WO2016111605A1 - 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지 - Google Patents

전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2016111605A1
WO2016111605A1 PCT/KR2016/000246 KR2016000246W WO2016111605A1 WO 2016111605 A1 WO2016111605 A1 WO 2016111605A1 KR 2016000246 W KR2016000246 W KR 2016000246W WO 2016111605 A1 WO2016111605 A1 WO 2016111605A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal
conductive layer
nanowire
layer
Prior art date
Application number
PCT/KR2016/000246
Other languages
English (en)
French (fr)
Inventor
우선확
최영근
김혜빈
양지혜
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/515,401 priority Critical patent/US10388946B2/en
Priority to EP16735226.9A priority patent/EP3193394B1/en
Priority to CN201680003324.8A priority patent/CN107078289B/zh
Priority to JP2017517278A priority patent/JP6574247B2/ja
Publication of WO2016111605A1 publication Critical patent/WO2016111605A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode, a method for manufacturing the same, an electrode manufactured by the same, and a secondary battery including the same, and more particularly, an electrode having an excellent lifespan and output characteristics through structural improvement of an electrode active material, and a method for manufacturing the same.
  • the electrochemical device is the field that is receiving the most attention in this respect, and the development of a secondary battery that can be charged and discharged among them is the focus of attention, and in recent years in the development of such a battery, the capacity density and specific energy is improved In order to make it possible, research and development on the design of new electrodes and batteries are being conducted.
  • lithium secondary batteries developed in the early 1990s have higher operating voltage and significantly higher energy density than conventional batteries such as N-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
  • a lithium secondary battery uses a material capable of intercalation / deintercalation or alloying / dealloying of lithium ions as a cathode and an anode, and charges an organic electrolyte or a polymer electrolyte between the cathode and the anode. To produce electrical energy by oxidation and reduction reactions when lithium ions are inserted and removed from the anode and cathode.
  • carbon-based materials are mainly used as electrode active materials constituting a negative electrode of a lithium secondary battery.
  • the theoretical capacity gain is about 372 mAh / g, and the actual capacity of commercially available graphite is realized up to about 350 to 360 mAh / g.
  • such carbon-based materials do not meet the lithium secondary battery that requires a high capacity of the negative electrode active material.
  • an oxide or an alloy thereof with Si, Sn which is a metal that exhibits a higher charge and discharge capacity than a carbon-based material, such as a metal capable of being electrochemically alloyed with lithium, as a cathode material.
  • a carbon-based material such as a metal capable of being electrochemically alloyed with lithium
  • the metal-based negative electrode active material is cracked and undifferentiated due to the large volume change accompanying the charge and discharge of lithium. Therefore, the capacity of the secondary battery using the metal-based negative electrode active material decreases rapidly as the charge and discharge cycle progresses, and the cycle There is a problem that the life is shortened. Therefore, it was intended to prevent the capacity degradation and cycle life degradation caused when using the metal-based negative electrode active material.
  • the present invention is to solve the above problems, by using an electrode active material comprising a metal nanowire-pore-conductive layer, an electrode having improved life characteristics and output characteristics at the same time, a manufacturing method thereof, and an electrode produced by It provides a secondary battery comprising the same.
  • an electrode collector comprising an electrode collector, a metal nanowire formed on the surface of the electrode collector and a conductive layer surrounding the outside of the metal nanowire, A gap is formed between the conductive layers to provide an electrode in which the metal nanowires and the conductive layer are spaced apart without directly contacting each other.
  • the metal nanowires may be germanium nanowires.
  • the metal nanowires may be formed in an upward direction or a downward direction on the surface of the electrode current collector.
  • the angle between the longitudinal axis of the metal nanowire and the surface of the electrode current collector may be 40 to 140 °.
  • the conductive layer may be a graphene layer.
  • the electrode current collector is copper; Stainless steel; aluminum; nickel; titanium; Calcined carbon; At least one selected from the group consisting of stainless steel; aluminum-cadmium alloy surface-treated with carbon, nickel, titanium, or silver.
  • a secondary battery comprising the electrode described above.
  • the step of depositing a metal nanowire to the upper direction or the lower direction of the surface of the electrode current collector, oxidizing a portion of the surface of the metal nanowire to form a metal oxide nanowire layer A method of manufacturing an electrode is provided, comprising: coating a conductive layer on a surface of the metal oxide nanowire layer, and removing the metal oxide nanowire layer to form voids between the metal nanowire and the conductive layer. .
  • the metal nanowires may be deposited on the surface of the electrode assembly by chemical vapor deposition.
  • the metal oxide nanowire layer may be dissolved in water and removed.
  • the metal nanowires may be germanium nanowires.
  • the conductive layer may be a graphene layer.
  • the electrode current collector is copper; Stainless steel; aluminum; nickel; titanium; Calcined carbon; ; Stainless steel surface-treated with carbon, nickel, titanium, or silver; and at least one selected from the group consisting of aluminum and cadmium alloys.
  • an electrode produced by the above-described manufacturing method.
  • a secondary battery comprising the electrode described above.
  • the present invention provides an electrode active material including a metal nanowire having excellent capacity characteristics and a carbon-based conductive layer having excellent life characteristics and electrical conductivity at the same time, and thus has the advantage of simultaneously providing high capacity, high output, and excellent life characteristics.
