WO2016114205A1 - Fine silver particle dispersion, ink composition, silver electrode, and thin film transistor - Google Patents

Fine silver particle dispersion, ink composition, silver electrode, and thin film transistor Download PDF

Info

Publication number
WO2016114205A1
WO2016114205A1 PCT/JP2016/050296 JP2016050296W WO2016114205A1 WO 2016114205 A1 WO2016114205 A1 WO 2016114205A1 JP 2016050296 W JP2016050296 W JP 2016050296W WO 2016114205 A1 WO2016114205 A1 WO 2016114205A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver fine
particle dispersion
fine particle
silver
ink composition
Prior art date
Application number
PCT/JP2016/050296
Other languages
French (fr)
Japanese (ja)
Inventor
和公 横井
季彦 松村
泰明 松下
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016569328A priority Critical patent/JP6393953B2/en
Publication of WO2016114205A1 publication Critical patent/WO2016114205A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks

Definitions

  • the present invention relates to a silver fine particle dispersion, an ink composition, a silver electrode, and a thin film transistor.
  • Silver fine particles are widely used as a material for forming conductor wiring and electrodes (hereinafter referred to as “conductor wiring and the like”).
  • conductor wiring and the like By applying silver fine particles on a base material in a state dispersed in an aqueous medium, baking (sintering) the silver fine particles, and performing etching treatment as necessary, a conductor wiring or the like having a desired shape can be formed.
  • As a method for applying the silver fine particle dispersion onto a substrate application by various printing methods, application by spin coating, application by a dispenser, and the like are known.
  • the silver fine particle dispersion is used as an ink, and this ink is applied to a substrate or the like by various printing methods.
  • the use of ink jet printing is expanding because a fine pattern can be formed with high accuracy, the process is simple, and ink can be used without waste.
  • Ink consisting of a silver fine particle dispersion used for ink jet printing has good dispersion stability as well as good dispersibility of silver fine particles (characteristic that enables silver fine particles to be uniformly dispersed in a medium) in order to improve ejection stability. (The property that the dispersion state of the above-mentioned silver fine particles can be stably maintained over time or against external stimuli (heat, vibration, etc.)).
  • Patent Document 1 discloses a silver colloid solution in which silver fine particles having an oxidized polymer of a phenol compound and / or an oxidized form thereof on the surface are dispersed in a solvent. It describes that it is excellent in dispersion stability and can be used for forming electrodes and circuit wiring patterns by ink jet printing.
  • the inventors of the present invention have prepared an emulsion obtained by emulsifying and dispersing a hydrophobic organic solvent solution in which a specific antioxidant is dissolved in an aqueous medium using a nonionic surfactant, and dispersing silver fine particles in the aqueous medium.
  • a specific antioxidant is dissolved in an aqueous medium using a nonionic surfactant
  • dispersing silver fine particles in the aqueous medium When the silver fine particle dispersion was prepared by mixing with the resulting dispersion, the silver fine particle dispersion was excellent in the dispersibility and dispersion stability of the silver fine particles, and the conductor wiring formed using this silver fine particle dispersion. Etc. showed excellent conductivity and hardly caused migration. Furthermore, it has been found that when a thin film transistor (TFT) electrode is formed using this silver fine particle dispersion, it shows good carrier mobility and functions well as a TFT electrode. The present invention has been further studied based on these findings and has been completed.
  • TFT thin film
  • a silver fine particle dispersion obtained by dispersing silver fine particles in an aqueous medium A silver fine particle dispersion obtained by emulsifying and dispersing a mixed solution of an antioxidant having an SP value of 30 or less and a hydrophobic organic solvent in the aqueous medium with a nonionic surfactant.
  • [7] [1] An ink composition using the silver fine particle dispersion described in any one of [5]. [8] The ink composition according to [7], which is used for inkjet printing. [9] The ink composition according to [7] or [8], which is used for forming a silver electrode. [10] A silver electrode formed using the silver fine particle dispersion according to any one of [1] to [6] or the ink composition according to any one of [7] to [9]. [11] [10] A thin film transistor having the silver electrode according to [10].
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the silver fine particle dispersion or ink composition of the present invention is excellent in both dispersibility and dispersion stability. Moreover, the conductor wiring etc. formed using this silver fine particle dispersion are excellent in electroconductivity, and generation
  • the silver electrode of the present invention can effectively suppress the occurrence of migration, and can be suitably used, for example, as a TFT electrode. Furthermore, the thin film transistor of the present invention has the electrode of the present invention, and migration of the electrode is suppressed, so that the insulation reliability between the electrodes is excellent and the carrier mobility is excellent.
  • silver fine particle dispersion A preferred embodiment of the silver fine particle dispersion of the present invention will be described.
  • silver fine particles are dispersed in an aqueous medium, and the aqueous medium further contains a mixed solution of an antioxidant having an SP value of 30 or less and a hydrophobic organic solvent. It is emulsified and dispersed with a nonionic surfactant. That is, the antioxidant is present in oil droplets dispersed in an aqueous medium in the silver fine particle dispersion.
  • “dispersed” in an aqueous medium means a state in which the particles are in the form of fine particles and are uniformly (homogeneously) dispersed in the aqueous medium.
  • the silver fine particle dispersion of the present invention may contain one or more of the above antioxidants.
  • the silver fine particle dispersion of the present invention may contain one kind or two or more kinds of the nonionic surfactant.
  • the silver fine particle dispersion of the present invention may contain one or more of the above hydrophobic organic solvents.
  • the silver fine particle dispersion of the present invention may further contain a drying inhibitor, a penetration accelerator, an antiseptic, an antifoaming agent, a viscosity modifier, a pH adjuster, a chelating agent, metal particles other than silver, and the like.
  • the silver fine particle dispersion of the present invention preferably does not contain an ionic component.
  • the ionic component means a component having ionized and charged groups in the silver fine particle dispersion. Since the silver fine particle dispersion of the present invention does not contain an ionic component, it is possible to further increase the conductivity of a conductor wiring or the like formed using the silver fine particle dispersion, and to further suppress the occurrence of migration and to insulate. Reliability can be increased.
  • the aqueous medium (a)) used in the silver fine particle dispersion of the present invention is water or a mixed liquid of water and a water-soluble organic solvent.
  • the content of water is preferably 30% by mass or more, more preferably 40 to 100% by mass, further preferably 50 to 100% by mass, and more preferably 60 to 100% by mass.
  • water examples include distilled water, ion exchange water, pure water, and ultrapure water.
  • the water-soluble organic solvent that can be contained in the aqueous medium preferably has a solubility in water at 20 ° C. of 10% by mass or more.
  • the water-soluble organic solvent include alcohols, ketones, ether compounds, amide compounds, nitrile compounds, and sulfone compounds.
  • alcohols include, for example, ethanol, isopropanol, 1-methoxy-2-propanol, n-butanol, t-butanol, isobutanol, diacetone alcohol, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, and glycerin.
  • ketone include acetone, methyl ethyl ketone, diethyl ketone, and methyl isobutyl ketone.
  • the ether compound include dibutyl ether, tetrahydrofuran, and dioxane.
  • the amide compound include dimethylformamide and diethylformamide.
  • An example of the nitrile compound is acetonitrile.
  • the sulfone compound include dimethyl sulfoxide, dimethyl sulfone, and sulfolane.
  • the content of the aqueous medium in the silver fine particle dispersion of the present invention is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and further preferably 30 to 70% by mass.
  • Silver fine particles contained in the silver fine particle dispersion of the present invention can be prepared by a conventional method.
  • a silver compound such as silver nitrate (I) (AgNO 3 ) or silver methanesulfonate (CH 3 SO 3 Ag) and a dispersant are dissolved in water, a reducing agent is added, and the silver is stirred for a certain time while stirring.
  • Silver fine particles can be obtained as a dispersion by reducing the ions.
  • the reducing agent is not particularly limited, and a conventionally known reducing agent used for reducing silver compounds to obtain silver fine particles can be used. Among them, from the viewpoint of obtaining silver fine particles having a small particle diameter and uniform particle diameter, alcohol (preferably methanol, ethanol, 2-propanol, ethylene glycol, trimethylolpropane, N, N-diethylhydroxylamine) is used as a reducing agent. Or 3-amino-1-propanol), an amine having no hydroxy group (preferably hydrazine or phenylhydrazine), ascorbic acid, formaldehyde, saccharides and the like are preferably used.
  • alcohol preferably methanol, ethanol, 2-propanol, ethylene glycol, trimethylolpropane, N, N-diethylhydroxylamine
  • 3-amino-1-propanol an amine having no hydroxy group (preferably hydrazine or phenylhydrazine), ascorbic acid, formaldehy
  • the silver fine particle dispersant As the silver fine particle dispersant, a conventionally known dispersant used as a silver fine particle dispersant can be widely used.
  • the dispersant may be a dispersant having an ionic group as a hydrophilic group, but a dispersion having a nonionic group as a hydrophilic group from the viewpoint of further improving the conductivity of a conductor wiring or the like and further suppressing the occurrence of migration. Agents are preferred.
  • the dispersant having a nonionic group as a hydrophilic group is preferably a polymer compound, for example, polyvinylpyrrolidone, polyethylene glycol, polyethylene glycol-polypropylene glycol copolymer, polyvinyl alcohol, polyallylamine, polyvinyl alcohol-polyvinyl acetate. Mention may be made of copolymers.
  • the nonionic dispersant that can be used in the present invention is a polymer compound
  • the weight average molecular weight is preferably 2000 to 50000, and more preferably 3000 to 30000. In this specification, the weight average molecular weight is measured by gel permeation chromatograph (GPC).
  • GPC uses HLC-8220GPC (manufactured by Tosoh Corporation), and three columns of TSKgeL Super HZM-H, TSKgeL Super HZ4000, and TSKgeL Super HZ2000 (manufactured by Tosoh Corporation, 4.6 mm ID ⁇ 15 cm) are connected in series. And THF (tetrahydrofuran) is used as the eluent.
  • THF tetrahydrofuran
  • the sample concentration is 0.35% by mass
  • the flow rate is 0.35 ml / min
  • the sample injection amount is 10 ⁇ l
  • the measurement temperature is 40 ° C.
  • an IR detector is used.
  • the calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000” It is prepared from 8 samples of “A-2500”, “A-1000” and “n-propylbenzene”.
  • the primary particle diameter of the silver fine particles can be adjusted by appropriately adjusting the type and blending ratio of the silver compound, dispersant, and reducing agent to be used, and further adjusting the stirring speed, temperature, time, and the like.
  • the average particle size of the silver fine particles is not particularly limited as long as it can be stably dispersed in an aqueous medium, but is preferably 10 to 200 nm from the viewpoint of coating suitability and storage stability. It is preferably 20 to 150 nm, more preferably 30 to 120 nm, further preferably 40 to 100 nm, and further preferably 50 to 100 nm.
  • a sufficiently low volume resistance value can be obtained when a film, wiring, electrode, or the like is formed.
  • the average particle size of the silver fine particles in the present specification is measured using a concentrated particle size analyzer FPAR-1000 (product name, manufactured by Otsuka Electronics Co., Ltd.). Specifically, measurement is performed under standard measurement conditions using the above apparatus (FPAR-1000), and the average particle diameter is obtained by cumulant analysis. Further, the particle size distribution of the silver fine particles in the silver fine particle dispersion is not particularly limited, and may be either a wide particle size distribution or a monodisperse particle size distribution.
  • the content of the silver fine particles in the silver fine particle dispersion of the present invention is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, and further preferably 20 to 70% by mass.
  • the content is more preferably 20 to 50% by mass, and further preferably 20 to 40% by mass. If it is in said range, the conductor wiring and electrically conductive film which have sufficient thickness and electroconductivity can be formed, and the fluid silver fine particle dispersion suitable for various printing methods can be obtained.
  • an antioxidant is a compound that exhibits an oxidation-inhibiting action on coexisting substances.
  • One or more antioxidants can be used in the silver fine particle dispersion of the present invention.
  • the antioxidant used in the present invention has an SP value (solubility parameter, unit: MPa 1/2 ) of 30 or less. From the viewpoint of more effectively suppressing migration, the SP value of the antioxidant used in the present invention is preferably 15 to 22, and more preferably 15 to 20. In this specification, the SP value can be determined by Hansen's method.
  • Hansen's method is one of methods for calculating an SP value well known in the art, and the SP value is expressed by a multidimensional vector composed of a dispersion term, a polar term, and a hydrogen bond term.
  • Hansen's SP value is Int. J. et al. Thermophys, 2008, 29, pages 568-585, and the SP value described in this specification is a value predicted by the method of this document.
  • the antioxidant used in the present invention has a solubility in 100 g of water (pure water) at 20 ° C. of 0.5 g or less, and more preferably 0.2 g or less.
  • the antioxidant used in the present invention has a solubility in 100 g of water (pure water) at 20 ° C., usually 0.001 g or more.
  • the above-mentioned antioxidant used in the present invention constitutes oil droplets together with the hydrophobic organic solvent described later in the silver fine particle dispersion of the present invention. That is, in the present invention, the antioxidant is present in oil droplets dispersed in an aqueous medium.
  • the antioxidant used in the present invention is preferably a compound having an aromatic ring in its structure.
  • the antioxidant is a compound having an aromatic ring, good dispersion stability can be maintained.
  • An aromatic hydrocarbon ring or an aromatic heterocyclic ring may be sufficient.
  • the aromatic ring may be a single ring or a condensed polycyclic structure.
  • the aromatic ring is preferably an aromatic hydrocarbon ring, and more preferably a benzene ring.
  • the number of benzene rings in one molecule of the antioxidant is preferably 1 to 4, more preferably 1 to 2.
  • the molecular weight of the antioxidant used in the present invention is not particularly limited, but is usually 10,000 or less, more preferably 5000 or less, further preferably 2000 or less, and further preferably 1500 or less. Further, the molecular weight of the antioxidant is preferably 200 or more, and more preferably 300 or more. By setting the molecular weight of the antioxidant within the above preferred range, volatilization during sintering can be suppressed and migration can be effectively suppressed.
  • Preferred examples of the antioxidant used in the present invention include an antioxidant selected from a hindered phenol compound, a benzophenone compound, a benzotriazole compound, a salicylic acid compound, and a benzoxazole compound, and among them, a hindered phenol compound, and Antioxidants selected from benzotriazole compounds are preferred.
  • the hindered phenol compound means a compound having a skeleton represented by the following structural formula (A).
  • “having a skeleton” means to include those having a structure in which part or all of the hydrogen atoms in the structural formula (A) are substituted.
  • the hindered phenol compound include, for example, butylhydroxyanisole, 2,6-di-t-butyl-4-hydroxymethylphenol, 4,4′-thiobis (6-t-butyl-m-cresol) 2,6-di-t-butyl-p-cresol, 2,6-di-t-butyl-4-ethylphenol, 2,2′-methylenebis (6-t-butyl-p-cresol), 1, 1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (6-tert-butyl-4-ethylphenol), 1,3,5-tris ⁇ [4- (1,1-dimethylethyl) -3-hydroxy-2,6-dimethylphenyl] methyl ⁇ -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 4,4'- Methylene bis (2,6-di-t-
  • the compound having the skeleton represented by the above (A) is included in the hindered phenol compound in the present specification ( That is, it is not included in the benzophenone compound, benzotriazole compound, salicylic acid compound, or benzoxazole compound).
  • “having a skeleton” means to include those having a structure in which part or all of the hydrogen atoms in each structural formula are substituted, as described for the general formula (A). To do.
  • benzophenone compound means a compound having a skeleton represented by the following structure (B).
  • benzophenone compound examples include, for example, 2-hydroxy-4-n-octyloxybenzophenone.
  • benzotriazole compound means a compound having a skeleton represented by the following structure (C).
  • preferable benzotriazole compounds include 2- (2-hydroxy-5-methylphenyl) benzotriazole.
  • the salicylic acid compound means a compound having a skeleton represented by the following structure (D).
  • a preferred specific example of the salicylic acid compound is, for example, 4-t-butylphenyl salicylate.
  • benzoxazole compound means a compound having a skeleton represented by the following structure (E).
  • preferable benzoxazole compounds include 2,5-bis (5-tert-butyl-2-benzoxazolyl) thiophene.
  • the content of the antioxidant having an SP value of 30 or less is preferably 0.1 to 20% by mass, and more preferably 1 to 10% by mass.
  • the hydrophobic organic solvent used in the present invention dissolves the above-mentioned antioxidant and constitutes oil droplets in the silver fine particle dispersion of the present invention.
  • the hydrophobic organic solvent used in the present invention means an organic solvent having a solubility in 100 g of water (pure water) at 20 ° C. of 10 g or less, and a solubility in 100 g of water (pure water) at 20 ° C. of 1 g or less. Is more preferable.
  • the hydrophobic organic solvent used in the present invention has a solubility in 100 g of water (pure water) at 20 ° C. of usually 0.001 g or more.
  • Preferred examples of the hydrophobic organic solvent used in the present invention include toluene, xylene, alkylbenzene having 9 to 18 carbon atoms, hexane, cyclohexane, 2-butanone, ethyl acetate, butyl acetate, anisole, methylcyclohexane, isopropyl methyl ketone, methyl isobutyl. Mention may be made of ketones, cyclohexanone, ditertiary butyl ether.
  • the content of the hydrophobic organic solvent is preferably 0.0001 to 20% by mass, more preferably 0.001 to 10% by mass, and 0.01 to 1%. More preferably, it is more preferably 0.1 to 1% by mass.
  • the silver fine particle dispersion of the present invention contains a nonionic surfactant as a surfactant.
  • the nonionic surfactant used in the present invention is used as an emulsifier for emulsifying and dispersing a hydrophobic organic solvent solution in which an antioxidant is dissolved in an aqueous medium.
  • Nonionic surfactant is a non-ionic group that volatilizes easily when silver fine particle dispersion or ink composition is applied and sintered. Can be suppressed. Further, migration can be effectively suppressed as compared with the case of using an ionic surfactant. Furthermore, the dispersion stability of the silver fine particles in the dispersion can be improved as compared with the case where an ionic surfactant is used.
  • the nonionic surfactant used in the present invention preferably has an HLB of 9 to 15 and more preferably 10 to 14 from the viewpoint of dispersion stability of the antioxidant.
  • HLB is a value calculated by the Griffin method (WC Griffin, J. Soc. Cosmetic. Chemist., 1, 311 (1949)).
  • the molecular weight of the nonionic surfactant is preferably 500 to 20000, more preferably 1000 to 10,000.
  • the nonionic surfactant has — (C 2 H 4 O) n — (n is an integer of 3 or more, preferably 3 to 50, more preferably 5 to 25 in the hydrophilic part.
  • n is an integer of 3 or more, preferably 3 to 50, more preferably 5 to 25 in the hydrophilic part.
  • the nonionic surfactant preferably has an aromatic ring (preferably a benzene ring) in its structure. By having an aromatic ring, dispersion stability can be improved.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkylamine, polyoxyethylene polycyclic aryl ether, and polyoxyethylene sorbitan alkylate.
  • nonionic surfactant examples include, for example, polyoxyethylene distyrenated phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene tribenzyl phenyl ether, polyoxyethylene sorbitan trioleate, polyoxyethylene polycyclic phenyl Examples include ether and polyoxyethylene cumylphenyl ether.
  • the content of the nonionic surfactant is preferably 1 to 20% by mass, more preferably 2 to 15% by mass.
  • the silver fine particle dispersion of the present invention includes an oil-in-water emulsion in which a mixed solution of a hydrophobic organic solvent and an antioxidant is emulsified and dispersed in an aqueous medium by the action of a nonionic surfactant, as described above. It can be obtained by mixing with an aqueous dispersion of silver fine particles obtained by reducing a silver compound.
  • a general emulsion dispersion method can be employed for the preparation of the oil-in-water emulsion. An example of the preparation of the oil-in-water emulsion will be described below.
  • antioxidant solution a solution in which the antioxidant, the hydrophobic organic solvent, and the nonionic surfactant are mixed is prepared.
  • the solution temperature when preparing the antioxidant solution is preferably 10 to 40 ° C.
  • the concentration of the antioxidant in the antioxidant solution is preferably 5 to 50% by mass.
  • the nonionic surfactant concentration in the antioxidant solution is preferably 5 to 50% by mass.
  • Nonionic surfactant 2/8 to 8/2 (mass ratio) is more preferable.
  • the above-mentioned oil-in-water emulsion can be obtained by dropping the above-mentioned antioxidant solution into water and emulsifying and dispersing the antioxidant solution in water using an ultrasonic homogenizer or the like.
  • the oil droplets preferably have a particle size of 20 to 200 nm, more preferably 30 to 150 nm, and even more preferably 40 to 120 nm.
  • the particle size of the oil droplets means an average particle size and can be measured by a dynamic light scattering photometer.
  • the antioxidant is present in a dispersed state in an aqueous medium, so that the antioxidant can be present stably and homogeneously in the silver fine particle dispersion.
  • the dispersed silver fine particles it is possible to more effectively suppress the migration of the conductor wiring and the like.
  • the antioxidant cannot be stably dispersed, resulting in poor printing characteristics.
  • the viscosity of the silver fine particle dispersion of the present invention is usually 3 to 1000 mPa ⁇ s, more preferably 5 to 500 mPa ⁇ s, although it depends on the content of silver fine particles and the like. More preferably, it is 5 to 50 mPa ⁇ s, more preferably 5 to 20 mPa ⁇ s.
  • the viscosity of the silver fine particle dispersion was measured at 25 ° C. using a TV-25 viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the pH of the silver fine particle dispersion of the present invention is preferably pH 3 to 10, more preferably pH 4 to 8, more preferably pH 5 to 7 at 25 ° C. from the viewpoint of dispersion stability.
  • the ink composition of the present invention may be the silver fine particle dispersion itself of the present invention. Moreover, it may be prepared using the silver fine particle dispersion of the present invention as a raw material. More specifically, the ink composition of the present invention may be prepared by mixing at least the silver fine particle dispersion of the present invention and an aqueous medium (hereinafter referred to as an aqueous medium (b)). In some cases, the silver fine particle dispersion of the present invention can be concentrated to obtain the ink composition of the present invention.
  • an aqueous medium hereinafter referred to as an aqueous medium (b)
  • a surface tension adjusting agent In the ink composition of the present invention, a surface tension adjusting agent, a drying inhibitor (swelling agent), a coloring inhibitor, a penetration accelerator, an ultraviolet absorber, an antiseptic, a rust inhibitor, an antifoaming agent, if necessary, You may mix additives, such as a clay regulator, a pH adjuster, and a chelating agent.
  • the mixing method is not particularly limited, and a commonly used mixing method can be appropriately selected to obtain the ink composition of the present invention.
  • the aqueous medium (b) is synonymous with the aqueous medium (a), and the preferred range is also the same.
  • the content of the aqueous medium is preferably 10 to 90% by mass from the viewpoint of the storage stability of the silver fine particles. Is more preferably 85% by mass, and further preferably 30% to 70% by mass.
  • the content of the silver fine particles is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, from the viewpoint of expressing high conductivity in the coating film. It is more preferably 20 to 70% by mass, further preferably 20 to 50% by mass, and further preferably 20 to 40% by mass.
  • the preferable range of the average particle diameter of the silver fine particles and the average particle diameter of the oil droplets dispersed in the ink composition of the present invention is the average particle diameter of the silver fine particles and the oil droplets in the silver fine particle dispersion of the present invention described above. It is the same as the average particle size.
  • the surface tension of the ink composition is preferably 20 to 60 mN / m, more preferably the surface tension of the ink composition, from the viewpoint of satisfactorily discharging the ink composition by an inkjet method. 20 to 45 mN / m, more preferably 25 to 40 mN / m.
  • the surface tension is measured under conditions of 25 ° C. using an Automatic Surface Tensiometer CBVP-Z (manufactured by Kyowa Interface Science Co., Ltd.). The surface tension can be appropriately adjusted by adding a surfactant or the like.
  • the viscosity of the ink composition of the present invention is not particularly limited, but the viscosity at 25 ° C. is preferably 1 mPa ⁇ s or more and 500 mPa ⁇ s or less, more preferably 2 mPa ⁇ s or more and less than 100 mPa ⁇ s, Preferably it is 2.5 mPa * s or more and less than 50 mPa * s, More preferably, it is 5 mPa * s or more and less than 20 mPa * s.
  • the viscosity of the ink composition is a value obtained by the same method as the above-described method for measuring the viscosity of the silver fine particle dispersion.
  • the pH of the ink composition of the present invention is preferably pH 6 to 11, more preferably 7 to 10, more preferably 7 to 9, at 25 ° C. from the viewpoint of dispersion stability.
  • the ink composition of the present invention is coated on a substrate and sintered at 100 to 250 ° C., preferably 120 to 200 ° C. in the air, thereby forming a conductor wiring, a conductive film, a silver electrode, and the like. Can be formed.
  • coating method can be used.
  • coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used.
  • the inkjet method is not particularly limited, and is a known method, for example, a charge control method that discharges ink using electrostatic attraction, a drop-on-demand method (pressure pulse method) that uses vibration pressure of a piezoelectric element, Either an acoustic ink jet method that converts an electrical signal into an acoustic beam, irradiates the ink with ink, and ejects the ink using radiation pressure, or a thermal ink jet method that heats the ink to form bubbles and uses the generated pressure. May be.
  • the ink jet head used in the ink jet method may be an on-demand method or a continuous method.
  • the ink nozzles used when recording by the ink jet method, and the ink nozzles can be appropriately selected depending on the purpose.
  • the amount of droplets of the ink composition ejected by the ink jet method is preferably 1.5 to 20 pL from the viewpoint of forming a high-definition pattern. More preferably, it is 10 pL.
  • the amount of droplets of the ejected ink composition can be adjusted by appropriately adjusting the ejection conditions.
  • the silver electrode of the present invention is formed using the silver fine particle dispersion or ink composition of the present invention. More specifically, the silver electrode of the present invention can be formed by applying the above-described silver fine particle dispersion or ink composition on a substrate and subjecting to heat treatment (sintering) as necessary. . By performing the heat treatment, the silver fine particles are fused with each other to form grains, and the grains are bonded and fused to form a silver layer.
  • the temperature of the heat treatment is preferably 100 ° C. to 250 ° C., more preferably 120 ° C. to 200 ° C.
  • the heating time is preferably 5 minutes to 4 hours, more preferably 15 minutes to 2 hours.
  • the volume resistance value of the silver electrode of the present invention is preferably 2 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 4 ⁇ cm, more preferably 2 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 5 ⁇ cm.
  • the volume resistance value can be measured by the method described in Examples described later.
  • the TFT of the present invention has the silver electrode of the present invention.
  • the silver electrode of the present invention is used as a gate electrode, a source electrode and / or a drain electrode, and is preferably used as at least a source electrode and a drain electrode.
  • Preferred embodiments of the TFT of the present invention are described below, but the TFT of the present invention is not limited to these aspects, and at least one electrode uses the silver fine particle dispersion or ink composition of the present invention. If it is formed, there will be no restriction
  • the TFT of the present invention is provided on a substrate, in contact with the semiconductor layer, a gate electrode, a semiconductor layer, a gate insulating layer provided between the gate electrode and the semiconductor layer, and through the semiconductor. And a source electrode and a drain electrode connected to each other.
  • a current channel channel is formed at the interface between the semiconductor layer between the source electrode and the drain electrode and the adjacent layer. That is, the current flowing between the source electrode and the drain electrode is controlled according to the input voltage applied to the gate electrode.
  • FIGS. 1A and 1B are longitudinal sectional views each schematically showing a typical preferable structure of a TFT of the present invention.
  • 1A to 1D 1 is a semiconductor layer
  • 2 is a gate insulating layer
  • 3 is a source electrode
  • 4 is a drain electrode
  • 5 is a gate electrode
  • 6 is a substrate.
  • 1A is a bottom gate / bottom contact type
  • FIG. 1B is a bottom gate / top contact type
  • FIG. 1C is a top gate / bottom contact type
  • FIG. 1D is a top.
  • a gate-top contact type TFT is shown. All of the above four forms are included in the TFT of the present invention.
  • an overcoat layer may be formed on the top of each TFT in the drawing (opposite to the substrate 6).
  • the substrate may be any substrate that can support the TFT and the display panel or the like produced thereon.
  • the substrate is not particularly limited as long as the surface is insulative, has a sheet shape, and has a flat surface.
  • An inorganic material may be used as the material for the substrate.
  • a substrate made of an inorganic material for example, various glass substrates such as soda lime glass and quartz glass, various glass substrates with an insulating film formed on the surface, a quartz substrate with an insulating film formed on the surface, and an insulating film on the surface Examples thereof include a silicon substrate, a sapphire substrate, a metal substrate made of various alloys such as stainless steel, aluminum, nickel, and various metals, metal foil, and paper.
  • a conductive or semiconducting material such as stainless steel sheet, aluminum foil, copper foil or silicon wafer, an insulating polymer material or metal oxide is usually applied or laminated on the surface. Used.
  • an organic material may be used as the material of the substrate.
  • polymethyl methacrylate polymethyl methacrylate, PMMA
  • polyvinyl alcohol PVA
  • polyvinyl phenol PVP
  • polyethersulfone PES
  • polyimide polyamide
  • polyacetal polycarbonate
  • PC polyethylene terephthalate
  • flexible plastic substrate also referred to as a plastic film or a plastic sheet
  • an organic polymer exemplified by polyethylene naphthalate (PEN), polyethyl ether ketone, polyolefin, and polycycloolefin.
  • PEN polyethylene naphthalate
  • PEN polyethyl ether ketone
  • polyolefin polycycloolefin
  • the thing formed with the mica can also be mentioned.
  • the thickness of the substrate is preferably 10 mm or less, more preferably 2 mm or less, and particularly preferably 1 mm or less. On the other hand, it is preferably 0.01 mm or more, and more preferably 0.05 mm or more.
  • a conventionally known electrode used as a gate electrode of a TFT can be used. It can also be formed using the silver fine particle dispersion or ink composition of the present invention.
  • a conductive material (also referred to as an electrode material) constituting the gate electrode is not particularly limited.
  • metals such as platinum, gold, silver, aluminum, chromium, nickel, copper, molybdenum, titanium, magnesium, calcium, barium, sodium, palladium, iron, manganese; InO 2 , SnO 2 , indium / tin oxide (ITO ), Conductive metal oxides such as fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO); polyaniline, polypyrrole, polythiophene, polyacetylene, poly (3,4-ethylenedioxy) Conductive polymers such as thiophene) / polystyrene sulfonic acid (PEDOT / PSS); acids such as hydrochloric acid, sulfuric acid, sulfonic acid, Lewis acids such as PF 6 , AsF 5 , FeCl 3 , halogen atoms such as iodine, sodium, potassium Conductivity with dopants such as metal atoms
  • the gate electrode can be formed by a coating method.
  • a solution, paste, or dispersion of the above material can be prepared and applied, and a film can be formed or an electrode can be directly formed by drying, baking, photocuring, aging, or the like.
  • inkjet printing screen printing, (reversal) offset printing, letterpress printing, intaglio printing, lithographic printing, thermal transfer printing, microcontact printing, etc. allow for desired patterning, simplifying processes, reducing costs, and speeding up It is preferable in terms of conversion. Even when a spin coating method, a die coating method, a micro gravure coating method, or a dip coating method is adopted, patterning can be performed in combination with the following photolithography method or the like.
  • the thickness of the gate electrode is arbitrary, but is preferably 1 nm or more, particularly preferably 10 nm or more. Moreover, 500 nm or less is preferable and 200 nm or less is more preferable.
  • the gate insulating layer is not particularly limited as long as it is an insulating layer, and may be a single layer or a multilayer.
  • the gate insulating layer is preferably formed of an insulating material, and preferable examples of the insulating material include organic polymers and inorganic oxides.
  • the organic polymer and the inorganic oxide are not particularly limited as long as they have insulating properties, and those that can form a thin film, for example, a thin film having a thickness of 1 ⁇ m or less are preferable.
  • Each of the organic polymer and the inorganic oxide may be used alone or in combination of two or more, or the organic polymer and the inorganic oxide may be used in combination.
  • polyvinyl phenol polystyrene (PS), poly (meth) acrylate represented by polymethylmethacrylate, polyvinyl alcohol, polyvinyl chloride (PVC), polyfluorination Represented by vinylidene (PVDF), polytetrafluoroethylene (PTFE), cyclic fluoroalkyl polymers represented by CYTOP, polycycloolefin, polyester, polyethersulfone, polyetherketone, polyimide, epoxy resin, polydimethylsiloxane (PDMS) And polyorganosiloxane, polysilsesquioxane, butadiene rubber and the like.
  • thermosetting resins such as phenol resin, novolac resin, cinnamate resin, acrylic resin, and polyparaxylylene resin are also included.
  • the inorganic oxide is not particularly limited.
  • silicon oxide in addition to silicon oxide (SiO X ), BPSG, PSG, BSG, AsSG, PbSG, silicon oxynitride (SiON), SOG (spin on glass), low dielectric constant SiO 2 based material (for example, , Polyaryl ether, cycloperfluorocarbon polymer and benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, fluorinated aryl ether, fluorinated polyimide, amorphous carbon, organic SOG).
  • SiO 2 based material for example, Polyaryl ether, cycloperfluorocarbon polymer and benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, fluorinated aryl ether, fluorinated polyimide, amorphous carbon, organic SOG).
  • a vacuum film formation method such as a vacuum evaporation method, a sputtering method, an ion plating method, a CVD method, or the like can be used.
  • Assist may be performed with the plasma, ion gun, radical gun, or the like used.
  • the semiconductor layer is a layer that exhibits semiconductor properties and can accumulate carriers. Conventionally known organic or inorganic semiconductor compounds can be widely used for the semiconductor layer.
  • the low molecular compound means a compound other than the organic polymer and its derivative. That is, it refers to a compound having no repeating unit. As long as the low molecular weight compound is such a compound, the molecular weight is not particularly limited.
  • Examples of the low molecular weight compound include condensed polycyclic aromatic compounds.
  • acene such as naphthacene, pentacene (2,3,6,7-dibenzoanthracene), hexacene, heptacene, dibenzopentacene, tetrabenzopentacene, anthradithiophene, pyrene, benzopyrene, dibenzopyrene, chrysene, perylene, coronene, terylene , Ovalene, quaterrylene, circumanthracene, and derivatives obtained by substituting a part of these carbon atoms with atoms such as N, S, O, etc., or at least one hydrogen atom bonded to the carbon atom is functionalized such as a carbonyl group Derivatives substituted with a group (dioxaanthanthrene compounds including perixanthenoxanthene and derivatives thereof, triphenodioxa
  • metal phthalocyanines represented by copper phthalocyanine, tetrathiapentalene and derivatives thereof, naphthalene-1,4,5,8-tetracarboxylic acid diimide, N, N′-bis (4-trifluoromethylbenzyl) naphthalene— 1,4,5,8-tetracarboxylic acid diimide, N, N′-bis (1H, 1H-perfluorooctyl), N, N′-bis (1H, 1H-perfluorobutyl), N, N′-dioctylnaphthalene -1,4,5,8-tetracarboxylic acid diimide derivatives, naphthalene tetracarboxylic acid diimides such as naphthalene-2,3,6,7-tetracarboxylic acid diimide, anthracene-2,3,6,7-tetracarboxylic acid Condensed ring tetracarboxylic acid di
  • Further examples include polyanthracene, triphenylene, and quinacridone.
  • low molecular weight compound examples include 4,4′-biphenyldithiol (BPDT), 4,4′-diisocyanobiphenyl, 4,4′-diisocyano-p-terphenyl, 2,5-bis (5 '-Thioacetyl-2'-thiophenyl) thiophene, 2,5-bis (5'-thioacetoxyl-2'-thiophenyl) thiophene, 4,4'-diisocyanophenyl, benzidine (biphenyl-4,4'- Diamine), TCNQ (tetracyanoquinodimethane), tetrathiafulvalene (TTF) and its derivatives, tetrathiafulvalene (TTF) -TCNQ complex, bisethylenetetrathiafulvalene (BEDTTTTF) -perchloric acid complex, BEDTTTF-iodine complex , A charge transfer complex represented by TCNQ-iod
  • the inorganic semiconductor material for forming the semiconductor layer is not particularly limited, but a preferable example thereof is an oxide semiconductor.
  • the oxide semiconductor is not particularly limited as long as it is made of a metal oxide.
  • the semiconductor layer made of an oxide semiconductor is preferably formed using an oxide semiconductor precursor, that is, a material that is converted into a semiconductor material made of a metal oxide by a conversion process such as thermal oxidation.
  • the oxide semiconductor is not particularly limited.
  • InGaZnO x , InGaO x , InSnZnO x , GaZnO x , InSnO x , InZnO x , SnZnO x (all x> 0), ZnO, and SnO 2 can be given.
  • oxide semiconductor precursor examples include metal nitrates, metal halides, and alkoxides.
  • metal contained in the oxide semiconductor precursor include Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl, Pb, Bi, Ce, Pr, Examples thereof include at least one selected from the group consisting of Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • oxide semiconductor precursor examples include, for example, indium nitrate, zinc nitrate, gallium nitrate, tin nitrate, aluminum nitrate, indium chloride, zinc chloride, tin chloride (divalent), tin chloride (tetravalent), and gallium chloride.
  • Aluminum chloride tri-i-propoxy indium, diethoxy zinc, bis (dipivaloylmethanato) zinc, tetraethoxy tin, tetra-i-propoxy tin, tri-i-propoxy gallium, tri-i-propoxy aluminum It is done.
  • the source electrode and drain electrode are preferably formed using the silver fine particle dispersion or ink composition of the present invention.
  • a conventionally known source electrode and drain electrode can be employed.
  • the conductive material described for the gate electrode can be used.
  • the source electrode and the drain electrode can each be formed by a method similar to the method for forming the gate electrode.
  • aqueous solution (78.71 g) having an N, N-diethylhydroxylamine concentration of 85% by mass (750.5 mmol as N, N-diethylhydroxylamine) was slowly added dropwise to the obtained mixture at room temperature, and polyvinylpyrrolidone was further added.
  • the obtained suspension was passed through an ultrafiltration unit (Saltrius Stedim Vivaflow 50, molecular weight cut off: 100,000, number of units: 4) and purified until about 5 L of exudate was produced from the ultrafiltration unit. Purified by passing water through.
  • the supply of purified water was stopped and concentrated to obtain a dispersion of 30 g of silver fine particles.
  • the solid content in the dispersion was 50% by mass. Further, the content of silver in the solid content was measured by TG-DTA (simultaneous differential thermogravimetric measurement) (model: STA7000, manufactured by SII Nanotechnology Inc.) and found to be 96.0% by mass. .
  • the average particle size of the oil droplets was measured with a concentrated particle size analyzer (FPAR-1000, manufactured by Otsuka Electronics Co., Ltd.). Moreover, as a result of measuring the content rate of toluene by high performance liquid chromatography, 0.2% was contained in the solution.
  • FPAR-1000 concentrated particle size analyzer
  • the silver fine particle dispersion prepared in the above preparation example is diluted 20 times with ion-exchanged water, and measured using a particle size analyzer FPAR-1000 (Otsuka Electronics) to determine the average particle size of the silver fine particles. It was.
  • volume resistance value was measured as a conductivity index.
  • Each silver fine particle dispersion prepared in the above preparation example was applied to a clean 50 mm square glass substrate by a spin coating method (500 rpm, 30 seconds), and heated in an oven at 200 ° C. for 2 hours.
  • required with the stylus-type film thickness meter was 320 nm.
  • the volume resistance value was measured with a Loresta GP MCP-T610 type (trade name, manufactured by Mitsubishi Materials) and evaluated according to the following evaluation criteria.
  • Fotec H-7005 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used as the dry film resist
  • Agrip 940 trade name, manufactured by Meltex
  • Cytop CTL107MK (trade name, manufactured by AGC) was spin-coated on the silver wiring so that the film thickness after drying was 1 ⁇ m, and then dried in an oven at 140 ° C. for 20 minutes to form a sealing layer.
  • Each wiring board for insulation reliability evaluation was produced.
  • Each obtained wiring board was subjected to a life test (use apparatus: EHS-221MD, manufactured by Espec Corp.) under the conditions of humidity 85%, temperature 85 ° C., pressure 1.0 atm, and voltage 60V. Specifically, the voltage was applied to adjacent silver wirings in the environment. Then, the time until the silver wiring was short-circuited by migration (time T until the resistance value between the silver wirings was 1 ⁇ 10 5 ⁇ ) was measured. The time T when using a silver fine particle dispersion to which no antioxidant was added was defined as T1 (reference), and the insulation reliability was evaluated relative to the following evaluation criteria.
  • T1 reference
  • Emulgen A60 Polyoxyethylene distyrenated phenyl ether Emulgen 104P: Polyoxyethylene lauryl ether manufactured by Kao Corporation Emulgen 106P: Polyoxyethylene lauryl ether manufactured by Kao Corporation Emulgen 109P: Polyoxyethylene lauryl ether manufactured by Kao Corporation Emargen B- manufactured by Kao Corporation 66: Polyoxyethylene tribenzyl phenyl ether New Coal 707: Polyoxyethylene polycyclic phenyl ether New Coal 3-85: Polyoxyethylene sorbitan trioleate Nippon Emulsifier New Coal CMP-8: Poly Oxyethylene cumylphenyl ether New Emulsion 719 manufactured by Nippon Emulsifier Co., Ltd .: Polyoxyethylene polycyclic phenyl ether manufactured by Nippon Emulsifier Co.
  • TFT bottom gate / bottom contact type
  • FIG. 1 (A) The TFT (bottom gate / bottom contact type) shown in FIG. 1 (A) was manufactured, and the mobility was evaluated.
  • glass substrate Eagle XG: manufactured by Corning
  • aluminum serving as a gate electrode was deposited (thickness: 50 nm).
  • baking was performed at 150 ° C.
  • the silver fine particle dispersion prepared in each of the above preparation examples was added to a source electrode and an ink jet apparatus DMP-2831 (manufactured by Fujifilm Dimatics).
  • a drain electrode pattern (channel length 40 ⁇ m, channel width 200 ⁇ m) was drawn. Thereafter, baking was performed at 180 ° C. for 30 minutes in an oven and sintering was performed, whereby the source electrode 3 and the drain electrode 4 were formed.
  • a toluene solution of 2,8-difluoro-5,11-bis (triethylsilylethynyl) anthradithiophene (ALDRICH) is spin-coated thereon, and baked at 140 ° C. for 15 minutes to form an organic semiconductor layer having a thickness of 100 nm. 1 was formed.
  • Cytop CTL-107MK manufactured by AGC is spin-coated thereon and baked at 140 ° C. for 20 minutes to form a 2 ⁇ m-thick sealing layer (the uppermost layer, not shown in FIG. 1).
  • a type of TFT bottom gate bottom contact type was fabricated.
  • Each electrode of the obtained organic thin film transistor was connected to each terminal of a manual prober connected to a semiconductor parameter analyzer (4155C, manufactured by Agilent Technologies) to evaluate a field effect transistor (FET).
  • FET field effect transistor
  • field effect mobility cm 2 / V ⁇ sec
  • Id-Vg drain current-gate voltage

Abstract

A fine silver particle dispersion which is obtained by dispersing fine silver particles in an aqueous medium, and wherein a mixed solution of a hydrophobic organic solvent and an antioxidant having an SP value of 30 or less is emulsified and dispersed in the aqueous medium by means of a nonionic surfactant; an ink composition which uses this fine silver particle dispersion; a silver electrode which uses this ink composition; and a thin film transistor which comprises this silver electrode.

Description

銀微粒子分散物、インク組成物、銀電極、及び薄膜トランジスタSilver fine particle dispersion, ink composition, silver electrode, and thin film transistor
 本発明は、銀微粒子分散物、インク組成物、銀電極、及び薄膜トランジスタに関する。 The present invention relates to a silver fine particle dispersion, an ink composition, a silver electrode, and a thin film transistor.
 導体配線や電極(以下「導体配線等」という)を形成する材料として銀微粒子が広く用いられている。銀微粒子を水性媒体中に分散させた状態で基材上に塗布し、これを焼き付け(焼結)、必要によりエッチング処理を施すことにより、所望の形状の導体配線等を形成することができる。
 上記銀微粒子分散物を基材上に塗布する方法として、各種印刷方法による塗布、スピンコートによる塗布、ディスペンサーによる塗布等が知られている。銀微粒子分散物を印刷により塗布する場合には、銀微粒子分散物をインクとして用い、このインクが各種印刷方法により基板等に塗布される。なかでも、微細なパターンを精度良く形成することができ、工程が簡素でインクを無駄なく使用できることから、インクジェット印刷の利用が広がっている。
Silver fine particles are widely used as a material for forming conductor wiring and electrodes (hereinafter referred to as “conductor wiring and the like”). By applying silver fine particles on a base material in a state dispersed in an aqueous medium, baking (sintering) the silver fine particles, and performing etching treatment as necessary, a conductor wiring or the like having a desired shape can be formed.
As a method for applying the silver fine particle dispersion onto a substrate, application by various printing methods, application by spin coating, application by a dispenser, and the like are known. When the silver fine particle dispersion is applied by printing, the silver fine particle dispersion is used as an ink, and this ink is applied to a substrate or the like by various printing methods. In particular, the use of ink jet printing is expanding because a fine pattern can be formed with high accuracy, the process is simple, and ink can be used without waste.
 インクジェット印刷に用いる銀微粒子分散物からなるインクには、吐出安定性を高めるために、銀微粒子の良好な分散性(銀微粒子を媒体中に微粒子状態で均一分散できる特性)と共に、良好な分散安定性(上記の銀微粒子の分散状態が、経時的に、ないしは外部の刺激(熱や振動など)に対して安定的に維持できる特性)が求められる。
 例えば特許文献1には、フェノール化合物の酸化重合物及び/又はその酸化体を表面に少なくとも有した銀微粒子が溶媒に分散した銀コロイド溶液が記載され、この銀コロイド溶液が銀微粒子の分散性ないし分散安定性に優れ、インクジェット印刷による電極や回路配線パターンの形成に使用できることが記載されている。
Ink consisting of a silver fine particle dispersion used for ink jet printing has good dispersion stability as well as good dispersibility of silver fine particles (characteristic that enables silver fine particles to be uniformly dispersed in a medium) in order to improve ejection stability. (The property that the dispersion state of the above-mentioned silver fine particles can be stably maintained over time or against external stimuli (heat, vibration, etc.)).
For example, Patent Document 1 discloses a silver colloid solution in which silver fine particles having an oxidized polymer of a phenol compound and / or an oxidized form thereof on the surface are dispersed in a solvent. It describes that it is excellent in dispersion stability and can be used for forming electrodes and circuit wiring patterns by ink jet printing.
特許第4932662号公報Japanese Patent No. 4932662
 近年、電子部品の小型化により、導体配線等の微細化が進んでいる。例えば薄膜トランジスタにおいては、小型化に伴いソース電極とドレイン電極の距離が狭小化しており、電極の一部がイオン化して両電極間を移動し、両電極間が導通してしまうイオンマイグレーション(以下、単に「マイグレーション」ともいう。)が生じやすくなっている。かかる状況下、インクジェット印刷に用いる銀微粒子分散物には、良好な分散性と分散安定性に加え、形成した導体配線等のマイグレーションも抑えることが求められる。
 本発明は、水性媒体中に銀微粒子が分散してなる銀微粒子分散物であって、銀微粒子の分散性及び分散安定性に優れ、さらにこの分散物を用いて形成した導体配線等の導電性にも優れ、且つこの分散物を用いて形成した導体配線等のマイグレーションをも効果的に抑えることができる銀微粒子分散物を提供することを課題とする。また本発明は、この銀微粒子分散物を用いたインク組成物、このインク組成物を用いた銀電極、及びこの銀電極を有する薄膜トランジスタを提供することを課題とする。
In recent years, with miniaturization of electronic components, miniaturization of conductor wiring and the like has progressed. For example, in a thin film transistor, the distance between a source electrode and a drain electrode is reduced with downsizing, and part of the electrode is ionized and moves between both electrodes, and ion migration (hereinafter, referred to as “conducting between both electrodes”). Simply called “migration”). Under such circumstances, the silver fine particle dispersion used for ink jet printing is required to suppress migration of the formed conductor wiring in addition to good dispersibility and dispersion stability.
The present invention is a silver fine particle dispersion in which silver fine particles are dispersed in an aqueous medium, and is excellent in the dispersibility and dispersion stability of the silver fine particles, and further has electrical conductivity such as conductor wiring formed using this dispersion. Another object of the present invention is to provide a silver fine particle dispersion capable of effectively suppressing migration of a conductor wiring or the like formed using this dispersion. Another object of the present invention is to provide an ink composition using the silver fine particle dispersion, a silver electrode using the ink composition, and a thin film transistor having the silver electrode.
 本発明者らは、特定の酸化防止剤を溶解した疎水性有機溶剤溶液を、ノニオン性界面活性剤を用いて水性媒体中に乳化分散してなる乳化物と、銀微粒子を水性媒体中に分散してなる分散物とを混合して銀微粒子分散物を調製したところ、この銀微粒子分散物は銀微粒子の分散性と分散安定性に優れ、さらにこの銀微粒子分散物を用いて形成した導体配線等は優れた導電性を示し、且つマイグレーションも生じにくいことを見い出した。さらに、この銀微粒子分散物を用いて薄膜トランジスタ(TFT)の電極を形成した際には良好なキャリア移動度を示し、TFTの電極として良好に機能することを見い出した。
 本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
The inventors of the present invention have prepared an emulsion obtained by emulsifying and dispersing a hydrophobic organic solvent solution in which a specific antioxidant is dissolved in an aqueous medium using a nonionic surfactant, and dispersing silver fine particles in the aqueous medium. When the silver fine particle dispersion was prepared by mixing with the resulting dispersion, the silver fine particle dispersion was excellent in the dispersibility and dispersion stability of the silver fine particles, and the conductor wiring formed using this silver fine particle dispersion. Etc. showed excellent conductivity and hardly caused migration. Furthermore, it has been found that when a thin film transistor (TFT) electrode is formed using this silver fine particle dispersion, it shows good carrier mobility and functions well as a TFT electrode.
The present invention has been further studied based on these findings and has been completed.
 本発明の上記課題は以下の手段により解決された。
〔1〕
 銀微粒子を水性媒体中に分散してなる銀微粒子分散物であって、
 SP値が30以下の酸化防止剤と疎水性有機溶剤との混合溶液がノニオン性界面活性剤により上記水性媒体中に乳化分散してなる、銀微粒子分散物。
〔2〕
 上記酸化防止剤が芳香族環を有する化合物である、〔1〕に記載の銀微粒子分散物。
〔3〕
 上記酸化防止剤が分子量200~3000の化合物である、〔1〕又は〔2〕に記載の銀微粒子分散物。
〔4〕
 上記酸化防止剤が、ヒンダードフェノール化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、サリチル酸化合物、及びベンゾオキサゾール化合物から選ばれる、〔1〕~〔3〕のいずれか1つに記載の銀微粒子分散物。
〔5〕
 上記ノニオン性界面活性剤が、親水性部位中に-(CO)-を有する、〔1〕~〔4〕のいずれか1つに記載の銀微粒子分散物。
 但し、nは3以上の整数である。
〔6〕
 上記ノニオン性界面活性剤が芳香族環を有する、〔1〕~〔5〕のいずれか1つに記載の銀微粒子分散物。
〔7〕
 〔1〕~〔5〕のいずれか1つに記載の銀微粒子分散物を用いたインク組成物。
〔8〕
 インクジェット印刷に用いる、〔7〕に記載のインク組成物。
〔9〕
 銀電極の形成に用いる、〔7〕又は〔8〕に記載のインク組成物。
〔10〕
 〔1〕~〔6〕のいずれか1つに記載の銀微粒子分散物又は〔7〕~〔9〕のいずれか1つに記載のインク組成物を用いて形成した銀電極。
〔11〕
 〔10〕に記載の銀電極を有する薄膜トランジスタ。
The above-described problems of the present invention have been solved by the following means.
[1]
A silver fine particle dispersion obtained by dispersing silver fine particles in an aqueous medium,
A silver fine particle dispersion obtained by emulsifying and dispersing a mixed solution of an antioxidant having an SP value of 30 or less and a hydrophobic organic solvent in the aqueous medium with a nonionic surfactant.
[2]
The silver fine particle dispersion according to [1], wherein the antioxidant is a compound having an aromatic ring.
[3]
The silver fine particle dispersion according to [1] or [2], wherein the antioxidant is a compound having a molecular weight of 200 to 3,000.
[4]
The silver fine particle dispersion according to any one of [1] to [3], wherein the antioxidant is selected from a hindered phenol compound, a benzophenone compound, a benzotriazole compound, a salicylic acid compound, and a benzoxazole compound.
[5]
The silver fine particle dispersion according to any one of [1] to [4], wherein the nonionic surfactant has — (C 2 H 4 O) n — in the hydrophilic portion.
However, n is an integer of 3 or more.
[6]
The silver fine particle dispersion according to any one of [1] to [5], wherein the nonionic surfactant has an aromatic ring.
[7]
[1] An ink composition using the silver fine particle dispersion described in any one of [5].
[8]
The ink composition according to [7], which is used for inkjet printing.
[9]
The ink composition according to [7] or [8], which is used for forming a silver electrode.
[10]
A silver electrode formed using the silver fine particle dispersion according to any one of [1] to [6] or the ink composition according to any one of [7] to [9].
[11]
[10] A thin film transistor having the silver electrode according to [10].
 本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。 In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 本発明の銀微粒子分散物ないしインク組成物は、分散性及び分散安定性のいずれにも優れる。また、この銀微粒子分散物を用いて形成した導体配線等は導電性に優れ、マイグレーションの発生も効果的に抑えられる。
 本発明の銀電極は、マイグレーションの発生が効果的に抑えられ、例えばTFTの電極として好適に用いることができる。さらに本発明の薄膜トランジスタは本発明の電極を有してなり、電極のマイグレーションが抑えられて電極間の絶縁信頼性に優れると共に優れたキャリア移動度を示す。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
The silver fine particle dispersion or ink composition of the present invention is excellent in both dispersibility and dispersion stability. Moreover, the conductor wiring etc. formed using this silver fine particle dispersion are excellent in electroconductivity, and generation | occurrence | production of migration is also suppressed effectively.
The silver electrode of the present invention can effectively suppress the occurrence of migration, and can be suitably used, for example, as a TFT electrode. Furthermore, the thin film transistor of the present invention has the electrode of the present invention, and migration of the electrode is suppressed, so that the insulation reliability between the electrodes is excellent and the carrier mobility is excellent.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
本発明の薄膜トランジスタの好ましい構造を模式的に示す図である。It is a figure which shows typically the preferable structure of the thin-film transistor of this invention.
[銀微粒子分散物]
 本発明の銀微粒子分散物の好ましい実施形態について説明する。
 本発明の銀微粒子分散物は、銀微粒子が水性媒体中に分散してなり、且つ、この水性媒体中にはさらに、SP値が30以下の酸化防止剤と疎水性有機溶剤との混合溶液がノニオン性界面活性剤により乳化分散している。すなわち、上記酸化防止剤は銀微粒子分散物中において、水性媒体中に分散してなる油滴中に存在する。本明細書において、水性媒体中に「分散」しているとは、微粒子状となって水性媒体中に一様に(均質に)散在している状態をいう。
 本発明の銀微粒子分散物は、上記酸化防止剤を1種含有しても2種以上含有してもよい。また、本発明の銀微粒子分散物は、上記ノニオン性界面活性剤を1種含有しても2種以上含有してもよい。また、本発明の銀微粒子分散物は、上記疎水性有機溶剤を1種含有しても2種以上含有してもよい。
 本発明の銀微粒子分散物は、さらに、乾燥防止剤、浸透促進剤、防腐剤、消泡剤、粘度調整剤、pH調製剤、キレート剤、銀以外の金属粒子等を含有してもよい。
 本発明の銀微粒子分散物は、イオン性の成分を含まないことが好ましい。イオン性の成分とは、銀微粒子分散物中において、イオン化して帯電した基を有する成分を意味する。
 本発明の銀微粒子分散物がイオン性の成分を含まないことにより、銀微粒子分散物を用いて形成した導体配線等の導電性をより高めることができ、さらに、マイグレーションの発生もより抑えて絶縁信頼性を高めることができる。
[Silver fine particle dispersion]
A preferred embodiment of the silver fine particle dispersion of the present invention will be described.
In the silver fine particle dispersion of the present invention, silver fine particles are dispersed in an aqueous medium, and the aqueous medium further contains a mixed solution of an antioxidant having an SP value of 30 or less and a hydrophobic organic solvent. It is emulsified and dispersed with a nonionic surfactant. That is, the antioxidant is present in oil droplets dispersed in an aqueous medium in the silver fine particle dispersion. In this specification, “dispersed” in an aqueous medium means a state in which the particles are in the form of fine particles and are uniformly (homogeneously) dispersed in the aqueous medium.
The silver fine particle dispersion of the present invention may contain one or more of the above antioxidants. Moreover, the silver fine particle dispersion of the present invention may contain one kind or two or more kinds of the nonionic surfactant. Moreover, the silver fine particle dispersion of the present invention may contain one or more of the above hydrophobic organic solvents.
The silver fine particle dispersion of the present invention may further contain a drying inhibitor, a penetration accelerator, an antiseptic, an antifoaming agent, a viscosity modifier, a pH adjuster, a chelating agent, metal particles other than silver, and the like.
The silver fine particle dispersion of the present invention preferably does not contain an ionic component. The ionic component means a component having ionized and charged groups in the silver fine particle dispersion.
Since the silver fine particle dispersion of the present invention does not contain an ionic component, it is possible to further increase the conductivity of a conductor wiring or the like formed using the silver fine particle dispersion, and to further suppress the occurrence of migration and to insulate. Reliability can be increased.
<水性媒体>
 本発明の銀微粒子分散物に用いる水性媒体(以下、水性媒体(a)ということもある)は、水、又は、水と水溶性有機溶媒との混合液である。銀微粒子分散物に含まれる水性媒体中、水の含有量は30質量%以上が好ましく、40~100質量%がより好ましく、50~100質量%がさらに好ましく、60~100質量%がより好ましい。
<Aqueous medium>
The aqueous medium (hereinafter sometimes referred to as the aqueous medium (a)) used in the silver fine particle dispersion of the present invention is water or a mixed liquid of water and a water-soluble organic solvent. In the aqueous medium contained in the silver fine particle dispersion, the content of water is preferably 30% by mass or more, more preferably 40 to 100% by mass, further preferably 50 to 100% by mass, and more preferably 60 to 100% by mass.
 水としては、例えば蒸留水、イオン交換水、純水、超純水等が挙げられる。
 水性媒体に含有されうる上記水溶性有機溶媒は、20℃において水に対する溶解度が10質量%以上であるものが好ましい。この水溶性有機溶媒として、例えば、アルコール、ケトン、エーテル化合物、アミド化合物、ニトリル化合物、スルホン化合物が挙げられる。
Examples of water include distilled water, ion exchange water, pure water, and ultrapure water.
The water-soluble organic solvent that can be contained in the aqueous medium preferably has a solubility in water at 20 ° C. of 10% by mass or more. Examples of the water-soluble organic solvent include alcohols, ketones, ether compounds, amide compounds, nitrile compounds, and sulfone compounds.
 これらのうちアルコールとしては、例えば、エタノール、イソプロパノール、1-メトキシ-2-プロパノール、n-ブタノール、t-ブタノール、イソブタノール、ジアセトンアルコール、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、グリセリンが挙げられる。
 また、ケトンとしては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトンが挙げられる。
 エーテル化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、ジオキサンが挙げられる。
 アミド化合物としては、例えば、ジメチルホルムアミド、ジエチルホルムアミドが挙げられる。
 ニトリル化合物としては、例えば、アセトニトリルが挙げられる。
 スルホン化合物としては、例えば、ジメチルスルホキシド、ジメチルスルホン、スルホランが挙げられる。
Among these, alcohols include, for example, ethanol, isopropanol, 1-methoxy-2-propanol, n-butanol, t-butanol, isobutanol, diacetone alcohol, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, and glycerin. Can be mentioned.
Examples of the ketone include acetone, methyl ethyl ketone, diethyl ketone, and methyl isobutyl ketone.
Examples of the ether compound include dibutyl ether, tetrahydrofuran, and dioxane.
Examples of the amide compound include dimethylformamide and diethylformamide.
An example of the nitrile compound is acetonitrile.
Examples of the sulfone compound include dimethyl sulfoxide, dimethyl sulfone, and sulfolane.
 本発明の銀微粒子分散物中の水性媒体の含有量は、10~90質量%が好ましく、20~85質量%がより好ましく、30~70質量%がさらに好ましい。 The content of the aqueous medium in the silver fine particle dispersion of the present invention is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and further preferably 30 to 70% by mass.
<銀微粒子>
 本発明の銀微粒子分散物に含有される銀微粒子は、常法により調製することができる。
 例えば、硝酸銀(I)(AgNO)やメタンスルホン酸銀(CHSOAg)等の銀化合物と、分散剤とを水中に溶解し、還元剤を添加し、撹拌しながら一定時間、銀イオンを還元することにより、銀微粒子を分散物として得ることができる。
<Silver fine particles>
Silver fine particles contained in the silver fine particle dispersion of the present invention can be prepared by a conventional method.
For example, a silver compound such as silver nitrate (I) (AgNO 3 ) or silver methanesulfonate (CH 3 SO 3 Ag) and a dispersant are dissolved in water, a reducing agent is added, and the silver is stirred for a certain time while stirring. Silver fine particles can be obtained as a dispersion by reducing the ions.
 上記還元剤に特に制限はなく、銀化合物を還元して銀微粒子を得るために用いられる従来公知の還元剤を用いることができる。なかでも、粒径が小さく且つ粒径の揃った銀微粒子を得る観点から、還元剤として、アルコール(好ましくはメタノール、エタノール、2-プロパノール、エチレングリコール、トリメチロールプロパン、N,N-ジエチルヒドロキシルアミン、又は3-アミノ-1-プロパノール)、ヒドロキシ基を有しないアミン(好ましくは、ヒドラジン、又はフェニルヒドラジン)、アスコルビン酸、ホルムアルデヒド、糖類等を用いることが好ましい。 The reducing agent is not particularly limited, and a conventionally known reducing agent used for reducing silver compounds to obtain silver fine particles can be used. Among them, from the viewpoint of obtaining silver fine particles having a small particle diameter and uniform particle diameter, alcohol (preferably methanol, ethanol, 2-propanol, ethylene glycol, trimethylolpropane, N, N-diethylhydroxylamine) is used as a reducing agent. Or 3-amino-1-propanol), an amine having no hydroxy group (preferably hydrazine or phenylhydrazine), ascorbic acid, formaldehyde, saccharides and the like are preferably used.
 上記銀微粒子の分散剤としては、銀微粒子の分散剤として用いられる従来公知の分散剤を広く用いることができる。上記分散剤は親水性基としてイオン性基を有する分散剤でもよいが、導体配線等の導電性をより高め、且つマイグレーションの発生をより抑制する観点から、親水性基としてノニオン性基を有する分散剤が好ましい。親水性基としてノニオン性基を有する分散剤は高分子化合物であることが好ましく、例えば、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、ポリビニルアルコール、ポリアリルアミン、ポリビニルアルコール-ポリ酢酸ビニル共重合体を挙げることができる。
 本発明に用いうるノニオン性分散剤が高分子化合物である場合、その重量平均分子量は、2000~50000であることが好ましく、3000~30000であることがより好ましい。
 本明細書において、重量平均分子量は、ゲル透過クロマトグラフ(GPC)で測定される。GPCは、HLC-8220GPC(東ソー(株)製)を用い、カラムとして、TSKgeL Super HZM-H、TSKgeL Super HZ4000、TSKgeL Super HZ2000(東ソー(株)製、4.6mmID×15cm)の3本を直列に接続し、溶離液としてTHF(テトラヒドロフラン)を用いる。また、条件としては、試料濃度を0.35質量%、流速を0.35ml/min、サンプル注入量を10μl、測定温度を40℃とし、IR検出器を用いて行なう。また、検量線は、東ソー(株)製「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、「A-1000」、「n-プロピルベンゼン」の8サンプルから作製する。
As the silver fine particle dispersant, a conventionally known dispersant used as a silver fine particle dispersant can be widely used. The dispersant may be a dispersant having an ionic group as a hydrophilic group, but a dispersion having a nonionic group as a hydrophilic group from the viewpoint of further improving the conductivity of a conductor wiring or the like and further suppressing the occurrence of migration. Agents are preferred. The dispersant having a nonionic group as a hydrophilic group is preferably a polymer compound, for example, polyvinylpyrrolidone, polyethylene glycol, polyethylene glycol-polypropylene glycol copolymer, polyvinyl alcohol, polyallylamine, polyvinyl alcohol-polyvinyl acetate. Mention may be made of copolymers.
When the nonionic dispersant that can be used in the present invention is a polymer compound, the weight average molecular weight is preferably 2000 to 50000, and more preferably 3000 to 30000.
In this specification, the weight average molecular weight is measured by gel permeation chromatograph (GPC). GPC uses HLC-8220GPC (manufactured by Tosoh Corporation), and three columns of TSKgeL Super HZM-H, TSKgeL Super HZ4000, and TSKgeL Super HZ2000 (manufactured by Tosoh Corporation, 4.6 mm ID × 15 cm) are connected in series. And THF (tetrahydrofuran) is used as the eluent. As conditions, the sample concentration is 0.35% by mass, the flow rate is 0.35 ml / min, the sample injection amount is 10 μl, the measurement temperature is 40 ° C., and an IR detector is used. The calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000” It is prepared from 8 samples of “A-2500”, “A-1000” and “n-propylbenzene”.
 銀微粒子の一次粒径は、使用する銀化合物、分散剤、還元剤の種類と配合比を適宜に調整し、さらに撹拌速度、温度、時間等を適宜に調整することにより調節することができる。 The primary particle diameter of the silver fine particles can be adjusted by appropriately adjusting the type and blending ratio of the silver compound, dispersant, and reducing agent to be used, and further adjusting the stirring speed, temperature, time, and the like.
 本発明の銀微粒子分散物中において、銀微粒子の平均粒径は、水性媒体中に安定的に分散できれば特に制限はないが、塗布適性、および保存安定性の観点から10~200nmであることが好ましく、20~150nmであることがより好ましく、30~120nmであることがさらに好ましく、40~100nmであることがさらに好ましく、50~100nmであることがさらに好ましい。銀微粒子の平均粒径を上記好ましい範囲内とすることにより、膜、配線、電極等を形成した際に、十分に低い体積抵抗値とすることができる。
 本明細書における銀微粒子の平均粒径は、濃厚系粒径アナライザーFPAR-1000(製品名、大塚電子(株)製)を用いて測定される。具体的には、上記装置(FPAR-1000)を用いて標準測定条件で測定し、キュムラント解析により平均粒径を求める。
 また、銀微粒子分散物中の銀微粒子の粒径分布に関しては、特に制限はなく、広い粒径分布又は単分散性の粒径分布のいずれであってもよい。
In the silver fine particle dispersion of the present invention, the average particle size of the silver fine particles is not particularly limited as long as it can be stably dispersed in an aqueous medium, but is preferably 10 to 200 nm from the viewpoint of coating suitability and storage stability. It is preferably 20 to 150 nm, more preferably 30 to 120 nm, further preferably 40 to 100 nm, and further preferably 50 to 100 nm. By setting the average particle diameter of the silver fine particles within the above preferred range, a sufficiently low volume resistance value can be obtained when a film, wiring, electrode, or the like is formed.
The average particle size of the silver fine particles in the present specification is measured using a concentrated particle size analyzer FPAR-1000 (product name, manufactured by Otsuka Electronics Co., Ltd.). Specifically, measurement is performed under standard measurement conditions using the above apparatus (FPAR-1000), and the average particle diameter is obtained by cumulant analysis.
Further, the particle size distribution of the silver fine particles in the silver fine particle dispersion is not particularly limited, and may be either a wide particle size distribution or a monodisperse particle size distribution.
 本発明の銀微粒子分散物中の銀微粒子の含有量は、5~90質量%であるのが好ましく、10~80質量%であるのがより好ましく、20~70質量%であるのがさらに好ましく、20~50質量%であるのがさらに好ましく、20~40質量%であるのがさらに好ましい。上記の範囲内であれば、十分な厚みと導電性とを有する導体配線や導電膜を形成でき、また、各種の印刷方法に適した流動性の銀微粒子分散物を得ることができる。 The content of the silver fine particles in the silver fine particle dispersion of the present invention is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, and further preferably 20 to 70% by mass. The content is more preferably 20 to 50% by mass, and further preferably 20 to 40% by mass. If it is in said range, the conductor wiring and electrically conductive film which have sufficient thickness and electroconductivity can be formed, and the fluid silver fine particle dispersion suitable for various printing methods can be obtained.
<酸化防止剤>
 本発明において酸化防止剤は、共存する物質に対して酸化抑制作用を示す化合物である。本発明の銀微粒子分散物には1種又は2種以上の酸化防止剤を用いることができる。
 本発明に用いる酸化防止剤は、そのSP値(溶解性パラメータ、単位:MPa1/2)が30以下である。マイグレーションをより効果的に抑える観点から、本発明に用いる酸化防止剤のSP値は好ましくは15~22であり、より好ましくは15~20である。
 本明細書においてSP値は、ハンセンの方法によって求めることができる。ハンセンの方法は当業界で周知のSP値を算出する方法の一つであり、分散項、極性項、水素結合項からなる多次元ベクトルでSP値を表記する。ハンセンのSP値は、Int.J.Thermophys,2008,29,568-585頁に記載の方法で予測でき、本明細書中に記載のSP値はこの文献の方法により予測した値である。
<Antioxidant>
In the present invention, an antioxidant is a compound that exhibits an oxidation-inhibiting action on coexisting substances. One or more antioxidants can be used in the silver fine particle dispersion of the present invention.
The antioxidant used in the present invention has an SP value (solubility parameter, unit: MPa 1/2 ) of 30 or less. From the viewpoint of more effectively suppressing migration, the SP value of the antioxidant used in the present invention is preferably 15 to 22, and more preferably 15 to 20.
In this specification, the SP value can be determined by Hansen's method. Hansen's method is one of methods for calculating an SP value well known in the art, and the SP value is expressed by a multidimensional vector composed of a dispersion term, a polar term, and a hydrogen bond term. Hansen's SP value is Int. J. et al. Thermophys, 2008, 29, pages 568-585, and the SP value described in this specification is a value predicted by the method of this document.
 本発明に用いる酸化防止剤は、20℃において、水(純水)100gに対する溶解度が0.5g以下であり、0.2g以下であることがより好ましい。本発明に用いる酸化防止剤は、20℃において、水(純水)100gに対する溶解度が、通常は0.001g以上である。 The antioxidant used in the present invention has a solubility in 100 g of water (pure water) at 20 ° C. of 0.5 g or less, and more preferably 0.2 g or less. The antioxidant used in the present invention has a solubility in 100 g of water (pure water) at 20 ° C., usually 0.001 g or more.
 本発明に用いる上記酸化防止剤は、本発明の銀微粒子分散物中において、後述する疎水性有機溶剤と共に油滴を構成する。すなわち、本発明において上記酸化防止剤は、水性媒体中に分散してなる油滴中に存在する。 The above-mentioned antioxidant used in the present invention constitutes oil droplets together with the hydrophobic organic solvent described later in the silver fine particle dispersion of the present invention. That is, in the present invention, the antioxidant is present in oil droplets dispersed in an aqueous medium.
 本発明に用いる酸化防止剤は、その構造中に芳香族環を有する化合物であることが好ましい。酸化防止剤が芳香族環を有する化合物であることにより、良好な分散安定性を維持することができる。
 酸化防止剤が有する芳香族環に特に制限はなく、芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、上記芳香族環は単環でも縮合多環構造であってもよい。酸化防止剤の酸化電位の観点から上記芳香族環は芳香族炭化水素環が好ましく、なかでもベンゼン環が好ましい。酸化防止剤1分子中のベンゼン環の数は、好ましくは1~4であり、より好ましくは1~2である。
The antioxidant used in the present invention is preferably a compound having an aromatic ring in its structure. When the antioxidant is a compound having an aromatic ring, good dispersion stability can be maintained.
There is no restriction | limiting in particular in the aromatic ring which antioxidant has, An aromatic hydrocarbon ring or an aromatic heterocyclic ring may be sufficient. The aromatic ring may be a single ring or a condensed polycyclic structure. From the viewpoint of the oxidation potential of the antioxidant, the aromatic ring is preferably an aromatic hydrocarbon ring, and more preferably a benzene ring. The number of benzene rings in one molecule of the antioxidant is preferably 1 to 4, more preferably 1 to 2.
 本発明に用いる酸化防止剤の分子量に特に制限はないが、通常は10000以下であり、5000以下がより好ましく、2000以下がさらに好ましく、1500以下がさらに好ましい。また、酸化防止剤の分子量は200以上が好ましく、300以上がより好ましい。酸化防止剤の分子量を上記好ましい範囲内とすることにより、焼結時の揮発を抑え、マイグレーションを効果的に抑制することができる。 The molecular weight of the antioxidant used in the present invention is not particularly limited, but is usually 10,000 or less, more preferably 5000 or less, further preferably 2000 or less, and further preferably 1500 or less. Further, the molecular weight of the antioxidant is preferably 200 or more, and more preferably 300 or more. By setting the molecular weight of the antioxidant within the above preferred range, volatilization during sintering can be suppressed and migration can be effectively suppressed.
 本発明に用いる酸化防止剤の好ましい例としては、ヒンダードフェノール化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、サリチル酸化合物、及びベンゾオキサゾール化合物から選ばれる酸化防止剤が挙げられ、なかでもヒンダードフェノール化合物、及びベンゾトリアゾール化合物から選ばれる酸化防止剤が好ましい。 Preferred examples of the antioxidant used in the present invention include an antioxidant selected from a hindered phenol compound, a benzophenone compound, a benzotriazole compound, a salicylic acid compound, and a benzoxazole compound, and among them, a hindered phenol compound, and Antioxidants selected from benzotriazole compounds are preferred.
 本明細書においてヒンダードフェノール化合物とは、下記構造式(A)で表される骨格を有する化合物を意味する。本明細書において「骨格を有する」とは、下記構造式(A)中の水素原子の一部又は全部が置換された構造を有するものも包含することを意味する。 In the present specification, the hindered phenol compound means a compound having a skeleton represented by the following structural formula (A). In this specification, “having a skeleton” means to include those having a structure in which part or all of the hydrogen atoms in the structural formula (A) are substituted.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記ヒンダードフェノール化合物の好ましい具体例として、例えば、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-4-ヒドロキシメチルフェノール、4,4’-チオビス(6-t-ブチル-m-クレゾール)、2,6-ジ-t-ブチル-p-クレゾール、2,6-ジ-t-ブチル-4-エチルフェノール、2,2’-メチレンビス(6-t-ブチル-p-クレゾール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、2,2’-メチレンビス(6-t-ブチル-4-エチルフェノール)、1,3,5-トリス{[4-(1,1-ジメチルエチル)-3-ヒドロキシ-2,6-ジメチルフェニル]メチル}-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレンビス[6-(1-メチルシクロヘキシル)-p-クレゾール]、2-(5-クロロベンゾトリアゾール-2-イル)-4-メチル-6-t-ブチル-フェノール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、3,5-ジ-t-ブチル-4-ヒドロキシ安息香酸2,4-ジ-t-ブチルフェニル、1,3,5-トリス{[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル}-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、{3-[3-(4-ヒドロキシ-3,5-ジ-t-ブチル-フェニル)プロパノイルオキシ]-2,2-ビス[3-(4-ヒドロキシ-3,5-ジ-t-ブチル-フェニル)プロパノイルオキシ]プロピル}3-(4-ヒドロキシ-3,5-ジ-t-ブチル-フェニル)プロパノエート、2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)メシチレン、亜リン酸トリス(2,4-ジ-t-ブチルフェニル)を挙げることができる。
 なお、下記(B)~(E)で表される骨格を有する化合物であっても、上記(A)で表される骨格を有する化合物は、本明細書においてはヒンダードフェノール化合物に含まれる(すなわちベンゾフェノン化合物、ベンゾトリアゾール化合物、サリチル酸化合物、又はベンゾオキサゾール化合物には含まれない)ものとする。ここで、「骨格を有する」とは、一般式(A)について説明したのと同様に、各構造式中の水素原子の一部又は全部が置換された構造を有するものも包含することを意味する。
Preferable specific examples of the hindered phenol compound include, for example, butylhydroxyanisole, 2,6-di-t-butyl-4-hydroxymethylphenol, 4,4′-thiobis (6-t-butyl-m-cresol) 2,6-di-t-butyl-p-cresol, 2,6-di-t-butyl-4-ethylphenol, 2,2′-methylenebis (6-t-butyl-p-cresol), 1, 1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (6-tert-butyl-4-ethylphenol), 1,3,5-tris { [4- (1,1-dimethylethyl) -3-hydroxy-2,6-dimethylphenyl] methyl} -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 4,4'- Methylene bis (2,6-di-t-butylphenol), 2,2′-methylene bis [6- (1-methylcyclohexyl) -p-cresol], 2- (5-chlorobenzotriazol-2-yl) -4- Methyl-6-tert-butyl-phenol, 2- (3,5-di-tert-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-tert-amyl-2- Hydroxyphenyl) benzotriazole, stearyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 3,5-di-tert-butyl-4-hydroxybenzoic acid 2,4-di-t -Butylphenyl, 1,3,5-tris {[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl} -1,3,5-triazine-2,4,6 (1H , 3H, 5H) -trione, {3- [3- (4-hydroxy-3,5-di-t-butyl-phenyl) propanoyloxy] -2,2-bis [3- (4-hydroxy-3, 5-di-t-butyl-phenyl) propanoyloxy] propyl} 3- (4-hydroxy-3,5-di-t-butyl-phenyl) propanoate, 2,4,6-tris (3 ′, 5 ′ -Di-t-butyl-4'-hydroxybenzyl) mesitylene, tris phosphite (2,4-di-t-butylphenyl).
Even in the compounds having the skeletons represented by the following (B) to (E), the compound having the skeleton represented by the above (A) is included in the hindered phenol compound in the present specification ( That is, it is not included in the benzophenone compound, benzotriazole compound, salicylic acid compound, or benzoxazole compound). Here, “having a skeleton” means to include those having a structure in which part or all of the hydrogen atoms in each structural formula are substituted, as described for the general formula (A). To do.
 本明細書においてベンゾフェノン化合物とは、下記構造(B)で表される骨格を有する化合物を意味する。 In the present specification, the benzophenone compound means a compound having a skeleton represented by the following structure (B).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記ベンゾフェノン化合物の好ましい具体例として、例えば、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンを挙げることができる。 Preferred specific examples of the benzophenone compound include, for example, 2-hydroxy-4-n-octyloxybenzophenone.
 本明細書においてベンゾトリアゾール化合物とは、下記構造(C)で表される骨格を有する化合物を意味する。 In this specification, the benzotriazole compound means a compound having a skeleton represented by the following structure (C).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記ベンゾトリアゾール化合物の好ましい具体例として、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾールを挙げることができる。 Specific examples of preferable benzotriazole compounds include 2- (2-hydroxy-5-methylphenyl) benzotriazole.
 本明細書においてサリチル酸化合物とは、下記構造(D)で表される骨格を有する化合物を意味する。 In the present specification, the salicylic acid compound means a compound having a skeleton represented by the following structure (D).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記サリチル酸化合物の好ましい具体例として、例えば、サリチル酸4-t-ブチルフェニルを挙げることができる。 A preferred specific example of the salicylic acid compound is, for example, 4-t-butylphenyl salicylate.
 本明細書においてベンゾオキサゾール化合物とは、下記構造(E)で表される骨格を有する化合物を意味する。 In this specification, the benzoxazole compound means a compound having a skeleton represented by the following structure (E).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記ベンゾオキサゾール化合物の好ましい具体例として、例えば、2,5-ビス(5-t-ブチル-2-ベンゾオキサゾリル)チオフェンを挙げることができる。 Specific examples of preferable benzoxazole compounds include 2,5-bis (5-tert-butyl-2-benzoxazolyl) thiophene.
 本発明の銀微粒子分散物中、SP値が30以下の酸化防止剤の含有量は、0.1~20質量%であるのが好ましく、1~10質量%であるのがより好ましい。 In the silver fine particle dispersion of the present invention, the content of the antioxidant having an SP value of 30 or less is preferably 0.1 to 20% by mass, and more preferably 1 to 10% by mass.
<疎水性有機溶剤>
 本発明に用いる疎水性有機溶剤は、上述した酸化防止剤を溶解し、本発明の銀微粒子分散物中において油滴を構成する。
 本発明に用いる疎水性有機溶剤は、20℃において、水(純水)100gに対する溶解度が10g以下である有機溶剤を意味し、20℃における水(純水)100gに対する溶解度が1g以下であることがより好ましい。本発明に用いる疎水性有機溶剤は、20℃における水(純水)100gに対する溶解度が、通常は0.001g以上である。
<Hydrophobic organic solvent>
The hydrophobic organic solvent used in the present invention dissolves the above-mentioned antioxidant and constitutes oil droplets in the silver fine particle dispersion of the present invention.
The hydrophobic organic solvent used in the present invention means an organic solvent having a solubility in 100 g of water (pure water) at 20 ° C. of 10 g or less, and a solubility in 100 g of water (pure water) at 20 ° C. of 1 g or less. Is more preferable. The hydrophobic organic solvent used in the present invention has a solubility in 100 g of water (pure water) at 20 ° C. of usually 0.001 g or more.
 本発明に用いる疎水性有機溶剤の好ましい例として、トルエン、キシレン、炭素数9~18のアルキルベンゼン、ヘキサン、シクロヘキサン、2-ブタノン、酢酸エチル、酢酸ブチル、アニソール、メチルシクロヘキサン、イソプロピルメチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジターシャリーブチルエーテルを挙げることができる。 Preferred examples of the hydrophobic organic solvent used in the present invention include toluene, xylene, alkylbenzene having 9 to 18 carbon atoms, hexane, cyclohexane, 2-butanone, ethyl acetate, butyl acetate, anisole, methylcyclohexane, isopropyl methyl ketone, methyl isobutyl. Mention may be made of ketones, cyclohexanone, ditertiary butyl ether.
 本発明の銀微粒子分散物中、疎水性有機溶剤の含有量は、0.0001~20質量%であるのが好ましく、0.001~10質量%であるのがより好ましく、0.01~1質量%であるのがより好ましく、0.1~1質量%であるのがさらに好ましい。 In the silver fine particle dispersion of the present invention, the content of the hydrophobic organic solvent is preferably 0.0001 to 20% by mass, more preferably 0.001 to 10% by mass, and 0.01 to 1%. More preferably, it is more preferably 0.1 to 1% by mass.
<ノニオン性界面活性剤>
 本発明の銀微粒子分散物は、界面活性剤としてノニオン性界面活性剤を含有する。
 本発明に用いるノニオン性界面活性剤は、酸化防止剤を溶解してなる疎水性有機溶剤溶液を水性媒体中に乳化分散するための乳化剤として用いられる。
 ノニオン性界面活性剤は、銀微粒子分散物ないしインク組成物を塗布し、焼結した際にノニオン性基が揮発しやすいため、その分、銀濃度が高まり、形成した導体配線等の体積抵抗値を抑えることができる。また、イオン性界面活性剤を使用した場合に比べ、マイグレーションも効果的に抑えられる。さらに、イオン性界面活性剤を使用した場合に比べて、分散物中の銀微粒子の分散安定性も向上しうる。
<Nonionic surfactant>
The silver fine particle dispersion of the present invention contains a nonionic surfactant as a surfactant.
The nonionic surfactant used in the present invention is used as an emulsifier for emulsifying and dispersing a hydrophobic organic solvent solution in which an antioxidant is dissolved in an aqueous medium.
Nonionic surfactant is a non-ionic group that volatilizes easily when silver fine particle dispersion or ink composition is applied and sintered. Can be suppressed. Further, migration can be effectively suppressed as compared with the case of using an ionic surfactant. Furthermore, the dispersion stability of the silver fine particles in the dispersion can be improved as compared with the case where an ionic surfactant is used.
 本発明に用いるノニオン性界面活性剤は、酸化防止剤の分散安定性の観点から、HLBが9~15であることが好ましく、10~14であることがより好ましい。HLBはGriffin法(W.C.Griffin,J.Soc.Cosmetic.Chemists.,1,311(1949))により計算される値である。
 また、上記ノニオン性界面活性剤の分子量は500~20000が好ましく、1000~10000がより好ましい。
The nonionic surfactant used in the present invention preferably has an HLB of 9 to 15 and more preferably 10 to 14 from the viewpoint of dispersion stability of the antioxidant. HLB is a value calculated by the Griffin method (WC Griffin, J. Soc. Cosmetic. Chemist., 1, 311 (1949)).
The molecular weight of the nonionic surfactant is preferably 500 to 20000, more preferably 1000 to 10,000.
 上記ノニオン性界面活性剤は、親水性部位中に-(CO)-(nは3以上の整数であり、3~50であることが好ましく、5~25であることがより好ましい)を有することが好ましい。
 また、上記ノニオン性界面活性剤は、その構造中に芳香族環(好ましくはベンゼン環)を有することも好ましい。芳香族環を有することにより、分散安定性を向上させることができる。
The nonionic surfactant has — (C 2 H 4 O) n — (n is an integer of 3 or more, preferably 3 to 50, more preferably 5 to 25 in the hydrophilic part. Preferably).
The nonionic surfactant preferably has an aromatic ring (preferably a benzene ring) in its structure. By having an aromatic ring, dispersion stability can be improved.
 上記ノニオン性界面活性剤の好ましい例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン多環アリールエーテル、ポリオキシエチレンソルビタンアルキレートを挙げることができる。
 上記ノニオン性界面活性剤の好ましい具体例として、例えば、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレン多環フェニルエーテル、ポリオキシエチレンクミルフェニルエーテルを挙げることができる。
Preferable examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkylamine, polyoxyethylene polycyclic aryl ether, and polyoxyethylene sorbitan alkylate.
Preferable specific examples of the nonionic surfactant include, for example, polyoxyethylene distyrenated phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene tribenzyl phenyl ether, polyoxyethylene sorbitan trioleate, polyoxyethylene polycyclic phenyl Examples include ether and polyoxyethylene cumylphenyl ether.
 本発明の銀微粒子分散物中、上記ノニオン性界面活性剤の含有量は1~20質量%が好ましく、2~15質量%がより好ましい。 In the silver fine particle dispersion of the present invention, the content of the nonionic surfactant is preferably 1 to 20% by mass, more preferably 2 to 15% by mass.
<銀微粒子分散物の調製>
 本発明の銀微粒子分散物は、疎水性有機溶剤と酸化防止剤との混合溶液がノニオン性界面活性剤の作用で水性媒体中に乳化分散してなる水中油型乳化物と、上述したように銀化合物を還元して得られた銀微粒子の水性分散物とを混合して得ることができる。
 上記水中油型乳化物の調製には、一般的な乳化分散方法を採用することができる。上記水中油型乳化物の調製の一例について以下に説明する。
<Preparation of silver fine particle dispersion>
The silver fine particle dispersion of the present invention includes an oil-in-water emulsion in which a mixed solution of a hydrophobic organic solvent and an antioxidant is emulsified and dispersed in an aqueous medium by the action of a nonionic surfactant, as described above. It can be obtained by mixing with an aqueous dispersion of silver fine particles obtained by reducing a silver compound.
For the preparation of the oil-in-water emulsion, a general emulsion dispersion method can be employed. An example of the preparation of the oil-in-water emulsion will be described below.
 上記水中油型乳化物の一調製例では、上記酸化防止剤と、上記疎水性有機溶剤と、上記ノニオン性界面活性剤とを混合した溶液(以下、「酸化防止剤溶液」という)を調製する。酸化防止剤溶液を調製する際の溶液温度は10~40℃とすることが好ましい。
 この酸化防止剤溶液中の酸化防止剤濃度は、5~50質量%とすることが好ましい。また、酸化防止剤溶液中のノニオン性界面活性剤濃度は5~50質量%とすることが好ましい。
 また、酸化防止剤溶液中の酸化防止剤とノニオン性界面活性剤の量比は、酸化防止剤/ノニオン性界面活性剤=1/9~9/1(質量比)が好ましく、酸化防止剤/ノニオン性界面活性剤=2/8~8/2(質量比)がより好ましい。
 次いで、上記酸化防止剤溶液を水中に滴下し、超音波ホモジェナイザー等を用いて酸化防止剤溶液を水中に乳化分散することにより、上記水中油型乳化物を得ることができる。酸化防止剤溶液の量と、この溶液が滴下される水の量の比は、酸化防止剤溶液/水=1/100~50/50(質量比)が好ましく、酸化防止剤溶液/水=10/100~30/100(質量比)がより好ましい。
In one preparation example of the oil-in-water emulsion, a solution (hereinafter referred to as “antioxidant solution”) in which the antioxidant, the hydrophobic organic solvent, and the nonionic surfactant are mixed is prepared. . The solution temperature when preparing the antioxidant solution is preferably 10 to 40 ° C.
The concentration of the antioxidant in the antioxidant solution is preferably 5 to 50% by mass. Further, the nonionic surfactant concentration in the antioxidant solution is preferably 5 to 50% by mass.
Further, the amount ratio of the antioxidant and the nonionic surfactant in the antioxidant solution is preferably antioxidant / nonionic surfactant = 1/9 to 9/1 (mass ratio). Nonionic surfactant = 2/8 to 8/2 (mass ratio) is more preferable.
Next, the above-mentioned oil-in-water emulsion can be obtained by dropping the above-mentioned antioxidant solution into water and emulsifying and dispersing the antioxidant solution in water using an ultrasonic homogenizer or the like. The ratio of the amount of the antioxidant solution and the amount of water to which the solution is dropped is preferably an antioxidant solution / water = 1/100 to 50/50 (mass ratio), and the antioxidant solution / water = 10. / 100 to 30/100 (mass ratio) is more preferable.
 上記水中油型乳化物ないし本発明の銀微粒子分散物において、油滴の粒径は20~200nmであることが好ましく、30~150nmであることがより好ましく、40~120nmであることがさらに好ましい。上記油滴の粒径は、平均粒径を意味し、動的光散乱光度計により測定することができる。 In the oil-in-water emulsion or the silver fine particle dispersion of the present invention, the oil droplets preferably have a particle size of 20 to 200 nm, more preferably 30 to 150 nm, and even more preferably 40 to 120 nm. . The particle size of the oil droplets means an average particle size and can be measured by a dynamic light scattering photometer.
 本発明の銀微粒子分散物において、酸化防止剤が、水性媒体中に分散した状態で存在することにより、酸化防止剤を銀微粒子分散物中に安定的且つ均質に存在させることができ、この乳化した銀微粒子分散物を用いることにより導体配線等のマイグレーションをより効果的に抑制することが可能となる。単に酸化防止剤の粉砕物等を銀微粒子分散物中に含有させた場合には、酸化防止剤を安定的に分散させることができず、印刷特性等に劣る。 In the silver fine particle dispersion of the present invention, the antioxidant is present in a dispersed state in an aqueous medium, so that the antioxidant can be present stably and homogeneously in the silver fine particle dispersion. By using the dispersed silver fine particles, it is possible to more effectively suppress the migration of the conductor wiring and the like. When a pulverized product of an antioxidant or the like is simply contained in the silver fine particle dispersion, the antioxidant cannot be stably dispersed, resulting in poor printing characteristics.
<銀微粒子分散物の物性>
 本発明の銀微粒子分散物の粘度は、銀微粒子等の含有量にもよるが、通常は3~1000mPa・sであり、5~500mPa・sであることがより好ましく、5~100mPa・sであることがさらに好ましく、5~50mPa・sであることがさらに好ましく、5~20mPa・sであることがさらに好ましい。銀微粒子分散物の粘度はTV-25型粘度計(東機産業(株)社製)を用い、25℃で測定したものである。
<Physical properties of silver fine particle dispersion>
The viscosity of the silver fine particle dispersion of the present invention is usually 3 to 1000 mPa · s, more preferably 5 to 500 mPa · s, although it depends on the content of silver fine particles and the like. More preferably, it is 5 to 50 mPa · s, more preferably 5 to 20 mPa · s. The viscosity of the silver fine particle dispersion was measured at 25 ° C. using a TV-25 viscometer (manufactured by Toki Sangyo Co., Ltd.).
 本発明の銀微粒子分散物のpHは、分散安定性の観点から、25℃においてpH3~10が好ましく、pH4~8がより好ましく、pH5~7がさらに好ましい。 The pH of the silver fine particle dispersion of the present invention is preferably pH 3 to 10, more preferably pH 4 to 8, more preferably pH 5 to 7 at 25 ° C. from the viewpoint of dispersion stability.
[インク組成物]
 本発明のインク組成物は、本発明の銀微粒子分散物そのものでもよい。また、本発明の銀微粒子分散物を原料として用いて調製されるものであってもよい。より詳細には、少なくとも本発明の銀微粒子分散物と、水性媒体(以下、水性媒体(b)という。)とを混合することにより、本発明のインク組成物を調製してもよい。また、場合によっては本発明の銀微粒子分散物を濃縮して本発明のインク組成物とすることもできる。本発明のインク組成物には、必要に応じて、表面張力調整剤、乾燥防止剤(膨潤剤)、着色防止剤、浸透促進剤、紫外線吸収剤、防腐剤、防錆剤、消泡剤、粘土調整剤、pH調製剤、キレート剤等の添加剤を混合してもよい。混合方法に特に制限はなく、通常用いられる混合方法を適宜に選択し、本発明のインク組成物を得ることができる。
[Ink composition]
The ink composition of the present invention may be the silver fine particle dispersion itself of the present invention. Moreover, it may be prepared using the silver fine particle dispersion of the present invention as a raw material. More specifically, the ink composition of the present invention may be prepared by mixing at least the silver fine particle dispersion of the present invention and an aqueous medium (hereinafter referred to as an aqueous medium (b)). In some cases, the silver fine particle dispersion of the present invention can be concentrated to obtain the ink composition of the present invention. In the ink composition of the present invention, a surface tension adjusting agent, a drying inhibitor (swelling agent), a coloring inhibitor, a penetration accelerator, an ultraviolet absorber, an antiseptic, a rust inhibitor, an antifoaming agent, if necessary, You may mix additives, such as a clay regulator, a pH adjuster, and a chelating agent. The mixing method is not particularly limited, and a commonly used mixing method can be appropriately selected to obtain the ink composition of the present invention.
 水性媒体(b)は水性媒体(a)と同義であり、好ましい範囲も同じである。本発明のインク組成物中、水性媒体の含有量(水性媒体(a)と(b)の含有量の合計)は、銀微粒子の保存安定性の観点から、10~90質量%が好ましく、20~85質量%がより好ましく、30~70質量%がさらに好ましい。 The aqueous medium (b) is synonymous with the aqueous medium (a), and the preferred range is also the same. In the ink composition of the present invention, the content of the aqueous medium (the total content of the aqueous media (a) and (b)) is preferably 10 to 90% by mass from the viewpoint of the storage stability of the silver fine particles. Is more preferably 85% by mass, and further preferably 30% to 70% by mass.
 本発明のインク組成物中、銀微粒子の含有量は、塗布膜により高い導電性を発現させる観点から、5~80質量%であることが好ましく、10~70質量%であることがより好ましく、20~70質量%であるのがさらに好ましく、20~50質量%であるのがさらに好ましく、20~40質量%であるのがさらに好ましい。
 本発明のインク組成物中に分散している銀微粒子の平均粒径及び油滴の平均粒径の好ましい範囲は、上述した本発明の銀微粒子分散物における銀微粒子の平均粒径及び油滴の平均粒径と同じである。
In the ink composition of the present invention, the content of the silver fine particles is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, from the viewpoint of expressing high conductivity in the coating film. It is more preferably 20 to 70% by mass, further preferably 20 to 50% by mass, and further preferably 20 to 40% by mass.
The preferable range of the average particle diameter of the silver fine particles and the average particle diameter of the oil droplets dispersed in the ink composition of the present invention is the average particle diameter of the silver fine particles and the oil droplets in the silver fine particle dispersion of the present invention described above. It is the same as the average particle size.
 本発明のインク組成物は、インクジェット方式によりインク組成物の吐出を良好に行う観点から、インク組成物の表面張力を20~60mN/mとすること好ましく、より好ましくはインク組成物の表面張力を20~45mN/m、更に好ましくは25~40mN/mとする。
 表面張力は、Automatic Surface Tensiometer CBVP-Z(協和界面科学株式会社製)を用いて25℃の条件下で測定される。表面張力は界面活性剤の添加等により適宜に調整できる。
In the ink composition of the present invention, the surface tension of the ink composition is preferably 20 to 60 mN / m, more preferably the surface tension of the ink composition, from the viewpoint of satisfactorily discharging the ink composition by an inkjet method. 20 to 45 mN / m, more preferably 25 to 40 mN / m.
The surface tension is measured under conditions of 25 ° C. using an Automatic Surface Tensiometer CBVP-Z (manufactured by Kyowa Interface Science Co., Ltd.). The surface tension can be appropriately adjusted by adding a surfactant or the like.
 本発明のインク組成物の粘度は特に限定されないが、25℃での粘度が、1mPa・s以上500mPa・s以下であることが好ましく、より好ましくは2mPa・s以上100mPa・s未満であり、更に好ましくは2.5mPa・s以上50mPa・s未満であり、さらに好ましくは5mPa・s以上20mPa・s未満である。インク組成物の粘度は、上述した、銀微粒子分散物の粘度の測定方法と同じ方法で得られる値とする。 The viscosity of the ink composition of the present invention is not particularly limited, but the viscosity at 25 ° C. is preferably 1 mPa · s or more and 500 mPa · s or less, more preferably 2 mPa · s or more and less than 100 mPa · s, Preferably it is 2.5 mPa * s or more and less than 50 mPa * s, More preferably, it is 5 mPa * s or more and less than 20 mPa * s. The viscosity of the ink composition is a value obtained by the same method as the above-described method for measuring the viscosity of the silver fine particle dispersion.
 本発明のインク組成物のpHは、分散安定性の観点から、25℃においてpH6~11が好ましく、pH7~10がより好ましく、pH7~9がさらに好ましい。 The pH of the ink composition of the present invention is preferably pH 6 to 11, more preferably 7 to 10, more preferably 7 to 9, at 25 ° C. from the viewpoint of dispersion stability.
 本発明のインク組成物は、これを基材上に塗布し、大気中、通常は100~250℃、好ましくは120~200℃で焼結することにより、導体配線、導電膜、銀電極などを形成することができる。本発明のインク組成物の塗布方法に特に制限はなく、公知のインク付与方法を用いることができる。例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法などの塗布法が挙げられる。中でも、インクの効率的な使用、記録装置のコンパクト化、高速記録性等の観点から、インク組成物をインクジェット方式によって付与することが好ましい。 The ink composition of the present invention is coated on a substrate and sintered at 100 to 250 ° C., preferably 120 to 200 ° C. in the air, thereby forming a conductor wiring, a conductive film, a silver electrode, and the like. Can be formed. There is no restriction | limiting in particular in the coating method of the ink composition of this invention, A well-known ink application | coating method can be used. For example, coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used. Among these, it is preferable to apply the ink composition by an ink jet method from the viewpoint of efficient use of ink, downsizing of the recording apparatus, high-speed recording property, and the like.
 インクジェット方式には、特に制限はなく、公知の方式、例えば、静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、インクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット方式等のいずれであってもよい。
 また、インクジェット方式で用いるインクジェットヘッドは、オンデマンド方式でもコンティニュアス方式でも構わない。さらに上記インクジェット方式により記録を行う際に使用するインクノズル等についても特に制限はなく、目的に応じて、適宜選択することができる。
The inkjet method is not particularly limited, and is a known method, for example, a charge control method that discharges ink using electrostatic attraction, a drop-on-demand method (pressure pulse method) that uses vibration pressure of a piezoelectric element, Either an acoustic ink jet method that converts an electrical signal into an acoustic beam, irradiates the ink with ink, and ejects the ink using radiation pressure, or a thermal ink jet method that heats the ink to form bubbles and uses the generated pressure. May be.
The ink jet head used in the ink jet method may be an on-demand method or a continuous method. Furthermore, there are no particular limitations on the ink nozzles used when recording by the ink jet method, and the ink nozzles can be appropriately selected depending on the purpose.
 インクの塗布をインクジェット方式で実施する場合、高精細なパターンを形成する観点から、インクジェット方式により吐出されるインク組成物の液滴量が1.5~20pLであることが好ましく、1.5~10pLであることより好ましい。吐出されるインク組成物の液滴量は、吐出条件を適宜に調整して調節することができる。 When the ink application is carried out by an ink jet method, the amount of droplets of the ink composition ejected by the ink jet method is preferably 1.5 to 20 pL from the viewpoint of forming a high-definition pattern. More preferably, it is 10 pL. The amount of droplets of the ejected ink composition can be adjusted by appropriately adjusting the ejection conditions.
[銀電極]
 本発明の銀電極は、本発明の銀微粒子分散物ないしインク組成物を用いて形成される。より詳細には、上述した銀微粒子分散物ないしインク組成物を基板上に塗布して、必要に応じて、加熱処理を施す(焼結する)ことにより本発明の銀電極を形成することができる。上記加熱処理を施すことにより、銀微粒子同士が互いに融着してグレインを形成し、さらにグレイン同士が接着・融着して銀層を形成する。
 上記加熱処理の温度は、100℃~250℃が好ましく、120℃~200℃がより好ましい。
 上記加熱時間は、5分~4時間が好ましく、15分~2時間がより好ましい。
 加熱処理の温度と時間を上記好ましい範囲内とすることにより、銀微粒子が十分に焼結され、所望の導電性(体積抵抗値)が得られやすい。
 本発明の銀電極の体積抵抗値は、好ましくは2×10-6~1×10-4Ωcm、より好ましくは2×10-6~5×10-5Ωcmである。体積抵抗値は後述する実施例に記載の方法で測定することができる。
[Silver electrode]
The silver electrode of the present invention is formed using the silver fine particle dispersion or ink composition of the present invention. More specifically, the silver electrode of the present invention can be formed by applying the above-described silver fine particle dispersion or ink composition on a substrate and subjecting to heat treatment (sintering) as necessary. . By performing the heat treatment, the silver fine particles are fused with each other to form grains, and the grains are bonded and fused to form a silver layer.
The temperature of the heat treatment is preferably 100 ° C. to 250 ° C., more preferably 120 ° C. to 200 ° C.
The heating time is preferably 5 minutes to 4 hours, more preferably 15 minutes to 2 hours.
By setting the temperature and time of the heat treatment within the above preferred range, the silver fine particles are sufficiently sintered and desired conductivity (volume resistance value) is easily obtained.
The volume resistance value of the silver electrode of the present invention is preferably 2 × 10 −6 to 1 × 10 −4 Ωcm, more preferably 2 × 10 −6 to 5 × 10 −5 Ωcm. The volume resistance value can be measured by the method described in Examples described later.
[薄膜トランジスタ(TFT)]
 本発明のTFTは、本発明の銀電極を有する。本発明のTFTにおいて、本発明の銀電極は、ゲート電極、ソース電極及び/又はドレイン電極として用いられ、少なくともソース電極及びドレイン電極として用いられることが好ましい。
 本発明のTFTの好ましい実施形態を以下に説明するが、本発明のTFTはこれらの態様に限定されるものではなく、少なくとも1つの電極が、本発明の銀微粒子分散物ないしインク組成物を用いて形成されていれば特に制限はない。
[Thin Film Transistor (TFT)]
The TFT of the present invention has the silver electrode of the present invention. In the TFT of the present invention, the silver electrode of the present invention is used as a gate electrode, a source electrode and / or a drain electrode, and is preferably used as at least a source electrode and a drain electrode.
Preferred embodiments of the TFT of the present invention are described below, but the TFT of the present invention is not limited to these aspects, and at least one electrode uses the silver fine particle dispersion or ink composition of the present invention. If it is formed, there will be no restriction | limiting in particular.
 本発明のTFTは、基板上に、ゲート電極と、半導体層と、上記ゲート電極と上記半導体層との間に設けられたゲート絶縁層と、上記半導体層に接して設けられ、上記半導体を介して連結されたソース電極及びドレイン電極とを有する。ゲート電極に電圧が印加されると、ソース電極-ドレイン電極間の半導体層と隣接する層との界面に電流の流路(チャネル)が形成される。すなわち、ゲート電極に印加される入力電圧に応じて、ソース電極とドレイン電極との間を流れる電流が制御される。 The TFT of the present invention is provided on a substrate, in contact with the semiconductor layer, a gate electrode, a semiconductor layer, a gate insulating layer provided between the gate electrode and the semiconductor layer, and through the semiconductor. And a source electrode and a drain electrode connected to each other. When a voltage is applied to the gate electrode, a current channel (channel) is formed at the interface between the semiconductor layer between the source electrode and the drain electrode and the adjacent layer. That is, the current flowing between the source electrode and the drain electrode is controlled according to the input voltage applied to the gate electrode.
 本発明のTFTの好ましい構造を図面に基づいて説明する。各図面に示されるTFTは、本発明の理解を容易にするための模式図であり、各部材のサイズないし相対的な大小関係等は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。また、本発明で規定する事項以外はこれらの図面に示された外形、形状に限定されるものでもない。例えば、図1(A)及び(B)において、ゲート電極は必ずしも基板のすべてを覆っている必要はなく、基板の中央部分に設けられた形態も、本発明のTFTの形態として好ましい。
 図1(A)~(D)は、各々、本発明のTFTの代表的な好ましい構造を模式的に表わす縦断面図である。図1(A)~(D)において、1は半導体層、2はゲート絶縁層、3はソース電極、4はドレイン電極、5はゲート電極、6は基板を示す。
 また、図1(A)は、ボトムゲート・ボトムコンタクト型、図1(B)は、ボトムゲート・トップコンタクト型、図1(C)はトップゲート・ボトムコンタクト型、図1(D)はトップゲート・トップコンタクト型のTFTを示している。本発明のTFTには上記4つの形態のすべてが包含される。図示を省略するが、各TFTの図面最上部(基板6に対して反対側)には、オーバーコート層が形成されている場合もある。
A preferred structure of the TFT of the present invention will be described with reference to the drawings. The TFT shown in each drawing is a schematic diagram for facilitating the understanding of the present invention, and the size or relative size relationship of each member may be changed for convenience of explanation. Is not shown as it is. Moreover, it is not limited to the external shape and shape shown by these drawings except the matter prescribed | regulated by this invention. For example, in FIGS. 1A and 1B, the gate electrode does not necessarily cover the entire substrate, and a mode in which the gate electrode is provided in the central portion of the substrate is also preferable as a mode of the TFT of the present invention.
1A to 1D are longitudinal sectional views each schematically showing a typical preferable structure of a TFT of the present invention. 1A to 1D, 1 is a semiconductor layer, 2 is a gate insulating layer, 3 is a source electrode, 4 is a drain electrode, 5 is a gate electrode, and 6 is a substrate.
1A is a bottom gate / bottom contact type, FIG. 1B is a bottom gate / top contact type, FIG. 1C is a top gate / bottom contact type, and FIG. 1D is a top. A gate-top contact type TFT is shown. All of the above four forms are included in the TFT of the present invention. Although not shown, an overcoat layer may be formed on the top of each TFT in the drawing (opposite to the substrate 6).
<基板>
 基板は、TFT及びその上に作製される表示パネル等を支持できるものであればよい。基板は、表面に絶縁性があり、シート状で、表面が平坦であれば特に限定されない。
<Board>
The substrate may be any substrate that can support the TFT and the display panel or the like produced thereon. The substrate is not particularly limited as long as the surface is insulative, has a sheet shape, and has a flat surface.
 基板の材料として、無機材料を用いてもよい。無機材料からなる基板として、例えば、ソーダライムガラス、石英ガラス等の各種ガラス基板や、表面に絶縁膜が形成された各種ガラス基板、表面に絶縁膜が形成された石英基板、表面に絶縁膜が形成されたシリコン基板、サファイヤ基板、ステンレス鋼、アルミニウム、ニッケル等の各種合金や各種金属からなる金属基板、金属箔、紙等を挙げることができる。
 基板がステンレスシート、アルミ箔、銅箔又はシリコンウェハ等の導電性あるいは半導体性の材料で形成されている場合、通常は、表面に絶縁性の高分子材料あるいは金属酸化物等を塗布又は積層して用いられる。
An inorganic material may be used as the material for the substrate. As a substrate made of an inorganic material, for example, various glass substrates such as soda lime glass and quartz glass, various glass substrates with an insulating film formed on the surface, a quartz substrate with an insulating film formed on the surface, and an insulating film on the surface Examples thereof include a silicon substrate, a sapphire substrate, a metal substrate made of various alloys such as stainless steel, aluminum, nickel, and various metals, metal foil, and paper.
When the substrate is made of a conductive or semiconducting material such as stainless steel sheet, aluminum foil, copper foil or silicon wafer, an insulating polymer material or metal oxide is usually applied or laminated on the surface. Used.
 また、基板の材料として、有機材料を用いてもよい。例えば、ポリメチルメタクリレート(ポリメタクリル酸メチル、PMMA)やポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、ポリエーテルスルホン(PES)、ポリイミド、ポリアミド、ポリアセタール、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチルエーテルケトン、ポリオレフィン、ポリシクロオレフィンに例示される有機ポリマーから構成された可撓性を有するプラスチック基板(プラスチックフィルム、プラスチックシートともいう)を挙げることができる。また雲母で形成したものも挙げることができる。 Moreover, an organic material may be used as the material of the substrate. For example, polymethyl methacrylate (polymethyl methacrylate, PMMA), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), polyethersulfone (PES), polyimide, polyamide, polyacetal, polycarbonate (PC), polyethylene terephthalate (PET), Examples thereof include a flexible plastic substrate (also referred to as a plastic film or a plastic sheet) made of an organic polymer exemplified by polyethylene naphthalate (PEN), polyethyl ether ketone, polyolefin, and polycycloolefin. Moreover, the thing formed with the mica can also be mentioned.
 基板の厚みは、10mm以下であるのが好ましく、2mm以下であるのがさらに好ましく、1mm以下であるのが特に好ましい。また、一方で、0.01mm以上であるのが好ましく、0.05mm以上であるのがさらに好ましい。 The thickness of the substrate is preferably 10 mm or less, more preferably 2 mm or less, and particularly preferably 1 mm or less. On the other hand, it is preferably 0.01 mm or more, and more preferably 0.05 mm or more.
<ゲート電極>
 ゲート電極は、TFTのゲート電極として用いられている従来公知の電極を用いることができる。また本発明の銀微粒子分散物ないしインク組成物を用いて形成することもできる。
 ゲート電極を構成する導電性材料(電極材料ともいう)としては、特に限定されない。例えば、白金、金、銀、アルミニウム、クロム、ニッケル、銅、モリブデン、チタン、マグネシウム、カルシウム、バリウム、ナトリウム、パラジウム、鉄、マンガン等の金属;InO、SnO、インジウム・錫酸化物(ITO)、フッ素ドープ酸化錫(FTO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)等の導電性金属酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(PEDOT/PSS)等の導電性高分子;塩酸、硫酸、スルホン酸等の酸、PF、AsF、FeCl等のルイス酸、ヨウ素等のハロゲン原子、ナトリウム、カリウム等の金属原子等のドーパントを添加した上記導電性高分子、並びに、カーボンブラック、グラファイト粉、金属微粒子等を分散した導電性の複合材料等が挙げられる。これらの材料は、1種のみを用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
<Gate electrode>
As the gate electrode, a conventionally known electrode used as a gate electrode of a TFT can be used. It can also be formed using the silver fine particle dispersion or ink composition of the present invention.
A conductive material (also referred to as an electrode material) constituting the gate electrode is not particularly limited. For example, metals such as platinum, gold, silver, aluminum, chromium, nickel, copper, molybdenum, titanium, magnesium, calcium, barium, sodium, palladium, iron, manganese; InO 2 , SnO 2 , indium / tin oxide (ITO ), Conductive metal oxides such as fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO); polyaniline, polypyrrole, polythiophene, polyacetylene, poly (3,4-ethylenedioxy) Conductive polymers such as thiophene) / polystyrene sulfonic acid (PEDOT / PSS); acids such as hydrochloric acid, sulfuric acid, sulfonic acid, Lewis acids such as PF 6 , AsF 5 , FeCl 3 , halogen atoms such as iodine, sodium, potassium Conductivity with dopants such as metal atoms added Polymers, as well as carbon black, graphite powder, a composite material of the conductive dispersed metal fine particles and the like. These materials may be used alone or in combination of two or more in any combination and ratio.
 ゲート電極の形成方法に制限は無い。例えば、真空蒸着法等の物理蒸着法(PVD)、化学蒸着法(CVD法)、スパッタ法、印刷法(塗布法)、転写法、ゾルゲル法、メッキ法等により形成された膜を、必要に応じて所望の形状にパターンニングする方法が挙げられる。
 また、ゲート電極を塗布法により形成することもできる。塗布法では、上記材料の溶液、ペースト又は分散液を調製、塗布し、乾燥、焼成、光硬化又はエージング等により、膜を形成し、又は直接電極を形成できる。
 また、インクジェット印刷、スクリーン印刷、(反転)オフセット印刷、凸版印刷、凹版印刷、平版印刷、熱転写印刷、マイクロコンタクトプリンティング法等は、所望のパターニングが可能であり、工程の簡素化、コスト低減、高速化の点で好ましい。
 スピンコート法、ダイコート法、マイクログラビアコート法、ディップコート法を採用する場合も、下記フォトリソグラフィー法等と組み合わせてパターニングすることができる。
There is no limitation on the method of forming the gate electrode. For example, a film formed by physical vapor deposition (PVD) such as vacuum vapor deposition, chemical vapor deposition (CVD), sputtering, printing (coating), transfer, sol-gel, or plating is necessary. Accordingly, there is a method of patterning into a desired shape.
Alternatively, the gate electrode can be formed by a coating method. In the coating method, a solution, paste, or dispersion of the above material can be prepared and applied, and a film can be formed or an electrode can be directly formed by drying, baking, photocuring, aging, or the like.
In addition, inkjet printing, screen printing, (reversal) offset printing, letterpress printing, intaglio printing, lithographic printing, thermal transfer printing, microcontact printing, etc. allow for desired patterning, simplifying processes, reducing costs, and speeding up It is preferable in terms of conversion.
Even when a spin coating method, a die coating method, a micro gravure coating method, or a dip coating method is adopted, patterning can be performed in combination with the following photolithography method or the like.
 ゲート電極の厚みは、任意であるが、1nm以上が好ましく、10nm以上が特に好ましい。また、500nm以下が好ましく、200nm以下がより好ましい。 The thickness of the gate electrode is arbitrary, but is preferably 1 nm or more, particularly preferably 10 nm or more. Moreover, 500 nm or less is preferable and 200 nm or less is more preferable.
<ゲート絶縁層> <Gate insulation layer>
 ゲート絶縁層は、絶縁性を有する層であれば特に限定されず、単層であってもよいし、多層であってもよい。
 ゲート絶縁層は、絶縁性の材料で形成されるのが好ましく、絶縁性の材料として、例えば、有機高分子、無機酸化物等が好ましく挙げられる。
 有機高分子及び無機酸化物等は、絶縁性を有するものであれば特に限定されず、薄膜、例えば厚み1μm以下の薄膜を形成できるものが好ましい。
 有機高分子及び無機酸化物は、ぞれぞれ、1種を用いても、2種以上を併用してもよく、また、有機高分子と無機酸化物を併用してもよい。
The gate insulating layer is not particularly limited as long as it is an insulating layer, and may be a single layer or a multilayer.
The gate insulating layer is preferably formed of an insulating material, and preferable examples of the insulating material include organic polymers and inorganic oxides.
The organic polymer and the inorganic oxide are not particularly limited as long as they have insulating properties, and those that can form a thin film, for example, a thin film having a thickness of 1 μm or less are preferable.
Each of the organic polymer and the inorganic oxide may be used alone or in combination of two or more, or the organic polymer and the inorganic oxide may be used in combination.
 有機高分子としては、特に限定されるものではないが、例えば、ポリビニルフェノール、ポリスチレン(PS)、ポリメチルメタクリレートに代表されるポリ(メタ)アクリレート、ポリビニルアルコール、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、CYTOPに代表される環状フルオロアルキルポリマー、ポリシクロオレフィン、ポリエステル、ポリエーテルスルホン、ポリエーテルケトン、ポリイミド、エポキシ樹脂、ポリジメチルシロキサン(PDMS)に代表されるポリオルガノシロキサン、ポリシルセスキオキサン又はブタジエンゴム等が挙げられる。また、上記の他にも、フェノール樹脂、ノボラック樹脂、シンナメート樹脂、アクリル樹脂、ポリパラキシリレン樹脂等の熱硬化性樹脂も挙げられる。 Although it does not specifically limit as an organic polymer, For example, polyvinyl phenol, polystyrene (PS), poly (meth) acrylate represented by polymethylmethacrylate, polyvinyl alcohol, polyvinyl chloride (PVC), polyfluorination Represented by vinylidene (PVDF), polytetrafluoroethylene (PTFE), cyclic fluoroalkyl polymers represented by CYTOP, polycycloolefin, polyester, polyethersulfone, polyetherketone, polyimide, epoxy resin, polydimethylsiloxane (PDMS) And polyorganosiloxane, polysilsesquioxane, butadiene rubber and the like. In addition to the above, thermosetting resins such as phenol resin, novolac resin, cinnamate resin, acrylic resin, and polyparaxylylene resin are also included.
 上記無機酸化物としては、特に限定されるものではないが、例えば、酸化ケイ素、窒化ケイ素(SiN)、酸化ハフニウム、酸化チタン、酸化タンタル、酸化アルミニウム、酸化ニオブ、酸化ジルコニウム、酸化銅、酸化ニッケル等の酸化物、また、SrTiO、CaTiO、BaTiO、MgTiO、SrNbのようなペロブスカイト、あるいはこれらの複合酸化物又は混合物等が挙げられる。ここで、酸化ケイ素としては、酸化シリコン(SiO)の他に、BPSG、PSG、BSG、AsSG、PbSG、酸化窒化シリコン(SiON)、SOG(スピンオングラス)、低誘電率SiO系材料(例えば、ポリアリールエーテル、シクロパーフルオロカーボンポリマー及びベンゾシクロブテン、環状フッ素樹脂、ポリテトラフルオロエチレン、フッ化アリールエーテル、フッ化ポリイミド、アモルファスカーボン、有機SOG)を含む。 The inorganic oxide is not particularly limited. For example, silicon oxide, silicon nitride (SiN Y ), hafnium oxide, titanium oxide, tantalum oxide, aluminum oxide, niobium oxide, zirconium oxide, copper oxide, oxide oxides such as nickel, also, SrTiO 3, CaTiO 3, BaTiO 3, MgTiO 3, SrNb perovskite such as 2 O 6 or a composite oxide thereof, or a mixture thereof. Here, as silicon oxide, in addition to silicon oxide (SiO X ), BPSG, PSG, BSG, AsSG, PbSG, silicon oxynitride (SiON), SOG (spin on glass), low dielectric constant SiO 2 based material (for example, , Polyaryl ether, cycloperfluorocarbon polymer and benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, fluorinated aryl ether, fluorinated polyimide, amorphous carbon, organic SOG).
 ゲート絶縁層を無機酸化物で形成する方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング又はCVD法等の真空成膜法を用いることができ、また成膜中に任意のガスを用いたプラズマやイオン銃、ラジカル銃等でアシストを行ってもよい。 As a method for forming the gate insulating layer with an inorganic oxide, for example, a vacuum film formation method such as a vacuum evaporation method, a sputtering method, an ion plating method, a CVD method, or the like can be used. Assist may be performed with the plasma, ion gun, radical gun, or the like used.
<半導体層>
 半導体層は、半導体性を示し、キャリアを蓄積可能な層である。半導体層には従来公知の有機又は無機の半導体化合物を広く用いることができる。
<Semiconductor layer>
The semiconductor layer is a layer that exhibits semiconductor properties and can accumulate carriers. Conventionally known organic or inorganic semiconductor compounds can be widely used for the semiconductor layer.
 有機半導体としては、特に限定されず、有機ポリマー及びその誘導体、低分子化合物等が挙げられる。
 本発明において、低分子化合物は、有機ポリマー及びその誘導体以外の化合物を意味する。すなわち、繰り返し単位を有さない化合物をいう。低分子化合物は、このような化合物である限り、分子量は特に限定されるものではない。
It does not specifically limit as an organic semiconductor, An organic polymer, its derivative (s), a low molecular weight compound, etc. are mentioned.
In the present invention, the low molecular compound means a compound other than the organic polymer and its derivative. That is, it refers to a compound having no repeating unit. As long as the low molecular weight compound is such a compound, the molecular weight is not particularly limited.
 低分子化合物としては、例えば、縮合多環芳香族化合物が挙げられる。例えば、ナフタセン、ペンタセン(2,3,6,7-ジベンゾアントラセン)、ヘキサセン、ヘプタセン、ジベンゾペンタセン、テトラベンゾペンタセン等のアセン、アントラジチオフェン、ピレン、ベンゾピレン、ジベンゾピレン、クリセン、ペリレン、コロネン、テリレン、オバレン、クオテリレン、サーカムアントラセン、及び、これらの炭素原子の一部をN、S、O等の原子で置換した誘導体又は上記炭素原子に結合している少なくとも1つの水素原子をカルボニル基等の官能基で置換した誘導体(ペリキサンテノキサンテン及びその誘導体を含むジオキサアンタントレン系化合物、トリフェノジオキサジン、トリフェノジチアジン、ヘキサセン-6,15-キノン等)、並びに、上記水素原子を他の官能基で置換した誘導体を挙げることができる。 Examples of the low molecular weight compound include condensed polycyclic aromatic compounds. For example, acene such as naphthacene, pentacene (2,3,6,7-dibenzoanthracene), hexacene, heptacene, dibenzopentacene, tetrabenzopentacene, anthradithiophene, pyrene, benzopyrene, dibenzopyrene, chrysene, perylene, coronene, terylene , Ovalene, quaterrylene, circumanthracene, and derivatives obtained by substituting a part of these carbon atoms with atoms such as N, S, O, etc., or at least one hydrogen atom bonded to the carbon atom is functionalized such as a carbonyl group Derivatives substituted with a group (dioxaanthanthrene compounds including perixanthenoxanthene and derivatives thereof, triphenodioxazine, triphenodithiazine, hexacene-6,15-quinone, etc.), and other functional groups of the above hydrogen atom Derivatives substituted with groups It is possible.
 また、銅フタロシアニンで代表される金属フタロシアニン、テトラチアペンタレン及びその誘導体、ナフタレン-1,4,5,8-テトラカルボン酸ジイミド、N,N’-ビス(4-トリフルオロメチルベンジル)ナフタレン-1,4,5,8-テトラカルボン酸ジイミド、N,N’-ビス(1H,1H-ペルフルオロオクチル)、N,N’-ビス(1H,1H-ペルフルオロブチル)、N,N’-ジオクチルナフタレン-1,4,5,8-テトラカルボン酸ジイミド誘導体、ナフタレン-2,3,6,7-テトラカルボン酸ジイミド等のナフタレンテトラカルボン酸ジイミド、アントラセン-2,3,6,7-テトラカルボン酸ジイミド等のアントラセンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド、C60、C70、C76、C78、C84等のフラーレン及びこれらの誘導体、SWNT等のカーボンナノチューブ、メロシアニン色素、ヘミシアニン色素等の色素とこれらの誘導体等を挙げることもできる。 Further, metal phthalocyanines represented by copper phthalocyanine, tetrathiapentalene and derivatives thereof, naphthalene-1,4,5,8-tetracarboxylic acid diimide, N, N′-bis (4-trifluoromethylbenzyl) naphthalene— 1,4,5,8-tetracarboxylic acid diimide, N, N′-bis (1H, 1H-perfluorooctyl), N, N′-bis (1H, 1H-perfluorobutyl), N, N′-dioctylnaphthalene -1,4,5,8-tetracarboxylic acid diimide derivatives, naphthalene tetracarboxylic acid diimides such as naphthalene-2,3,6,7-tetracarboxylic acid diimide, anthracene-2,3,6,7-tetracarboxylic acid Condensed ring tetracarboxylic acid diimide such as anthracene tetracarboxylic acid diimide such as diimide, C60, C70 C76, C78, C84 fullerene and derivatives thereof such as, for SWNT such as carbon nanotubes, merocyanine dyes, may be mentioned such dyes and their derivatives, such as hemicyanine dyes.
 さらに、ポリアントラセン、トリフェニレン、キナクリドンを挙げることができる。 Further examples include polyanthracene, triphenylene, and quinacridone.
 また、低分子化合物としては、例えば、4,4’-ビフェニルジチオール(BPDT)、4,4’-ジイソシアノビフェニル、4,4’-ジイソシアノ-p-テルフェニル、2,5-ビス(5’-チオアセチル-2’-チオフェニル)チオフェン、2,5-ビス(5’-チオアセトキシル-2’-チオフェニル)チオフェン、4,4’-ジイソシアノフェニル、ベンジジン(ビフェニル-4,4’-ジアミン)、TCNQ(テトラシアノキノジメタン)、テトラチアフルバレン(TTF)及びその誘導体、テトラチアフルバレン(TTF)-TCNQ錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、BEDTTTF-ヨウ素錯体、TCNQ-ヨウ素錯体に代表される電荷移動錯体、ビフェニル-4,4’-ジカルボン酸、1,4-ジ(4-チオフェニルアセチリニル)-2-エチルベンゼン、1,4-ジ(4-イソシアノフェニルアセチリニル)-2-エチルベンゼン、1,4-ジ(4-チオフェニルエチニル)-2-エチルベンゼン、2,2”-ジヒドロキシ-1,1’:4’,1”-テルフェニル、4,4’-ビフェニルジエタナール、4,4’-ビフェニルジオール、4,4’-ビフェニルジイソシアネート、1,4-ジアセチニルベンゼン、ジエチルビフェニル-4,4’-ジカルボキシレート、ベンゾ[1,2-c;3,4-c’;5,6-c”]トリス[1,2]ジチオール-1,4,7-トリチオン、α-セキシチオフェン、テトラチアテトラセン、テトラセレノテトラセン、テトラテルルテトラセン、ポリ(3-アルキルチオフェン)、ポリ(3-チオフェン-β-エタンスルホン酸)、ポリ(N-アルキルピロール)ポリ(3-アルキルピロール)、ポリ(3,4-ジアルキルピロール)、ポリ(2,2’-チエニルピロール)、ポリ(ジベンゾチオフェンスルフィド)を例示することができる。 Examples of the low molecular weight compound include 4,4′-biphenyldithiol (BPDT), 4,4′-diisocyanobiphenyl, 4,4′-diisocyano-p-terphenyl, 2,5-bis (5 '-Thioacetyl-2'-thiophenyl) thiophene, 2,5-bis (5'-thioacetoxyl-2'-thiophenyl) thiophene, 4,4'-diisocyanophenyl, benzidine (biphenyl-4,4'- Diamine), TCNQ (tetracyanoquinodimethane), tetrathiafulvalene (TTF) and its derivatives, tetrathiafulvalene (TTF) -TCNQ complex, bisethylenetetrathiafulvalene (BEDTTTTF) -perchloric acid complex, BEDTTTF-iodine complex , A charge transfer complex represented by TCNQ-iodine complex, biphenyl-4,4′-di Rubonic acid, 1,4-di (4-thiophenylacetylinyl) -2-ethylbenzene, 1,4-di (4-isocyanophenylacetylinyl) -2-ethylbenzene, 1,4-di (4- Thiophenylethynyl) -2-ethylbenzene, 2,2 ″ -dihydroxy-1,1 ′: 4 ′, 1 ″ -terphenyl, 4,4′-biphenyldietanal, 4,4′-biphenyldiol, 4, 4′-biphenyl diisocyanate, 1,4-diacetinylbenzene, diethylbiphenyl-4,4′-dicarboxylate, benzo [1,2-c; 3,4-c ′; 5,6-c ″] tris [1,2] dithiol-1,4,7-trithione, α-sexithiophene, tetrathiatetracene, tetraselenotetracene, tetratellurtetracene, poly (3-alkylthiophene ), Poly (3-thiophene-β-ethanesulfonic acid), poly (N-alkylpyrrole) poly (3-alkylpyrrole), poly (3,4-dialkylpyrrole), poly (2,2′-thienylpyrrole) And poly (dibenzothiophene sulfide).
 半導体層を形成する無機半導体材料としては、特に限定されないが、その好ましい例として酸化物半導体が挙げられる。
 酸化物半導体としては、金属酸化物からなるものであれば特に限定されない。酸化物半導体からなる半導体層は、酸化物半導体前駆体、すなわち熱酸化等の変換処理によって金属酸化物からなる半導体材料に変換される材料を用いて形成するのが好ましい。
 酸化物半導体は特に限定されるものではないが、例えば、酸化インジウムガリウム亜鉛、酸化インジウムガリウム、酸化インジウムスズ亜鉛、酸化ガリウム亜鉛、酸化インジウムスズ、酸化インジウム亜鉛、酸化スズ亜鉛、酸化亜鉛、酸化スズ、例えば、InGaZnO、InGaO、InSnZnO、GaZnO、InSnO、InZnO、SnZnO(いずれもx>0)、ZnO、SnOが挙げられる。
The inorganic semiconductor material for forming the semiconductor layer is not particularly limited, but a preferable example thereof is an oxide semiconductor.
The oxide semiconductor is not particularly limited as long as it is made of a metal oxide. The semiconductor layer made of an oxide semiconductor is preferably formed using an oxide semiconductor precursor, that is, a material that is converted into a semiconductor material made of a metal oxide by a conversion process such as thermal oxidation.
The oxide semiconductor is not particularly limited. For example, indium gallium zinc oxide, indium gallium oxide, indium tin zinc oxide, gallium zinc oxide, indium tin oxide, indium zinc oxide, zinc tin oxide, zinc oxide, tin oxide For example, InGaZnO x , InGaO x , InSnZnO x , GaZnO x , InSnO x , InZnO x , SnZnO x (all x> 0), ZnO, and SnO 2 can be given.
 上記酸化物半導体前駆体としては、例えば、金属の硝酸塩、金属のハロゲン化物、アルコキシドが挙げられる。上記酸化物半導体前駆体が含有する金属は、例えば、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる少なくとも1種が挙げられる。
 酸化物半導体前駆体の具体例としては、例えば、硝酸インジウム、硝酸亜鉛、硝酸ガリウム、硝酸スズ、硝酸アルミニウム、塩化インジウム、塩化亜鉛、塩化スズ(2価)、塩化スズ(4価)、塩化ガリウム、塩化アルミニウム、トリ-i-プロポキシインジウム、ジエトキシ亜鉛、ビス(ジピバロイルメタナト)亜鉛、テトラエトキシスズ、テトラ-i-プロポキシスズ、トリ-i-プロポキシガリウム、トリ-i-プロポキシアルミニウムが挙げられる。
Examples of the oxide semiconductor precursor include metal nitrates, metal halides, and alkoxides. Examples of the metal contained in the oxide semiconductor precursor include Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl, Pb, Bi, Ce, Pr, Examples thereof include at least one selected from the group consisting of Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
Specific examples of the oxide semiconductor precursor include, for example, indium nitrate, zinc nitrate, gallium nitrate, tin nitrate, aluminum nitrate, indium chloride, zinc chloride, tin chloride (divalent), tin chloride (tetravalent), and gallium chloride. , Aluminum chloride, tri-i-propoxy indium, diethoxy zinc, bis (dipivaloylmethanato) zinc, tetraethoxy tin, tetra-i-propoxy tin, tri-i-propoxy gallium, tri-i-propoxy aluminum It is done.
<ソース電極、ドレイン電極>
 本発明のTFTにおいて、ソース電極及びドレイン電極は、本発明の銀微粒子分散物ないしインク組成物を用いて形成されていることが好ましい。ソース電極及びドレイン電極が本発明の銀微粒子分散物ないしインク組成物を用いて形成されていない場合は、従来公知のソース電極、ドレイン電極を採用することできる。例えば、上記ゲート電極で説明した導電性材料等を用いることができる。
 ソース電極及びドレイン電極は、それぞれ、上記ゲート電極の形成方法と同様の方法により形成することができる。
<Source electrode, drain electrode>
In the TFT of the present invention, the source electrode and drain electrode are preferably formed using the silver fine particle dispersion or ink composition of the present invention. In the case where the source electrode and the drain electrode are not formed using the silver fine particle dispersion or ink composition of the present invention, a conventionally known source electrode and drain electrode can be employed. For example, the conductive material described for the gate electrode can be used.
The source electrode and the drain electrode can each be formed by a method similar to the method for forming the gate electrode.
 以下に実施例に基づき、本発明についてさらに詳細に説明するが、本発明がこれに限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto.
[参考例1] 銀微粒子の調製(ノニオン性分散剤による分散)
 分散剤としてポリビニルピロリドン(重量平均分子量3000、シグマアルドリッチ社製)(7.36g)を水(100mL)に溶解させた溶液aを調製した。また、硝酸銀50.00g(294.3mmol)を水(200mL)に溶解させた溶液bを調製した。溶液aと溶液bとを混合し、攪拌した。得られた混合液に、N,N-ジエチルヒドロキシルアミン濃度が85質量%の水溶液(78.71g)(N,N-ジエチルヒドロキシルアミンとして750.5mmol)を室温でゆっくり滴下し、さらに、ポリビニルピロリドン(7.36g)を水(1000mL)に溶解させた溶液を室温でゆっくり滴下した。得られた懸濁液を限外濾過ユニット(ザルトリウス・ステディム社製ビバフロー50、分画分子量:10万、ユニット数:4個)に通し、限外濾過ユニットから約5Lの滲出液がでるまで精製水を通過させて精製した。精製水の供給を止め、濃縮し、30gの銀微粒子の分散液を得た。この分散液中の固形分の含有量は50質量%であった。また、固形分中の銀の含有量をTG-DTA(示差熱熱重量同時測定)(エスアイアイ・ナノテクノロジー株式会社製、モデル:STA7000)にて測定したところ、96.0質量%であった。
[Reference Example 1] Preparation of silver fine particles (dispersion with nonionic dispersant)
A solution a in which polyvinylpyrrolidone (weight average molecular weight 3000, manufactured by Sigma-Aldrich) (7.36 g) was dissolved in water (100 mL) as a dispersant was prepared. Further, a solution b in which 50.00 g (294.3 mmol) of silver nitrate was dissolved in water (200 mL) was prepared. Solution a and solution b were mixed and stirred. An aqueous solution (78.71 g) having an N, N-diethylhydroxylamine concentration of 85% by mass (750.5 mmol as N, N-diethylhydroxylamine) was slowly added dropwise to the obtained mixture at room temperature, and polyvinylpyrrolidone was further added. A solution prepared by dissolving (7.36 g) in water (1000 mL) was slowly added dropwise at room temperature. The obtained suspension was passed through an ultrafiltration unit (Saltrius Stedim Vivaflow 50, molecular weight cut off: 100,000, number of units: 4) and purified until about 5 L of exudate was produced from the ultrafiltration unit. Purified by passing water through. The supply of purified water was stopped and concentrated to obtain a dispersion of 30 g of silver fine particles. The solid content in the dispersion was 50% by mass. Further, the content of silver in the solid content was measured by TG-DTA (simultaneous differential thermogravimetric measurement) (model: STA7000, manufactured by SII Nanotechnology Inc.) and found to be 96.0% by mass. .
[参考例2] 水中油型乳化物の調製
 下記表1に示す酸化防止剤5g、トルエン5g、下記表1に示すノニオン性界面活性剤5gあるいはイオン性界面活性剤5gを混合した溶液を調製し、水50g中に滴下した。超音波ホモジェナイザー(500W)により、20℃に冷却しながら、5分間分散し、油滴の平均粒径が50nm~200nmの範囲内にある32種類の水中油型乳化物を得た。その後、トルエンを減圧留去により1%以下まで除き、純水を添加して固形分を20%に調整した。油滴の平均粒径は、濃厚系粒径アナライザー(大塚電子社製、FPAR-1000)により測定した。また高速液体クロマトグラフィーにより、トルエンの含率を測定した結果、溶液中0.2%含まれていた。
[Reference Example 2] Preparation of oil-in-water emulsion A solution was prepared by mixing 5 g of the antioxidant shown in Table 1 below, 5 g of toluene, 5 g of the nonionic surfactant shown in Table 1 below, or 5 g of the ionic surfactant. The solution was dropped into 50 g of water. While cooling to 20 ° C. with an ultrasonic homogenizer (500 W), dispersion was performed for 5 minutes to obtain 32 types of oil-in-water emulsions having an average particle size of oil droplets in the range of 50 nm to 200 nm. Thereafter, toluene was removed to 1% or less by distillation under reduced pressure, and pure water was added to adjust the solid content to 20%. The average particle size of the oil droplets was measured with a concentrated particle size analyzer (FPAR-1000, manufactured by Otsuka Electronics Co., Ltd.). Moreover, as a result of measuring the content rate of toluene by high performance liquid chromatography, 0.2% was contained in the solution.
[調製例] 銀微粒子分散物(インク組成物)の調製
 上記参考例1で得られた銀微粒子の分散液1gと、上記参考例2で調製した水中油型乳化物0.3gと、1-メトキシ2-プロパノール0.2gを添加し、撹拌して銀微粒子分散物(インク組成物)を得た。この銀微粒子分散物の表面張力は36mN/m、25℃における粘度は8.0Pa・sであった。また、この銀微粒子分散物中、銀微粒子の含有量は32質量%、酸化防止剤の含有量は4質量%、ノニオン性界面活性剤の含有量は4質量%である。
[Preparation Example] Preparation of Silver Fine Particle Dispersion (Ink Composition) 1 g of the silver fine particle dispersion obtained in Reference Example 1 above, 0.3 g of the oil-in-water emulsion prepared in Reference Example 2 above, 0.2 g of methoxy 2-propanol was added and stirred to obtain a silver fine particle dispersion (ink composition). The silver fine particle dispersion had a surface tension of 36 mN / m and a viscosity at 25 ° C. of 8.0 Pa · s. Further, in this silver fine particle dispersion, the content of silver fine particles is 32% by mass, the content of antioxidant is 4% by mass, and the content of nonionic surfactant is 4% by mass.
<銀微粒子の平均粒径の測定>
 上記調製例で調製した銀微粒子分散物を、イオン交換水を用いて20倍に希釈し、粒径アナライザーFPAR-1000(大塚電子)を用いて測定を行い、銀微粒子のキュムラント平均粒子径を求めた。
<Measurement of average particle diameter of silver fine particles>
The silver fine particle dispersion prepared in the above preparation example is diluted 20 times with ion-exchanged water, and measured using a particle size analyzer FPAR-1000 (Otsuka Electronics) to determine the average particle size of the silver fine particles. It was.
[試験例1] 銀微粒子の分散性の評価
 銀微粒子の分散性は、銀微粒子分散物(インク組成物)の調製直後における銀微粒子の平均粒径を測定し、下記評価基準により評価した。
A:平均粒径が50nm以上100nm未満 
B:平均粒径が100nm以上200nm未満
C:平均粒径が200nm以上
[Test Example 1] Evaluation of Dispersibility of Silver Fine Particles The dispersibility of silver fine particles was evaluated by measuring the average particle diameter of silver fine particles immediately after the preparation of the silver fine particle dispersion (ink composition) and by the following evaluation criteria.
A: Average particle diameter is 50 nm or more and less than 100 nm
B: Average particle size is 100 nm or more and less than 200 nm C: Average particle size is 200 nm or more
[試験例2] 銀微粒子の分散安定性の評価
 銀微粒子の分散安定性は、銀微粒子分散物(インク組成物)の調製直後における銀微粒子の平均粒径d1と、銀微粒子分散物(インク組成物)の調製後、40℃で30日間保管した後のにおける銀微粒子の平均粒径d2から、下記式に基づき粒径変化率(%)を算出し、下記評価基準に基づき評価した。
 粒径変化率(%)=100×(d2-d1)/d1
A:粒径変化率が5%未満
B:粒径変化率が5%以上10%未満
C:粒径変化率が10%以上
Test Example 2 Evaluation of Dispersion Stability of Silver Fine Particles The dispersion stability of silver fine particles is determined by the average particle diameter d1 of silver fine particles immediately after preparation of the silver fine particle dispersion (ink composition) and the silver fine particle dispersion (ink composition). After the preparation, the particle diameter change rate (%) was calculated based on the following formula from the average particle diameter d2 of the silver fine particles after storage at 40 ° C. for 30 days, and evaluated based on the following evaluation criteria.
Change rate of particle size (%) = 100 × (d2−d1) / d1
A: Change rate of particle size is less than 5% B: Change rate of particle size is 5% or more and less than 10% C: Change rate of particle size is 10% or more
[試験例3] 体積抵抗値の評価
 導電性の指標として、体積抵抗値を測定した。
 清浄な50mm角のガラス基板に、上記調製例で調製した各銀微粒子分散物をスピンコート法により塗布し(500rpm、30秒)、オーブンにて200℃、2時間加熱した。得られた各塗布膜について、触針式膜厚計により求めた平均膜厚は320nmであった。放冷した後、ロレスタGP MCP-T610型(商品名、三菱マテリアル製)にて体積抵抗値を測定し、下記評価基準により評価した。
- 評価基準 -
 A:2×10-5Ωcm未満
 B:2×10-5Ωcm以上1×10-4Ωcm未満
 C:1×10-4Ωcm以上1×10-3Ωcm未満
 D:1×10-3Ωcm以上
[Test Example 3] Evaluation of Volume Resistance Value Volume resistance value was measured as a conductivity index.
Each silver fine particle dispersion prepared in the above preparation example was applied to a clean 50 mm square glass substrate by a spin coating method (500 rpm, 30 seconds), and heated in an oven at 200 ° C. for 2 hours. About each obtained coating film, the average film thickness calculated | required with the stylus-type film thickness meter was 320 nm. After allowing to cool, the volume resistance value was measured with a Loresta GP MCP-T610 type (trade name, manufactured by Mitsubishi Materials) and evaluated according to the following evaluation criteria.
- Evaluation criteria -
A: Less than 2 × 10 −5 Ωcm B: 2 × 10 −5 Ωcm or more and less than 1 × 10 −4 Ωcm C: 1 × 10 −4 Ωcm or more and less than 1 × 10 −3 Ωcm D: 1 × 10 −3 Ωcm or more
[試験例4] 絶縁信頼性の評価
 FR4FR-4グレードのガラスエポキシ基板NIKAPLEX(商品名、ニッカン工業社製)にABF-GX13(商品名、味の素ファインテクノ社製、層間絶縁材料)をラミネートした基板上に、上記調製例で調製した各銀微粒子分散物を、焼結後の膜厚が200nmになるようにSTS-200(商品名、ワイディーメカトロソリューションズ社製)を用いてスプレーコーティング法により塗布した。その後、オーブンを用いて焼結し(210℃、1時間)、基板上に銀膜を形成した。形成された銀膜をフォトリソグラフィー法によりL(ライン)/S(スペース)=50/50μmの櫛形にエッチングし、櫛形状の銀膜(銀配線)を形成した。この時ドライフィルムレジストにはフォテックH-7025(商品名、日立化成社製)、銀エッチング液にはアグリップ940(商品名、メルテックス社製)を用いた。さらに、銀配線上にCytop CTL107MK(商品名、AGC社製)を乾燥後の膜厚が1μmになる様にスピンコートし、その後オーブンで140℃、20分間乾燥させ、封止層を形成して、絶縁信頼性評価用の各配線基板を作製した。
[Test Example 4] Evaluation of insulation reliability Substrate obtained by laminating ABF-GX13 (trade name, manufactured by Ajinomoto Fine-Techno Co., Ltd., interlayer insulation material) on FR4FR-4 grade glass epoxy substrate NIKAPLEX (trade name, manufactured by Nikkan Kogyo Co., Ltd.) Above, each silver fine particle dispersion prepared in the above preparation example was applied by spray coating method using STS-200 (trade name, manufactured by WIDME METARO SOLUTIONS) so that the film thickness after sintering was 200 nm. did. Then, it sintered using oven (210 degreeC, 1 hour), and formed the silver film on the board | substrate. The formed silver film was etched into a comb shape of L (line) / S (space) = 50/50 μm by photolithography to form a comb-shaped silver film (silver wiring). At this time, Fotec H-7005 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used as the dry film resist, and Agrip 940 (trade name, manufactured by Meltex) was used as the silver etching solution. Further, Cytop CTL107MK (trade name, manufactured by AGC) was spin-coated on the silver wiring so that the film thickness after drying was 1 μm, and then dried in an oven at 140 ° C. for 20 minutes to form a sealing layer. Each wiring board for insulation reliability evaluation was produced.
 得られた各配線基板について、湿度85%、温度85℃、圧力1.0atm、電圧60Vの条件で寿命試験(使用装置:エスペック社製、EHS-221MD)を行った。具体的には、上記環境下で、隣り合った銀配線に上記電圧を印加した。そして、マイグレーションによって銀配線間が短絡するまでの時間(銀配線間の抵抗値が1×10Ωになるまでの時間T)を測定した。酸化防止剤を添加していない銀微粒子分散物を用いた場合の時間TをT1(基準)とし、下記評価基準により絶縁信頼性を相対評価した。 Each obtained wiring board was subjected to a life test (use apparatus: EHS-221MD, manufactured by Espec Corp.) under the conditions of humidity 85%, temperature 85 ° C., pressure 1.0 atm, and voltage 60V. Specifically, the voltage was applied to adjacent silver wirings in the environment. Then, the time until the silver wiring was short-circuited by migration (time T until the resistance value between the silver wirings was 1 × 10 5 Ω) was measured. The time T when using a silver fine particle dispersion to which no antioxidant was added was defined as T1 (reference), and the insulation reliability was evaluated relative to the following evaluation criteria.
- 評価基準 -
 A:時間TがT1の5倍以上
 B:時間TがT1の2倍以上5倍未満
 C:時間TがT1より長くT1の2倍未満
 D:時間TがT1以下
 結果を下記表1に示す。なお、下記表1に記載のノニオン性界面活性剤は下記の通りである。
エマルゲンA60:ポリオキシエチレンジスチレン化フェニルエーテル 花王社製
エマルゲン104P:ポリオキシエチレンラウリルエーテル 花王社製
エマルゲン106P:ポリオキシエチレンラウリルエーテル 花王社製
エマルゲン109P:ポリオキシエチレンラウリルエーテル 花王社製
エマルゲンB-66:ポリオキシエチレントリベンジルフェニルエーテル 花王社製
ニューコール707:ポリオキシエチレン多環フェニルエーテル 日本乳化剤社製
ニューコール3-85:ポリオキシエチレンソルビタントリオレエート 日本乳化剤社製
ニューコールCMP-8:ポリオキシエチレンクミルフェニルエーテル 日本乳化剤社製
ニューコール719:ポリオキシエチレン多環フェニルエーテル 日本乳化剤社製
- Evaluation criteria -
A: Time T is 5 times or more of T1 B: Time T is 2 times or more and less than 5 times T1 C: Time T is longer than T1 and less than 2 times T1 D: Time T is T1 or less The results are shown in Table 1 below. . The nonionic surfactants listed in Table 1 below are as follows.
Emulgen A60: Polyoxyethylene distyrenated phenyl ether Emulgen 104P: Polyoxyethylene lauryl ether manufactured by Kao Corporation Emulgen 106P: Polyoxyethylene lauryl ether manufactured by Kao Corporation Emulgen 109P: Polyoxyethylene lauryl ether manufactured by Kao Corporation Emargen B- manufactured by Kao Corporation 66: Polyoxyethylene tribenzyl phenyl ether New Coal 707: Polyoxyethylene polycyclic phenyl ether New Coal 3-85: Polyoxyethylene sorbitan trioleate Nippon Emulsifier New Coal CMP-8: Poly Oxyethylene cumylphenyl ether New Emulsion 719 manufactured by Nippon Emulsifier Co., Ltd .: Polyoxyethylene polycyclic phenyl ether manufactured by Nippon Emulsifier Co.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[試験例4] TFTの製造
 図1(A)に示されるTFT(ボトムゲート・ボトムコンタクト型)を製造し、移動度を評価した。
 ガラス基板(イーグルXG:コーニング社製)6上に、ゲート電極となるアルミニウムを蒸着した(厚み:50nm)。その上にゲート絶縁膜形成用組成物(ポリビニルフェノール/メラミン=1質量部/1質量部(w/w)のPGMEA(プロピレングリコールモノメチルエーテルアセテート)溶液(固形分濃度:2質量%))をスピンコートし、その後、150℃で60分間ベークし、膜厚400nmのゲート絶縁膜2を形成した。その上に、上記各調製例で調製した銀微粒子分散物(実施例1~25で用いた銀微粒子分散物)を、インクジェット装置DMP-2831(富士フイルムダイマティクス社製)を用いてソース電極及びドレイン電極のパターン(チャネル長40μm、チャネル幅200μm)に描画した。その後オーブンにて180℃、30分ベークして焼結し、ソース電極3及びドレイン電極4を形成した。その上に2,8-ジフルオロ-5,11-ビス(トリエチルシリルエチニル)アントラジチオフェン(ALDRICH社製)のトルエン溶液をスピンコートし、140℃で15分間ベークを行い、厚み100nmの有機半導体層1を形成した。その上にCytop CTL-107MK(AGC社製)をスピンコートし、140℃で20分間ベークし、厚み2μmの封止層(最上層、図1において図示していない。)を形成して、25種類のTFT(ボトムゲートボトムコンタクト型)を作製した。
[Test Example 4] Manufacture of TFT The TFT (bottom gate / bottom contact type) shown in FIG. 1 (A) was manufactured, and the mobility was evaluated.
On the glass substrate (Eagle XG: manufactured by Corning), aluminum serving as a gate electrode was deposited (thickness: 50 nm). On top of that, a composition for forming a gate insulating film (polyvinylphenol / melamine = 1 part by weight / 1 part by weight (w / w) PGMEA (propylene glycol monomethyl ether acetate) solution (solid content concentration: 2% by weight)) is spun After coating, baking was performed at 150 ° C. for 60 minutes to form a gate insulating film 2 having a thickness of 400 nm. Further, the silver fine particle dispersion prepared in each of the above preparation examples (silver fine particle dispersion used in Examples 1 to 25) was added to a source electrode and an ink jet apparatus DMP-2831 (manufactured by Fujifilm Dimatics). A drain electrode pattern (channel length 40 μm, channel width 200 μm) was drawn. Thereafter, baking was performed at 180 ° C. for 30 minutes in an oven and sintering was performed, whereby the source electrode 3 and the drain electrode 4 were formed. A toluene solution of 2,8-difluoro-5,11-bis (triethylsilylethynyl) anthradithiophene (ALDRICH) is spin-coated thereon, and baked at 140 ° C. for 15 minutes to form an organic semiconductor layer having a thickness of 100 nm. 1 was formed. Cytop CTL-107MK (manufactured by AGC) is spin-coated thereon and baked at 140 ° C. for 20 minutes to form a 2 μm-thick sealing layer (the uppermost layer, not shown in FIG. 1). A type of TFT (bottom gate bottom contact type) was fabricated.
 得られた有機薄膜トランジスタの各電極と、半導体パラメータ・アナライザ(4155C、Agilent Technologies社製)に接続されたマニュアルプローバの各端子とを接続して、電界効果トランジスタ(FET)の評価を行なった。具体的には、ドレイン電流-ゲート電圧(Id‐Vg)特性を測定することにより電界効果移動度(cm/V・sec)を算出した。その結果、すべてのTFTにおいて電界効果移動度が0.1~0.3の範囲内となり、TFTとして良好に機能することがわかった。 Each electrode of the obtained organic thin film transistor was connected to each terminal of a manual prober connected to a semiconductor parameter analyzer (4155C, manufactured by Agilent Technologies) to evaluate a field effect transistor (FET). Specifically, field effect mobility (cm 2 / V · sec) was calculated by measuring drain current-gate voltage (Id-Vg) characteristics. As a result, it was found that the field effect mobility was in the range of 0.1 to 0.3 in all TFTs, and functioned well as TFTs.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2015年1月13日に日本国で特許出願された特願2015-004538に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2015-004538 filed in Japan on January 13, 2015, which is hereby incorporated herein by reference. Capture as part.

Claims (11)

  1.  銀微粒子を水性媒体中に分散してなる銀微粒子分散物であって、
     SP値が30以下の酸化防止剤と、疎水性有機溶剤との混合溶液が、ノニオン性界面活性剤により前記水性媒体中に乳化分散してなる、銀微粒子分散物。
    A silver fine particle dispersion obtained by dispersing silver fine particles in an aqueous medium,
    A silver fine particle dispersion obtained by emulsifying and dispersing a mixed solution of an antioxidant having an SP value of 30 or less and a hydrophobic organic solvent in the aqueous medium with a nonionic surfactant.
  2.  前記酸化防止剤が芳香族環を有する化合物である、請求項1に記載の銀微粒子分散物。 The silver fine particle dispersion according to claim 1, wherein the antioxidant is a compound having an aromatic ring.
  3.  前記酸化防止剤が分子量200~3000の化合物である、請求項1又は2に記載の銀微粒子分散物。 The silver fine particle dispersion according to claim 1 or 2, wherein the antioxidant is a compound having a molecular weight of 200 to 3,000.
  4.  前記酸化防止剤が、ヒンダードフェノール化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、サリチル酸化合物、及びベンゾオキサゾール化合物から選ばれる、請求項1~3のいずれか1項に記載の銀微粒子分散物。 The silver fine particle dispersion according to any one of claims 1 to 3, wherein the antioxidant is selected from a hindered phenol compound, a benzophenone compound, a benzotriazole compound, a salicylic acid compound, and a benzoxazole compound.
  5.  前記ノニオン性界面活性剤が、親水性部位中に-(CO)-を有する、請求項1~4のいずれか1項に記載の銀微粒子分散物。
     但し、nは3以上の整数である。
    The silver fine particle dispersion according to any one of claims 1 to 4, wherein the nonionic surfactant has-(C 2 H 4 O) n -in a hydrophilic portion.
    However, n is an integer of 3 or more.
  6.  前記ノニオン性界面活性剤が芳香族環を有する、請求項1~5のいずれか1項に記載の銀微粒子分散物。 The silver fine particle dispersion according to any one of claims 1 to 5, wherein the nonionic surfactant has an aromatic ring.
  7.  請求項1~6のいずれか1項に記載の銀微粒子分散物を用いたインク組成物。 An ink composition using the silver fine particle dispersion according to any one of claims 1 to 6.
  8.  インクジェット印刷に用いる、請求項7に記載のインク組成物。 The ink composition according to claim 7, which is used for inkjet printing.
  9.  銀電極の形成に用いる、請求項7又は8に記載のインク組成物。 The ink composition according to claim 7 or 8, which is used for forming a silver electrode.
  10.  請求項1~6のいずれか1項に記載の銀微粒子分散物又は請求項7~9のいずれか1項に記載のインク組成物を用いて形成した銀電極。 A silver electrode formed by using the silver fine particle dispersion according to any one of claims 1 to 6 or the ink composition according to any one of claims 7 to 9.
  11.  請求項10に記載の銀電極を有する薄膜トランジスタ。 A thin film transistor having the silver electrode according to claim 10.
PCT/JP2016/050296 2015-01-13 2016-01-07 Fine silver particle dispersion, ink composition, silver electrode, and thin film transistor WO2016114205A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016569328A JP6393953B2 (en) 2015-01-13 2016-01-07 Silver fine particle dispersion, ink composition, silver electrode, and thin film transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-004538 2015-01-13
JP2015004538 2015-01-13

Publications (1)

Publication Number Publication Date
WO2016114205A1 true WO2016114205A1 (en) 2016-07-21

Family

ID=56405752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050296 WO2016114205A1 (en) 2015-01-13 2016-01-07 Fine silver particle dispersion, ink composition, silver electrode, and thin film transistor

Country Status (3)

Country Link
JP (1) JP6393953B2 (en)
TW (1) TW201625752A (en)
WO (1) WO2016114205A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210054224A1 (en) * 2018-03-07 2021-02-25 Nagase Chemtex Corporation Acrylic resin, method for producing same, and fine metal particle dispersion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234299A (en) * 2006-02-28 2007-09-13 Asahi Glass Co Ltd Manufacturing method of transparent conductive film, transparent conductive film, and coating liquid
JP2008546157A (en) * 2005-06-09 2008-12-18 ナショナル スターチ アンド ケミカル カンパニー Water based printable electrical conductor
JP2011140635A (en) * 2009-12-10 2011-07-21 Riso Kagaku Corp Electrically conductive emulsion ink and method for producing electrically conductive thin film using the same
JP2013544917A (en) * 2010-10-22 2013-12-19 カンブリオス テクノロジーズ コーポレイション Nanowire ink composition and printing thereof
JP2014523459A (en) * 2011-06-14 2014-09-11 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Silver-containing aqueous ink formulation for producing an electrically conductive structure and ink jet printing method for producing such an electrically conductive structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546157A (en) * 2005-06-09 2008-12-18 ナショナル スターチ アンド ケミカル カンパニー Water based printable electrical conductor
JP2007234299A (en) * 2006-02-28 2007-09-13 Asahi Glass Co Ltd Manufacturing method of transparent conductive film, transparent conductive film, and coating liquid
JP2011140635A (en) * 2009-12-10 2011-07-21 Riso Kagaku Corp Electrically conductive emulsion ink and method for producing electrically conductive thin film using the same
JP2013544917A (en) * 2010-10-22 2013-12-19 カンブリオス テクノロジーズ コーポレイション Nanowire ink composition and printing thereof
JP2014523459A (en) * 2011-06-14 2014-09-11 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Silver-containing aqueous ink formulation for producing an electrically conductive structure and ink jet printing method for producing such an electrically conductive structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210054224A1 (en) * 2018-03-07 2021-02-25 Nagase Chemtex Corporation Acrylic resin, method for producing same, and fine metal particle dispersion

Also Published As

Publication number Publication date
JPWO2016114205A1 (en) 2017-11-30
JP6393953B2 (en) 2018-10-03
TW201625752A (en) 2016-07-16

Similar Documents

Publication Publication Date Title
KR101409725B1 (en) Phase-separated dielectric structure fabrication process
US7994495B2 (en) Organic thin film transistors
KR101881602B1 (en) Non-symmetrical dibenzodithienothiophene compounds
US9203038B2 (en) Electronic device
JP2007180498A (en) Thin-film transistor, electronic circuit, display unit and electronic apparatus
TWI433366B (en) Device with phase-separated dielectric structure
JP6509254B2 (en) Silver fine particle dispersion, ink composition, silver electrode, and thin film transistor
US9058981B2 (en) Dielectric composition for thin-film transistors
US7863694B2 (en) Organic thin film transistors
JP6393953B2 (en) Silver fine particle dispersion, ink composition, silver electrode, and thin film transistor
EP3425687B1 (en) Organic semiconductor composition, organic thin film comprising same, and use thereof
CN103370772A (en) Composition for forming insulating material for electronic element, and thin film transistor
JP6361059B2 (en) Silver fine particle dispersion, ink composition, silver electrode, and thin film transistor
JP2018142704A (en) Organic semiconductor composition and application thereof
JP2010093260A (en) Semiconductor ink composition
Yang et al. Enhanced device stability of ionic gating molybdenum disulfide transistors
DE102012201840B4 (en) semiconductor composition
KR20180048236A (en) Organic semiconductor layer contained CNT, Preparing thereof and Thin-film transistor using the same
JP2015176919A (en) Organic thin-film transistor and method of manufacturing the same
Wu et al. Development of Silver Nanoparticle Ink for Printed Electronics
JP2020047880A (en) Organic semiconductor composition, organic thin film and organic thin film transistor
JP2015170651A (en) Organic semiconductor material-containing composition, organic thin film transistor, and method for manufacturing organic thin film transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737276

Country of ref document: EP

Kind code of ref document: A1