WO2016111569A1 - Method for manufacturing manganese oxide nanoparticles at high rate using super-high pressure homogenizer - Google Patents

Method for manufacturing manganese oxide nanoparticles at high rate using super-high pressure homogenizer Download PDF

Info

Publication number
WO2016111569A1
WO2016111569A1 PCT/KR2016/000156 KR2016000156W WO2016111569A1 WO 2016111569 A1 WO2016111569 A1 WO 2016111569A1 KR 2016000156 W KR2016000156 W KR 2016000156W WO 2016111569 A1 WO2016111569 A1 WO 2016111569A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
orifice
manganese oxide
oxide nanoparticles
aqueous solution
Prior art date
Application number
PCT/KR2016/000156
Other languages
French (fr)
Korean (ko)
Inventor
조준희
김현효
Original Assignee
(주)일신오토클레이브
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)일신오토클레이브 filed Critical (주)일신오토클레이브
Publication of WO2016111569A1 publication Critical patent/WO2016111569A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides

Definitions

  • the present invention relates to a method for producing manganese oxide nanoparticles using an ultrahigh pressure homogenizer.
  • the manganese oxide As manganese oxides have increased social interest in energy storage with the development of information and communication and the advancement of the industry, the manganese oxide has various fields from energy fields such as batteries and capacitors to low temperature carbon monoxide oxidation reaction, nitrogen oxide decomposition and environmental catalyst for volatile organic compound decomposition. It is a material used in the field.
  • active carbon is mainly used as the electrode material for capacitors, and it has advantages of high power and long life, but its capacity per electrode volume is less than 60 F / cc, so it is not suitable for the next generation energy storage material.
  • Metal oxides have a theoretical capacity of more than 10 times per unit volume compared to existing carbon materials, and ruthenium oxides exhibit very high specific capacitances, but for the reason of high cost, it is necessary to develop metal oxides to replace them.
  • Manganese oxide is not only very inexpensive compared to other metal oxides, but also has a high theoretical capacity and actual capacity, and it is expected to manufacture materials having characteristics of actual capacity close to the theoretical capacity according to the synthesis and manufacturing method.
  • the charging and discharging of capacitors is a surface reaction in which the thickness of the reaction layer is limited to several nanometers.
  • the specific capacitance value that is actually measured is not obtained by using 100% of the entire material electrochemically.
  • F / g) is less than 30% of theoretical capacity.
  • the micrometer-sized manganese oxide catalyst has a disadvantage in that the specific surface area is smaller than that of the nanometer-sized manganese oxide, which decreases the activity point and shortens the catalyst life. Therefore, a more efficient and uniform method for mass production of manganese oxide nanoparticles is needed.
  • Korean Laid-Open Patent Publication No. 10-2014-0124640 discloses a method for producing a manganese oxide for a lithium secondary battery electrode including heat treatment, milling treatment, acid treatment, impurities removal, and drying. However, it is difficult to economically mass-produce because it is accompanied with such a complex process and the process time is also longer than 24 hours.
  • the present invention provides a method for producing manganese oxide nanoparticles having a high-speed mass production by a synthesis method using an ultra-high pressure homogenizer, excellent crystallinity in a simple process at room temperature, and having a uniform particle size distribution and a small average particle diameter.
  • Another object of the present invention is to provide a method for preparing manganese oxide nanoparticles using an ultrahigh pressure homogenizer which does not require a separate acidic solution and a chemical strong reducing agent or precipitant addition process.
  • the present invention comprises the steps of (a) preparing an aqueous solution of manganese salts containing manganese salts of at least 5, (b) obtaining manganese oxide nanoparticles using an ultrahigh pressure homogenizer in the aqueous solution of manganese salts, and (c) washing the nanoparticles. And drying, wherein the aqueous solution of manganese salt is an aqueous solution containing any one or two components selected from alcohol and less than tetravalent manganese salt.
  • the present invention relates to a method for producing manganese oxide nanoparticles by passing an aqueous solution of manganese salt through an ultrahigh pressure homogenizer including a reaction chamber including a sample inlet, a pressure pump, a nozzle, and an orifice.
  • the manufacturing method of manganese oxide nanoparticles using the ultra-high pressure homogenizer of the present invention is capable of high-speed mass production, excellent crystallinity in a simple process at room temperature, and to produce manganese oxide nanoparticles having a uniform particle size distribution and a small average particle diameter. There are advantages to it.
  • the manufacturing method of manganese oxide nanoparticles using the ultra-high pressure homogenizer of the present invention does not require a separate acidic solution and a chemical strong reducing agent or a precipitant addition process, which is more environmentally friendly and has a simplified process.
  • the manufacturing method of the manganese oxide nanoparticles using the ultra-high pressure homogenizer of the present invention can improve the reaction equilibrium of the remaining manganese ions and unreacted components without reacting to obtain manganese oxide nanoparticles with a higher yield There is a characteristic.
  • 1 is a diagram showing an ultrahigh pressure homogenizer
  • Example 3 is a graph showing the results of analyzing a manganese oxide prepared according to Example 1 Comparative Example 1 with a powder X-ray diffraction analyzer
  • Figure 4 is an image of the manganese oxide particles prepared in Example 1 and Comparative Example 1 measured by a scanning electron microscope
  • Example 5 is a graph showing the results of analyzing a manganese oxide prepared according to Example 2 and Comparative Example 2 by a powder X-ray diffraction analyzer
  • Example 6 is an image measured by a scanning electron microscope of the manganese oxide particles prepared in Example 2 and Comparative Example 2.
  • the present invention provides a method for preparing manganese oxide nanoparticles using an aqueous solution of manganese salts containing manganese salts and alcohols having at least five valent salts, and an aqueous solution of manganese salts containing manganese salts having at least four valent salts and less than tetravalent manganese salts.
  • the present invention relates to a method for preparing manganese oxide nanoparticles using an ultrahigh pressure homogenizer including a method for producing manganese oxide nanoparticles.
  • the manufacturing method of manganese oxide nanoparticles using the ultra-high pressure homogenizer of the present invention is an environmentally friendly process than the conventional method using a separate acidic solution, a strong reducing agent or a precipitating agent, and has the characteristics of high-speed mass production.
  • the production method of the present invention is characterized in that the production of fine nanoparticles without using a strong reducing agent such as hydrazine (Hydrazine) or sodium dihydrogen phosphate (NaH 2 PO 4 ).
  • the method for preparing manganese oxide nanoparticles of the present invention is manganese oxide using an ultrahigh pressure homogenizer under mild conditions at room temperature. Synthesis of nanoparticles is possible, and as the process time is greatly shortened, there is an advantage of improving productivity and simplifying manufacturing facilities.
  • FIGS. 1 and 2 This is an effect generated based on the ultrahigh pressure homogenizer, and the drawings are illustrated in FIGS. 1 and 2 as an example of the ultrahigh pressure homogenizer.
  • the ultrahigh pressure homogenizer may include a sample inlet, a pressure pump for applying pressure to the fluid, a reaction chamber including a nozzle and an orifice, a heat exchanger, and an outlet.
  • the pressure pump has a role of moving the manganese aqueous solution to the reaction chamber including the nozzle and the orifice by applying pressure to the fluid.
  • reaction chamber has a simplified structure, it has a combined structure with only a configuration capable of generating the shear and cavity phenomena to the maximum, and can exhibit the maximum effect with the minimum energy density. It is very suitable for the production of nanoparticles.
  • the present invention comprises the steps of (a) preparing an aqueous solution of manganese salts containing manganese salts of at least 5, (b) obtaining manganese oxide nanoparticles using an ultrahigh pressure homogenizer in the aqueous solution of manganese salts, and (c) washing the nanoparticles. And drying, wherein the aqueous solution of manganese salt is an aqueous solution containing any one or two components selected from alcohol and less than tetravalent manganese salt.
  • the pentavalent or higher manganese salt may include any one or two components selected from potassium permanganate and sodium permanganate.
  • potassium permanganate is a powerful oxidizing agent, which oxidizes alcohols to aldehydes, ketones or carboxylic acids while simultaneously reducing manganese oxides to tetravalent (+4).
  • the carboxylic acid in the waste solution is neutralized by potassium hydroxide formed during the reaction, which is more environmentally friendly than the conventional method using an acidic solution, a strong reducing agent or a precipitating agent, and is suitable for high-speed mass production by the ultrahigh pressure homogenizer of the present invention.
  • the aqueous solution of manganese salt may further include less than tetravalent manganese salt.
  • manganese oxide nanoparticles can be prepared by reacting an aqueous solution of manganese salt containing potassium permanganate of divalent (+7) and divalent manganese salt at an initial temperature of room temperature using an ultrahigh pressure homogenizer as a starting material.
  • the aqueous solution of manganese salt is oxidized in the form of tetravalent manganese in which divalent manganese salt containing manganese ions loses electrons and is present in a stable phase in the aqueous solution.
  • the reaction yield (production yield) can be maximized by minimizing the generation of unreacted manganese salts (or manganese ions) by the reaction between manganese salts without the use of components other than manganese compounds such as acidic solutions, strong reducing agents, and precipitating agents. Therefore, high speed production is possible. This effect is due to the special environmental conditions in which high energy is applied, such as ultra high temperature ultra high pressure, through an ultra high pressure homogenizer. In addition, since components other than manganese compounds, such as an acidic solution, a strong reducing agent, and a precipitant, are not required, unnecessary waste solution can be prevented from occurring.
  • the manganese salt of less than tetravalent may include any one or two or more of less than tetravalent components selected from manganese chloride, manganese sulfate, manganese nitrate and manganese acetate, preferably manganese acetate Is good in terms of economic efficiency, high solubility, and the effect on the atmosphere during firing.
  • the present invention is not limited thereto, and a metal salt including manganese may be used.
  • the aqueous solution of manganese salt may be an aqueous solution mixed with 1.5 to 3.5 molar ratio of manganese salt less than tetravalent with respect to 1 mol of manganese salt of five or more, but is not limited thereto.
  • the aqueous solution of manganese salt may be an aqueous solution mixed with 1.5 to 3.5 molar ratio of manganese salt less than tetravalent with respect to 1 mol of manganese salt of five or more, but is not limited thereto.
  • the alcohol is not particularly limited, but preferably includes one or two or more selected from alcohols having a carbon number of C1 to C5.
  • methanol, ethanol, propanol, 2-propanol, 2-butanol, pentanol, etc. can be illustrated.
  • the potassium permanganate may be dissolved in water, followed by mixing an organic solvent to prepare an aqueous manganese salt solution.
  • the aqueous solution of manganese salt may include 10 to 75% by weight of alcohol, preferably 20 to 60% by weight based on the total weight, but is not necessarily limited thereto.
  • the molar concentration of the aqueous solution of manganese salt before mixing the alcohol is not particularly limited, but may be 0.01 to 5 M, preferably 0.01 to 1 M.
  • the molar concentration of the aqueous solution of manganese salt is an effective variable that determines the size and uniformity of the manganese oxide nanoparticles as a final product, it is preferable to prepare an aqueous solution of manganese salt within the above range, but is not limited thereto.
  • the ultrahigh pressure homogenizer used in the present invention may include a reaction chamber including a sample inlet, a pressure pump, a nozzle, and an orifice, a heat exchanger, and an outlet.
  • step (b) may mean a step of obtaining a precipitate by introducing the aqueous solution of manganese salt into the sample inlet of the ultra-high pressure homogenizer, and passing through the reaction chamber including the nozzle and the orifice in the ultra-high pressure state.
  • a diameter of 50 to 300 ⁇ m, more preferably 60 to 250 ⁇ m is good in terms of throughput, but is limited to the above range because it can be used with sufficient control outside the above range on a large scale of the production process unit, not the experimental unit. It doesn't happen.
  • reaction chamber includes the same role as the autoclave used in the conventional manganese oxide nanoparticles manufacturing, it can affect the nucleation and crystal growth can have a particle generation and improved uniformity in nano units.
  • the method for preparing manganese oxide nanoparticles using the ultrahigh pressure homogenizer of the present invention does not limit the temperature when the initial reactant is introduced.
  • the process may be performed at room temperature, and may not be significantly involved in temperature control. Maintaining within the range of from -80 [deg.] C. is stable and desirable in view of mass production processes.
  • the temperature during the reaction in the actual ultra-high pressure homogenizer may be different from when it is introduced into the initial inlet.
  • step (b) may include repeating the step of transporting the manganese salt aqueous solution to the recycle transport pipe 1 to 20 times.
  • the manganese oxide nanoparticles may be prepared by repeating the step of transferring the high pressure pump from the heat exchanger several times.
  • the step of transporting the manganese oxide nanoparticles by repeating the transfer pipe is repeated 1 to 20 times. It may be prepared from oxide nanoparticles, but is not limited thereto.
  • the pressure transmitted to the reaction chamber in step (b) is not particularly limited but may be 100 to 2,000 bar.
  • step (c) may comprise the step of washing and drying the precipitate.
  • Distilled water, ethanol and acetone are preferably used for the washing, but are not limited thereto as long as they are effective for washing and can be easily removed after washing.
  • the drying may be performed for 3 to 10 hours at 100 to 200 °C to remove the moisture of the obtained precipitate.
  • Manganese oxide nanoparticles prepared using the ultra-high pressure homogenizer of the present invention may have a spherical or rod-shaped shape, while being able to manufacture manganese oxide nanoparticles having high crystallinity and uniform distribution, high-speed mass production is possible There is a characteristic.
  • the bonding or bonding structure mentioned in the ultra-high pressure homogenizer of the present specification may refer to a device having a specific structure or a unit unit device physically coupled, but a single structure including a structure in which specific structures are combined Preference is given to devices having orifices.
  • the ultrahigh pressure homogenizer may include a reaction chamber including a sample inlet, a pressure pump, a nozzle and an orifice, a heat exchanger, and an outlet.
  • the structure of the reaction chamber can be said to be a key part for manufacturing the manganese oxide nanoparticles of the present invention.
  • the inlet, the first orifice, the second orifice, the third orifice, and the outlet including the nozzle may include a structure in which the reactor is sequentially coupled.
  • a drawing of the reaction chamber is illustrated in FIG. 2.
  • the diameter of the orifice including the first orifice to the third orifice is preferably 25 to 300 ⁇ m, but may be appropriately changed according to the production scale or the process scale.
  • the inlet has a structure coupled to the nozzle, the inlet may be combined with the first orifice, may have a larger diameter than the first orifice. Therefore, when the inlet is larger than the first orifice may further include a narrowing section coupled to the inlet and the first orifice, specifically, the upper and lower portions of the section may be a diagonal narrowing, the inlet and the The diameter of the nozzles can be independently 55 to 300 ⁇ m.
  • the present invention is not limited thereto and may be appropriately adjusted according to the production scale or the process scale.
  • the coupling angle between the first orifice and the inlet is not limited, and may be, for example, coupled in parallel or combined at non-parallel angles.
  • the diameter of the first orifice is preferably 25 to 150 ⁇ m, but is not limited thereto.
  • the second orifice is preferably coupled vertically with the first orifice, but is not necessarily vertical, and may be combined with 70 to 110 °, but is not limited thereto.
  • the second orifice preferably has a larger diameter than the first orifice, and specifically, may illustrate 35 to 300 ⁇ m, more preferably 45 to 165 ⁇ m, but is not limited thereto.
  • the third orifice is preferably coupled vertically with the second orifice, but is not necessarily vertical, and may be combined at 70 to 110 °, more preferably at 250 to 290 °. It is preferable that the structure is Z type, but is not limited thereto. It is preferable that the diameter of the third orifice is smaller than that of the second orifice like the first orifice. Specifically, the diameter of the third orifice may be 25 to 150 ⁇ m, but is not limited thereto.
  • the structure combined with the first orifice and the second orifice and the structure combined with the second orifice and the third orifice are preferably two-dimensional structures located on the same plane, but are not necessarily limited thereto. Located structures are also possible.
  • the coupling angle of the outlet and the third orifice is not limited, and may be, for example, coupled in parallel, or combined at non-parallel angles.
  • the outlet may be coupled to the third orifice and may have a diameter larger than that of the third orifice, but is not limited thereto. Therefore, when the outlet is larger than the third orifice, the outlet and the narrower section coupled with the third orifice may be further included. Specifically, the upper and lower portions of the section may be diagonally narrowed.
  • the diameter of the outlet may be 55 to 300 ⁇ m, but is not limited thereto.
  • the outlet may have a structure directly or indirectly coupled to the pipe leading to the heat exchanger.
  • shear and cavitation occur inside manganese oxide molecules or particles due to collisions in the structure, resulting in breakage of intermolecular chains or internal disintegration of particles, and by the combination of the structure and the aqueous solution of manganese salt. It is possible to minimize the dispersion of the energy required to break up to the unit, and to minimize the instability of the particles due to shear and cavitation inside the molecules or particles due to the collision.
  • the shearing phenomenon refers to a phenomenon in which a displacement occurs inside the material due to the application of two equally opposite and opposite directions on both sides of the inside of the material
  • the cavitation refers to a phenomenon in which a cavity is generated by causing a local pressure change.
  • reaction chamber including the orifice having such a structure is a simplified structure, it can be combined with the aqueous solution of manganese salt to generate the maximum shear and cavitation, so that the above-mentioned maximum with the minimum energy density. It can exert an effect and is very suitable for mass production and high speed production of manganese oxide nanoparticles.
  • a process of adjusting the rotation speed of the pump at a constant rpm is essential. That is, as the diameter decreases, the pressure change due to the hunting according to the rpm of the pump changes rapidly.
  • pressure control by adjusting the rpm of the pump is possible at a diameter of 70 micrometers, but when the size of the diameter is as small as 60 micrometers, the pressure changes rapidly due to a few rpm difference. Difficult or finally obtained manganese oxide nanoparticles also have a heterogeneous distribution that is substantially difficult to use.
  • the combination of the ultra-high pressure homogenizer structure and the manganese salt solution composition described above of the present invention can not only stably control the process but also exhibit the maximum effect with the minimum energy density, which is a very suitable technology for the preparation of manganese oxide nanoparticles. can do.
  • the method for producing manganese oxide nanoparticles of the present invention by reacting the above-described aqueous solution of manganese using the chamber having the above structure, the process is simple, the process time is shortened and at the same time high-speed mass of manganese oxide nanoparticles of uniform size It can be produced, and also can be produced environmentally friendly manganese oxide nanoparticles without adding a separate additive other than the manganese compound.
  • the particle size depends on the nucleation time and crystal growth rate. The shorter the nucleation time, the slower the crystal growth rate, the particle size decreases. That is, high energy is applied by the ultra-high pressure homogenizer used in the present invention to induce shear, cavity, and collision phenomena to each particle, thereby accelerating the rate of nucleation to form particles of smaller size.
  • Manganese oxide nanoparticles can be prepared.
  • potassium permanganate was added to distilled water to prepare a 0.2 M aqueous potassium permanganate solution.
  • 1.5 L of ethanol was mixed with 6.5 L of the aqueous solution, followed by mixing at room temperature for 5 minutes.
  • Ultra-high pressure homogenizer (ILSIN Autoclave NH-8000 with reference to the drawing of FIG. 1 including the reaction chamber having the specifications of Table 1 with reference to the drawing shown in FIG. 2 at a pressure of 1500 bar in the mixed aqueous solution) ) Twice to obtain a dark brown precipitate, which took 2 minutes. The precipitate was removed by distilled water, and then dried at 180 ° C. for 10 hours to obtain manganese oxide nanoparticles.
  • the manganese oxide nanoparticles were measured and analyzed in the same manner as in Example 1, and the results are shown in FIGS. 5, 6, and 2.
  • Manganese oxide nanoparticles were obtained in the same manner as in Example 1 except that the diameters of the first or third orifice were 50 ⁇ m instead of 75 ⁇ m, and the results are shown in Table 2.
  • Manganese oxide nanoparticles were obtained in the same manner as in Example 1 except that the bonding angles of the first orifice and the second orifice and the bonding angles of the second orifice and the third orifice were 45 ° instead of 90 °. The results are shown.
  • Manganese oxide nanoparticles were prepared in the same manner as in Example 1, except that the mixture was stirred at room temperature for 2 hours instead of passing through the ultrahigh pressure homogenizer of Example 1, and the physical properties of the prepared manganese oxide nanoparticles were measured. 3 and 4 and Table 2 are shown.
  • Manganese oxide nanoparticles were prepared in the same manner as in Example 1, except that the mixture was stirred at room temperature for 2 hours instead of passing through the ultrahigh pressure homogenizer of Example 2, and the physical properties of the prepared manganese oxide nanoparticles were measured. 5 and 6 and Table 2 are shown.
  • Table 2 is a table showing the average particle diameter, particle size distribution and manufacturing time (total time taken) of the manganese oxide nanoparticles according to Examples 1 to 4, Comparative Example 1 and Comparative Example 2.
  • the average particle diameter of the manganese oxide nanoparticles prepared according to Examples 1 to 4 was very small, less than 20 nm, the particle size distribution also at least 88% or more than 20.6 nm Had
  • the manganese oxide nanoparticle peaks according to Examples 1 and 2 were analyzed as manganese oxides (MnO 2 ) on delta ( ⁇ ) and gamma ( ⁇ ), respectively, but passed through an ultrahigh pressure homogenizer.
  • MnO 2 manganese oxides
  • Comparative Example 1 which was not added, it was analyzed as amorphous, and in Comparative Example 2, it was analyzed that crystallinity was remarkably low. From this, it was confirmed that the manganese oxide prepared using the ultrahigh pressure homogenizer was synthesized as pure manganese oxide having high crystallinity and no impurities.
  • the manganese oxide nanoparticles according to Examples 1 and 2 have a smaller average particle diameter and a more uniform particle size distribution than those of the manganese oxide nanoparticles according to Comparative Examples 1 and 2. Analyzed.
  • the particle size in nanoparticle synthesis depends on nucleation time and crystal growth rate. The shorter the nucleation time and the slower the crystal growth rate, the smaller the particle size. This result is considered to be a result of the high energy of the ultra-high pressure homogenizer accelerates the nucleation rate.
  • Example 3 the orifice diameter is not easy to control the pressure, the orifice nozzle clogging occurs due to the particles, the process control was not easy, and the manufactured manganese oxide nanoparticles have an average size of more than 100 nm It was relatively large compared to 1 and Example 2. However, in Example 1 and Example 2 it was easy to control the process, it was able to produce a more stable manganese oxide nanoparticles.
  • being able to produce smaller manganese oxide nanoparticles with a uniform particle size distribution is an improved effect produced by the reaction chamber comprising an orifice having the above-mentioned structure, which produces shear, cavity and collision phenomena. This is because it has a combined structure with only the configuration that can generate the maximum.
  • the manganese oxide nanoparticles can be manufactured in a very fast time, such as only a few minutes, there are significant advantages in the manufacturing process as well as the quality of the manganese oxide nanoparticles.
  • reaction chamber including nozzle and orifice