  • FIG. 1 is a flowchart illustrating a method of manufacturing an electrode according to an exemplary embodiment of the present invention.
  • 2A is a schematic diagram briefly illustrating a step of depositing a metal nanowire.
  • Figure 2b is a schematic diagram showing a step of forming a metal oxide nanowire layer briefly.
  • 2C is a schematic diagram briefly illustrating a step of coating a conductive layer.
  • FIG. 2D is a schematic diagram briefly illustrating the step of forming voids between the metal nanowires and the conductive layer.
  • An electrode according to an embodiment of the present invention includes an electrode current collector, a metal nanowire formed on a surface of the electrode current collector, and a conductive layer surrounding the outside of the metal nanowire, and a gap between the metal nanowire and the conductive layer.
  • the metal nanowires and the conductive layer may be spaced apart from each other without directly contacting each other.
  • the electrode current collector may be applied to a material that can be applied to a battery without limitation, non-limiting examples of copper; Stainless steel; aluminum; nickel; titanium; Calcined carbon; Stainless steel surface-treated with carbon, nickel, titanium, or silver; an aluminum-cadmium alloy may be made of at least one selected from the group consisting of.
  • the metal nanowires are formed on the surface of the electrode current collector. Specifically, the long axis direction of the metal nanowires is formed to protrude without being attached to the surface of the metal nanowire. It may be formed, there is an advantage that the movement of electrons in the charge and discharge process is easy.
  • the angle between the long axis of the metal nanowire and the surface of the electrode current collector is 40 to 140 °, preferably 80 to 100 °, more preferably may be vertical.
  • the metal applicable to the metal nanowires of the present invention may be at least one selected from the group consisting of silicon, tin, aluminum and germanium, preferably germanium, the theoretical capacity of germanium is about 1600mAh / g has the advantage of having a capacity of up to four times higher than the carbon series, there is an advantage that can be applied to high-capacity devices.
  • the conductive layer surrounds the outside of the metal nanowire, and specifically, the conductive layer is spaced apart by a predetermined interval without directly contacting the metal nanowire, and includes a space therebetween. This results in the presence of space than when the metal nanowire and the conductive layer are in contact with each other, which has the advantage of acting as a buffer layer to alleviate the volume expansion that may occur during the charge and discharge process.
  • the material that can be applied to the conductive layer of the electrode according to an embodiment of the present invention is a material that can act as a conductive material can be applied without limitation, a preferred example may be a graphene layer, high output characteristics Including a graphene layer, such as germanium nanowires, it is possible to improve the problem that the output is reduced due to the low diffusion.
  • a secondary battery including the above-described electrode is provided.
  • the electrode may be used as a cathode, and may further include a separator and an anode.
  • the positive electrode may be used without limitation as the material used as the positive electrode in the art, specifically, the positive electrode active material may be coated on the surface of the positive electrode current collector.
  • a non-limiting example of the positive electrode current collector may be made of stainless steel, aluminum, nickel, titanium, calcined carbon, stainless steel surface-treated with carbon, nickel, titanium or silver; aluminum-cadmium alloy, etc. have.
  • the separator may also be used in the art without limiting the material placed between the cathode and the anode to prevent a short circuit, and preferably may include a porous polymer substrate and a porous coating layer coated on at least one side of the porous polymer substrate. .
  • Non-limiting examples of the porous polymer group may be a porous polymer film made of a polyolefin, such as polyethylene, polypropylene, such a polyolefin porous polymer film substrate, for example, exhibits a shutdown function at a temperature of 80 to 130 °C.
  • a polyolefin such as polyethylene, polypropylene, such a polyolefin porous polymer film substrate, for example, exhibits a shutdown function at a temperature of 80 to 130 °C.
  • the polyolefin porous polymer film is a high-density polyethylene, linear low-density polyethylene, low-density polyethylene, ultra-high molecular weight polyethylene, such as polyethylene, polypropylene, polybutylene, polypentene, such as polyolefin-based polymer, respectively, or a mixture of two or more thereof It can be formed as.
  • porous polymer film substrate may be manufactured by molding into a film shape using various polymers such as polyester in addition to polyolefin.
  • porous polymer film base material may be formed in a structure in which two or more film layers are laminated, and each film layer may be formed of a polymer such as the above-described polyolefin, polyester alone or a mixture of two or more thereof. have.
  • porous polymer film substrate and the porous non-woven fabric substrate may be polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide in addition to the above polyolefin. ), Polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide, polyethylenenaphthalene Or the like, each of which may be formed alone or in a mixture of these polymers.
  • the thickness of the porous substrate is not particularly limited, but is preferably 5 to 50 ⁇ m, and the size of pores present in the porous substrate may be smaller than that of the polymer binder fiber of the electrode bonding layer, preferably 0.001 to 50 ⁇ m,
  • the porosity is preferably 01 to 99%.
  • the separator may be applied to the present invention may further include a porous coating layer on at least one surface of the above-described porous polymer substrate, the porous coating layer may include inorganic particles and a binder polymer.
  • the inorganic particles are bound to each other by the binder polymer in a state of being filled and in contact with each other, thereby forming an interstitial volume between the inorganic particles and an interstitial volume between the inorganic particles. volume) becomes an empty space to form pores.
