WO2016112543A1 - 一种传输消息的方法和装置 - Google Patents

一种传输消息的方法和装置 Download PDF

Info

Publication number
WO2016112543A1
WO2016112543A1 PCT/CN2015/070915 CN2015070915W WO2016112543A1 WO 2016112543 A1 WO2016112543 A1 WO 2016112543A1 CN 2015070915 W CN2015070915 W CN 2015070915W WO 2016112543 A1 WO2016112543 A1 WO 2016112543A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
frequency domain
time
symbol
mapping
Prior art date
Application number
PCT/CN2015/070915
Other languages
English (en)
French (fr)
Inventor
吴作敏
官磊
李�远
马莎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580003793.5A priority Critical patent/CN106063355B/zh
Priority to PCT/CN2015/070915 priority patent/WO2016112543A1/zh
Priority to EP15877461.2A priority patent/EP3226638A4/en
Priority to KR1020177020084A priority patent/KR20170098891A/ko
Publication of WO2016112543A1 publication Critical patent/WO2016112543A1/zh
Priority to US15/646,383 priority patent/US20170311340A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • Embodiments of the present invention relate to the field of communications and, more particularly, to a method for a communication device to transmit information in a license-free spectrum.
  • spectrum resources are mainly divided into two types, one is licensed spectrum resources and the other is unlicensed spectrum resources.
  • the licensed spectrum resources are delineated by the government's Radio Management Committee and have dedicated-purpose spectrum resources, such as those used by mobile operators, civil aviation, railways, and police.
  • the quality of licensed spectrum resources is generally due to policy exclusivity. Can be guaranteed, it is relatively easy to perform scheduling control.
  • Unlicensed spectrum resources are also spectrum resources delineated by relevant government departments, but do not limit radio technology, operating enterprises and service life, and do not guarantee the quality of service in this band. Communication equipment using unlicensed spectrum resources only needs to meet the requirements of transmitting power, out-of-band leakage and other indicators, and can be used free of charge. Common communication systems that use application-free licensed spectrum resources for communication include civilian walkie-talkies, radio remote controls, Wi-Fi systems, Bluetooth communication systems, and the like.
  • the spectrum resources used by operators are mainly licensed spectrum resources; as the number of mobile communication network users increases, and users communicate with each other, rates and services As quality requirements increase, existing licensed spectrum resources are already difficult to meet the operator's existing business needs. Considering the high price and resource shortage of the new licensed spectrum, operators are turning their attention to the unlicensed spectrum resources. It is expected that the use of unlicensed spectrum resources will be used to achieve network capacity diversion and improve service quality.
  • LAA-LTE Licensed Access-Assisted LTE
  • U-LTE Unlicensed Long Term Evolution
  • LBT Listen Before Talk
  • CCA Clear Channel Assessment
  • the LBT competition method is widely used in existing communication systems for applying license-free spectrum resources, but when this competition method is applied to LTE, LAA-LTE or similar communication systems, new problems arise. This is related to the characteristics of the system based on frame scheduling:
  • the LAA-LTE system inherits the frame structure of the LTE system and requires a relatively fixed frame structure, and the frame boundary or subframe boundary is fixed in time, in other words, for a LAA.
  • a frame boundary or a subframe boundary corresponds temporally to a determined time, and a frame or subframe boundary includes a start time and a cutoff time of a frame or a subframe.
  • the communication device when it determines that the channel can be occupied, or confirms that it has contend for the transmission resource of the channel, the communication device directly transmits a signal containing valid data; but for the LAA-LTE system
  • the time at which the channel can be occupied is confirmed to be random, in general, the time at which the channel can occupy the channel and the subframe boundary of the LAA-LTE system are often not aligned, in order to prevent the channel from being otherwise communicated.
  • the device is occupied.
  • the existing method is to confirm that the communication device of the LAA-LTE system that can occupy the channel immediately sends a padding signal until the start time of the next subframe, and then transmits one of the bearer control channel, the data channel, and the reference signal. Or a combined signal.
  • the communication device in the LAA-LTE system needs to send an indication message on the licensed spectrum resource to indicate that it is to be deactivated from the start time of a certain subframe.
  • Information is transmitted on the spectrum resources. This occupies additional channel resources for the licensed spectrum, making the channel resources of the already stretched licensed spectrum more tense.
  • the embodiments of the present invention provide a method and an apparatus for data transmission, which can solve the problem in the prior art that an additional occupied licensed spectrum resource transmission indication message is required to indicate channel transmission information in the unlicensed spectrum.
  • an embodiment of the present invention provides a data transmission method, including:
  • the base station acquires the right to use the channel of the unlicensed spectrum at the first moment;
  • the base station cyclically transmits the first sequence from the first moment to the first symbol start time
  • the time interval between the first time and the start time of the first symbol is not less than the time length of the first sequence of one cycle
  • the length of the first sequence of one cycle is not longer than the length of time of a symbol without a CP
  • the first sequence is a feature sequence of the LAA-LTE system.
  • an embodiment of the present invention provides a data transmission method, including:
  • the first sequence cyclically transmitted by the base station on the channel of the unlicensed spectrum at the second moment; wherein the first sequence is a characteristic sequence of the LAA-LTE system, and the time length of the first sequence of the one cycle Not longer than a length of time of a symbol not including the CP, the second moment is no later than a first symbol start time at which the first sequence is stopped to be transmitted;
  • the receiving device determines, according to the first sequence, that the base station acquires usage rights of the channel.
  • an embodiment of the present invention provides an apparatus for data transmission, including a transceiver and a processor, where:
  • the transceiver is configured to acquire, by using the scheduling of the processor, a right to use a channel of the unlicensed spectrum at a first moment;
  • the transceiver is further configured to cyclically send the first sequence from the first moment to the first symbol start time;
  • the time interval between the first time and the start time of the first symbol is not less than the time length of the first sequence of one cycle
  • the first sequence of one cycle has a time length not greater than a symbol without a CP Length of time
  • the first sequence is a feature sequence of the LAA-LTE system.
  • an embodiment of the present invention provides an apparatus for data transmission, including a receiver and a processor, where:
  • the receiver is configured to receive a signal on a channel of the unlicensed spectrum
  • the processor is configured to detect, according to the signal received by the receiver, a first sequence that is cyclically transmitted by the base station on a channel of the unlicensed spectrum at a second moment; wherein the first sequence is a LAA-LTE system a sequence of features, the length of the first sequence of the one cycle is not greater than the length of time of a symbol not including the CP, and the second moment is no later than the start time of the first symbol that the first sequence is stopped from transmitting ;
  • the processor is further configured to determine, according to the first sequence, that the base station acquires usage rights of the channel.
  • the embodiment of the present invention can cyclically transmit the first sequence having the characteristics of the LAA-LTE system immediately after obtaining the channel usage right of the unlicensed spectrum, not only reaching the occupied channel, but also preventing the channel from being occupied by other communication devices.
  • the base station directly informs the user equipment to communicate with the base station on the channel of the unlicensed spectrum on the channel of the current unlicensed spectrum, thereby avoiding waste of resources caused by additionally utilizing channel resource transmission signaling on the licensed spectrum.
  • FIG. 1 shows a schematic diagram of a frame structure applied to a LAA-LTE system
  • FIG. 2 shows a schematic diagram of a communication system architecture
  • FIG. 3 is a flowchart of a method for transmitting a message according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a timing diagram of transmitting a first sequence according to an embodiment of the present invention.
  • FIG. 5 is a schematic timing diagram of sending a first sequence and a second sequence according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for transmitting a message according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of an apparatus for transmitting a message according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of an apparatus for transmitting a message according to an embodiment of the present invention.
  • the symbol mentioned in the technical solution of the embodiment of the present invention may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol in the LAA-LTE system or the LTE system, specifically,
  • the OFDM symbol includes a cyclic prefix (English: Cyclic Prefix, abbreviated: CP) portion and an information segment portion, wherein the information segment portion includes all information of one OFDM symbol; and the CP is a repetition of a portion of the information segment signal.
  • the symbols mentioned in the technical solutions of the embodiments of the present invention may also be symbols of other types of communications, which are not limited by the present invention.
  • the OFDM symbols mentioned in the embodiments of the present invention have attributes of a time dimension and a frequency dimension, wherein the attributes of the time dimension include the time length of the OFDM symbol; the attributes of the frequency dimension include the number of subcarriers, the subcarrier bandwidth, and the like.
  • the communication system in which the base station and the user equipment mentioned in the embodiments of the present invention are located is a communication system having a predefined, or fixed, subframe start time, a subframe end time, a symbol start time, and a symbol end time. .
  • Such a communication system divides time by a fixed time unit, that is, when the granularity of the time unit, the start time and the end time of a time unit are determined, then the start time of the past and future time units can be known. End time.
  • a subframe boundary refers to a subframe start time or a subframe end time
  • a symbol boundary refers to a start time or an end time of a symbol
  • a start time of one subframe is equivalent to a previous subframe.
  • the start time of a symbol is equal to the end time of the previous symbol.
  • a communication system operated by the same operator such as a LAA-LTE system
  • the subframe end time, the subframe boundary, and the subframe start time, the subframe end time, and the subframe boundary of the signal transmitted on the channel of the licensed spectrum are aligned.
  • FIG. 1 shows a schematic diagram of a frame structure applied to a LAA-LTE system.
  • NCP subframe format one NCP subframe includes 14 OFDM symbols; the OFDM symbol is numbered from 0 to 13, then the 0th and 7th The OFDM symbol has a time length of 2208 ⁇ T s , and the other 12 OFDM symbols have a time length of 2192 ⁇ T s ; the 0th to 6th OFDM symbols are defined as odd time slots, and the 7th to 13th The OFDM symbol is defined as an even time slot.
  • NCP Normal Cyclic Prefix
  • ECP subframe format one ECP subframe includes 12 OFDM symbols; the length of each OFDM symbol is 2560 ⁇ T s ; the OFDM symbol is from 0 The start number is 11, and the 0th to 5th OFDM symbols are defined as odd time slots, and the 6th to 11th OFDM symbols are defined as even time slots.
  • ECP Extended Cyclic Prefix
  • one OFDM symbol can be divided into a plurality of subcarriers, each subcarrier corresponding to a certain bandwidth.
  • OFDM to which different spectrum resources are applied is temporally aligned on a subframe boundary.
  • the user equipment (English: User Equipment, abbreviation: UE) may be called a terminal (Terminal), a mobile station (English: Mobile Station, abbreviation: MS), and a mobile terminal (Mobile Terminal). And so on, the user equipment can communicate with one or more core networks via a radio access network (English: Radio Access Network, RAN), for example, the user equipment can be a mobile phone (or "cellular" phone) A computer with a mobile terminal, etc., for example, the user device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • RAN Radio Access Network
  • the base station may be an evolved base station (English: Evolutional Node B, abbreviated as: eNB or e-NodeB), a macro base station, and a micro base station (also referred to as a "small base station” in an LTE system or a LAA-LTE system. "), the pico base station, the access site (English: Access Point, abbreviation: AP) or the transmission site (English: Transmission Point, abbreviation: TP), etc., the present invention is not limited thereto.
  • eNB Evolutional Node B
  • e-NodeB a macro base station
  • a micro base station also referred to as a "small base station” in an LTE system or a LAA-LTE system. "
  • the pico base station the access site
  • AP Access Point
  • TP Transmission Point
  • the present invention is not limited thereto.
  • the following embodiments will be described by taking a base station and a user equipment as an example.
  • FIG. 2 shows an application scenario in which a solution proposed by an embodiment of the present invention can be applied, in a scenario.
  • a communication device that communicates with a spectrum resource and has a fixed subframe boundary and a fixed symbol boundary; the frequency band supported by the cell base station 202 may be the same as the cell base station 201, and the cell base station 202 may be the same type of communication device as the cell base station 201, or may be A communication device of a different type than the cell site 201.
  • the cell base station 201 may be a base station of the LAA-LTE system, and the corresponding user equipment may be a user equipment of the LAA-LTE system; the cell base station 202 may also be a base station of the LAA-LTE system, or may be a Wi-Fi system.
  • Wireless router, wireless repeater, user equipment may be a base station of the LAA-LTE system, and the corresponding user equipment may be a user equipment of the LAA-LTE system; the cell base station 202 may also be a base station of the LAA-LTE system, or may be a Wi-Fi system.
  • Wireless router wireless repeater, user equipment.
  • the cell base station 201 when the cell base station 201 transmits a signal to the user equipment 203 through the channel of the unlicensed spectrum, the cell base station 201 needs to first acquire the right to use the channel of the unlicensed spectrum.
  • the method for obtaining the use right of the channel may be the method of the LBT mentioned above, or may be other methods, which are not limited by the present invention.
  • the cell base station 201 may not be aligned with the predetermined subframe boundary of the cell base station 201 when obtaining the right to use the channel of the unlicensed spectrum, considering that the unlicensed spectrum resource does not limit the user, so When the cell base station 201 acquires the right to use the channel of the unlicensed spectrum resource but does not occupy the channel, the channel has a risk of being preempted by other communication devices, such as the cell base station 202.
  • the cell base station 201 obtains The moment of use rights begins to transmit a fill signal until the next subframe boundary.
  • this method solves the problem that the cell base station 201 randomly accesses the channel, it is obviously that such a part of the transmission resource is wasted; at the same time, the cell base station 201 needs to notify the user equipment 203 on the channel of the unlicensed spectrum on the channel of the licensed spectrum. The moment of data transmission, but obviously, this method will occupy the channel resources of the additional licensed spectrum, making the channel resources of the licensed spectrum more tense.
  • the embodiment of the present invention provides a method for transmitting information.
  • the cell base station 201 can transmit a preamble sequence on a channel of the unlicensed spectrum by using a time when the padding signal is originally sent, thereby detecting, for the user equipment 203, the cell base station 201.
  • the condition for transmitting a signal on the channel of the unlicensed spectrum begins.
  • FIG. 3 is a schematic flowchart of a method according to an embodiment of the present invention. The illustrated method may be performed by a base station, and the process includes the following steps:
  • Step 301 The base station acquires the right to use the channel of the unlicensed spectrum at the first moment;
  • Step 302 The base station cyclically transmits the first sequence from the first moment to the first symbol start time.
  • the time interval between the first time and the start time of the first symbol is not less than the time length of the first sequence of one cycle
  • the length of the first sequence of one cycle is not longer than the length of time of a symbol without a CP
  • the first sequence is a feature sequence of the LAA-LTE system.
  • the base station acquires the right to use the channel of the unlicensed spectrum through a contention method; more specifically, the base station may acquire the usage right through a contention method based on the LBT criterion.
  • the base station may acquire the right to use the channel of the unlicensed spectrum by coordinating or scheduling with the neighboring communication device.
  • the base station may obtain the right to use the channel of the unlicensed spectrum by using a pre-configured resource usage pattern.
  • the first moment when the base station acquires the usage right of the channel of the unlicensed spectrum may be any time, that is, the first moment has no relationship with the subframe boundary or the symbol boundary applied by the base station.
  • the first time may or may not coincide with the subframe boundary or the symbol boundary; in other words, the time interval between the first time and the next symbol boundary closest to it is a time length less than one symbol. Non-negative random number.
  • the base station sends a variable length channel reservation signal, where a time length of the channel reservation signal is related to a time interval between the first time instant and a symbol boundary or a fixed subframe boundary;
  • the channel reservation signal includes a first sequence, and the time length of the first sequence of one cycle is not longer than the length of time in which the symbol without CP is continued.
  • the base station from The first time begins transmitting the first sequence until the first symbol begins to stop transmitting the first sequence.
  • the variable channel reservation signal acts as a channel for retaining the unlicensed spectrum, and prevents the base station from being preempted by other communication devices because the channel is not occupied in time after obtaining the right to use the channel of the unlicensed spectrum.
  • the base station acquires the first time of the use right of the channel of the license-free spectrum.
  • the time interval between the first time and the first symbol start time is not less than the time length of the first sequence of one cycle, thereby ensuring that the base station transmits at least one first sequence of complete cycles.
  • the first sequence of a complete period may be received, where the corresponding user equipment or the neighboring cell base station performs subsequent operations according to the first sequence. ready.
  • step 302 since the time interval between the first symbol start time and the first time is not less than the time length of the first sequence of one cycle, and the time length of the first sequence of one cycle Not longer than the length of time that a CP-free symbol lasts, so when the time interval between the first time and the first symbol start time after the first time is not less than the duration of the first sequence of one cycle
  • the first symbol start time may be any symbol start time after the first time; the time interval between the first time and the first symbol start time after the first time is less than one cycle
  • the first symbol start time may be the second symbol start time after the first time or the start time of the symbol after the second symbol start time.
  • the time interval between the first moment and the first symbol start time is determined, for the first sequence determined by the length of time.
  • the number of cycles in which the base station sends the first sequence during the time interval may be an integer or a non-integer.
  • step 302 it should be understood that, in the time interval between the first moment and the start time of the first symbol, since the manner in which the base station sends the first sequence is cyclically transmitted, the base station does not send the first sequence. Additional CP part is sent.
  • the first sequence is a feature sequence of the LAA-LTE system or the LTE system or other communication system; the corresponding receiving device, such as the user equipment of the same system, the neighboring base station, or other receiving device, may be
  • This feature sequence detection determines that the device currently in the LAA-LTE system acquires the right to use the channel of the unlicensed spectrum, thereby preventing the base station from transmitting an indication message on the channel of the licensed spectrum, resulting in additional occupation of the channel resources of the licensed spectrum.
  • the LAA-LTE system is a general term for the LTE system that communicates with the application of the unlicensed spectrum resources, and the name does not limit the application scope of the embodiments of the present invention, and any application based on the LTE system
  • the system for communicating the unlicensed spectrum resources should be within the protection scope of the embodiments of the present invention.
  • the base station cyclically transmits the first sequence after obtaining the channel usage right of the unlicensed spectrum, wherein the first moment and the first symbol start time are The time interval between the first sequence is not less than the time length of the first sequence of one cycle, and the time length of the first sequence of the one cycle is not greater than the time length of a symbol not including the CP, the first sequence is LAA-LTE The sequence of features of the system.
  • the base station not only achieves the purpose of occupying the channel and preventing the channel from being preempted by other communication devices, but further, by transmitting at least one period on the channel of the unlicensed spectrum, having the first sequence of features of the LAA-LTE system, the base station directly at the current
  • the channel of the unlicensed spectrum informs the user equipment to communicate with the base station on the channel of the unlicensed spectrum, thereby avoiding waste of resources caused by additionally utilizing channel resource transmission signaling on the licensed spectrum.
  • the time interval between the first moment and the first symbol start time is less than the length of time of two symbols.
  • the first symbol start time may be specific a first symbol start time after the first time; when a time interval between the first time and a first symbol start time after the first time is less than a first sequence time length of one cycle
  • the first symbol start time may be specifically the second symbol start time after the first time, that is, the time interval between the first symbol start time and the first time is greater than one, less than two The length of time of the symbols. Therefore, under the condition that the base station ensures that at least one complete sequence of the complete period is transmitted, the first sequence is transmitted by using the incomplete symbol and the minimum length of the complete symbol, so as to fully utilize the channel resources of the unlicensed spectrum.
  • the time of the first sequence of one cycle may be no longer than the length of time the system uses for idle channel evaluation.
  • the length of the first sequence of one cycle may be no longer than the length of time that the base station or the neighboring cell base station performs CCA detection, so as to facilitate the LAA-LTE system adjacent to the channel of the cell to share the spectrum of the unlicensed spectrum.
  • the cell base station or Wi-Fi device or other communication device performs the first sequence detection while performing CCA detection.
  • the first sequence may carry indication information to indicate the number of symbols corresponding to the time interval. Specifically, when the time interval is greater than or equal to a time length of a symbol without a CP, the indication information carried by the first sequence is used to indicate that the number of symbols corresponding to the time interval is 1; when the time interval is less than The indication information carried by the first sequence is used to indicate that the number of symbols corresponding to the time interval is 0.
  • the user equipment that communicates with the base station can determine the time to stop sending the first sequence and then send other signals by detecting the first sequence.
  • the first sequence may carry indication information to indicate the number of symbols corresponding to the time interval. Specifically, when the time interval is greater than or equal to a time length of one symbol, the indication information carried by the first sequence is used to indicate that the number of symbols corresponding to the time interval is 1; when the time interval is less than one symbol. In the case of the length, the indication information carried by the first sequence is used to indicate that the number of symbols corresponding to the time interval is 0.
  • the user equipment that communicates with the base station can determine the time to stop sending the first sequence and then send other signals by detecting the first sequence.
  • the first sequence may further carry other information, where the information may include one or more of the following:
  • An operator identification information so that a user equipment that communicates with the base station determines a base station that transmits the first sequence; and a neighboring cell base station that is relative to a base station of the current cell, may also use the first sequence to carry The carrier identification information identifies the base station of the cell;
  • the licensed spectrum resource information supported by the base station so that the user equipment determines, according to the first sequence, whether the base station supports communication on a channel of a licensed spectrum, or determines which one of the licensed spectrum is in the base station.
  • the channel performs communication; further, when the base station simultaneously supports communication between the licensed spectrum and the unlicensed spectrum, the user equipment can use the synchronization information provided by the reference signal of the licensed spectrum to assist the carrier coarse synchronization of the unlicensed spectrum.
  • the first sequence is a constant envelope zero autocorrelation with good autocorrelation properties and/or cross-correlation properties in the time domain and the frequency domain (English: Constant Amplitude Zero Auto Correlation, Abbreviation: CAZAC) Sequence composition.
  • the first sequence may be constructed using a sequence of Zandoff-Chu (abbreviation: ZC).
  • ZC Zandoff-Chu
  • the first sequence can be constructed by a centrally symmetric ZC sequence.
  • step 302 when the base station cyclically transmits the first sequence from the first moment, the base station starts from the first sequence.
  • the location begins to transmit the first sequence. For example, suppose that the first sequence includes N elements, and the number of each element is 0, 1, 2, ..., N-1, and N is a positive integer; then the base station starts from the first moment and starts from the 0th of the first sequence.
  • the element begins transmitting the first sequence, and when sent to the Nth element but has not reached the first symbol boundary, the base station resumes transmitting the first sequence from the 0th element of the first sequence... thus repeating the loop until the first Symbol boundary.
  • This method is simple and easy to implement in a specific implementation process, and can reduce the complexity of the base station.
  • step 302 when the base station sends the first sequence from the first time period, the base station is from the first sequence kth
  • the T i is a time interval between the first time and the start time of the first symbol
  • the T u is a time length of an element of the first sequence, Indicates rounding down.
  • the base station just transmits the last element of the first sequence at the first symbol start time, in other words, as shown in the second case of FIG. 4, the first symbol start time is exactly the same