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for manufacturing manganese oxide nanoparticles using a super-high pressure homogenizer, comprising the steps of: (a) manufacturing a manganese salt aqueous solution including a quinquivalent or higher manganese salt; (b) obtaining manganese oxide nanoparticles from the manganese salt aqueous solution using a super-high pressure homogenizer; and (c) washing and drying the nanoparticles. The method is advantageous in that high-rate mass production is possible, and it is possible to manufacture manganese oxide nanoparticles, which have excellent crystallinity, an even particle size distribution, and a small average particle diameter, through a simple process at a room temperature.

Description

초고압 균질기를 이용한 망간산화물 나노입자의 고속 제조 방법High Speed Manufacturing Method of Manganese Oxide Nanoparticles Using Ultra High Pressure Homogenizer
본 발명은 초고압 균질기를 이용한 망간산화물 나노입자의 제조 방법에 관한 것이다.The present invention relates to a method for producing manganese oxide nanoparticles using an ultrahigh pressure homogenizer.
망간산화물은 정보통신의 발달과 산업의 고도화에 따라 에너지 저장에 대한 사회적 관심이 증가하면서 전지 및 커패시터 등의 에너지 분야에서부터 저온 일산화탄소 산화반응, 질소산화물 분해 및 휘발성 유기화합물 분해용 환경 촉매 등에 이르기까지 다양한 분야에서 사용되는 소재이다.As manganese oxides have increased social interest in energy storage with the development of information and communication and the advancement of the industry, the manganese oxide has various fields from energy fields such as batteries and capacitors to low temperature carbon monoxide oxidation reaction, nitrogen oxide decomposition and environmental catalyst for volatile organic compound decomposition. It is a material used in the field.
특히 커패시터용 전극 소재로는 현재 활성탄이 주로 사용되며 고출력 및 장수명의 장점이 있지만, 전극부피 당 축전용량은 60 F/cc 이하로 매우 제한적인 단점이 있어 차세대 에너지 저장 소재로 적합하지 않다. 금속산화물은 기존 탄소 소재 대비 단위 부피당 10 배 이상의 이론용량을 보유하고 있으며, 루테늄 산화물의 경우 매우 높은 비축전용량을 나타내고 있으나, 고가인 이유로 이를 대체할 금속 산화물의 개발이 필요하다. 망간산화물의 경우, 타 금속산화물에 비해 매우 저렴할 뿐만 아니라 높은 이론용량과 실제용량을 가지고 있으며, 합성 및 제조방법에 따라 이론용량에 가까운 실제용량의 특성을 가지는 소재 제조가 가능할 것으로 기대된다. 커패시터의 충전 및 방전은 반응 층의 두께가 수 나노미터에 국한되는 표면반응으로, 현재 마이크로미터 크기의 망간산화물 소재의 경우 소재 전체를 전기화학적으로 100 % 활용하지 못하여 실제 측정되는 비축전용량값(F/g)은 이론용량의 30 % 미만의 수준이다. 또한 마이크로미터 크기의 망간산화물 촉매의 경우 나노미터 크기의 망간산화물 보다 비표면적이 작아 활성점 감소로 촉매 활성 저하 및 촉매 수명 단축의 단점을 갖는다. 그러므로 보다 효율적이고 균일한 망간산화물 나노입자의 대량 제조 방법이 필요하다.Particularly, active carbon is mainly used as the electrode material for capacitors, and it has advantages of high power and long life, but its capacity per electrode volume is less than 60 F / cc, so it is not suitable for the next generation energy storage material. Metal oxides have a theoretical capacity of more than 10 times per unit volume compared to existing carbon materials, and ruthenium oxides exhibit very high specific capacitances, but for the reason of high cost, it is necessary to develop metal oxides to replace them. Manganese oxide is not only very inexpensive compared to other metal oxides, but also has a high theoretical capacity and actual capacity, and it is expected to manufacture materials having characteristics of actual capacity close to the theoretical capacity according to the synthesis and manufacturing method. The charging and discharging of capacitors is a surface reaction in which the thickness of the reaction layer is limited to several nanometers. In the case of micrometer-sized manganese oxide materials, the specific capacitance value that is actually measured is not obtained by using 100% of the entire material electrochemically. F / g) is less than 30% of theoretical capacity. In addition, the micrometer-sized manganese oxide catalyst has a disadvantage in that the specific surface area is smaller than that of the nanometer-sized manganese oxide, which decreases the activity point and shortens the catalyst life. Therefore, a more efficient and uniform method for mass production of manganese oxide nanoparticles is needed.
한국공개특허 제10-2014-0124640호에는 열 처리, 밀링 처리, 산 처리, 불순물 제거 및 건조 과정을 포함하는 리튬이차전지 전극용 망간산화물의 제조 방법이 공지되어 있다. 그러나 상기와 같은 매우 복잡한 공정을 동반하며 공정시간 또한 24 시간 이상으로 길기 때문에 경제적으로 대량 생산에 어려움이 있다.Korean Laid-Open Patent Publication No. 10-2014-0124640 discloses a method for producing a manganese oxide for a lithium secondary battery electrode including heat treatment, milling treatment, acid treatment, impurities removal, and drying. However, it is difficult to economically mass-produce because it is accompanied with such a complex process and the process time is also longer than 24 hours.
이에, 종래 망간산화물 나노입자 제조 방법의 단점인 고온 공정, 장시간의 제조 시간, 복잡한 공정 및 넓은 입도분포 등의 문제점을 해결하기 위한 것이다.Thus, to solve the problems of the high temperature process, a long manufacturing time, a complex process and a wide particle size distribution, which is a disadvantage of the conventional manganese oxide nanoparticle manufacturing method.
본 발명은 초고압 균질기를 이용한 합성법에 의해 고속 대량 생산이 가능하고, 상온에서 간단한 공정으로 결정성이 우수하며, 균일한 입도분포 및 작은 평균입경을 가지는 망간산화물 나노입자의 제조 방법을 제공하는 것이다.The present invention provides a method for producing manganese oxide nanoparticles having a high-speed mass production by a synthesis method using an ultra-high pressure homogenizer, excellent crystallinity in a simple process at room temperature, and having a uniform particle size distribution and a small average particle diameter.
본 발명의 다른 목적은 별도의 산성용액 및 화학적인 강한 환원제 또는 침전제 첨가 공정이 필요하지 않은 초고압 균질기를 이용한 망간산화물 나노입자의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing manganese oxide nanoparticles using an ultrahigh pressure homogenizer which does not require a separate acidic solution and a chemical strong reducing agent or precipitant addition process.
본 발명은 (a) 5가 이상의 망간염을 포함하는 망간염 수용액 제조 단계, (b) 상기 망간염 수용액을 초고압 균질기를 이용하여 망간산화물 나노입자를 수득하는 단계 및 (c) 상기 나노입자를 세척 및 건조하는 단계를 포함하며, 상기 망간염 수용액은 알코올 및 4가 미만의 망간염 중에서 선택된 어느 하나 또는 두 성분을 포함하는 수용액인 것인 초고압 균질기를 이용한 망간산화물 나노입자의 제조 방법에 관한 것이다.The present invention comprises the steps of (a) preparing an aqueous solution of manganese salts containing manganese salts of at least 5, (b) obtaining manganese oxide nanoparticles using an ultrahigh pressure homogenizer in the aqueous solution of manganese salts, and (c) washing the nanoparticles. And drying, wherein the aqueous solution of manganese salt is an aqueous solution containing any one or two components selected from alcohol and less than tetravalent manganese salt.
구체적으로는, 시료 주입구, 압력펌프, 노즐, 및 오리피스를 포함하는 반응 챔버를 포함하는 초고압 균질기에 망간염 수용액을 통과시킴으로써, 망간산화물 나노입자를 제조하는 방법에 관한 것이다.Specifically, the present invention relates to a method for producing manganese oxide nanoparticles by passing an aqueous solution of manganese salt through an ultrahigh pressure homogenizer including a reaction chamber including a sample inlet, a pressure pump, a nozzle, and an orifice.
본 발명의 초고압 균질기를 이용한 망간산화물 나노입자의 제조 방법은 고속 대량 생산이 가능하고, 상온에서 간단한 공정으로 결정성이 우수하며, 균일한 입도분포 및 작은 평균입경을 가지는 망간산화물 나노입자를 제조할 수 있는 장점이 있다.The manufacturing method of manganese oxide nanoparticles using the ultra-high pressure homogenizer of the present invention is capable of high-speed mass production, excellent crystallinity in a simple process at room temperature, and to produce manganese oxide nanoparticles having a uniform particle size distribution and a small average particle diameter. There are advantages to it.
또한 본 발명의 초고압 균질기를 이용한 망간산화물 나노입자의 제조 방법은 별도의 산성용액 및 화학적인 강한 환원제 또는 침전제 첨가 공정이 필요하지 않아, 보다 친환경적이고, 공정이 간소화된 특성이 있다.In addition, the manufacturing method of manganese oxide nanoparticles using the ultra-high pressure homogenizer of the present invention does not require a separate acidic solution and a chemical strong reducing agent or a precipitant addition process, which is more environmentally friendly and has a simplified process.
또한 본 발명의 초고압 균질기를 이용한 망간산화물 나노입자의 제조 방법은 반응하지 않고 잔류하는 망간 이온 및 미반응 성분들에 대한 반응 평형을 향상시킬 수 있어 보다 높은 수율로서 망간산화물 나노입자를 수득할 수 있는 특징이 있다.In addition, the manufacturing method of the manganese oxide nanoparticles using the ultra-high pressure homogenizer of the present invention can improve the reaction equilibrium of the remaining manganese ions and unreacted components without reacting to obtain manganese oxide nanoparticles with a higher yield There is a characteristic.
도 1은 초고압 균질기를 도시한 도면이며,1 is a diagram showing an ultrahigh pressure homogenizer,
도 2는 초고압 균질기의 노즐 및 오리피스를 포함하는 반응 챔버의 내부를 도시한 도면이며,2 is a view showing the inside of the reaction chamber including the nozzle and the orifice of the ultra-high pressure homogenizer,
도 3은 실시예 1 비교예 1에 따라 제조된 망간산화물을 분말 X-선 회절 분석기로 분석한 결과를 나타낸 그래프이며,3 is a graph showing the results of analyzing a manganese oxide prepared according to Example 1 Comparative Example 1 with a powder X-ray diffraction analyzer,
도 4는 실시예 1 및 비교예 1에서 따라 제조된 망간산화물 입자를 주사전자현미경으로 측정한 이미지이며,Figure 4 is an image of the manganese oxide particles prepared in Example 1 and Comparative Example 1 measured by a scanning electron microscope,
도 5는 실시예 2 및 비교예 2에 따라 제조된 망간산화물을 분말 X-선 회절 분석기로 분석한 결과를 나타낸 그래프이며,5 is a graph showing the results of analyzing a manganese oxide prepared according to Example 2 and Comparative Example 2 by a powder X-ray diffraction analyzer,
도 6은 실시예 2 및 비교예 2에서 제조된 망간산화물 입자의 주사전자현미경으로 측정한 이미지이다.6 is an image measured by a scanning electron microscope of the manganese oxide particles prepared in Example 2 and Comparative Example 2.
이하 첨부한 도면들을 참조하여 본 발명의 초고압 균질기를 이용한 망간산화물 나노입자의 고속 제조 방법을 상세히 설명한다.Hereinafter, a high-speed manufacturing method of manganese oxide nanoparticles using the ultrahigh pressure homogenizer of the present invention will be described in detail with reference to the accompanying drawings.
다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.The drawings introduced below are provided by way of example so that the spirit of the invention to those skilled in the art can fully convey. Therefore, the present invention is not limited to the drawings presented below and may be embodied in other forms, and the drawings presented below may be exaggerated to clarify the spirit of the present invention. At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art to which the present invention belongs, the gist of the present invention in the following description and the accompanying drawings Descriptions of well-known functions and configurations that may be unnecessarily blurred are omitted.