  • the binder polymer is attached to each other so that the inorganic particles are bound to each other, for example, the binder polymer is connected and fixed between the inorganic particles.
  • the pores of the porous coating layer is a pore formed by the interstitial volume between the inorganic particles becomes an empty space, which is an inorganic material that is substantially interviewed in a closed packed or densely packed by the inorganic particles. It is a space defined by particles. Through the pores of the porous coating layer may provide a path through which lithium ions essential to operate the battery.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range (for example, 0 to 5 V based on Li / Li + ) of the applied electrochemical device.
  • the ionic conductivity of the electrolyte may be improved by contributing to an increase in the dissociation degree of the electrolyte salt, such as lithium salt, in the liquid electrolyte.
  • the inorganic particles may include high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more, or inorganic particles having a lithium ion transfer ability or mixtures thereof.
  • Non-limiting examples of inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr x Ti 1-x ) O 3 (PZT, 0 ⁇ x ⁇ 1), Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPbTiO 3 (PMN-PT, 0 ⁇ x ⁇ 1), HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , SiC and TiO 2
  • Inorganic particles, such as one or a mixture of two or more of them exhibit high dielectric constant properties of dielectric constants of 100 or more, as well as piezoelectricity
  • the inorganic particles having a lithium ion transfer capacity means an inorganic particle containing lithium element and having a function of transferring lithium ions without storing lithium.
  • Non-limiting examples of inorganic particles having a lithium ion transfer capacity include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2,0 ⁇ y ⁇ 3), Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2,0 ⁇ y ⁇ 1,0 ⁇ z ⁇ 3), (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2,0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li x Ge y P z S w ,
  • the inorganic particle size of the porous coating layer is not limited, but in order to form a uniform coating layer and an appropriate porosity, it is preferable that the range of 0.001 to 10 ⁇ m as possible.
  • the polymer binder for forming the porous coating layer may be any binder that can be used to form a porous coating layer with inorganic particles, but may be an organic binder polymer or an aqueous binder polymer.
  • the electrode manufacturing method of the present invention includes a metal nanowire deposition step S10, a metal oxide nanowire forming step S20, a conductive layer coating step S30, and a pore forming step S40.
  • the metal nanowire deposition step (S10) is a step of depositing the metal nanowires to face upward or downward of the surface of the electrode current collector.
  • FIG. 2A is a perspective view illustrating a state in which metal nanowires are deposited on an electrode current collector surface. Referring to FIG. 2A, the metal nanowires are upwardly disposed on the surface of the electrode current collector 10 according to an exemplary embodiment of the present invention. 20 is deposited.
  • the electrode current collector is copper; Stainless steel; aluminum; nickel; titanium; Calcined carbon; ; Stainless steel surface-treated with carbon, nickel, titanium, or silver; at least one selected from the group consisting of aluminum-cadmium alloys, and preferably stainless steel.
  • a method of depositing the metal nanowires of the present invention on the surface of the electrode current collector a method of depositing a metal on the metal surface in the art may be applied without limitation, but in a preferred embodiment, the chemical vapor deposition method may be used. Can be.
  • the metal oxide nanowire forming step (S20) is a step of forming a metal oxide nanowire layer by oxidizing a part of the deposited metal nanowire surface.
  • FIG. 2B is a perspective view illustrating a metal oxide metal wire formed in accordance with an embodiment of the present invention.
  • the metal oxide nanowire layer 30 may be formed on a portion of the metal nanowire 20. Is formed.
  • the metal nanowire layer to be oxidized is a part of the surface layer having a predetermined thickness, and since the portion becomes a gap in the future, the entire metal nanowire layer is not oxidized.
  • the oxidation method is different depending on the metal of the metal nanowires to be applied, and in the case of a metal which is easily oxidized in the air, the metal oxide nanowire layer can be formed by leaving the air in the air without adding a separate oxidant.
  • an oxidation reaction may be performed under a high temperature oxygen atmosphere to form the metal oxide nanowire layer.
  • the conductive layer coating step (S30) is a step of coating a conductive layer on the surface of the metal oxide nanowire layer.
  • 2C is a perspective view showing a state in which a conductive layer is coated on the surface of the metal oxide nanowire layer.
  • the conductive layer is coated on the surface of the metal oxide nanowire layer 30 by the conductive layer coating step (S30). 40 is coated.
  • the present invention can be applied to a method of coating a conductive material on the surface of the metal layer without limitation.
  • the metal oxide itself acts as a catalyst for synthesizing the conductive layer
  • heterogeneous metal catalysts such as iron and nickel, which are generally used as catalysts for the conductive layer synthesis, are not required, thereby minimizing the influence of impurities.
  • the metal oxide of the present invention serving as a catalyst can be easily dissolved by being dissolved in water, thereby reducing chemical damage of the conductive layer. There is an advantage.
  • the metal oxide nanowires prepared in the metal oxide nanowire forming step (S20) are removed, and the metal oxide nanowire sites are removed to become voids, and the metal nanowires and the conductive layer are spaced apart from each other. It is a step that is formed.
  • FIG. 2D is a perspective view illustrating a state in which voids are formed between the metal nanowire layer 20 and the conductive layer 40. Referring to FIG. 2D, while the conventional metal oxide nanowire layer 30 is removed, the pores are replaced. It can be confirmed that.
  • the metal oxide nanowire layer 30 may be easily dissolved and prepared by water.
  • an electrode manufactured by the above-described electrode manufacturing method and a secondary battery including the same is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