  • the last element of the first sequence that is looped is aligned.
  • the user equipment communicating with the base station can time synchronize the signals received on the channel of the unlicensed spectrum according to this characteristic.
  • T u i ⁇ T s , where i can be a positive integer or a fraction, and T s is the smallest time unit in the LAA-LTE system.
  • T u i ⁇ T s , where i can be a positive integer or a fraction, and T s is the smallest time unit in the LAA-LTE system.
  • the element of the first sequence is an integer multiple of the minimum time unit of the system, but the first sequence of length L is not divisible by the elements of the first sequence, the number of elements of the first sequence of one cycle among them Indicates rounding up.
  • the element of the first sequence is a fractional multiple of the minimum time unit of the system, there is always a fraction i such that the first sequence of length L can be divisible by the element T u of the first sequence, ie the first of a cycle
  • the M is satisfied that M ⁇ T u can be divisible by T s and a maximum value of M, wherein the T i is a time interval between the first time and a start time of the first symbol, and the T u is a time length of an element of the first sequence, T s is the minimum time unit of the system, Indicates rounding down.
  • the time domain period is extended to the first sequence of the OFDM symbol without the CP, and the corresponding frequency domain sequence in the frequency domain satisfies the properties of the equal subcarrier spacing mapping.
  • the inverse frequency Fourier Transform (IDFT) or the Fast Fourier Transform (English: Inverse Fast Fourier Transform) may be adopted by the frequency domain sequence mapped by the peer subcarrier spacing.
  • abbreviation: IFFT to the time domain to obtain the first sequence of the period extension to a CP-free OFDM symbol.
  • the method for mapping the subcarrier spacing includes, but is not limited to, direct subcarrier spacing mapping, symmetric and other subcarrier spacing mapping.
  • the following two subcarrier spacing mapping methods will be exemplified below, and the locations mentioned in the following description refer to the locations corresponding to the frequency domain subcarriers:
  • the frequency domain sequence before mapping includes S elements, S is a positive integer not less than 2; the S elements are sequentially numbered 0, 1, ..., S-1; n represents S of the frequency domain sequence before the mapping.
  • F represents the number of subcarriers in the frequency domain, that is, the number of positions that can be mapped, and F satisfies F ⁇ S ⁇ I.
  • the mapping locations available in the frequency domain are numbered 0, 1, ... F-1.
  • DC carrier Direct Current, abbreviation: DC
  • x n ⁇ I+m, 0 ⁇ n ⁇ S-1, 0 ⁇ x ⁇ F-1;
  • the position x of the element of the frequency domain sequence is mapped to satisfy 0 ⁇ x ⁇ F-1.
  • the mapped signal of the corresponding frequency position is zero.
  • the frequency domain sequence corresponds to a first sequence in which the period is extended to a symbol without CP, and the frequency domain mapping interval I is an integer, it can be known by a simple mathematical relationship that one period of the relationship is satisfied.
  • the length of the first sequence is 1/I of the length of time of a symbol without CP.
  • the length of a CP-free symbol is 2048 ⁇ T s
  • the frequency domain mapping interval I is 4, the first sequence obtained by transforming the sequence of the frequency domain interval mapping into the time domain is obtained.
  • the frequency domain sequence is composed of a CAZAC sequence with good autocorrelation properties and/or cross-correlation properties in the time domain and the frequency domain.
  • the frequency domain sequence may be constructed using a ZC sequence.
  • the base sequence expression of the ZC sequence can be:
  • S is a positive integer
  • r is an arbitrary integer with S
  • each r value corresponds to a base sequence
  • q is an integer, can be set to 0;
  • a r, S (n) represents the given r and S The nth element in the ZC sequence.
  • the frequency domain sequence can be constructed by a centrally symmetric ZC sequence.
  • the base sequence expression for a centrally symmetric ZC sequence can be:
  • r is an arbitrary integer that is mutually prime with S+1, and each r value corresponds to a base sequence; a r,S (n) represents the nth in the ZC sequence at a given r and S Elements.
  • the ZC sequence has the following properties: the cyclic shift sequences of one base sequence are orthogonal; when S is a prime number, the cross-correlation values between any two sequences are low; a small amount of truncation and cyclic extension are for sequence properties. The impact is small. It can be known that when a length Z of a ZC sequence is given, it is available.
  • the number of base sequences is also the number of possible values of r in the above equation, ie the number equal to the number of integers that are prime to the sequence length S.
  • the frequency domain sequence may be an equal-length ZC sequence; in order to meet the requirements of the frequency domain sequence length, the frequency domain sequence may also be a cyclically shifted ZC sequence, or a truncated ZC sequence; The frequency domain sequence is a centrally symmetric ZC sequence. Further, under the condition that the frequency domain sequence length is the same, different r or different cyclic shift bits can be used to carry the above mentioned information or a combination of information.
  • the mapping signal of the corresponding frequency location is 0, so that the user equipment or other communication equipment that communicates with the base station performs interference detection according to the frequency position where the mapping signal is 0.
  • the user equipment may detect the signal power at the frequency position where the mapping signal is 0, according to the detected signal. The power estimates the power of the interfering signal.
  • the interference detection should be done in the frequency domain, so the signal required for detection is required to last at least one length of the symbol without CP.
  • the time interval between the first moment and the first symbol start time is greater than one, less than two symbols.
  • the first symbol start time may be a second symbol start time after the first time, that is, a time interval between the first symbol start time and the first time is greater than one, The length of time less than two symbols. Therefore, the base station can transmit the first sequence by using the time length of at least one complete symbol, thereby ensuring that the user equipment can estimate the power of the interference signal according to the detected signal power by detecting the signal power at the frequency position where the mapping signal is 0.
  • the frequency domain sequence is an equal subcarrier spacing mapping
  • the power at the unmapped subcarriers may be averagely increased to map the frequency domain sequence.
  • the frequency domain sequence can be power enhanced (English: Power boosting). Specifically, a power enhancement factor can be multiplied in front of the elements of each mapped frequency domain sequence. Where S represents the number of elements of the frequency domain sequence and F represents the number of subcarriers that can be mapped in the frequency domain.
  • the base station may indicate one or a combination of the following information by means of pre-defined, pre-configured, or signaling channel resource signaling of the licensed spectrum: The time length of the first sequence of cycles, the mapping interval I of the frequency domain sequence, the sequence candidate set of the first sequence, and the power enhancement factor.
  • the base station determines a time length of the first sequence according to a cell range that is covered by the base station; in other words, the first sequence cycle time length is related to a coverage area of the corresponding cell, The period length of the first sequence corresponding to the cell with a large coverage is greater than the period length of the first sequence corresponding to the cell with a small coverage.
  • the time domain period is extended to a characteristic of the first sequence of the CP-free symbols in the frequency domain, and the frequency domain sequence satisfies the characteristics of the frequency equal interval mapping.
  • the number of repetitions of the first sequence in a symbol-free time without CP is related to the frequency domain mapping interval I. Therefore, the frequency domain mapping interval corresponds to the coverage of the cell formed by the base station, and the frequency domain mapping interval corresponding to the cell with a large coverage is smaller than the frequency domain mapping interval corresponding to the cell with a small coverage.
  • the specific length of the first sequence is determined by the base station according to the size of the transmit power.
  • the base station determines the length of the first sequence according to the size of the transmit power.
  • the length of the sequence of the sequence is related to the size of the corresponding cell, and the period length of the first sequence corresponding to the cell with the large transmit power is greater than the period of the first sequence corresponding to the cell with the smaller transmit power.
  • the base station may determine the length of time of the first sequence according to the maximum transmit power it supports, and may determine the length of time of the first sequence according to the transmit power used for each transmission. .
  • the time domain period is extended to a characteristic of the first sequence of the CP-free symbols in the frequency domain, and the frequency domain sequence satisfies the characteristics of the frequency equal interval mapping.
  • the number of repetitions of the first sequence in a symbol-free time without CP is related to the frequency domain mapping interval I. Therefore, the frequency domain mapping interval corresponds to the transmission power of the base station, and the frequency domain mapping interval selected by the base station with a large transmission power is smaller than the frequency domain mapping interval selected by the base station with a small transmission power.
  • the method further includes:
  • Step 303 The base station sends valid data starting from the first symbol start time, where the valid data signal includes one or a combination of the following: a physical downlink control channel (English: Physical Downlink Control CHannel, abbreviated: PDCCH), Enhanced physical downlink control channel (English: Enhanced-Physical Downlink Control CHannel, abbreviated as ePDCCH), physical downlink shared channel (English: Physical Downlink Shared CHannel, abbreviation: PDSCH), Common Reference Signal (CRS), Demodulation Reference Signal (DMRS), Channel State Information-Reference Signal (CSI-CIS- RS), discovery reference signal (English: Discovery Reference Signal, abbreviation: DRS).
  • PDCCH Physical Downlink Control CHannel
  • ePDCCH Enhanced-Physical Downlink Control CHannel, abbreviated as ePDCCH
  • PDSCH Physical Downlink shared channel
  • CRS Common Reference Signal
  • DMRS Demodulation Reference Signal
  • CSI-CIS- RS Channel State Information-Reference Signal
  • the base station may send the valid data signal as soon as possible after acquiring the use right of the channel of the unlicensed spectrum, thereby further improving the use efficiency of the channel resources of the unlicensed spectrum; the corresponding user equipment may determine according to the first sequence. Transmitting the first symbol start time of the valid data, and further receiving the valid data from the first symbol start time, and demodulating and decoding the received valid data.
  • the transmission of valid data can only start from the start time of one subframe, which is considered that the corresponding user equipment must decode the valid data. Know the starting position of the data, otherwise only blind detection can be performed, which is a great challenge for the power consumption and complexity of the user equipment.
  • the user equipment may determine, according to the first sequence, the first symbol start time at which the valid data starts to be sent, that is, the start position of decoding the valid data may be directly known, thereby avoiding the user equipment. Side operation complexity and power consumption increase.
  • the receiving device can obtain at least one of the system's AGC setting, fine time-frequency synchronization information, and channel characteristic estimation information by detecting the pilot signal carried in the first sequence and the valid data information. It should be understood that the receiving device can estimate the frequency offset by estimating the phase difference by pairing the reference signals at a certain time, and combining the system parameters of the LAA-LTE system, in order to obtain the fine frequency synchronization capable of ensuring the demodulation performance, the frequency is estimated.
  • the receiving end can use the first and second symbol n 0 n 0 +3
  • the reference signals on the symbols are jointly subjected to frequency offset estimation, and n 0 is any symbol index.
  • the receiving device may jointly perform frequency offset estimation by estimating a phase difference between the frequency domain pilot signal of the first sequence and the pilot signal carried in the effective data information.
  • the user equipment that communicates with the base station can obtain corresponding valid data by detecting the physical downlink control channel and the physical downlink shared channel.
  • the method further includes:
  • Step 304 The base station sends a second sequence starting from the start time of the first symbol, where a time length of the second sequence of one cycle is a time length corresponding to one symbol.
  • the second sequence may be part of the channel reservation signal described above.
  • the user equipment communicating with the base station may obtain at least one of the system's fine time-frequency synchronization information, channel characteristic estimation information, or an estimate and setting value of the automatic gain control by detecting the second sequence.
  • the length of time of the second sequence of one cycle corresponds to the length of time of one symbol.
  • a symbol can be divided into a cyclic prefix portion and an information segment portion; the second sequence of one cycle can also be divided into a cyclic prefix portion and an information segment portion, wherein the information segment portion includes the The entire amount of information for the second sequence, the cyclic prefix portion is a cyclic repetition of the partial sequence of the second sequence.
  • step 304 optionally, if the time interval between the first moment and the first symbol start time is less than a length of a CP-free symbol, the base station The first symbol start time begins to cyclically transmit Y times a second sequence; if the time interval between the first time and the first symbol start time is not less than a time interval of a CP-free symbol, then The base station cyclically transmits the Y-1 second sequence from the start time of the first symbol; wherein the Y is a pre-configured positive integer.
  • step 304 optionally, if the time interval between the first moment and the first symbol start time is less than a symbol length, the base station is from the first symbol.
  • the starting time starts to cyclically transmit Y times a second sequence; if the time interval between the first time and the first symbol start time is not less than a symbol time interval, the base station is from the first symbol
  • the start time begins to cyclically transmit Y-1 second sequences; wherein Y is a pre-configured positive integer.
  • the value of Y is not less than 4; preferably, Y The value is 4.
  • FIG. 5 shows a timing diagram for transmitting a first sequence and a second sequence.
  • the frequency domain sequence corresponding to the second sequence of one cycle may be a frequency domain full-band mapping; optionally, a certain subcarrier is reserved at the edge frequency of the corresponding frequency domain sequence, and sequence mapping is not performed. The inter-carrier interference is avoided.
  • the sub-carriers in the vicinity of the DC component of the corresponding frequency domain sequence are not subjected to sequence mapping.
  • step 304 optionally, the base station cyclically transmits the second sequence from the start time of the first symbol until a start time of the next subframe.
  • step 304 optionally, the base station cyclically transmits the second sequence Y times from the first symbol start time.
  • Y is a pre-configured positive integer, Preferably, Y has a value of 4.
  • the second sequence is specifically a Constant Amplitude Zero Auto Correlation (CAZAC), or the second sequence is a pseudo random sequence.
  • CAZAC Constant Amplitude Zero Auto Correlation
  • the user equipment receiving the second sequence acquires at least one of AGC settings, fine synchronization information, channel characteristic estimation information, and the like according to the second sequence.
  • the second sequence may be used to carry information, where the information about the bearer includes at least one of the following:
  • a user equipment that communicates with the base station determines a base station that transmits the second sequence; and for a neighboring cell base station that is relative to a base station of the own cell, may also use the second sequence to carry The carrier identification information identifies the base station of the cell;
  • the licensed spectrum resource information supported by the base station so that the user equipment determines, according to the second sequence, whether the base station supports communication on a channel of a licensed spectrum, or determines which one of the licensed spectrum is in the base station.
  • the channel performs communication; further, when the base station simultaneously supports communication between the licensed spectrum and the unlicensed spectrum, the user equipment may utilize the synchronization information provided by the reference signal of the licensed spectrum to assist in coarse carrier synchronization of the unlicensed spectrum.
  • the first sequence and the second sequence respectively carry part of the serving cell identification information
  • the user equipment that communicates with the base station may be respectively carried according to the first sequence and the second sequence.
  • Part of the serving cell identification information determines the identification information of the serving cell.
  • the total number of serving cells is Cell_ID
  • the serving cell is divided into p groups, and part of the serving cell identification information carried by the first sequence is used to indicate which cell in the p group is specifically formed by the base station.
  • the partial cell identification information carried by the second sequence is used to indicate which one of the p groups is formed by the base station.
  • the base station sends valid data starting from a moment when the sending of the second sequence is stopped, where the valid data signal includes one or a combination of: a physical downlink control channel, and an enhanced Physical downlink control channel, physical downlink shared channel, common reference signal, demodulation reference signal, channel state information reference signal, discovery reference signal.
  • the valid data signal includes one or a combination of: a physical downlink control channel, and an enhanced Physical downlink control channel, physical downlink shared channel, common reference signal, demodulation reference signal, channel state information reference signal, discovery reference signal.
  • the receiving device can obtain at least one of the system's AGC setting, fine time-frequency synchronization information, and channel characteristic estimation information by detecting the pilot signal carried in the second sequence and the valid data information. It should be understood that the receiving device can estimate the frequency offset by estimating the phase difference by pairing the reference signals at a certain time, and combining the system parameters of the LAA-LTE system, in order to obtain the fine frequency synchronization capable of ensuring the demodulation performance, the frequency is estimated.
  • the receiving device may jointly perform frequency offset estimation by using a frequency domain pilot signal of the second sequence and a pilot signal carried in the effective data information to estimate a phase difference.
  • the receiving device may jointly perform frequency offset by combining the frequency domain pilot signal of the first sequence and the frequency domain pilot signal of the second sequence to estimate the phase difference. estimate.
  • the user equipment that communicates with the base station can obtain corresponding valid data by detecting the physical downlink control channel and the physical downlink shared channel.
  • the transmission structure of the valid data information part multiplexes the existing LTE subframe format.
  • the valid data information part is multiplexed from the format of the first symbol of the LTE subframe format; or the valid data information is partially multiplexed with the downlink pilot time slot in the LTE system (English: Downlink Pilot Time Slot, abbreviation: DwPTS) Subframe format.
  • DwPTS Downlink Pilot Time Slot
  • the base station cyclically transmits the first sequence after obtaining the channel usage right of the unlicensed spectrum, wherein the time interval between the first moment and the start time of the first symbol is not The length of time of the first sequence of less than one period, the length of the first sequence of the one period is not greater than the length of time of a symbol not including the CP, and the first sequence is a sequence of features of the LAA-LTE system.
  • the base station not only achieves the purpose of occupying the channel, but further, by transmitting the sequence with the short period of the LAA-LTE system on the channel of the unlicensed spectrum, directly at the current
  • the user equipment is notified on the channel of the licensed spectrum to communicate with the base station on the channel of the unlicensed spectrum, thereby avoiding waste of resources caused by additionally utilizing channel resource transmission signaling on the licensed spectrum.
  • the embodiment of the present invention provides a method for transmitting a message corresponding to the embodiment 1 of the present invention.
  • the method provided by the embodiment of the present invention can be applied to a scenario of a channel of an unlicensed spectrum.
  • FIG. 6 is a schematic flow chart showing a method according to an embodiment of the present invention, and the method shown may be corresponding to the present invention.
  • the receiving device corresponding to the base station in Embodiment 1 is implemented, where the receiving device may be a user equipment, or may be a base station of a neighboring cell.
  • the process includes the following steps:
  • Step 601 The receiving device detects, at a second moment, a first sequence that is cyclically transmitted by the base station on a channel of the unlicensed spectrum.
  • the first sequence is a characteristic sequence of the LAA-LTE system, and the first sequence of the one cycle
  • the length of time is not greater than a length of time of a symbol that does not include a CP, and the second moment is no later than a first symbol start time at which the first sequence is stopped from being transmitted;
  • Step 602 The receiving device determines, according to the first sequence, that the base station acquires usage rights of the channel.
  • the receiving device may perform at least one of the following operations according to the first sequence: initial access detection, automatic gain control, time-frequency synchronization, channel characteristic estimation, and signal identification.
  • the method for the base station to obtain the use right of the channel of the unlicensed spectrum is the same as that in the specific implementation step 301 in the embodiment 1 of the present invention, and details are not described herein again.
  • the first time when the base station acquires the use right of the channel of the unlicensed spectrum is the same as the definition in the process of the specific implementation step 301 in Embodiment 1 of the present invention, where Let me repeat.
  • the method for the base station to send the channel reservation signal on the channel of the unlicensed spectrum is the same as the definition in the process of the specific implementation step 301 in Embodiment 1 of the present invention, Let me repeat.
  • the receiving device detects that the second time of the first sequence is not later than the start time of the first symbol that the first sequence is stopped to be sent; it should be understood that the embodiment of the present invention considers the signal It is received immediately after being transmitted, ignoring delays due to, for example, delays due to devices during transmission and reception, and distances between the base station and the receiving device.
  • the receiving device corresponding to the base station may perform detection on the channel of the unlicensed spectrum; since the receiving device cannot know the base station Sending the first time of the first sequence, so the receiving device performs blind detection.
  • the receiving device may perform detection according to the feature that the first sequence is a feature sequence of the LAA-LTE system, to determine the received signal. Whether to include the first sequence.
  • the specific detection method may be a domain correlation method, a frequency domain correlation method, or the like, which is not limited by the present invention.
  • the time length of the first sequence of one cycle is small.
  • the length of time of a symbol that does not include the CP so the receiving device can quickly detect the first sequence to quickly determine that the base station has acquired the right to use the channel of the unlicensed spectrum.
  • the user equipment may determine, according to the first sequence, that the base station has obtained the right to use the channel of the unlicensed spectrum. Resource transmission signaling using the licensed spectrum is thus avoided to inform the user equipment base station of the need to obtain usage rights on the channel of the unlicensed spectrum.
  • the base station of the neighboring cell may determine that the right to use the channel of the unlicensed spectrum has been in the LAA according to the first sequence.
  • the base station of the LTE system occupies, and the corresponding base station of the neighboring cell can perform a corresponding operation according to the detected first sequence: the base station of the neighboring cell determines, according to the detected first sequence, that the channel resource of the unlicensed spectrum has been Other communication systems occupy, the base station of the neighboring cell detects other channel resources of the unlicensed spectrum, or continues to perform monitoring on the current channel to wait for the current channel to be idle again; further, considering the resistance between the communication devices of the LAA-LTE system The same-frequency interference performance is better.
  • the base station of the neighboring cell determines that the base station transmitting the signal on the channel of the current unlicensed spectrum belongs to the LAA-LTE system, and the base station of the neighboring cell according to the characteristic that the first sequence is the characteristic sequence of the LAA-LTE system. According to the tolerance of the system to the interference signal, it can be re-determined whether to send signals on the current channel, and at the same time guarantee the current The communication of the base station that is transmitting the first sequence is affected by an acceptable range.
  • the time interval between the first time and the first symbol start time is determined, and the time length is determined.
  • the number of periods in which the base station transmits the first sequence during the time interval may be an integer or a non-integer.
  • the receiving device does not detect the first sequence. Need to go to CP processing.
  • the receiving device can determine that the base station obtains the usage right of the channel according to the first sequence detected on the channel of the license-free spectrum, and starts transmitting signals on the channel.
  • the base station uses the channel resource transmission indication message of the licensed spectrum, thereby saving channel resources of the licensed spectrum.
  • the time length of the first sequence of one cycle may be Not longer than the length of time the system uses for idle channel evaluation.
  • the length of the first sequence of one cycle may be no longer than the length of time that the base station or the neighboring cell base station performs CCA detection, so as to facilitate the LAA-LTE system adjacent to the channel of the cell to share the spectrum of the unlicensed spectrum.
  • the cell base station or Wi-Fi device or other communication device performs the first sequence detection while performing CCA detection.
  • the time interval between the first time when the base station starts transmitting the first sequence and the start time of the first symbol is less than the length of time of two symbols.
  • the first symbol start time may be specific a first symbol start time after the first time; when a time interval between the first time and a first symbol start time after the first time is less than a first sequence time length of one cycle
  • the first symbol start time may be specifically the second symbol start time after the first time, that is, the time interval between the first symbol start time and the first time is greater than one, less than two The length of time of the symbols.