또한 본 명세서에서 특별한 언급 없이 불분명하게 사용된 %의 단위는 중량%를 의미한다.In addition, the unit of% used unambiguously without special mention in this specification means weight%.
본 발명은 5가 이상의 망간염 및 알코올을 포함하는 망간염 수용액을 출발물질로 망간산화물 나노입자를 제조하는 방법 및 5가 이상의 망간염 및 4가 미만의 망간염을 포함하는 망간염 수용액을 출발물질로 망간산화물 나노입자를 제조하는 방법을 포함하는 초고압 균질기를 이용하여 망간산화물 나노입자를 제조하는 방법에 관한 것이다.The present invention provides a method for preparing manganese oxide nanoparticles using an aqueous solution of manganese salts containing manganese salts and alcohols having at least five valent salts, and an aqueous solution of manganese salts containing manganese salts having at least four valent salts and less than tetravalent manganese salts. The present invention relates to a method for preparing manganese oxide nanoparticles using an ultrahigh pressure homogenizer including a method for producing manganese oxide nanoparticles.
따라서 본 발명의 초고압 균질기를 이용한 망간산화물 나노입자의 제조 방법은 별도의 산성용액, 강한 환원제 또는 침전제를 사용하는 기존의 방법보다 친환경적 공정이며, 고속 대량 생산이 가능한 특성을 가진다. 특히 본 발명의 제조 방법은 히드라진(Hydrazine) 또는 인산이수소나트륨(NaH2PO4) 등의 강한 환원제를 사용하지 않으면서도 미세한 나노입자의 제조가 가능한 특징이 있다.Therefore, the manufacturing method of manganese oxide nanoparticles using the ultra-high pressure homogenizer of the present invention is an environmentally friendly process than the conventional method using a separate acidic solution, a strong reducing agent or a precipitating agent, and has the characteristics of high-speed mass production. In particular, the production method of the present invention is characterized in that the production of fine nanoparticles without using a strong reducing agent such as hydrazine (Hydrazine) or sodium dihydrogen phosphate (NaH 2 PO 4 ).
나노입자를 제조하는 대부분의 방법은 고온에서 복잡한 공정 조건으로 반응시키므로 설비에 대한 제반 조건들의 제약이 따르나, 본 발명의 망간산화물 나노입자의 제조 방법은 상온의 온화한 조건에서 초고압 균질기를 이용하여 망간산화물 나노입자의 합성이 가능하며, 공정 시간이 매우 단축됨에 따라 생산성 향상 및 제조설비 단순화의 이점이 있다.Most of the methods for preparing nanoparticles are restricted under various conditions for the equipment because they are reacted under complex process conditions at high temperature.However, the method for preparing manganese oxide nanoparticles of the present invention is manganese oxide using an ultrahigh pressure homogenizer under mild conditions at room temperature. Synthesis of nanoparticles is possible, and as the process time is greatly shortened, there is an advantage of improving productivity and simplifying manufacturing facilities.
이는 초고압 균질기를 기반으로 발생되는 효과이며, 상기 초고압 균질기의 일 예로서 도 1 및 도 2에 그 도면을 도시하였다.This is an effect generated based on the ultrahigh pressure homogenizer, and the drawings are illustrated in FIGS. 1 and 2 as an example of the ultrahigh pressure homogenizer.
상기 초고압 균질기는 시료 주입구, 유체에 압력을 가하여 주는 압력펌프와, 노즐 및 오리피스를 포함하는 반응 챔버, 열교환기 및 배출구를 포함할 수 있다.The ultrahigh pressure homogenizer may include a sample inlet, a pressure pump for applying pressure to the fluid, a reaction chamber including a nozzle and an orifice, a heat exchanger, and an outlet.
상기 압력펌프는 유체에 압력을 가함으로써, 망간 수용액을 노즐 및 오리피스를 포함하는 반응 챔버로 이동시킬 수 있는 역할을 가진다.The pressure pump has a role of moving the manganese aqueous solution to the reaction chamber including the nozzle and the orifice by applying pressure to the fluid.
특히 상기 반응 챔버는 간소화된 구조임에도 불구하고, 상기 전단 및 공동 현상의 발생을 최대한으로 발생시킬 수 있는 구성만으로 조합된 구조를 갖는 것으로, 최소한의 에너지밀도로 최대한의 효과를 발휘할 수 있어, 망간산화물 나노입자의 제조에 매우 적합하다.In particular, although the reaction chamber has a simplified structure, it has a combined structure with only a configuration capable of generating the shear and cavity phenomena to the maximum, and can exhibit the maximum effect with the minimum energy density. It is very suitable for the production of nanoparticles.
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 (a) 5가 이상의 망간염을 포함하는 망간염 수용액 제조 단계, (b) 상기 망간염 수용액을 초고압 균질기를 이용하여 망간산화물 나노입자를 수득하는 단계 및 (c) 상기 나노입자를 세척 및 건조하는 단계를 포함하며, 상기 망간염 수용액은 알코올 및 4가 미만의 망간염 중에서 선택된 어느 하나 또는 두 성분을 포함하는 수용액인 것인 초고압 균질기를 이용한 망간산화물 나노입자의 제조 방법에 관한 것이다.The present invention comprises the steps of (a) preparing an aqueous solution of manganese salts containing manganese salts of at least 5, (b) obtaining manganese oxide nanoparticles using an ultrahigh pressure homogenizer in the aqueous solution of manganese salts, and (c) washing the nanoparticles. And drying, wherein the aqueous solution of manganese salt is an aqueous solution containing any one or two components selected from alcohol and less than tetravalent manganese salt.
본 발명의 일 예에 있어서, 상기 5가 이상의 망간염은 과망간산칼륨 및 과망간산나트륨 중에서 선택된 어느 하나 또는 두 성분을 포함할 수 있다. 예컨대 5가 이상의 과망간산칼륨 및 알코올을 포함하는 망간염 수용액을 출발물질로 초고압 균질기를 이용하여 상온에서 반응시킴으로서 망간산화물 나노입자의 제조가 가능하다. 상기 과망간산칼륨은 강력한 산화제로서, 알코올을 알데히드, 케톤 또는 카르복실산으로 산화시키는 동시에 자기 자신은 4가(+4)로 환원되면서 망간산화물을 형성한다. 또한 폐액 중 상기 카르복실산은 반응 중 형성되는 수산화칼륨에 의해 중화되어 산성용액, 강한 환원제 또는 침전제를 사용하는 기존의 방법보다 친환경적 공정이며, 본 발명의 초고압 균질기에 의해 고속 대량 생산에도 적합하다.In one embodiment of the present invention, the pentavalent or higher manganese salt may include any one or two components selected from potassium permanganate and sodium permanganate. For example, it is possible to prepare manganese oxide nanoparticles by reacting an aqueous solution of manganese salt containing potassium permanganate and an alcohol of 5 or more at room temperature using an ultrahigh pressure homogenizer as a starting material. The potassium permanganate is a powerful oxidizing agent, which oxidizes alcohols to aldehydes, ketones or carboxylic acids while simultaneously reducing manganese oxides to tetravalent (+4). In addition, the carboxylic acid in the waste solution is neutralized by potassium hydroxide formed during the reaction, which is more environmentally friendly than the conventional method using an acidic solution, a strong reducing agent or a precipitating agent, and is suitable for high-speed mass production by the ultrahigh pressure homogenizer of the present invention.
또한 본 발명의 일 예에 있어서, 상기 망간염 수용액은 4가 미만의 망간염을 더 포함할 수 있다. 예컨대 7가(+7)의 과망간산칼륨 및 2가의 망간염이 혼합된 망간염 수용액을 출발물질로 초고압 균질기를 이용하여 상온의 초기 온도에서 반응시킴으로서 망간산화물 나노입자의 제조가 가능하다. 상기 망간염 수용액은 망간 이온을 포함하는 2가의 망간염이 전자를 잃고 수용액 내에서 안정한 상으로 존재하는 4가의 망간 형태로 산화가 이루어진다. 동시에 7가의 과망간산칼륨의 망간 이온은 전자를 얻어 환원되면서 4가 망간 형태로의 반응이 진행된다. 따라서 별도의 산성용액, 강한 환원제, 침전제 등의 망간 화합물 외의 성분의 사용 없이 망간염 간의 반응에 의하여 미반응 망간염(또는 망간이온)의 발생을 극소화하여 반응 수율(생산 수율)을 극대화 할 수 있으며, 이에 따라 고속 생상이 가능한 효과가 있다. 이러한 효과는 초고압 균질기를 통한 초고온 초고압 등의 고에너지가 인가되는 특수한 환경 조건에 기인한다. 또한 별도의 산성용액, 강한 환원제, 침전제 등의 망간 화합물 외의 성분이 필요 없으므로, 불필요한 폐액의 발생을 방지할 수 있다.In addition, in one embodiment of the present invention, the aqueous solution of manganese salt may further include less than tetravalent manganese salt. For example, manganese oxide nanoparticles can be prepared by reacting an aqueous solution of manganese salt containing potassium permanganate of divalent (+7) and divalent manganese salt at an initial temperature of room temperature using an ultrahigh pressure homogenizer as a starting material. The aqueous solution of manganese salt is oxidized in the form of tetravalent manganese in which divalent manganese salt containing manganese ions loses electrons and is present in a stable phase in the aqueous solution. At the same time, the manganese ions of potassium valent manganese peroxide are reduced to electrons, and the reaction proceeds to tetravalent manganese. Therefore, the reaction yield (production yield) can be maximized by minimizing the generation of unreacted manganese salts (or manganese ions) by the reaction between manganese salts without the use of components other than manganese compounds such as acidic solutions, strong reducing agents, and precipitating agents. Therefore, high speed production is possible. This effect is due to the special environmental conditions in which high energy is applied, such as ultra high temperature ultra high pressure, through an ultra high pressure homogenizer. In addition, since components other than manganese compounds, such as an acidic solution, a strong reducing agent, and a precipitant, are not required, unnecessary waste solution can be prevented from occurring.
본 발명의 일 예에 있어서, 상기 4가 미만의 망간염은 염화망간, 황산망간, 질산망간 및 아세트산망간 중에서 선택된 어느 하나 또는 둘 이상의 4가 미만의 성분을 포함할 수 있으며, 바람직하게는 아세트산망간인 것이 경제성, 높은 용해도, 소성 시 대기 환경에 미치는 영향 면에서 좋다. 하지만 이에 제한되는 것은 아니며, 망간을 포함하는 금속염이라면 사용 가능하다.In one embodiment of the present invention, the manganese salt of less than tetravalent may include any one or two or more of less than tetravalent components selected from manganese chloride, manganese sulfate, manganese nitrate and manganese acetate, preferably manganese acetate Is good in terms of economic efficiency, high solubility, and the effect on the atmosphere during firing. However, the present invention is not limited thereto, and a metal salt including manganese may be used.
본 발명의 일 예에 있어서, 상기 망간염 수용액은 5가 이상의 망간염 1 몰에 대하여 4가 미만의 망간염 1.5 내지 3.5 몰비로 혼합된 수용액일 수 있지만, 이에 한정되는 것은 아니다. 상기 범위 내에서 사용할 경우 미반응 5가 이상의 망간염(또는 망간이온) 또는 미반응 4가 미만의 망간염(또는 망간이온) 발생을 보다 최소화할 수 있어, 보다 안정적이고 균일한 입도분포 및 보다 작은 평균입경의 망간산화물 나노 입자의 제조가 가능하다.In one embodiment of the present invention, the aqueous solution of manganese salt may be an aqueous solution mixed with 1.5 to 3.5 molar ratio of manganese salt less than tetravalent with respect to 1 mol of manganese salt of five or more, but is not limited thereto. When used within the above range, it is possible to further minimize the occurrence of unreacted pentavalent or higher manganese salt (or manganese ions) or unreacted manganese salt (or manganese ions), which results in more stable and uniform particle size distribution and smaller It is possible to manufacture manganese oxide nanoparticles of average particle diameter.
본 발명의 일 예에 있어서, 상기 알코올은 크게 제한되는 것은 아니나, C1 내지 C5의 탄소수를 갖는 알코올 중에서 선택된 어느 하나 또는 둘 이상을 포함하는 것이 바람직하다. 예컨대 메탄올, 에탄올, 프로판올, 2-프로판올, 2-부탄올 및 펜탄올 등을 예시할 수 있다. 바람직하게는 경제성 및 인체에 미치는 영향이 미비한 에탄올을 사용하여 상기 과망간산칼륨을 환원시키는 것이 좋지만, 이에 제한되는 것은 아니다. 구체적인 일 예로서, 과망간산칼륨을 물에 용해시킨 후, 유기용매를 혼합하여 망간염 수용액을 제조하는 단계일 수 있다.In one embodiment of the present invention, the alcohol is not particularly limited, but preferably includes one or two or more selected from alcohols having a carbon number of C1 to C5. For example, methanol, ethanol, propanol, 2-propanol, 2-butanol, pentanol, etc. can be illustrated. Preferably, it is preferable to reduce the potassium permanganate by using ethanol having low economic and impact on the human body, but is not limited thereto. As a specific example, the potassium permanganate may be dissolved in water, followed by mixing an organic solvent to prepare an aqueous manganese salt solution.
본 발명의 일 예에 있어서, 상기 망간염 수용액은 전체 중량에 대하여, 알코올 10 내지 75 중량%를 포함할 수 있으며, 바람직하게는 20 내지 60 중량%를 포함하는 것이 좋지만 이에 꼭 제한되는 것은 아니다.In one embodiment of the present invention, the aqueous solution of manganese salt may include 10 to 75% by weight of alcohol, preferably 20 to 60% by weight based on the total weight, but is not necessarily limited thereto.
본 발명의 일 예에 있어서, 알코올을 혼합하기 전 망간염 수용액의 몰농도는 크게 제한되는 것은 아니지만, 0.01 내지 5 M일 수 있으며, 바람직하게는 0.01 내지 1 M인 것이 좋다. 상기 망간염 수용액의 몰농도는 최종 생성물인 망간산화물 나노입자의 크기 및 균일도를 결정하는 유효 변수로, 상기 범위 내에서 망간염 수용액을 제조하는 것이 바람직하지만 이에 제한되는 것은 아니다.In one example of the present invention, the molar concentration of the aqueous solution of manganese salt before mixing the alcohol is not particularly limited, but may be 0.01 to 5 M, preferably 0.01 to 1 M. The molar concentration of the aqueous solution of manganese salt is an effective variable that determines the size and uniformity of the manganese oxide nanoparticles as a final product, it is preferable to prepare an aqueous solution of manganese salt within the above range, but is not limited thereto.
본 발명에서 사용된 초고압 균질기는 시료 주입구, 압력펌프, 노즐 및 오리피스를 포함하는 반응 챔버, 열교환기 및 배출구를 포함할 수 있다.The ultrahigh pressure homogenizer used in the present invention may include a reaction chamber including a sample inlet, a pressure pump, a nozzle, and an orifice, a heat exchanger, and an outlet.
구체적으로, 상기 (b) 단계는 상기 망간염 수용액을 초고압 균질기의 시료 주입구에 투입하고, 초고압 상태로 노즐 및 오리피스를 포함하는 반응 챔버에 통과시켜 침전물을 수득하는 단계를 의미할 수 있다.Specifically, step (b) may mean a step of obtaining a precipitate by introducing the aqueous solution of manganese salt into the sample inlet of the ultra-high pressure homogenizer, and passing through the reaction chamber including the nozzle and the orifice in the ultra-high pressure state.
상기 노즐 및 상기 오리피스의 직경이 작을수록 높은 압력이 인가되어 높은 에너지를 발생시킬 수 있지만, 시간당 처리량이 감소될 수 있으므로 크게 제한되지는 않는다. 예컨대 직경이 50 내지 300 ㎛, 보다 바람직하게는 60 내지 250 ㎛인 것이 시간당 처리량 측면에서 좋지만, 실험 단위가 아닌 생산 공정 단위의 큰 규모에서는 상기 범위 외에서도 충분히 조절하여 사용될 수 있기 때문에 상기 범위로 제한 되는 것은 아니다.The smaller the diameter of the nozzle and the orifice is, the higher the pressure can be applied to generate higher energy, but the throughput per hour can be reduced, so it is not so limited. For example, a diameter of 50 to 300 μm, more preferably 60 to 250 μm is good in terms of throughput, but is limited to the above range because it can be used with sufficient control outside the above range on a large scale of the production process unit, not the experimental unit. It doesn't happen.
또한 상기 반응 챔버는 종래의 망간산화물 나노입자 제조에 사용되는 오토클레이브와 동일한 역할을 포함함으로서, 핵생성 및 결정성장에 영향을 주어 나노 단위로의 입자 생성 및 향상된 균일도를 가질 수 있다.In addition, the reaction chamber includes the same role as the autoclave used in the conventional manganese oxide nanoparticles manufacturing, it can affect the nucleation and crystal growth can have a particle generation and improved uniformity in nano units.
본 발명의 초고압 균질기를 이용한 망간산화물 나노입자 제조 방법은 초기 반응물이 유입될 시 온도는 제한되지 않으므로, 예컨대 상온에서 공정이 진행될 수 있으며, 온도 조절에 크게 관여하지 않아도 무방하나, 상기 초기 온도를 20 내지 80℃ 범위 내로 유지하는 것이 안정적이고 대량 생산 공정의 측면에서 바람직하다. 하지만 실제 초고압 균질기 내에서 반응 시 온도는 초기 입구에 유입될 때와는 상이할 수 있으며, 이를 설명하면 아래와 같다.The method for preparing manganese oxide nanoparticles using the ultrahigh pressure homogenizer of the present invention does not limit the temperature when the initial reactant is introduced. For example, the process may be performed at room temperature, and may not be significantly involved in temperature control. Maintaining within the range of from -80 [deg.] C. is stable and desirable in view of mass production processes. However, the temperature during the reaction in the actual ultra-high pressure homogenizer may be different from when it is introduced into the initial inlet.
상기 반응 챔버에 망간염 수용액을 통과시킬 경우, 전단력, 공동현상, 충돌현상이 나타난다. 특히 공동 현상 발생 시 기포 발생, 성장, 파괴 과정이 수 나노 초 만에 발생하는데, 이때 기포 내부의 온도는 5000 K 이하, 압력은 1000 bar 이하 근처까지 상승될 수 있다. 하지만 상기 공동 현상은 분자 단위인 미시적인 시점에서, 수 나노초 만에 발생한 후 사라지는 과정이 반복되므로, 전체적인 발열현상이 나타나지 않으면서도 일반적으로 교반 및 수열합성 등의 방법들 보다 큰 에너지를 갖는다. 때문에 짧은 시간에 핵생성 및 결정성장이 일어나므로, 고속으로 나노입자의 합성이 가능하여 대량생산에 적합하다.When passing the aqueous solution of manganese salt through the reaction chamber, shear force, cavitation, collision phenomenon appears. In particular, when cavitation occurs, bubble generation, growth, and breakdown processes occur in a few nanoseconds. In this case, the temperature inside the bubble may be raised to 5000 K or lower and the pressure to 1000 bar or lower. However, since the cavitation occurs at the microscopic point of time, which is a molecular unit, it disappears after a few nanoseconds, and thus generally has a larger energy than the methods such as stirring and hydrothermal synthesis without generating an overall exothermic phenomenon. Because of this, nucleation and crystal growth occur in a short time, and thus nanoparticles can be synthesized at high speed, which is suitable for mass production.
본 발명의 일 예에 있어서, (b) 단계는 상기 망간염 수용액이 재순환이송관으로 이송되는 단계가 1 내지 20 회 반복되는 것을 포함할 수 있다. 열교환기로부터 고압펌프로 이송되는 단계를 여러 번 반복하여 망간산화물 나노입자를 제조할 수 있으며, 바람직하게는 재순환이송관에 의해 이송되는 단계를 1 내지 20 회 반복함으로써, 균일한 크기 분포를 갖는 망간산화물 나노입자로 제조할 수 있으나, 이에 제한되는 것은 아니다.In one example of the present invention, step (b) may include repeating the step of transporting the manganese salt aqueous solution to the recycle transport pipe 1 to 20 times. The manganese oxide nanoparticles may be prepared by repeating the step of transferring the high pressure pump from the heat exchanger several times. Preferably, the step of transporting the manganese oxide nanoparticles by repeating the transfer pipe is repeated 1 to 20 times. It may be prepared from oxide nanoparticles, but is not limited thereto.
상기 (b) 단계에서 반응 챔버에 전해지는 압력은 크게 제한되지는 않으나 100 내지 2,000 bar일 수 있다.The pressure transmitted to the reaction chamber in step (b) is not particularly limited but may be 100 to 2,000 bar.
본 발명의 일 예에 있어서, (c) 단계는 침전물을 세척 및 건조하는 단계를 포함할 수 있다.In one embodiment of the present invention, step (c) may comprise the step of washing and drying the precipitate.
상기 세척은 증류수, 에탄올 및 아세톤 등이 사용되는 것이 바람직하나, 세척에 효과적이고, 세척 후 용이하게 제거될 수 있는 물질이면 이에 제한되지는 않는다.Distilled water, ethanol and acetone are preferably used for the washing, but are not limited thereto as long as they are effective for washing and can be easily removed after washing.
상기 건조는 수득된 침전물의 수분을 제거하기 위하여 100 내지 200 ℃에서 3 내지 10 시간 동안 진행될 수 있다.The drying may be performed for 3 to 10 hours at 100 to 200 ℃ to remove the moisture of the obtained precipitate.
본 발명의 초고압 균질기를 이용하여 제조된 망간산화물 나노입자는 구형 또는 막대 형상의 형상을 가질 수 있으며, 높은 결정성 및 균일한 분포도를 가지는 망간산화물 나노입자를 제조 할 수 있으면서, 고속 대량생산이 가능한 특징이 있다.Manganese oxide nanoparticles prepared using the ultra-high pressure homogenizer of the present invention may have a spherical or rod-shaped shape, while being able to manufacture manganese oxide nanoparticles having high crystallinity and uniform distribution, high-speed mass production is possible There is a characteristic.
이하, 본 발명에서 이용되는 초고압 균질기에 대하여 보다 자세히 설명한다.Hereinafter, the ultra-high pressure homogenizer used in the present invention will be described in more detail.
또한 본 명세서의 초고압 균질기에서 언급된 결합 또는 결합 구조는 특정 구조를 가지는 부품 단위 또는 장치 단위가 물리적으로 결합된 장치를 의미할 수 있지만, 특정 구조들이 결합된 구조를 포함하는 하나의 단일 구조의 오리피스를 가지는 장치가 바람직하다.In addition, the bonding or bonding structure mentioned in the ultra-high pressure homogenizer of the present specification may refer to a device having a specific structure or a unit unit device physically coupled, but a single structure including a structure in which specific structures are combined Preference is given to devices having orifices.
또한 하기에 기재된 수치는 이에 꼭 한정되는 것은 아니고 다만 보다 바람직한 일 예로서 기재된 것이며, 목적 또는 필요에 따라 조절될 수 있다.In addition, the numerical values described below are not limited thereto, but are described as more preferable examples, and may be adjusted according to the purpose or needs.
상기 초고압 균질기는 시료 주입구, 압력펌프, 노즐 및 오리피스를 포함하는 반응 챔버, 열교환기 및 배출구를 포함할 수 있다.The ultrahigh pressure homogenizer may include a reaction chamber including a sample inlet, a pressure pump, a nozzle and an orifice, a heat exchanger, and an outlet.
특히 상기 반응 챔버의 구조가 본 발명의 망간산화물 나노입자를 제조하기 위한 핵심적 부분이라 할 수 있다. 예컨대 노즐을 포함하는 입구, 제1오리피스, 제2오리피스, 제3오리피스 및 출구가 순차적으로 결합된 구조를 포함할 수 있으며, 이에 대한 일 예로서 상기 반응 챔버의 도면은 도 2에 도시되어 있다.In particular, the structure of the reaction chamber can be said to be a key part for manufacturing the manganese oxide nanoparticles of the present invention. For example, the inlet, the first orifice, the second orifice, the third orifice, and the outlet including the nozzle may include a structure in which the reactor is sequentially coupled. As an example, a drawing of the reaction chamber is illustrated in FIG. 2.
본 발명의 일 예에 있어서, 제1오리피스 내지 제3오리피스를 포함하는 오리피스의 직경은 25 내지 300 ㎛인 것이 바람직하지만, 생산 규모 또는 공정 규모에 따라 적절하게 변화될 수 있다.In an example of the present invention, the diameter of the orifice including the first orifice to the third orifice is preferably 25 to 300 μm, but may be appropriately changed according to the production scale or the process scale.
본 발명의 일 예에 있어서, 입구는 노즐과 결합되는 구조를 가지며, 상기 입구는 제1오리피스와 결합될 수 있으며, 제1오리피스 보다 큰 직경을 가질 수 있다. 따라서 입구가 제1오리피스보다 큰 경우 상기 입구 및 상기 제1오리피스와 결합되는 좁아지는 구간이 더 포함될 수 있는데, 구체적으로 상기 구간의 상부 및 하부가 대각선으로 좁아지는 구간일 수 있으며, 상기 입구 및 상기 노즐의 직경은 독립적으로 55 내지 300 ㎛일 수 있다. 하지만 이에 제한되는 것은 아니며, 생산 규모 또는 공정 규모에 따라 적절하게 조절될 수 있다.In one embodiment of the present invention, the inlet has a structure coupled to the nozzle, the inlet may be combined with the first orifice, may have a larger diameter than the first orifice. Therefore, when the inlet is larger than the first orifice may further include a narrowing section coupled to the inlet and the first orifice, specifically, the upper and lower portions of the section may be a diagonal narrowing, the inlet and the The diameter of the nozzles can be independently 55 to 300 μm. However, the present invention is not limited thereto and may be appropriately adjusted according to the production scale or the process scale.
본 발명의 일 예에 있어서, 제1오리피스와 입구와의 결합각은 제한되지 않으며, 예컨대 평행하여 결합된 것일 수 있고 평행하지 않은 각도로 결합된 것일 수 있다. 또한 상기 제1오리피스의 직경은 25 내지 150 ㎛인 것이 바람직하지만, 이에 제한되는 것은 아니다.In one example of the present invention, the coupling angle between the first orifice and the inlet is not limited, and may be, for example, coupled in parallel or combined at non-parallel angles. In addition, the diameter of the first orifice is preferably 25 to 150 μm, but is not limited thereto.
본 발명의 일 예에 있어서, 제2오리피스는 제1오리피스와 수직으로 결합되는 것이 바람직하지만, 반드시 수직일 필요는 없으며, 70 내지 110°로 결합될 수 있지만 이에 제한되는 것은 아니다. 또한 제2오리피스는 제1오리피스보다 그 직경이 보다 큰 것이 바람직하고, 구체적으로 35 내지 300 ㎛, 보다 바람직하게는 45 내지 165 ㎛를 예시할 수 있지만, 이에 제한되는 것은 아니다.In one example of the present invention, the second orifice is preferably coupled vertically with the first orifice, but is not necessarily vertical, and may be combined with 70 to 110 °, but is not limited thereto. In addition, the second orifice preferably has a larger diameter than the first orifice, and specifically, may illustrate 35 to 300 μm, more preferably 45 to 165 μm, but is not limited thereto.
본 발명의 일 예에 있어서, 제3오리피스는 제2오리피스와 수직으로 결합되는 것이 바람직하지만, 반드시 수직일 필요는 없으며, 70 내지 110°로 결합될 수 있으며, 보다 바람직하게는 250 내지 290°로 Z 타입의 구조인 것이 바람직하지만, 이에 제한되는 것은 아니다. 제3오리피스의 직경은 제1 오리피스와 마찬가지로 제2오리피스보다 그 직경이 작은 것이 바람직하고, 구체적으로 25 내지 150 ㎛를 예시할 수 있지만 이에 제한되는 것은 아니다. 또한 제1오리피스와 제2오리피스와 결합된 구조 및 제2오리피스와 제3오리피스와의 결합된 구조는 동일 평면 상에 위치한 2차원적인 구조가 바람직하나, 이에 반드시 한정되는 것은 아니며, 3차원 상에 위치한 구조도 가능하다.In one embodiment of the present invention, the third orifice is preferably coupled vertically with the second orifice, but is not necessarily vertical, and may be combined at 70 to 110 °, more preferably at 250 to 290 °. It is preferable that the structure is Z type, but is not limited thereto. It is preferable that the diameter of the third orifice is smaller than that of the second orifice like the first orifice. Specifically, the diameter of the third orifice may be 25 to 150 μm, but is not limited thereto. In addition, the structure combined with the first orifice and the second orifice and the structure combined with the second orifice and the third orifice are preferably two-dimensional structures located on the same plane, but are not necessarily limited thereto. Located structures are also possible.
본 발명의 일 예에 있어서, 출구와 제3오리피스의 결합각은 제한되지 않으며, 예컨대 평행하여 결합된 것일 수 있거나, 평행하지 않은 각도로 결합된 것일 수 있다. 상기 출구는 제3오리피스와 결합될 수 있으며, 제3오리피스 보다 큰 직경을 가질 수 있지만 이에 제한되지 않는다. 따라서 출구가 제3오리피스보다 큰 경우 상기 출구 및 상기 제3오리피스와 결합되는 좁아지는 구간이 더 포함될 수 있는데, 구체적으로 상기 구간의 상부 및 하부가 대각선으로 좁아지는 구간일 수 있다. 예컨대 상기 출구의 직경은 55 내지 300 ㎛일 수 있지만, 이에 제한되는 것은 아니다.In one example of the present invention, the coupling angle of the outlet and the third orifice is not limited, and may be, for example, coupled in parallel, or combined at non-parallel angles. The outlet may be coupled to the third orifice and may have a diameter larger than that of the third orifice, but is not limited thereto. Therefore, when the outlet is larger than the third orifice, the outlet and the narrower section coupled with the third orifice may be further included. Specifically, the upper and lower portions of the section may be diagonally narrowed. For example, the diameter of the outlet may be 55 to 300 μm, but is not limited thereto.
또한 일 예에 있어서, 상기 출구는 열교환기로 통하는 배관과 직접 또는 간접적으로 결합된 구조를 가질 수 있다.In addition, in one example, the outlet may have a structure directly or indirectly coupled to the pipe leading to the heat exchanger.
상술한 초고압균질기의 구조와 함께 상술한 망간염 수용액(조성, 조성비 등)을 포함하는 제조 방법을 만족하는 경우, 전단, 공동 및 충돌 현상을 보다 극대화시킬 수 있어, 동일 에너지 밀도 대비 보다 효과적으로 망간산화물 나노입자의 높은 수율 및 고속생산이 가능하다.When the manufacturing method including the above-described aqueous solution of manganese salt (composition, composition ratio, etc.) together with the structure of the ultra-high pressure homogenizer is satisfied, the shear, cavity, and collision phenomena can be maximized, and manganese more effectively compared to the same energy density. High yield and high speed production of oxide nanoparticles is possible.
특히 상기 구조에서 충돌로 인한 망간산화물 분자 또는 입자 내부에 전단 및 공동 현상이 발생하여 분자 간 사슬이 끊어지거나, 입자들의 내부 붕괴 현상이 발생하게 되고, 상기 구조 및 망간염 수용액 구성의 결합에 의해 나노 단위까지 분쇄시키는데 필요한 에너지가 분산되는 것을 최소화 할 수 있고, 상기 충돌로 인한 상기 분자 또는 입자 내부의 전단 및 공동 현상에 의한 입자의 불안정성 또한 최소화할 수 있다.In particular, shear and cavitation occur inside manganese oxide molecules or particles due to collisions in the structure, resulting in breakage of intermolecular chains or internal disintegration of particles, and by the combination of the structure and the aqueous solution of manganese salt. It is possible to minimize the dispersion of the energy required to break up to the unit, and to minimize the instability of the particles due to shear and cavitation inside the molecules or particles due to the collision.
상기 전단 현상은 물질 내부 양쪽에 크기가 같고 방향이 반대인 두 힘이 가해져 물질 내부에서 어긋남이 발생하는 현상을 의미하고, 상기 공동 현상은 국부적인 압력 변화를 일으켜 거기에 공동이 생기는 현상을 의미한다.The shearing phenomenon refers to a phenomenon in which a displacement occurs inside the material due to the application of two equally opposite and opposite directions on both sides of the inside of the material, and the cavitation refers to a phenomenon in which a cavity is generated by causing a local pressure change. .
특히 이러한 구조를 갖는 오리피스를 포함하는 반응 챔버는 간소화된 구조임에도 불구하고, 상기 망간염 수용액 구성과 결합되어 전단 및 공동 현상의 발생을 최대한으로 발생시킬 수 있어, 최소한의 에너지밀도로 최대한의 상술한 효과를 발휘할 수 있어, 망간산화물 나노입자의 대량생산 및 고속 생산에 매우 적합하다.In particular, although the reaction chamber including the orifice having such a structure is a simplified structure, it can be combined with the aqueous solution of manganese salt to generate the maximum shear and cavitation, so that the above-mentioned maximum with the minimum energy density. It can exert an effect and is very suitable for mass production and high speed production of manganese oxide nanoparticles.
일반적으로 안정적으로 초고압을 발생시키기 위해, 예컨대 헌팅의 발생 등을 억제하기 위해, 펌프의 회전수를 일정 rpm으로 조절하는 공정이 필수적이다. 즉, 직경의 크기가 작아짐에 따라 펌프의 rpm에 따른 헌팅에 의한 압력의 변화가 급격하게 변화하게 된다. 예컨대 70 마이크로미터 직경에서 펌프의 rpm 조절을 통한 압력 제어는 가능하지만, 상기 직경의 크기가 60 마이크로미터 정도로 작을 경우 수 rpm 차이에 의해서도 압력의 변화가 급격하게 발생하므로, 통상의 기술자라해도 제어가 어렵거나, 최종 수득된 망간산화물 나노입자 또한 실질적으로 사용 어려운 불균일한 분포도를 갖게 된다.In general, in order to stably generate ultra high pressure, for example, to suppress the occurrence of hunting, etc., a process of adjusting the rotation speed of the pump at a constant rpm is essential. That is, as the diameter decreases, the pressure change due to the hunting according to the rpm of the pump changes rapidly. For example, pressure control by adjusting the rpm of the pump is possible at a diameter of 70 micrometers, but when the size of the diameter is as small as 60 micrometers, the pressure changes rapidly due to a few rpm difference. Difficult or finally obtained manganese oxide nanoparticles also have a heterogeneous distribution that is substantially difficult to use.
하지만 본원발명의 상술한 초고압 균질기 구조 및 망간염 수용액 구성의 결합에 의해 공정의 안정적인 제어는 물론, 최소한의 에너지밀도로 최대한의 효과를 발휘할 수 있어, 망간산화물 나노입자의 제조에 매우 적합한 기술이라 할 수 있다.However, the combination of the ultra-high pressure homogenizer structure and the manganese salt solution composition described above of the present invention can not only stably control the process but also exhibit the maximum effect with the minimum energy density, which is a very suitable technology for the preparation of manganese oxide nanoparticles. can do.
따라서 본 발명의 망간산화물 나노입자 제조 방법은 상기의 구조를 갖는 챔버를 이용하여 상술한 망간 수용액을 반응시킴으로써, 공정이 단순하며, 공정시간이 단축됨과 동시에 균일한 크기의 망간산화물 나노입자를 고속 대량 생산할 수 있고, 또한 망간 화합물 외의 별도의 첨가제를 첨가하지 않고 친환경적으로 망간산화물 나노입자를 제조할 수 있다.Therefore, the method for producing manganese oxide nanoparticles of the present invention by reacting the above-described aqueous solution of manganese using the chamber having the above structure, the process is simple, the process time is shortened and at the same time high-speed mass of manganese oxide nanoparticles of uniform size It can be produced, and also can be produced environmentally friendly manganese oxide nanoparticles without adding a separate additive other than the manganese compound.
특히 나노 입자 합성 시, 입자의 크기는 핵생성 시간 및 결정성장 속도에 의존하게 되는데, 핵생성 시간이 짧을수록, 결정성장 속도가 느릴수록 입자의 크기는 감소하게 된다. 즉, 본 발명에 사용되는 초고압 균질기에 의해 높은 에너지가 인가되어 전단, 공동 및 충돌 현상을 각각의 입자에 유도하여 핵생성 속도를 가속화시킴에 따라 보다 작은 크기의 입자를 형성하게 된다.In particular, when the nanoparticles are synthesized, the particle size depends on the nucleation time and crystal growth rate. The shorter the nucleation time, the slower the crystal growth rate, the particle size decreases. That is, high energy is applied by the ultra-high pressure homogenizer used in the present invention to induce shear, cavity, and collision phenomena to each particle, thereby accelerating the rate of nucleation to form particles of smaller size.
일반적으로 망간염 수용액 상에서 각 반응의 평형 상태에 의존함에 따라 반응되지 않은 망간 이온 또는 망간염이 필수적으로 발생하게 되는데, 상기 초고압 균질를 통과함으로써 이러한 미반응물까지도 반응하여 망간산화물 나노입자를 형성하기 때문에 효과적으로 망간산화물 나노입자를 제조할 수 있다.In general, depending on the equilibrium state of each reaction in the aqueous solution of manganese salt, unreacted manganese ions or manganese salt is essentially generated, and even through the ultra-high pressure homogeneity, even unreacted reacts to form manganese oxide nanoparticles effectively. Manganese oxide nanoparticles can be prepared.
이하 본 발명을 실시예를 통해 상세히 설명하나, 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로, 본 발명의 권리범위가 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but these are for explaining the present invention in more detail, and the scope of the present invention is not limited by the following Examples.
[실시예 1]Example 1
출발물질로 과망간산칼륨을 증류수에 투입하여 0.2 M의 과망간산칼륨 수용액을 제조하였다. 과망간산칼륨의 환원을 위하여 상기 수용액 6.5 ℓ에 에탄올 1.5 ℓ를 혼합하여 상온에서 5 분 동안 혼합하였다.As a starting material, potassium permanganate was added to distilled water to prepare a 0.2 M aqueous potassium permanganate solution. For the reduction of potassium permanganate, 1.5 L of ethanol was mixed with 6.5 L of the aqueous solution, followed by mixing at room temperature for 5 minutes.
[표 1]TABLE 1
Figure PCTKR2016000156-appb-I000001
Figure PCTKR2016000156-appb-I000001
상기 혼합된 수용액을 1500 bar의 압력으로 도 2에 도시된 도면을 참조로 한 상기 표 1의 규격을 가진 반응 챔버를 포함하는 도 1의 도면을 참조로 한 초고압 균질기(일신오토클레이브 NH-8000)에 2회 통과시켜 진한 갈색의 침전물을 얻었으며, 2회 통과 시 걸린 시간은 2 분 이었다. 상기 침전물은 증류수에 의해 잔류 이온이 제거된 뒤, 180 ℃에서 10 시간 동안 건조시켜 망간산화물 나노입자를 수득하였다. Ultra-high pressure homogenizer (ILSIN Autoclave NH-8000 with reference to the drawing of FIG. 1 including the reaction chamber having the specifications of Table 1 with reference to the drawing shown in FIG. 2 at a pressure of 1500 bar in the mixed aqueous solution) ) Twice to obtain a dark brown precipitate, which took 2 minutes. The precipitate was removed by distilled water, and then dried at 180 ° C. for 10 hours to obtain manganese oxide nanoparticles.
상기 망간산화물 나노입자를 분말 X-선 회절 분석기(Rigaku, SmartLab)를 이용하여 결정성 및 평균입경(Scherrer equation 이용)을 측정 및 분석하고, 전계방출형 주사전자현미경(FE-SEM, S-4800, HITACHI)을 이용하여 크기, 형태 및 입도분포를 측정하여 도 3, 도 4 및 표 2에 그 결과를 나타내었다.Using the powder X-ray diffractometer (Rigaku, SmartLab), the manganese oxide nanoparticles were measured and analyzed for crystallinity and average particle size (using the Scherrer equation), and a field emission scanning electron microscope (FE-SEM, S-4800). , HITACHI) to measure the size, shape and particle size distribution is shown in Figure 3, 4 and Table 2.
[실시예 2]Example 2
출발물질로 과망간산칼륨 94 g을 증류수 4 ℓ에 투입하여 0.15 M의 과망간산칼륨 수용액을 제조하였고, 망간아세테이트(아세트산망간) 220.58 g을 증류수 4 ℓ에 투입하여 0.225 M의 망간아세테이트 용액을 제조하였다. 상기 용액들을 상온에서 5분 동안 혼합한 후, 1500 bar의 압력으로 표 1의 규격과 같은 초고압 균질기(일신오토클레이브 NH-8000)에 2회 통과시켜 진한 갈색의 침전물을 얻었다. 상기 침전물은 증류수에 의해 잔류 이온이 제거된 뒤, 200℃에서 10 시간 동안 건조시켜 망간산화물 나노입자를 수득하였다.As a starting material, 94 g of potassium permanganate was added to 4 L of distilled water to prepare 0.15 M aqueous potassium permanganate solution, and 220.58 g of manganese acetate (manganese acetate) was added to 4 L of distilled water to prepare 0.225 M of manganese acetate solution. The solutions were mixed at room temperature for 5 minutes and then passed through an ultrahigh pressure homogenizer (ILSIN Autoclave NH-8000) as shown in Table 1 at a pressure of 1500 bar to obtain a dark brown precipitate. The precipitate was removed by distilled water, and then dried at 200 ° C. for 10 hours to obtain manganese oxide nanoparticles.
상기 망간산화물 나노입자를 실시예 1과 동일한 방법으로 측정 및 분석하여 도 5 및 도 6 및 표 2에 그 결과를 나타내었다.The manganese oxide nanoparticles were measured and analyzed in the same manner as in Example 1, and the results are shown in FIGS. 5, 6, and 2.
[실시예 3]Example 3
제1오리피스 내지 제3오리피스의 직경이 75 ㎛인 것 대신 50 ㎛인 것을 제외하고, 실시예 1과 동일하게 망간산화물 나노입자를 수득하여, 표 2에 그 결과를 나타내었다.Manganese oxide nanoparticles were obtained in the same manner as in Example 1 except that the diameters of the first or third orifice were 50 μm instead of 75 μm, and the results are shown in Table 2.
[실시예 4]Example 4
제1오리피스 및 제2오리피스의 결합각과 제2오리피스 및 제3오리피스의 결합각이 90°인 것 대신 45°인 것을 제외하고, 실시예 1과 동일하게 망간산화물 나노입자를 수득하여, 표 2에 그 결과를 나타내었다.Manganese oxide nanoparticles were obtained in the same manner as in Example 1 except that the bonding angles of the first orifice and the second orifice and the bonding angles of the second orifice and the third orifice were 45 ° instead of 90 °. The results are shown.
[비교예 1] Comparative Example 1
상기 실시예 1의 초고압 균질기에 통과시키는 대신 상온에서 2 시간 동안 교반 한 것을 제외하고, 실시예 1과 동일한 방법으로 망간산화물 나노입자를 제조하였으며, 상기 제조된 망간산화물 나노입자의 물성을 측정한 결과를 도 3 및 도 4 및 표 2에 나타내었다.Manganese oxide nanoparticles were prepared in the same manner as in Example 1, except that the mixture was stirred at room temperature for 2 hours instead of passing through the ultrahigh pressure homogenizer of Example 1, and the physical properties of the prepared manganese oxide nanoparticles were measured. 3 and 4 and Table 2 are shown.
[비교예 2] Comparative Example 2
상기 실시예 2의 초고압 균질기에 통과시키는 대신 상온에서 2 시간 동안 교반 한 것을 제외하고, 실시예 1과 동일한 방법으로 망간산화물 나노입자를 제조하였으며, 상기 제조된 망간산화물 나노입자의 물성을 측정한 결과를 도 5 및 도 6 및 표 2에 나타내었다.Manganese oxide nanoparticles were prepared in the same manner as in Example 1, except that the mixture was stirred at room temperature for 2 hours instead of passing through the ultrahigh pressure homogenizer of Example 2, and the physical properties of the prepared manganese oxide nanoparticles were measured. 5 and 6 and Table 2 are shown.
하기 표 2는 실시예 1 내지 실시예 4, 비교예 1 및 비교예 2에 따른 망간산화물 나노입자의 평균입경, 입도분포 및 제조 시간(총 걸린 시간)을 나타낸 표이다.Table 2 is a table showing the average particle diameter, particle size distribution and manufacturing time (total time taken) of the manganese oxide nanoparticles according to Examples 1 to 4, Comparative Example 1 and Comparative Example 2.
[표 2]TABLE 2
Figure PCTKR2016000156-appb-I000002
Figure PCTKR2016000156-appb-I000002
상기 표 2에 나타난 바와 같이, 실시예 1 내지 실시예 4에 따라 제조된 망간산화물 나노입자의 평균 입경은 20 nm 미만으로 매우 작았으며, 그 입도분포 또한 최소 88% 이상에서 20.6 nm 미만의 입경을 가졌다. As shown in Table 2, the average particle diameter of the manganese oxide nanoparticles prepared according to Examples 1 to 4 was very small, less than 20 nm, the particle size distribution also at least 88% or more than 20.6 nm Had
도 3 및 도 5에 나타난 바와 같이, 실시예 1 및 실시예 2에 따른 망간산화물 나노입자 피크는 각각 델타(δ)와 감마(γ) 상의 망간산화물(MnO2)로 분석되었지만, 초고압 균질기를 통과 시키지 않은 비교예 1의 경우 비정질로 분석되었으며, 비교예 2의 경우 결정성이 현저히 낮은 것으로 분석되었다. 이로부터 초고압 균질기를 이용하여 제조된 망간산화물은 결정성이 높고, 불순물이 없는 순수한 망간산화물로 합성됨을 확인하였다.As shown in FIGS. 3 and 5, the manganese oxide nanoparticle peaks according to Examples 1 and 2 were analyzed as manganese oxides (MnO 2 ) on delta (δ) and gamma (γ), respectively, but passed through an ultrahigh pressure homogenizer. In Comparative Example 1, which was not added, it was analyzed as amorphous, and in Comparative Example 2, it was analyzed that crystallinity was remarkably low. From this, it was confirmed that the manganese oxide prepared using the ultrahigh pressure homogenizer was synthesized as pure manganese oxide having high crystallinity and no impurities.
이는 초고압균질기를 통하여 높은 에너지가 망간 수용액 또는 망간산화물에 인가됨으로서, 결정성장을 가속화함에 따라 보다 높은 결정성을 나타내는 것으로 보인다.This is because high energy is applied to the aqueous solution of manganese or manganese oxide through an ultrahigh pressure homogenizer, and thus appears to exhibit higher crystallinity as it accelerates crystal growth.
도 4 및 도 6에 나타난 바와 같이 실시예 1 및 실시예 2에 따른 망간산화물 나노입자는 비교예 1 및 비교예 2에 따른 망간산화물 나노입자 대비 보다 작은 평균입경 및 보다 균일한 입도분포를 갖는 것으로 분석되었다. 나노입자 합성 시 입자의 크기는 핵생성 시간 및 결정성장 속도에 의존한다. 핵생성 시간이 짧을수록, 결정성장 속도가 느릴수록 입자의 크기는 감소하게 되므로, 이러한 결과는 초고압균질기의 높은 에너지가 핵생성 속도를 가속화시킴에 따른 결과로 판단된다.As shown in FIGS. 4 and 6, the manganese oxide nanoparticles according to Examples 1 and 2 have a smaller average particle diameter and a more uniform particle size distribution than those of the manganese oxide nanoparticles according to Comparative Examples 1 and 2. Analyzed. The particle size in nanoparticle synthesis depends on nucleation time and crystal growth rate. The shorter the nucleation time and the slower the crystal growth rate, the smaller the particle size. This result is considered to be a result of the high energy of the ultra-high pressure homogenizer accelerates the nucleation rate.
따라서 반응하지 않고 잔류하는 망간 이온 및 미반응 성분들에 대한 반응 평형을 향상시켜 보다 높은 수율로서 망간산화물 나노입자를 수득하였다.Therefore, the reaction equilibrium with respect to the remaining manganese ions and unreacted components remaining unreacted to obtain manganese oxide nanoparticles with a higher yield.
실시예 3의 경우 오리피스 직경이 작아 압력 조절이 용이 하지 못하며, 입자들로 인하여 오리피스 노즐 막힘 현상이 발생하여 공정 제어가 쉽지 않았고, 제조된 망간산화물 나노입자는 100 nm 이상으로 그 평균 크기가 실시예 1 및 실시예 2에 비하여 상대적으로 컸다. 하지만 실시예 1 및 실시예 2의 경우 공정의 제어가 수월하였으며, 보다 안정적인 망간산화물 나노입자를 제조할 수 있었다.In the case of Example 3, the orifice diameter is not easy to control the pressure, the orifice nozzle clogging occurs due to the particles, the process control was not easy, and the manufactured manganese oxide nanoparticles have an average size of more than 100 nm It was relatively large compared to 1 and Example 2. However, in Example 1 and Example 2 it was easy to control the process, it was able to produce a more stable manganese oxide nanoparticles.
특히 입도분포가 균일하고, 보다 작은 망간산화물 나노입자를 제조할 수 있는 것은 앞에서 언급한 구조를 갖는 오리피스를 포함하는 반응 챔버에 의해 발생하는 향상된 효과로서, 상기 구조는 전단, 공동 및 충돌 현상의 발생을 최대한으로 발생시킬 수 있는 구성만으로 조합된 구조를 갖기 때문이다.In particular, being able to produce smaller manganese oxide nanoparticles with a uniform particle size distribution is an improved effect produced by the reaction chamber comprising an orifice having the above-mentioned structure, which produces shear, cavity and collision phenomena. This is because it has a combined structure with only the configuration that can generate the maximum.
또한 공정 시간의 경우 불과 수 분 정도로 매우 빠른 시간 내에 망간산화물 나노입자의 제조가 가능하기 때문에 망간산화물 나노입자의 품질 측면뿐만 아니라 제조 공정에서 상당한 이점을 갖는다.In addition, in the case of the process time, since the manganese oxide nanoparticles can be manufactured in a very fast time, such as only a few minutes, there are significant advantages in the manufacturing process as well as the quality of the manganese oxide nanoparticles.
[부호의 설명][Description of the code]
10 : 시료주입구10: sample inlet
11 : 압력펌프11: pressure pump
12 : 압력게이지12: pressure gauge
13 : 열교환기13: heat exchanger
14 : 배출구14 outlet
15 : 재순환이송관15: recycling transfer pipe
20 : 노즐 및 오리피스를 포함하는 반응 챔버20: reaction chamber including nozzle and orifice
21 : 오리피스21: Orifice

Claims (10)

  1. (a) 5가 이상의 망간염을 포함하는 망간염 수용액 제조 단계,(a) preparing an aqueous solution of manganese salt containing pentavalent or higher manganese salt,
    (b) 상기 망간염 수용액을 초고압 균질기를 이용하여 망간산화물 나노입자를 수득하는 단계 및(b) obtaining manganese oxide nanoparticles from the aqueous manganese salt solution using an ultrahigh pressure homogenizer; and
    (c) 상기 나노입자를 세척 및 건조하는 단계(c) washing and drying the nanoparticles
    를 포함하며, 상기 망간염 수용액은 알코올 및 4가 미만의 망간염 중에서 선택된 어느 하나 또는 두 성분을 포함하는 수용액인 것인 망간산화물 나노입자의 제조 방법.To include, wherein the aqueous solution of manganese manganese oxide is an aqueous solution comprising one or two components selected from manganese salts less than tetravalent.
  2. 제1항에 있어서,The method of claim 1,
    상기 5가 이상의 망간염은 과망간산칼륨 및 과망간산나트륨 중에서 선택된 어느 하나 또는 두 성분을 포함하는 것인 망간산화물 나노입자의 제조 방법.The pentavalent or higher manganese salt is a method for producing manganese oxide nanoparticles comprising any one or two components selected from potassium permanganate and sodium permanganate.
  3. 제1항에 있어서,The method of claim 1,
    상기 알코올은 C1 내지 C5의 탄소수를 갖는 알코올 중에서 선택된 어느 하나 또는 둘 이상을 포함하는 것인 망간산화물 나노입자의 제조 방법.The alcohol is a method for producing manganese oxide nanoparticles comprising any one or two or more selected from alcohols having a carbon number of C1 to C5.
  4. 제1항에 있어서,The method of claim 1,
    상기 망간염 수용액은 전체 중량에 대하여, 알코올 10 내지 75 중량%를 포함하는 것인 망간산화물 나노입자의 제조 방법.The aqueous solution of manganese salt is a method for producing manganese oxide nanoparticles comprising 10 to 75% by weight of alcohol based on the total weight.
  5. 제1항에 있어서,The method of claim 1,
    상기 4가 미만의 망간염은 염화망간, 황산망간, 질산망간 및 아세트산망간 중에서 선택된 어느 하나 또는 둘 이상의 4가 미만의 성분을 포함하는 것인 망간산화물 나노입자의 제조 방법.The manganese salt of less than four valent manganese oxide, manganese sulfate, manganese nitrate and manganese acetate containing any one or two or more of less than four components of the manganese acetate manufacturing method.
  6. 제1항에 있어서,The method of claim 1,
    상기 망간염 수용액은 5가 이상의 망간염 1 몰에 대하여 4가 미만의 망간염 1.5 내지 3.5 몰비로 혼합된 수용액인 것인 망간산화물 나노입자의 제조 방법.The aqueous solution of manganese salt is a method for producing manganese oxide nanoparticles are mixed in an aqueous solution of 1.5 to 3.5 molar ratio of manganese salt less than tetravalent with respect to 1 mol of manganese salt of five or more.
  7. 제1항에 있어서,The method of claim 1,
    상기 초고압 균질기는 입구 및 오리피스를 포함하는 반응 챔버 및 노즐을 포함하고,The ultrahigh pressure homogenizer comprises a reaction chamber and a nozzle comprising an inlet and an orifice,
    상기 노즐 및 상기 입구의 직경은 독립적으로 55 내지 300 ㎛인 것인 망간산화물 나노입자의 제조 방법.The diameter of the nozzle and the inlet is 55 to 300 ㎛ independently manufacturing method of manganese oxide nanoparticles.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 반응 챔버는 입구, 제1오리피스, 제2오리피스, 제3오리피스 및 출구가 순차적으로 결합되며, 제1오리피스 및 제2오리피스는 70 내지 110°로 결합되고, 제2오리피스 및 제3오리피스는 250 내지 290°로 결합되는 것인 망간산화물 나노입자의 제조 방법.The reaction chamber is sequentially coupled to the inlet, the first orifice, the second orifice, the third orifice and the outlet, the first orifice and the second orifice are coupled at 70 to 110 °, and the second orifice and the third orifice are 250 Method for producing a manganese oxide nanoparticles that will be bonded to 290 °.
  9. 제8항에 있어서,The method of claim 8,
    상기 오리피스는 제1오리피스, 제2오리피스 및 제3오리피스를 포함하며,The orifice includes a first orifice, a second orifice and a third orifice,
    상기 제2오리피스의 직경은 35 내지 300 ㎛이고, 제1오리피스 및 제3오리피스의 직경은 25 내지 150 ㎛인 것인 망간산화물 나노입자의 제조 방법.The diameter of the second orifice is 35 to 300 ㎛, the diameter of the first orifice and the third orifice is 25 to 150 ㎛ the manufacturing method of manganese oxide nanoparticles.
  10. 제1항에 있어서,The method of claim 1,
    상기 (b) 단계는 1 내지 20 회 반복되는 것을 포함하는 것인 망간산화물 나노입자의 제조 방법.Step (b) is a method for producing manganese oxide nanoparticles comprising repeating 1 to 20 times.
PCT/KR2016/000156 2015-01-08 2016-01-08 Method for manufacturing manganese oxide nanoparticles at high rate using super-high pressure homogenizer WO2016111569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150002456A KR101556671B1 (en) 2015-01-08 2015-01-08 The Method of manganese oxide nanoparticles by a high pressure homogenizer
KR10-2015-0002456 2015-01-08

Publications (1)

Publication Number Publication Date
WO2016111569A1 true WO2016111569A1 (en) 2016-07-14

Family

ID=54338489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000156 WO2016111569A1 (en) 2015-01-08 2016-01-08 Method for manufacturing manganese oxide nanoparticles at high rate using super-high pressure homogenizer

Country Status (2)

Country Link
KR (1) KR101556671B1 (en)
WO (1) WO2016111569A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102006215B1 (en) * 2018-01-31 2019-08-01 충남대학교산학협력단 Method of manufacturing iron oxide nanoparticles using a high-pressure homogenizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842295B1 (en) * 2007-04-03 2008-06-30 한국전자통신연구원 Synthetic method of mno2 nano-particle
KR101043895B1 (en) * 2011-02-18 2011-06-22 최인수 The injection module for high pressure homogenizer
KR101297385B1 (en) * 2012-07-09 2013-08-19 성신여자대학교 산학협력단 Preparation method of cathode active materials for lithium secondary battery
KR20130112971A (en) * 2012-03-29 2013-10-15 전남대학교산학협력단 Nanostructured manganese dioxide, method for producing the same and air electrode for metal-air secondary battery including the same as catalyst
KR101455040B1 (en) * 2014-07-29 2014-10-27 (주)일신오토클레이브 The System for Continuous Preparation of Uniform Metal Oxide Nanoparticles Using High Pressure Homogenizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842295B1 (en) * 2007-04-03 2008-06-30 한국전자통신연구원 Synthetic method of mno2 nano-particle
KR101043895B1 (en) * 2011-02-18 2011-06-22 최인수 The injection module for high pressure homogenizer
KR20130112971A (en) * 2012-03-29 2013-10-15 전남대학교산학협력단 Nanostructured manganese dioxide, method for producing the same and air electrode for metal-air secondary battery including the same as catalyst
KR101297385B1 (en) * 2012-07-09 2013-08-19 성신여자대학교 산학협력단 Preparation method of cathode active materials for lithium secondary battery
KR101455040B1 (en) * 2014-07-29 2014-10-27 (주)일신오토클레이브 The System for Continuous Preparation of Uniform Metal Oxide Nanoparticles Using High Pressure Homogenizer

Also Published As

Publication number Publication date
KR101556671B1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
WO2014025126A1 (en) Method for preparing nano-sized iron phosphate particles
WO2011105822A2 (en) Method for producing a zinc oxide nanoring structure using a self-assembled diblock copolymer and a sol-gel process
KR101540133B1 (en) Process for the preparation of porous lithium-, vanadium- and phosphate-comprising materials
WO2011068391A9 (en) Anode active material precursor and active material for a rechargeable lithium battery comprising hollow nanofibrous carbon, and a production method therefor
WO2014109579A1 (en) Method for preparing lithium iron phosphate nanopowder
KR101191155B1 (en) Synthesizing method for lithium titanium oxide nanoparticle using supercritical fluids
KR20120137348A (en) Method for improving the electrochemical performances of an alkali metal oxyanion electrode material and alkali metal oxyanion electrode material obtained therefrom
CN101293674A (en) Method for preparing spindle shaped alpha-Fe2O3 powder
WO2014025125A1 (en) Method for preparing lithium metal phosphor oxide
CN108557883B (en) Preparation method of nano antimony trioxide
CN101746826B (en) Method for preparing niobium pentoxide hollow nanosphere
Pang et al. Generalized syntheses of nanocrystal–graphene hybrids in high-boiling-point organic solvents
CN101245187B (en) Process for preparing molybdenum trioxide/polyaniline laminated composite material
CN110229153B (en) Intercalation molecule, preparation method thereof and two-dimensional nanocomposite
WO2016111569A1 (en) Method for manufacturing manganese oxide nanoparticles at high rate using super-high pressure homogenizer
CN108994315B (en) Method for preparing silver nanowire material by using carrageenan as template and reducing agent
WO2019093660A2 (en) Method for manufacture of maghemite
US20070231234A1 (en) Microwave assisted rapid gel combustion technique for producing ultrafine complex oxides and ceramic composites powders
US20220194793A1 (en) Ordered cross-stacked metal oxide nanowire array material and preparation method thereof
WO2020009421A1 (en) Method for producing graphite oxide and graphene oxide in eco-friendly manner by using hydroxylation reaction
WO2013157775A1 (en) Method for producing colloidal cerium oxide
KR101096059B1 (en) Method for manufacturing of copper nanopowders
WO2014017729A1 (en) Method for preparing electrode material using hydrothermal synthesis process
WO2014046363A1 (en) Aparatus and method for preparing electrode active material
CN113788494A (en) Preparation method of barium dititanate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16735190

Country of ref document: EP

Kind code of ref document: A1