전극집전체, 상기 전극집전체의 표면에 형성된 금속 나노와이어 및 상기 금속 나노와이어의 외부를 감싸는 도전층을 포함하고, 상기 금속 나노와이어와 도전층 사이에 공극이 형성되어, 상기 금속 나노와이어와 도전층이 직접 맞닿지 않고 이격되어 있는 전극이 제공된다.

Description

전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지
본 발명은 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지에 관한 것으로, 더욱 상세하게는 전극활물질의 구조 개선을 통한 우수한 수명 특성 및 출력 특성을 갖는 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지에 관한 것이다.
본 출원은 2015년 1월 9일에 출원된 한국특허출원 제10-2015-0003623에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고, 그 중에서도 충·방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서, 용량 밀도 및 비에너지를 향상시키기 위해 새로운 전극과 전지의 설계에 대한 연구 개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 N-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.
일반적으로 리튬 이차전지는 리튬 이온의 삽입/탈리(intercalation/deintercalation) 또는 합금/탈합금화(alloying/dealloying)가 가능한 물질을 음극 및 양극으로 사용하고, 음극과 양극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조하며, 리튬 이온이 양극 및 음극에서 삽입 및 탈리될 때의 산화반응, 환원반응에 의하여 전기적 에너지를 생산한다.
현재 리튬 이차전지의 음극을 구성하는 전극활물질로는 탄소계 물질이 주로 사용되고 있다. 이 중 흑연의 경우, 이론 용량익 약372mAh/g 정도이며, 현재 상용화된 흑연의 실제 용량은 약 350 내지 360 mAh/g 정도까지 실현되고 있다. 그러나, 이러한 흑연과 같은 탄소계 물질은 용량으로는 고용량의 음극활물질을 요구하는 리튬 이차전지에 부합하지 못하고 있다.
이러한 요구를 충족하기 위하여 탄소계 물질보다 높은 충방전 용량을 나타내고, 리튬과 전기화학적으로 합금화 가능한 금속인 Si, Sn 등, 이들의 산화물 또는 이들과의 합금을 음극화물질로서 이용하는 예가 있다. 그러나, 이러한 금속계 음극활물질은 리튬의 충방전에 수반된 큰 부피 변화로 인하여 균열이 생기고 미분화되며, 따라서 이러한 금속계 음극활물질을 사용한 이차전지는 충방전 사이클이 진행됨에 따라 용량이 급격하게 저하되고, 사이클 수명이 짧게 되는 문제점이 있다. 따라서, 이와 같은 금속계 음극활물질의 사용시 발생되는 용량 저하 및 사이클 수명 저하를 방지하고자 하였다.
본 발명은 상기와 같은 문제점을 해결하기 위하여, 금속 나노와이어-공극-도전층을 포함하는 전극활물질을 사용하여, 수명특성 및 출력 특성이 동시에 개선된 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지를 제공한다.
본 발명의 다른 목적 및 장점들은 하기 설명에 의해서 이해될 수 있을 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 기재된 수단 또는 방법 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 전극집전체, 상기 전극집전체의 표면에 형성된 금속 나노와이어 및 상기 금속 나노와이어의 외부를 감싸는 도전층을 포함하고, 상기 금속 나노와이어와 도전층 사이에 공극이 형성되어, 상기 금속 나노와이어와 도전층이 직접 맞닿지 않고 이격되어 있는 전극이 제공된다.
상기 금속 나노와이어는 게르마늄 나노와이어일 수 있다.
상기 금속 나노와이어는 상기 전극집전체 표면에 상측 방향 또는 하측 방향으로 형성될 수 있다.
상기 금속 나노와이어의 장방향 축과 전극집전체 표면 사이의 각도는 40 내지 140°일 수 있다.
상기 도전층은 그래핀층일 수 있다.
상기 전극집전체는 구리; 스테인리스스틸; 알루미늄; 니켈; 티탄; 소성탄소; 카본, 니켈, 티탄 또는 은으로 표면 처리된 스테인리스스틸;알루미늄-카드뮴 합금으로 이루어진 군에서 선택된 적어도 어느 하나일 수 있다.
본 발명의 다른 일 측면에 따르면 전술한 전극을 포함하는 이차전지가 제공된다.
또한, 본 발명의 또다른 일 측면에 따르면 전극집전체 표면의 상측 방향 또는 하측 방향을 향하도록 금속 나노와이어를 증착하는 단계, 상기 금속 나노와이어 표면의 일부를 산화시켜 산화금속 나노와이어층을 형성하는 단계, 상기 산화금속 나노와이어층의 표면에 도전층을 코팅하는 단계 및 상기 산화금속 나노와이어층을 제거하여, 상기 금속 나노와이어와 도전층 사이에 공극을 형성하는 단계를 포함한 전극 제조방법이 제공된다.
상기 금속 나노와이어는 화학적 증착법에 의해 전극집접체 표면에 증착될 수 있다.
상기 산화금속 나노와이어층은 물에 용해되어 제거될 수 있다.
상기 금속 나노와이어는 게르마늄 나노와이어일 수 있다.
상기 도전층은 그래핀층일 수 있다.
상기 전극집전체는 구리; 스테인리스스틸; 알루미늄; 니켈; 티탄; 소성탄소; ;카본, 니켈, 티탄 또는 은으로 표면 처리된 스테인리스스틸;알루미늄-카드뮴 합금으로 이루어진에서 선택된 적어도 어느 하나일 수 있다.
본 발명의 다른 일 측면에 따르면 전술한 제조방법에 의해 제조된 전극이 제공된다.
아울러, 본 발명의 또 다른 일 측면에 따르면 전술한 전극을 포함하는 이차전지가 제공된다.
본 발명은 용량 특성이 우수한 금속 나노와이어와 수명 특성 및 전기전도성이 우수한 탄소계열 도전층을 동시에 포함하는 전극활물질을 제공함으로써, 고용량, 고출력 및 우수한 수명 특성을 동시에 구비할 수 있는 이점이 있다.
또한, 금속 나노와이어와 도전층 사이에 공극을 추가로 구비함으로써, 충·방전 과정에서 발생하는 전극의 부피 팽창을 완화하는 이점이 있다.
아울러, 전극집전체 상에 금속 나노와이어를 수직으로 배열함으로써, 전자의 이동이 상대적으로 원활한 이점이 있다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 전극 제조방법을 나타낸 순서도이다.
도 2a는 금속 나노와이어를 증착하는 단계를 간략하게 도시한 모식도이다.
도 2b는 산화금속 나노와이어층을 형성하는 단계를 간략하게 도시한 모식도이다.
도 2c는 도전층을 코팅하는 단계를 간략하게 도시한 모식도이다.
