなり容量が増加しやすい観点から、50体積%以上が好ましく、55体積%以上がより好ましい。正極材の多孔度の上限に特に制限はないが、正極材中の空孔部への希硫酸の含浸量が適度あり、活物質同士の結合力を良好に維持できる観点から、70体積%以下が好ましい。多孔度の上限は、実用的な観点から、60体積%以下がより好ましい。正極材の前記多孔度は、化成後の正極材の多孔度である。なお、正極材の多孔度は、例えば、水銀ポロシメーター測定から得られる値(体積基準の割合)である。正極材の多孔度は、例えば、正極材ペーストを作製する際に加える希硫酸量によって調整することができる。 The porosity of the positive electrode material is preferably 50% by volume or more, and more preferably 55% by volume or more from the viewpoint of increasing the capacity of the dilute sulfuric acid in the pores (holes) in the positive electrode material and increasing the capacity. Although there is no restriction | limiting in particular in the upper limit of the porosity of a positive electrode material, 70 volume% or less from the viewpoint which the amount of impregnation of the dilute sulfuric acid to the void | hole part in a positive electrode material is moderate, and can maintain the bonding force of active materials favorably. Is preferred. The upper limit of the porosity is more preferably 60% by volume or less from a practical viewpoint. The porosity of the positive electrode material is the porosity of the positive electrode material after chemical conversion. The porosity of the positive electrode material is, for example, a value (ratio based on volume) obtained from mercury porosimeter measurement. The porosity of the positive electrode material can be adjusted by, for example, the amount of dilute sulfuric acid added when producing the positive electrode material paste.
(負極材)
[(A)成分:負極活物質]
 負極活物質は、負極活物質の原料を含む負極材ペーストを熟成及び乾燥することにより未化成の負極活物質を得た後に未化成の負極活物質を化成することで得ることができる。化成後の負極活物質としては、海綿状鉛(Spongylead)等が挙げられる。前記海綿状鉛は、電解液中の希硫酸と反応して、次第に硫酸鉛(PbSO)に変わる傾向がある。負極活物質の原料としては、鉛粉等が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。未化成の負極活物質は、例えば、塩基性硫酸鉛及び金属鉛、並びに、低級酸化物から構成される。
(Negative electrode material)
[(A) component: negative electrode active material]
The negative electrode active material can be obtained by chemical conversion of an unformed negative electrode active material after obtaining an unformed negative electrode active material by aging and drying a negative electrode material paste containing a raw material of the negative electrode active material. Examples of the negative electrode active material after chemical conversion include spongy lead. The spongy lead tends to react with dilute sulfuric acid in the electrolyte and gradually change to lead sulfate (PbSO 4 ). Examples of the raw material for the negative electrode active material include lead powder. As the lead powder, for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ). The unformed negative electrode active material is composed of, for example, basic lead sulfate, metallic lead, and a lower oxide.
 負極活物質の平均粒径は、充電受け入れ性及びサイクル特性が更に向上する観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.6μm以上が更に好ましい。負極活物質の平均粒径は、サイクル特性が更に向上する観点から、2μm以下が好ましく、1.8μm以下がより好ましく、1.5μm以下が更に好ましい。負極活物質の前記平均粒径は、化成後の負極材における負極活物質の平均粒径である。負極活物質の平均粒径は、例えば、化成後の負極中央部の負極材における縦10μm×横10μmの範囲の走査型電子顕微鏡写真(1000倍)の画像内における全ての活物質粒子の長辺長さ(最大粒径)の値を算術平均化した数値として得ることができる。 The average particle diameter of the negative electrode active material is preferably 0.3 μm or more, more preferably 0.5 μm or more, and even more preferably 0.6 μm or more, from the viewpoint of further improving charge acceptance and cycle characteristics. The average particle diameter of the negative electrode active material is preferably 2 μm or less, more preferably 1.8 μm or less, and even more preferably 1.5 μm or less from the viewpoint of further improving cycle characteristics. The average particle diameter of the negative electrode active material is an average particle diameter of the negative electrode active material in the negative electrode material after chemical conversion. The average particle diameter of the negative electrode active material is, for example, the long side of all the active material particles in the scanning electron micrograph (1000 times) image of the negative electrode material in the central part of the negative electrode after chemical conversion in the range of 10 μm in length × 10 μm in width. It can be obtained as a numerical value obtained by arithmetically averaging the length (maximum particle size) value.
 負極活物質の含有量は、電池特性(容量、低温高率放電性能、充電受け入れ性、サイクル特性等)に更に優れる観点から、負極材の全質量を基準として、93質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましい。負極活物質の含有量の上限は、100質量%未満であってもよい。負極活物質の前記含有量は、化成後の負極材における負極活物質の含有量である。 The content of the negative electrode active material is preferably 93% by mass or more based on the total mass of the negative electrode material, from the viewpoint of further excellent battery characteristics (capacity, low-temperature high-rate discharge performance, charge acceptance, cycle characteristics, etc.), 95 More preferably, it is more preferably 98% by mass or more. The upper limit of the content of the negative electrode active material may be less than 100% by mass. The said content of a negative electrode active material is content of the negative electrode active material in the negative electrode material after chemical conversion.
[(B)成分:ケッチェンブラック]
 ケッチェンブラックは、中空シェル状の構造を有し、単位質量あたりの一次粒子数が多く、比表面積が大きい特徴を有する。ケッチェンブラックとしては、ライオン・スペシャリティ・ケミカルズ株式会社製の「カーボンECP600JD」等が挙げられる。
[(B) component: Ketjen black]
Ketjen black has a hollow shell-like structure, a large number of primary particles per unit mass, and a large specific surface area. Examples of the ketjen black include “Carbon ECP600JD” manufactured by Lion Specialty Chemicals Co., Ltd.
 ケッチェンブラックのDBP吸油量は、100~600mL/100gが好ましく、300~600mL/100gがより好ましい。ケッチェンブラックの前記DBP吸油量は、400~600mL/100gであってもよい。このような範囲のDBP吸油量のケッチェンブラックは、導電性に優れると共に、負極材中で導電網を形成しやすくなり、充電受け入れ性を更に向上させることができる。なお、DBP吸油量はASTM D2414に従って測定することができる。 Ketjen Black DBP oil absorption is preferably 100 to 600 mL / 100 g, more preferably 300 to 600 mL / 100 g. The DBP oil absorption of ketjen black may be 400 to 600 mL / 100 g. Ketjen Black having a DBP oil absorption in such a range is excellent in conductivity and easily forms a conductive network in the negative electrode material, and can further improve charge acceptance. The DBP oil absorption can be measured according to ASTM D2414.
 ケッチェンブラックの平均粒径の上限は、放電の際に生成する硫酸鉛への取り込まれやすさに優れる観点、及び、硫酸鉛との親和性が向上する観点から、100μm以下が好ましく、50μm以下がより好ましく、20μm以下が更に好ましく、10μm以下が特に好ましい。ケッチェンブラックの平均粒径の下限は、特に制限はないが、実用的な観点から、0.1μm以上が好ましく、0.3μm以上がより好ましく、0.5μm以上が更に好ましい。一般的に、市販のケッチェンブラックは、一次粒子が凝集した状態(二次粒子)である。ケッチェンブラックの一次粒子が凝集した状態である場合、サイクル特性、放電特性及び充電受け入れ性が更に向上する観点から、負極材ペーストを調製する前に、平均粒径が10μm以下になるまで、粉砕、又は、少量の水で撹拌した後、ペーストにケッチェンブラックを添加することが好ましい。このような処置により、硫酸鉛への親和性が増し、ケッチェンブラックの効果が発現しやすくなる。 The upper limit of the average particle diameter of ketjen black is preferably 100 μm or less, and preferably 50 μm or less from the viewpoint of excellent ease of incorporation into lead sulfate generated during discharge and the improvement of affinity with lead sulfate. Is more preferably 20 μm or less, and particularly preferably 10 μm or less. The lower limit of the average particle diameter of ketjen black is not particularly limited, but is preferably 0.1 μm or more, more preferably 0.3 μm or more, and further preferably 0.5 μm or more from a practical viewpoint. Generally, commercially available ketjen black is in a state in which primary particles are aggregated (secondary particles). When primary particles of ketjen black are in an aggregated state, from the viewpoint of further improving cycle characteristics, discharge characteristics and charge acceptance, pulverize until the average particle size is 10 μm or less before preparing the negative electrode material paste. Alternatively, it is preferable to add ketjen black to the paste after stirring with a small amount of water. Such treatment increases the affinity for lead sulfate and facilitates the effect of ketjen black.
 ケッチェンブラックの平均粒径は、例えば、JISM8511(2014)記載のレーザ回折・散乱法に準拠して求めることができる。具体的には、レーザ回折・散乱式粒度分布測定装置(日機装株式会社製:マイクロトラック9220FRA)を用い、分散剤として市販の界面活性剤ポリオキシエチレンオクチルフェニルエーテル(例えば、ロシュ・ダイアグノスティックス株式会社製:トリトンX-100)を0.5体積%含有する水溶液にケッチェンブラックを適量投入し、撹拌しながら40Wの超音波を180秒照射した後、測定を行う。求められたメディアン径(D50)の値をケッチェンブラックの平均粒径とする。ケッチェンブラックの平均粒径は、化成前に求めた平均粒径であってもよく、化成後に求めた平均粒径であってもよい。 The average particle diameter of ketjen black can be determined in accordance with, for example, the laser diffraction / scattering method described in JISM8511 (2014). Specifically, a commercially available surfactant polyoxyethylene octylphenyl ether (for example, Roche Diagnostics) is used as a dispersant using a laser diffraction / scattering particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd .: Microtrack 9220FRA). An appropriate amount of ketjen black is put into an aqueous solution containing 0.5% by volume of Triton X-100 manufactured by Co., Ltd., followed by irradiation with 40 W ultrasonic waves for 180 seconds while stirring. The calculated median diameter (D50) is taken as the average particle diameter of Ketjen Black. The average particle diameter of ketjen black may be an average particle diameter obtained before chemical conversion or may be an average particle diameter obtained after chemical conversion.
 ケッチェンブラックの含有量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極材の全質量を基準として、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましい。ケッチェンブラックの前記含有量は、0.1質量%以上であってもよい。ケッチェンブラックの含有量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極材の全質量を基準として、2質量%以下が好ましく、1.5質量%以下がより好ましく、0.5質量%以下が更に好ましい。ケッチェンブラックの前記含有量は、0.3質量%以下であってもよい。ケッチェンブラックの含有量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極材の全質量を基準として、0.01~2質量%が好ましく、0.03~1.5質量%がより好ましく、0.03~0.5質量%が更に好ましく、0.05~0.5質量%が特に好ましい。ケッチェンブラックの前記含有量は、0.1~0.3質量%であってもよい。ケッチェンブラックの前記含有量は、化成後の負極材におけるケッチェンブラックの含有量である。 The content of ketjen black is preferably 0.01% by mass or more, preferably 0.03% by mass or more, based on the total mass of the negative electrode material, from the viewpoint of further improving the cycle characteristics, discharge characteristics and charge acceptance. Is more preferable, and 0.05 mass% or more is still more preferable. The content of ketjen black may be 0.1% by mass or more. The content of ketjen black is preferably 2% by mass or less, more preferably 1.5% by mass or less, based on the total mass of the negative electrode material, from the viewpoint of further improving the cycle characteristics, discharge characteristics and charge acceptance. 0.5% by mass or less is more preferable. The content of ketjen black may be 0.3% by mass or less. The content of ketjen black is preferably 0.01 to 2% by mass, preferably 0.03 to 1%, based on the total mass of the negative electrode material, from the viewpoint of further improving the cycle characteristics, discharge characteristics and charge acceptance. 0.5% by mass is more preferable, 0.03 to 0.5% by mass is still more preferable, and 0.05 to 0.5% by mass is particularly preferable. The content of ketjen black may be 0.1 to 0.3% by mass. The content of ketjen black is the content of ketjen black in the negative electrode material after chemical conversion.
[(C)成分:スルホン基及び/又はスルホン酸塩基を有する樹脂]
 負極材は、充電受け入れ性、放電特性及びサイクル特性を更にバランス良く向上させることができる観点から、スルホン基(スルホン酸基、スルホ基)及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有する樹脂(スルホン基及び/又はスルホン酸塩基を有する樹脂)を更に含有することが好ましい。
[(C) component: resin having sulfone group and / or sulfonate group]
The negative electrode material is a resin having at least one selected from the group consisting of sulfone groups (sulfonic acid groups, sulfo groups) and sulfonic acid groups, from the viewpoint of further improving charge acceptability, discharge characteristics, and cycle characteristics. It is preferable to further contain (a resin having a sulfone group and / or a sulfonate group).
 (C)成分としては、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有するビスフェノール系樹脂(スルホン基及び/又はスルホン酸塩基を有するビスフェノール系樹脂。以下、単に「ビスフェノール系樹脂」という)、リグニンスルホン酸、リグニンスルホン酸塩等が挙げられる。これらの中でも、充電受け入れ性が更に向上する観点から、ビスフェノール系樹脂が好ましく、(c1)ビスフェノール系化合物と、(c2)アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体からなる群より選ばれる少なくとも一種と、(c3)ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種との縮合物であるビスフェノール系樹脂がより好ましい。以下、(c1)~(c3)の縮合物であるビスフェノール系樹脂について詳細に説明する。 As the component (C), a bisphenol resin having at least one selected from the group consisting of a sulfone group and a sulfonate group (a bisphenol resin having a sulfone group and / or a sulfonate group. Hereinafter, simply referred to as “bisphenol resin”) ), Lignin sulfonic acid, lignin sulfonate, and the like. Among these, from the viewpoint of further improving the charge acceptability, bisphenol-based resins are preferable, (c1) bisphenol-based compounds, (c2) aminoalkyl sulfonic acids, aminoalkyl sulfonic acid derivatives, aminoaryl sulfonic acids, and aminoaryl sulfones. A bisphenol-based resin that is a condensate of at least one selected from the group consisting of acid derivatives and at least one selected from the group consisting of (c3) formaldehyde and formaldehyde derivatives is more preferable. Hereinafter, the bisphenol resin that is the condensate of (c1) to (c3) will be described in detail.
((c1)成分:ビスフェノール系化合物)
 ビスフェノール系化合物は、2個のヒドロキシフェニル基を有する化合物である。(c1)成分としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」という)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン(以下、「ビスフェノールS」という)等が挙げられる。(c1)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(c1)成分としては、充電受け入れ性に更に優れる観点からはビスフェノールAが好ましく、放電特性に更に優れる観点からはビスフェノールSが好ましい。
((C1) component: bisphenol compound)
A bisphenol-based compound is a compound having two hydroxyphenyl groups. Component (c1) includes 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”), bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) ethane. 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) butane, bis (4- Hydroxyphenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) sulfone (hereinafter, "Bisphenol S"). (C1) A component can be used individually by 1 type or in combination of 2 or more types. As the component (c1), bisphenol A is preferable from the viewpoint of further excellent charge acceptance, and bisphenol S is preferable from the viewpoint of further excellent discharge characteristics.
 (c1)成分としては、サイクル特性、放電特性及び充電受け入れ性がバランス良く向上しやすい観点から、ビスフェノールAとビスフェノールSとを併用することが好ましい。この場合、ビスフェノール系樹脂を得るためのビスフェノールAの配合量は、サイクル特性、放電特性及び充電受け入れ性がバランス良く向上しやすい観点から、ビスフェノールA及びビスフェノールSの合計量を基準として、70mol%以上が好ましく、75mol%以上がより好ましく、80mol%以上が更に好ましい。ビスフェノールAの配合量は、サイクル特性、放電特性及び充電受け入れ性がバランス良く向上しやすい観点から、ビスフェノールA及びビスフェノールSの合計量を基準として、99mol%以下が好ましく、98mol%以下がより好ましく、97mol%以下が更に好ましい。 As the component (c1), it is preferable to use bisphenol A and bisphenol S in combination from the viewpoint that the cycle characteristics, the discharge characteristics, and the charge acceptability are easily improved in a balanced manner. In this case, the blending amount of bisphenol A for obtaining a bisphenol-based resin is 70 mol% or more based on the total amount of bisphenol A and bisphenol S from the viewpoint of easily improving the cycle characteristics, discharge characteristics and charge acceptability in a balanced manner. Is more preferable, 75 mol% or more is more preferable, and 80 mol% or more is still more preferable. The blending amount of bisphenol A is preferably 99 mol% or less, more preferably 98 mol% or less, based on the total amount of bisphenol A and bisphenol S, from the viewpoint that the cycle characteristics, discharge characteristics and charge acceptance are easily improved in a balanced manner. More preferably, it is 97 mol% or less.
((c2)成分:アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体)
 アミノアルキルスルホン酸としては、アミノメタンスルホン酸、2-アミノエタンスルホン酸、3-アミノプロパンスルホン酸、2-メチルアミノエタンスルホン酸等が挙げられる。
((C2) component: aminoalkylsulfonic acid, aminoalkylsulfonic acid derivative, aminoarylsulfonic acid and aminoarylsulfonic acid derivative)
Examples of the aminoalkylsulfonic acid include aminomethanesulfonic acid, 2-aminoethanesulfonic acid, 3-aminopropanesulfonic acid, 2-methylaminoethanesulfonic acid and the like.
 アミノアルキルスルホン酸誘導体としては、アミノアルキルスルホン酸の水素原子がアルキル基(例えば炭素数1~5のアルキル基)等で置換された化合物、アミノアルキルスルホン酸のスルホン基(-SOH)の水素原子がアルカリ金属(例えばナトリウム及びカリウム)で置換されたアルカリ金属塩などが挙げられる。 Examples of aminoalkyl sulfonic acid derivatives include compounds in which a hydrogen atom of aminoalkyl sulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, and a sulfone group (—SO 3 H) of aminoalkyl sulfonic acid. Examples thereof include alkali metal salts in which hydrogen atoms are substituted with alkali metals (for example, sodium and potassium).
 アミノアリールスルホン酸としては、アミノベンゼンスルホン酸、アミノナフタレンスルホン酸等が挙げられる。アミノアリールスルホン酸誘導体としては、アミノベンゼンスルホン酸誘導体、アミノナフタレンスルホン酸誘導体等が挙げられる。 Examples of aminoarylsulfonic acid include aminobenzenesulfonic acid and aminonaphthalenesulfonic acid. Examples of aminoarylsulfonic acid derivatives include aminobenzenesulfonic acid derivatives and aminonaphthalenesulfonic acid derivatives.
 アミノベンゼンスルホン酸としては、2-アミノベンゼンスルホン酸(別名オルタニル酸)、3-アミノベンゼンスルホン酸(別名メタニル酸)、4-アミノベンゼンスルホン酸(別名スルファニル酸)等が挙げられる。 Examples of aminobenzene sulfonic acid include 2-aminobenzene sulfonic acid (also known as alternilic acid), 3-aminobenzene sulfonic acid (also known as metanylic acid), 4-aminobenzene sulfonic acid (also known as sulfanilic acid), and the like.
 アミノベンゼンスルホン酸誘導体としては、アミノベンゼンスルホン酸の一部の水素原子がアルキル基(例えば炭素数1~5のアルキル基)等で置換された化合物、アミノベンゼンスルホン酸のスルホン基(-SOH)の水素原子がアルカリ金属(例えばナトリウム及びカリウム)で置換されたアルカリ金属塩(ナトリウム塩、カリウム塩等)などが挙げられる。アミノベンゼンスルホン酸の一部の水素原子がアルキル基で置換された化合物としては、4-(メチルアミノ)ベンゼンスルホン酸、3-メチル-4-アミノベンゼンスルホン酸、3-アミノ-4-メチルベンゼンスルホン酸、4-(エチルアミノ)ベンゼンスルホン酸、3-(エチルアミノ)-4-メチルベンゼンスルホン酸等が挙げられる。アミノベンゼンスルホン酸のスルホン基の水素原子がアルカリ金属で置換された化合物としては、2-アミノベンゼンスルホン酸ナトリウム、3-アミノベンゼンスルホン酸ナトリウム、4-アミノベンゼンスルホン酸ナトリウム、2-アミノベンゼンスルホン酸カリウム、3-アミノベンゼンスルホン酸カリウム、4-アミノベンゼンスルホン酸カリウム等が挙げられる。 As the aminobenzenesulfonic acid derivative, a compound in which a part of hydrogen atoms of aminobenzenesulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, a sulfone group of aminobenzenesulfonic acid (—SO 3 And an alkali metal salt (sodium salt, potassium salt, etc.) in which the hydrogen atom of H) is substituted with an alkali metal (for example, sodium and potassium). Examples of the compounds in which some hydrogen atoms of aminobenzenesulfonic acid are substituted with alkyl groups include 4- (methylamino) benzenesulfonic acid, 3-methyl-4-aminobenzenesulfonic acid, and 3-amino-4-methylbenzene. Examples include sulfonic acid, 4- (ethylamino) benzenesulfonic acid, and 3- (ethylamino) -4-methylbenzenesulfonic acid. Examples of the compound in which the hydrogen atom of the sulfone group of aminobenzenesulfonic acid is replaced with an alkali metal include sodium 2-aminobenzenesulfonate, sodium 3-aminobenzenesulfonate, sodium 4-aminobenzenesulfonate, 2-aminobenzenesulfone. Examples include potassium acid, potassium 3-aminobenzenesulfonate, and potassium 4-aminobenzenesulfonate.
 アミノナフタレンスルホン酸としては、4-アミノ-1-ナフタレンスルホン酸(p-体)、5-アミノ-1-ナフタレンスルホン酸(ana-体)、1-アミノ-6-ナフタレンスルホン酸(ε-体、5-アミノ-2-ナフタレンスルホン酸)、6-アミノ-1-ナフタレンスルホン酸(ε-体)、6-アミノ-2-ナフタレンスルホン酸(amphi-体)、7-アミノ-2-ナフタレンスルホン酸、8-アミノ-1-ナフタレンスルホン酸(peri-体)、1-アミノ-7-ナフタレンスルホン酸(kata-体、8-アミノ-2-ナフタレンスルホン酸)等のアミノナフタレンモノスルホン酸;1-アミノ-3,8-ナフタレンジスルホン酸、3-アミノ-2,7-ナフタレンジスルホン酸、7-アミノ-1,5-ナフタレンジスルホン酸、6-アミノ-1,3-ナフタレンジスルホン酸、7-アミノ-1,3-ナフタレンジスルホン酸等のアミノナフタレンジスルホン酸;7-アミノ-1,3,6-ナフタレントリスルホン酸、8-アミノ-1,3,6-ナフタレントリスルホン酸等のアミノナフタレントリスルホン酸などが挙げられる。 Examples of aminonaphthalenesulfonic acid include 4-amino-1-naphthalenesulfonic acid (p-form), 5-amino-1-naphthalenesulfonic acid (ana-form), 1-amino-6-naphthalenesulfonic acid (ε-form) 5-amino-2-naphthalenesulfonic acid), 6-amino-1-naphthalenesulfonic acid (ε-form), 6-amino-2-naphthalenesulfonic acid (amphi-form), 7-amino-2-naphthalenesulfone Acid, aminonaphthalene monosulfonic acid such as 8-amino-1-naphthalenesulfonic acid (peri-form), 1-amino-7-naphthalenesulfonic acid (kata-form, 8-amino-2-naphthalenesulfonic acid); 1 -Amino-3,8-naphthalenedisulfonic acid, 3-amino-2,7-naphthalenedisulfonic acid, 7-amino-1,5-naphthalenedisulfonic acid Aminonaphthalenedisulfonic acid such as sulfonic acid, 6-amino-1,3-naphthalenedisulfonic acid, 7-amino-1,3-naphthalenedisulfonic acid; 7-amino-1,3,6-naphthalenetrisulfonic acid, 8- And aminonaphthalene trisulfonic acid such as amino-1,3,6-naphthalene trisulfonic acid.
 アミノナフタレンスルホン酸誘導体としては、アミノナフタレンスルホン酸の一部の水素原子がアルキル基(例えば炭素数1~5のアルキル基)等で置換された化合物、アミノナフタレンスルホン酸のスルホン基(-SOH)の水素原子がアルカリ金属(例えばナトリウム及びカリウム)で置換されたアルカリ金属塩(ナトリウム塩、カリウム塩等)などが挙げられる。 Examples of the aminonaphthalenesulfonic acid derivative include compounds in which a part of hydrogen atoms of aminonaphthalenesulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, a sulfone group of aminonaphthalenesulfonic acid (—SO 3 And an alkali metal salt (sodium salt, potassium salt, etc.) in which the hydrogen atom of H) is substituted with an alkali metal (for example, sodium and potassium).
 (c2)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(c2)成分としては、サイクル特性及び充電受け入れ性が更に向上する観点から、4-アミノベンゼンスルホン酸が好ましい。 (C2) A component can be used individually by 1 type or in combination of 2 or more types. As the component (c2), 4-aminobenzenesulfonic acid is preferable from the viewpoint of further improving cycle characteristics and charge acceptability.
 ビスフェノール系樹脂を得るための(c2)成分の配合量は、放電特性が更に向上する観点から、(c1)成分1molに対して、0.5mol以上が好ましく、0.6mol以上がより好ましく、0.8mol以上が更に好ましく、0.9mol以上が特に好ましい。(c2)成分の配合量は、サイクル特性及び放電特性が更に向上しやすい観点から、(c1)成分1molに対して、1.3mol以下が好ましく、1.2mol以下がより好ましく、1.1mol以下が更に好ましい。 From the viewpoint of further improving the discharge characteristics, the amount of the component (c2) for obtaining the bisphenol-based resin is preferably 0.5 mol or more, more preferably 0.6 mol or more, with respect to 1 mol of the component (c1). 0.8 mol or more is more preferable, and 0.9 mol or more is particularly preferable. Component (c2) is blended in an amount of preferably 1.3 mol or less, more preferably 1.2 mol or less, and 1.1 mol or less with respect to 1 mol of component (c1), from the viewpoint that the cycle characteristics and discharge characteristics can be further improved. Is more preferable.
((c3)成分:ホルムアルデヒド及びホルムアルデヒド誘導体)
 ホルムアルデヒドとしては、ホルマリン(例えばホルムアルデヒド37質量%の水溶液)中のホルムアルデヒドを用いてもよい。ホルムアルデヒド誘導体としては、パラホルムアルデヒド、ヘキサメチレンテトラミン、トリオキサン等が挙げられる。(c3)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。ホルムアルデヒドとホルムアルデヒド誘導体とを併用してもよい。
((C3) component: formaldehyde and formaldehyde derivatives)
As formaldehyde, formaldehyde in formalin (for example, an aqueous solution of 37% by mass of formaldehyde) may be used. Examples of formaldehyde derivatives include paraformaldehyde, hexamethylenetetramine, and trioxane. (C3) A component can be used individually by 1 type or in combination of 2 or more types. You may use formaldehyde and a formaldehyde derivative together.
 (c3)成分としては、優れたサイクル特性が得られやすくなる観点から、ホルムアルデヒド誘導体が好ましく、パラホルムアルデヒドがより好ましい。パラホルムアルデヒドは、例えば、下記一般式(I)で表される構造を有する。
  HO(CHO)n1H …(I)
[式(I)中、n1は2~100の整数を示す。]
As the component (c3), a formaldehyde derivative is preferable and paraformaldehyde is more preferable from the viewpoint that excellent cycle characteristics are easily obtained. Paraformaldehyde has, for example, a structure represented by the following general formula (I).
HO (CH 2 O) n1 H (I)
[In the formula (I), n1 represents an integer of 2 to 100. ]
 ビスフェノール系樹脂を得るための(c3)成分のホルムアルデヒド換算の配合量は、(c2)成分の反応性が向上する観点から、(c1)成分1molに対して、2mol以上が好ましく、2.2mol以上がより好ましく、2.4mol以上が更に好ましい。(c3)成分のホルムアルデヒド換算の配合量は、得られるビスフェノール系樹脂の溶媒への溶解性に優れる観点から、(c1)成分1molに対して、3.5mol以下が好ましく、3.2mol以下がより好ましく、3mol以下が更に好ましい。 From the viewpoint of improving the reactivity of the component (c2), the amount of the component (c3) in terms of formaldehyde to obtain the bisphenol-based resin is preferably 2 mol or more, and 2.2 mol or more with respect to 1 mol of the component (c1). Is more preferable, and 2.4 mol or more is still more preferable. From the viewpoint of excellent solubility of the obtained bisphenol-based resin in a solvent, the amount of the (c3) component in terms of formaldehyde is preferably 3.5 mol or less and more preferably 3.2 mol or less with respect to 1 mol of the component (c1). 3 mol or less is more preferable.
 ビスフェノール系樹脂は、例えば、下記一般式(II)で表される構造単位、及び、下記一般式(III)で表される構造単位の少なくとも一方を有することが好ましい。 For example, the bisphenol-based resin preferably has at least one of a structural unit represented by the following general formula (II) and a structural unit represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000011
[式(II)中、Xは、2価の基を示し、Aは、炭素数1~4のアルキレン基、又は、アリーレン基を示し、R21、R23及びR24は、それぞれ独立にアルカリ金属又は水素原子を示し、R22は、メチロール基(-CHOH)を示し、n21は、1~150の整数を示し、n22は、1~3の整数を示し、n23は、0又は1を示す。また、ベンゼン環を構成する炭素原子に直接結合している水素原子は、炭素数1~5のアルキル基で置換されていてもよい。]
Figure JPOXMLDOC01-appb-C000011
[In the formula (II), X 2 represents a divalent group, A 2 represents an alkylene group having 1 to 4 carbon atoms or an arylene group, and R 21 , R 23 and R 24 are each independently Represents an alkali metal or hydrogen atom, R 22 represents a methylol group (—CH 2 OH), n21 represents an integer of 1 to 150, n22 represents an integer of 1 to 3, and n23 represents 0 Or 1 is shown. Further, the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted with an alkyl group having 1 to 5 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000012
[式(III)中、Xは、2価の基を示し、Aは、炭素数1~4のアルキレン基、又は、アリーレン基を示し、R31、R33及びR34は、それぞれ独立にアルカリ金属又は水素原子を示し、R32は、メチロール基(-CHOH)を示し、n31は、1~150の整数を示し、n32は、1~3の整数を示し、n33は、0又は1を示す。また、ベンゼン環を構成する炭素原子に直接結合している水素原子は、炭素数1~5のアルキル基で置換されていてもよい。]
Figure JPOXMLDOC01-appb-C000012
[In Formula (III), X 3 represents a divalent group, A 3 represents an alkylene group having 1 to 4 carbon atoms or an arylene group, and R 31 , R 33 and R 34 are each independently selected. Represents an alkali metal or a hydrogen atom, R 32 represents a methylol group (—CH 2 OH), n31 represents an integer of 1 to 150, n32 represents an integer of 1 to 3, and n33 represents 0 Or 1 is shown. Further, the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted with an alkyl group having 1 to 5 carbon atoms. ]
 式(II)で表される構造単位、及び、式(III)で表される構造単位の比率は、特に制限はなく、合成条件等によって変化し得る。ビスフェノール系樹脂としては、式(II)で表される構造単位、及び、式(III)で表される構造単位のいずれか一方のみを有する樹脂を用いてもよい。 The ratio of the structural unit represented by the formula (II) and the structural unit represented by the formula (III) is not particularly limited, and may vary depending on synthesis conditions and the like. As the bisphenol-based resin, a resin having only one of the structural unit represented by the formula (II) and the structural unit represented by the formula (III) may be used.
 前記X及びXとしては、例えば、アルキリデン基(メチリデン基、エチリデン基、イソプロピリデン基、sec-ブチリデン基等)、シクロアルキリデン基(シクロヘキシリデン基等)、フェニルアルキリデン基(ジフェニルメチリデン基、フェニルエチリデン基等)などの有機基;スルホニル基が挙げられ、充電受け入れ性に更に優れる観点からはイソプロピリデン基(-C(CH-)が好ましく、放電特性に更に優れる観点からはスルホニル基(-SO-)が好ましい。前記X及びXは、フッ素原子等のハロゲン原子により置換されていてもよい。前記X及びXがシクロアルキリデン基である場合、炭化水素環はアルキル基等により置換されていてもよい。 Examples of X 2 and X 3 include alkylidene groups (methylidene group, ethylidene group, isopropylidene group, sec-butylidene group, etc.), cycloalkylidene groups (cyclohexylidene group, etc.), phenylalkylidene groups (diphenylmethylidene group). , A phenylsulfonyl group, and the like; a sulfonyl group, and the isopropylidene group (—C (CH 3 ) 2 —) is preferable from the viewpoint of further excellent charge acceptance, and from the viewpoint of further excellent discharge characteristics. A sulfonyl group (—SO 2 —) is preferred. X 2 and X 3 may be substituted with a halogen atom such as a fluorine atom. When X 2 and X 3 are cycloalkylidene groups, the hydrocarbon ring may be substituted with an alkyl group or the like.
 A及びAとしては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等の炭素数1~4のアルキレン基;フェニレン基、ナフチレン基等の2価のアリーレン基が挙げられる。前記アリーレン基は、アルキル基等により置換されていてもよい。 Examples of A 2 and A 3 include alkylene groups having 1 to 4 carbon atoms such as a methylene group, an ethylene group, a propylene group, and a butylene group; and divalent arylene groups such as a phenylene group and a naphthylene group. The arylene group may be substituted with an alkyl group or the like.
 R21、R23、R24、R31、R33及びR34のアルカリ金属としては、ナトリウム、カリウム等が挙げられる。n21及びn31は、サイクル特性及び溶媒への溶解性に更に優れる観点から、1~150が好ましく、10~150がより好ましい。n22及びn32は、サイクル特性、放電特性及び充電受け入れ性がバランス良く向上しやすい観点から、1又は2が好ましく、1がより好ましい。n23及びn33は、製造条件により変化するが、サイクル特性及びビスフェノール系樹脂の保存安定性に更に優れる観点から、0が好ましい。 Examples of the alkali metal for R 21 , R 23 , R 24 , R 31 , R 33 and R 34 include sodium and potassium. n21 and n31 are preferably 1 to 150, more preferably 10 to 150, from the viewpoint of further excellent cycle characteristics and solubility in a solvent. n22 and n32 are preferably 1 or 2, and more preferably 1, from the viewpoint that the cycle characteristics, the discharge characteristics, and the charge acceptability are easily improved in a balanced manner. Although n23 and n33 change with manufacturing conditions, 0 is preferable from a viewpoint which is further excellent in cycling characteristics and the storage stability of bisphenol-type resin.
 ビスフェノール系樹脂の製造方法は、(c1)成分、(c2)成分及び(c3)成分を反応させてビスフェノール系樹脂を得る樹脂製造工程を備えている。 The method for producing a bisphenol-based resin includes a resin production step of obtaining a bisphenol-based resin by reacting the component (c1), the component (c2) and the component (c3).
 ビスフェノール系樹脂は、例えば、(c1)成分、(c2)成分及び(c3)成分を反応溶媒中で反応させることにより得ることができる。反応溶媒は、水(例えばイオン交換水)であることが好ましい。反応を促進させるために、有機溶媒、触媒、添加剤等を用いてもよい。 The bisphenol-based resin can be obtained, for example, by reacting the component (c1), the component (c2) and the component (c3) in a reaction solvent. The reaction solvent is preferably water (for example, ion exchange water). In order to promote the reaction, an organic solvent, a catalyst, an additive, or the like may be used.
 樹脂製造工程は、サイクル特性が更に向上する観点から、(c2)成分の配合量が(c1)成分1molに対して0.5~1.3molであり、且つ、(c3)成分の配合量が(c1)成分1molに対してホルムアルデヒド換算で2~3.5molである態様が好ましい。(c2)成分及び(c3)成分の好ましい配合量は、(c2)成分及び(c3)成分の配合量のそれぞれについて上述した範囲である。 In the resin production process, from the viewpoint of further improving the cycle characteristics, the blending amount of the component (c2) is 0.5 to 1.3 mol with respect to 1 mol of the component (c1), and the blending amount of the component (c3) is (C1) An embodiment in which the amount is 2 to 3.5 mol in terms of formaldehyde with respect to 1 mol of the component is preferable. Preferred blending amounts of the component (c2) and the component (c3) are the ranges described above for the blending amounts of the component (c2) and the component (c3).
 ビスフェノール系樹脂は、充分量のビスフェノール系樹脂が得られやすい観点から、(c1)成分、(c2)成分及び(c3)成分を塩基性条件(アルカリ性条件)で反応させることにより得ることが好ましい。塩基性条件に調整するためには、塩基性化合物を用いてもよい。塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等が挙げられる。塩基性化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。塩基性化合物の中でも、反応性に優れる観点から、水酸化ナトリウム及び水酸化カリウムが好ましい。 The bisphenol-based resin is preferably obtained by reacting the component (c1), the component (c2) and the component (c3) under basic conditions (alkaline conditions) from the viewpoint that a sufficient amount of bisphenol-based resin can be easily obtained. In order to adjust to basic conditions, you may use a basic compound. Examples of the basic compound include sodium hydroxide, potassium hydroxide, sodium carbonate and the like. A basic compound can be used individually by 1 type or in combination of 2 or more types. Among the basic compounds, sodium hydroxide and potassium hydroxide are preferable from the viewpoint of excellent reactivity.
 (c1)成分、(c2)成分及び(c3)成分を含有する反応溶液が反応開始時において中性(pH=7)である場合、ビスフェノール系樹脂の生成反応が進行しにくい場合があり、反応溶液が酸性(pH<7)である場合、副反応が進行する場合がある。そのため、反応開始時の反応溶液のpHは、ビスフェノール系樹脂の生成反応を進行させつつ副反応が進行することを抑制する観点から、アルカリ性である(7を超える)ことが好ましく、7.1以上がより好ましく、7.2以上が更に好ましい。反応溶液のpHは、ビスフェノール系樹脂の(c2)成分に由来する基の加水分解が進行することを抑制する観点から、12以下が好ましく、10以下がより好ましく、9以下が更に好ましい。反応溶液のpHは、例えば株式会社堀場製作所製のツインpHメーター AS-212で測定することができる。pHは25℃におけるpHと定義する。 When the reaction solution containing the component (c1), the component (c2) and the component (c3) is neutral (pH = 7) at the start of the reaction, the formation reaction of the bisphenol-based resin may not easily proceed. If the solution is acidic (pH <7), side reactions may proceed. Therefore, the pH of the reaction solution at the start of the reaction is preferably alkaline (exceeding 7) from the viewpoint of suppressing the side reaction from proceeding while the bisphenol-based resin formation reaction proceeds, and is 7.1 or more Is more preferable, and 7.2 or more is still more preferable. The pH of the reaction solution is preferably 12 or less, more preferably 10 or less, and even more preferably 9 or less from the viewpoint of suppressing the hydrolysis of the group derived from the component (c2) of the bisphenol resin. The pH of the reaction solution can be measured, for example, with a twin pH meter AS-212 manufactured by Horiba, Ltd. The pH is defined as the pH at 25 ° C.
 前記のようなpHに調整しやすいことから、強塩基性化合物の配合量は、(c2)成分に含まれるスルホン基1molに対して、1.01mol以上が好ましく、1.02mol以上がより好ましく、1.03mol以上が更に好ましい。同様の観点から、強塩基性化合物の配合量は、(c2)成分に含まれるスルホン基1molに対して、1.1mol以下が好ましく、1.08mol以下がより好ましく、1.07mol以下が更に好ましい。強塩基性化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。 Since it is easy to adjust the pH as described above, the blending amount of the strongly basic compound is preferably 1.01 mol or more, more preferably 1.02 mol or more with respect to 1 mol of the sulfone group contained in the component (c2). 1.03 mol or more is still more preferable. From the same viewpoint, the compounding amount of the strongly basic compound is preferably 1.1 mol or less, more preferably 1.08 mol or less, still more preferably 1.07 mol or less with respect to 1 mol of the sulfone group contained in the component (c2). . Examples of the strongly basic compound include sodium hydroxide and potassium hydroxide.
 ビスフェノール系樹脂の合成反応は、(c1)成分、(c2)成分及び(c3)成分が反応してビスフェノール系樹脂が得られればよく、例えば、(c1)成分、(c2)成分及び(c3)成分を同時に反応させてもよく、(c1)成分、(c2)成分及び(c3)成分のうちの2成分を反応させた後に残りの1成分を反応させてもよい。 The synthesis reaction of the bisphenol-based resin is sufficient if the (c1) component, the (c2) component, and the (c3) component are reacted to obtain a bisphenol-based resin. For example, the (c1) component, the (c2) component, and the (c3) The components may be reacted simultaneously, or the remaining one component may be reacted after reacting two of the components (c1), (c2) and (c3).
 ビスフェノール系樹脂の合成反応は、次のように二段階で行うことが好ましい。第一段階の反応では、例えば、アミノアルキルスルホン酸及び/又はアミノアリールスルホン酸と、溶媒(水等)と、塩基性化合物とを仕込んだ後に撹拌し、アミノアルキルスルホン酸及び/又はアミノアリールスルホン酸におけるスルホン基の水素原子をアルカリ金属等で置換してアミノアルキルスルホン酸及び/又はアミノアリールスルホン酸のアルカリ金属塩(アミノアルキルスルホン酸誘導体及び/又はアミノアリールスルホン酸誘導体)等を得る。これにより、後述の縮合反応において副反応を抑制しやすくなる。反応系の温度は、アミノアルキルスルホン酸及び/又はアミノアリールスルホン酸の溶媒(水等)への溶解性に優れる観点から、0℃以上が好ましく、25℃以上がより好ましい。反応系の温度は、副反応を抑制する観点から、80℃以下が好ましく、70℃以下がより好ましく、65℃以下が更に好ましい。反応時間は、例えば5~30分である。 The synthesis reaction of the bisphenol-based resin is preferably performed in two steps as follows. In the first-stage reaction, for example, aminoalkyl sulfonic acid and / or aminoaryl sulfonic acid, a solvent (such as water), and a basic compound are charged and stirred, and then aminoalkyl sulfonic acid and / or aminoaryl sulfonic acid are mixed. The hydrogen atom of the sulfone group in the acid is substituted with an alkali metal or the like to obtain an alkali metal salt of aminoalkyl sulfonic acid and / or aminoaryl sulfonic acid (aminoalkyl sulfonic acid derivative and / or aminoaryl sulfonic acid derivative). Thereby, it becomes easy to suppress a side reaction in the below-mentioned condensation reaction. The temperature of the reaction system is preferably 0 ° C. or higher, more preferably 25 ° C. or higher, from the viewpoint of excellent solubility of aminoalkylsulfonic acid and / or aminoarylsulfonic acid in a solvent (such as water). The temperature of the reaction system is preferably 80 ° C. or less, more preferably 70 ° C. or less, and still more preferably 65 ° C. or less from the viewpoint of suppressing side reactions. The reaction time is, for example, 5 to 30 minutes.
 第二段階の反応では、例えば、第一段階で得られた反応物に(c1)成分及び(c3)成分を加えて縮合反応させることによりビスフェノール系樹脂を得る。反応系の温度は、(c1)成分、(c2)成分及び(c3)成分の反応性に優れる観点から、75℃以上が好ましく、85℃以上がより好ましく、87℃以上が更に好ましい。反応系の温度は、副反応を抑制する観点から、100℃以下が好ましく、95℃以下がより好ましく、93℃以下が更に好ましい。反応時間は、例えば5~20時間である。 In the second stage reaction, for example, the components (c1) and (c3) are added to the reaction product obtained in the first stage and subjected to a condensation reaction to obtain a bisphenol-based resin. The temperature of the reaction system is preferably 75 ° C. or higher, more preferably 85 ° C. or higher, and still more preferably 87 ° C. or higher, from the viewpoint of excellent reactivity of the components (c1), (c2) and (c3). The temperature of the reaction system is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and still more preferably 93 ° C. or lower, from the viewpoint of suppressing side reactions. The reaction time is, for example, 5 to 20 hours.
 (c1)成分、(c2)成分及び(c3)成分を反応させることにより得られる反応物(例えば反応溶液)中においてビスフェノール系樹脂が得られ、反応物を乾燥して溶媒(水等)及び未反応の(c3)成分などを除去してもよい。本実施形態では、ビスフェノール系樹脂の製造方法により得られる反応物をそのまま、後述する電極の製造に用いてもよいし、反応物を乾燥して得られるビスフェノール系樹脂を溶媒(水等)に溶解させて、後述する電極の製造に用いてもよい。 A bisphenol-based resin is obtained in a reaction product (for example, a reaction solution) obtained by reacting the component (c1), the component (c2) and the component (c3), and the reaction product is dried to obtain a solvent (water, etc.) The component (c3) of the reaction may be removed. In this embodiment, the reaction product obtained by the method for producing a bisphenol-based resin may be used as it is for the production of an electrode to be described later, or the bisphenol-based resin obtained by drying the reaction product is dissolved in a solvent (water or the like). It may be used for the manufacture of an electrode to be described later.
 (C)成分の中でも、放電特性が更に向上する観点から、リグニンスルホン酸及びリグニンスルホン酸塩からなる群より選ばれる少なくとも一種が好ましく、リグニンスルホン酸塩がより好ましい。(C)成分であるリグニンスルホン酸塩としては、リグニンスルホン酸のスルホン基(-SOH)の水素原子がアルカリ金属で置換されたアルカリ金属塩等が挙げられる。アルカリ金属塩としては、ナトリウム塩、カリウム塩等が挙げられる。 Among the components (C), at least one selected from the group consisting of lignin sulfonic acid and lignin sulfonate is preferable, and lignin sulfonate is more preferable from the viewpoint of further improving discharge characteristics. Examples of the lignin sulfonate that is the component (C) include alkali metal salts in which the hydrogen atom of the sulfone group (—SO 3 H) of lignin sulfonic acid is substituted with an alkali metal. Examples of the alkali metal salt include sodium salt and potassium salt.
 (C)成分の重量平均分子量は、鉛蓄電池において電極から(C)成分が電解液に溶出することを抑制することによりサイクル特性が向上しやすくなる観点から、15000以上が好ましく、30000以上がより好ましく、40000以上が更に好ましく、50000以上が特に好ましい。(C)成分の重量平均分子量は、電極活物質に対する吸着性が低下して分散性が低下することを抑制することによりサイクル特性が向上しやすくなる観点から、70000以下が好ましく、65000以下がより好ましく、62000以下が更に好ましい。 The weight average molecular weight of the component (C) is preferably 15000 or more and more preferably 30000 or more from the viewpoint that the cycle characteristics are easily improved by suppressing the elution of the component (C) from the electrode to the electrolyte in the lead storage battery. Preferably, 40000 or more is further preferable, and 50000 or more is particularly preferable. The weight average molecular weight of the component (C) is preferably 70000 or less, more preferably 65000 or less, from the viewpoint that the cycle characteristics are easily improved by suppressing the decrease in the adsorptivity to the electrode active material and the dispersibility. Preferably, it is 62000 or less.
 (C)成分の重量平均分子量は、例えば、下記条件のゲルパーミエイションクロマトグラフィー(以下、「GPC」という)により測定することができる。
(GPC条件)
 装置:高速液体クロマトグラフ LC-2200 Plus(日本分光株式会社製)
    ポンプ:PU-2080
    示差屈折率計:RI-2031
    検出器:紫外可視吸光光度計UV-2075(λ:254nm)
    カラムオーブン:CO-2065
 カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
 カラム温度:40℃
 溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
 流速:0.6mL/分
 分子量標準試料:ポリエチレングリコール(分子量:1.10×10、5.80×10、2.55×10、1.46×10、1.01×10、4.49×10、2.70×10、2.10×10;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×10;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×10;キシダ化学株式会社製)
The weight average molecular weight of the component (C) can be measured, for example, by gel permeation chromatography (hereinafter referred to as “GPC”) under the following conditions.
(GPC conditions)
Apparatus: High performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation)
Pump: PU-2080
Differential refractometer: RI-2031
Detector: UV-visible spectrophotometer UV-2075 (λ: 254 nm)
Column oven: CO-2065
Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: Polyethylene glycol (molecular weight: 1.10 × 10 6 , 5.80 × 10 5 , 2.55 × 10 5 , 1.46 × 10 5 , 1.01 × 10 5 , 4.49 × 10 4 , 2.70 × 10 4 , 2.10 × 10 4 ; manufactured by Tosoh Corporation), diethylene glycol (molecular weight: 1 .06 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.), dibutylhydroxytoluene (molecular weight: 2.20 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.)
 (C)成分を用いる場合、(C)成分の含有量は、放電特性に更に優れる観点から、負極材の全質量を基準として、樹脂固形分換算で0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。(C)成分の含有量は、充電受け入れ性に更に優れる観点から、負極材の全質量を基準として、樹脂固形分換算で2質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましい。 When the component (C) is used, the content of the component (C) is preferably 0.01% by mass or more in terms of resin solid content, based on the total mass of the negative electrode material, from the viewpoint of further improving discharge characteristics. 05 mass% or more is more preferable, and 0.1 mass% or more is still more preferable. The content of the component (C) is preferably 2% by mass or less, more preferably 1% by mass or less, in terms of resin solid content, based on the total mass of the negative electrode material, from the viewpoint of further excellent charge acceptance. A mass% or less is more preferable.
 電極の製造に際しては、(C)成分を含む樹脂組成物(例えば25℃において液状の樹脂溶液)を用いてもよい。樹脂組成物は、溶媒を更に含んでいてもよい。樹脂組成物は、樹脂製造工程において得られる反応物であってもよく、樹脂製造工程後に(C)成分と他の成分とを混合して得られる組成物(例えば、(C)成分を溶媒に溶解させて得られる樹脂溶液、並びに、(C)成分を(A)成分及び(B)成分と混合した組成物)であってもよい。溶媒としては、例えば、水(例えばイオン交換水)及び有機溶媒が挙げられる。樹脂組成物に含まれる溶媒は、(C)成分(ビスフェノール系樹脂等)を得るために用いた反応溶媒であってもよい。 In producing the electrode, a resin composition containing the component (C) (for example, a liquid resin solution at 25 ° C.) may be used. The resin composition may further contain a solvent. The resin composition may be a reaction product obtained in the resin production process, and is a composition obtained by mixing the component (C) and other components after the resin production process (for example, using the component (C) as a solvent. A resin solution obtained by dissolution, and a composition obtained by mixing the component (C) with the component (A) and the component (B) may be used. Examples of the solvent include water (for example, ion exchange water) and an organic solvent. The solvent contained in the resin composition may be a reaction solvent used to obtain the component (C) (such as a bisphenol-based resin).
 樹脂組成物(例えば25℃において液状の樹脂溶液)のpHは、(C)成分(ビスフェノール系樹脂等)の溶媒(水等)への溶解性に優れる観点から、アルカリ性である(7を超える)ことが好ましく、7.1以上がより好ましい。樹脂組成物のpHは、電極ペースト作製時の作業性に優れる観点から、14以下が好ましい。特に、樹脂製造工程において得られる樹脂組成物を用いる場合、樹脂組成物のpHは、前記範囲であることが好ましい。樹脂組成物のpHは、例えば株式会社堀場製作所製のツインpHメーター AS-212で測定することができる。pHは25℃におけるpHと定義する。 The pH of the resin composition (for example, a resin solution that is liquid at 25 ° C.) is alkaline (greater than 7) from the viewpoint of excellent solubility of the component (C) (bisphenol resin, etc.) in a solvent (water, etc.). Is preferably 7.1 or more. The pH of the resin composition is preferably 14 or less from the viewpoint of excellent workability during electrode paste preparation. In particular, when the resin composition obtained in the resin production process is used, the pH of the resin composition is preferably in the above range. The pH of the resin composition can be measured, for example, with a twin pH meter AS-212 manufactured by Horiba, Ltd. The pH is defined as the pH at 25 ° C.
[負極添加剤]
 負極材は、添加剤を更に含有していてもよい。添加剤としては、硫酸バリウム、炭素材料(炭素質導電材。炭素繊維を除く)、補強用短繊維等が挙げられる。炭素材料としては、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、ファーネスブラック(ケッチェンブラックに該当する成分を除く)、チャンネルブラック、アセチレンブラック、サーマルブラック等が挙げられる。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等が挙げられる。
[Negative electrode additive]
The negative electrode material may further contain an additive. Examples of the additive include barium sulfate, carbon materials (carbonaceous conductive material, excluding carbon fibers), reinforcing short fibers, and the like. Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black (excluding components corresponding to ketjen black), channel black, acetylene black, thermal black, and the like. Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
[負極材の物性]
 負極材の比表面積は、優れた充電受け入れ性と、他の優れた電池性能(放電特性、サイクル特性等)とを更に良好に両立する観点から、0.5m/g以上が好ましく、0.55m/g以上がより好ましく、0.6m/g以上が更に好ましい。負極材の比表面積は、優れた充電受け入れ性と、他の優れた電池性能(放電特性、サイクル特性等)とを更に良好に両立する観点から、1.2m/g以下が好ましく、1.0m/g以下がより好ましく、0.8m/g以下が更に好ましい。負極材の前記比表面積は、0.7m/g以下であってもよい。負極材の比表面積は、優れた充電受け入れ性と、他の優れた電池性能(放電特性、サイクル特性等)とを更に良好に両立する観点から、0.5~1.2m/gであることが好ましく、0.55~1.2がより好ましく、0.6~1.0m/gが更に好ましく、0.6~0.8m/gが特に好ましい。負極材の前記比表面積は、0.6~0.7m/gであってもよい。負極材の前記比表面積は、化成後の負極材の比表面積である。負極材の比表面積は、例えば、負極材ペーストを作製する際の希硫酸及び水の添加量を調整する方法、未化成の負極活物質の段階で活物質を微細化させる方法、化成条件を変化させる方法等により調整することができる。負極材の比表面積は、例えば、BET法で測定することができる。
[Physical properties of negative electrode material]
The specific surface area of the negative electrode material is preferably 0.5 m 2 / g or more from the viewpoint of achieving both excellent charge acceptance and other excellent battery performance (discharge characteristics, cycle characteristics, etc.), 55 m 2 / g or more is more preferable, and 0.6 m 2 / g or more is still more preferable. The specific surface area of the negative electrode material is preferably 1.2 m 2 / g or less from the viewpoint of achieving both excellent charge acceptability and other excellent battery performances (discharge characteristics, cycle characteristics, etc.). 0m more preferably 2 / g or less, 0.8 m 2 / g or less is more preferable. The specific surface area of the negative electrode material may be 0.7 m 2 / g or less. The specific surface area of the negative electrode material is 0.5 to 1.2 m 2 / g from the viewpoint of further achieving both excellent charge acceptance and other excellent battery performance (discharge characteristics, cycle characteristics, etc.). it is preferable, more preferably 0.55 to 1.2 more preferably 0.6 ~ 1.0m 2 / g, particularly preferably 0.6 ~ 0.8m 2 / g. The specific surface area of the negative electrode material may be 0.6 to 0.7 m 2 / g. The specific surface area of the negative electrode material is the specific surface area of the negative electrode material after chemical conversion. The specific surface area of the negative electrode material changes, for example, the method of adjusting the amount of dilute sulfuric acid and water added when preparing the negative electrode material paste, the method of refining the active material at the stage of the unformed negative electrode active material, and the chemical conversion conditions It can adjust by the method of making it. The specific surface area of the negative electrode material can be measured by, for example, the BET method.
(集電体)
 集電体の製造法としては、鋳造方式、エキスパンド方式等が挙げられる。集電体の材質としては、例えば、鉛-カルシウム-錫系合金及び鉛-アンチモン系合金が挙げられる。これらにセレン、銀、ビスマス等を微量添加することができる。正極及び負極の集電体の製造法又は材質は、互いに同一であってもよく、互いに異なっていてもよい。
(Current collector)
Examples of the method for producing the current collector include a casting method and an expanding method. Examples of the material of the current collector include a lead-calcium-tin alloy and a lead-antimony alloy. A small amount of selenium, silver, bismuth or the like can be added to these. The manufacturing method or material of the current collector for the positive electrode and the negative electrode may be the same or different from each other.
<鉛蓄電池の製造方法>
 本実施形態に係る鉛蓄電池の製造方法は、例えば、電極(正極及び負極)を得る電極製造工程と、前記電極を含む構成部材を組み立てて鉛蓄電池を得る組み立て工程とを備えている。
<Method for producing lead-acid battery>
The method for manufacturing a lead storage battery according to the present embodiment includes, for example, an electrode manufacturing process for obtaining electrodes (positive electrode and negative electrode) and an assembly process for obtaining a lead storage battery by assembling constituent members including the electrodes.
 電極製造工程では、例えば、電極材ペースト(正極材ペースト及び負極材ペースト)を集電体(例えば、鋳造格子体及びエキスパンド格子体)に充填した後に、熟成及び乾燥を行うことにより未化成の電極を得る。正極材ペーストは、例えば、正極活物質の原料(鉛粉等)を含有しており、他の添加剤を更に含有していてもよい。負極材ペーストは、負極活物質の原料(鉛粉等)及びケッチェンブラックを含有しており、分散剤として(C)成分(ビスフェノール系樹脂等)を含有していることが好ましく、他の添加剤を更に含有していてもよい。 In the electrode manufacturing process, for example, after filling an electrode material paste (a positive electrode material paste and a negative electrode material paste) into a current collector (for example, a cast lattice body and an expanded lattice body), aging and drying are performed to thereby form an unformed electrode. Get. The positive electrode material paste contains, for example, a raw material (lead powder or the like) of the positive electrode active material, and may further contain other additives. The negative electrode material paste contains a raw material for the negative electrode active material (lead powder, etc.) and ketjen black, and preferably contains a component (C) (bisphenol resin, etc.) as a dispersant. An agent may be further contained.
 比表面積が11m/g以上である正極材を得るための正極材ペーストは、例えば、下記の方法により得ることができる。正極材ペーストを作製するに際しては、化成時間を短縮できる観点から、正極活物質の原料として鉛丹(Pb)を用いてもよい。 A positive electrode material paste for obtaining a positive electrode material having a specific surface area of 11 m 2 / g or more can be obtained by, for example, the following method. In producing the positive electrode material paste, lead (Pb 3 O 4 ) may be used as a raw material for the positive electrode active material from the viewpoint of shortening the chemical formation time.
(1)正極活物質の原料として鉛粉を用いる方法
 鉛粉に対して、補強用短繊維を加えて乾式混合する。次に、前記鉛粉を含む混合物に対して、水5~10質量%及び希硫酸(比重1.28)28~40質量%を加えて混練して正極材ペーストを作製する。ここで、水及び希硫酸の前記配合量は、鉛粉及び補強用短繊維の合計質量を基準とした配合量である。希硫酸(比重1.28)は、発熱を低減するために、数回に分けて徐々に添加することが好ましい。正極材ペーストの作製において、急激な発熱は疎な構造の正極材を形成し、寿命での活物質同士の結合力が低下するため、なるべく発熱を抑えることが望ましい。
(1) Method of using lead powder as a raw material for the positive electrode active material A reinforcing short fiber is added to the lead powder and dry mixed. Next, 5-10% by mass of water and 28-40% by mass of dilute sulfuric acid (specific gravity 1.28) are added to the mixture containing the lead powder and kneaded to prepare a positive electrode material paste. Here, the said compounding quantity of water and dilute sulfuric acid is a compounding quantity on the basis of the total mass of lead powder and the reinforcing short fiber. The dilute sulfuric acid (specific gravity 1.28) is preferably added gradually in several steps in order to reduce heat generation. In the production of the positive electrode material paste, rapid heat generation forms a sparse positive electrode material, and the bonding force between the active materials in the lifetime decreases. Therefore, it is desirable to suppress heat generation as much as possible.
(2)正極活物質の原料として鉛粉及び鉛丹(Pb)を用いる方法
 まず、鉛粉に対して、補強用短繊維を加えて乾式混合する。次に、前記鉛粉を含む混合物に対して、水5~8質量%を加えて混練してペーストAを作製する。水の前記配合量は、鉛粉及び補強用短繊維、並びに、後述のペーストBを作製する際に用いた鉛丹の合計質量を基準とした配合量である。
(2) Method of using lead powder and red lead (Pb 3 O 4 ) as a raw material for the positive electrode active material First, a reinforcing short fiber is added to the lead powder and dry mixed. Next, 5-8 mass% of water is added to the mixture containing the lead powder and kneaded to prepare paste A. The said compounding quantity of water is a compounding quantity on the basis of the total mass of the lead powder used when producing lead powder and the reinforcing short fiber, and the below-mentioned paste B.
 次に、鉛丹(Pb)と、第一の希硫酸(比重1.3~1.4)20~25質量%とを混合した後に混練する。続いて、第二の希硫酸(比重1.45~1.6)7~17質量%を加えた後に混練してペーストBを作製する。ここでは、鉛丹と希硫酸との反応生成物である二酸化鉛(PbO)と硫酸鉛(PbSO)が生成する。前記第一及び第二の希硫酸の前記配合量は、前述のペーストAを作製する際に用いる鉛粉及び補強用短繊維、並びに、ペーストBを作製する際に用いる鉛丹の合計質量を基準とした配合量である。 Next, lead tan (Pb 3 O 4 ) and first dilute sulfuric acid (specific gravity 1.3 to 1.4) 20 to 25 mass% are mixed and then kneaded. Subsequently, 7 to 17% by mass of second dilute sulfuric acid (specific gravity 1.45 to 1.6) is added and then kneaded to prepare paste B. Here, lead dioxide (PbO 2 ) and lead sulfate (PbSO 4 ), which are reaction products of red lead and dilute sulfuric acid, are generated. The blending amounts of the first and second dilute sulfuric acids are based on the total mass of lead powder and reinforcing short fibers used when preparing the paste A and the red lead used when preparing the paste B. It is the compounding quantity which was made.
 そして、前記ペーストAに前記ペーストBを添加して1時間の混練を行い、正極材ペーストを作製する。この正極材ペーストにおいて、ペーストA中に含まれる鉛粉と、ペーストB中に含まれる鉛丹との割合(鉛粉/鉛丹)は、質量比で、90/10~80/20になるように調整することが好ましい。また、水の全量は、鉛粉、補強用短繊維及び鉛丹の合計質量を基準として4.5~7.0質量%が好ましい。但し、ここでいう「水」には、希硫酸中の水は含まないものとする。 Then, the paste B is added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste. In this positive electrode material paste, the ratio of the lead powder contained in paste A and the lead powder contained in paste B (lead powder / lead powder) is 90/10 to 80/20 in mass ratio. It is preferable to adjust to. The total amount of water is preferably 4.5 to 7.0% by mass based on the total mass of lead powder, reinforcing short fibers and red lead. However, “water” here does not include water in dilute sulfuric acid.
 前記正極材ペーストを集電体に充填した後に熟成及び乾燥を行うことにより未化成の正極を得ることができる。 An unformed positive electrode can be obtained by filling the positive electrode material paste into the current collector and then aging and drying.
 正極材ペーストにおいて補強用短繊維を用いる場合、補強用短繊維の配合量は、正極活物質の原料(鉛粉等)の全質量を基準として、0.005~0.3質量%が好ましく、0.05~0.3質量%がより好ましい。 When reinforcing short fibers are used in the positive electrode material paste, the blending amount of the reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the positive electrode active material (lead powder, etc.) 0.05 to 0.3% by mass is more preferable.
 未化成の正極を得るための熟成条件としては、温度35~85℃、湿度50~98RH%の雰囲気で15~60時間が好ましい。乾燥条件は、温度45~80℃で15~30時間が好ましい。 As aging conditions for obtaining an unformed positive electrode, 15 to 60 hours are preferable in an atmosphere of a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%. The drying conditions are preferably 45 to 80 ° C. and 15 to 30 hours.
 負極材ペーストは、例えば、下記の方法により得ることができる。まず、負極活物質((A)成分)の原料に(B)成分と添加剤(補強用短繊維、硫酸バリウム等)を添加して乾式混合することにより混合物を得る。次に、この混合物に溶媒(イオン交換水等の水、有機溶媒など)を加えて混練する。この際、(B)成分と共に(C)成分を更に加えてもよい。そして、希硫酸を加えて混練することにより負極材ペーストが得られる。この負極材ペーストを集電体に充填した後に熟成及び乾燥を行うことにより未化成の負極を得ることができる。なお、(A)成分、(B)成分及び(C)成分を順次加えて混合してもよいが、(B)成分、(C)成分及び少量の水を混合してケッチェンブラックの二次凝集体の状態を溶きほぐしてから、(B)成分及び(C)成分の混合物と(A)成分とを混合してもよい。これにより、(B)成分の効果を充分に得ることができる。 The negative electrode material paste can be obtained, for example, by the following method. First, the mixture is obtained by adding the component (B) and additives (reinforcing short fibers, barium sulfate, etc.) to the raw material of the negative electrode active material (component (A)) and dry-mixing them. Next, a solvent (water such as ion-exchanged water or an organic solvent) is added to the mixture and kneaded. At this time, the component (C) may be further added together with the component (B). And a negative electrode material paste is obtained by adding dilute sulfuric acid and kneading. An unformed negative electrode can be obtained by filling the negative electrode material paste into the current collector and then aging and drying. In addition, although (A) component, (B) component, and (C) component may be added and mixed sequentially, (B) component, (C) component, and a small amount of water are mixed, and the secondary of Ketjen Black After the state of the aggregate is melted, the mixture of the component (B) and the component (C) and the component (A) may be mixed. Thereby, the effect of (B) component can fully be acquired.
 負極材ペーストにおいて、(C)成分(ビスフェノール系樹脂等)、炭素材料、補強用短繊維又は硫酸バリウムを用いる場合、各成分の配合量は下記の範囲が好ましい。(C)成分の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、樹脂固形分換算で、0.01~2.0質量%が好ましく、0.05~1.0質量%がより好ましく、0.1~0.5質量%が更に好ましく、0.1~0.3質量%が特に好ましい。炭素材料の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、0.1~3質量%が好ましく、0.2~1.4質量%がより好ましい。補強用短繊維の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として0.05~0.3質量%が好ましく、0.05~0.2質量%がより好ましい。硫酸バリウムの配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、0.01~2.0質量%が好ましく、0.3~2.0質量%がより好ましい。 In the negative electrode material paste, when the component (C) (bisphenol resin or the like), carbon material, reinforcing short fiber, or barium sulfate is used, the blending amount of each component is preferably in the following range. The blending amount of component (C) is preferably 0.01 to 2.0% by mass in terms of resin solids, based on the total mass of the negative electrode active material (lead powder, etc.). 0 mass% is more preferred, 0.1 to 0.5 mass% is still more preferred, and 0.1 to 0.3 mass% is particularly preferred. The blending amount of the carbon material is preferably 0.1 to 3% by mass, and more preferably 0.2 to 1.4% by mass, based on the total mass of the negative electrode active material (such as lead powder). The blending amount of the reinforcing short fibers is preferably 0.05 to 0.3% by mass, more preferably 0.05 to 0.2% by mass based on the total mass of the raw material of the negative electrode active material (lead powder or the like). The compounding amount of barium sulfate is preferably 0.01 to 2.0% by mass, more preferably 0.3 to 2.0% by mass, based on the total mass of the raw material of the negative electrode active material (lead powder or the like).
 ケッチェンブラックの配合量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極活物質の原料(鉛粉等)の全質量を基準として、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましい。ケッチェンブラックの前記配合量は、0.1質量%以上であってもよい。ケッチェンブラックの配合量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極活物質の原料(鉛粉等)の全質量を基準として、2質量%以下が好ましく、1.5質量%以下がより好ましく、0.5質量%以下が更に好ましい。ケッチェンブラックの前記配合量は、0.3質量%以下であってもよい。ケッチェンブラックの配合量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極活物質の原料(鉛粉等)の全質量を基準として、0.01~2質量%が好ましく、0.03~1.5質量%がより好ましく、0.03~0.5質量%が更に好ましく、0.05~0.5質量%が特に好ましい。ケッチェンブラックの前記配合量は、0.1~0.3質量%であってもよい。 The amount of ketjen black is 0.01% by mass or more based on the total mass of the negative electrode active material (lead powder, etc.) from the viewpoint of improving the balance of cycle characteristics, discharge characteristics and charge acceptance. Preferably, 0.03 mass% or more is more preferable, and 0.05 mass% or more is still more preferable. 0.1 mass% or more may be sufficient as the said compounding quantity of ketjen black. The amount of ketjen black is preferably 2% by mass or less, based on the total mass of the negative electrode active material (lead powder, etc.), from the viewpoint of further improving the cycle characteristics, discharge characteristics, and charge acceptance. 1.5 mass% or less is more preferable, and 0.5 mass% or less is still more preferable. 0.3 mass% or less may be sufficient as the said compounding quantity of ketjen black. The amount of ketjen black is 0.01 to 2% by mass, based on the total mass of the negative electrode active material (lead powder, etc.), from the viewpoint of further improving the cycle characteristics, discharge characteristics and charge acceptance. Is preferable, 0.03 to 1.5% by mass is more preferable, 0.03 to 0.5% by mass is further preferable, and 0.05 to 0.5% by mass is particularly preferable. The amount of ketjen black may be 0.1 to 0.3% by mass.
 未化成の負極を得るための熟成条件としては、温度45~65℃、湿度70~98RH%の雰囲気で15~30時間が好ましい。乾燥条件は、温度45~60℃で15~30時間が好ましい。 As the aging conditions for obtaining the unformed negative electrode, it is preferable that the temperature is 45 to 65 ° C. and the humidity is 70 to 98 RH% for 15 to 30 hours. The drying conditions are preferably 45 to 60 ° C. and 15 to 30 hours.
 組み立て工程では、例えば、前記のように作製した未化成の負極及び未化成の正極を、セパレータを介して交互に積層し、同極性の電極の集電部をストラップで連結(溶接等)させて電極群を得る。この電極群を電槽内に配置して未化成の電池を作製する。次に、未化成の電池に電解液(希硫酸)を注入した後、直流電流を通電して電槽化成する。化成後の電解液の比重を適切な比重に調整して鉛蓄電池が得られる。 In the assembling process, for example, the unformed negative electrode and the unformed positive electrode produced as described above are alternately stacked via separators, and the current collectors of the same polarity electrodes are connected (welded, etc.) with a strap. An electrode group is obtained. This electrode group is arranged in a battery case to produce an unformed battery. Next, after injecting an electrolytic solution (dilute sulfuric acid) into an unformed battery, a direct current is applied to form a battery case. The lead acid battery can be obtained by adjusting the specific gravity of the electrolyte after the formation to an appropriate specific gravity.
 前記電解液は、例えば、希硫酸及びアルミニウムイオンを含有しており、希硫酸及び硫酸アルミニウム粉末を混合することにより得ることができる。電解液中に溶解させる硫酸アルミニウムは、無水物又は水和物として添加することができる。 The electrolytic solution contains, for example, dilute sulfuric acid and aluminum ions, and can be obtained by mixing dilute sulfuric acid and aluminum sulfate powder. Aluminum sulfate to be dissolved in the electrolytic solution can be added as an anhydride or a hydrate.
 電解液(アルミニウムイオンを含む電解液)の化成後の比重は下記の範囲であることが好ましい。電解液の比重は、浸透短絡又は凍結を抑制すると共に放電特性に更に優れる観点から、1.24以上が好ましく、1.25以上がより好ましく、1.255以上が更に好ましい。電解液の比重は、充電受け入れ性及びサイクル特性が更に向上する観点から、1.33以下が好ましく、1.30以下がより好ましく、1.29以下が更に好ましい。また、電解液の比重が1.27以下であることで、放電で生成する硫酸鉛が電解液中に溶解しやすくなり、充電受け入れ性を更に向上させることができる。これらの観点から、電解液の比重は、1.24~1.33が好ましく、1.24~1.30がより好ましく、1.25~1.30が更に好ましく、1.255~1.29が特に好ましく、1.255~1.27が極めて好ましい。電解液の比重の値は、例えば、浮式比重計、又は、京都電子工業株式会社製のデジタル比重計によって測定することができる。 The specific gravity after chemical conversion of the electrolytic solution (electrolytic solution containing aluminum ions) is preferably in the following range. The specific gravity of the electrolytic solution is preferably 1.24 or more, more preferably 1.25 or more, and even more preferably 1.255 or more from the viewpoint of suppressing osmotic short-circuiting or freezing and further improving discharge characteristics. The specific gravity of the electrolytic solution is preferably 1.33 or less, more preferably 1.30 or less, and even more preferably 1.29 or less, from the viewpoint of further improving charge acceptability and cycle characteristics. In addition, when the specific gravity of the electrolytic solution is 1.27 or less, lead sulfate generated by discharge is easily dissolved in the electrolytic solution, and charge acceptability can be further improved. From these viewpoints, the specific gravity of the electrolytic solution is preferably 1.24 to 1.33, more preferably 1.24 to 1.30, still more preferably 1.25 to 1.30, and 1.255 to 1.29. Is particularly preferable, and 1.255 to 1.27 is very preferable. The value of the specific gravity of the electrolytic solution can be measured by, for example, a floating hydrometer or a digital hydrometer manufactured by Kyoto Electronics Industry Co., Ltd.
 電解液のアルミニウムイオン濃度(電解液におけるアルミニウムイオンの濃度)は、充電受け入れ性及びサイクル特性が更に向上する観点から、電解液の全量を基準として、0.01mol/L以上が好ましく、0.02mol/L以上がより好ましく、0.03mol/L以上が更に好ましい。前記アルミニウムイオン濃度は、0.04mol/L以上であってもよく、0.05mol/L以上であってもよく、0.06mol/L以上であってもよい。電解液のアルミニウムイオン濃度は、充電受け入れ性及びサイクル特性が更に向上する観点から、電解液の全量を基準として、0.2mol/L以下が好ましく、0.15mol/L以下がより好ましく、0.13mol/L以下が更に好ましい。前記アルミニウムイオン濃度は、0.1mol/L以下であってもよい。これらの観点から、電解液のアルミニウムイオン濃度は、電解液の全量を基準として、0.01~0.2mol/Lが好ましく、0.02~0.15mol/Lがより好ましく、0.03~0.13mol/Lが更に好ましい。前記アルミニウムイオン濃度は、0.04~0.1mol/Lであってもよく、0.05~0.1mol/Lであってもよく、0.06~0.1mol/Lであってもよい。電解液のアルミニウムイオン濃度は、例えば、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により測定することができる。 The concentration of aluminum ions in the electrolytic solution (concentration of aluminum ions in the electrolytic solution) is preferably 0.01 mol / L or more, based on the total amount of the electrolytic solution, from the viewpoint of further improving charge acceptability and cycle characteristics, and 0.02 mol. / L or more is more preferable, and 0.03 mol / L or more is more preferable. The aluminum ion concentration may be 0.04 mol / L or more, 0.05 mol / L or more, or 0.06 mol / L or more. The aluminum ion concentration of the electrolytic solution is preferably 0.2 mol / L or less, more preferably 0.15 mol / L or less, based on the total amount of the electrolytic solution, from the viewpoint of further improving charge acceptance and cycle characteristics. More preferably, it is 13 mol / L or less. The aluminum ion concentration may be 0.1 mol / L or less. From these viewpoints, the aluminum ion concentration of the electrolytic solution is preferably from 0.01 to 0.2 mol / L, more preferably from 0.02 to 0.15 mol / L, based on the total amount of the electrolytic solution, from 0.03 to 0.13 mol / L is more preferable. The aluminum ion concentration may be 0.04 to 0.1 mol / L, 0.05 to 0.1 mol / L, or 0.06 to 0.1 mol / L. . The aluminum ion concentration of the electrolytic solution can be measured by, for example, ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
 電解液のアルミニウムイオン濃度が前記所定範囲であることにより充電受け入れ性が向上するメカニズムの詳細については明らかではないが、以下のように推測される。すなわち、アルミニウムイオン濃度が前記所定範囲であると、任意の低SOC下において、放電生成物である結晶性硫酸鉛の電解液中への溶解度が上がるため、又は、アルミニウムイオンの高いイオン伝導性により電解液の電極活物質内部への拡散性が向上するためと推測される。 Although the details of the mechanism by which the charge acceptability is improved when the aluminum ion concentration of the electrolytic solution is within the predetermined range are not clear, it is estimated as follows. That is, when the aluminum ion concentration is within the predetermined range, the solubility of the crystalline lead sulfate, which is a discharge product, in the electrolytic solution increases under any low SOC, or due to the high ion conductivity of aluminum ions. This is presumably because the diffusibility of the electrolytic solution into the electrode active material is improved.
 電解液のアルミニウムイオン濃度が前記所定範囲であることによりサイクル特性が向上するメカニズムの詳細については明らかではないが、以下のように推測される。まず、アルミニウムイオンを含まない通常の電解液を用いた場合、充電時に電解液に供給される硫酸イオン(例えば硫酸鉛から生成する硫酸イオン)は、電極(極板等)の表面を伝って下方へと移動する。PSOC下では、電池が満充電になることがないため、ガス発生による電解液の撹拌が行われない。その結果、電池下部での電解液の比重が高くなるのに対し電池上部の電解液の比重が低くなるという「成層化」と呼ばれる電解液の濃度の不均一化が起こる。このような現象が起こると、充電しても元に戻り難い結晶性硫酸鉛が生成すると共に、活物質の反応面積が低下する。これにより、充放電が繰り返される寿命試験において性能の劣化が起こる。一方、電解液のアルミニウムイオン濃度が前記所定範囲であると、アルミニウムイオンの静電的引力により硫酸イオンが強く引き付けられるため、成層化が発現しにくくなると推測される。 The details of the mechanism by which the cycle characteristics are improved when the aluminum ion concentration of the electrolytic solution is within the predetermined range are not clear, but are estimated as follows. First, when a normal electrolyte solution that does not contain aluminum ions is used, sulfate ions (for example, sulfate ions generated from lead sulfate) supplied to the electrolyte solution at the time of charging travel downward along the surface of the electrode (electrode plate, etc.). Move to. Under PSOC, the battery will not be fully charged, so the electrolyte is not agitated by gas generation. As a result, the electrolyte solution concentration at the lower part of the battery becomes higher, whereas the specific gravity of the electrolyte solution at the upper part of the battery becomes lower, resulting in non-uniform electrolyte concentration called “stratification”. When such a phenomenon occurs, crystalline lead sulfate that does not easily return to the original state even when charged is generated, and the reaction area of the active material decreases. Thereby, performance deterioration occurs in a life test in which charge and discharge are repeated. On the other hand, when the aluminum ion concentration of the electrolytic solution is in the predetermined range, sulfate ions are strongly attracted by the electrostatic attraction of aluminum ions, so that it is presumed that stratification is less likely to occur.
 電槽は、内部に電極(極板等)を収納可能なものである。電槽は、電極を収納しやすい観点から、上面が開放された箱体と、この箱体の上面を覆う蓋体とを有するものが好ましい。なお、箱体と蓋体との接着には、接着剤、熱溶着、レーザ溶着、超音波溶着等を適宜用いることができる。電槽の形状としては、特に限定されるものではないが、電極(板状体である極板等)の収納時に無効空間が少なくなるように方形のものが好ましい。 The battery case can accommodate electrodes (electrode plates, etc.) inside. The battery case preferably has a box body whose upper surface is opened and a lid body that covers the upper surface of the box body from the viewpoint of easily accommodating the electrode. Note that an adhesive, heat welding, laser welding, ultrasonic welding, or the like can be appropriately used for bonding the box and the lid. The shape of the battery case is not particularly limited, but a rectangular shape is preferable so that an ineffective space is reduced when an electrode (a plate plate or the like) is accommodated.
 電槽の材質は、特に制限されるものではないが、電解液(希硫酸等)に対し耐性を有するものである必要がある。電槽の材質の具体例としては、PP(ポリプロピレン)、PE(ポリエチレン)、ABS樹脂等が挙げられる。材質がPPであると、耐酸性、加工性及びコストの面で有利である。PPは、電槽と蓋の熱溶着が困難であるABS樹脂と比較して加工性の面で有利である。 The material of the battery case is not particularly limited, but it needs to be resistant to an electrolytic solution (such as dilute sulfuric acid). Specific examples of the battery case material include PP (polypropylene), PE (polyethylene), and ABS resin. PP is advantageous in terms of acid resistance, workability and cost. PP is advantageous in terms of workability as compared with ABS resin, which is difficult to thermally weld the battery case and the lid.
 電槽が箱体及び蓋体により構成される場合、箱体及び蓋体の材質は、互いに同一の材質であってもよく、互いに異なる材質であってもよい。箱体及び蓋体の材料としては、無理な応力が発生しない観点から、熱膨張係数の等しい材質が好ましい。 When the battery case is composed of a box and a lid, the box and the lid may be made of the same material or different materials. As the material for the box and the lid, materials having the same thermal expansion coefficient are preferable from the viewpoint of not generating excessive stress.
 セパレータとしては、微多孔性ポリエチレンシート;ガラス繊維と合成樹脂からなる不織布等が挙げられる。 Examples of the separator include a microporous polyethylene sheet; a nonwoven fabric made of glass fiber and synthetic resin.
 化成条件及び希硫酸の比重は電極活物質の性状に応じて調整することができる。また、化成処理は、組み立て工程後に実施されることに限られず、電極製造工程における熟成及び乾燥後の多数の電極をまとめて化成槽に浸漬して実施されてもよい(タンク化成)。 Chemical conversion conditions and specific gravity of dilute sulfuric acid can be adjusted according to the properties of the electrode active material. Also, the chemical conversion treatment is not limited to being performed after the assembly process, and may be performed by immersing a large number of electrodes after aging and drying in the electrode manufacturing process together in a chemical conversion tank (tank chemical conversion).
 以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
<ビスフェノール系樹脂の合成>
 撹拌装置、還流装置及び温度調節装置を備えた反応容器に下記の各成分を仕込み第1の混合液を得た。
 水酸化ナトリウム:1.05mol[42.0質量部]
 イオン交換水:44.00mol[792.6質量部]
 4-アミノベンゼンスルホン酸:1.00mol[173.2質量部]
<Synthesis of bisphenol resin>
The following components were charged into a reaction vessel equipped with a stirrer, a reflux device and a temperature controller to obtain a first mixed solution.
Sodium hydroxide: 1.05 mol [42.0 parts by mass]
Ion exchange water: 44.00 mol [792.6 parts by mass]
4-aminobenzenesulfonic acid: 1.00 mol [173.2 parts by mass]
 第1の混合液を25℃にて30分混和・撹拌した。続いて、第1の混合液に下記の各成分を仕込み第2の混合液を得た。
 ビスフェノールA:0.96mol[219.2質量部]
 ビスフェノールS:0.04mol[10.4質量部]
 パラホルムアルデヒド(三井化学株式会社製):3.00mol[90.9質量部](ホルムアルデヒド換算)
The first mixture was mixed and stirred at 25 ° C. for 30 minutes. Subsequently, the following components were charged into the first mixed liquid to obtain a second mixed liquid.
Bisphenol A: 0.96 mol [219.2 parts by mass]
Bisphenol S: 0.04 mol [10.4 parts by mass]
Paraformaldehyde (manufactured by Mitsui Chemicals): 3.00 mol [90.9 parts by mass] (formaldehyde conversion)
 第2の混合液(pH=8.6)を90℃にて10時間反応させることにより樹脂溶液を得た。 A resin solution was obtained by reacting the second mixed solution (pH = 8.6) at 90 ° C. for 10 hours.
 樹脂溶液中に含まれるビスフェノール系樹脂を低温乾燥(60℃、6時間)で単離し、重量平均分子量を下記条件のGPCにより測定した。ビスフェノール系樹脂の重量平均分子量は53900であった。 The bisphenol-based resin contained in the resin solution was isolated by low temperature drying (60 ° C., 6 hours), and the weight average molecular weight was measured by GPC under the following conditions. The weight average molecular weight of the bisphenol-based resin was 53900.
{GPC条件}
 装置:高速液体クロマトグラフ LC-2200 Plus(日本分光株式会社製)
    ポンプ:PU-2080
    示差屈折率計:RI-2031
    検出器:紫外可視吸光光度計UV-2075(λ:254nm)
    カラムオーブン:CO-2065
 カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
 カラム温度:40℃
 溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
 流速:0.6mL/分
 分子量標準試料:ポリエチレングリコール(分子量:1.10×10、5.80×10、2.55×10、1.46×10、1.01×10、4.49×10、2.70×10、2.10×10;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×10;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×10;キシダ化学株式会社製)
{GPC condition}
Apparatus: High performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation)
Pump: PU-2080
Differential refractometer: RI-2031
Detector: UV-visible spectrophotometer UV-2075 (λ: 254 nm)
Column oven: CO-2065
Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: Polyethylene glycol (molecular weight: 1.10 × 10 6 , 5.80 × 10 5 , 2.55 × 10 5 , 1.46 × 10 5 , 1.01 × 10 5 , 4.49 × 10 4 , 2.70 × 10 4 , 2.10 × 10 4 ; manufactured by Tosoh Corporation), diethylene glycol (molecular weight: 1 .06 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.), dibutylhydroxytoluene (molecular weight: 2.20 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.)
<鉛蓄電池の作製>
(実施例1)
[正極板の作製]
 まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.25質量%(鉛粉の全質量基準)を加えて乾式混合した。次に、前記鉛粉を含む混合物に対して、水を8質量%(基準:鉛粉、補強用短繊維、及び、後述のペーストBを作製する際に用いた鉛丹の合計質量)加えて混練してペーストAを作製した。
<Production of lead acid battery>
(Example 1)
[Production of positive electrode plate]
First, 0.25 mass% of acrylic fibers (based on the total mass of the lead powder) were added to the lead powder as a reinforcing short fiber and dry mixed. Next, 8% by mass of water is added to the mixture containing the lead powder (standard: lead powder, reinforcing short fibers, and the total mass of the red lead used when preparing the paste B described later). A paste A was prepared by kneading.
 次に、鉛丹(Pb)と、第一の希硫酸(比重1.35)17質量%とを混合した後に混練した。続いて、第二の希硫酸(比重1.50)6質量%を加えた後に混練してペーストBを作製した。なお、前記第一及び第二の希硫酸の前記配合量は、前述のペーストAを作製する際に用いた鉛粉及び補強用短繊維、並びに、ペーストBを作製する際に用いた鉛丹の合計質量を基準とした配合量である。 Next, the red lead (Pb 3 O 4 ) and 17% by mass of the first dilute sulfuric acid (specific gravity 1.35) were mixed and then kneaded. Subsequently, 6% by mass of second dilute sulfuric acid (specific gravity 1.50) was added and then kneaded to prepare paste B. In addition, the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the lead powder and the short fiber for reinforcement which were used when producing the above-mentioned paste A, and the red lead used when producing the paste B. The amount is based on the total mass.
 そして、前記ペーストAに前記ペーストBを添加して1時間の混練を行い、正極材ペーストを作製した。この正極材ペーストにおいて、ペーストA中に含まれる鉛粉と、ペーストB中に含まれる鉛丹との割合(質量比)は、鉛粉/鉛丹=85/15になるように調整した。また、水の全量は、鉛粉、補強用短繊維及び鉛丹の合計質量を基準として6.9質量%とした。正極材ペーストの作製に際しては、急激な温度上昇を避けるため、前記ペーストBの添加は段階的に行った。 The paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste. In this positive electrode material paste, the ratio (mass ratio) of the lead powder contained in the paste A and the lead powder contained in the paste B was adjusted to be lead powder / lead powder = 85/15. The total amount of water was 6.9% by mass based on the total mass of lead powder, reinforcing short fibers and red lead. In producing the positive electrode material paste, the paste B was added stepwise in order to avoid a rapid temperature rise.
 鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体に前記正極材ペーストを充填した。次いで、正極材ペーストが充填された格子体(集電体)を温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極板を作製した。 The positive electrode material paste was filled in an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process. Next, the grid body (current collector) filled with the positive electrode material paste was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the unchemically formed positive electrode plate.
[負極板の作製]
 負極活物質の原料として鉛粉を用いた。補強用短繊維(アクリル繊維)を0.1質量%、硫酸バリウムを1.0質量%、ケッチェンブラック(ライオン・スペシャリティ・ケミカルズ株式会社製、商品名:カーボンECP600JD、DBP吸油量:489mL/100g)を0.2質量%前記鉛粉に添加した後に乾式混合した(前記配合量は、負極活物質の原料の全質量を基準とした配合量である)。次に、上記で得られたビスフェノール系樹脂を含む樹脂溶液を固形分換算で0.2質量%(基準:負極活物質の原料の全質量)と、水を10質量%(基準:負極活物質の原料、補強用短繊維、硫酸バリウム、ケッチェンブラック及びビスフェノール系樹脂の合計質量)とを加えた後に混練した。続いて、希硫酸(比重1.280)9.5質量%(基準:負極活物質の原料、補強用短繊維、硫酸バリウム、ケッチェンブラック及びビスフェノール系樹脂の合計質量)を少量ずつ添加しながら混練して、負極材ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体にこの負極材ペーストを充填した。次いで、負極材ペーストが充填された格子体(集電体)を温度50℃、湿度98%の雰囲気で20時間熟成した。その後、乾燥して未化成の負極板を作製した。
[Production of negative electrode plate]
Lead powder was used as a raw material for the negative electrode active material. 0.1% by mass of reinforcing short fibers (acrylic fibers), 1.0% by mass of barium sulfate, Ketjen Black (manufactured by Lion Specialty Chemicals, Inc., trade name: Carbon ECP600JD, DBP oil absorption: 489 mL / 100 g ) Was added to the lead powder and then dry mixed (the blending amount is based on the total mass of the negative electrode active material). Next, the resin solution containing the bisphenol-based resin obtained above is 0.2% by mass (standard: total mass of raw materials for the negative electrode active material) and 10% by mass of water (standard: negative electrode active material). And the raw material, reinforcing short fibers, barium sulfate, ketjen black and bisphenol-based resin) were added and kneaded. Subsequently, dilute sulfuric acid (specific gravity 1.280) 9.5% by mass (standard: raw material of negative electrode active material, reinforcing short fiber, barium sulfate, ketjen black and bisphenol-based resin) was added little by little. The negative electrode material paste was produced by kneading. The negative electrode material paste was filled in an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process. Next, the grid body (current collector) filled with the negative electrode material paste was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 20 hours. Then, it dried and produced the unchemically formed negative electrode plate.
 前記ケッチェンブラックは、乾式混合前に粉砕して平均粒径を5μmに調整した。なお、ケッチェンブラックの平均粒径は、下記の方法により算出した。ケッチェンブラックの平均粒径は、JISM8511(2014)記載のレーザ回折・散乱法に準拠して求めた。具体的には、レーザ回折・散乱式粒度分布測定装置(日機装株式会社製:マイクロトラック9220FRA)を用い、分散剤として市販の界面活性剤ポリオキシエチレンオクチルフェニルエーテル(ロシュ・ダイアグノスティックス株式会社製:トリトンX-100)を0.5体積%含有する水溶液にケッチェンブラックを適量投入し、撹拌しながら40Wの超音波を180秒照射した後、測定を行った。求められたメディアン径(D50)の値をケッチェンブラックの平均粒径とした。 The ketjen black was pulverized before dry mixing to adjust the average particle size to 5 μm. The average particle diameter of ketjen black was calculated by the following method. The average particle diameter of ketjen black was determined according to the laser diffraction / scattering method described in JIS M8511 (2014). Specifically, a commercially available surfactant polyoxyethylene octylphenyl ether (Roche Diagnostics Co., Ltd.) is used as a dispersant, using a laser diffraction / scattering particle size distribution measuring device (manufactured by Nikkiso Co., Ltd .: Microtrack 9220FRA). A suitable amount of ketjen black was put into an aqueous solution containing 0.5% by volume of Triton X-100), and 40 W ultrasonic waves were irradiated for 180 seconds while stirring, and measurement was performed. The calculated median diameter (D50) was taken as the average particle diameter of Ketjen Black.
[電池の組み立て]
 袋状に加工したポリエチレン製のセパレータに未化成の負極板を挿入した。次に、未化成の正極板5枚と、前記袋状セパレータに挿入された未化成の負極板6枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の極板の耳部同士を溶接して極板群を作製した。前記極板群を電槽に挿入して2V単セル電池(JIS D 5301規定のB19サイズの単セルに相当、K42サイズのISS車用鉛蓄電池)を組み立てた。アルミニウムイオン濃度が0.06mol/Lになるように硫酸アルミニウム無水物を溶解させた比重1.200の希硫酸をこの電池に注入した。1時間放置後、40℃の水槽中、通電電流6Aで20時間の条件で化成して鉛蓄電池を作製した。化成後(仕上がり後)の電解液の比重を表1に示すように調整した。化成後の負極材の全質量を基準としたケッチェンブラックの含有量は0.2質量%であった。
[Battery assembly]
An unformed negative electrode plate was inserted into a polyethylene separator processed into a bag shape. Next, five unchemically formed positive electrode plates and six unchemically formed negative electrode plates inserted in the bag-like separator were alternately laminated. Then, the electrode plate group was prepared by welding the ears of the same polarity electrode plates by a cast on strap (COS) method. The electrode plate group was inserted into a battery case to assemble a 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301, a K42 size ISS car lead acid battery). Dilute sulfuric acid having a specific gravity of 1.200 in which aluminum sulfate anhydride was dissolved so that the aluminum ion concentration was 0.06 mol / L was injected into this battery. After standing for 1 hour, a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours. The specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1. The content of ketjen black based on the total mass of the negative electrode material after chemical conversion was 0.2% by mass.
[比表面積の測定]
 比表面積の測定試料は、下記の手順により作製した。まず、上記化成した電池を解体して電極板(正極板及び負極板)を取り出して水洗した後、50℃で24時間乾燥した。次に、前記電極板の中央部から電極材(正極材及び負極材)を2g採取して、130℃で30分乾燥して測定試料を作製した。
[Specific surface area measurement]
A sample for measuring the specific surface area was prepared by the following procedure. First, the formed battery was disassembled, the electrode plates (positive electrode plate and negative electrode plate) were taken out, washed with water, and dried at 50 ° C. for 24 hours. Next, 2 g of an electrode material (a positive electrode material and a negative electrode material) was collected from the center of the electrode plate and dried at 130 ° C. for 30 minutes to prepare a measurement sample.
 化成後の正極材及び負極材の比表面積は、前記で作製した測定試料を液体窒素で冷却しながら液体窒素温度で窒素ガス吸着量を多点法で測定し、BET法に従って算出した。測定条件は下記のとおりである。このようにして測定した結果、正極材の比表面積は11.5m/gであった。また、負極材の比表面積は0.61m/gであった。 The specific surface areas of the positive electrode material and the negative electrode material after chemical conversion were calculated according to the BET method by measuring the nitrogen gas adsorption amount at a liquid nitrogen temperature by a multipoint method while cooling the measurement sample prepared above with liquid nitrogen. The measurement conditions are as follows. As a result of measurement in this manner, the specific surface area of the positive electrode material was 11.5 m 2 / g. Moreover, the specific surface area of the negative electrode material was 0.61 m 2 / g.
{比表面積の測定条件}
 装置:Macsorb1201(株式会社マウンテック製)
 脱気時間:130℃で10分
 冷却:液体窒素で5分間
 吸着ガス流量:25mL/分
{Measurement conditions for specific surface area}
Apparatus: Macsorb1201 (manufactured by Mountec Co., Ltd.)
Degassing time: 10 minutes at 130 ° C. Cooling: 5 minutes with liquid nitrogen Adsorbed gas flow rate: 25 mL / min
[多孔度の測定]
 測定試料は、下記の手順により作製した。まず、上記化成した電池を解体して正極板を取り出して水洗した後、50℃で24時間乾燥した。次に、前記正極板の中央部から正極材の塊を3g採取した。前記塊を、最大径が5mm程度の小片に砕き、この小片の合計3gを測定セルに入れた。そして、下記の条件に基づき、水銀ポロシメーターを用いて化成後の正極材の多孔度を測定した。正極材の多孔度は53.5体積%であった。
[Measurement of porosity]
The measurement sample was produced by the following procedure. First, the formed battery was disassembled, the positive electrode plate was taken out, washed with water, and dried at 50 ° C. for 24 hours. Next, 3 g of a positive electrode material lump was collected from the center of the positive electrode plate. The mass was crushed into small pieces having a maximum diameter of about 5 mm, and a total of 3 g of the small pieces was put into a measuring cell. And based on the following conditions, the porosity of the positive electrode material after chemical conversion was measured using the mercury porosimeter. The porosity of the positive electrode material was 53.5% by volume.
{多孔度の測定条件}
 装置:オートポアIV9500(株式会社島津製作所製)
 水銀圧入圧:0~354kPa(低圧)、大気圧~414MPa(高圧)
 各測定圧力での圧力保持時間:900秒(低圧)、1200秒(高圧)
 試料と水銀との接触角:130°
 水銀の表面張力:480~490mN/m
 水銀の密度:13.5335g/mL
{Porosity measurement conditions}
Device: Autopore IV9500 (manufactured by Shimadzu Corporation)
Mercury intrusion pressure: 0 to 354 kPa (low pressure), atmospheric pressure to 414 MPa (high pressure)
Pressure holding time at each measurement pressure: 900 seconds (low pressure), 1200 seconds (high pressure)
Contact angle between sample and mercury: 130 °
Mercury surface tension: 480-490 mN / m
Mercury density: 13.5335 g / mL
(実施例2)
 正極板を下記のようにして作製した以外は、実施例1と同様にして鉛蓄電池を作製した。
(Example 2)
A lead-acid battery was produced in the same manner as in Example 1 except that the positive electrode plate was produced as follows.
[実施例2の正極板の作製]
 まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.25質量%(鉛粉の全質量基準)を加えて乾式混合した。次に、前記鉛粉を含む混合物に対して、水を6.2質量%(基準:鉛粉及び補強用短繊維、並びに、後述のペーストBを作製する際に用いた鉛丹の合計質量)加えて混練してペーストAを作製した。
[Preparation of Positive Electrode of Example 2]
First, 0.25 mass% of acrylic fibers (based on the total mass of the lead powder) were added to the lead powder as a reinforcing short fiber and dry mixed. Next, with respect to the mixture containing the lead powder, 6.2% by mass of water (standard: the total mass of the lead powder used when preparing the lead powder and reinforcing short fibers and the paste B described later) In addition, paste A was prepared by kneading.
 次に、鉛丹(Pb)と、第一の希硫酸(比重1.35)19質量%とを混合した後に混練した。続いて、第二の希硫酸(比重1.50)9.7質量%を加えた後に混練してペーストBを作製した。なお、前記第一及び第二の希硫酸の前記配合量は、前述のペーストAを作製する際に用いた鉛粉及び補強用短繊維、並びに、ペーストBを作製する際に用いた鉛丹の合計質量を基準とした配合量である。 Next, the red lead (Pb 3 O 4 ) and 19% by mass of the first dilute sulfuric acid (specific gravity 1.35) were mixed and then kneaded. Subsequently, 9.7% by mass of second dilute sulfuric acid (specific gravity 1.50) was added and then kneaded to prepare paste B. In addition, the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the lead powder and the short fiber for reinforcement which were used when producing the above-mentioned paste A, and the red lead used when producing the paste B. The amount is based on the total mass.
 そして、前記ペーストAに前記ペーストBを添加して1時間の混練を行い、正極材ペーストを作製した。この正極材ペーストにおいて、ペーストA中に含まれる鉛粉と、ペーストB中に含まれる鉛丹との割合(質量比)は、鉛粉/鉛丹=85/15になるように調整した。また、水の全量は、鉛粉、補強用短繊維及び鉛丹の合計質量を基準として5.3質量%とした。正極材ペーストの作製に際しては、急激な温度上昇を避けるため、前記ペーストBの添加は段階的に行った。 The paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste. In this positive electrode material paste, the ratio (mass ratio) of the lead powder contained in the paste A and the lead powder contained in the paste B was adjusted to be lead powder / lead powder = 85/15. The total amount of water was 5.3% by mass based on the total mass of lead powder, reinforcing short fibers, and red lead. In producing the positive electrode material paste, the paste B was added stepwise in order to avoid a rapid temperature rise.
 鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体に前記正極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極板を作製した。正極材の比表面積及び多孔度を実施例1と同様にして測定した。 The positive electrode material paste was filled into an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the unchemically formed positive electrode plate. The specific surface area and porosity of the positive electrode material were measured in the same manner as in Example 1.
(実施例3)
 正極板を下記のようにして作製した以外は、実施例1と同様にして鉛蓄電池を作製した。
(Example 3)
A lead-acid battery was produced in the same manner as in Example 1 except that the positive electrode plate was produced as follows.
[実施例3の正極板の作製]
 まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.25質量%(鉛粉の全質量基準)を加えて乾式混合した。次に、前記鉛粉を含む混合物に対して、水を5.4質量%(基準:鉛粉及び補強用短繊維、並びに、後述のペーストBを作製する際に用いた鉛丹の合計質量)加えて混練してペーストAを作製した。
[Preparation of Positive Electrode of Example 3]
First, 0.25 mass% of acrylic fibers (based on the total mass of the lead powder) were added to the lead powder as a reinforcing short fiber and dry mixed. Next, 5.4% by mass of water with respect to the mixture containing the lead powder (standard: the total mass of the lead powder used when producing the lead powder and reinforcing short fibers, and paste B described later) In addition, paste A was prepared by kneading.
 次に、鉛丹(Pb)と、第一の希硫酸(比重1.35)21.5質量%とを混合した後に混練した。続いて、第二の希硫酸(比重1.50)15質量%を加えた後に混練してペーストBを作製した。なお、前記第一及び第二の希硫酸の前記配合量は、前述のペーストAを作製する際に用いた鉛粉及び補強用短繊維、並びに、ペーストBを作製する際に用いた鉛丹の合計質量を基準とした配合量である。 Next, the red lead (Pb 3 O 4 ) and the first dilute sulfuric acid (specific gravity 1.35) 21.5 mass% were mixed and then kneaded. Subsequently, 15% by mass of second dilute sulfuric acid (specific gravity 1.50) was added and then kneaded to prepare paste B. In addition, the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the lead powder and the short fiber for reinforcement which were used when producing the above-mentioned paste A, and the red lead used when producing the paste B. The amount is based on the total mass.
 そして、前記ペーストAに前記ペーストBを添加して1時間の混練を行い、正極材ペーストを作製した。この正極材ペーストにおいて、ペーストA中に含まれる鉛粉と、ペーストB中に含まれる鉛丹との割合(質量比)は、鉛粉/鉛丹=85/15になるように調整した。また、水の全量は、鉛粉、補強用短繊維及び鉛丹の合計質量を基準として4.6質量%とした。正極材ペーストの作製に際しては、急激な温度上昇を避けるため、前記ペーストBの添加は段階的に行った。 The paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste. In this positive electrode material paste, the ratio (mass ratio) of the lead powder contained in the paste A and the lead powder contained in the paste B was adjusted to be lead powder / lead powder = 85/15. The total amount of water was 4.6% by mass based on the total mass of lead powder, reinforcing short fibers and red lead. In producing the positive electrode material paste, the paste B was added stepwise in order to avoid a rapid temperature rise.
 鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に前記正極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極板を作製した。正極材の比表面積及び多孔度を実施例1と同様にして測定した。 After the positive electrode material paste was filled in an expandable current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process, it was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the unchemically formed positive electrode plate. The specific surface area and porosity of the positive electrode material were measured in the same manner as in Example 1.
(実施例4)
 電池の組み立て時において、硫酸アルミニウム無水物の添加量を下記のように変更した以外は、実施例1と同様にして鉛蓄電池を作製した。
Example 4
A lead storage battery was produced in the same manner as in Example 1 except that the addition amount of aluminum sulfate anhydride was changed as follows when the battery was assembled.
[実施例4の電池の組み立て]
 実施例1と同様に2V単セル電池(JIS D 5301規定のB19サイズの単セルに相当、K42サイズのISS車用鉛蓄電池)を組み立てた。アルミニウムイオン濃度が0.04mol/Lになるように硫酸アルミニウム無水物を溶解させた比重1.200の希硫酸をこの電池に注液した。1時間放置後、40℃の水槽中、通電電流6Aで20時間の条件で化成して鉛蓄電池を作製した。化成後(仕上がり後)の電解液の比重を表1に示すように調整した。
[Assembly of Battery of Example 4]
A 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301 and a K42 size lead acid battery for ISS vehicles) was assembled in the same manner as in Example 1. Dilute sulfuric acid having a specific gravity of 1.200 in which aluminum sulfate anhydride was dissolved so that the aluminum ion concentration was 0.04 mol / L was poured into this battery. After standing for 1 hour, a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours. The specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
(実施例5)
 電池の組み立て時において、硫酸アルミニウム無水物の添加量を下記のように変更した以外は、実施例1と同様にして鉛蓄電池を作製した。
(Example 5)
A lead storage battery was produced in the same manner as in Example 1 except that the addition amount of aluminum sulfate anhydride was changed as follows when the battery was assembled.
[実施例5の電池の組み立て]
 実施例1と同様に2V単セル電池(JIS D 5301規定のB19サイズの単セルに相当、K42サイズのISS車用鉛蓄電池)を組み立てた。アルミニウムイオン濃度が0.1mol/Lになるように硫酸アルミニウム無水物を溶解させた比重1.200の希硫酸をこの電池に注液した。1時間放置後、40℃の水槽中、通電電流6Aで20時間の条件で化成して鉛蓄電池を作製した。化成後(仕上がり後)の電解液の比重を表1に示すように調整した。
[Assembly of the battery of Example 5]
A 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301 and a K42 size lead acid battery for ISS vehicles) was assembled in the same manner as in Example 1. Dilute sulfuric acid having a specific gravity of 1.200 in which aluminum sulfate anhydride was dissolved so that the aluminum ion concentration was 0.1 mol / L was poured into this battery. After standing for 1 hour, a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours. The specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
(実施例6)
 電池の組み立て時において、電解液(希硫酸)の比重を下記のように変更した以外は、実施例1と同様にして鉛蓄電池を作製した。
(Example 6)
A lead storage battery was produced in the same manner as in Example 1 except that the specific gravity of the electrolytic solution (dilute sulfuric acid) was changed as follows when the battery was assembled.
[実施例6の電池の組み立て]
 実施例1と同様に2V単セル電池(JIS D 5301規定のB19サイズの単セルに相当、K42サイズのISS車用鉛蓄電池)を組み立てた。アルミニウムイオン濃度が0.06mol/Lになるように硫酸アルミニウム無水物を溶解させた比重1.180の希硫酸をこの電池に注液した。1時間放置後、40℃の水槽中、通電電流6Aで20時間の条件で化成して鉛蓄電池を作製した。化成後(仕上がり後)の電解液の比重を表1に示すように調整した。
[Assembly of Battery of Example 6]
A 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301 and a K42 size lead acid battery for ISS vehicles) was assembled in the same manner as in Example 1. Dilute sulfuric acid having a specific gravity of 1.180 in which aluminum sulfate anhydride was dissolved so that the aluminum ion concentration was 0.06 mol / L was poured into this battery. After standing for 1 hour, a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours. The specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
(実施例7)
 電池の組み立て時において、電解液(希硫酸)の比重を下記のように変更した以外は、実施例1と同様にして鉛蓄電池を作製した。
(Example 7)
A lead storage battery was produced in the same manner as in Example 1 except that the specific gravity of the electrolytic solution (dilute sulfuric acid) was changed as follows when the battery was assembled.
[実施例7の電池の組み立て]
 実施例1と同様に2V単セル電池(JIS D 5301規定のB19サイズの単セルに相当、K42サイズのISS車用鉛蓄電池)を組み立てた。アルミニウムイオン濃度が0.06mol/Lになるように硫酸アルミニウム無水物を溶解させた比重1.220の希硫酸をこの電池に注液した。1時間放置後、40℃の水槽中、通電電流6Aで20時間の条件で化成して鉛蓄電池を作製した。化成後(仕上がり後)の電解液の比重を表1に示すように調整した。
[Assembly of the battery of Example 7]
A 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301 and a K42 size lead acid battery for ISS vehicles) was assembled in the same manner as in Example 1. Dilute sulfuric acid having a specific gravity of 1.220 in which aluminum sulfate anhydride was dissolved so that the aluminum ion concentration was 0.06 mol / L was poured into this battery. After standing for 1 hour, a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours. The specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
(実施例8)
 負極板を下記のようにして作製した以外は、実施例1と同様にして鉛蓄電池を作製した。
(Example 8)
A lead-acid battery was produced in the same manner as in Example 1 except that the negative electrode plate was produced as follows.
[実施例8の負極板の作製]
 負極活物質の原料として鉛粉を用いた。上記で得られたビスフェノール系樹脂を固形分換算で0.2質量%、補強用短繊維(アクリル繊維)を0.1質量%、硫酸バリウムを1.0質量%、ケッチェンブラック(ライオン・スペシャリティ・ケミカルズ株式会社製、商品名:カーボンECP600JD)を0.2質量%含む混合物を前記鉛粉に添加した後に乾式混合した(前記配合量は、負極活物質の原料の全質量を基準とした配合量である)。次に、水を8質量%(基準:負極活物質の原料、ビスフェノール系樹脂、補強用短繊維、硫酸バリウム及びケッチェンブラックの合計質量)加えた後に混練した。続いて、希硫酸(比重1.28)15.5質量%(基準:負極活物質の原料、ビスフェノール系樹脂、補強用短繊維、硫酸バリウム及びケッチェンブラックの合計質量)を少量ずつ添加しながら混練して、負極材ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体にこの負極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で20時間熟成した。その後、乾燥して未化成の負極板を作製した。負極材の比表面積を実施例1と同様にして測定した。
[Production of Negative Electrode Plate of Example 8]
Lead powder was used as a raw material for the negative electrode active material. 0.2% by mass of the above-obtained bisphenol-based resin, 0.1% by mass of reinforcing short fibers (acrylic fibers), 1.0% by mass of barium sulfate, Ketjen Black (Lion Specialty)・ Chemicals Co., Ltd., trade name: Carbon ECP600JD) containing 0.2% by mass was added to the lead powder and then dry-mixed (the compounding amount is based on the total mass of the negative electrode active material) Amount). Next, 8% by mass of water (reference: raw material of negative electrode active material, bisphenol resin, reinforcing short fiber, barium sulfate and ketjen black) was added and then kneaded. Subsequently, 15.5% by mass of dilute sulfuric acid (specific gravity 1.28) (reference: total mass of raw material of negative electrode active material, bisphenol resin, reinforcing short fiber, barium sulfate and ketjen black) was added little by little. The negative electrode material paste was produced by kneading. After this negative electrode material paste was filled in an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process, it was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 20 hours. Then, it dried and produced the unchemically formed negative electrode plate. The specific surface area of the negative electrode material was measured in the same manner as in Example 1.
(実施例9)
 負極板の作製時において、ビスフェノール系樹脂に代えてリグニンスルホン酸ナトリウム(日本製紙株式会社製、商品名「バニレックスN」)を用いたこと以外は、実施例1と同様にして鉛蓄電池を作製した。
Example 9
A lead-acid battery was prepared in the same manner as in Example 1 except that sodium lignin sulfonate (manufactured by Nippon Paper Industries Co., Ltd., trade name “Vanilex N”) was used in place of the bisphenol-based resin during the production of the negative electrode plate. .
(比較例1)
 正極板を下記のように作製した以外は、実施例1と同様にして鉛蓄電池を作製した。
(Comparative Example 1)
A lead-acid battery was produced in the same manner as in Example 1 except that the positive electrode plate was produced as follows.
[比較例1の正極板の作製]
 まず、鉛粉90質量部と、鉛丹(Pb)3.9質量部と、補強用短繊維としてアクリル繊維0.25質量部と、ペーストのpHを上げ三塩基性硫酸鉛の結晶成長を促進する硫酸ナトリウム0.02質量部とを配合した。次に、水を加えた後に混練してペーストAを作製した。前記水の配合量は、前記鉛粉、前記鉛丹、前記補強用短繊維、前記硫酸ナトリウム、及び、後述のペーストBを作製する際に用いた鉛丹の合計質量を基準として9.7質量%とした。
[Production of Positive Electrode Plate of Comparative Example 1]
First, 90 parts by weight of lead powder, 3.9 parts by weight of lead (Pb 3 O 4 ), 0.25 parts by weight of acrylic fiber as a reinforcing short fiber, and a crystal of tribasic lead sulfate by raising the pH of the paste 0.02 part by mass of sodium sulfate for promoting growth was blended. Next, after adding water, it knead | mixed and the paste A was produced. The amount of the water blended is 9.7 mass based on the total mass of the lead powder, the red lead, the reinforcing short fiber, the sodium sulfate, and the red lead used in preparing the paste B described later. %.
 次に、鉛丹(Pb)6.1質量部に希硫酸(比重1.35)14.6質量%を加えて混練し、ペーストBを作製した。なお、前記希硫酸の配合量は、前述のペーストA及びペーストBを作製する際に用いた鉛粉、鉛丹、補強用短繊維及び硫酸ナトリウムの合計質量を基準とした配合量である。 Next, 14.6% by weight of dilute sulfuric acid (specific gravity 1.35) was added to 6.1 parts by weight of red lead (Pb 3 O 4 ) and kneaded to prepare paste B. In addition, the compounding quantity of the said dilute sulfuric acid is a compounding quantity on the basis of the total mass of the lead powder used when producing the above-mentioned paste A and paste B, a red lead, a reinforcing short fiber, and sodium sulfate.
 そして、前記ペーストAに前記ペーストBを添加して1時間の混練を行い、正極材ペーストを作製した。この正極材ペーストにおいて、ペーストA中に含まれる鉛粉と、ペーストB中に含まれる鉛丹との割合(質量比)は、鉛粉/鉛丹=85/15になるように調整した。また、水の全量は、鉛粉、鉛丹、補強用短繊維及び硫酸ナトリウムの合計質量を基準として9.2質量%とした。正極材ペーストの作製に際しては、急激な温度上昇を避けるため、前記ペーストBの添加は段階的に行った。 The paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste. In this positive electrode material paste, the ratio (mass ratio) of the lead powder contained in the paste A and the lead powder contained in the paste B was adjusted to be lead powder / lead powder = 85/15. The total amount of water was 9.2% by mass based on the total mass of lead powder, red lead, reinforcing short fibers, and sodium sulfate. In producing the positive electrode material paste, the paste B was added stepwise in order to avoid a rapid temperature rise.
 鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体に前記正極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極板を作製した。正極材の比表面積及び多孔度を実施例1と同様にして測定した。 The positive electrode material paste was filled into an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the unchemically formed positive electrode plate. The specific surface area and porosity of the positive electrode material were measured in the same manner as in Example 1.
(比較例2)
 正極板を比較例1と同様の方法で作製し、負極板を実施例8と同様の方法で作製した以外は、実施例1と同様にして鉛蓄電池を作製した。正極材の比表面積及び多孔度、並びに、負極材の比表面積を実施例1と同様にして測定した。
(Comparative Example 2)
A lead storage battery was produced in the same manner as in Example 1 except that the positive electrode plate was produced in the same manner as in Comparative Example 1 and the negative electrode plate was produced in the same manner as in Example 8. The specific surface area and porosity of the positive electrode material and the specific surface area of the negative electrode material were measured in the same manner as in Example 1.
(比較例3)
 正極板を下記のようにして作製した以外は、実施例1と同様にして鉛蓄電池を作製した。
(Comparative Example 3)
A lead-acid battery was produced in the same manner as in Example 1 except that the positive electrode plate was produced as follows.
[比較例3の正極板の作製]
 まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.07質量%と、硫酸ナトリウム0.01質量%とを加えて乾式混合した。アクリル繊維及び硫酸ナトリウムのそれぞれの配合量は、鉛粉の全質量を基準とした配合量である。次に、前記鉛粉を含む混合物に対して、水10質量%(基準:鉛粉、補強用短繊維及び硫酸ナトリウムの合計質量)と、希硫酸(比重1.28)9質量%(基準:鉛粉、補強用短繊維及び硫酸ナトリウムの合計質量)とを加えて混練して正極材ペーストを作製した。正極材ペーストの作製に際しては、急激な温度上昇を避けるため、希硫酸の添加は段階的に行った。
[Production of Positive Electrode Plate of Comparative Example 3]
First, 0.07% by mass of acrylic fiber and 0.01% by mass of sodium sulfate were added to the lead powder as a reinforcing short fiber and dry mixed. Each compounding quantity of an acrylic fiber and sodium sulfate is a compounding quantity on the basis of the total mass of lead powder. Next, with respect to the mixture containing the lead powder, 10% by mass of water (standard: total mass of lead powder, reinforcing short fibers and sodium sulfate) and 9% by mass of dilute sulfuric acid (specific gravity 1.28) (standard: Lead powder, reinforcing short fibers and sodium sulfate) were added and kneaded to prepare a positive electrode material paste. In preparing the positive electrode material paste, dilute sulfuric acid was added step by step in order to avoid a rapid temperature rise.
 鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体に前記正極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極板を作製した。正極材の比表面積及び多孔度を実施例1と同様にして測定した。 The positive electrode material paste was filled into an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the unchemically formed positive electrode plate. The specific surface area and porosity of the positive electrode material were measured in the same manner as in Example 1.
(比較例4)
 負極板を下記のようにして作製した以外は、実施例1と同様にして鉛蓄電池を作製した。
(Comparative Example 4)
A lead-acid battery was produced in the same manner as in Example 1 except that the negative electrode plate was produced as follows.
[比較例4の負極板の作製]
 負極活物質の原料として鉛粉を用いた。上記で得られたビスフェノール系樹脂を固形分換算で0.2質量%、補強用短繊維(アクリル繊維)を0.1質量%、硫酸バリウムを1.0質量%、ファーネスブラック(キャボット社製、商品名:バルカンXC72)を0.2質量%含む混合物を前記鉛粉に添加した後に乾式混合した(前記配合量は、負極活物質の原料の全質量を基準とした配合量である)。次に、水を8質量%(基準:負極活物質の原料、ビスフェノール系樹脂、補強用短繊維、硫酸バリウム及びファーネスブラックの合計質量)加えた後に混練した。続いて、希硫酸(比重1.28)15.5質量%(基準:負極活物質の原料、ビスフェノール系樹脂、補強用短繊維、硫酸バリウム及びファーネスブラックの合計質量)を少量ずつ添加しながら混練して、負極材ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体にこの負極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で20時間熟成した。その後、乾燥して未化成の負極板を作製した。負極材の比表面積を実施例1と同様にして測定した。
[Production of Negative Electrode Plate of Comparative Example 4]
Lead powder was used as a raw material for the negative electrode active material. 0.2% by mass of the bisphenol-based resin obtained above in terms of solid content, 0.1% by mass of reinforcing short fibers (acrylic fibers), 1.0% by mass of barium sulfate, furnace black (manufactured by Cabot Corporation, A mixture containing 0.2% by mass of trade name: Vulcan XC72) was added to the lead powder and then dry-mixed (the compounding amount is based on the total mass of the raw material of the negative electrode active material). Next, 8% by mass of water (standard: raw material of negative electrode active material, bisphenol-based resin, reinforcing short fiber, barium sulfate and furnace black) was added and then kneaded. Subsequently, 15.5% by mass of dilute sulfuric acid (specific gravity 1.28) (standard: total raw material of negative electrode active material, bisphenol resin, reinforcing short fiber, barium sulfate and furnace black) is added little by little and kneaded. Thus, a negative electrode material paste was produced. After this negative electrode material paste was filled in an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process, it was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 20 hours. Then, it dried and produced the unchemically formed negative electrode plate. The specific surface area of the negative electrode material was measured in the same manner as in Example 1.
(比較例5)
 電池の組み立て時において、下記のとおり硫酸アルミニウム無水物を用いなかったこと以外は、実施例1と同様にして鉛蓄電池を作製した。
(Comparative Example 5)
A lead-acid battery was produced in the same manner as in Example 1 except that aluminum sulfate anhydride was not used at the time of assembling the battery as described below.
[比較例5の電池の組み立て]
 実施例1と同様に2V単セル電池(JIS D 5301規定のB19サイズの単セルに相当、K42サイズのISS車用鉛蓄電池)を組み立てた。比重1.220の希硫酸をこの電池に注液した。1時間放置後、40℃の水槽中、通電電流6Aで20時間の条件で化成して鉛蓄電池を作製した。化成後(仕上がり後)の電解液の比重を表1に示すように調整した。
[Assembly of Battery of Comparative Example 5]
A 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301 and a K42 size lead acid battery for ISS vehicles) was assembled in the same manner as in Example 1. Dilute sulfuric acid having a specific gravity of 1.220 was poured into this battery. After standing for 1 hour, a lead storage battery was produced by chemical conversion in a water bath at 40 ° C. with an energizing current of 6 A for 20 hours. The specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
(比較例6)
 負極板を比較例4と同様の方法で作製した以外は、比較例5と同様にして鉛蓄電池を作製した。負極材の比表面積を実施例1と同様にして測定した。化成後(仕上がり後)の電解液の比重を表1に示すように調整した。
(Comparative Example 6)
A lead-acid battery was produced in the same manner as in Comparative Example 5 except that the negative electrode plate was produced in the same manner as in Comparative Example 4. The specific surface area of the negative electrode material was measured in the same manner as in Example 1. The specific gravity of the electrolytic solution after chemical conversion (after finishing) was adjusted as shown in Table 1.
<電池特性の評価>
 前記の2V単セル電池について、充電受け入れ性、放電特性及びISSサイクル特性を下記のとおり測定した。結果を表1に示す。
<Evaluation of battery characteristics>
About the said 2V single cell battery, the charge acceptance property, the discharge characteristic, and the ISS cycle characteristic were measured as follows. The results are shown in Table 1.
(充電受け入れ性)
 作製した鉛蓄電池に対し、化成後約12時間放置した後、25℃で5.6Aの電流値で30分間定電流放電を行った。そして、6時間放置した後、2.33V、制限電流100Aで60秒間の定電圧充電を行い、その開始から5秒目までの電流値を測定した。比較例1の測定結果を100として相対評価した。
(Charge acceptance)
The produced lead storage battery was left for about 12 hours after chemical conversion, and then subjected to constant current discharge at 25 ° C. and a current value of 5.6 A for 30 minutes. Then, after being left for 6 hours, constant voltage charging was performed for 60 seconds at 2.33 V and a limiting current of 100 A, and current values from the start to the 5th second were measured. Relative evaluation was made with the measurement result of Comparative Example 1 as 100.
(放電特性)
 放電特性として、-15℃において150Aで定電流放電し、電池電圧が1.0Vに達するまでの放電持続時間を測定した。比較例1の測定結果を100として相対評価した。放電持続時間が長いほど放電特性に優れる電池であると評価される。
(Discharge characteristics)
As discharge characteristics, a constant current discharge was performed at 150 A at −15 ° C., and the discharge duration until the battery voltage reached 1.0 V was measured. Relative evaluation was made with the measurement result of Comparative Example 1 as 100. The longer the discharge duration, the better the battery.
(ISSサイクル特性)
 ISSサイクル特性は次のように測定した。電池温度が25℃になるように雰囲気温度を調整した。45A-59秒間の定電流放電及び300A-1秒間の定電流放電を行った後に100A-2.33V-60秒間の定電流・定電圧充電を行う操作を1サイクルとする試験を7200サイクル行った。この試験は、ISS車での鉛蓄電池の使われ方を模擬したサイクル試験である。このサイクル試験では、放電量に対して充電量が少ないため、充電が完全に行われないと徐々に充電不足になる。その結果、放電電流を300Aとして1秒間放電した時の1秒目電圧が徐々に低下する。すなわち、定電流・定電圧充電時に負極が分極して早期に定電圧充電に切り替わると、充電電流が減衰して充電不足になる。このサイクル試験では、7200サイクル後の300A放電時の1秒目電圧が1.2V以上のときを「A」と判定し、1.2Vを下回ったときを「B」と判定した。
(ISS cycle characteristics)
The ISS cycle characteristics were measured as follows. The ambient temperature was adjusted so that the battery temperature was 25 ° C. 7200 cycles of a test in which a constant current / constant voltage charge of 100 A-2.33 V-60 seconds after a constant current discharge of 45 A-59 seconds and a constant current discharge of 300 A-1 seconds were performed as one cycle were performed. . This test is a cycle test that simulates the use of lead-acid batteries in ISS cars. In this cycle test, since the amount of charge is small with respect to the amount of discharge, if the charging is not performed completely, the charging gradually becomes insufficient. As a result, the first-second voltage when the discharge current is 300 A for 1 second is gradually reduced. That is, if the negative electrode is polarized during constant current / constant voltage charging and switched to constant voltage charging at an early stage, the charging current is attenuated, resulting in insufficient charging. In this cycle test, when the first-second voltage at 300 A discharge after 7200 cycles was 1.2 V or more, it was determined as “A”, and when it was below 1.2 V, “B” was determined.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

Claims (9)

  1.  正極、負極及び電解液を備える鉛蓄電池であって、
     前記正極が、集電体と、当該集電体に保持された正極材と、を有し、
     前記負極が、集電体と、当該集電体に保持された負極材と、を有し、
     前記正極材の比表面積が11m/g以上であり、
     前記負極材が負極活物質及びケッチェンブラックを含有し、
     前記電解液がアルミニウムイオンを含有する、鉛蓄電池。
    A lead acid battery comprising a positive electrode, a negative electrode and an electrolyte solution,
    The positive electrode has a current collector and a positive electrode material held by the current collector;
    The negative electrode has a current collector and a negative electrode material held by the current collector;
    The positive electrode material has a specific surface area of 11 m 2 / g or more,
    The negative electrode material contains a negative electrode active material and ketjen black,
    A lead acid battery in which the electrolyte contains aluminum ions.
  2.  前記負極材が、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有するビスフェノール系樹脂を更に含有する、請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the negative electrode material further contains a bisphenol-based resin having at least one selected from the group consisting of a sulfone group and a sulfonate group.
  3.  前記負極材が、リグニンスルホン酸及びリグニンスルホン酸塩からなる群より選ばれる少なくとも一種を更に含有する、請求項1又は2に記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2, wherein the negative electrode material further contains at least one selected from the group consisting of lignin sulfonic acid and lignin sulfonate.
  4.  前記電解液の比重が1.24~1.33である、請求項1~3のいずれか一項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 3, wherein the electrolyte has a specific gravity of 1.24 to 1.33.
  5.  前記ケッチェンブラックの含有量が前記負極材の全質量を基準として0.01~2質量%である、請求項1~4のいずれか一項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 4, wherein a content of the ketjen black is 0.01 to 2% by mass based on a total mass of the negative electrode material.
  6.  前記負極材の比表面積が0.5~1.2m/gである、請求項1~5のいずれか一項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 5, wherein the negative electrode material has a specific surface area of 0.5 to 1.2 m 2 / g.
  7.  前記電解液における前記アルミニウムイオンの濃度が0.01~0.2mol/Lである、請求項1~6のいずれか一項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 6, wherein the concentration of the aluminum ions in the electrolytic solution is 0.01 to 0.2 mol / L.
  8.  請求項1~7のいずれか一項に記載の鉛蓄電池を備える、マイクロハイブリッド車。 A micro hybrid vehicle comprising the lead storage battery according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか一項に記載の鉛蓄電池を備える、アイドリングストップシステム車。
     
    An idling stop system vehicle comprising the lead storage battery according to any one of claims 1 to 7.
PCT/JP2016/050870 2015-01-14 2016-01-13 Lead-acid battery, micro-hybrid vehicle, and vehicle having idling stop system WO2016114316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016569487A JP6432609B2 (en) 2015-01-14 2016-01-13 Lead acid battery, micro hybrid vehicle and idling stop system vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015005337 2015-01-14
JP2015-005337 2015-01-14

Publications (1)

Publication Number Publication Date
WO2016114316A1 true WO2016114316A1 (en) 2016-07-21

Family

ID=56405857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050870 WO2016114316A1 (en) 2015-01-14 2016-01-13 Lead-acid battery, micro-hybrid vehicle, and vehicle having idling stop system

Country Status (2)

Country Link
JP (1) JP6432609B2 (en)
WO (1) WO2016114316A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100635A1 (en) * 2016-11-29 2018-06-07 日立化成株式会社 Lead storage battery and production method therefor
JP2018198151A (en) * 2017-05-24 2018-12-13 古河電池株式会社 Lead storage battery
WO2019235216A1 (en) * 2018-06-06 2019-12-12 日立化成株式会社 Lead storage battery
WO2020080418A1 (en) * 2018-10-16 2020-04-23 株式会社Gsユアサ Lead storage battery and production method therefor
JPWO2019087686A1 (en) * 2017-10-31 2020-11-12 株式会社Gsユアサ Lead-acid battery
JP2021140966A (en) * 2020-03-06 2021-09-16 古河電池株式会社 Kneaded material for positive electrode mixture of lead-acid battery, manufacturing method of lead-acid battery, lead-acid battery
WO2022259679A1 (en) * 2021-06-08 2022-12-15 株式会社Gsユアサ Control valve type lead acid storage battery and power storage system provided with same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174825A (en) * 1991-12-25 1993-07-13 Shin Kobe Electric Mach Co Ltd Lead battery
JP2006196191A (en) * 2005-01-11 2006-07-27 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2012042917A1 (en) * 2010-09-30 2012-04-05 新神戸電機株式会社 Lead storage battery
WO2013073091A1 (en) * 2011-11-17 2013-05-23 パナソニック株式会社 Lead storage cell
WO2013150754A1 (en) * 2012-04-06 2013-10-10 株式会社Gsユアサ Flooded lead-acid battery
JP2014123510A (en) * 2012-12-21 2014-07-03 Panasonic Corp Lead storage battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174825A (en) * 1991-12-25 1993-07-13 Shin Kobe Electric Mach Co Ltd Lead battery
JP2006196191A (en) * 2005-01-11 2006-07-27 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2012042917A1 (en) * 2010-09-30 2012-04-05 新神戸電機株式会社 Lead storage battery
WO2013073091A1 (en) * 2011-11-17 2013-05-23 パナソニック株式会社 Lead storage cell
WO2013150754A1 (en) * 2012-04-06 2013-10-10 株式会社Gsユアサ Flooded lead-acid battery
JP2014123510A (en) * 2012-12-21 2014-07-03 Panasonic Corp Lead storage battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100635A1 (en) * 2016-11-29 2018-06-07 日立化成株式会社 Lead storage battery and production method therefor
JP2018198151A (en) * 2017-05-24 2018-12-13 古河電池株式会社 Lead storage battery
JPWO2019087686A1 (en) * 2017-10-31 2020-11-12 株式会社Gsユアサ Lead-acid battery
EP3680978A4 (en) * 2017-10-31 2021-06-23 GS Yuasa International Ltd. Lead storage battery
JP7255492B2 (en) 2017-10-31 2023-04-11 株式会社Gsユアサ lead acid battery
WO2019235216A1 (en) * 2018-06-06 2019-12-12 日立化成株式会社 Lead storage battery
WO2020080418A1 (en) * 2018-10-16 2020-04-23 株式会社Gsユアサ Lead storage battery and production method therefor
JPWO2020080418A1 (en) * 2018-10-16 2021-09-24 株式会社Gsユアサ Lead-acid battery and its manufacturing method
JP7248033B2 (en) 2018-10-16 2023-03-29 株式会社Gsユアサ Lead-acid battery and manufacturing method thereof
JP2021140966A (en) * 2020-03-06 2021-09-16 古河電池株式会社 Kneaded material for positive electrode mixture of lead-acid battery, manufacturing method of lead-acid battery, lead-acid battery
JP7026715B2 (en) 2020-03-06 2022-02-28 古河電池株式会社 Kneaded material for positive electrode mixture of lead-acid batteries, manufacturing method of lead-acid batteries, lead-acid batteries
WO2022259679A1 (en) * 2021-06-08 2022-12-15 株式会社Gsユアサ Control valve type lead acid storage battery and power storage system provided with same

Also Published As

Publication number Publication date
JPWO2016114316A1 (en) 2017-08-10
JP6432609B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6432609B2 (en) Lead acid battery, micro hybrid vehicle and idling stop system vehicle
JP6635189B2 (en) Lead storage battery, micro hybrid vehicle and idling stop system vehicle
JP6677324B2 (en) Lead storage battery, micro hybrid vehicle and idling stop system vehicle
JP6202197B2 (en) Bisphenol resin, resin composition, electrode layer, electrode and lead acid battery
WO2016121510A1 (en) Lead storage cell and automobile provided with same
JP6724781B2 (en) Lead acid battery
JP2020017547A (en) Lead storage battery
JP2016129117A (en) Lead storage battery
JP6468163B2 (en) Lead acid battery
JP6597994B2 (en) Liquid lead-acid battery for idling stop vehicles
JP6779883B2 (en) Separator for lead-acid battery, lead-acid battery and manufacturing method thereof
JP6582637B2 (en) Lead acid battery
JP2017045539A (en) Lead acid storage battery
JP6638241B2 (en) Lead storage battery
JP2018116843A (en) Electrode and lead acid storage battery
JP6870207B2 (en) Lead-acid battery
JP2019204702A (en) Lead acid battery
JP6856113B2 (en) Lead-acid battery
JP6953874B2 (en) Lead-acid battery
JP6601536B2 (en) Lead acid battery
JP6958685B2 (en) Lead-acid batteries, idling stop system vehicles and micro-hybrid vehicles
JP6743919B2 (en) Lead-acid batteries, idling stop system vehicles and micro hybrid vehicles
JP6781365B2 (en) Lead-acid battery
WO2018105005A1 (en) Lead storage battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569487

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737387

Country of ref document: EP

Kind code of ref document: A1