  • the first sequence may carry indication information to indicate the number of symbols corresponding to the time interval. Specifically, when the time interval is greater than or equal to a time length of a symbol without a CP, the indication information carried by the first sequence is used to indicate that the number of symbols corresponding to the time interval is 1; when the time interval is less than The indication information carried by the first sequence is used to indicate that the number of symbols corresponding to the time interval is 0.
  • the receiving device that communicates with the base station can determine the time to stop transmitting the first sequence and then send other signals by detecting the first sequence.
  • the first sequence may carry indication information to indicate the number of symbols corresponding to the time interval. Specifically, when the time interval is greater than or equal to a time length of one symbol, the indication information carried by the first sequence is used to indicate that the number of symbols corresponding to the time interval is 1; when the time interval is less than one symbol. In the case of the length, the indication information carried by the first sequence is used to indicate that the number of symbols corresponding to the time interval is 0.
  • the receiving device that communicates with the base station can determine the time to stop transmitting the first sequence and then send other signals by detecting the first sequence.
  • the first sequence may also carry other information, which is the same as the information carried in the first sequence in Embodiment 1 of the present invention, and details are not described herein again.
  • the user equipment can obtain the information carried on the first sequence according to the detected first sequence.
  • the method for the base station to periodically send the first sequence includes at least two types mentioned in Embodiment 1 of the present invention, that is, two cases as shown in FIG. 4, and details are not described herein again.
  • the second case as shown in FIG. 4 since the last element of the first sequence is aligned with the start time of the first symbol, that is, the base station just sends the first time at the start of the first symbol.
  • the last element of a sequence in other words, as shown in the second case of Figure 4, the first symbol start time is just aligned with the last element of the first sequence being cyclically transmitted.
  • the receiving device in communication with the base station can time synchronize the signals received on the channel of the unlicensed spectrum according to this characteristic.
  • the first sequence may be composed of a CAZAC sequence; more specifically, may be composed of a ZC sequence; specifically, a CAZAC sequence or a more specific first sequence composed of a ZC sequence, the related properties of which are The detailed description of the embodiment 1 has been made, and the implementation of the present invention will not be repeated.
  • the time domain period is extended to the first sequence of the OFDM symbol without the CP, and the corresponding frequency domain sequence in the frequency domain satisfies the properties of the equal subcarrier spacing mapping.
  • the receiving device may obtain one or a combination of the following information by using the base station to be predefined, pre-configured, or by channel resource signaling of the licensed spectrum: The length of the sequence, the mapping interval I of the frequency domain sequence, the sequence candidate set of the first sequence, and the power enhancement factor.
  • the receiving device when the first sequence carrying indication information acquired by the receiving device indicates that the number of symbols corresponding to the time interval is not less than 1, the receiving device is configured according to the mapping.
  • the location of the frequency domain sequence determines the power of the detected interference signal in the first sequence. Specifically, at the unmapped frequency position, the mapping signal of the corresponding frequency location is 0, and the user equipment or other communication device communicating with the base station performs interference detection according to the frequency position where the mapping signal is 0.
  • the user equipment may detect the signal power at the frequency position where the mapping signal is 0, according to the detected signal. The power estimates the power of the interfering signal.
  • the interference detection should be done in the frequency domain, so the signal required for detection is required to last at least one length of the symbol without CP.
  • the method further includes:
  • Step 603 The receiving device sends valid data from the start time of the first symbol,
  • the valid data signal includes one or a combination of the following: a physical downlink control channel, an enhanced physical downlink control channel, a physical downlink shared channel, a common reference signal, a demodulation reference signal, a channel state information reference signal, and a discovery reference signal.
  • the base station can send the valid data signal as soon as possible after acquiring the use right of the channel of the unlicensed spectrum, thereby further improving the use efficiency of the channel resources of the unlicensed spectrum; the corresponding user equipment can determine that the transmission is effective according to the first sequence.
  • the first symbol start time of the data, and further, the valid data is received from the first symbol start time, and the received valid data is demodulated and decoded.
  • the receiving device may obtain at least one of an AGC setting, a fine time-frequency synchronization information, and channel characteristic estimation information of the system by detecting a pilot signal carried in the first sequence and the valid data information. It should be understood that the receiving device can estimate the frequency offset by estimating the phase difference by pairing the reference signals at a certain time, and combining the system parameters of the LAA-LTE system, in order to obtain the fine frequency synchronization capable of ensuring the demodulation performance, the frequency is estimated.
  • the receiving device may use the first and second symbol n 0 n 0 +3
  • the reference signals on the symbols are jointly subjected to frequency offset estimation, and n 0 is any symbol index.
  • the receiving device may jointly perform frequency offset estimation by estimating a phase difference between the frequency domain pilot signal of the first sequence and the pilot signal carried in the effective data information.
  • the receiving device that communicates with the base station can obtain corresponding valid data by detecting the physical downlink control channel and the physical downlink shared channel.
  • the receiving device may determine, according to the first sequence, the first symbol start time at which the valid data starts to be sent, that is, the start position of decoding the valid data may be directly known, thereby avoiding the receiving device. Side operation complexity and power consumption increase.
  • the method further includes:
  • Step 604 The receiving device receives a second sequence from the start time of the first symbol, where a time length of the second sequence of one cycle is a time length corresponding to one symbol;
  • the receiving device determines at least one of the following information according to the received second sequence:
  • the receiving device determines, according to the indication information that is used by the first sequence to indicate the number of symbols corresponding to the time interval, that the second sequence is from the first a number of cycles at which a symbol start time begins to appear; the receiving device receives the second sequence from the first symbol start time according to the indication information; wherein, if the first sequence indicates the number of symbols If it is 0, the number of cycles in which the long period starts from the start time of the first symbol is Y; if the first sequence indicates that the number of symbols is 1, the long period is from the first symbol The number of cycles at which the start time begins to appear is Y-1; wherein Y is a pre-configured positive integer.
  • Y takes a value of 4.
  • the base station cyclically transmits the second sequence from the start time of the first symbol until a start time of the next subframe.
  • the corresponding receiving device receives the second sequence from the start time of the first symbol until the next subframe start time.
  • the base station cyclically transmits the second sequence Y times from the start time of the first symbol.
  • Y is a pre-configured positive integer, preferably, Y is 4.
  • a corresponding receiving device receives the second sequence Y times from the start time of the first symbol.
  • the second sequence is specifically a Constant Amplitude Zero Auto Correlation (CAZAC), or the second sequence is a pseudo random sequence.
  • CAZAC Constant Amplitude Zero Auto Correlation
  • the user equipment receiving the second sequence acquires fine synchronization information, channel characteristic estimation information, and the like according to the second sequence.
  • the second sequence may be used to carry information, and the receiving device may obtain information carried on the second sequence by detecting the first sequence; the specific bearer information and the embodiment of the present invention.
  • the information that can be carried by the second sequence in 1 is the same, and is not described herein again in the embodiment of the present invention.
  • the first sequence and the second sequence respectively carry part of the serving cell identification information
  • the receiving device may be based on the partial serving cell identification information respectively carried by the first sequence and the second sequence.
  • the total number of serving cells is Cell_ID
  • the serving cell is divided into p groups, and part of the serving cell identification information carried by the first sequence is used to indicate which cell in the p group is specifically formed by the base station.
  • Group The partial cell identification information carried by the second sequence is used to indicate which one of the p groups is formed by the base station.
  • the receiving device further receives valid data from a moment when the sending of the second sequence is stopped, where the valid data signal includes one or a combination of: a physical downlink control channel, and an enhancement.
  • a physical downlink control channel Physical downlink control channel, physical downlink shared channel, common reference signal, demodulation reference signal, channel state information reference signal, discovery reference signal.
  • the receiving device may obtain at least one of the AGC setting, the fine time-frequency synchronization information, and the channel characteristic estimation information of the system by detecting the pilot signal carried in the second sequence and the valid data information. It should be understood that the receiving device can estimate the frequency offset by estimating the phase difference by pairing the reference signals at a certain time, and combining the system parameters of the LAA-LTE system, in order to obtain the fine frequency synchronization capable of ensuring the demodulation performance, the frequency is estimated.
  • the receiving device may use the first and second symbol n 0 n 0 +3
  • the reference signals on the symbols are jointly subjected to frequency offset estimation, and n 0 is any symbol index.
  • the receiving device may jointly perform frequency offset estimation by estimating a phase difference between the frequency domain pilot signal of the second sequence and the pilot signal carried in the valid data information.
  • the receiving device may jointly perform the method of estimating the phase difference by pairing the frequency domain pilot signal of the first sequence with the frequency domain pilot signal of the second sequence. Frequency offset estimation.
  • the receiving device that communicates with the base station can obtain corresponding valid data by detecting the physical downlink control channel and the physical downlink shared channel.
  • the transmission structure of the valid data information part multiplexes the existing LTE subframe format.
  • the valid data information part is multiplexed from the format of the first symbol of the LTE subframe format; or the valid data information is partially multiplexed with the downlink pilot time slot in the LTE system (English: Downlink Pilot Time Slot, abbreviation: DwPTS) Subframe format.
  • DwPTS Downlink Pilot Time Slot
  • the receiving device can determine that the base station obtains the usage right of the channel according to the first sequence detected on the channel of the license-free spectrum, and starts transmitting signals on the channel.
  • the base station uses the channel resource transmission indication message of the licensed spectrum, thereby saving channel resources of the licensed spectrum.
  • An embodiment of the present invention provides an apparatus for transmitting a message, which is implemented in Embodiment 1 of the present invention.
  • the method of transmitting messages FIG. 7 shows a minimum architecture of an apparatus for transmitting a message according to an embodiment of the present invention.
  • the apparatus includes at least a transceiver 701 and a processor 702, where:
  • the transceiver 701 is configured to acquire, by using the processor 702, the right to use the channel of the unlicensed spectrum at the first moment;
  • the transceiver 701 is further configured to cyclically send the first sequence from the first moment to the first symbol start time;
  • the time interval between the first time and the start time of the first symbol is not less than the time length of the first sequence of one cycle; wherein, the time length of the first sequence of one cycle is not greater than The length of time of a CP-free symbol; wherein the first sequence is a sequence of features of the LAA-LTE system.
  • the time interval between the first moment and the first symbol start time is less than a length of two symbols; wherein the first sequence carries indication information, To indicate the number of symbols corresponding to the time interval.
  • the transceiver 701 is configured to cyclically send the first sequence from the first moment to the first symbol start time, including:
  • the M is satisfied
  • the T i is a time interval between the first time and the start time of the first symbol
  • the T u is a time length of an element of the first sequence, Indicates rounding down.
  • the time domain period is extended to the first sequence of the CP-free symbols, and the corresponding frequency domain sequence in the frequency domain satisfies the properties of the equal subcarrier spacing mapping.
  • the frequency domain sequence satisfies the equal subcarrier spacing mapping, including a direct equal subcarrier spacing mapping, where the frequency domain mapping location x includes:
  • the frequency domain sequence includes S elements, the S elements are sequentially numbered 0, 1, ..., S-1, and the S is a positive integer; the n represents the nth element in the frequency domain sequence.
  • the F indicates that the frequency domain includes F available frequency domain mapping locations, the F available frequency domain mapping location numbers are 0, 1, ... F-1; the I represents a frequency domain mapping interval, and the I is An integer not less than 2; the m represents the The mapping position of the element numbered 0 in the frequency domain sequence, m is an integer not greater than I-1; the mapping signal of the position where the frequency domain sequence is not mapped is 0.
  • the frequency domain sequence satisfies the equal subcarrier spacing mapping, including a symmetric equal subcarrier spacing mapping, where the frequency domain mapping location x includes:
  • the frequency domain sequence also includes S elements, the S elements are sequentially numbered 0, 1, ..., S-1, and the S is a positive integer; the n represents the nth in the frequency domain sequence.
  • the F indicates that the frequency domain includes F available frequency domain mapping locations, the F available frequency domain mapping location numbers are 0, 1, ... F-1; the I represents a frequency domain mapping interval, the I An integer that is not less than 2; the m represents a mapping position of an element numbered 0 in the frequency domain sequence, and m is an integer not greater than I-1; a mapping signal of a position where the frequency domain sequence is not mapped is 0 .
  • the frequency domain mapping interval corresponds to a coverage area of a cell formed by the device, where a frequency domain mapping interval corresponding to a cell with a large coverage area is smaller than a small coverage area.
  • the frequency domain mapping interval corresponding to the cell is not limited to the frequency domain mapping interval.
  • the first sequence includes a centrally symmetric ZC sequence.
  • the first sequence further carries at least one of the following information:
  • Carrier identification information authorized spectrum resource information supported by the device; symbol number information included between the first time and a predefined subframe start time;
  • the length information of the device transmission time The length information of the device transmission time; the cell identification information.
  • the transceiver 701 is further configured to: the transceiver 701 starts to send a valid data signal from the first symbol start time, where the valid data signal includes at least the following A: a physical downlink control channel, an enhanced physical downlink control channel, a physical downlink shared channel, a common reference signal, a demodulation reference signal, a channel state information reference signal, and a discovery reference signal.
  • the transceiver 701 is further configured to: send, by the transceiver 701, a second sequence from a start time of the first symbol; wherein, a length of time of the second sequence The length of time corresponding to 1 symbol.
  • the transceiver 701 sends the second sequence starting from the first symbol start time, including: if the first moment starts with the first symbol The time interval between the engravings is less than the length of time of one symbol, and the transceiver 701 cyclically transmits the second sequence Y times from the start time of the first symbol; if the first moment is from the first symbol The time interval between the start time is not less than the time length of one symbol, and the transceiver 701 cyclically transmits the Y-1 second sequence from the first symbol start time; wherein the Y is pre-configured A positive integer.
  • the Y is a pre-configured positive integer including: Y includes a positive integer not less than 4.
  • the transceiver 701 sends the second sequence starting from the first symbol start time, including: the transceiver 701 starts from the first symbol start time At the beginning of the next subframe, the second sequence is started to be cyclically transmitted.
  • the second sequence is specifically a CAZAC sequence; or the second sequence is specifically a pseudo-random sequence.
  • the second sequence carries information, where the information about the bearer includes one or a combination of: carrier identification information; authorized spectrum resource information supported by the base station; The number of symbols included between the time instant and the start time of the next subframe; the duration information of the current transmission of the base station; the serving cell identification information.
  • the apparatus cyclically transmits the first sequence immediately after obtaining the channel usage right of the unlicensed spectrum, wherein the time interval between the first moment and the first symbol start time is not less than The length of time of the first sequence of one cycle, the time length of the first sequence of the one cycle is not greater than the time length of a symbol not including the CP, and the first sequence is a feature sequence of the LAA-LTE system.
  • the device not only achieves the purpose of occupying the channel, but further, directly transmits the current license-free sequence by transmitting a sequence with a shorter period of the LAA-LTE system on the channel of the unlicensed spectrum.
  • the channel of the spectrum informs the user equipment to communicate with the base station on the channel of the unlicensed spectrum, thereby avoiding waste of resources caused by additionally utilizing channel resource transmission signaling on the licensed spectrum.
  • FIG. 8 shows a minimum architecture of an apparatus for transmitting a message according to an embodiment of the present invention.
  • the apparatus includes at least a receiver 801 and a processor 802, where:
  • the receiver 801 is configured to receive a signal on a channel of the unlicensed spectrum
  • the processor 802 is configured to detect, according to the signal received by the receiver 801, a first sequence that is cyclically transmitted by the base station on a channel of the unlicensed spectrum at a second moment; wherein the first sequence is LAA a sequence of features of the LTE system, the time length of the first sequence of the one cycle is not greater than the length of time of a symbol not including the CP, and the second time is not later than the first symbol that the first sequence is stopped from transmitting Starting time
  • the processor 802 is further configured to determine, according to the first sequence, that the base station acquires usage rights of the channel.
  • the time interval between the first sequence being sent from the first moment to the start time of the first symbol is less than two symbols;
  • the receiver 801 is further configured to acquire the first sequence carrying indication information, where the indication information is used to indicate the number of symbols corresponding to the time interval.
  • the last element of the first sequence is aligned with the start time of the first symbol; the processor 802 is further configured to determine a start of the symbol according to the first sequence. time.
  • the time domain period is extended to the first sequence of the CP-free symbols, and the corresponding frequency domain sequence in the frequency domain satisfies the properties of the equal subcarrier spacing mapping.
  • the frequency domain sequence satisfies the equal subcarrier spacing mapping, including a direct equal subcarrier spacing mapping, where the frequency domain mapping location x includes:
  • the frequency domain sequence includes S elements, the S elements are sequentially numbered 0, 1, ..., S-1, and the S is a positive integer; the n represents the nth element in the frequency domain sequence.
  • the F indicates that the frequency domain includes F available frequency domain mapping locations, and the F available frequency domain mapping location numbers are 0, 1, ... F-1;
  • the I represents a frequency domain mapping interval, The I is an integer not less than 2; wherein the m represents a mapping position of an element numbered 0 in the frequency domain sequence, and m is an integer not greater than I-1; wherein the frequency domain sequence is not mapped The mapped signal of the position is 0.
  • the frequency domain sequence satisfies the equal subcarrier spacing mapping, including a symmetric equal subcarrier spacing mapping, where the frequency domain mapping location x includes:
  • the frequency domain sequence also includes S elements, the S elements are sequentially numbered 0, 1, ..., S-1, and the S is a positive integer; the n represents the nth in the frequency domain sequence. Element; wherein, the F The frequency domain includes F available frequency domain mapping locations, and the F available frequency domain mapping location numbers are 0, 1, ... F-1; wherein the I represents a frequency domain mapping interval, and the I is not less than An integer of 2; wherein m represents a mapping position of an element numbered 0 in the frequency domain sequence, and m is an integer not greater than I-1; wherein a mapping signal of a position where the frequency domain sequence is not mapped is 0.
  • the processor 802 is configured according to the Mapping the location of the frequency domain sequence determines the power of the detected interference signal in the first sequence.
  • the first sequence includes: a centrally symmetric ZC sequence.
  • the first sequence further carries at least one of the following information:
  • Carrier identification information authorized spectrum resource information supported by the base station; symbol number information included between the first time and the start time of the next subframe; duration duration information of the base station transmission time; serving cell Identify information.
  • the processor 802 acquires the at least one type of information by detecting the first sequence.
  • the receiver 801 is further configured to: the receiver 801 receives valid data from the first symbol start time, where the valid data signal includes one of the following or Combination: physical downlink control channel, enhanced physical downlink control channel, physical downlink shared channel, common reference signal, demodulation reference signal, channel state information reference signal, discovery reference signal.
  • the processor 802 obtains at least a system AGC setting, fine time-frequency synchronization information, and channel characteristic estimation information by detecting a pilot signal carried in the first sequence and the valid data information.
  • the processor 802 obtains at least a system AGC setting, fine time-frequency synchronization information, and channel characteristic estimation information by detecting a pilot signal carried in the first sequence and the valid data information.
  • the receiver 801 is further configured to receive the second sequence starting from the first symbol start time, where the second sequence of one cycle has a time length of 1 symbol.
  • the processor 802 is further configured to determine at least one of the following information according to the received second sequence: automatic gain control; time-frequency synchronization information; channel characteristic estimation information.
  • the receiver 801 receives the second sequence from the start time of the first symbol, where the processor 802 is configured to be carried according to the first sequence. Instructing information indicating a number of symbols corresponding to the time interval, determining a number of cycles in which the second sequence starts from a start time of the first symbol; and the receiver 801 is configured according to the indication information.
  • a second sequence Receiving, by the first symbol, a second sequence; wherein, if the first sequence indicates that the number of symbols is 0, a period in which the long period starts from a start time of the first symbol The number is Y; if the first sequence indicates that the number of symbols is 1, the number of cycles in which the long period starts from the start time of the first symbol is Y-1; wherein the Y is pre-configured Positive integer.
  • the Y is a pre-configured positive integer, where: Y is a positive integer not less than 4.
  • the receiving, by the receiver 801, receiving the second sequence from the first symbol start time includes: the receiver 801 receiving from the first symbol start time The second sequence is up to the start time of the next subframe.
  • the second sequence is specifically a CAZAC sequence; or the second sequence is specifically a pseudo-random sequence.
  • the second sequence carries information, where the information about the bearer includes one or a combination of: carrier identification information; authorized spectrum resource information supported by the base station; The symbol number information included between the time instant and the start time of the next subframe; the duration length information of the base station transmission; the serving cell identification information; the receiving device acquires the at least one information by detecting the first sequence.
  • the information about the bearer includes one or a combination of: carrier identification information; authorized spectrum resource information supported by the base station; The symbol number information included between the time instant and the start time of the next subframe; the duration length information of the base station transmission; the serving cell identification information; the receiving device acquires the at least one information by detecting the first sequence.
  • the apparatus for transmitting a message may determine that the base station obtains the usage right of the channel according to the first sequence detected on the channel of the license-free spectrum, and starts transmitting a signal on the channel.
  • the base station uses the channel resource transmission indication message of the licensed spectrum, thereby saving channel resources of the licensed spectrum.
  • the disclosed systems, devices, and The method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (English: Read-Only Memory, abbreviation: ROM), a random access memory (English: Random Access Memory, abbreviation: RAM), a magnetic disk or an optical disk, and the like.
  • a USB flash drive a mobile hard disk
  • a read-only memory English: Read-Only Memory, abbreviation: ROM
  • a random access memory English: Random Access Memory, abbreviation: RAM
  • magnetic disk or an optical disk and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种传输消息的方法:基站在获得免许可的频谱的信道使用权后立刻循环发送第一序列,其中,所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个周期的所述第一序列的时间长度,所述一个周期的第一序列的时间长度不大于一个不包括CP的符号的时间长度,所述第一序列为LAA-LTE***的特征序列。根据本发明实施例提出的方法,基站不仅达到了占用信道的目的,更进一步的,通过在免许可频谱的信道上传输周期较短的、具有LAA-LTE***的特征的序列,直接在当前免许可频谱的信道上通知了用户设备在所述免许可频谱的信道上与基站进行通信,从而避免额外利用许可频谱上的信道资源传输信令造成的资源浪费。

Description

一种传输消息的方法和装置 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及通信设备在免许可频谱传输信息的方法。
背景技术
在现有的无线通信领域,频谱资源主要分为两种,一种为许可频谱资源,另一种为免许可频谱资源。许可频谱资源是由政府的无线电管理委员会划定,有专用用途的频谱资源,例如移动运营商使用、民航、铁路、警察专用的频谱资源,由于在政策上的排他性,许可频谱资源的业务质量一般可以得到保证,在进行调度控制时也相对容易。
免许可频谱资源也是由政府相关部门划定的频谱资源,但不对无线电技术、运营企业和使用年限进行限定,同时也不保证该频段的业务质量。应用免许可频谱资源的通信设备只需要满足发射功率、带外泄露等指标的要求,即可***。常见的应用免许可频谱资源进行通信的通信***包括民用对讲机、无线电遥控器、Wi-Fi***、蓝牙通信***等。
在现有的长期演进(英文:Long Term Evolution,缩写:LTE)***中,运营商所使用的频谱资源主要为许可频谱资源;随着移动通信网络用户数量的增加,以及用户对通信速率、服务质量的要求的提高,现有的许可频谱资源已经难以满足运营商的现有业务的需求。考虑到新的许可频谱价格高昂、资源紧缺,运营商开始将目光投向免许可频谱资源上,期望能够通过利用免许可频谱资源以达到网络容量分流、提高服务质量的目的。
对于LTE***,或者许可辅助接入长期演进(英文:Licensed-Assisted Access Using LTE,缩写:LAA-LTE)***,或者免许可长期演进(英文:Unlicensed Long Term Evolution,缩写:U-LTE)***,使用免许可频谱资源首先要解决的问题是竞争资源的问题。
对于LTE***或者LAA-LTE***而言,在应用免许可频谱进行通信时,最有可能与其竞争资源的通信设备属于无线保真(英文:Wireless Fidelity, 缩写:Wi-Fi)通信***。Wi-Fi通信***应用的一种竞争资源的方法被称为先检测后发送(Listen Before Talk,LBT)。LBT的基本思想为:每个通信设备在某个信道上发送信号之前,需要先检测当前信道是否空闲,即是否可以检测到附近节点正在占用所述信道发送信号,这一检测过程被称为空闲信道评测(Clear Channel Assessment,CCA);如果在一段时间内检测到信道空闲,那么该通信设备就可以发送信号;如果检测到信道被占用,那么该通信设备当前就无法发送信号。
LBT这种竞争方法在现有的应用免许可频谱资源的通信***中得到广泛利用,但是当这种竞争方式应用于LTE、LAA-LTE或者与之类似的通信***时,会出现新的问题,这与***基于帧调度的特性有关:
以LAA-LTE***为例,LAA-LTE***继承了LTE***的帧结构,需要有相对固定的帧结构,而且帧的边界或者子帧边界在时间上是固定的,换句话说,对于一个LAA-LTE***而言,其帧边界或者子帧边界在时间上对应确定的时刻,帧或者子帧边界包括帧或子帧的起始时刻和截止时刻。
对于Wi-Fi***的通信设备而言,当其确定可以占用信道时,或者说确认已经竞争到信道的发送资源时,该通信设备直接发送包含有效数据的信号;但是对于LAA-LTE***中的通信设备而言,由于确认可以占用信道的时刻是随机的,所以一般来说,所述确定可以占用信道的时刻与LAA-LTE***的子帧边界往往是不能对齐的,为了防止信道被其他通信设备占用,现有的做法是,确认可以占用信道的LAA-LTE***的通信设备会即刻发送填充信号,直至下一子帧的起始时刻,再发送承载控制信道、数据信道、参考信号之一或者组合的信号。
LAA-LTE***中的通信设备为了实现与对应的通信设备在免许可频谱资源上的通信,需要在许可频谱资源上发送指示消息,以指示将要从某个子帧的起始时刻开始,在免许可的频谱资源上传输信息。这占用了额外的许可频谱的信道资源,使得原本已经捉襟见肘的许可频谱的信道资源更加紧张。
发明内容
本发明实施例提供了一种数据传输的方法和装置,能够解决现有技术中需要额外占用许可频谱资源传输指示消息,以指示在免许可频谱的信道传输信息的问题。
第一方面,本发明实施例提供了一种数据传输的方法,包括:
基站在第一时刻获取免许可频谱的信道的使用权;
所述基站从所述第一时刻开始至第一符号起始时刻,循环发送第一序列;
其中,所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个周期的所述第一序列的时间长度;
其中,一个周期的所述第一序列的时间长度不大于一个不含CP的符号的时间长度;
其中,所述第一序列为LAA-LTE***的特征序列。
第二方面,本发明实施例提供了一种数据传输的方法,包括:
接收设备在第二时刻检测到基站在免许可频谱的信道上循环发送的第一序列;其中,所述第一序列为LAA-LTE***的特征序列,所述一个周期的第一序列的时间长度不大于一个不包括CP的符号的时间长度,所述第二时刻不晚于所述第一序列被停止发送的第一符号起始时刻;
所述接收设备根据所述第一序列确定所述基站获取所述信道的使用权。
第三方面,本发明实施例提供了一种数据传输的装置,包括收发器和处理器,其中:
所述收发器在所述处理器的调度下,用于在第一时刻获取免许可频谱的信道的使用权;
所述收发器还用于从所述第一时刻开始至第一符号起始时刻,循环发送第一序列;
其中,所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个周期的所述第一序列的时间长度;
其中,一个周期的所述第一序列的时间长度不大于一个不含CP的符号 的时间长度;
其中,所述第一序列为LAA-LTE***的特征序列。
第四方面,本发明实施例提供了一种数据传输的装置,包括接收器和处理器,其中:
所述接收器用于接收免许可频谱的信道上的信号;
所述处理器用于根据所述接收器接收到的信号,在第二时刻检测到基站在所述免许可频谱的信道上循环发送的第一序列;其中,所述第一序列为LAA-LTE***的特征序列,所述一个周期的第一序列的时间长度不大于一个不包括CP的符号的时间长度,所述第二时刻不晚于所述第一序列被停止发送的第一符号起始时刻;
所述处理器还用于根据所述第一序列确定所述基站获取所述信道的使用权。
基于上述技术方案,本发明实施例可以在获得免许可频谱的信道使用权后立即循环发送具有LAA-LTE***特征的第一序列,不仅到达了占用信道、防止信道被其他通信设备占用的作用,而且基站直接在当前免许可频谱的信道上通知了用户设备在所述免许可频谱的信道上与基站进行通信,从而避免额外利用许可频谱上的信道资源传输信令造成的资源浪费。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了一种应用于LAA-LTE***的帧结构示意图;
图2示出了一种通信***架构示意图;
图3示出了本发明实施例提出的一种传输消息的方法流程图;
图4示出了本发明实施例提出的一种发送第一序列的时序图示意图;
图5示出了本发明实施例提出的一种发送第一序列和第二序列的时序示意图;
图6示出了本发明实施例提出的一种传输消息的方法流程图;
图7示出了本发明实施例提出的一种传输消息的装置结构图;
图8示出了本发明实施例提出的一种传输消息的装置结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于利用免许可频段的LAA-LTE***,也可以应用于其他具有与之类似、固定的子帧边界或者符号边界、且具有资源竞争需求的通信***。
应理解,本发明实施例的技术方案中提及的符号可以是LAA-LTE***或者LTE***中的一个正交频分复用(英文:Orthogonal Frequency Division Multiplexing,缩写:OFDM)符号,具体地,OFDM符号包括循环前缀(英文:Cyclic Prefix,缩写:CP)部分和信息段部分,其中信息段部分包括了一个OFDM符号的全部信息;CP是对一部分信息段信号的重复。本发明实施例的技术方案中提及的符号也可以是其他类型的通信的符号,本发明对此不作限定。
应理解,本发明实施例中提及的OFDM符号具有时间维度和频率维度的属性,其中时间维度的属性包括OFDM符号的时间长度;频率维度的属性包括子载波个数、子载波带宽等。
应理解,本发明实施例提及的基站和用户设备所处的通信***是具有预定义、或者说固定的子帧起始时刻、子帧结束时刻、符号起始时刻、符号结束时刻的通信***。这种通信***以固定的时间单元划分时间,也就是说,当确定了时间单元的粒度,一个时间单元的起始时刻、结束时刻,那么就可以知道过去和未来的时间单元的起始时刻与结束时刻。在本发明实施例中,子帧边界指代子帧起始时刻或者子帧结束时刻,符号边界指代符号的起始时刻或者结束时刻,一个子帧的起始时刻等同于上一个子帧的结束时刻,一个符号的起始时刻等同于上一个符号的结束时刻。
还应理解,在本发明实施例中,在一定区域范围内,由同一个运营商运营的通信***,例如LAA-LTE***,在免许可频谱的信道上传输的信号的 子帧起始时刻、子帧结束时刻、子帧边界,与许可频谱的信道上传输的信号的子帧起始时刻、子帧结束时刻、子帧边界是对齐的。图1示出了一种应用于LAA-LTE***的帧结构示意图。在时间维度上,假设在该***中最小的时间单元为Ts,1Ts=1/(15000×2048)秒;1个不包括CP部分的OFDM符号的时间长度为2048×Ts,约等于66.7微秒;一个子帧的时间长度为1ms,具体有两种子帧格式。一种是正常循环前缀(英文:Normal Cyclic Prefix,缩写:NCP)子帧格式,一个NCP子帧包括14个OFDM符号;将OFDM符号从0开始标号至13,则其中的第0号和第7号OFDM符号的时间长度为2208×Ts,其他的12个OFDM符号的时间长度为2192×Ts;将第0号至第6号OFDM符号定义为奇数时隙,将第7号至第13号OFDM符号定义为偶数时隙。另一种是长循环前缀(英文:Extended Cyclic Prefix,缩写:ECP)子帧格式,一个ECP子帧包括12个OFDM符号;每个OFDM符号的时间长度为2560×Ts;将OFDM符号从0开始标号至11,将第0号至第5号OFDM符号定义为奇数时隙,将第6号至第11号OFDM符号定义为偶数时隙。
在频率维度上,可以由图1看出,一个OFDM符号可以被划分为多个子载波,每个子载波对应一定的带宽。
更进一步的,从许可频谱资源和免许可频谱资源的角度来看,可以由图1看出,应用了不同频谱资源的OFDM在时间上是子帧边界对齐的。
还应理解,在本发明实施例中,用户设备(英文:User Equipment,缩写:UE)可称之为终端(Terminal)、移动台(英文:Mobile Station,缩写:MS)、移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(英文:Radio Access Network,缩写:RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
在本发明实施例中,基站可以是LTE***或者LAA-LTE***中的演进型基站(英文:Evolutional Node B,缩写:eNB或e-NodeB)、宏基站、微基站(也称为“小基站”)、微微基站、接入站点(英文:Access Point,缩写:AP)或传输站点(英文:Transmission Point,缩写:TP)等,本发明对此并不限定。但为描述方便,下述实施例将以基站和用户设备为例进行说明。
图2示出了可以应用本发明实施例提出的方案的一种应用场景,场景中 包括小区基站201,与小区基站201邻近的小区基站202,处在小区基站201覆盖范围内并与小区基站201进行通信的用户设备203;其中,小区基站201和用户设备203具体为支持在免许可频谱资源进行通信,且具有固定子帧边界和固定符号边界的通信设备;小区基站202支持的频段可以与小区基站201相同,小区基站202可以是与小区基站201相同类型的通信设备,也可以是与小区基站201不同类型的通信设备。举例来说,小区基站201可以是LAA-LTE***的基站,对应的用户设备可以是LAA-LTE***的用户设备;小区基站202可以也是LAA-LTE***的基站,也可以是Wi-Fi***的无线路由器、无线中继器、用户设备。
在具体的应用场景中,小区基站201在通过免许可频谱的信道向用户设备203发送信号时,小区基站201需要首先获取所述免许可频谱的信道的使用权。具体获得所述信道的使用权的方法可以是上文提到的LBT的方法,也可以是其他的方法,本发明对此不作限定。
在具体的实施过程中,小区基站201在获得所述免许可频谱的信道的使用权时刻往往不能与小区基站201预定的子帧边界对齐,考虑到免许可频谱资源不对使用者进行限制,因此如果当所述小区基站201在获取所述免许可频谱资源的信道的使用权但不占用所述信道,所述信道有被其他通信设备,例如小区基站202抢占的风险。
为了避免发生以上提到的情况,在具体的实施过程中,即使小区基站201获取所述免许可频谱的信道的使用权的时刻不能与预定的子帧边界或对齐,小区基站201也会从获得所述使用权的时刻开始发送填充信号,直至下一个子帧边界。尽管这种方法解决了小区基站201随机接入所述信道的问题,但显然这样会浪费一部分发送资源;同时,小区基站201需要在许可频谱的信道上通知用户设备203在非授权频谱的信道上传输数据的时刻,但是显然的,这种方法会占用额外的授权频谱的信道资源,使得授权频谱的信道资源更加紧张。
本发明实施例提供一种传输信息的方法,具体结合上例,小区基站201可以利用原本发送填充信号的时间,在免许可频谱的信道上发送前导序列,从而为用户设备203检测小区基站201在免许可频谱的信道上开始传输信号提供条件。
下面将结合具体的例子详细描述本发明实施例。应注意,这些例子只是 为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围;应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
实施例1
本发明实施例提出的一种传输消息的方法,本发明实施例提出的方法可以应用于在免许可频谱的信道场景中。图3示出了本发明实施例提出的方法的示意性流程图,示出的方法可以由基站执行,流程包括以下步骤:
步骤301,基站在第一时刻获取免许可频谱的信道的使用权;
步骤302,所述基站从所述第一时刻开始至第一符号起始时刻,循环发送第一序列;
其中,所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个周期的所述第一序列的时间长度;
其中,一个周期的所述第一序列的时间长度不大于一个不含CP的符号的时间长度;
其中,所述第一序列为LAA-LTE***的特征序列。
在具体的实施步骤301的过程中,可选的,基站通过竞争的方法获取免许可频谱的信道的使用权;更具体的,基站可以基于LBT的准则,通过竞争的方法获取所述使用权。可选的,基站可以通过与邻近的通信设备协调或者调度后,获取免许可频谱的信道的使用权。可选的,基站可以通过预先配置的资源使用图案,获取免许可频谱的信道的使用权。
在具体实施步骤301的过程中,基站获取免许可频谱的信道的使用权的第一时刻可能是任意时刻,即第一时刻与基站所应用的子帧边界或者符号边界没有关系。第一时刻可能与子帧边界或者符号边界重合,也可能不重合;换言之,因此第一时刻与距离其最近的下一个符号边界之间的时间间隔的取值,是一个小于一个符号的时间长度的非负随机数。
在具体实施步骤302的过程中,基站发送长度可变的信道保留信号,其中信道保留信号的时间长度与所述第一时刻与符号边界或固定的子帧边界之间的时间间隔有关;具体的,信道保留信号包括第一序列,一个周期的第一序列的时间长度不大于一个不含CP的符号持续的时间长度。所述基站从 第一时刻开始发送第一序列,直至第一符号起始时刻处停止发送所述第一序列。可变的信道保留信号起到的保留免许可频谱的信道的作用,防止基站在获得免许可频谱的信道的使用权后,由于未及时占用信道导致该信道被其他通信设备抢占。
在具体的实施过程中,应理解,考虑到基站运算处理所消耗的时间和/或基站由接收状态转换到发送状态之间消耗的时间,基站获取免许可频谱的信道的使用权的第一时刻与开始发送第一序列的第一时刻之间可能存在一个很小的时间间隔。本领域的技术人员应该理解,这一很小的时间间隔不会对本发明实施例提出的方法产生实质性的影响,本发明实施例提出的方案中认为这两个时刻是同一个时刻。
在具体实施步骤302的过程中,第一时刻与第一符号起始时刻之间的时间间隔不小于一个周期的第一序列的时间长度,从而保证基站至少发送一个完整周期的第一序列。对应的用户设备或者邻小区基站在免许可的频谱的信道上执行检测时,可以接收到一个完整周期的第一序列,这为对应的用户设备或者邻小区基站根据第一序列执行后续的操作作出准备。
在具体实施步骤302的过程中,由于所述第一符号起始时刻与第一时刻之间的时间间隔不小于一个周期的第一序列的时间长度,又,一个周期的第一序列的时间长度不大于一个不含CP的符号持续的时间长度,因此当第一时刻与第一时刻之后的第一个符号起始时刻之间的时间间隔不小于一个周期的第一序列的持续的时间长度时,所述第一符号起始时刻可以是第一时刻之后的任一个符号起始时刻;当第一时刻与第一时刻之后的第一个符号起始时刻之间的时间间隔小于一个周期的第一序列的持续的时间长度时,所述第一符号起始时刻可以是第一时刻之后的第二个符号起始时刻或者所述第二个符号起始时刻之后的符号的起始时刻。
在具体实施步骤302过程中,应理解,由于第一时刻的随机性导致了第一时刻与第一符号起始时刻之间时间间隔的不确定,对于时间长度确定的第一序列来说,在所述时间间隔内基站发送第一序列的周期数可能是整数,也可能是非整数。
在具体实施步骤302过程中,应理解,在第一时刻与第一符号起始时刻之间的时间间隔内,由于基站发送第一序列的方式是循环发送的,基站发送第一序列时不再额外发送CP部分。
在具体实施步骤302过程中,第一序列是LAA-LTE***或者LTE***或者其他通信***的特征序列;对应的接收设备,例如相同***的用户设备、邻区基站,或者其他接收设备,可以根据这一特征序列检测确定当前是LAA-LTE***的设备获取了免许可频谱的信道的使用权,从而避免了基站在授权频谱的信道上发送指示消息,导致对授权频谱的信道资源的额外占用。
在具体的实施过程中,应理解,LAA-LTE***是对应用免授权频谱资源进行通信的LTE***的统称,该名称并不对本发明实施例的应用范围构成限定,任何基于LTE***、并应用了免授权频谱资源进行通信的***都应在本发明实施例的保护范围内。
基于上述技术方案,根据本发明实施例提出的方法,基站在获得免许可的频谱的信道使用权后立刻循环发送第一序列,其中,所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个周期的所述第一序列的时间长度,所述一个周期的第一序列的时间长度不大于一个不包括CP的符号的时间长度,所述第一序列为LAA-LTE***的特征序列。基站不仅达到了占用信道、防止信道被其他通信设备抢占的目的,更进一步的,通过在免许可频谱的信道上传输至少一个周期、具有LAA-LTE***的特征的第一序列,基站直接在当前免许可频谱的信道上通知了用户设备在所述免许可频谱的信道上与基站进行通信,从而避免额外利用许可频谱上的信道资源传输信令造成的资源浪费。
更进一步的,可选的,在具体实施步骤302的过程中,所述第一时刻与所述第一符号起始时刻之间的时间间隔小于两个符号的时间长度。具体来说,当所述第一时刻与第一时刻之后的第一个符号起始时刻之间的时间间隔不小于一个周期的第一序列时间长度时,所述第一符号起始时刻可以具体为所述第一时刻之后的第一个符号起始时刻;当所述第一时刻与第一时刻之后的第一个符号起始时刻之间的时间间隔小于一个周期的第一序列时间长度时,所述第一符号起始时刻可以具体为所述第一时刻之后的第二个符号起始时刻,即第一符号起始时刻与所述第一时刻之间的时间间隔大于一个、小于两个符号的时间长度。从而在保证基站至少发送一个完整周期的第一序列的条件下,利用不完整符号和最少的完整符号的时间长度来发送第一序列,达到充分利用免许可频谱的信道资源的目的。
在另一种可选的实施方式中,在具体实施步骤302过程中,在基于LBT的准则,通过竞争的方法获取免许可频谱的信道的使用权的方式中,一个周期的第一序列的时间长度可以不大于***用于空闲信道评测的时间长度。例如LAA-LTE***中,一个周期的第一序列的时间长度可以不大于基站或者邻小区基站进行CCA检测的时间长度,以便于与本小区基站共享免许可频谱的信道的LAA-LTE***的邻小区基站或者Wi-Fi设备或者其他通信设备在进行CCA检测的同时进行第一序列的检测。
在具体的实施过程中,可选的,所述第一序列可以承载指示信息,用以指示上述时间间隔对应的符号数。具体来说,当所述时间间隔大于等于一个不含CP的符号的时间长度时,所述第一序列承载的指示信息用以指示上述时间间隔对应的符号数是1;当所述时间间隔小于一个不含CP的符号的时间长度时,所述第一序列承载的指示信息用以指示上述时间间隔对应的符号数是0。在具体的实施过程中,与所述基站进行通信的用户设备通过检测所述第一序列,可以确定停止发送所述第一序列,进而发送其他信号的时刻。
在另一种可能的实施方式中,可选的,所述第一序列可以承载指示信息,用以指示上述时间间隔对应的符号数。具体来说,当所述时间间隔大于等于一个符号的时间长度时,所述第一序列承载的指示信息用以指示上述时间间隔对应的符号数是1;当所述时间间隔小于一个符号的时间长度时,所述第一序列承载的指示信息用以指示上述时间间隔对应的符号数是0。在具体的实施过程中,与所述基站进行通信的用户设备通过检测所述第一序列,可以确定停止发送所述第一序列,进而发送其他信号的时刻。
在具体的实施过程中,可选的,所述第一序列还可以承载其他的信息,这些信息可以包括以下的一种或者多种:
①运营商识别信息,以便于与所述基站进行通信的用户设备确定发送所述第一序列的基站;对于相对于本小区基站的邻小区基站而言,也可以利用所述第一序列承载的运营商识别信息,对本小区的基站进行识别;
②所述基站支持的授权频谱资源信息,以便于所述用户设备根据所述第一序列确定所述基站是否同时支持在许可频谱的信道上进行通信,或者确定所述基站在许可频谱的哪一信道进行通信;更进一步的,当所述基站同时支持在许可频谱和非许可频谱进行通信时,所述用户设备可以利用许可频谱的参考信号提供的同步信息,协助免许可频谱的载波粗同步。
③所述基站获得所述免许可频谱的信道的使用权时,当前子帧剩余的可用符号个数信息;
④所述基站当次传输信号的持续时间长度信息;
⑤服务小区识别信息,或者部分服务小区识别信息。
在具体实施过程中,可选的,所述第一序列由时域和频域的自相关特性和/或互相关特性都很好的恒包络零自相关(英文:Constant Amplitude Zero Auto Correlation,缩写:CAZAC)序列构成。可选的,可以使用乍道夫-楚(英文:Zadoff-Chu,缩写:ZC)序列构成所述第一序列。特别的,可以通过中心对称的ZC序列构成所述第一序列。
在具体实施步骤302的过程中,可选的,如图4所示的第一种情况,当基站从所述第一时刻开始循环发送第一序列时,所述基站从第一序列的起始位置开始发送所述第一序列。例如,假设第一序列包括N个元素,每个元素的编号依次为0,1,2,…N-1,N为正整数;则所述基站从第一时刻开始从第一序列第0个元素开始发送第一序列,当发送至第N个元素但尚未达到第一符号边界时,所述基站重新开始从第一序列的第0个元素开始发送第一序列……如此循环反复直至第一符号边界。这种方式在具体的实现过程中简单易行,可以降低基站的复杂度。