도 2d는 금속 나노와이어와 도전층 사이에 공극을 형성하는 단계를 간략하게 도시한 모식도이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서상에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서, 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 일 실시예에 따른 전극은 전극집전체, 상기 전극집전체의 표면에 형성된 금속 나노와이어 및 상기 금속 나노와이어의 외부를 감싸는 도전층을 포함하고, 상기 금속 나노와이어와 도전층 사이에 공극이 형성되어, 상기 금속 나노와이어와 도전층이 직접 맞닿지 않고 이격되어 형성될 수 있다.
이때, 상기 전극집전체는 전지에 적용할 수 있는 물질은 제한없이 적용할 수 있으며, 비제한적인 예로 구리; 스테인리스스틸; 알루미늄; 니켈; 티탄; 소성탄소; 카본, 니켈, 티탄 또는 은으로 표면 처리된 스테인리스스틸;알루미늄-카드뮴 합금으로 이루어진 군에서 선택된 적어도 어느 하나로 제조된 것을 사용할 수 있다.
상기 금속 나노와이어는 전극집전체의 표면에 형성되는 것으로, 구체적으로는 금속 나노와이어의 장축 방향이 금속 나노와이어의 표면에 부착되지 않고 돌출되어 형성된 것으로, 전극집전체 표면의 상측방향 또는 하측방향으로 형성된 것일 수 있으며, 충방전 과정에서 전자의 이동이 용이하다는 장점이 있다.
이때, 상기 금속 나노와이어의 장방향 축과 전극집전체 표면 사이의 각도는 40 내지 140°이고, 바람직하게는 80 내지 100°이고, 더 바람직하게는 수직일 수 있다.
또한, 본 발명의 금속 나노와이어에 적용할 수 있는 금속으로는 실리콘, 주석, 알루미늄 및 게르마늄에서 이루어진 군에서 선택되는 적어도 어느 하나일 수 있고, 바람직하게는 게르마늄일 수 있으며, 게르마늄의 이론적 용량은 약 1600mAh/g으로 탄소계열에 비해 최대 4배 이상의 높은 용량을 갖는 이점이 있어, 고용량 장치에 적용할 수 있는 이점이 있다.
상기 도전층은 상기 금속 나노와이어의 외부를 감싸고 있으며, 구체적으로 금속 나노와이어와 직접 맞닿지 않고 소정간격으로 이격되어, 사이에 공극을 포함하도록 감싸고 있다. 이는 금속 나노와이어와 도전층이 맞닿는 경우보다 공간의 영유가 생기며, 이는 충방전 과정에서 발생할 수 있는 부피팽창을 완화하는 완층층(buffer layer)로 작용할 수 있는 이점이 있다.
또한, 본 발명의 일 실시예에 따른 전극의 도전층에 적용할 수 있는 물질은 도전재 역할을 할 수 있는 물질은 제한없이 적용할 수 있으며, 바람직한 일 예로는 그래핀층일 수 있으며, 고출력 특성을 그래핀층을 포함하여 게르마늄 나노와이어와 같이 확산성이 떨어져 출력이 저하되는 문제를 개선할 수 있다.
본 발명의 또 다른 일 실시예에 따라 전술한 전극을 포함하는 이차전지가 제공된다. 이때 상기 전극은 음극으로 사용될 수 있으며, 분리막 및 양극을 더 포함할 수 있다.
상기 양극은 당해 기술분야에서 양극으로 사용되는 물질은 제한없이 사용할 수 있으며, 구체적으로 양극집전체 표면에 양극활물질이 코팅되어 사용될 수 있다.
이때, 상기 양극집전체의 비제한적인 예로는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, ;카본, 니켈, 티탄 또는 은으로 표면 처리된 스테인리스스틸;알루미늄-카드뮴 합금 등으로 제조된 것을 사용할 수 있다.
또한, 본 발명에 적용할 수 있는 상기 양극활물질의 비제한적인 예로는 LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi1 -x- yzCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 = x < 0.5, 0 = y < 0.5, 0 = z <0.5, 0 < x+y+z = 1임) 등으로 이루어진 활물질 입자를 사용하여 제조할 수 있다.
상기 분리막 역시 당해 기술분야에서 음극과 양극 사이에 게재되어 단락을 방지하는 물질을 제한없이 사용할 수 있으며, 바람직하게는 다공성 고분자 기재 및 상기 다공성 고분자 기재의 적어도 일면에 코팅된 다공성 코팅층을 포함한 것일 수 있다.
상기 다공성 고분자 기개의 비제한적인 예로는 폴리에틸렌, 폴리프로필렌과 같은 폴리올레핀으로 이루어진 다공성 고분자 필름일 수 있으며, 이러한 폴리올레핀 다공성 고분자 필름 기재는 예를 들어 80 내지 130℃의 온도에서 셧다운 기능을 발현한다.
이때, 폴리올레핀 다공성 고분자 필름은 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독 또는 이들의 2종 이상 혼합하여 고분자로 형성할 수 있다.
또한, 상기 다공성 고분자 필름 기재는 폴리올레핀 외에 폴리에스테르 등의 다양한 고분자들을 이용하여 필름 형상으로 성형하여 제조될 수도 있다. 또한, 상기 다공성 고분자 필름 기재는 2층 이상의 필름층이 적층된 구조로 형성될 수 있으며, 각 필름층은 전술한 폴리올레핀, 폴리에스테르 등의 고분자 단독으로 또는 이들을 2종 이상 혼합한 고분자로 형성될 수도 있다.
또한, 상기 다공성 고분자 필름 기재 및 다공성 부직포 기재는 상기와 같은 폴리올레핀계 외에 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalene) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성될 수 있다.
또한, 상기 다공성 기재의 두께는 특별히 제한되지 않으나, 5 내지 50 ㎛가 바람직하고, 다공성 기재에 존재하는 기공의 크기는 전극접착층의 고분자 바인더 섬유보다 작으면 되고, 바람직하게는 0.001 내지 50㎛며, 기공도는 01 내지 99%인 것이 바람직하다.
아울러, 본 발명에 적용할 수 있는 분리막으로 전술한 다공성 고분자 기재의 적어도 일면에 다공성 코팅층을 더 포함할 수 있으며, 상기 다공성 코팅층은 무기물 입자 및 바인더 고분자를 포함할 수 있다.
상기 무기물 입자들은 충전되어 서로 접촉된 상태에서 상기 바인더 고분자에 의해 서로 결착되고, 이로 인해 무기물 입자들 사이에 인터스티셜 볼륨(interstitial volume)이 형성되고, 상기 무기물 입자 사이의 인터스티셜 볼륨(interstitial volume)은 빈 공간이 되어 기공을 형성한다.
즉, 바인더 고분자는 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착하며, 예를 들어 바인더 고분자가 무기물 입자 사이를 연결 및 고정 시키고 있다. 또한, 상기 다공성 코팅층의 기공은 무기물 입자들 간의 인터스티셜 볼륨(interstitail volume)이 빈 공간이 되어 형성된 기공이고, 이는 무기물 입자들에 의한 충진 구조(closed packed or densely packed)에서 실질적으로 면접하는 무기물 입자들에 의해 한정되는 공간이다. 이러한 다공성 코팅층의 기공을 통하여 전지를 작동시키기 위하여 필수적인 리튬이온이 이동하는 경로를 제공할 수 있다.
상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5 V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상이고, 바람직하게는 10 이상인 고유전율 무기물 입자 또는 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합물을 포함할 수 있다.
유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO3, Pb(ZrxTi1-x)O3 (PZT, 0<x<1), Pb1 - xLaxZr1 - yTiyO3(PLZT, 0<x<1, 0<y<1), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT, 0<x<1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, SiC 및 TiO2로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물과 같은 무기물 입자들은 유전율 상수가 100 이상인 고유전율 특성을 나타낼 뿐만 아니라, 일정 압력을 인가하여 인장 또는 압축하는 경우 전하가 발생하여 양쪽 면 간에 전위차가 발생하는 압전성(piezoelectricity)을 가짐으로써, 외부 충격에 의한 양 전극의 내부 단락 발생을 방지하여 전기화학소자의 안정성 향상을 도모할 수 있다.
또한, 상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬 원소를 함유하되, 리튬을 저장하지 않고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 의미한다. 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3,0<x<2,0<y<3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3,0<x<2,0<y<1,0<z<3),(LiAlTiP)xOy계열 글래스(glass)(0<x<4, 0<y<13), 리튬란탄티타네이트(LixLayTiO3,0<x<2,0<y<3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬나이트라이드(LixNy, 0<x<4, 0<y<2), SiS2(LixSiySz,0<x<3,0<y<2,0<z<4)계열 글래스 및 P2S5(LixPySz,0<x<3,0<y<3,0<z<7)계열 글래스 또는 이들의 혼합물 등이 있으며, 전술한 고유전율 무기물 입자와 리튬 이온 전달 능력을 갖는 무기물 입자 등을 혼용할 경우 이들의 상승 효과는 배가될 수 있다.
상기 다공성 코팅층의 무기물 입자 크기는 제한이 없으나, 균일한 두께의 코팅층 형성 및 적절한 공극률을 위하여, 가능한 한 0.001 내지 10 ㎛ 범위인 것이 바람직하다.
상기 다공성 코팅층을 형성하는 고분자 바인더는 무기물 입자와 함께 다공성 코팅층 형성에 사용될 수 있는 바인더는 제한없이 사용할 수 있으나, 바람직하게는 유기계 바인더 고분자 또는 수계 바인더 고분자일 수 있다.
도 1은 본 발명의 일 실시예에 따른 전극 제조방법을 나타낸 순서도이다. 도 1을 참조하면 본 발명의 전극 제조방법은 금속 나노와이어 증착단계(S10), 산화금속 나노와이어 형성단계(S20), 도전층 코팅단계(S30) 및 공극형성단계(S40)을 포함한다.
상기 금속 나노와이어 증착단계(S10)는 전극 집전체 표면의 상측 방향 또는 하측 방향으로 향하도록 금속 나노와이어를 증착하는 단계이다.
도 2a는 전극 집전체 표면에 금속 나노와이어가 증착된 상태를 도시한 사시도이며, 도 2a를 참조하면, 본 발명의 일 실시예에 따라 전극집전제(10)의 표면에 상측방향으로 금속 나노와이어(20)가 증착된다.
본 발명의 전극 제조방법에 적용할 수 있는 전극 집전체로는 상기 전극집전체는 구리; 스테인리스스틸; 알루미늄; 니켈; 티탄; 소성탄소; ;카본, 니켈, 티탄 또는 은으로 표면 처리된 스테인리스스틸;알루미늄-카드뮴 합금으로 이루어진 군에서 선택된 적어도 어느 하나일 수 있으며, 바람직하게는 스테인리스스틸일 수 있다.
아울러, 본 발명의 금속 나노와이어를 전극 집전체 표면에 증착하는 방법으로 당해 기술분야에서 금속을 금속 표면에 증착할 수 있는 방법은 제한없이 적용할 수 있으나, 바람직한 일 실시예로 화학적 증착법에 의할 수 있다.
다음으로, 산화 금속 나노와이어 형성단계(S20)는 증착된 금속 나노와이어 표면의 일부가 산화되어 산화금속 나노와이어층을 형성하는 단계이다.
도 2b는 본 발명의 일 실시예에 따라 금속 산화 금속나노와이어가 형성된 상태를 도시한 사시도이며, 도 2b를 참조하면, 금속 나노와이어(20)의 일부층에 산화금속 나노와이어층(30)이 형성된다.
이때, 산화되는 금속 나노와이어층은 일정 두께의 표면 일부층이며, 향후 공극이 되는 부분이므로, 상기 금속 나노와이어층 전체가 산화되는 것은 아니다.
산화방식은 적용되는 금속 나노와이어의 금속에 따라 상이하며, 대기 중에서 쉽게 산화되는 금속의 경우 별도의 산화제를 추가하지 않고 대기 중에 방치함으로써, 산화금속 나노와이어층을 형성할 수 있다.
또한, 대기 중에서 자발적 산화가 진행되지 않는 금속 나노와이어층의 산화인 경우 고온의 산소 분위기 하에서 산화반응을 진행하여 산화금속 나노와이어층을 형성할 수 있다.
다음으로, 도전층 코팅단계(S30)는 산화금속 나노와이어층의 표면에 도전층을 코팅하는 단계이다.
도 2c는 산화금속 나노와이어층의 표면에 도전층을 코팅된 상태를 나타낸 사시도로, 도 2c를 참조하면, 도전층 코팅단계(S30)에 의해 산화금속 나노와이어층(30)의 표면에 도전층(40)이 코팅된다.
본 발명은 금속층 표면에 도전재를 코팅하는 방법은 제한없이 적용할 수 있다.
특히, 본 발명의 제조방법에 따르면 산화금속 자체가 도전층을 합성하는 촉매로 작용하기 때문에 일반적으로 도전층 합성의 촉매로 사용되는 철, 니켈 등의 이종 금속 촉매가 필요하지 않아 불순물의 영향을 최소화할 수 있는 이점이 있다.
또한, 상기 이종 촉매를 녹이기 위해 일반적으로 질산(HNO3)등이 사용되나, 촉매 역할을 수행하는 본 발명의 산화금속은 물에 용해되어 쉽게 제거될 수 있으므로, 도전층의 화학적 손상을 줄일 수 있는 이점이 있다.
다음으로, 공극형성단계(S40)는 산화금속 나노와이어 형성단계(S20)에서 제조된 산화금속 나노와이어를 제거하여, 제거된 산화금속 나노와이어 자리가 공극이 되면서, 금속 나노와이어와 도전층이 이격되어 형성되는 단계이다.
도 2d는 금속 나노와이어층(20)과 도전층(40) 사이에 공극이 형성된 상태는 나타내는 사시도이며, 도 2d를 참조하면, 종래 산화금속 나노와이어층(30)이 제거되면서, 그 자리가 공극이 되는 것을 확인할 수 있다.
보다 구체적으로, 산화금속 나노와이어층(30)은 물에 의해 쉽게 용해시켜 제조할 수 있다.
본 발명의 다른 일 실시예에 따라 전술한 전극 제조방법에 의해 제조된 전극 및 이를 포함하는 이차전지가 제공된다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함을 물론이다.
부호의 설명
10 : 전극 집전체
20 : 금속 나노와이어층
30 : 산화금속 나노와이어층
40 : 도전층

Claims (15)

  1. 전극집전체;
    상기 전극집전체의 표면에 형성된 금속 나노와이어; 및
    상기 금속 나노와이어의 외부를 감싸는 도전층;을 포함하고,
    상기 금속 나노와이어와 도전층 사이에 공극이 형성되어, 상기 금속 나노와이어와 도전층이 직접 맞닿지 않고 이격되어 있는 전극.
  2. 제1항에 있어서,
    상기 금속 나노와이어는 게르마늄 나노와이어인 것을 특징으로 하는 전극.
  3. 제1항에 있어서,
    상기 금속 나노와이어는 상기 전극집전체 표면에 상측 방향 또는 하측 방향으로 형성된 것을 특징으로 하는 전극.
  4. 제1항에 있어서,
    상기 금속 나노와이어의 장방향 축과 전극집전체 표면 사이의 각도는 40 내지 140°인 것을 특징으로 하는 전극.
  5. 제1항에 있어서,
    상기 도전층은 그래핀층인 것을 특징으로 하는 전극.
  6. 제1항에 있어서,
    상기 전극집전체는 구리; 스테인리스스틸; 알루미늄; 니켈; 티탄; 소성탄소; 카본, 니켈, 티탄 또는 은으로 표면 처리된 스테인리스스틸;알루미늄-카드뮴 합금으로 이루어진 군에서 선택된 적어도 어느 하나인 것을 특징으로 하는 전극.
  7. 제1항 내지 제6항 중 어느 한 항의 전극을 포함하는 이차전지.
  8. 전극집전체 표면의 상측 방향 또는 하측 방향을 항하도록 금속 나노와이어를 증착하는 단계;
    상기 금속 나노와이어 표면의 일부를 산화시켜 산화금속 나노와이어층을 형성하는 단계;
    상기 산화금속 나노와이어층의 표면에 도전층을 코팅하는 단계; 및
    상기 산화금속 나노와이어층을 제거하여, 상기 금속 나노와이어와 도전층 사이에 공극을 형성하는 단계;를 포함하는 전극 제조방법.
  9. 제8항에 있어서,
    상기 금속 나노와이어는 화학적 증착법에 의해 전극집전체 표면에 증착되는 것을 특징으로 하는 전극 제조방법.
  10. 제8항에 있어서,
    상기 산화금속 나노와이어층은 물에 용해되어 제거되는 것을 특징으로 하는 전극 제조방법.
  11. 제8항에 있어서,
    상기 금속 나노와이어는 게르마늄 나노와이어인 것을 특징으로 하는 전극 제조방법.
  12. 제8항에 있어서,
    상기 도전층은 그래핀층인 것을 특징으로 하는 전극 제조방법.
  13. 제8항에 있어서,
    상기 전극집전체는 구리; 스테인리스스틸; 알루미늄; 니켈; 티탄; 소성탄소;카본, 니켈, 티탄 또는 은으로 표면 처리된 스테인리스스틸;알루미늄-카드뮴 합금으로 이루어진 군에서 선택된 적어도 어느 하나인 것을 특징으로 하는 전극 제조방법.
  14. 제8항 내지 제13항 중 어느 한 항의 제조방법에 의해 제조된 전극.
  15. 제14항의 전극을 포함하는 이차전지.
PCT/KR2016/000246 2015-01-09 2016-01-11 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지 WO2016111605A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/515,401 US10388946B2 (en) 2015-01-09 2016-01-11 Electrode, method for manufacturing the same, electrode manufactured by the method, and secondary battery comprising the same
EP16735226.9A EP3193394B1 (en) 2015-01-09 2016-01-11 Electrode, method for manufacturing same, electrode manufactured by same, and secondary battery comprising same
CN201680003324.8A CN107078289B (zh) 2015-01-09 2016-01-11 电极、其制造方法、通过所述方法制造的电极和包含所述电极的二次电池
JP2017517278A JP6574247B2 (ja) 2015-01-09 2016-01-11 電極、この製造方法、これによって製造された電極及びこれを含む二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0003623 2015-01-09
KR1020150003623A KR101773103B1 (ko) 2015-01-09 2015-01-09 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지

Publications (1)

Publication Number Publication Date
WO2016111605A1 true WO2016111605A1 (ko) 2016-07-14

Family

ID=56356215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000246 WO2016111605A1 (ko) 2015-01-09 2016-01-11 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지

Country Status (6)

Country Link
US (1) US10388946B2 (ko)
EP (1) EP3193394B1 (ko)
JP (1) JP6574247B2 (ko)
KR (1) KR101773103B1 (ko)
CN (1) CN107078289B (ko)
WO (1) WO2016111605A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272969B2 (ja) 2018-02-07 2023-05-12 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および撮像装置
CN110556535A (zh) * 2019-09-17 2019-12-10 上海理工大学 一种柔性三维金属锂负极材料的制备方法
KR20230059551A (ko) 2021-10-26 2023-05-03 삼성전기주식회사 커패시터 부품 및 커패시터 부품 제조 방법
CN117276476A (zh) * 2022-06-14 2023-12-22 广东小天才科技有限公司 中间结构及制备方法、锂二次电池电极及制备方法
KR20240106886A (ko) 2022-12-29 2024-07-08 삼성전기주식회사 커패시터 부품 및 커패시터 부품 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111227A1 (en) * 2009-11-09 2011-05-12 Mark Crocker Method for production of germanium nanowires encapsulated within multi-walled carbon nanotubes
KR101147201B1 (ko) * 2010-02-08 2012-05-25 삼성에스디아이 주식회사 리튬이차전지의 음극, 이의 제조 방법 및 상기 음극전극을 포함하는 리튬 이차전지
KR20130126796A (ko) * 2012-04-19 2013-11-21 삼성전자주식회사 전기화학 커패시터용 전극 및 이를 포함하는 전기화학 커패시터
KR20140121096A (ko) * 2013-04-05 2014-10-15 포항공과대학교 산학협력단 리튬 이차전지용 음극, 이를 이용한 리튬 이차전지 및 그 제조방법
KR20140130578A (ko) * 2013-05-01 2014-11-11 한국과학기술원 나노섬유와 그래핀의 복합체를 이용한 리튬-이온 이차전지용 음극활물질 및 그 제조 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574744B1 (en) * 2005-05-13 2013-11-05 The University Of Tulsa Nanoscale three-dimensional battery architecture
EP2849265B1 (en) * 2008-02-22 2021-05-12 Colorado State University Research Foundation Lithium-ion battery
US20100285358A1 (en) * 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
DE102009035745A1 (de) * 2009-08-01 2011-02-17 Christian-Albrechts-Universität Zu Kiel Elektrode für Lithium-Ionen Akkumulatoren
JP5918150B2 (ja) * 2010-03-03 2016-05-18 アンプリウス、インコーポレイテッド 活性材料を堆積させるためのテンプレート電極構造
US20120094192A1 (en) * 2010-10-14 2012-04-19 Ut-Battelle, Llc Composite nanowire compositions and methods of synthesis
KR101253494B1 (ko) 2010-12-13 2013-04-15 한양대학교 산학협력단 리튬 이차 전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
CN102244254A (zh) * 2011-06-17 2011-11-16 天津大学 一种中空纳米线-聚合物膜核壳结构复合材料及其制备方法
KR20140051928A (ko) * 2011-07-01 2014-05-02 암프리우스, 인코포레이티드 향상된 접착 특성을 가진 템플레이트 전극 구조체
US8440350B1 (en) * 2011-11-10 2013-05-14 GM Global Technology Operations LLC Lithium-ion battery electrodes with shape-memory-alloy current collecting substrates
GB2502625B (en) * 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
KR101557559B1 (ko) * 2012-11-30 2015-10-07 주식회사 엘지화학 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US10381651B2 (en) * 2014-02-21 2019-08-13 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Device and method of manufacturing high-aspect ratio structures
CN103943836B (zh) * 2014-04-01 2016-09-21 太原理工大学 锂离子电池负极材料中空锗纳米管阵列电极及其制备方法
EP2980014B1 (en) * 2014-07-31 2019-06-26 IMEC vzw Method for interconnected nanowire cluster formation using an Anodic Aluminium Oxide (AAO) template

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111227A1 (en) * 2009-11-09 2011-05-12 Mark Crocker Method for production of germanium nanowires encapsulated within multi-walled carbon nanotubes
KR101147201B1 (ko) * 2010-02-08 2012-05-25 삼성에스디아이 주식회사 리튬이차전지의 음극, 이의 제조 방법 및 상기 음극전극을 포함하는 리튬 이차전지
KR20130126796A (ko) * 2012-04-19 2013-11-21 삼성전자주식회사 전기화학 커패시터용 전극 및 이를 포함하는 전기화학 커패시터
KR20140121096A (ko) * 2013-04-05 2014-10-15 포항공과대학교 산학협력단 리튬 이차전지용 음극, 이를 이용한 리튬 이차전지 및 그 제조방법
KR20140130578A (ko) * 2013-05-01 2014-11-11 한국과학기술원 나노섬유와 그래핀의 복합체를 이용한 리튬-이온 이차전지용 음극활물질 및 그 제조 방법

Also Published As

Publication number Publication date
US10388946B2 (en) 2019-08-20
KR20160086195A (ko) 2016-07-19
EP3193394A1 (en) 2017-07-19
US20170222216A1 (en) 2017-08-03
CN107078289B (zh) 2020-06-16
JP2018501605A (ja) 2018-01-18
EP3193394B1 (en) 2019-07-31
KR101773103B1 (ko) 2017-08-30
EP3193394A4 (en) 2018-03-28
CN107078289A (zh) 2017-08-18
JP6574247B2 (ja) 2019-09-11

Similar Documents

Publication Publication Date Title
WO2014092471A1 (ko) 이차전지용 전극, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2012165758A1 (ko) 리튬 이차전지
WO2014088270A1 (ko) 리튬 이차전지용 고용량 음극 활물질, 이의 제조 방법 및 이를 포함한 리튬 이차전지
WO2016111605A1 (ko) 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지
WO2013062337A2 (ko) 케이블형 이차전지
WO2011115376A2 (ko) 세퍼레이터 및 이를 구비한 전기화학소자
WO2015023154A1 (ko) 리튬-황 전지용 양극 및 이의 제조방법
WO2013055185A2 (ko) 케이블형 이차전지
JP2015507829A (ja) 二次電池用電極、それを含む二次電池及びケーブル型二次電池
WO2014098419A1 (ko) 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2015072753A1 (ko) 젤리-롤형 전극 조립체 및 이를 구비한 이차전지
WO2013055187A1 (ko) 케이블형 이차전지
WO2015002390A1 (ko) 도전성이 개선된 양극 합제, 그를 구비하는 양극 및 전기화학소자
WO2019203571A1 (ko) 비대칭 구조의 이차전지용 난연 분리막
WO2014084678A1 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함한 리튬 이차전지
WO2015105365A1 (ko) 고 연신 특성의 분리막을 가진 전극조립체 및 이를 포함하는 이차전지
WO2016153136A1 (ko) 이차 전지용 음극 활물질, 그리고 이를 포함하는 음극, 전극 조립체 및 이차전지
WO2018097455A1 (ko) 전극 보호층을 포함하는 이차전지용 전극
WO2014200214A1 (ko) 내진동 특성이 향상된 전기화학소자 및 전지 모듈
WO2016111606A1 (ko) 열확산성 분리막 및 이를 포함하는 이차전지
WO2020171376A1 (ko) 단위셀 및 그 제조방법
WO2019059440A1 (ko) 무기 액체 전해질을 채용한 리튬이차전지용 분리막
WO2019022474A1 (ko) 불산을 저감하는 물질을 포함하는 전지 분리막
KR101654680B1 (ko) 이차전지용 전극 및 그를 포함하는 케이블형 이차전지
WO2021177681A1 (ko) 전극 조립체 및 그의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735226

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15515401

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017517278

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016735226

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016735226

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE