WO2016112759A1 - 一种钻孔内热驱替式强化抽采方法 - Google Patents

一种钻孔内热驱替式强化抽采方法 Download PDF

Info

Publication number
WO2016112759A1
WO2016112759A1 PCT/CN2015/096789 CN2015096789W WO2016112759A1 WO 2016112759 A1 WO2016112759 A1 WO 2016112759A1 CN 2015096789 W CN2015096789 W CN 2015096789W WO 2016112759 A1 WO2016112759 A1 WO 2016112759A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat
borehole
hole
thermal
Prior art date
Application number
PCT/CN2015/096789
Other languages
English (en)
French (fr)
Inventor
林柏泉
洪溢都
朱传杰
姚昊
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US15/323,272 priority Critical patent/US9869168B2/en
Priority to AU2015377012A priority patent/AU2015377012B2/en
Publication of WO2016112759A1 publication Critical patent/WO2016112759A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells

Definitions

  • the invention relates to a thermal flooding enhanced drainage method in a borehole, and is particularly suitable for gas efficient extraction of a high gas and low permeability coal seam in a coal mine.
  • the basic means of gas control in underground coal mines in China is the gas drainage measures based on the method of drilling gas drainage.
  • the low permeability of coal seams has gradually become the main controlling factor for efficient gas drainage. Therefore, strengthening the anti-reflection has become a key technology to improve the gas drainage effect and achieve deep coal and gas co-production.
  • intensive anti-reflection technologies There are mainly two types of intensive anti-reflection technologies mainly used.
  • One is a method in which a fluid machine and a fluid medium are combined to treat a coal body, such as hydraulic slitting, hydraulic fracturing, etc., and the other is an explosive explosion method. Cause the coal body to crack.
  • Both methods can increase the permeability of the coal seam and improve the gas drainage effect, but still have their own limitations.
  • hydraulic cutting, hydraulic fracturing and other methods there will be water lock effect and other methods to suppress gas analysis;
  • explosives and other methods there is costly charging, and the explosive itself is a dangerous source, and there is a certain safety for underground production. Threat. Therefore, it is necessary to find a safe and reliable, time-saving and labor-saving, simple and easy to implement and cost-effective strengthening measures, which is of great significance to improve mine gas drainage efficiency and prevent coal and gas outburst.
  • the object of the present invention is to overcome the deficiencies in the prior art and to provide a method for intensive drilling and drainage in a borehole that is safe, reliable, time-saving, labor-saving, simple and inexpensive.
  • the method for intensifying the excavation in the borehole of the present invention including through-drilling or bedding drilling, spacing a plurality of holes of the pumping holes in the coal seam; Sealing and paralleling into the gas extraction pipe network for gas drainage; the steps are as follows:
  • multiple heat-displaced drill holes are arranged at intervals in a plurality of pumping boreholes, and the heat-displaced drill holes are alternately arranged with the drill holes;
  • the thermal drive for the drill hole, exit the drill pipe, and then send the grouting pipe, the slurry return pipe, the heat pipe and the pumping pipe to the hot drive, and connect the exposed end of the grouting pipe with the grouting pump.
  • the exposed end of the extraction pipe is connected to the gas drainage pipe network, and a heating device is installed on the exposed section of the heat pipe;
  • the present invention utilizes a heat pipe to continuously release heat in a borehole, and continuously heats the coal body or the surrounding coal body in the borehole to form a higher temperature field.
  • the law of gas adsorption reduction occurs when the coal temperature rises, thereby promoting the desorption of gas and achieving the purpose of strengthening gas drainage, significantly expanding the effective pressure relief range of single holes, and improving the gas drainage efficiency of coal seam by more than 40%.
  • the method is safe and reliable, low in cost, simple and easy to operate, saves time and labor, and has wide practicality.
  • FIG. 1 is a schematic view of a method for enhancing thermal drainage in a borehole according to the present invention
  • FIG. 2 is a schematic view showing the staggered arrangement of the extraction drilling holes and the thermal displacement drilling holes of the present invention.
  • the borehole internal thermal flooding enhanced drainage method of the present invention comprises a through-hole drilling or a bedding drilling:
  • the heating device 4 After the end of the sealing, the heating device 4 is started, the heat pipe 5 starts to work, the heat pipe absorbs heat from the heating device, releases heat in the borehole, and releases heat in the borehole by continuously driving the heat to the borehole, thereby improving the borehole. And the temperature of the coal around the borehole, promote the gas analysis of the coal in the area, and then achieve the thermal flooding enhanced pumping;
  • the distance between the extraction drilling hole and the thermal drive for the end of the drilling end is 6-8 m; when drilling the bedding layer, the drilling hole and the thermal drive replace the drilling hole end.
  • the center connection distance is 3 to 5 m.
  • the heating device adopts a water circulation heating method or an electric heating tube heating method.
  • the heating device is a closed container, and after the explosion-proof treatment, the heating element is immersed in the water and passed through The hot water further heats the heat pipe or is isolated from the surrounding environment, and heats the heat pipe by heat radiation and heat convection, has no direct contact with the heat pipe, and has no direct contact with the downhole air.
  • the heat pipe is composed of a pipe shell, a liquid absorbing core and an end cover, and is a mature heat dissipating device on the market, which utilizes the liquid filled in the pipe, absorbs heat at one end of the heat pipe, and releases heat at the other end, thereby realizing heat. transfer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Road Paving Structures (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种钻孔内热驱替式强化抽采方法,适用于煤矿井下瓦斯的高效抽采。该方法包括如下步骤:首先在煤层里交错布置抽采钻孔和热驱替钻孔,接着利用热管(5)在钻孔内持续加热煤体,形成较稳定的温度场,通过热效应显著降低瓦斯吸附势,促进瓦斯解吸,从而达到强化瓦斯抽采的目的。该方法可以扩大单孔有效卸压影响范围,使煤层瓦斯抽采效率提高40%以上,安全可靠,成本低廉,简单易行,省时省力。

Description

一种钻孔内热驱替式强化抽采方法 技术领域
本发明涉及一种钻孔内热驱替式强化抽采方法,尤其适用于煤矿井下高瓦斯低透气性煤层的瓦斯高效抽采。
背景技术
我国煤矿井下瓦斯治理的根本手段是以钻孔瓦斯抽采方式为主的瓦斯抽采措施。随着我国煤矿进入深部开采,煤层透气性低逐渐成为制约瓦斯高效抽采的主控因素。因此,强化增透成为改善瓦斯抽采效果,实现深部煤与瓦斯共采的关键技术。当前主要采用的强化增透技术主要有两种,一种是流体机械和流体介质相配合对煤体进行的处理的方法,例如水力割缝、水力压裂等;另一种是******等方式促使煤体致裂。两种方法均能增大煤层透气性,提高瓦斯抽采效果,但是仍然具有自身局限性。利用水力割缝、水力压裂等方法时,会有水锁效应等抑制瓦斯解析;利用******等方法时,则存在装药费事费力,而且***本身就是危险源,对于井下安全生产也存在一定的威胁。因此,寻找一种安全可靠、省时省力、简单易行和成本低廉的强化增透措施是十分必要的,这对提高矿井瓦斯抽采效率及预防煤与瓦斯突出具有重要意义。
诸多研究表明,煤体的瓦斯吸附势随着温度的提高会呈现显著降低。伴随瓦斯吸附势的降低,有益于煤体瓦斯解析。因此,倘若能够人为的对煤体附加一个温度场,势必会有效促进煤体瓦斯解析。
发明内容
技术问题:本发明的目的是克服已有技术中的不足之处,提供安全可靠、省时省力、简单易行和成本低廉的钻孔内热驱替式强化抽采方法。
技术方案:本发明的钻孔内热驱替式强化抽采方法,包括穿层钻孔或顺层钻孔,在煤层中间隔布置多个抽采钻孔的孔位;依次施工抽采钻孔、封孔、并联入瓦斯抽采管网进行瓦斯抽采;步骤如下:
a.在多个抽采钻孔中间隔布置多个热驱替钻孔,热驱替钻孔与抽采钻孔成交错排列;
b.依次施工热驱替钻孔,退出钻杆后向热驱替钻孔内送入注浆管、回浆管、热管和抽采管,将注浆管的外露端与注浆泵相连接、抽采管外露端与瓦斯抽采管网相连,并在热管的外露段上安装加热装置;
c.开启注浆泵,通过注浆管向热驱替钻孔内注浆,待回浆管回浆后,停止注浆,对热驱替钻孔进行封孔;
d.启动加热装置,使热管开始工作,不断向热驱替钻孔内释放热量,通过提高钻孔 内及钻孔周围煤体的温度,促进区域内煤体的瓦斯解析,从而实现热驱替式强化抽采;
e.重复上述步骤,继续下一区域的热驱替式强化抽采。
有益效果:本发明利用热管在钻孔内持续释放热量,通过对钻孔内煤体或周围煤体持续加热,从而形成较高温度场。利用煤体在温度升高时出现瓦斯吸附降低的规律,从而促进瓦斯解吸,达到强化瓦斯抽采的目的,显著扩大了单孔有效卸压影响范围,使煤层瓦斯抽采效率提高40%以上。该方法安全可靠,成本低廉,简单易行,省时省力,具有广泛的实用性。
附图说明
图1是本发明的钻孔内热驱替式强化抽采方法示意图;
图2是本发明的抽采钻孔和热驱替钻孔的交错布置示意图。
图中:1-注浆泵,2-注浆管,3-回浆管,4-加热装置,5-热管,6-抽采管。
具体实施方式
下面结合附图对本发明的一个实施例作进一步的描述:
本发明的钻孔内热驱替式强化抽采方法,包括穿层钻孔或顺层钻孔:
a.在煤层中间隔布置抽采钻孔的孔位,保障抽采钻孔在热驱替钻孔的影响范围内;
b.施工抽采钻孔,封孔,联入瓦斯抽采管道进行瓦斯抽采;
c.在多个抽采钻孔中间隔布置多个热驱替钻孔,热驱替钻孔与抽采钻孔成交错排列,如图2所示;
d.依次施工热驱替钻孔,退出钻杆后向热驱替钻孔内送入注浆管2、回浆管3、热管5和抽采管6,将注浆管2的外露端与注浆泵1相连接、抽采管6外露端与瓦斯抽采管网相连,并在热管5的外露段上安装加热装置4;
e.开启注浆泵1,通过注浆管2向热驱替钻孔内注浆,待回浆管3回浆后,停止注浆,对热驱替钻孔进行封孔;
f.待封孔结束后,启动加热装置4,使热管5开始工作,热管从加热装置吸取热量,在钻孔内释放热量,通过不断向热驱替钻孔内释放热量,从而提高钻孔内及钻孔周围煤体的温度,促进区域内煤体的瓦斯解析,进而实现热驱替式强化抽采;
g.重复步骤c~f,继续下一区域的热驱替式强化抽采。
所述的打穿层钻孔时,抽采钻孔与热驱替钻孔末端中心连线距离为6~8m;打顺层钻孔时,抽采钻孔和热驱替钻孔孔口端中心连线距离为3~5m。
所述的加热装置采用水循环加热方式或电热管加热方式。
所述的加热装置是一个密闭容器,经过隔爆处理,其加热元件浸没在水中,通过加 热水进而加热热管,或与周围环境隔绝,通过热辐射和热对流对热管加热,与热管无直接接触,与井下空气无直接接触。所述的热管由管壳、吸液芯和端盖组成,是当前市面上成熟的一种散热装置,其利用管内充填的液体,在热管一端吸收热量,在另一端释放热量,从而实现热量的传递。

Claims (3)

  1. 一种钻孔内热驱替式强化抽采方法,包括穿层钻孔或顺层钻孔,在煤层中间隔布置多个抽采钻孔的孔位;依次施工抽采钻孔、封孔、并联入瓦斯抽采管网进行瓦斯抽采;其特征在于步骤如下:
    a.在多个抽采钻孔中间隔布置多个热驱替钻孔,热驱替钻孔与抽采钻孔成交错排列;
    b.依次施工热驱替钻孔,退出钻杆后向热驱替钻孔内送入注浆管、回浆管、热管和抽采管,将注浆管的外露端与注浆泵相连接、抽采管外露端与瓦斯抽采管网相连,并在热管的外露段上安装加热装置;
    c.开启注浆泵,通过注浆管向热驱替钻孔内注浆,待回浆管回浆后,停止注浆,对热驱替钻孔进行封孔;
    d.启动加热装置,使热管开始工作,不断向热驱替钻孔内释放热量,通过提高钻孔内及钻孔周围煤体的温度,促进区域内煤体的瓦斯解析,从而实现热驱替式强化抽采;
    e.重复步骤a~d,继续下一区域的热驱替式强化抽采。
  2. 根据权利要求1所述的一种钻孔内热驱替式强化抽采方法,其特征在于:施工穿层钻孔时,抽采钻孔与热驱替钻孔孔底端中心连线距离为6~8m;施工顺层钻孔时,抽采钻孔和热驱替钻孔孔口端中心连线距离为3~5m。
  3. 根据权利要求1所述的一种钻孔内热驱替式强化抽采方法,其特征在于:所述的加热装置采用水循环加热方式或电热管加热方式。
PCT/CN2015/096789 2015-01-12 2015-12-09 一种钻孔内热驱替式强化抽采方法 WO2016112759A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/323,272 US9869168B2 (en) 2015-01-12 2015-12-09 Method for thermal-displacement-type strengthened extraction in drill hole
AU2015377012A AU2015377012B2 (en) 2015-01-12 2015-12-09 Method for thermal-displacement-type strengthened extraction in drill hole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510014227.6A CN104533514B (zh) 2015-01-12 2015-01-12 一种钻孔内热驱替式强化抽采方法
CN201510014227.6 2015-01-12

Publications (1)

Publication Number Publication Date
WO2016112759A1 true WO2016112759A1 (zh) 2016-07-21

Family

ID=52849114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096789 WO2016112759A1 (zh) 2015-01-12 2015-12-09 一种钻孔内热驱替式强化抽采方法

Country Status (4)

Country Link
US (1) US9869168B2 (zh)
CN (1) CN104533514B (zh)
AU (1) AU2015377012B2 (zh)
WO (1) WO2016112759A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106285605A (zh) * 2016-11-01 2017-01-04 中国矿业大学 一种微波液氮协同冻融煤层增透方法
CN106401533A (zh) * 2016-11-25 2017-02-15 河南理工大学 二次利用顺层钻孔注液氮冷冻煤体快速消突装置与方法
US9869168B2 (en) 2015-01-12 2018-01-16 China University Of Mining And Technology Method for thermal-displacement-type strengthened extraction in drill hole
CN107893651A (zh) * 2017-12-04 2018-04-10 贵州大学 一种煤矿井下注热增透装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696003B (zh) * 2015-01-06 2017-04-05 中国矿业大学 一种钻割一体化与振荡注热协同强化煤层瓦斯抽采方法
CN106223916B (zh) * 2016-10-14 2018-09-07 中国地质大学(北京) 电阻丝式煤层加热装置
CN106988702A (zh) * 2017-05-02 2017-07-28 贵州大学 一种钻孔内布置加热电缆封孔装置及封孔方法
CN107035402A (zh) * 2017-06-05 2017-08-11 贵州大学 一种发热电缆加热煤层以增加煤层透气性的***及方法
CN107130998A (zh) * 2017-07-12 2017-09-05 贵州大学 一种发热电缆加热煤层温度监控***
CN110242346A (zh) * 2019-06-26 2019-09-17 肥城白庄煤矿有限公司 用于可解析瓦斯抽放的煤层断面装置、瓦斯抽放装置和方法
CN111287709B (zh) * 2020-03-12 2021-12-17 徐州工程学院 一种兼具松软煤层钻孔防护及提高瓦斯抽采效率的方法
CN112253038A (zh) * 2020-10-20 2021-01-22 陕西煤业化工技术研究院有限责任公司 一种三堵两注封孔器及封孔方法
CN112127861A (zh) * 2020-10-26 2020-12-25 河南能源化工集团研究总院有限公司 一种煤矿井下升温促瓦斯解吸的装置及作业方法
CN113389522A (zh) * 2021-06-11 2021-09-14 华能煤炭技术研究有限公司 可控冲击波增透与注热联合瓦斯抽采方法及设备
CN113404471A (zh) * 2021-07-06 2021-09-17 煤炭科学技术研究院有限公司 注气驱替促抽煤层瓦斯钻孔布置方法
CN114412437A (zh) * 2021-12-01 2022-04-29 煤炭科学技术研究院有限公司 受载含瓦斯煤体模拟钻进与多参量随钻监测试验***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
CN101294500A (zh) * 2008-05-12 2008-10-29 淮南矿业(集团)有限责任公司 大直径抽采钻孔高压注浆封孔方法
CN101503957A (zh) * 2009-01-23 2009-08-12 赵阳升 井上下联合注热抽采煤层气的方法
CN101832149A (zh) * 2010-05-20 2010-09-15 太原理工大学 一种井下注热抽采煤层瓦斯的方法
CN102400669A (zh) * 2010-09-11 2012-04-04 田力龙 钻孔加热煤层抽采瓦斯方法
CN103114871A (zh) * 2013-03-04 2013-05-22 刘永杰 一种利用微波加热煤层的抽采装置及方法
WO2013163645A1 (en) * 2012-04-27 2013-10-31 The Trustees Of Columbia University In The City Of New York Methods and systems for causing reaction driven cracking in subsurface rock formations
CN104533514A (zh) * 2015-01-12 2015-04-22 中国矿业大学 一种钻孔内热驱替式强化抽采方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026356A (en) * 1976-04-29 1977-05-31 The United States Energy Research And Development Administration Method for in situ gasification of a subterranean coal bed
US7182132B2 (en) * 2002-01-15 2007-02-27 Independant Energy Partners, Inc. Linearly scalable geothermic fuel cells
CN101418679B (zh) * 2008-11-12 2012-01-25 太原理工大学 加热煤层抽采煤层气的方法
CN102242642B (zh) 2011-03-30 2013-03-06 中国矿业大学 一种煤与瓦斯突出危险性多元信息耦合预测方法
CN102536305B (zh) * 2012-03-06 2014-03-26 中国矿业大学 一种注温度和压力耦合作用下的氮气增透抽采瓦斯的方法
CN103291351B (zh) 2013-05-24 2015-01-14 中国矿业大学 一种矿区分布式煤矿抽采瓦斯热电冷多联产能源***
CN103643986B (zh) 2013-11-21 2015-07-15 中国矿业大学 自回热型煤矿低浓度瓦斯与通风瓦斯协同氧化一体化装置
CN203891922U (zh) * 2014-06-18 2014-10-22 四川省科建煤炭产业技术研究院有限公司 用于煤层中瓦斯的高效抽采***
CN104234739B (zh) * 2014-08-15 2016-03-30 中国矿业大学 一种钻孔内瓦斯***致裂煤体强化抽采方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
CN101294500A (zh) * 2008-05-12 2008-10-29 淮南矿业(集团)有限责任公司 大直径抽采钻孔高压注浆封孔方法
CN101503957A (zh) * 2009-01-23 2009-08-12 赵阳升 井上下联合注热抽采煤层气的方法
CN101832149A (zh) * 2010-05-20 2010-09-15 太原理工大学 一种井下注热抽采煤层瓦斯的方法
CN102400669A (zh) * 2010-09-11 2012-04-04 田力龙 钻孔加热煤层抽采瓦斯方法
WO2013163645A1 (en) * 2012-04-27 2013-10-31 The Trustees Of Columbia University In The City Of New York Methods and systems for causing reaction driven cracking in subsurface rock formations
CN103114871A (zh) * 2013-03-04 2013-05-22 刘永杰 一种利用微波加热煤层的抽采装置及方法
CN104533514A (zh) * 2015-01-12 2015-04-22 中国矿业大学 一种钻孔内热驱替式强化抽采方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9869168B2 (en) 2015-01-12 2018-01-16 China University Of Mining And Technology Method for thermal-displacement-type strengthened extraction in drill hole
CN106285605A (zh) * 2016-11-01 2017-01-04 中国矿业大学 一种微波液氮协同冻融煤层增透方法
CN106401533A (zh) * 2016-11-25 2017-02-15 河南理工大学 二次利用顺层钻孔注液氮冷冻煤体快速消突装置与方法
CN106401533B (zh) * 2016-11-25 2019-05-10 河南理工大学 二次利用顺层钻孔注液氮冷冻煤体快速消突装置与方法
CN107893651A (zh) * 2017-12-04 2018-04-10 贵州大学 一种煤矿井下注热增透装置

Also Published As

Publication number Publication date
AU2015377012B2 (en) 2018-06-14
US20170152734A1 (en) 2017-06-01
AU2015377012A1 (en) 2016-12-15
US9869168B2 (en) 2018-01-16
CN104533514B (zh) 2017-07-07
CN104533514A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
WO2016112759A1 (zh) 一种钻孔内热驱替式强化抽采方法
WO2021128933A1 (zh) 一种高瓦斯煤层原位热解瓦斯流态化开采方法
WO2016082188A1 (zh) 干热岩多循环加热***及其生产方法
CN103114871A (zh) 一种利用微波加热煤层的抽采装置及方法
WO2015054984A1 (zh) 煤矿井下气液两相交替相驱压裂煤体强化瓦斯抽采方法
CN203891922U (zh) 用于煤层中瓦斯的高效抽采***
CN105114116B (zh) 一种水热耦合压裂强化区域瓦斯抽采方法
CN102140901A (zh) 一种耐高压钻孔密封方法
CN111005754B (zh) 一种多分层煤体的多级瓦斯流态化抽采方法
CN106437669A (zh) 一种用于深部干热岩地层开采的热裂解造缝方法及***
LV14875A (lv) Urbuma izveidošanas un aizpildīšanas metode ģeotermālās enerģijas iegūšanai
WO2015010461A1 (zh) 一种底板裂隙水吸抽装置和方法
CN106523025A (zh) 促进煤体瓦斯解吸的微波***
CN106351613A (zh) 一种多次重复***扰动煤体下的瓦斯连续抽采方法
CN110242257A (zh) 一种天然气水合物井下试采工艺管柱
CN203531877U (zh) 煤矿井下压裂连接装置
CN104963674B (zh) 低渗煤层液氮冻融裂化增透方法
CN112412417A (zh) 本煤层水力造穴结合钻孔注热增透促抽方法
CN105003294B (zh) 一种基于水热耦合压裂煤体石门揭煤方法
CN109854221A (zh) 一种井下注冷、制热交替工作循环致裂增透煤层***及抽采方法
CN114293963A (zh) 井下瓦斯抽采利用并回注煤层增透的闭环***及工作方法
RU2334093C1 (ru) Скважинное устройство для закачки теплоносителя в пласт
CN102720465B (zh) 冻结孔强制解冻方法
CN205351454U (zh) 深层地热岩供热***
CN107035344A (zh) 一种低透气性突出煤层的煤层气抽采方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015377012

Country of ref document: AU

Date of ref document: 20151209

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15323272

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877670

Country of ref document: EP

Kind code of ref document: A1