在具体实施步骤302的过程中,可选的,如图4示出的第二种情况,当基站从所述第一时刻开始周期发送第一序列时,所述基站从第一序列第k个元素开始循环发送所述第一序列,其中所述第一序列包括N个元素,所述N个元素一次编号0,1,…N-1,N为正整数,所述k满足k=(N-(MmodN))modN,其中M具体为所述第一时刻至所述第一符号起始时刻之间的时间间隔对应的所述第一序列的元素数,更具体的,所述M满足
Figure PCTCN2015070915-appb-000001
其中所述Ti为所述第一时刻至所述第一符号起始时刻之间的时间间隔,所述Tu为所述第一序列的一个元素的时间长度,
Figure PCTCN2015070915-appb-000002
表示向下取整。根据这种发送方法,所述基站在第一符号起始时刻恰好发送完所述第一序列的最后一个元素,换言之,如图4中第二种情况所示,第一符号起始时刻恰好与被循环发送的第一序列的最后一个元素对齐。与所述基站进行通信的用户设备可以根据这一特性,对免许可频谱的信道上接收的信号进行时间同步。
应知道,对于以上提到的组成所述第一序列的元素,一种可选的理解是指组成第一序列的最小时间单元Tu,第一序列的元素可以是***的最小时间 单元的倍数,例如LAA-LTE***中,Tu=i·Ts,其中i可以为正整数,也可以为分数,Ts为LAA-LTE***中的最小时间单元。当第一序列的元素是***的最小时间单元的整数倍,但时间长度为L的第一序列不能被第一序列的元素整除时,一个周期的第一序列的元素个数
Figure PCTCN2015070915-appb-000003
其中
Figure PCTCN2015070915-appb-000004
表示向上取整。当第一序列的元素是***的最小时间单元的分数倍时,总存在一个分数i,使时间长度为L的第一序列可以被第一序列的元素Tu整除,即一个周期的第一序列的元素个数N=L/Tu
对应的,如图4示出的第二种情况,所述M为满足M·Tu可以被Ts整除且
Figure PCTCN2015070915-appb-000005
的M的最大值,其中所述Ti为所述第一时刻至所述第一符号起始时刻之间的时间间隔,所述Tu为所述第一序列的一个元素的时间长度,所述Ts为***的最小时间单元,
Figure PCTCN2015070915-appb-000006
表示向下取整。
在具体的实施过程中,可选的,时域周期扩展至一个不含CP的OFDM符号的第一序列在频率域上对应的频域序列满足等子载波间隔映射的性质。具体来说,可以通过对等子载波间隔映射后的频域序列通过离散傅里叶反变换(英文:Inverse Discrete Fourier Transform,缩写:IDFT)或快速傅里叶反变换(英文:Inverse Fast Fourier Transform,缩写:IFFT)到时域来获得所述周期扩展至一个不含CP的OFDM符号的第一序列。
在具体的实施过程中,可选的,所述等子载波间隔映射的方法包括但不限于直接等子载波间隔映射、对称等子载波间隔映射。以下将举例说明这两种等子载波间隔映射方法,下面叙述中提到的位置是指在频率域子载波对应的位置:
假设映射前的频域序列包括S个元素,S为不小于2的正整数;所述S个元素依次编号0,1,…S-1;n表示所述映射前的频域序列的S个元素中的第n个元素;I表示频域映射子载波间隔,所述I为不小于2的正整数;m表示所述频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;F表示在频率域的子载波的数量,即可以被映射的位置数量,F满足F≥S×I。频域可用的映射位置编号为0,1,…F-1。应知道,频率域可以被映射的子载波中不包含直流(英文:Direct Current,缩写:DC)子载波。
经过直接等子载波间隔映射的频域序列的第n个元素被映射的位置x满足:
x=n·I+m,0≤n≤S-1,0≤x≤F-1;
经过对称等子载波间隔映射的频域序列的第n个元素被映射的位置x满足:
Figure PCTCN2015070915-appb-000007
频域序列的元素被映射的位置x满足0≤x≤F-1。在未被映射的频率位置处,对应的频率位置的映射信号为0。应知道,由于所述频域序列对应于周期扩展至一个不含CP的符号的第一序列,且频域映射间隔I为整数,通过简单的数学关系可以知道,满足这种关系的一个周期的第一序列的时间长度为一个不含CP的符号的时间长度的1/I。例如LAA-LTE***中,一个不含CP的符号的时间长度是2048×Ts,如果频域映射间隔I为4,那么通过将频域间隔映射的序列变换到时域得到的第一序列的时间长度为2048×Ts×(1/4)=512×Ts
在具体实施过程中,可选的,所述频域序列由时域和频域的自相关特性和/或互相关特性都很好的CAZAC序列构成。可选的,可以使用ZC序列构成所述频域序列。ZC序列的基序列表达式可以是:
Figure PCTCN2015070915-appb-000008
其中,S是正整数,r是与S互质的任意整数,每一个r值对应一个基序列,q值为整数,可以设置为0;ar,S(n)表示在给定的r和S时的ZC序列中的第n个元素。
特别的,可以通过中心对称的ZC序列构成所述频域序列。中心对称的ZC序列的基序列表达式可以是:
Figure PCTCN2015070915-appb-000009
其中,S是偶数,r是与S+1互质的任意整数,每一个r值对应一个基序列;ar,S(n)表示在给定的r和S时的ZC序列中的第n个元素。
ZC序列具有以下性质:一个基序列的循环移位序列之间是正交的;当S是质数时,任意两个序列之间的互相关值很低;少量的截短和循环扩展对序列性质的影响很小。由此可以知道,当给定一个ZC序列的长度S,则可用 的基序列的数目也就是上式中r的可能值的数目,即等于与序列长度S互质的整数的数目。
在具体的实施过程中,所述频域序列可以是等长ZC序列;为了满足对频域序列长度的要求,所述频域序列也可以是循环移位ZC序列,或者截短ZC序列;优选的,所述频域序列是中心对称的ZC序列。更进一步的,在所述频域序列长度相同的条件下,可以使用不同的r或者不同的循环移位位数来承载上述提到的信息或者信息的组合。
可选的,在未被映射的频率位置处,对应的频率位置的映射信号为0,以便于与所述基站通信的用户设备或者其他通信设备根据这些映射信号为0的频率位置进行干扰检测。具体的,以用户设备为例,当用户设备接收到部分映射信号为0的第一序列,所述用户设备可以通过检测所述映射信号为0的频率位置处的信号功率,根据检测到的信号功率估计干扰信号的功率。
应知道,干扰检测应在频域完成,因此要求用来检测的信号在时间上至少持续一个不含CP的符号的长度。更进一步的,可选的,在具体实施步骤302的过程中,所述第一时刻与所述第一符号起始时刻之间的时间间隔大于一个、小于两个符号的时间长度。具体来说,所述第一符号起始时刻可以为所述第一时刻之后的第二个符号起始时刻,即第一符号起始时刻与所述第一时刻之间的时间间隔大于一个、小于两个符号的时间长度。因此基站可以利用至少一个完整符号的时间长度来发送第一序列,从而保证用户设备可以通过检测所述映射信号为0的频率位置处的信号功率,根据检测到的信号功率估计干扰信号的功率。
在具体的实施过程中,可选的,由于所述频域序列是等子载波间隔映射,在进行序列映射时,可以把未被映射的子载波处的功率平均增加到映射所述频域序列的子载波上,即频域映射时可以对所述频域序列进行功率增强(英文:Power boosting)。具体地,可以在每个映射的频域序列的元素前乘以一个功率增强因子
Figure PCTCN2015070915-appb-000010
其中,S表示频域序列的元素个数,F表示在频率域可以被映射的子载波个数。
在具体的实施过程中,可选的,基站可以通过预先定义、预先配置或者通过授权频谱的信道资源信令通知的方式指示以下信息之一或者组合:一个 周期的第一序列的时间长度、频域序列的映射间隔I、第一序列的序列候选集合、功率增强因子。
在具体的实施过程中,可选的,所述基站根据其覆盖的小区范围,确定所述第一序列的时间长度;换言之,所述第一序列周期时间长度与对应的小区的覆盖范围有关,覆盖范围大的小区对应的第一序列的周期时间长度大于覆盖范围小的小区对应的第一序列的周期时间长度。
在另一种可选的实施方式中,如上文中提到的,时域周期扩展至一个不含CP的符号的所述第一序列在频率域上对应的频域序列满足频率等间隔映射的特性,一个不含CP的符号时间内第一序列的重复次数与所述频域映射间隔I有关。因此,频域映射间隔对应于所述基站形成的小区的覆盖范围,其中覆盖范围大的小区对应的频域映射间隔小于覆盖范围小的小区对应的频域映射间隔。
由于基站的小区覆盖范围和基站的发射功率成正比关系,在具体的实施过程中,可选的,所述基站根据其发射功率大小,确定所述第一序列的时间长度;换言之,所述第一序列周期时间长度与对应的小区的发射功率大小有关,发射功率大的小区对应的第一序列的周期时间长度大于发射功率小的小区对应的第一序列的周期时间长度。更进一步的,可选的,所述基站可以根据其所支持的最大发射功率确定所述第一序列的时间长度,也可以根据其每次传输使用的发射功率确定所述第一序列的时间长度。
在另一种可选的实施方式中,如上文中提到的,时域周期扩展至一个不含CP的符号的所述第一序列在频率域上对应的频域序列满足频率等间隔映射的特性,一个不含CP的符号时间内第一序列的重复次数与所述频域映射间隔I有关。因此,频域映射间隔对应于所述基站的发射功率,其中发射功率大的基站选择的频域映射间隔小于发射功率小的基站选择的频域映射间隔。
在具体的实施过程中,可选的,所述方法还包括:
步骤303,所述基站从所述第一符号起始时刻开始发送有效数据,其中所述有效数据信号包括以下之一或者组合:物理下行控制信道(英文:Physical Downlink Control CHannel,缩写:PDCCH)、增强的物理下行控制信道(英文:Enhanced-Physical Downlink Control CHannel,缩写:ePDCCH)、物理下行共享信道(英文:Physical Downlink Shared CHannel,缩写:PDSCH)、 公共参考信号(英文:Common Reference Signal,缩写:CRS)、解调参考信号(英文:Demodulation Reference Signal,缩写:DMRS)、信道状态信息参考信号(英文:Channel State Information-Reference Signal,缩写:CSI-RS)、发现参考信号(英文:Discovery Reference Signal,缩写:DRS)。
所述基站可以在获取所述免授权频谱的信道的使用权后,尽快的发送有效数据信号,从而进一步的提高了免许可频谱的信道资源的使用效率;对应的用户设备可以根据第一序列确定发送有效数据的第一符号起始时刻,进而从所述第一符号起始时刻开始接收有效数据,并对接收的有效数据解调、解码。
应理解,在现有技术中,在免许可频谱的信道上,有效数据的发送往往只能从一个子帧的起始时刻开始,这是考虑到对应的用户设备在对有效数据进行解码时必须知道数据的起始位置,否则只能执行盲检测,这对于用户设备的功耗和复杂度是极大的挑战。但是应用本发明实施例提出的方法,用户设备可以根据第一序列确定有效数据开始被发送的第一符号起始时刻,即可以直接知道对有效数据进行解码的起始位置,从而避免了用户设备侧运算复杂度和功耗的提高。
接收设备可以通过检测第一序列和有效数据信息中携带的导频信号,至少获得***的AGC设置,精时频同步信息,信道特性估计信息之一。应知道,接收设备可以通过对间隔一定时间的参考信号配对估计相位差的方式来估计频偏,结合LAA-LTE***的***参数,为了获得能保证解调性能的精频率同步,用来估计频偏的参考信号间隔的时间长度不小于3个符号,优选的,用来估计频偏的参考信号间隔的时间长度为4个符号,即接收端可以用第n0个符号和第n0+3个符号上的参考信号联合进行频偏估计,n0为任意一个符号索引。可选的,接收设备可以通过对第一序列的频域导频信号和有效数据信息中携带的导频信号配对估计相位差的方式联合进行频偏估计。
与所述基站通信的用户设备可以通过检测物理下行控制信道和物理下行共享信道,获得对应的有效数据。
在另一种可能的实施方式中,可选的,所述方法还包括:
步骤304,所述基站从所述第一符号起始时刻开始发送第二序列,其中,一个周期的所述第二序列的时间长度为1个符号对应的时间长度。
所述第二序列可以是上述信道保留信号中的一部分。
与所述基站通信的用户设备可以通过检测第二序列,至少获得***的精时频同步信息、信道特性估计信息或者自动增益控制的估计和设置值之一。
在具体实施步骤304的过程中,应理解,一个周期的第二序列的时间长度对应于一个符号的时间长度。如前面所述,从时域角度来看,一个符号可以分为循环前缀部分和信息段部分;一个周期的第二序列也可以分为循环前缀部分和信息段部分,其中信息段部分包括了第二序列的全部信息量,循环前缀部分是对第二序列的部分序列的循环重复。
在具体实施步骤304的过程中,可选的,如果所述第一时刻与所述第一符号起始时刻之间的时间间隔小于一个不含CP的符号的时间长度,则所述基站从所述第一符号起始时刻开始循环发送Y次第二序列;如果所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个不含CP的符号的时间间隔,则所述基站从所述第一符号起始时刻开始循环发送Y-1次第二序列;其中所述Y为预配置的正整数。
在具体实施步骤304的过程中,可选的,如果所述第一时刻与所述第一符号起始时刻之间的时间间隔小于一个符号的时间长度,则所述基站从所述第一符号起始时刻开始循环发送Y次第二序列;如果所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个符号的时间间隔,则所述基站从所述第一符号起始时刻开始循环发送Y-1次第二序列;其中所述Y为预配置的正整数。
在具体实施步骤304的过程中,结合LAA-LTE***的***参数,优选的,为了满足对应的用户设备获取精时频同步信息、信道特性估计信息,Y取值不小于4;优选的,Y取值为4。
图5示出了一种发送第一序列和第二序列的时序示意图。
可选的,一个周期的第二序列对应的频域序列是可以是频域全频带映射的;可选的,所述对应的频域序列的边缘频率处预留一定子载波不进行序列映射以避免载波间干扰;可选的,所述对应的频域序列的直流分量附近的子载波不进行序列映射。
在另一种实施步骤304的方式中,可选的,所述基站从所述第一符号起始时刻开始循环发送所述第二序列,直至下一个子帧起始时刻为止。
在另一种实施步骤304的过程中,可选的,所述基站从所述第一符号起始时刻开始循环发送Y次所述第二序列。其中所述Y为预配置的正整数, 优选的,Y取值为4。
在具体的实施过程中,可选的,所述第二序列具体为恒包络零自相关序列(英文:Constant Amplitude Zero Auto Correlation,缩写:CAZAC),或者所述第二序列具体为伪随机序列。接收所述第二序列的用户设备根据所述第二序列至少获取AGC设置、精同步信息、信道特性估计信息等之一。
在具体的实施过程中,可选的,所述第二序列可以用以承载信息,所述承载的信息至少包括以下一种:
①运营商识别信息,以便于与所述基站进行通信的用户设备确定发送所述第二序列的基站;对于相对于本小区基站的邻小区基站而言,也可以利用所述第二序列承载的运营商识别信息,对本小区的基站进行识别;
②所述基站支持的授权频谱资源信息,以便于所述用户设备根据所述第二序列确定所述基站是否同时支持在许可频谱的信道上进行通信,或者确定所述基站在许可频谱的哪一信道进行通信;更进一步的,当所述基站同时支持在许可频谱和免许可频谱进行通信时,所述用户设备可以利用许可频谱的参考信号提供的同步信息,协助免许可频谱的载波粗同步。
③所述基站获得所述免许可频谱的信道的使用权时,当前子帧剩余的可用符号个数信息;
④所述基站当次传输信号的持续时间长度信息;
⑤服务小区识别信息,或者部分服务小区识别信息。
在具体的实施过程中,可选的,第一序列和第二序列分别承载部分服务小区识别信息,与所述基站进行通信的用户设备可以根据所述第一序列和第二序列上各自承载的部分服务小区识别信息,确定服务小区的识别信息。具体的方法例如,设总的服务小区数目为Cell_ID,将服务小区分为p组,第一序列承载的部分服务小区识别信息用以指示所述基站形成的小区具体处在p组中的哪一组,第二序列承载的部分小区识别信息用以指示所述基站形成的小区具体为p组中的哪一个。
在具体的实施过程中,进一步可选的,所述基站从停止发送所述第二序列的时刻开始发送有效数据,其中所述有效数据信号包括以下之一或者组合:物理下行控制信道、增强的物理下行控制信道、物理下行共享信道、公共参考信号、解调参考信号、信道状态信息参考信号、发现参考信号。
接收设备可以通过检测第二序列和有效数据信息中携带的导频信号,至 少获得***的AGC设置,精时频同步信息,信道特性估计信息之一。应知道,接收设备可以通过对间隔一定时间的参考信号配对估计相位差的方式来估计频偏,结合LAA-LTE***的***参数,为了获得能保证解调性能的精频率同步,用来估计频偏的参考信号间隔的时间长度不小于3个符号,优选的,用来估计频偏的参考信号间隔的时间长度为4个符号,即接收端可以用第n0个符号和第n0+3个符号上的参考信号联合进行频偏估计,n0为任意一个符号索引。可选的,接收设备可以通过对第二序列的频域导频信号和有效数据信息中携带的导频信号配对估计相位差的方式联合进行频偏估计。可选的,在满足参考信号间隔时间长度的情况下,接收设备还可以通过对第一序列的频域导频信号和第二序列的频域导频信号配对估计相位差的方式联合进行频偏估计。
与所述基站通信的用户设备可以通过检测物理下行控制信道和物理下行共享信道,获得对应的有效数据。
在具体的实施过程中,可选的,有效数据信息部分的发送结构复用现有LTE子帧格式。具体的,有效数据信息部分从LTE子帧格式的第一个符号的格式开始复用;或者,有效数据信息部分复用LTE***中的下行导频时隙(英文:Downlink Pilot Time Slot,缩写:DwPTS)子帧格式。
根据本发明实施例提出的方法,基站在获得免许可的频谱的信道使用权后立刻循环发送第一序列,其中,所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个周期的所述第一序列的时间长度,所述一个周期的第一序列的时间长度不大于一个不包括CP的符号的时间长度,所述第一序列为LAA-LTE***的特征序列。根据本发明实施例提出的方法,基站不仅达到了占用信道的目的,更进一步的,通过在免许可频谱的信道上传输周期较短的、具有LAA-LTE***的特征的序列,直接在当前免许可频谱的信道上通知了用户设备在所述免许可频谱的信道上与基站进行通信,从而避免额外利用许可频谱上的信道资源传输信令造成的资源浪费。
实施例2
本发明实施例提出对应于本发明实施例1的一种传输消息的方法,本发明实施例提出的方法可以应用于免许可频谱的信道的场景中。图6示出了本发明实施例提出的方法的示意性流程图,示出的方法可以由与对应于本发明 实施例1中的基站相对应的接收设备执行,其中接收设备可以是用户设备,也可以是邻小区的基站。流程包括以下步骤:
步骤601,接收设备在第二时刻检测到基站在免许可频谱的信道上循环发送的第一序列;其中,所述第一序列为LAA-LTE***的特征序列,所述一个周期的第一序列的时间长度不大于一个不包括CP的符号的时间长度,所述第二时刻不晚于所述第一序列被停止发送的第一符号起始时刻;
步骤602,所述接收设备根据所述第一序列确定所述基站获取所述信道的使用权。
在具体的实施过程中,所述接收设备根据所述第一序列还可以执行以下至少一种操作:初始接入检测、自动增益控制、时频同步、信道特性估计、信号识别。
应理解,在本发明实施例提出的方法中,基站获取免许可频谱的信道的使用权的方法与在本发明实施例1中具体的实施步骤301的过程中的相同,此处不再赘述。
应理解,在本发明实施例提出的方法中,基站获取免许可频谱的信道的使用权的第一时刻与本发明实施例1中在具体的实施步骤301的过程中的定义相同,此处不再赘述。
应理解,在本发明实施例提出的方法中,基站在免许可频谱的信道上发送信道保留信号的方法与本发明实施例1中在具体的实施步骤301的过程中的定义相同,此处不再赘述。
在本发明实施例提出的方法中,接收设备检测到第一序列的第二时刻不晚于所述第一序列被停止发送的第一符号的起始时刻;应理解,本发明实施例认为信号被发送后立刻就被接收,忽略由于例如发射、接收过程中由于器件造成的延迟、基站与接收设备之间存在的距离造成的延迟。
在具体实施步骤601的过程中,与所述基站对应的接收设备,例如对应用户设备或者邻小区基站,可以在所述免许可的频谱的信道上执行检测;由于所述接收设备并无法知道基站发送所述第一序列的第一时刻,因此接收设备执行盲检测,具体来说,接收设备可以根据第一序列是LAA-LTE***的特征序列这一特征执行检测,以确定接收到的信号中是否包括第一序列。具体的检测方法可以有时域相关法、频域相关法等,本发明对此不作限定。
在具体实施步骤601的过程中,由于一个周期的第一序列的时间长度小 于一个不包括CP的符号的时间长度,所以接收设备可以快速的检测第一序列,以快速确定所述基站获取了免许可频谱的信道的使用权。
在具体实施步骤601的过程中,当所述接收设备具体为用户设备时,用户设备可以根据第一序列确定所述基站已经取得了免许可频谱的信道的使用权。从而避免了使用许可频谱的资源传输信令,以通知所述用户设备基站在免许可频谱的信道上获得使用权的必要。
在具体的实施步骤601的过程中,当所述接收设备具体为邻小区的基站设备时,邻小区的基站可以根据第一序列确定所述免许可频谱的信道的使用权已经被同处于LAA-LTE***的基站占用,相应的所述邻小区的基站可以根据检测到的第一序列执行相应的操作:邻小区的基站根据检测到的第一序列,确定所述免许可频谱的信道资源已经被其他通信***占用,邻小区的基站检测免许可频谱的其他的信道资源,或者继续在当前信道执行监听,以等待当前信道再次空闲;更进一步的,考虑到LAA-LTE***的通信设备之间抗同频干扰性能较好,邻小区的基站根据第一序列是LAA-LTE***的特征序列这一特性,确定在当前免许可频谱的信道上发送信号的基站属于LAA-LTE***,邻小区的基站可以根据***对干扰信号的忍耐程度,重新确定是否在当前信道发送信号,同时保证当前正在发送第一序列的基站的通信受到的影响在可以接受的范围内。
在具体的实施过程中,应理解,由于基站开始发送第一序列的第一时刻的随机性导致了第一时刻与第一符号起始时刻之间时间间隔的不确定,对于时间长度确定的第一序列来说,在所述时间间隔内基站发送第一序列的周期数可能是整数,也可能是非整数。
在具体的实施过程中,应理解,在第一时刻与第一符号起始时刻之间的时间间隔内,由于基站发送第一序列的方式是循环发送的,接收设备在检测第一序列时不需要去CP处理。
基于以上技术方法,接收设备可以根据在免许可频谱的信道上检测到的第一序列,确定基站获得了所述信道的使用权,并在所述信道上开始发送信号。根据本发明实施例提出的方法,避免了基站使用授权频谱的信道资源传输指示消息,从而节省了授权频谱的信道资源。
更进一步的,可选的,基站在基于LBT的准则,通过竞争的方法获取免许可频谱的信道的使用权的方式中,一个周期的第一序列的时间长度可以 不大于***用于空闲信道评测的时间长度。例如LAA-LTE***中,一个周期的第一序列的时间长度可以不大于基站或者邻小区基站进行CCA检测的时间长度,以便于与本小区基站共享免许可频谱的信道的LAA-LTE***的邻小区基站或者Wi-Fi设备或者其他通信设备在进行CCA检测的同时进行第一序列的检测。
更进一步的,可选的,在具体的实施过程中,基站开始发送所述第一序列的第一时刻与所述第一符号起始时刻之间的时间间隔小于两个符号的时间长度。具体来说,当所述第一时刻与第一时刻之后的第一个符号起始时刻之间的时间间隔不小于一个周期的第一序列时间长度时,所述第一符号起始时刻可以具体为所述第一时刻之后的第一个符号起始时刻;当所述第一时刻与第一时刻之后的第一个符号起始时刻之间的时间间隔小于一个周期的第一序列时间长度时,所述第一符号起始时刻可以具体为所述第一时刻之后的第二个符号起始时刻,即第一符号起始时刻与所述第一时刻之间的时间间隔大于一个、小于两个符号的时间长度。
更进一步的,可选的,所述第一序列可以承载指示信息,用以指示上述时间间隔对应的符号数。具体来说,当所述时间间隔大于等于一个不含CP的符号的时间长度时,所述第一序列承载的指示信息用以指示上述时间间隔对应的符号数是1;当所述时间间隔小于一个不含CP的符号的时间长度时,所述第一序列承载的指示信息用以指示上述时间间隔对应的符号数是0。在具体的实施过程中,与所述基站进行通信的接收设备通过检测所述第一序列,可以确定停止发送所述第一序列,进而发送其他信号的时刻。
更进一步的,可选的,所述第一序列可以承载指示信息,用以指示上述时间间隔对应的符号数。具体来说,当所述时间间隔大于等于一个符号的时间长度时,所述第一序列承载的指示信息用以指示上述时间间隔对应的符号数是1;当所述时间间隔小于一个符号的时间长度时,所述第一序列承载的指示信息用以指示上述时间间隔对应的符号数是0。在具体的实施过程中,与所述基站进行通信的接收设备通过检测所述第一序列,可以确定停止发送所述第一序列,进而发送其他信号的时刻。
在具体的实施过程中,所述第一序列还可以承载其他的信息,所述信息与本发明实施例1中第一序列上承载的信息相同,此处不再赘述。用户设备可以根据检测到的第一序列获得第一序列上承载的信息。
在具体的实施过程中,可选的,基站循环发送第一序列的方法至少包括本发明实施例1中提及的两种,即如图4示出的两种情况,此处不再赘述。优选的,在如图4示出的第二种情况中,由于第一序列的最后一个元素与第一符号起始时刻对齐,即所述基站在第一符号起始时刻恰好发送完所述第一序列的最后一个元素,换言之,如图4中第二种情况所示,第一符号起始时刻恰好与被循环发送的第一序列的最后一个元素对齐。与所述基站进行通信的接收设备可以根据这一特性,对免许可频谱的信道上接收的信号进行时间同步。
在具体的实施过程中,第一序列可以是由CAZAC序列构成;更具体的,可以由ZC序列构成;具体有CAZAC序列或者更具体的由ZC序列构成的第一序列,其相关的性质在本发明实施例1中已经有详细的介绍,本发明实施对此不再赘述。
在具体的实施过程中,可选的,时域周期扩展至一个不含CP的OFDM符号的第一序列在频率域上对应的频域序列满足等子载波间隔映射的性质。相关内容在本发明实施例1中已有详细介绍,本发明实施例在此不再赘述。
在具体的实施过程中,可选的,所述接收设备可以通过所述基站预先定义、预先配置或者通过授权频谱的信道资源信令通知的方式获得以下信息之一或者组合:一个周期的第一序列的时间长度、频域序列的映射间隔I、第一序列的序列候选集合、功率增强因子。
在具体的实施过程中,可选的,当所述接收设备获取的所述第一序列携带指示信息指示所述时间间隔对应的符号数不小于1时,所述接收设备根据所述为映射所述频域序列的位置确定所述检测到的所述第一序列中的干扰信号的功率。具体来说,在未被映射的频率位置处,对应的频率位置的映射信号为0,与所述基站通信的用户设备或者其他通信设备根据这些映射信号为0的频率位置进行干扰检测。具体的,以用户设备为例,当用户设备接收到部分映射信号为0的第一序列,所述用户设备可以通过检测所述映射信号为0的频率位置处的信号功率,根据检测到的信号功率估计干扰信号的功率。
应知道,干扰检测应在频域完成,因此要求用来检测的信号在时间上至少持续一个不含CP的符号的长度。
在具体的实施过程中,可选的,所述方法还包括:
步骤603,所述接收设备从所述第一符号起始时刻开始发送有效数据, 其中所述有效数据信号包括以下之一或者组合:物理下行控制信道、增强的物理下行控制信道、物理下行共享信道、公共参考信号、解调参考信号、信道状态信息参考信号、发现参考信号。
基站可以在获取所述免授权频谱的信道的使用权后,尽快的发送有效数据信号,从而进一步的提高了免许可频谱的信道资源的使用效率;对应的用户设备可以根据第一序列确定发送有效数据的第一符号起始时刻,进而从所述第一符号起始时刻开始接收有效数据,并对接收的有效数据解调、解码。
更进一步的,可选的,所述接收设备可以通过检测第一序列和有效数据信息中携带的导频信号,至少获得***的AGC设置,精时频同步信息,信道特性估计信息之一。应知道,接收设备可以通过对间隔一定时间的参考信号配对估计相位差的方式来估计频偏,结合LAA-LTE***的***参数,为了获得能保证解调性能的精频率同步,用来估计频偏的参考信号间隔的时间长度不小于3个符号,优选的,用来估计频偏的参考信号间隔的时间长度为4个符号,即接收设备可以用第n0个符号和第n0+3个符号上的参考信号联合进行频偏估计,n0为任意一个符号索引。可选的,所述接收设备可以通过对第一序列的频域导频信号和有效数据信息中携带的导频信号配对估计相位差的方式联合进行频偏估计。
与所述基站通信的接收设备可以通过检测物理下行控制信道和物理下行共享信道,获得对应的有效数据。
应理解,在现有技术中,在免许可频谱的信道上,有效数据的发送往往只能从一个子帧的起始时刻开始,这是考虑到对应的接收设备在对有效数据进行解码时必须知道数据的起始位置,否则只能执行盲检测,这对于用户设备的功耗和复杂度是极大的挑战。但是应用本发明实施例提出的方法,接收设备可以根据第一序列确定有效数据开始被发送的第一符号起始时刻,即可以直接知道对有效数据进行解码的起始位置,从而避免了接收设备侧运算复杂度和功耗的提高。
在另一种可能的实施方式中,可选的,所述方法还包括:
步骤604,所述接收设备从所述第一符号起始时刻开始接收第二序列,其中一个周期的所述第二序列的时间长度为1个符号对应的时间长度;
所述接收设备根据接收的所述第二序列确定以下至少一种信息:
自动增益控制;时频同步信息;信道特性估计信息。
在具体实施步骤604的过程中,可选的,所述接收设备根据所述第一序列携带的用以指示所述时间间隔对应的符号数的指示信息,确定所述第二序列从所述第一符号起始时刻开始出现的周期数;所述接收设备根据所述指示信息从所述第一符号起始时刻开始接收所述第二序列;其中,如果所述第一序列指示所述符号数为0,则所述长周期从所述第一符号起始时刻开始出现的周期数为Y;如果所述第一序列指示所述符号数为1,则所述长周期从所述第一符号起始时刻开始出现的周期数为Y-1;其中,所述Y为预配置的正整数。
在具体实施步骤604的过程中,结合LAA-LTE***的***参数,优选的,为了满足对应的用户设备获取精时频同步信息、信道特性估计信息,Y取值为4。
在另一种实施方法中,可选的,基站从所述第一符号起始时刻开始循环发送所述第二序列,直至下一个子帧起始时刻为止。相应的接收设备从所述第一符号的起始时刻开始接收所述第二序列,直至下一子帧起始时刻。
在另一种实施方法中,可选的,基站从所述第一符号起始时刻开始循环发送Y次所述第二序列。其中所述Y为预配置的正整数,优选的,Y取值为4。相应的接收设备从所述第一符号的起始时刻开始接收Y次所述第二序列。
在具体的实施过程中,可选的,所述第二序列具体为恒包络零自相关序列(英文:Constant Amplitude Zero Auto Correlation,缩写:CAZAC),或者所述第二序列具体为伪随机序列。接收所述第二序列的用户设备根据所述第二序列获取精同步信息、信道特性估计信息等。
在具体的实施过程中,可选的,所述第二序列可以用以承载信息,所述接收设备通过检测第一序列可以获取第二序列上承载的信息;具体承载的信息与本发明实施例1中第二序列可以承载的信息相同,本发明实施例在此不再赘述。
在具体的实施过程中,可选的,第一序列和第二序列分别承载部分服务小区识别信息,所述接收设备可以根据所述第一序列和第二序列上各自承载的部分服务小区识别信息,确定服务小区的识别信息。具体的方法例如,设总的服务小区数目为Cell_ID,将服务小区分为p组,第一序列承载的部分服务小区识别信息用以指示所述基站形成的小区具体处在p组中的哪一组, 第二序列承载的部分小区识别信息用以指示所述基站形成的小区具体为p组中的哪一个。
在具体的实施过程中,进一步可选的,所述接收设备从停止发送所述第二序列的时刻开始接收有效数据,其中所述有效数据信号包括以下之一或者组合:物理下行控制信道、增强的物理下行控制信道、物理下行共享信道、公共参考信号、解调参考信号、信道状态信息参考信号、发现参考信号。
所述接收设备可以通过检测第二序列和有效数据信息中携带的导频信号,至少获得***的AGC设置,精时频同步信息,信道特性估计信息之一。应知道,接收设备可以通过对间隔一定时间的参考信号配对估计相位差的方式来估计频偏,结合LAA-LTE***的***参数,为了获得能保证解调性能的精频率同步,用来估计频偏的参考信号间隔的时间长度不小于3个符号,优选的,用来估计频偏的参考信号间隔的时间长度为4个符号,即接收设备可以用第n0个符号和第n0+3个符号上的参考信号联合进行频偏估计,n0为任意一个符号索引。可选的,所述接收设备可以通过对第二序列的频域导频信号和有效数据信息中携带的导频信号配对估计相位差的方式联合进行频偏估计。可选的,在满足参考信号间隔时间长度的情况下,所述接收设备还可以通过对第一序列的频域导频信号和第二序列的频域导频信号配对估计相位差的方式联合进行频偏估计。
与所述基站通信的接收设备可以通过检测物理下行控制信道和物理下行共享信道,获得对应的有效数据。
在具体的实施过程中,可选的,有效数据信息部分的发送结构复用现有LTE子帧格式。具体的,有效数据信息部分从LTE子帧格式的第一个符号的格式开始复用;或者,有效数据信息部分复用LTE***中的下行导频时隙(英文:Downlink Pilot Time Slot,缩写:DwPTS)子帧格式。
基于以上技术方法,接收设备可以根据在免许可频谱的信道上检测到的第一序列,确定基站获得了所述信道的使用权,并在所述信道上开始发送信号。根据本发明实施例提出的方法,避免了基站使用授权频谱的信道资源传输指示消息,从而节省了授权频谱的信道资源。
实施例3
本发明实施例提出一种传输消息的装置,以实现本发明实施例1中提出 的传输消息的方法。图7示出了本发明实施例提出的传输消息的装置的最小架构,装置至少包括收发器701和处理器702,其中:
所述收发器701在所述处理器702的调度下,用于在第一时刻获取免许可频谱的信道的使用权;
所述收发器701还用于从所述第一时刻开始至第一符号起始时刻,循环发送第一序列;
其中,所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个周期的所述第一序列的时间长度;其中,一个周期的所述第一序列的时间长度不大于一个不含CP的符号的时间长度;其中,所述第一序列为LAA-LTE***的特征序列。
在具体的实施过程中,可选的,所述第一时刻与所述第一符号起始时刻之间的时间间隔小于两个符号的时间长度;其中,所述第一序列携带指示信息,用以指示所述时间间隔对应的符号数。
在具体的实施过程中,可选的,所述所述收发器701用于从所述第一时刻开始至第一符号起始时刻,循环发送第一序列,包括:
从所述第一序列的第0个元素开始循环发送所述第一序列;或者
从所述第一序列的第k个元素开始循环发送所述第一序列;
其中,所述第一序列包括N个元素,所述N个元素依次编号0,1,…N-1,N为正整数,所述k满足k=(N-(MmodN))modN;
其中,所述M满足
Figure PCTCN2015070915-appb-000011
其中所述Ti为所述第一时刻至所述第一符号起始时刻之间的时间间隔,所述Tu为所述第一序列的一个元素的时间长度,
Figure PCTCN2015070915-appb-000012
表示向下取整。
在具体的实施过程中,可选的,时域周期扩展至一个不含CP的符号的第一序列在频率域上对应的频域序列满足等子载波间隔映射的性质。
可选的,所述频域序列满足等子载波间隔映射包括直接等子载波间隔映射,其中所述频域映射位置x包括:
x=n·I+m,0≤n≤S-1,0≤x≤F-1
其中,所述频域序列包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;所述F表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;所述I表示频域映射间隔,所述I为不小于2的整数;所述m表示所述 频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;未映射所述频域序列的位置的映射信号为0。
可选的,所述频域序列满足等子载波间隔映射包括对称等子载波间隔映射,其中所述频域映射位置x包括:
Figure PCTCN2015070915-appb-000013
其中,所述频域序列也包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;所述F表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;所述I表示频域映射间隔,所述I为不小于2的整数;所述m表示所述频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;未映射所述频域序列的位置的映射信号为0。
在具体的实施过程中,可选的,其特征在于,所述频域映射间隔对应于所述装置形成的小区的覆盖范围,其中,覆盖范围大的小区对应的频域映射间隔小于覆盖范围小的小区对应的频域映射间隔。
在具体的实施过程中,可选的,其特征在于,所述第一序列包括,中心对称的ZC序列。
在具体的实施过程中,可选的,所述第一序列还承载以下至少一种信息:
运营商识别信息;所述装置支持的授权频谱资源信息;所述第一时刻至预定义的子帧起始时刻之间包括的符号数量信息;
所述装置当次传输的持续时间长度信息;服务小区识别信息。
在具体的实施过程中,可选的,所述收发器701还用于:所述收发器701从所述第一符号起始时刻开始发送有效数据信号,其中所述有效数据信号至少包括以下之一:物理下行控制信道、增强的物理下行控制信道、物理下行共享信道、公共参考信号、解调参考信号、信道状态信息参考信号、发现参考信号。
在具体的实施过程中,可选的,所述收发器701还用于:所述收发器701从所述第一符号起始时刻开始发送第二序列;其中,所述第二序列的时间长度为1个符号对应的时间长度。
在具体的实施过程中,可选的,所述所述收发器701从所述第一符号起始时刻开始发送第二序列,包括:如果所述第一时刻与所述第一符号起始时 刻之间的时间间隔小于一个符号的时间长度,则所述收发器701从所述第一符号起始时刻开始循环发送Y次第二序列;如果所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个符号的时间长度,则所述收发器701从所述第一符号起始时刻开始循环发送Y-1次第二序列;其中,所述Y为预配置的正整数。
在具体的实施过程中,可选的,所述Y为预配置的正整数包括:Y包括不小于4的正整数。
在具体的实施过程中,可选的,所述所述收发器701从所述第一符号起始时刻开始发送第二序列,包括:所述收发器701从所述第一符号起始时刻开始至下一个子帧的起始时刻,开始循环发送所述第二序列。
在具体的实施过程中,可选的,所述第二序列具体为CAZAC序列;或者所述第二序列具体为伪随机序列。
在具体的实施过程中,可选的,所述第二序列承载信息,所述承载的信息包括以下之一或者组合:运营商识别信息;所述基站支持的授权频谱资源信息;所述第一时刻至下一子帧起始时刻之间包括的符号数量信息;所述基站当次传输的持续时间长度信息;服务小区识别信息。
根据本发明实施例提出的装置,在获得免许可的频谱的信道使用权后立刻循环发送第一序列,其中,所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个周期的所述第一序列的时间长度,所述一个周期的第一序列的时间长度不大于一个不包括CP的符号的时间长度,所述第一序列为LAA-LTE***的特征序列。根据本发明实施例提出的装置,不仅达到了占用信道的目的,更进一步的,通过在免许可频谱的信道上传输周期较短的、具有LAA-LTE***的特征的序列,直接在当前免许可频谱的信道上通知了用户设备在所述免许可频谱的信道上与基站进行通信,从而避免额外利用许可频谱上的信道资源传输信令造成的资源浪费。
实施例4
本发明实施例提出一种传输消息的装置,用于实现本发明实施例2提出的传输消息的方法。图8示出了本发明实施例提出的传输消息的装置的最小架构,装置至少包括接收器801和处理器802,其中:
所述接收器801用于接收免许可频谱的信道上的信号;
所述处理器802用于根据所述接收器801接收到的信号,在第二时刻检测到基站在所述免许可频谱的信道上循环发送的第一序列;其中,所述第一序列为LAA-LTE***的特征序列,所述一个周期的第一序列的时间长度不大于一个不包括CP的符号的时间长度,所述第二时刻不晚于所述第一序列被停止发送的第一符号起始时刻;
所述处理器802还用于根据所述第一序列确定所述基站获取所述信道的使用权。
在具体的实施过程中,可选的,所述第一序列在所述信道从第一时刻开始被发送至所述第一符号起始时刻之间的时间间隔小于两个符号的时间长度;所述接收器801还用于获取所述第一序列携带指示信息,所述指示信息用以指示所述时间间隔对应的符号数。
在具体的实施过程中,可选的,所述第一序列的最后一个元素与所述第一符号起始时刻对齐;所述处理器802还用于根据所述第一序列确定符号的起始时刻。
在具体的实施过程中,可选的,时域周期扩展至一个不含CP的符号的第一序列在频率域上对应的频域序列满足等子载波间隔映射的性质。
在具体的实施过程中,可选的,所述频域序列满足等子载波间隔映射包括直接等子载波间隔映射,其中所述频域映射位置x包括:
x=n·I+m,0≤n≤S-1,0≤x≤F-1
其中,所述频域序列包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;其中,所述F表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;其中,所述I表示频域映射间隔,所述I为不小于2的整数;其中,所述m表示所述频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;其中,未映射所述频域序列的位置的映射信号为0。
在具体的实施过程中,可选的,所述频域序列满足等子载波间隔映射包括对称等子载波间隔映射,其中所述频域映射位置x包括:
Figure PCTCN2015070915-appb-000014
其中,所述频域序列也包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;其中,所述F 表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;其中,所述I表示频域映射间隔,所述I为不小于2的整数;其中,所述m表示所述频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;其中,未映射所述频域序列的位置的映射信号为0。
在具体的实施过程中,可选的,当所述接收器801获取的所述第一序列携带指示信息指示所述时间间隔对应的符号数不小于1时,所述处理器802根据所述为映射所述频域序列的位置确定所述检测到的所述第一序列中的干扰信号的功率。
在具体的实施过程中,可选的,所述第一序列包括:中心对称的ZC序列。
在具体的实施过程中,可选的,所述第一序列还承载以下至少一种信息:
运营商识别信息;所述基站支持的授权频谱资源信息;所述第一时刻至下一子帧起始时刻之间包括的符号数量信息;所述基站当次传输的持续时间长度信息;服务小区识别信息。所述处理器802通过检测第一序列获取上述至少一种信息。
在具体的实施过程中,可选的,所述接收器801还用于:所述接收器801从所述第一符号起始时刻开始接收有效数据,其中所述有效数据信号包括以下之一或者组合:物理下行控制信道、增强的物理下行控制信道、物理下行共享信道、公共参考信号、解调参考信号、信道状态信息参考信号、发现参考信号。
在具体的实施过程中,可选的,所述处理器802通过检测第一序列和有效数据信息中携带的导频信号,至少获得***的AGC设置,精时频同步信息,信道特性估计信息之一。
在具体的实施过程中,可选的,所述接收器801还用于从所述第一符号起始时刻开始接收第二序列,其中一个周期的所述第二序列的时间长度为1个符号对应的时间长度;所述处理器802还用于根据接收的所述第二序列确定以下至少一种信息:自动增益控制;时频同步信息;信道特性估计信息。
在具体的实施过程中,可选的,所述接收器801从所述第一符号起始时刻开始接收所述第二序列,包括:所述处理器802根据所述第一序列携带的用以指示所述时间间隔对应的符号数的指示信息,确定所述第二序列从所述第一符号起始时刻开始出现的周期数;所述接收器801根据所述指示信息从 所述第一符号起始时刻开始接收所述第二序列;其中,如果所述第一序列指示所述符号数为0,则所述长周期从所述第一符号起始时刻开始出现的周期数为Y;如果所述第一序列指示所述符号数为1,则所述长周期从所述第一符号起始时刻开始出现的周期数为Y-1;其中,所述Y为预配置的正整数。
在具体的实施过程中,可选的,所述Y为预配置的正整数包括:Y具体为不小于4的正整数。
在具体的实施过程中,可选的,所述所述接收器801从所述第一符号起始时刻开始接收第二序列包括:所述接收器801从所述第一符号起始时刻开始接收所述第二序列,直至下一子帧起始时刻。
在具体的实施过程中,可选的,所述第二序列具体为CAZAC序列;或者所述第二序列具体为伪随机序列。
在具体的实施过程中,可选的,所述第二序列承载信息,所述承载的信息包括以下之一或者组合:运营商识别信息;所述基站支持的授权频谱资源信息;所述第一时刻至下一子帧起始时刻之间包括的符号数量信息;所述基站当次传输的持续时间长度信息;服务小区识别信息;所述接收设备通过检测第一序列获取上述至少一种信息。
基于本发明实施例提出的传输消息的装置,可以根据在免许可频谱的信道上检测到的第一序列,确定基站获得了所述信道的使用权,并在所述信道上开始发送信号。根据本发明实施例提出的装置,避免了基站使用授权频谱的信道资源传输指示消息,从而节省了授权频谱的信道资源。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和 方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,缩写:ROM)、随机存取存储器(英文:Random Access Memory,缩写:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (66)

  1. 一种数据传输的方法,其特征在于,包括:
    基站在第一时刻获取免许可频谱的信道的使用权;
    所述基站从所述第一时刻开始至第一符号起始时刻,循环发送第一序列;
    其中,所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个周期的所述第一序列的时间长度;
    其中,一个周期的所述第一序列的时间长度不大于一个不含CP的符号的时间长度;
    其中,所述第一序列为LAA-LTE***的特征序列。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时刻与所述第一符号起始时刻之间的时间间隔小于两个符号的时间长度;
    其中,所述第一序列携带指示信息,用以指示所述时间间隔对应的符号数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述所述基站从所述第一时刻开始至第一符号起始时刻,循环发送第一序列,包括:
    从所述第一序列的第0个元素开始循环发送所述第一序列;或者
    从所述第一序列的第k个元素开始循环发送所述第一序列;
    其中,所述第一序列包括N个元素,所述N个元素依次编号0,1,…N-1,N为正整数,所述k满足k=(N-(MmodN))modN;
    其中,所述M满足
    Figure PCTCN2015070915-appb-100001
    其中所述Ti为所述第一时刻至所述第一符号起始时刻之间的时间间隔,所述Tu为所述第一序列的一个元素的时间长度,
    Figure PCTCN2015070915-appb-100002
    表示向下取整。
  4. 根据权利要求1至3任一所述的方法,其特征在于,时域周期扩展至一个不含CP的符号的第一序列在频率域上对应的频域序列满足等子载波间隔映射的性质。
  5. 根据权利要求4所述的方法,其特征在于,所述频域序列满足等子载波间隔映射包括直接等子载波间隔映射,其中所述频域映射位置x包括:
    x=n·I+m,0≤n≤S-1,0≤x≤F-1
    其中,所述频域序列包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;
    其中,所述F表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;
    其中,所述I表示频域映射间隔,所述I为不小于2的整数;
    其中,所述m表示所述频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;
    其中,未映射所述频域序列的位置的映射信号为0。
  6. 根据权利要求4所述的方法,其特征在于,所述频域序列满足等子载波间隔映射包括对称等子载波间隔映射,其中所述频域映射位置x包括:
    Figure PCTCN2015070915-appb-100003
    其中,所述频域序列也包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;
    其中,所述F表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;
    其中,所述I表示频域映射间隔,所述I为不小于2的整数;
    其中,所述m表示所述频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;
    其中,未映射所述频域序列的位置的映射信号为0。
  7. 根据权利要求4至6任一所述的方法,其特征在于,所述频域映射间隔对应于所述基站形成的小区的覆盖范围,其中,覆盖范围大的小区对应的频域映射间隔小于覆盖范围小的小区对应的频域映射间隔。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述第一序列包括:
    中心对称的ZC序列。
  9. 根据权利要求1至8任一所述的方法,其特征在于,所述第一序列还承载以下至少一种信息:
    运营商识别信息;
    所述基站支持的授权频谱资源信息;
    所述第一时刻至预定义的子帧起始时刻之间包括的符号数量信息;
    所述基站当次传输的持续时间长度信息;
    服务小区识别信息。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述方法还包括:
    所述基站从所述第一符号起始时刻开始发送有效数据信号,其中所述有效数据信号至少包括以下之一:物理下行控制信道、增强的物理下行控制信道、物理下行共享信道、公共参考信号、解调参考信号、信道状态信息参考信号、发现参考信号。
  11. 根据权利要求1至9所述的方法,其特征在于,所述方法还包括:
    所述基站从所述第一符号起始时刻开始发送第二序列;
    其中,所述第二序列的时间长度为1个符号对应的时间长度。
  12. 根据权利要求11所述的方法,其特征在于,所述所述基站从所述第一符号起始时刻开始发送第二序列,包括:
    如果所述第一时刻与所述第一符号起始时刻之间的时间间隔小于一个符号的时间长度,则所述基站从所述第一符号起始时刻开始循环发送Y次第二序列;
    如果所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个符号的时间长度,则所述基站从所述第一符号起始时刻开始循环发送Y-1次第二序列;
    其中,所述Y为预配置的正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述Y为预配置的正整数包括:
    Y包括不小于4的正整数。
  14. 根据权利要求11所述的方法,其特征在于,所述所述基站从所述第一符号起始时刻开始发送第二序列,包括:
    所述基站从所述第一符号起始时刻开始至下一个子帧的起始时刻,开始循环发送所述第二序列。
  15. 根据权利要求11至14任一所述的方法,其特征在于,所述第二序列具体为CAZAC序列;或者
    所述第二序列具体为伪随机序列。
  16. 根据权利要求11至15任一所述的方法,其特征在于,所述第二序列承载信息,所述承载的信息包括以下之一或者组合:
    运营商识别信息;
    所述基站支持的授权频谱资源信息;
    所述第一时刻至下一子帧起始时刻之间包括的符号数量信息;
    所述基站当次传输的持续时间长度信息;
    服务小区识别信息。
  17. 一种数据传输的方法,其特征在于,包括:
    接收设备在第二时刻检测到基站在免许可频谱的信道上循环发送的第一序列;其中,所述第一序列为LAA-LTE***的特征序列,所述一个周期的第一序列的时间长度不大于一个不包括CP的符号的时间长度,所述第二时刻不晚于所述第一序列被停止发送的第一符号起始时刻;
    所述接收设备根据所述第一序列确定所述基站获取所述信道的使用权。
  18. 根据权利要求17所述的方法,其特征在于,所述第一序列在所述信道从第一时刻开始被发送至所述第一符号起始时刻之间的时间间隔小于两个符号的时间长度;
    所述接收设备获取所述第一序列携带指示信息,所述指示信息用以指示所述时间间隔对应的符号数。
  19. 根据权利要求17或18任一所述的方法,其特征在于,所述第一序列的最后一个元素与所述第一符号起始时刻对齐;
    所述接收设备根据所述第一序列确定符号的起始时刻。
  20. 根据权利要求17至19任一所述的方法,其特征在于,时域周期扩展至一个不含CP的符号的第一序列在频率域上对应的频域序列满足等子载波间隔映射的性质。
  21. 根据权利要求20所述的方法,其特征在于,所述频域序列满足等子载波间隔映射包括直接等子载波间隔映射,其中所述频域映射位置x包括:
    x=n·I+m,0≤n≤S-1,0≤x≤F-1
    其中,所述频域序列包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;
    其中,所述F表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;
    其中,所述I表示频域映射间隔,所述I为不小于2的整数;
    其中,所述m表示所述频域序列中编号为0的元素的映射位置,m为 不大于I-1的整数;
    其中,未映射所述频域序列的位置的映射信号为0。
  22. 根据权利要求21所述的方法,其特征在于,所述频域序列满足等子载波间隔映射包括对称等子载波间隔映射,其中所述频域映射位置x包括:
    Figure PCTCN2015070915-appb-100004
    其中,所述频域序列也包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;
    其中,所述F表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;
    其中,所述I表示频域映射间隔,所述I为不小于2的整数;
    其中,所述m表示所述频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;
    其中,未映射所述频域序列的位置的映射信号为0。
  23. 根据权利要求20至22所述的方法,其特征在于,当所述接收设备获取的所述第一序列携带指示信息指示所述时间间隔对应的符号数不小于1时,所述接收设备根据所述为映射所述频域序列的位置确定所述检测到的所述第一序列中的干扰信号的功率。
  24. 根据权利要求17至23任一所述的方法,其特征在于,所述第一序列包括:中心对称的ZC序列。
  25. 根据权利要求17至24所述的方法,其特征在于,所述第一序列还承载以下至少一种信息:
    运营商识别信息;
    所述基站支持的授权频谱资源信息;
    所述第一时刻至下一子帧起始时刻之间包括的符号数量信息;
    所述基站当次传输的持续时间长度信息;
    服务小区识别信息;
    所述接收设备通过检测第一序列获取上述至少一种信息。
  26. 根据权利要求17至25任一所述的方法,其特征在于,所述方法还包括:
    所述接收设备从所述第一符号起始时刻开始接收有效数据,其中所述有 效数据信号包括以下之一或者组合:物理下行控制信道、增强的物理下行控制信道、物理下行共享信道、公共参考信号、解调参考信号、信道状态信息参考信号、发现参考信号。
  27. 根据权利要求26所述的方法,其特征在于,所述接收设备通过检测第一序列和有效数据信息中携带的导频信号,至少获得***的AGC设置,精时频同步信息,信道特性估计信息之一。
  28. 根据权利要求17至25任一所述的方法,其特征在于,所述方法还包括,所述接收设备从所述第一符号起始时刻开始接收第二序列,其中一个周期的所述第二序列的时间长度为1个符号对应的时间长度;
    所述接收设备根据接收的所述第二序列确定以下至少一种信息:
    自动增益控制;时频同步信息;信道特性估计信息。
  29. 根据权利要求28所述的方法,其特征在于,所述接收设备从所述第一符号起始时刻开始接收所述第二序列,包括:
    所述接收设备根据所述第一序列携带的用以指示所述时间间隔对应的符号数的指示信息,确定所述第二序列从所述第一符号起始时刻开始出现的周期数;
    所述接收设备根据所述指示信息从所述第一符号起始时刻开始接收所述第二序列;
    其中,如果所述第一序列指示所述符号数为0,则所述长周期从所述第一符号起始时刻开始出现的周期数为Y;
    如果所述第一序列指示所述符号数为1,则所述长周期从所述第一符号起始时刻开始出现的周期数为Y-1;
    其中,所述Y为预配置的正整数。
  30. 根据权利要求29所述的方法,其特征在于,所述Y为预配置的正整数包括:
    Y具体为不小于4的正整数。
  31. 根据权利要求28所述的方法,其特征在于,所述所述接收设备从所述第一符号起始时刻开始接收第二序列包括:
    所述接收设备从所述第一符号起始时刻开始接收所述第二序列,直至下一子帧起始时刻。
  32. 根据权利要求28至31任一所述的方法,其特征在于,所述第二序列具体为CAZAC序列;或者
    所述第二序列具体为伪随机序列。
  33. 根据权利要求28至30任一所述的方法,其特征在于,所述第二序列承载信息,所述承载的信息包括以下之一或者组合:
    运营商识别信息;
    所述基站支持的授权频谱资源信息;
    所述第一时刻至下一子帧起始时刻之间包括的符号数量信息;
    所述基站当次传输的持续时间长度信息;
    服务小区识别信息;
    所述接收设备通过检测第一序列获取上述至少一种信息。
  34. 一种数据传输的装置,其特征在于,包括收发器和处理器,其中:
    所述收发器在所述处理器的调度下,用于在第一时刻获取免许可频谱的信道的使用权;
    所述收发器还用于从所述第一时刻开始至第一符号起始时刻,循环发送第一序列;
    其中,所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个周期的所述第一序列的时间长度;
    其中,一个周期的所述第一序列的时间长度不大于一个不含CP的符号的时间长度;
    其中,所述第一序列为LAA-LTE***的特征序列。
  35. 根据权利要求34所述的装置,其特征在于,所述第一时刻与所述第一符号起始时刻之间的时间间隔小于两个符号的时间长度;
    其中,所述第一序列携带指示信息,用以指示所述时间间隔对应的符号数。
  36. 根据权利要求34或35所述的装置,其特征在于,所述所述收发器用于从所述第一时刻开始至第一符号起始时刻,循环发送第一序列,包括:
    从所述第一序列的第0个元素开始循环发送所述第一序列;或者
    从所述第一序列的第k个元素开始循环发送所述第一序列;
    其中,所述第一序列包括N个元素,所述N个元素依次编号0,1,…N-1, N为正整数,所述k满足k=(N-(MmodN))modN;
    其中,所述M满足
    Figure PCTCN2015070915-appb-100005
    其中所述Ti为所述第一时刻至所述第一符号起始时刻之间的时间间隔,所述Tu为所述第一序列的一个元素的时间长度,
    Figure PCTCN2015070915-appb-100006
    表示向下取整。
  37. 根据权利要求34至36任一所述的装置,其特征在于,时域周期扩展至一个不含CP的符号的第一序列在频率域上对应的频域序列满足等子载波间隔映射的性质。
  38. 根据权利要求37所述的装置,其特征在于,所述频域序列满足等子载波间隔映射包括直接等子载波间隔映射,其中所述频域映射位置x包括:
    x=n·I+m,0≤n≤S-1,0≤x≤F-1
    其中,所述频域序列包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;
    其中,所述F表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;
    其中,所述I表示频域映射间隔,所述I为不小于2的整数;
    其中,所述m表示所述频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;
    其中,未映射所述频域序列的位置的映射信号为0。
  39. 根据权利要求37所述的装置,其特征在于,所述频域序列满足等子载波间隔映射包括对称等子载波间隔映射,其中所述频域映射位置x包括:
    Figure PCTCN2015070915-appb-100007
    其中,所述频域序列也包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;
    其中,所述F表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;
    其中,所述I表示频域映射间隔,所述I为不小于2的整数;
    其中,所述m表示所述频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;
    其中,未映射所述频域序列的位置的映射信号为0。
  40. 根据权利要求37至39任一所述的装置,其特征在于,所述频域映 射间隔对应于所述装置形成的小区的覆盖范围,其中,覆盖范围大的小区对应的频域映射间隔小于覆盖范围小的小区对应的频域映射间隔。
  41. 根据权利要求34至40任一所述的装置,其特征在于,所述第一序列包括:
    中心对称的ZC序列。
  42. 根据权利要求34至41任一所述的装置,其特征在于,所述第一序列还承载以下至少一种信息:
    运营商识别信息;
    所述装置支持的授权频谱资源信息;
    所述第一时刻至预定义的子帧起始时刻之间包括的符号数量信息;
    所述装置当次传输的持续时间长度信息;
    服务小区识别信息。
  43. 根据权利要求34至42任一所述的装置,其特征在于,所述收发器还用于:
    所述收发器从所述第一符号起始时刻开始发送有效数据信号,其中所述有效数据信号至少包括以下之一:物理下行控制信道、增强的物理下行控制信道、物理下行共享信道、公共参考信号、解调参考信号、信道状态信息参考信号、发现参考信号。
  44. 根据权利要求34至42所述的装置,其特征在于,所述收发器还用于:
    所述收发器从所述第一符号起始时刻开始发送第二序列;
    其中,所述第二序列的时间长度为1个符号对应的时间长度。
  45. 根据权利要求44所述的装置,其特征在于,所述所述收发器从所述第一符号起始时刻开始发送第二序列,包括:
    如果所述第一时刻与所述第一符号起始时刻之间的时间间隔小于一个符号的时间长度,则所述收发器从所述第一符号起始时刻开始循环发送Y次第二序列;
    如果所述第一时刻与所述第一符号起始时刻之间的时间间隔不小于一个符号的时间长度,则所述收发器从所述第一符号起始时刻开始循环发送Y-1次第二序列;
    其中,所述Y为预配置的正整数。
  46. 根据权利要求45所述的装置,其特征在于,所述Y为预配置的正整数包括:
    Y包括不小于4的正整数。
  47. 根据权利要求44所述的装置,其特征在于,所述所述收发器从所述第一符号起始时刻开始发送第二序列,包括:
    所述收发器从所述第一符号起始时刻开始至下一个子帧的起始时刻,开始循环发送所述第二序列。
  48. 根据权利要求44至47任一所述的装置,其特征在于,所述第二序列具体为CAZAC序列;或者
    所述第二序列具体为伪随机序列。
  49. 根据权利要求44至48任一所述的装置,其特征在于,所述第二序列承载信息,所述承载的信息包括以下之一或者组合:
    运营商识别信息;
    所述基站支持的授权频谱资源信息;
    所述第一时刻至下一子帧起始时刻之间包括的符号数量信息;
    所述基站当次传输的持续时间长度信息;
    服务小区识别信息。
  50. 一种数据传输的装置,其特征在于,包括接收器和处理器,其中:
    所述接收器用于接收免许可频谱的信道上的信号;
    所述处理器用于根据所述接收器接收到的信号,在第二时刻检测到基站在所述免许可频谱的信道上循环发送的第一序列;其中,所述第一序列为LAA-LTE***的特征序列,所述一个周期的第一序列的时间长度不大于一个不包括CP的符号的时间长度,所述第二时刻不晚于所述第一序列被停止发送的第一符号起始时刻;
    所述处理器还用于根据所述第一序列确定所述基站获取所述信道的使用权。
  51. 根据权利要求50所述的装置,其特征在于,所述第一序列在所述信道从第一时刻开始被发送至所述第一符号起始时刻之间的时间间隔小于两个符号的时间长度;
    所述接收器还用于获取所述第一序列携带指示信息,所述指示信息用以 指示所述时间间隔对应的符号数。
  52. 根据权利要求50或51任一所述的装置,其特征在于,所述第一序列的最后一个元素与所述第一符号起始时刻对齐;
    所述处理器还用于根据所述第一序列确定符号的起始时刻。
  53. 根据权利要求50至52任一所述的装置,其特征在于,时域周期扩展至一个不含CP的符号的第一序列在频率域上对应的频域序列满足等子载波间隔映射的性质。
  54. 根据权利要求53所述的装置,其特征在于,所述频域序列满足等子载波间隔映射包括直接等子载波间隔映射,其中所述频域映射位置x包括:
    x=n·I+m,0≤n≤S-1,0≤x≤F-1
    其中,所述频域序列包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;
    其中,所述F表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;
    其中,所述I表示频域映射间隔,所述I为不小于2的整数;
    其中,所述m表示所述频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;
    其中,未映射所述频域序列的位置的映射信号为0。
  55. 根据权利要求54所述的装置,其特征在于,所述频域序列满足等子载波间隔映射包括对称等子载波间隔映射,其中所述频域映射位置x包括:
    Figure PCTCN2015070915-appb-100008
    其中,所述频域序列也包括S个元素,所述S个元素依次编号0,1,…S-1,所述S为正整数;所述n表示所述频域序列中的第n个元素;
    其中,所述F表示频域包括F个可用的频域映射位置,所述F个可用频域映射位置编号为0,1,…F-1;
    其中,所述I表示频域映射间隔,所述I为不小于2的整数;
    其中,所述m表示所述频域序列中编号为0的元素的映射位置,m为不大于I-1的整数;
    其中,未映射所述频域序列的位置的映射信号为0。
  56. 根据权利要求53至55所述的装置,其特征在于,当所述接收器获 取的所述第一序列携带指示信息指示所述时间间隔对应的符号数不小于1时,所述处理器根据所述为映射所述频域序列的位置确定所述检测到的所述第一序列中的干扰信号的功率。
  57. 根据权利要求50至56任一所述的装置,其特征在于,所述第一序列包括:中心对称的ZC序列。
  58. 根据权利要求50至57所述的装置,其特征在于,所述第一序列还承载以下至少一种信息:
    运营商识别信息;
    所述基站支持的授权频谱资源信息;
    所述第一时刻至下一子帧起始时刻之间包括的符号数量信息;
    所述基站当次传输的持续时间长度信息;
    服务小区识别信息;
    所述处理器通过检测第一序列获取上述至少一种信息。
  59. 根据权利要求50至58任一所述的装置,其特征在于,所述接收器还用于:
    所述接收器从所述第一符号起始时刻开始接收有效数据,其中所述有效数据信号包括以下之一或者组合:物理下行控制信道、增强的物理下行控制信道、物理下行共享信道、公共参考信号、解调参考信号、信道状态信息参考信号、发现参考信号。
  60. 根据权利要求59所述的装置,其特征在于,所述处理器通过检测第一序列和有效数据信息中携带的导频信号,至少获得***的AGC设置,精时频同步信息,信道特性估计信息之一。
  61. 根据权利要求50至58任一所述的装置,其特征在于,所述接收器还用于从所述第一符号起始时刻开始接收第二序列,其中一个周期的所述第二序列的时间长度为1个符号对应的时间长度;
    所述处理器还用于根据接收的所述第二序列确定以下至少一种信息:
    自动增益控制;时频同步信息;信道特性估计信息。
  62. 根据权利要求61所述的装置,其特征在于,所述接收器从所述第一符号起始时刻开始接收所述第二序列,包括:
    所述处理器根据所述第一序列携带的用以指示所述时间间隔对应的符号数的指示信息,确定所述第二序列从所述第一符号起始时刻开始出现的周 期数;
    所述接收器根据所述指示信息从所述第一符号起始时刻开始接收所述第二序列;
    其中,如果所述第一序列指示所述符号数为0,则所述长周期从所述第一符号起始时刻开始出现的周期数为Y;
    如果所述第一序列指示所述符号数为1,则所述长周期从所述第一符号起始时刻开始出现的周期数为Y-1;
    其中,所述Y为预配置的正整数。
  63. 根据权利要求62所述的装置,其特征在于,所述Y为预配置的正整数包括:
    Y具体为不小于4的正整数。
  64. 根据权利要求61所述的装置,其特征在于,所述所述接收器从所述第一符号起始时刻开始接收第二序列包括:
    所述接收器从所述第一符号起始时刻开始接收所述第二序列,直至下一子帧起始时刻。
  65. 根据权利要求61至64任一所述的装置,其特征在于,所述第二序列具体为CAZAC序列;或者
    所述第二序列具体为伪随机序列。
  66. 根据权利要求61至63任一所述的装置,其特征在于,所述第二序列承载信息,所述承载的信息包括以下之一或者组合:
    运营商识别信息;
    所述基站支持的授权频谱资源信息;
    所述第一时刻至下一子帧起始时刻之间包括的符号数量信息;
    所述基站当次传输的持续时间长度信息;
    服务小区识别信息;
    所述处理器通过检测第一序列获取上述至少一种信息。
PCT/CN2015/070915 2015-01-16 2015-01-16 一种传输消息的方法和装置 WO2016112543A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580003793.5A CN106063355B (zh) 2015-01-16 2015-01-16 一种传输消息的方法和装置
PCT/CN2015/070915 WO2016112543A1 (zh) 2015-01-16 2015-01-16 一种传输消息的方法和装置
EP15877461.2A EP3226638A4 (en) 2015-01-16 2015-01-16 Message transmission method and apparatus
KR1020177020084A KR20170098891A (ko) 2015-01-16 2015-01-16 메시지 전송 방법 및 장치
US15/646,383 US20170311340A1 (en) 2015-01-16 2017-07-11 Message Transmission Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/070915 WO2016112543A1 (zh) 2015-01-16 2015-01-16 一种传输消息的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/646,383 Continuation US20170311340A1 (en) 2015-01-16 2017-07-11 Message Transmission Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2016112543A1 true WO2016112543A1 (zh) 2016-07-21

Family

ID=56405142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070915 WO2016112543A1 (zh) 2015-01-16 2015-01-16 一种传输消息的方法和装置

Country Status (5)

Country Link
US (1) US20170311340A1 (zh)
EP (1) EP3226638A4 (zh)
KR (1) KR20170098891A (zh)
CN (1) CN106063355B (zh)
WO (1) WO2016112543A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872415A (zh) * 2016-09-23 2018-04-03 中兴通讯股份有限公司 一种数据传输方法及装置
WO2018063868A1 (en) * 2016-09-30 2018-04-05 Qualcomm Incorporated Aligning slots allocated to extended cyclic prefix symbols with slots allocated to normal cyclic prefix symbols

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9801198B2 (en) 2014-05-22 2017-10-24 Kyocera Corporation Unlicensed frequency band with licensed frequency band timing
CN106162917B (zh) * 2015-03-27 2021-06-04 电信科学技术研究院 一种非授权载波上传输资源的抢占方法及设备
CN111885695B (zh) * 2017-02-06 2024-04-12 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
JP6926223B2 (ja) * 2017-03-23 2021-08-25 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 複数のharqのグラントフリー送信のための構成、指示、およびack/nack
CN108809545B (zh) * 2017-05-04 2023-01-06 华为技术有限公司 传输上行控制信息的方法和装置
CN109391576B (zh) 2017-08-11 2021-12-21 华为技术有限公司 基于序列的信号处理方法、通信设备及通信***
CN110333478B (zh) * 2018-03-30 2022-05-17 华为技术有限公司 一种到达角度、出发角度确定方法及通信装置
GB2575816A (en) * 2018-07-23 2020-01-29 Tcl Communication Ltd Transmission techniques in a cellular network
CN113517968A (zh) * 2018-12-24 2021-10-19 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113133090B (zh) * 2019-12-30 2023-03-31 大唐移动通信设备有限公司 信号传输方法及装置
CN115349296A (zh) * 2020-03-26 2022-11-15 高通股份有限公司 用于新无线电非许可(nr-u)上行链路的连续传输
CN114401066B (zh) * 2021-12-20 2023-11-03 中国航天科工集团八五一一研究所 一种高精度时频同步信号分发***与其分发方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155638A (zh) * 2010-10-13 2013-06-12 诺基亚公司 用于支持调度传输的方法和装置
CN103370896A (zh) * 2010-12-06 2013-10-23 交互数字专利控股公司 用于在免许可频谱中使能无线操作的方法
WO2014111309A1 (en) * 2013-01-16 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Radio communication in unlicensed band
CN104012159A (zh) * 2011-12-22 2014-08-27 交互数字专利控股公司 Lte载波聚合中的控制信令

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101600487B1 (ko) * 2011-04-18 2016-03-21 엘지전자 주식회사 무선통신시스템에서 신호 전송 방법 및 장치
WO2013006006A2 (ko) * 2011-07-07 2013-01-10 엘지전자 주식회사 무선통신시스템에서 신호 전송 방법 및 장치
US10051660B2 (en) * 2013-10-03 2018-08-14 Qualcomm Incorporated Virtual carriers for LTE/LTE-A communications in a shared spectrum
US9844057B2 (en) * 2013-10-21 2017-12-12 Qualcomm Incorporated Channel usage beacon signal design for cooperative communication systems
US9794033B2 (en) * 2014-03-14 2017-10-17 Intel IP Corporation Systems, methods and devices for opportunistic networking
US10959197B2 (en) * 2014-09-08 2021-03-23 Samsung Electronics Co., Ltd. Cell detection, synchronization and measurement on unlicensed spectrum
BR112017009534B1 (pt) * 2014-11-06 2024-01-16 Nokia Solutions And Networks Oy Método, aparelho e meio legível por computador não transitório
EP3018938B1 (en) * 2014-11-07 2020-09-16 Panasonic Intellectual Property Corporation of America System for LTE licensed assisted access in unlicensed bands
US11197317B2 (en) * 2014-12-23 2021-12-07 Qualcomm Incorporated Techniques for determining a symbol period for a starting symbol of a transmission in a shared radio frequency spectrum
US9986586B2 (en) * 2015-01-29 2018-05-29 Intel IP Corporation Reservation of unlicensed spectrum in a wireless communications network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155638A (zh) * 2010-10-13 2013-06-12 诺基亚公司 用于支持调度传输的方法和装置
CN103370896A (zh) * 2010-12-06 2013-10-23 交互数字专利控股公司 用于在免许可频谱中使能无线操作的方法
CN104012159A (zh) * 2011-12-22 2014-08-27 交互数字专利控股公司 Lte载波聚合中的控制信令
WO2014111309A1 (en) * 2013-01-16 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Radio communication in unlicensed band

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3226638A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872415A (zh) * 2016-09-23 2018-04-03 中兴通讯股份有限公司 一种数据传输方法及装置
WO2018063868A1 (en) * 2016-09-30 2018-04-05 Qualcomm Incorporated Aligning slots allocated to extended cyclic prefix symbols with slots allocated to normal cyclic prefix symbols
CN109804589A (zh) * 2016-09-30 2019-05-24 高通股份有限公司 将分配给扩展循环前缀符号的时隙与分配给普通循环前缀符号的时隙对齐
US10595332B2 (en) 2016-09-30 2020-03-17 Qualcomm Incorporated Aligning slots allocated to extended cyclic prefix symbols with slots allocated to normal cyclic prefix symbols
CN109804589B (zh) * 2016-09-30 2022-02-01 高通股份有限公司 将分配给扩展循环前缀符号的时隙与分配给普通循环前缀符号的时隙对齐

Also Published As

Publication number Publication date
US20170311340A1 (en) 2017-10-26
EP3226638A1 (en) 2017-10-04
CN106063355A (zh) 2016-10-26
KR20170098891A (ko) 2017-08-30
CN106063355B (zh) 2020-08-07
EP3226638A4 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2016112543A1 (zh) 一种传输消息的方法和装置
US10652882B2 (en) Data transmission method, wireless network device, and communications system
RU2653495C1 (ru) Способ и устройство для улучшенного опорного сигнала восходящей линии связи в системах listen-before-talk
TWI772312B (zh) 基於無線網絡的通信方法、終端設備和網絡設備
EP3334111B1 (en) Information processing method, apparatus and system
EP3554118B1 (en) Grant-free transmission method, terminal device and network device
WO2015191347A1 (en) Enhanced prach scheme for power savings, range improvement and improved detection
JP6504482B2 (ja) サブバンドリソースを決定するための装置および方法
US10425966B2 (en) Method and apparatus for improving a time granularity when deploying a wireless system
CN110139290B (zh) 一种远端干扰测量信号的处理方法及基站、存储介质
US10616019B2 (en) Signal sending method, terminal device, and network device
WO2018028689A1 (zh) 一种***信息发送方法及装置
CN110831226A (zh) 由用户设备执行的方法以及用户设备
CN107683624B (zh) 指示资源的方法、基站和终端
WO2017133676A1 (zh) 参考信号的发送、接收方法、装置及传输***
EP3138349A1 (en) Enhanced prach scheme for power savings, range improvement and improved detection
EP3553979A1 (en) Signal transmission method, receiving method and device
CN107615868B (zh) 随机接入前置码信号构建
CN110971362B (zh) 一种发现参考信号发送方法及装置
US20220006677A1 (en) Method performed by user equipment, and user equipment
CN111937477B (zh) 一种随机接入前导码的传输方法及装置
RU2747268C1 (ru) Устройство и способ связи
CN108702648A (zh) 信号发送的方法和基站
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
WO2018028343A1 (zh) 传输信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877461

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015877461

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177020084

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE