WO2016111437A1 - 스캐닝 라이다 장치 및 이에 적용되는 방법 - Google Patents

스캐닝 라이다 장치 및 이에 적용되는 방법 Download PDF

Info

Publication number
WO2016111437A1
WO2016111437A1 PCT/KR2015/009129 KR2015009129W WO2016111437A1 WO 2016111437 A1 WO2016111437 A1 WO 2016111437A1 KR 2015009129 W KR2015009129 W KR 2015009129W WO 2016111437 A1 WO2016111437 A1 WO 2016111437A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal plane
unit
scanning
rotating
laser
Prior art date
Application number
PCT/KR2015/009129
Other languages
English (en)
French (fr)
Inventor
정영대
Original Assignee
한화테크윈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화테크윈 주식회사 filed Critical 한화테크윈 주식회사
Publication of WO2016111437A1 publication Critical patent/WO2016111437A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver

Definitions

  • the present invention relates to a scanning lidar device and a method applied thereto, and more particularly, to a scanning lidar device for adjusting a measurement density so that blind spots that are not searched when a peripheral area is searched using a laser signal do not occur. And a method applied thereto.
  • Scanning lidar is used to detect surrounding terrain or objects in automobiles or mobile robots.
  • the scanning rider can scan the surrounding objects or the terrain by irradiating a laser signal to the surrounding area and using the reflected light reflected back to the surrounding objects or the terrain.
  • an omnidirectional scan radar that scans all directions while turning 360 degrees.
  • Such an omnidirectional scan radar is a structure that executes a scan about the periphery by rotating 360 degrees in the horizontal direction while the angle of irradiating the laser signal is fixed by the optical configuration.
  • the scanning lidar according to the prior art may have different densities measured on the surrounding terrain or objects according to the speed of rotation in the horizontal direction, but in the vertical direction, the densities measured on the surrounding terrain or objects are different. Does not change
  • an object of the present invention is a scanning line for adjusting the measurement density so that blind spots that are not searched do not occur when searching around using a laser signal.
  • An apparatus and a method applied thereto are provided.
  • Another object of the present invention is to provide a scanning lidar device and a method applied thereto for adjusting the measurement density of the surrounding space for each property of equipment equipped with the scanning lidar device.
  • the scanning lidar apparatus for achieving the above object is a laser unit for oscillating and receiving a laser signal directed to a specific area of the peripheral space, a first rotating unit for rotating the laser unit in a first horizontal plane, A position adjusting unit for adjusting an angle between the laser unit and the first horizontal plane on which the first rotating unit is located, and a second horizontal plane which is a scanning reference plane, and forming a second horizontal plane; one side of the first rotating unit and one side of the position adjusting unit And a second rotating part rotating the plate in the second horizontal plane.
  • the scanning lidar apparatus may further include a control unit configured to control rotation of at least one of the first rotating unit and the second rotating unit, and to control the driving of the position adjusting unit.
  • the position adjusting unit may adjust a plane angle intersecting the first horizontal plane and the second horizontal plane.
  • the position adjusting unit may adjust an amount of change in position of the first horizontal plane and the second horizontal plane when the first horizontal plane and the second horizontal plane contact at least one point.
  • the control unit calculates the measurement position and the measurement density by combining the control value for executing the rotation control and the control value for executing the drive control as a result of the operation of the laser unit, and based on the calculated measurement position and the measurement density, You can decide the rent.
  • the controller may perform the rotation control and the drive control with respect to the scanning blind spot.
  • the control unit may correct the scanning blind spot based on the property of the device equipped with the scanning lidar device.
  • the scanning method for achieving the above object in the scanning lidar device, the first horizontal plane and scanning corresponding to the rotation direction of the laser unit for oscillating and receiving a laser signal directed to a specific area of the peripheral space Adjusting an angle of a second horizontal plane as a reference plane, rotating a first rotating part rotating the laser part on the first horizontal plane, and a plate supporting a position adjusting part adjusting the first rotating part and the angle on the second horizontal plane; Controlling at least one of the second rotating parts and rotating the at least one of the first rotating part and the second rotating part according to a control signal.
  • the adjusting of the angle may include adjusting a plane angle that intersects the first horizontal plane and the second horizontal plane when the first horizontal plane and the second horizontal plane are in contact with each other.
  • Adjusting the angle may include adjusting a position change amount of the first horizontal plane and the second horizontal plane when the first horizontal plane and the second horizontal plane contact at least one point.
  • the method may further include adjusting an angle of the position adjusting unit so that the scanning blind spot is included in the scanning target area, and controlling driving of at least one of the first rotating unit and the second rotating unit.
  • the method may further include correcting the scanning blind spot on the basis of the property of the device equipped with the scanning lidar device.
  • the present invention provides a scanning lidar device and a method applied thereto to adjust a measurement density so that blind spots that cannot be searched when a peripheral area is searched using a laser signal are provided.
  • a scanning lidar device and a method applied thereto to adjust a measurement density so that blind spots that cannot be searched when a peripheral area is searched using a laser signal are provided.
  • FIG. 1 is a block diagram of a scanning lidar apparatus according to an embodiment of the present invention.
  • FIG. 2 is a system block diagram for driving the scanning lidar apparatus of FIG. 1.
  • FIG. 3 is an overall configuration diagram showing the scanning lidar apparatus of FIG. 1 as a specific example.
  • FIG. 4 is a partial configuration diagram showing an angle adjustment configuration as an example of the position adjustment unit of FIG. 1.
  • FIG. 5 is a partial configuration diagram showing another example of the angle adjustment configuration of the position adjustment unit of FIG.
  • FIG. 6 is an exemplary view illustrating a state in which the position adjusting unit of FIG. 3 is adjusted at a first angle.
  • FIG. 7 is an exemplary view showing a simplified trajectory of measurement density according to the apparatus state of FIG. 6.
  • FIG. 8 is an exemplary view illustrating a state in which the position adjusting unit of FIG. 3 is adjusted at a second angle.
  • FIG. 9 is an exemplary view showing a simplified trajectory of measurement density according to the apparatus state of FIG. 8.
  • FIG. 10 is a block diagram of a scanning lidar apparatus according to another embodiment of the present invention.
  • FIG. 11 is an exemplary view showing an example of a mobile robot to which the scanning lidar apparatus of the present invention is applied.
  • FIG. 12 is a flowchart illustrating a process of operating a scanning lidar apparatus of the present invention.
  • FIG. 1 is a block diagram of a scanning lidar apparatus according to an embodiment of the present invention.
  • the scanning lidar apparatus 100 has a configuration for adjusting the measurement density so that blind spots that are not searched do not occur when searching around using a laser signal.
  • the blind spot that cannot be searched refers to a specific area that cannot search surrounding objects or terrain when the entire area around the scanning lidar device 100 is located, or the scanning lidar device
  • the target 100 targets some spaces to be searched in the surrounding space, it refers to a more specific area among the some spaces in which the surrounding object or the terrain cannot be searched.
  • the scanning lidar apparatus 100 includes a laser unit 110, a first rotating unit 120, a position adjusting unit 130, a plate 140, and a second rotating unit 150.
  • the laser unit 110 oscillates and receives the laser signal to search for the surrounding space.
  • the laser unit 110 oscillates a laser signal in a position where the laser unit 110 is directed to a specific region of the surrounding space. Subsequently, the laser signal oscillated toward a specific region of the peripheral space is received by the laser unit 110 as a reflected laser signal after being reflected by an object or a terrain located in the specific region of the peripheral space.
  • a configuration for oscillation and light reception of the laser signal may be provided as a combination of an oscillation module and a light reception module. At least one combination configuration of the oscillation module and the light receiving module may be provided in the laser unit 110.
  • the combination configuration of the above-described oscillation module and the light receiving module is provided as a plurality of (110-1, 110-2, 110-3), the scanning lidar device 100 forms a measurement density of the surrounding space
  • the combination configuration 110-1, 110-2, 110-3 of the plurality of oscillation modules and the light receiving module is disposed in the laser unit 110 in a pattern that can improve the measurement density for each minimum time unit when executing the control to Can be.
  • the structure in which the combination configuration (110-1, 110-2, 110-3) of the plurality of oscillation module and the light receiving module is arranged in the laser unit 110 in a pattern that can improve the measurement density for each minimum time unit is Since it will be easy to describe the above-mentioned structure with reference to the drawings in more detail, the relevant parts will be described in detail in FIG.
  • the laser unit 110 directs a specific area of the surrounding space in which the scanning lidar device 100 is placed, and then repeats a search process using a laser signal. Move position.
  • the first rotating unit 120 supports the spatial position of the laser unit 110 and changes the spatial position of the laser unit 110 so that the laser unit 110 can direct each specific region of the surrounding space. Play a role.
  • the first rotating part 120 performs a function of rotating the laser part 110 in a plane coupled with the laser part 110 among the functions of changing the spatial position of the laser part 110. Allows 110 to change its location relative to the surrounding space.
  • the position adjusting unit 130 performs the function of vertically moving the laser unit 110 among the functions of changing the position in space of the laser unit 110, or changing the displacement including the vertical movement of the laser unit 110. Function can be performed.
  • the position adjusting unit 130 adjusts the angle between the first horizontal plane A on which the laser unit 110 and the first rotating unit 120 are positioned and the second horizontal plane B, which is a scanning reference plane.
  • the laser unit 110 and the first rotating unit 120 are formed in one block, and one side of the block including the laser unit 110 and the first rotating unit 120 is supported by the position adjusting unit 130 to adjust the position.
  • the block including the laser unit 110 and the first rotating unit 120 also moves in accordance with the position adjusting function of the unit 130.
  • the first horizontal plane A refers to a plane in which the block including the laser unit 110 and the first rotating unit 120 is supported by the position adjusting unit 130.
  • the second horizontal plane (B) as opposed to the first horizontal plane (A) is a scanning reference plane as described above, may be a position reference plane for the execution of the position adjustment function.
  • the second horizontal plane B may be placed in a horizontal direction with the horizontal plane when the scanning lidar device 100 is not mounted on the specific equipment.
  • the laser unit 110 that is rotated by the first rotating unit 120 is supported by the first horizontal plane A, but the plane rotated by the first rotating unit 120 is parallel to the first horizontal plane A. 1-1 becomes the horizontal plane (C).
  • the distance between the first horizontal plane (A) and the first-first horizontal plane (C) is based on forming a coupling relationship between the laser unit 110 and the first rotating unit 120, specifically, the laser unit 110 It may be formed by the width between the rotation center point of the first and the first horizontal plane (A).
  • the plate 140 is provided at a position in which the second horizontal plane B is a rotation axis or in contact with the second horizontal plane B, and supports one side of the first rotating part 120 and one side of the position adjusting part 130. .
  • supporting the first rotating unit 120 means that the laser unit 110 that is rotatably coupled with the first rotating unit 120 may also be supported.
  • the rotation of the plate 140 is performed by the second rotating part 150.
  • the second rotating unit 150 not only supports the spatial position of the plate 140, but also rotates the plate 140 using the second horizontal plane B as the rotation axis or rotates the plate 140 to the second horizontal plane B. As it rotates through the parallel axis, it is possible to rotate both the laser unit 110, the first rotating unit 120, and the position adjusting unit 130 supported by the plate 140.
  • FIG. 2 is a system block diagram for driving the scanning lidar apparatus of FIG. 1.
  • the system for driving the scanning lidar apparatus 100 includes a scanning lidar apparatus 100, which is a driving target, and a control module 200 for controlling driving of the scanning lidar apparatus 100. .
  • the control module 200 controls rotation of at least one of the first rotating unit 120 and the second rotating unit 150 included in the scanning lidar device 100, and drives the position adjusting unit 130.
  • the control module 200 may control the driving of the scanning lidar device 100 in various ways.
  • control module 200 may operate the scanning lidar device 100 based on communication with the scanning lidar device 100 while being connected to the scanning lidar device 100 by wire or wirelessly. Can be controlled.
  • the scanning lidar device 100 may be mounted on the mobile robot 400 as illustrated in FIG. 11.
  • the control module 200 for driving control of the scanning lidar device 100 is provided in the mobile robot 400, and the control module 200 is provided in the mobile robot 400.
  • the main controllers of the mobile robot 400 interoperate with each other, the movement of the mobile robot 400 based on the surrounding search may be executed.
  • the control module 200 for driving control of the scanning lidar device 100 may be provided as a main control device in the mobile robot 400. That is, the main control device of the mobile robot 400 directly scanning the advantages and features of the present invention, and how to achieve them will be apparent with reference to the embodiments described below in detail with the accompanying drawings.
  • the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and only the embodiments make the disclosure of the present invention complete, and the general knowledge in the art to which the present invention belongs. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims.
  • Like reference numerals refer to like elements throughout.
  • FIG. 1 is a block diagram of a scanning lidar apparatus according to an embodiment of the present invention.
  • the scanning lidar apparatus 100 has a configuration for adjusting the measurement density so that blind spots that are not searched do not occur when searching around using a laser signal.
  • the blind spot that cannot be searched refers to a specific area that cannot search surrounding objects or terrain when the entire area around the scanning lidar device 100 is located, or the scanning lidar device
  • the target 100 targets some spaces to be searched in the surrounding space, it refers to a more specific area among the some spaces in which the surrounding object or the terrain cannot be searched.
  • the scanning lidar apparatus 100 includes a laser unit 110, a first rotating unit 120, a position adjusting unit 130, a plate 140, and a second rotating unit 150.
  • the laser unit 110 oscillates and receives the laser signal to search for the surrounding space.
  • the laser unit 110 oscillates a laser signal in a position where the laser unit 110 is directed to a specific region of the surrounding space. Subsequently, the laser signal oscillated toward a specific region of the peripheral space is received by the laser unit 110 as a reflected laser signal after being reflected by an object or a terrain located in the specific region of the peripheral space.
  • a configuration for oscillation and light reception of the laser signal may be provided as a combination of an oscillation module and a light reception module. At least one combination configuration of the oscillation module and the light receiving module may be provided in the laser unit 110.
  • the combination configuration of the above-described oscillation module and the light receiving module is provided as a plurality of (110-1, 110-2, 110-3), the scanning lidar device 100 forms a measurement density of the surrounding space
  • the combination configuration 110-1, 110-2, 110-3 of the plurality of oscillation modules and the light receiving module is disposed in the laser unit 110 in a pattern that can improve the measurement density for each minimum time unit when executing the control to Can be.
  • the structure in which the combination configuration (110-1, 110-2, 110-3) of the plurality of oscillation module and the light receiving module is arranged in the laser unit 110 in a pattern that can improve the measurement density for each minimum time unit is Since it will be easy to describe the above-mentioned structure with reference to the drawings in more detail, the relevant parts will be described in detail in FIG.
  • the laser unit 110 directs a specific area of the surrounding space in which the scanning lidar device 100 is placed, and then repeats a search process using a laser signal. Move position.
  • the first rotating unit 120 supports the spatial position of the laser unit 110 and changes the spatial position of the laser unit 110 so that the laser unit 110 can direct each specific region of the surrounding space. Play a role.
  • the first rotating part 120 performs a function of rotating the laser part 110 in a plane coupled with the laser part 110 among the functions of changing the spatial position of the laser part 110. Allows 110 to change its location relative to the surrounding space.
  • the position adjusting unit 130 performs the function of vertically moving the laser unit 110 among the functions of changing the position in space of the laser unit 110, or changing the displacement including the vertical movement of the laser unit 110. Function can be performed.
  • the position adjusting unit 130 adjusts the angle between the first horizontal plane A on which the laser unit 110 and the first rotating unit 120 are positioned and the second horizontal plane B, which is a scanning reference plane.
  • the laser unit 110 and the first rotating unit 120 are formed in one block, and one side of the block including the laser unit 110 and the first rotating unit 120 is supported by the position adjusting unit 130 to adjust the position.
  • the block including the laser unit 110 and the first rotating unit 120 also moves in accordance with the position adjusting function of the unit 130.
  • the first horizontal plane A refers to a plane in which the block including the laser unit 110 and the first rotating unit 120 is supported by the position adjusting unit 130.
  • the second horizontal plane (B) as opposed to the first horizontal plane (A) is a scanning reference plane as described above, may be a position reference plane for the execution of the position adjustment function.
  • the second horizontal plane B may be placed in a horizontal direction with the horizontal plane when the scanning lidar device 100 is not mounted on the specific equipment.
  • the laser unit 110 that is rotated by the first rotating unit 120 is supported by the first horizontal plane A, but the plane rotated by the first rotating unit 120 is parallel to the first horizontal plane A. 1-1 becomes the horizontal plane (C).
  • the distance between the first horizontal plane (A) and the first-first horizontal plane (C) is based on forming a coupling relationship between the laser unit 110 and the first rotating unit 120, specifically, the laser unit 110 It may be formed by the width between the rotation center point of the first and the first horizontal plane (A).
  • the plate 140 is provided at a position in which the second horizontal plane B is a rotation axis or in contact with the second horizontal plane B, and supports one side of the first rotating part 120 and one side of the position adjusting part 130. .
  • supporting the first rotating unit 120 means that the laser unit 110 that is rotatably coupled with the first rotating unit 120 may also be supported.
  • the rotation of the plate 140 is performed by the second rotating part 150.
  • the second rotating unit 150 not only supports the spatial position of the plate 140, but also rotates the plate 140 using the second horizontal plane B as the rotation axis or rotates the plate 140 to the second horizontal plane B. As it rotates through the parallel axis, it is possible to rotate both the laser unit 110, the first rotating unit 120, and the position adjusting unit 130 supported by the plate 140.
  • FIG. 2 is a system block diagram for driving the scanning lidar apparatus of FIG. 1.
  • the system for driving the scanning lidar apparatus 100 includes a scanning lidar apparatus 100, which is a driving target, and a control module 200 for controlling driving of the scanning lidar apparatus 100. .
  • the control module 200 controls rotation of at least one of the first rotating unit 120 and the second rotating unit 150 included in the scanning lidar device 100, and drives the position adjusting unit 130.
  • the control module 200 may control the driving of the scanning lidar device 100 in various ways.
  • control module 200 may operate the scanning lidar device 100 based on communication with the scanning lidar device 100 while being connected to the scanning lidar device 100 by wire or wirelessly. Can be controlled.
  • the scanning lidar device 100 may be mounted on the mobile robot 400 as illustrated in FIG. 11.
  • the control module 200 for driving control of the scanning lidar device 100 is provided in the mobile robot 400, and the control module 200 is provided in the mobile robot 400.
  • the main controllers of the mobile robot 400 interoperate with each other, the movement of the mobile robot 400 based on the surrounding search may be executed.
  • control module 200 for driving control of the scanning lidar device 100 may be provided as a main control device in the mobile robot 400. That is, the main controller of the mobile robot 400 may directly execute the movement of the mobile robot 400 based on the surrounding search through the structure connected to the scanning lidar device 100.
  • FIG. 3 is an overall configuration diagram showing the scanning lidar apparatus of FIG. 1 as a specific example.
  • the scanning lidar apparatus 100 rotates the laser unit 110 in a first horizontal plane A and a laser unit 110 for oscillating and receiving a laser signal toward a specific area of a surrounding space.
  • Rotating part 150 is included.
  • the laser unit 110 includes a combination configuration of at least one oscillation module and a light reception module for oscillation and reception of a laser signal.
  • the structure in which the combination of the at least one oscillation module and the light receiving module is arranged in the laser unit 110 is the minimum time unit when the scanning lidar apparatus 100 executes the control for forming the measurement density for the surrounding space. It can be arranged in a pattern that can improve the star measurement density.
  • the combination of the at least one oscillation module and the light receiving module may be provided in the laser unit 110 in a structure arranged along the same axis as the first-first horizontal plane C.
  • FIG. Through such an arrangement structure of the oscillation module and the light receiving module, there is an advantage suitable for adjusting the scan width when performing a scan that rotates once in an axis perpendicular to the second horizontal plane (B).
  • the second horizontal plane B through the laser unit 110 having the above-described arrangement structure.
  • the scan width increases when a scan is rotated once on an axis perpendicular to the cross-section.
  • the first rotating part 120 includes a motor 120-1 for rotating the laser part 110.
  • the motor 120-1 includes a stator and a rotor.
  • a stator is provided inside and a rotor is provided outside. .
  • the first rotating unit 120 not only has the configuration of rotating the laser unit 110, but also receives a signal of the scan result from the laser unit 110 and transmits the signal to the control unit, and controls the driving of the laser unit 110 It is necessary to have a structure for receiving a control signal to be transmitted from the control unit to the laser unit 110.
  • the motor 120-1 provided in the first rotating part 120 is a hollow motor, and the stator may be provided in a hollow shape.
  • the rotation driving force generated by the rotation of the rotor of the first rotating part 120 is rotated. It is transmitted to the laser unit 110 via the (120-2).
  • Position adjusting unit 130 has a structure for adjusting the angle of the first horizontal plane (A) and the second horizontal plane (B).
  • the angle of the first horizontal plane (A) with respect to the second horizontal plane (B) can be adjusted by changing the shape of the structure combining the hinge and the frame.
  • the second rotating unit 150 is configured to rotate the plate 140 as well as to rotate the plate 140, as well as the control signal for driving the laser unit 110 via the first rotating unit 120 laser It is necessary to further provide a structure for transmitting to the unit 110 or receiving a signal of a scan result from the laser unit 110.
  • the motor 150-1 provided in the second rotating unit 150 is a hollow motor, and the stator has a hollow shape and needs to have a space in which a communication line for communication of the aforementioned signals can be located.
  • FIG. 4 is a partial configuration diagram showing an angle adjustment configuration as an example of the position adjustment unit of FIG. 1.
  • the first horizontal plane A supporting the laser unit 110 and the first rotating unit 120 and the second horizontal plane B serving as a scanning reference plane share one side.
  • the plane angle ⁇ 'intersecting the first horizontal plane A and the second horizontal plane B may be adjusted.
  • FIG. 5 is a partial configuration diagram showing another example of the angle adjustment configuration of the position adjustment unit of FIG.
  • the position adjusting unit 130 shares at least one point between the first horizontal plane A supporting the laser unit 110 and the first rotating unit 120 and the second horizontal plane B serving as a scanning reference plane.
  • the position change amount of the first horizontal plane A with respect to the second horizontal plane B, which is a scanning reference plane can be adjusted.
  • the position adjusting unit 130 in a state in which a plurality of structures coupled to the plurality of hinges and the frame is disposed between the first rotating unit 120 and the plate 140, the second horizontal surface in a manner of changing the shape of each structure It is possible to adjust the position change amount of the first horizontal plane A with respect to (B).
  • FIG. 6 is an exemplary view illustrating a state in which the position adjusting unit of FIG. 3 is adjusted at a first angle
  • FIG. 7 is an exemplary view illustrating a simplified trajectory of measurement density according to the apparatus state of FIG. 6.
  • the combination of the oscillation module and the light receiving module in the laser unit 110 includes a first-second horizontal plane D and a first-horizontal plane E parallel to the first horizontal plane A.
  • FIG. And the first to fourth horizontal planes (F).
  • the first horizontal plane A which is a plane that supports the block including the laser unit 110 and the first rotating unit 120 in this state
  • the second horizontal plane B which is the scanning reference plane.
  • the rotational driving of the second rotating unit 150 is performed at a position adjusted at an 'L' angle to perform a scan that rotates once in an axis perpendicular to the second horizontal plane B, as shown in FIG. 7. Scan widths can be formed.
  • FIG. 8 is an exemplary view illustrating a state in which the position adjusting unit of FIG. 3 is adjusted at a second angle
  • FIG. 9 is an exemplary view illustrating a simplified trajectory of measurement density according to the apparatus state of FIG. 8.
  • the combination of the oscillation module and the light receiving module in the laser unit 110 includes a first horizontal plane D and a first horizontal plane E, which are parallel to the first horizontal plane A.
  • different angles may be formed unlike the above-described example.
  • the first horizontal plane A which is a plane that supports the block including the laser unit 110 and the first rotating unit 120
  • the second horizontal plane B which is a scanning reference plane
  • Scanning as shown in FIG. 9 when a rotational driving of the second rotating unit 150 is executed in a state where it is positioned at an 'l' angle to perform a scan that rotates once in an axis perpendicular to the second horizontal plane B Width can be formed.
  • the scan width of FIG. 9 is narrower than the scan width of FIG. 7.
  • FIG. 10 is a block diagram of a scanning lidar apparatus according to another embodiment of the present invention.
  • the scanning lidar apparatus 300 includes a laser unit 310 for oscillating and receiving a laser signal toward a specific region of a peripheral space, and a first rotating unit for rotating the laser unit on a first horizontal plane A ( 320, the position adjusting unit 330 and the second horizontal plane B for adjusting the angle between the first horizontal plane A on which the laser unit 310 and the first rotating unit 320 are positioned, and the second horizontal plane B, which is a scanning reference plane.
  • a plate 340 for supporting one side of the first rotating unit 320 and one side of the position adjusting unit 330 and the second rotating unit 350 for rotating the plate 340 in the second horizontal plane B; Including, but may further include a control unit 360 for controlling the rotation of at least one of the first and second rotating unit 320 and 350 and the position control unit 330.
  • FIG. 12 is a flowchart illustrating a process of operating a scanning lidar apparatus of the present invention.
  • the scanning lidar apparatus 300 may be executed to set scanning settings directed to a specific area of the surrounding space (S1), and in this scanning setting, the laser signal may be directed to a specific area of the surrounding space. It is possible to adjust the angle of the first horizontal plane and the second horizontal plane which is the scanning reference plane corresponding to the rotational direction of the laser unit 310 for oscillating and receiving (S3).
  • the angle adjusting step may include adjusting a plane angle intersecting the first horizontal plane and the second horizontal plane when the first horizontal plane and the second horizontal plane are in contact with one side, and the first horizontal plane and the second horizontal plane. If the at least one point is in contact with each other, the method may include adjusting a position change amount of the first horizontal plane and the second horizontal plane.
  • the plate 340 supports the first rotating part 320 for rotating the laser part 310 in the first horizontal plane, and the position adjusting part 330 having an angle adjustment configuration with the first rotating part 320 in the second horizontal plane.
  • Control at least one of the second rotation unit 350 to rotate (S5).
  • step S7 At least one of the first rotating part 320 and the second rotating part 350 is driven to rotate according to the control of step S5 (S7).
  • the scanning lidar apparatus 300 may store the peripheral scanning results through the execution of the above-described steps (S9), and the measuring position where the scanning lidar apparatus 300 is directed toward the peripheral space based on the stored peripheral scanning results. And calculating the measurement density (S11), and using the calculated measurement position and the measurement density, the scanning blind spot may be determined from the surrounding area (S13).
  • the scanning lidar apparatus 300 adjusts the angle of the position adjusting unit 330 so that the scanning blind spot is included in the scanning target area, and the first rotating unit 320 And driving control of at least one of the second rotation parts 350 (S15).
  • step S13 it is determined whether or not to continue the scanning lidar apparatus 300 according to the user selection of whether to continue scanning (S17).
  • the present invention is to provide a scanning lidar apparatus and a method applied thereto to adjust the measurement density so that blind spots that are not searched when searching the surroundings using a laser signal does not occur, It is an invention with industrial applicability, since the possibility of business is not only sufficient but also practically obvious.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Robotics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

본 발명은 스캐닝 라이다 장치를 개시한다. 본 발명에 따른 스캐닝 라이다 장치는 주변공간의 특정영역을 지향해서 레이저 신호를 발진 및 수광하는 레이저부, 제1 수평면에서 상기 레이저부를 회전하는 제1 회전부, 상기 레이저부 및 상기 제1 회전부가 위치한 상기 제1 수평면과 스캐닝 기준면인 제2 수평면의 각도를 조절하는 위치조절부, 상기 제2 수평면을 형성하며, 상기 제1 회전부의 일측과 상기 위치조절부의 일측을 지지하는 플레이트 및 상기 제2 수평면에서 상기 플레이트를 회전하는 제2 회전부를 포함한다.

Description

스캐닝 라이다 장치 및 이에 적용되는 방법
본 발명은 스캐닝 라이다 장치 및 이에 적용되는 방법에 관한 것으로, 더욱 상세하게는 레이저 신호를 이용해서 주변을 탐색할 때 탐색이 되지 않는 사각지대가 발생하지 않도록 측정밀도를 조절하기 위한 스캐닝 라이다 장치 및 이에 적용되는 방법에 관한 것이다.
자동차 또는 이동형 로봇 등에서 주변의 지형 또는 물체를 감지하기 위하여 스캐닝 라이다가 사용되고 있다. 이러한 스캐닝 라이다는 주변영역으로 레이저 신호를 조사하고 주변물체 또는 지형에 반사되어 되돌아 오는 반사광을 이용함으로써, 주변의 물체나 지형을 스캔할 수 있다.
스캐닝 라이다 중에는 360도로 선회하면서 전방향을 스캐닝하는 전방향 스캔 레이다가 있다. 이러한 전방향 스캔 레이다는 광학구성에 의해 레이저 신호를 조사하는 각도가 고정된 상태에서 수평방향으로 360도 회전하여 주변에 대한 스캔을 실행하는 구조이다.
즉, 종래 기술에 따른 스캐닝 라이다는 수평방향으로 회전하는 속도에 따라 주변의 지형 또는 물체에 대해 측정하는 밀도를 상이하게 할 수 있으나, 수직방향으로는 주변의 지형 또는 물체에 대해 측정하는 밀도가 변하지 않는다.
이와 같은 이유로, 종래 기술에 따른 스캐닝 라이다는 주변공간을 탐색하는 데에 사각지대가 발생할 가능성이 상존하는 한계가 있으며, 이를 개선해서 스캐닝 라이다의 성능을 향상시킬 필요가 있다.
따라서, 본 발명은 상기의 문제점을 해결하기 위해 창출된 것으로, 본 발명의 과제는 레이저 신호를 이용해서 주변을 탐색할 때 탐색이 되지 않는 사각지대가 발생하지 않도록 측정밀도를 조절하기 위한 스캐닝 라이다 장치 및 이에 적용되는 방법을 제공하는 데 있다.
또한, 본 발명은 스캐닝 라이다 장치를 장착한 장비의 속성별로 주변공간에 대한 측정밀도를 조절하기 위한 스캐닝 라이다 장치 및 이에 적용되는 방법을 제공하는 데 있다.
본 발명의 목적은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위한 본 발명의 제1 관점에 따른 스캐닝 라이다 장치는 주변공간의 특정영역을 지향해서 레이저 신호를 발진 및 수광하는 레이저부, 제1 수평면에서 상기 레이저부를 회전하는 제1 회전부, 상기 레이저부 및 상기 제1 회전부가 위치한 상기 제1 수평면과 스캐닝 기준면인 제2 수평면의 각도를 조절하는 위치조절부, 상기 제2 수평면을 형성하며, 상기 제1 회전부의 일측과 상기 위치조절부의 일측을 지지하는 플레이트 및 상기 제2 수평면에서 상기 플레이트를 회전하는 제2 회전부를 포함한다.
스캐닝 라이다 장치는 상기 제1 회전부 및 상기 제2 회전부 중 적어도 하나를 회전 제어하고, 상기 위치조절부를 구동 제어하는 제어부를 더 포함할 수 있다.
상기 위치조절부는 상기 제1 수평면과 상기 제2 수평면이 한 변을 공유해서 접하는 경우, 상기 제1 수평면과 상기 제2 수평면을 교차하는 평면각을 조절할 수 있다.
상기 위치조절부는 상기 제1 수평면과 상기 제2 수평면이 적어도 한 점을 공유해서 접하는 경우, 상기 제1 수평면과 상기 제2 수평면의 위치 변화량을 조절할 수 있다.
상기 제어부는 상기 레이저부의 작동 결과, 상기 회전 제어를 실행한 제어값 및 상기 구동 제어를 실행한 제어값을 취합해서 측정위치 및 측정밀도를 산출하고, 산출된 측정위치 및 측정밀도를 기초로 스캐닝 사각지대를 결정할 수 있다.
상기 제어부는 상기 스캐닝 사각지대를 대상으로 상기 회전 제어 및 상기 구동 제어를 할 수 있다.
상기 제어부는 상기 스캐닝 라이다 장치를 장착한 장비의 속성을 토대로 상기 스캐닝 사각지대를 보정할 수 있다.
상기 과제를 달성하기 위한 본 발명의 제2 관점에 따른 스캐닝 방법은 스캐닝 라이다 장치에서, 주변공간의 특정영역을 지향해서 레이저 신호를 발진 및 수광하는 레이저부의 회전 방향과 대응되는 제1 수평면과 스캐닝 기준면인 제2 수평면의 각도를 조절하는 단계, 상기 제1 수평면에서 상기 레이저부를 회전하는 제1 회전부와, 상기 제2 수평면에서 상기 제1 회전부와 상기 각도를 조절하는 위치조절부를 지지하는 플레이트를 회전하는 제2 회전부 중 적어도 하나를 제어하는 단계 및 제어 신호에 따라 상기 제1 회전부 및 상기 제2 회전부 중 적어도 하나를 회전 구동하는 단계를 포함한다.
상기 각도를 조절하는 단계는 상기 제1 수평면과 상기 제2 수평면이 한 변을 공유해서 접하는 경우, 상기 제1 수평면과 상기 제2 수평면을 교차하는 평면각을 조절하는 단계를 포함할 수 있다.
상기 각도를 조절하는 단계는 상기 제1 수평면과 상기 제2 수평면이 적어도 한 점을 공유해서 접하는 경우, 상기 제1 수평면과 상기 제2 수평면의 위치 변화량을 조절하는 단계를 포함할 수 있다.
상기 제1 회전부 및 상기 제2 회전부 중 적어도 하나를 실행한 주변 스캐닝 결과를 기초로 측정위치 및 측정밀도를 산출하고, 산출된 측정위치 및 측정밀도를 이용해서 주변 영역 중에서 스캐닝 사각지대를 결정하는 단계를 더 포함할 수 있다.
상기 스캐닝 사각지대가 스캐닝 대상 영역에 포함되도록 상기 위치조절부의 각도를 조절하고, 상기 제1 회전부 및 상기 제2 회전부 중 적어도 하나를 구동 제어하는 단계를 더 포함할 수 있다.
상기 스캐닝 라이다 장치를 장착한 장비의 속성을 토대로 상기 스캐닝 사각지대를 보정하는 단계를 더 포함할 수 있다.
따라서, 본 발명에서는 레이저 신호를 이용해서 주변을 탐색할 때 탐색이 되지 않는 사각지대가 발생하지 않도록 측정밀도를 조절하기 위한 스캐닝 라이다 장치 및 이에 적용되는 방법을 제공함으로써, 주변공간을 탐색하는 데에 사각지대가 발생할 가능성을 최소화하고, 스캐닝 라이다 장치를 장착한 장비의 속성별로 주변공간에 대한 측정밀도를 조절할 수 있는 이점이 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 스캐닝 라이다 장치의 블럭도이다.
도 2는 도 1의 스캐닝 라이다 장치를 구동하기 위한 시스템 블럭도이다.
도 3은 도 1의 스캐닝 라이다 장치를 구체적인 일례로 나타내는 전체 구성도이다.
도 4는 도 1의 위치조절부 중에서 각도 조절 구성을 일례로 나타내는 일부 구성도이다.
도 5는 도 1의 위치조절부 중에서 각도 조절 구성을 다른 예로 나타내는 일부 구성도이다.
도 6은 도 3의 위치조절부를 제1 각도로 조절한 상태를 나타내는 예시도이다.
도 7은 도 6의 장치상태에 따른 측정밀도를 단순화된 궤적으로 나타내는 예시도이다.
도 8은 도 3의 위치조절부를 제2 각도로 조절한 상태를 나타내는 예시도이다.
도 9는 도 8의 장치상태에 따른 측정밀도를 단순화된 궤적으로 나타내는 예시도이다.
도 10은 본 발명의 다른 실시예에 따른 스캐닝 라이다 장치의 블럭도이다.
도 11은 본 발명의 스캐닝 라이다 장치를 적용한 이동 로봇을 일례로 나타내는 예시도이다.
도 12는 본 발명의 스캐닝 라이다 장치가 동작하는 과정을 일 실시 예로 나타내는 순서도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
또한, 본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 개략도들을 참고하여 설명될 것이다. 따라서, 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 또한 본 발명에 도시된 각 도면에 있어서 각 구성 요소들은 설명의 편의를 고려하여 다소 확대 또는 축소되어 도시된 것일 수 있다.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시 예에 대하여 다음과 같이 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 스캐닝 라이다 장치의 블럭도이다.
도 1을 참조하면, 스캐닝 라이다 장치(100)는 레이저 신호를 이용해서 주변을 탐색할 때 탐색이 되지 않는 사각지대가 발생하지 않도록 측정밀도를 조절하기 위한 구성을 갖춘다.
여기서, 탐색이 되지 않는 사각지대라 함은 스캐닝 라이다 장치(100)가 위치한 주변의 전체 공간을 대상으로 하는 경우에 주변 물체 또는 지형을 탐색하지 못한 일부 특정영역을 일컫는 것이거나, 스캐닝 라이다 장치(100)가 주변 공간 중에서 탐색 대상으로 삼은 일부 공간을 대상으로 하는 경우에 주변 물체 또는 지형을 탐색하지 못한 상기 일부 공간 중에서 더 특정된 영역을 일컫는 것이다.
구체적으로, 스캐닝 라이다 장치(100)는 레이저부(110), 제1 회전부(120), 위치조절부(130), 플레이트(140) 및 제2 회전부(150)를 포함한다.
레이저부(110)는 주변 공간의 탐색을 위해 레이저 신호를 발진 및 수광한다. 레이저부(110)가 주변공간의 특정영역을 지향한 위치 상태에서 레이저 신호를 발진한다. 이후, 주변공간의 특정영역을 지향하여 발진된 레이저 신호는 주변공간의 특정영역에 위치한 물체 또는 지형에 반사된 후 반사된 레이저 신호로서 레이저부(110)에 수광된다.
이러한 레이저부(110)에서, 레이저 신호의 발진 및 수광을 위한 구성은 발진 모듈 및 수광 모듈의 조합으로서 구비될 수 있다. 발진 모듈 및 수광 모듈의 조합 구성은 레이저부(110)에 적어도 하나로 구비될 수 있다.
바람직하게는, 전술한 발진 모듈 및 수광 모듈의 조합 구성이 다수 개(110-1, 110-2, 110-3)로 구비되며, 스캐닝 라이다 장치(100)가 주변 공간에 대한 측정 밀도를 형성하기 위한 제어를 실행할 때 최소 시간 단위별 측정 밀도를 향상시킬 수 있는 패턴으로 다수 개의 발진 모듈 및 수광 모듈의 조합 구성(110-1, 110-2, 110-3)이 레이저부(110)에 배치될 수 있다.
여기서, 최소 시간 단위별로 측정 밀도를 향상시킬 수 있는 패턴으로 다수 개의 발진 모듈 및 수광 모듈의 조합 구성(110-1, 110-2, 110-3)이 레이저부(110)에 배치되는 구조라 함은 보다 상세한 도면을 참고로 설명하는 것이 위 언급된 구조를 설명하는 데에 용이하므로 이하, 도 3 부분에서 관련 부분을 상술하기로 한다.
레이저부(110)는 스캐닝 라이다 장치(100)가 놓여 진 주변 공간의 특정 영역을 일일이 지향한 후 레이저 신호를 이용한 탐색 과정을 반복함에 따라, 주변 공간의 수많은 특정 영역을 일일이 지향하기 위한 공간상의 위치 이동을 한다.
제1 회전부(120)는 이러한 레이저부(110)의 공간상의 위치를 지지하고, 레이저부(110)가 주변 공간의 각 특정 영역을 지향할 수 있도록 레이저부(110)의 공간상 위치를 변경하는 역할을 한다. 특히, 제1 회전부(120)는 레이저부(110)의 공간상 위치를 변경하는 기능들 중에서 레이저부(110)와 결합하는 평면에서 레이저부(110)를 회전하는 기능을 수행함에 따라 레이저부(110)가 주변 공간에 대해 지향하는 위치를 변경할 수 있게 한다.
위치조절부(130)는 레이저부(110)의 공간상 위치를 변경하는 기능들 중에서 레이저부(110)를 상하 이동하는 기능을 수행하거나, 레이저부(110)의 상하 이동을 포함한 변위를 변경하는 기능을 수행할 수 있다.
구체적으로, 위치조절부(130)는 레이저부(110) 및 제1 회전부(120)가 위치한 제1 수평면(A)과 스캐닝 기준면인 제2 수평면(B)의 각도를 조절한다. 레이저부(110) 및 제1 회전부(120)가 한 블럭으로 형성되고, 레이저부(110) 및 제1 회전부(120)를 포함하는 블럭의 일측이 위치조절부(130)에 의해 지지되면서 위치조절부(130)의 위치 조절 기능에 따라 레이저부(110) 및 제1 회전부(120)를 포함하는 블럭도 함께 위치 이동하는 구조이다.
즉, 제1 수평면(A)은 레이저부(110) 및 제1 회전부(120)를 포함하는 블럭이 위치조절부(130)에 의해 지지되는 평면을 일컫는다.
또한, 제1 수평면(A)과 대비되는 제2 수평면(B)은 전술한 바와 같이 스캐닝 기준면으로서, 위치 조절 기능의 실행을 위한 위치 기준면이 될 수도 있다.
예컨대, 제2 수평면(B)은 스캐닝 라이다 장치(100)가 특정 장비에 장착되지 않은 상태인 경우, 지평면과 수평 방향에 놓일 수 있다.
제1 회전부(120)에 의해 회전하는 대상인 레이저부(110)는 제1 수평면(A)에 의해 지지 되나, 제1 회전부(120)에 의해 회전하는 평면은 제1 수평면(A)과 평행한 제1-1 수평면(C)이 된다. 여기서, 제1 수평면(A)과 제1-1 수평면(C) 사이의 간격은 레이저부(110)와 제1 회전부(120) 간의 결합 관계를 형성하는 것에 기초하며, 구체적으로는 레이저부(110)의 회전 중심점과 제1 수평면(A) 간의 폭 만큼 형성될 수 있다.
플레이트(140)는 제2 수평면(B)을 회전 축으로 하거나, 제2 수평면(B)에 접하는 위치에 구비되며, 제1 회전부(120)의 일측과 위치조절부(130)의 일측을 지지한다.
플레이트(140)가 회전하는 경우, 제1 회전부(120) 및 위치조절부(130)를 지지하는 구조로 인해 제1 회전부(120) 및 위치조절부(130)와 함께 회전한다. 이때, 제1 회전부(120)를 지지한다는 것은 제1 회전부(120)와 회전 가능하게 결합된 상태인 레이저부(110)도 함께 지지할 수 있다는 것을 의미한다.
이러한 플레이트(140)의 회전은 제2 회전부(150)에 의해 실행된다.
제2 회전부(150)는 플레이트(140)의 공간상 위치를 지지할 뿐만 아니라, 플레이트(140)를 제2 수평면(B)을 회전축으로 하여 회전하거나 플레이트(140)를 제2 수평면(B)에 평행한 축을 통해 회전함에 따라 플레이트(140)로 지지 되는 레이저부(110), 제1 회전부(120) 및 위치조절부(130)를 모두 회전하는 것이 가능하다.
도 2는 도 1의 스캐닝 라이다 장치를 구동하기 위한 시스템 블럭도이다.
도 2를 참조하면, 스캐닝 라이다 장치(100)를 구동하기 위한 시스템은 구동 대상인 스캐닝 라이다 장치(100)와, 스캐닝 라이다 장치(100)의 구동을 제어하는 제어 모듈(200)을 포함한다.
제어 모듈(200)은 스캐닝 라이다 장치(100)에 포함되는 제1 회전부(120) 및 제2 회전부(150) 중 적어도 하나를 회전 제어하고, 위치조절부(130)를 구동 제어한다.
이와 같은 제어 모듈(200)은 다양한 방식으로 스캐닝 라이다 장치(100)의 구동을 제어하는 것이 가능하다.
예를 들면, 제어 모듈(200)은 스캐닝 라이다 장치(100)와 유선 또는 무선으로 접속된 상태에서, 스캐닝 라이다 장치(100)와 통신하는 것을 기반으로 스캐닝 라이다 장치(100)의 구동을 제어할 수 있다.
제어 모듈(200)과 스캐닝 라이다 장치(100)가 유선으로 연결된 일례를 들면, 도 11에 도시된 바와 같이 스캐닝 라이다 장치(100)를 이동 로봇(400)에 장착한 형태를 들 수 있다.
이러한 형태의 제1 구체화된 예로는, 스캐닝 라이다 장치(100)를 구동 제어하는 제어 모듈(200)이 이동 로봇(400)에 구비되고, 이동 로봇(400) 내에 구비되는 제어 모듈(200)과 이동 로봇(400)의 메인 제어장치가 상호 연동하는 구조를 통해 주변 탐색에 기초한 이동 로봇(400)의 움직임을 실행할 수 있다.
전술한 형태의 제2 구체화된 예로는, 스캐닝 라이다 장치(100)를 구동 제어하는 제어 모듈(200)이 이동 로봇(400) 내의 메인 제어장치로서 구비될 수 있다. 즉, 이동 로봇(400)의 메인 제어장치가 직접 스캐닝 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
또한, 본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 개략도들을 참고하여 설명될 것이다. 따라서, 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 또한 본 발명에 도시된 각 도면에 있어서 각 구성 요소들은 설명의 편의를 고려하여 다소 확대 또는 축소되어 도시된 것일 수 있다.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시 예에 대하여 다음과 같이 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 스캐닝 라이다 장치의 블럭도이다.
도 1을 참조하면, 스캐닝 라이다 장치(100)는 레이저 신호를 이용해서 주변을 탐색할 때 탐색이 되지 않는 사각지대가 발생하지 않도록 측정밀도를 조절하기 위한 구성을 갖춘다.
여기서, 탐색이 되지 않는 사각지대라 함은 스캐닝 라이다 장치(100)가 위치한 주변의 전체 공간을 대상으로 하는 경우에 주변 물체 또는 지형을 탐색하지 못한 일부 특정영역을 일컫는 것이거나, 스캐닝 라이다 장치(100)가 주변 공간 중에서 탐색 대상으로 삼은 일부 공간을 대상으로 하는 경우에 주변 물체 또는 지형을 탐색하지 못한 상기 일부 공간 중에서 더 특정된 영역을 일컫는 것이다.
구체적으로, 스캐닝 라이다 장치(100)는 레이저부(110), 제1 회전부(120), 위치조절부(130), 플레이트(140) 및 제2 회전부(150)를 포함한다.
레이저부(110)는 주변 공간의 탐색을 위해 레이저 신호를 발진 및 수광한다. 레이저부(110)가 주변공간의 특정영역을 지향한 위치 상태에서 레이저 신호를 발진한다. 이후, 주변공간의 특정영역을 지향하여 발진된 레이저 신호는 주변공간의 특정영역에 위치한 물체 또는 지형에 반사된 후 반사된 레이저 신호로서 레이저부(110)에 수광된다.
이러한 레이저부(110)에서, 레이저 신호의 발진 및 수광을 위한 구성은 발진 모듈 및 수광 모듈의 조합으로서 구비될 수 있다. 발진 모듈 및 수광 모듈의 조합 구성은 레이저부(110)에 적어도 하나로 구비될 수 있다.
바람직하게는, 전술한 발진 모듈 및 수광 모듈의 조합 구성이 다수 개(110-1, 110-2, 110-3)로 구비되며, 스캐닝 라이다 장치(100)가 주변 공간에 대한 측정 밀도를 형성하기 위한 제어를 실행할 때 최소 시간 단위별 측정 밀도를 향상시킬 수 있는 패턴으로 다수 개의 발진 모듈 및 수광 모듈의 조합 구성(110-1, 110-2, 110-3)이 레이저부(110)에 배치될 수 있다.
여기서, 최소 시간 단위별로 측정 밀도를 향상시킬 수 있는 패턴으로 다수 개의 발진 모듈 및 수광 모듈의 조합 구성(110-1, 110-2, 110-3)이 레이저부(110)에 배치되는 구조라 함은 보다 상세한 도면을 참고로 설명하는 것이 위 언급된 구조를 설명하는 데에 용이하므로 이하, 도 3 부분에서 관련 부분을 상술하기로 한다.
레이저부(110)는 스캐닝 라이다 장치(100)가 놓여 진 주변 공간의 특정 영역을 일일이 지향한 후 레이저 신호를 이용한 탐색 과정을 반복함에 따라, 주변 공간의 수많은 특정 영역을 일일이 지향하기 위한 공간상의 위치 이동을 한다.
제1 회전부(120)는 이러한 레이저부(110)의 공간상의 위치를 지지하고, 레이저부(110)가 주변 공간의 각 특정 영역을 지향할 수 있도록 레이저부(110)의 공간상 위치를 변경하는 역할을 한다. 특히, 제1 회전부(120)는 레이저부(110)의 공간상 위치를 변경하는 기능들 중에서 레이저부(110)와 결합하는 평면에서 레이저부(110)를 회전하는 기능을 수행함에 따라 레이저부(110)가 주변 공간에 대해 지향하는 위치를 변경할 수 있게 한다.
위치조절부(130)는 레이저부(110)의 공간상 위치를 변경하는 기능들 중에서 레이저부(110)를 상하 이동하는 기능을 수행하거나, 레이저부(110)의 상하 이동을 포함한 변위를 변경하는 기능을 수행할 수 있다.
구체적으로, 위치조절부(130)는 레이저부(110) 및 제1 회전부(120)가 위치한 제1 수평면(A)과 스캐닝 기준면인 제2 수평면(B)의 각도를 조절한다. 레이저부(110) 및 제1 회전부(120)가 한 블럭으로 형성되고, 레이저부(110) 및 제1 회전부(120)를 포함하는 블럭의 일측이 위치조절부(130)에 의해 지지되면서 위치조절부(130)의 위치 조절 기능에 따라 레이저부(110) 및 제1 회전부(120)를 포함하는 블럭도 함께 위치 이동하는 구조이다.
즉, 제1 수평면(A)은 레이저부(110) 및 제1 회전부(120)를 포함하는 블럭이 위치조절부(130)에 의해 지지되는 평면을 일컫는다.
또한, 제1 수평면(A)과 대비되는 제2 수평면(B)은 전술한 바와 같이 스캐닝 기준면으로서, 위치 조절 기능의 실행을 위한 위치 기준면이 될 수도 있다.
예컨대, 제2 수평면(B)은 스캐닝 라이다 장치(100)가 특정 장비에 장착되지 않은 상태인 경우, 지평면과 수평 방향에 놓일 수 있다.
제1 회전부(120)에 의해 회전하는 대상인 레이저부(110)는 제1 수평면(A)에 의해 지지 되나, 제1 회전부(120)에 의해 회전하는 평면은 제1 수평면(A)과 평행한 제1-1 수평면(C)이 된다. 여기서, 제1 수평면(A)과 제1-1 수평면(C) 사이의 간격은 레이저부(110)와 제1 회전부(120) 간의 결합 관계를 형성하는 것에 기초하며, 구체적으로는 레이저부(110)의 회전 중심점과 제1 수평면(A) 간의 폭 만큼 형성될 수 있다.
플레이트(140)는 제2 수평면(B)을 회전 축으로 하거나, 제2 수평면(B)에 접하는 위치에 구비되며, 제1 회전부(120)의 일측과 위치조절부(130)의 일측을 지지한다.
플레이트(140)가 회전하는 경우, 제1 회전부(120) 및 위치조절부(130)를 지지하는 구조로 인해 제1 회전부(120) 및 위치조절부(130)와 함께 회전한다. 이때, 제1 회전부(120)를 지지한다는 것은 제1 회전부(120)와 회전 가능하게 결합된 상태인 레이저부(110)도 함께 지지할 수 있다는 것을 의미한다.
이러한 플레이트(140)의 회전은 제2 회전부(150)에 의해 실행된다.
제2 회전부(150)는 플레이트(140)의 공간상 위치를 지지할 뿐만 아니라, 플레이트(140)를 제2 수평면(B)을 회전축으로 하여 회전하거나 플레이트(140)를 제2 수평면(B)에 평행한 축을 통해 회전함에 따라 플레이트(140)로 지지 되는 레이저부(110), 제1 회전부(120) 및 위치조절부(130)를 모두 회전하는 것이 가능하다.
도 2는 도 1의 스캐닝 라이다 장치를 구동하기 위한 시스템 블럭도이다.
도 2를 참조하면, 스캐닝 라이다 장치(100)를 구동하기 위한 시스템은 구동 대상인 스캐닝 라이다 장치(100)와, 스캐닝 라이다 장치(100)의 구동을 제어하는 제어 모듈(200)을 포함한다.
제어 모듈(200)은 스캐닝 라이다 장치(100)에 포함되는 제1 회전부(120) 및 제2 회전부(150) 중 적어도 하나를 회전 제어하고, 위치조절부(130)를 구동 제어한다.
이와 같은 제어 모듈(200)은 다양한 방식으로 스캐닝 라이다 장치(100)의 구동을 제어하는 것이 가능하다.
예를 들면, 제어 모듈(200)은 스캐닝 라이다 장치(100)와 유선 또는 무선으로 접속된 상태에서, 스캐닝 라이다 장치(100)와 통신하는 것을 기반으로 스캐닝 라이다 장치(100)의 구동을 제어할 수 있다.
제어 모듈(200)과 스캐닝 라이다 장치(100)가 유선으로 연결된 일례를 들면, 도 11에 도시된 바와 같이 스캐닝 라이다 장치(100)를 이동 로봇(400)에 장착한 형태를 들 수 있다.
이러한 형태의 제1 구체화된 예로는, 스캐닝 라이다 장치(100)를 구동 제어하는 제어 모듈(200)이 이동 로봇(400)에 구비되고, 이동 로봇(400) 내에 구비되는 제어 모듈(200)과 이동 로봇(400)의 메인 제어장치가 상호 연동하는 구조를 통해 주변 탐색에 기초한 이동 로봇(400)의 움직임을 실행할 수 있다.
전술한 형태의 제2 구체화된 예로는, 스캐닝 라이다 장치(100)를 구동 제어하는 제어 모듈(200)이 이동 로봇(400) 내의 메인 제어장치로서 구비될 수 있다. 즉, 이동 로봇(400)의 메인 제어장치가 직접 스캐닝 라이다 장치(100)와 연결되는 구조를 통해 주변 탐색에 기초한 이동 로봇(400)의 움직임을 실행할 수 있다.
도 3은 도 1의 스캐닝 라이다 장치를 구체적인 일례로 나타내는 전체 구성도이다.
도 3을 참조하면, 스캐닝 라이다 장치(100)는 주변 공간의 특정 영역을 지향해서 레이저 신호를 발진 및 수광하는 레이저부(110), 제1 수평면(A)에서 레이저부(110)를 회전하는 제1 회전부(120), 레이저부(110) 및 제1 회전부(120)가 위치한 제1 수평면(A)과 스캐닝 기준면인 제2 수평면(B)의 각도를 조절하는 위치조절부(130), 제2 수평면(B)을 형성하며 제1 회전부(120)의 일측과 위치조절부(130)의 일측을 지지하는 플레이트(140), 및 제2 수평면(B)에서 플레이트(140)를 회전하는 제2 회전부(150)를 포함한다.
레이저부(110)는 레이저 신호의 발진 및 수광을 위한 적어도 하나의 발진 모듈 및 수광 모듈의 조합 구성을 구비한다.
여기서, 적어도 하나의 발진 모듈 및 수광 모듈을 조합한 구성이 레이저부(110)에 배치되는 구조는 스캐닝 라이다 장치(100)가 주변 공간에 대한 측정 밀도를 형성하기 위한 제어를 실행할 때 최소 시간 단위별 측정 밀도를 향상시킬 수 있는 패턴으로 배치될 수 있다.
예를 들면, 적어도 하나의 발진 모듈 및 수광 모듈을 조합한 구성은 제1-1 수평면(C)과 동일한 축을 따라 배열되는 구조로 레이저부(110)에 구비되는 것이 가능하다. 이러한 발진 모듈 및 수광 모듈의 배열 구조를 통해 제2 수평면(B)에 수직한 축으로 1회 회전하는 스캔을 실행할 때, 스캔 폭을 조절하기에 적합한 이점이 있다.
즉, 위치조절부(130)의 각도 조절에 따라 제1 수평면(A)과 제2 수평면(B) 간의 각도가 커지는 경우, 전술한 배열 구조를 갖춘 레이저부(110)를 통해 제2 수평면(B)에 수직한 축으로 1회 회전하는 스캔을 실행할 때의 스캔 폭이 커진다.
반면에, 위치조절부(130)의 각도 조절에 따라 제1 수평면(A)과 제2 수평면(B) 간의 각도가 작아지는 경우, 전술한 배열 구조를 갖춘 레이저부(110)를 통해 제2 수평면(B)에 수직한 축으로 1회 회전하는 스캔을 실행할 때의 스캔 폭이 작아진다.
제1 회전부(120)는 레이저부(110)를 회전하기 위한 모터(120-1)를 포함한다. 이러한 모터(120-1)는 스테이터(stator)와 로터(rotor)를 구비하며, 모터(120-1) 내의 중심 회전축을 기준으로 하는 경우 내측에 스테이터가 구비되고, 외측에 로터가 구비될 수 있다.
여기서, 제1 회전부(120)는 레이저부(110)를 회전하는 구성을 갖출 뿐만 아니라, 레이저부(110)로부터 스캔 결과의 신호를 제공받아 제어부로 전달하고, 레이저부(110)의 구동을 제어하기 위한 제어 신호를 제어부로부터 제공받아 레이저부(110)에 전달하기 위한 구조를 갖출 필요가 있다. 이를 위해, 제1 회전부(120)에 구비되는 모터(120-1)는 중공 모터로서, 스테이터를 중공 형상으로 구비하는 것이 가능하다.
또한, 제1 회전부(120)의 로터는 레이저부(110)의 중심축과 연결된 회전 샤프트(120-2)와 연결됨에 따라, 제1 회전부(120)의 로터가 회전하여 발생한 회전 구동력이 회전 샤프트(120-2)를 거쳐 레이저부(110)에 전달된다.
위치조절부(130)는 제1 수평면(A)과 제2 수평면(B)의 각도를 조절하는 구조를 갖춘다.
예를 들면, 도 3에 도시된 바와 같이, 스캔 기준면인 제2 수평면(B)을 고정한 상태에서 제1 수평면(A)을 가변하는 구조가 가능하다. 즉, 제1 수평면(A)에 접해 있는 제1 회전부(120)의 일측과 플레이트(140)를 고정적으로 힌지 연결한 상태에서, 제1 회전부(120)의 타측과 플레이트(140)를 연결하는 다수의 힌지와 프레임을 결합한 구조물의 형태를 변경하는 방식으로 제2 수평면(B)에 대한 제1 수평면(A)의 각도를 조절할 수 있다.
제2 회전부(150)는 플레이트(140)를 회전하는 구성으로서 플레이트(140)를 회전하는 구성을 갖출 뿐만 아니라, 레이저부(110)의 구동을 위한 제어 신호를 제1 회전부(120)를 거쳐 레이저부(110)까지 전달하거나 레이저부(110)로부터 스캔 결과의 신호를 제공받기 위한 구조를 더 갖출 필요가 있다. 이를 위해, 제2 회전부(150)에 구비되는 모터(150-1)는 중공 모터로서, 스테이터를 중공 형상으로 구비하여 전술한 신호들의 통신을 위한 통신선이 위치할 수 있는 공간을 갖출 필요가 있다.
도 4는 도 1의 위치조절부 중에서 각도 조절 구성을 일례로 나타내는 일부 구성도이다.
도 4를 참조하면, 위치조절부(130)는 레이저부(110) 및 제1 회전부(120)를 지지하는 제1 수평면(A)과 스캐닝 기준면인 제2 수평면(B)이 한 변을 공유해서 접하는 경우, 제1 수평면(A)과 제2 수평면(B)을 교차하는 평면각(θ')을 조절할 수 있다.
도 5는 도 1의 위치조절부 중에서 각도 조절 구성을 다른 예로 나타내는 일부 구성도이다.
도 5를 참조하면, 위치조절부(130)는 레이저부(110) 및 제1 회전부(120)를 지지하는 제1 수평면(A)과 스캐닝 기준면인 제2 수평면(B)이 적어도 한 점을 공유해서 접하는 경우, 스캐닝 기준면인 제2 수평면(B)에 대한 제1 수평면(A)의 위치 변화량을 조절할 수 있다.
이때, 위치조절부(130)는 다수의 힌지와 프레임을 결합한 구조물을 제1 회전부(120)와 플레이트(140) 사이에 다수 개 배치한 상태에서, 각 구조물의 형태를 변경하는 방식으로 제2 수평면(B)에 대한 제1 수평면(A)의 위치 변화량을 조절하는 것이 가능하다.
도 6은 도 3의 위치조절부를 제1 각도로 조절한 상태를 나타내는 예시도이고, 도 7은 도 6의 장치상태에 따른 측정밀도를 단순화된 궤적으로 나타내는 예시도이다.
도 6 및 도 7을 참조하면, 레이저부(110)에서 발진 모듈 및 수광 모듈을 조합한 구성이 제1 수평면(A)과 평행인 제1-2 수평면(D), 제1-3 수평면(E) 및 제1-4 수평면(F)에 걸쳐 배치된 상태이다.
이러한 상태의 레이저부(110) 및 제1 회전부(120)를 포함하는 블럭을 지지하는 평면인 제1 수평면(A)이 스캐닝 기준면인 제2 수평면(B)에 대해 'L' 각도를 형성하는 경우, 'L' 각도로 위치 조절된 상태에서 제2 회전부(150)의 회전 구동이 실행되어 제2 수평면(B)에 수직한 축으로 1회 회전하는 스캔을 할 때, 도 7에 도시된 바와 같은 스캔 폭이 형성될 수 있다.
도 8은 도 3의 위치조절부를 제2 각도로 조절한 상태를 나타내는 예시도이고, 도 9는 도 8의 장치상태에 따른 측정밀도를 단순화된 궤적으로 나타내는 예시도이다.
도 8 및 도 9를 참조하면, 레이저부(110)에서 발진 모듈 및 수광 모듈을 조합한 구성이 제1 수평면(A)과 평행인 제1-2 수평면(D), 제1-3 수평면(E) 및 제1-4 수평면(F)에 걸쳐 배치된 상태에서 전술한 예와 달리 다른 각도를 형성할 수 있다.
즉, 레이저부(110) 및 제1 회전부(120)를 포함하는 블럭을 지지하는 평면인 제1 수평면(A)이 스캐닝 기준면인 제2 수평면(B)에 대해 'l' 각도를 형성하는 경우, 'l' 각도로 위치 조절된 상태에서 제2 회전부(150)의 회전 구동이 실행되어 제2 수평면(B)에 수직한 축으로 1회 회전하는 스캔을 할 때, 도 9에 도시된 바와 같은 스캔 폭이 형성될 수 있다. 여기서, 도 9의 스캔 폭은 도 7의 스캔 폭 보다 좁아진 것을 확인할 수 있다.
도 10은 본 발명의 다른 실시예에 따른 스캐닝 라이다 장치의 블럭도이다.
도 10을 참조하면, 스캐닝 라이다 장치(300)는 주변 공간의 특정 영역을 지향해서 레이저 신호를 발진 및 수광하는 레이저부(310), 제1 수평면(A)에서 레이저부를 회전하는 제1 회전부(320), 레이저부(310) 및 제1 회전부(320)가 위치한 제1 수평면(A)과 스캐닝 기준면인 제2 수평면(B)의 각도를 조절하는 위치조절부(330), 제2 수평면(B)을 형성하며 제1 회전부(320)의 일측과 위치조절부(330)의 일측을 지지하는 플레이트(340) 및 제2 수평면(B)에서 플레이트(340)를 회전하는 제2 회전부(350)를 포함하되, 제1 회전부(320) 및 제2 회전부(350) 중 적어도 하나를 회전 제어하고 위치조절부(330)를 구동 제어하는 제어부(360)를 더 포함할 수도 있다.
도 12는 본 발명의 스캐닝 라이다 장치가 동작하는 과정을 일 실시 예로 나타내는 순서도이다.
도 12에 도시된 바와 같이, 스캐닝 라이다 장치(300)를 실행해서 주변공간의 특정영역을 지향한 스캐닝 설정을 할 수 있으며(S1), 이러한 스캐닝 설정에서 주변공간의 특정영역을 지향해서 레이저 신호를 발진 및 수광하는 레이저부(310)의 회전 방향과 대응되는 제1 수평면과 스캐닝 기준면인 제2 수평면의 각도를 조절하는 것이 가능하다(S3).
여기서, 각도 조절 단계에서는 제1 수평면과 제2 수평면이 한 변을 공유해서 접하는 경우, 제1 수평면과 제2 수평면을 교차하는 평면각을 조절하는 단계를 포함할 수 있으며, 제1 수평면과 제2 수평면이 적어도 한 점을 공유해서 접하는 경우에는, 제1 수평면과 제2 수평면의 위치 변화량을 조절하는 단계를 포함할 수 있다.
이후, 제1 수평면에서 레이저부(310)를 회전하는 제1 회전부(320)와, 제2 수평면에서 제1 회전부(320)와 각도 조절 구성인 위치조절부(330)를 지지하는 플레이트(340)를 회전하는 제2 회전부(350) 중 적어도 하나에 대한 제어를 한다(S5).
이후, S5 단계의 제어에 따라 제1 회전부(320) 및 제2 회전부(350) 중 적어도 하나가 회전 구동된다(S7).
이후, 스캐닝 라이다 장치(300)는 전술한 단계들의 실행을 통해 주변 스캐닝 결과를 저장할 수 있고(S9), 저장된 주변 스캐닝 결과를 기초로 스캐닝 라이다 장치(300)가 주변공간을 지향하는 측정위치 및 측정밀도를 산출하며(S11), 산출된 측정위치 및 측정밀도를 이용해서 주변 영역 중에서 스캐닝 사각지대를 결정할 수 있다(S13).
S13 단계에서 결정된 스캐닝 사각지대가 존재하는 경우, 스캐닝 라이다 장치(300)는 스캐닝 사각지대가 스캐닝 대상 영역에 포함되도록 상기 위치조절부(330)의 각도를 조절하고, 상기 제1 회전부(320) 및 상기 제2 회전부(350) 중 적어도 하나를 구동 제어할 수 있다(S15).
한편, S13 단계에서 스캐닝 사각지대가 존재하지 않는 경우에는, 추가로 스캐닝을 지속할지 여부에 대한 사용자 선택에 따라 스캐닝 라이다 장치(300)의 지속 실행 여부가 결정된다(S17).
이상과 첨부된 도면을 참조하여 본 발명의 실시 예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
또한, 본 발명은 레이저 신호를 이용해서 주변을 탐색할 때 탐색이 되지 않는 사각지대가 발생하지 않도록 측정밀도를 조절하기 위한 스캐닝 라이다 장치 및 이에 적용되는 방법을 제공하기 위한 것임에 따라, 시판 또는 영업의 가능성이 충분할 뿐만 아니라 현실적으로 명백하게 실시할 수 있는 정도이므로 산업상 이용가능성이 있는 발명이다.

Claims (13)

  1. 주변공간의 특정영역을 지향해서 레이저 신호를 발진 및 수광하는 레이저부;
    제1 수평면에서 상기 레이저부를 회전하는 제1 회전부;
    상기 레이저부 및 상기 제1 회전부가 위치한 상기 제1 수평면과 스캐닝 기준면인 제2 수평면의 각도를 조절하는 위치조절부;
    상기 제2 수평면을 형성하며, 상기 제1 회전부의 일측과 상기 위치조절부의 일측을 지지하는 플레이트; 및
    상기 제2 수평면에서 상기 플레이트를 회전하는 제2 회전부를 포함하는 스캐닝 라이다 장치.
  2. 제1 항에 있어서,
    상기 제1 회전부 및 상기 제2 회전부 중 적어도 하나를 회전 제어하고, 상기 위치조절부를 구동 제어하는 제어부를 더 포함하는 스캐닝 라이다 장치.
  3. 제1 항 또는 제2 항에 있어서,
    상기 위치조절부는 상기 제1 수평면과 상기 제2 수평면이 한 변을 공유해서 접하는 경우, 상기 제1 수평면과 상기 제2 수평면을 교차하는 평면각을 조절하는 스캐닝 라이다 장치.
  4. 제1 항 또는 제2 항에 있어서,
    상기 위치조절부는 상기 제1 수평면과 상기 제2 수평면이 적어도 한 점을 공유해서 접하는 경우, 상기 제1 수평면과 상기 제2 수평면의 위치 변화량을 조절하는 스캐닝 라이다 장치.
  5. 제2 항에 있어서,
    상기 제어부는 상기 레이저부의 작동 결과, 상기 회전 제어를 실행한 제어값 및 상기 구동 제어를 실행한 제어값을 취합해서 측정위치 및 측정밀도를 산출하고, 산출된 측정위치 및 측정밀도를 기초로 스캐닝 사각지대를 결정하는 스캐닝 라이다 장치.
  6. 제5 항에 있어서,
    상기 제어부는 상기 스캐닝 사각지대를 대상으로 상기 회전 제어 및 상기 구동 제어를 하는 스캐닝 라이다 장치.
  7. 제5 항에 있어서,
    상기 제어부는 상기 스캐닝 라이다 장치를 장착한 장비의 속성을 토대로 상기 스캐닝 사각지대를 보정하는 스캐닝 라이다 장치.
  8. 스캐닝 라이다 장치에서, 주변공간의 특정영역을 지향해서 레이저 신호를 발진 및 수광하는 레이저부의 회전 방향과 대응되는 제1 수평면과 스캐닝 기준면인 제2 수평면의 각도를 조절하는 단계;
    상기 제1 수평면에서 상기 레이저부를 회전하는 제1 회전부와, 상기 제2 수평면에서 상기 제1 회전부와 상기 각도를 조절하는 위치조절부를 지지하는 플레이트를 회전하는 제2 회전부 중 적어도 하나를 제어하는 단계; 및
    제어 신호에 따라 상기 제1 회전부 및 상기 제2 회전부 중 적어도 하나를 회전 구동하는 단계를 포함하는 스캐닝 방법.
  9. 제8 항에 있어서,
    상기 각도를 조절하는 단계는 상기 제1 수평면과 상기 제2 수평면이 한 변을 공유해서 접하는 경우, 상기 제1 수평면과 상기 제2 수평면을 교차하는 평면각을 조절하는 단계를 포함하는 스캐닝 방법.
  10. 제8 항에 있어서,
    상기 각도를 조절하는 단계는 상기 제1 수평면과 상기 제2 수평면이 적어도 한 점을 공유해서 접하는 경우, 상기 제1 수평면과 상기 제2 수평면의 위치 변화량을 조절하는 단계를 포함하는 스캐닝 방법.
  11. 제8 항에 있어서,
    상기 제1 회전부 및 상기 제2 회전부 중 적어도 하나를 실행한 주변 스캐닝 결과를 기초로 측정위치 및 측정밀도를 산출하고, 산출된 측정위치 및 측정밀도를 이용해서 주변 영역 중에서 스캐닝 사각지대를 결정하는 단계를 더 포함하는 스캐닝 방법.
  12. 제11 항에 있어서,
    상기 스캐닝 사각지대가 스캐닝 대상 영역에 포함되도록 상기 위치조절부의 각도를 조절하고, 상기 제1 회전부 및 상기 제2 회전부 중 적어도 하나를 구동 제어하는 단계를 더 포함하는 스캐닝 방법.
  13. 제11 항에 있어서
    상기 스캐닝 라이다 장치를 장착한 장비의 속성을 토대로 상기 스캐닝 사각지대를 보정하는 단계를 더 포함하는 스캐닝 방법.
PCT/KR2015/009129 2015-01-05 2015-08-31 스캐닝 라이다 장치 및 이에 적용되는 방법 WO2016111437A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150000544A KR20160084084A (ko) 2015-01-05 2015-01-05 스캐닝 라이다 장치
KR10-2015-0000544 2015-01-05

Publications (1)

Publication Number Publication Date
WO2016111437A1 true WO2016111437A1 (ko) 2016-07-14

Family

ID=56356107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009129 WO2016111437A1 (ko) 2015-01-05 2015-08-31 스캐닝 라이다 장치 및 이에 적용되는 방법

Country Status (2)

Country Link
KR (1) KR20160084084A (ko)
WO (1) WO2016111437A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019114316A1 (zh) * 2017-12-11 2019-06-20 同方威视技术股份有限公司 三维扫描装置、机器人及数据处理方法
CN110568423A (zh) * 2019-09-10 2019-12-13 广州文远知行科技有限公司 激光雷达角度标定方法、装置、终端设备及存储介质
CN112268208A (zh) * 2020-10-19 2021-01-26 北京一数科技有限公司 一种安装座、调节保护装置及激光雷达装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102159376B1 (ko) * 2016-01-29 2020-09-23 각코호진 메이지다이가쿠 레이저 스캔 시스템, 레이저 스캔 방법, 이동 레이저 스캔 시스템 및 프로그램
KR101877388B1 (ko) * 2016-07-21 2018-07-11 엘지전자 주식회사 차량용 라이다 장치
KR101997095B1 (ko) 2016-07-22 2019-07-08 전자부품연구원 수평 분해능 및 영상획득 프레임이 제어되는 스캐닝 라이다
KR102135559B1 (ko) * 2018-05-16 2020-07-20 주식회사 유진로봇 초소형 3차원 스캐닝 라이다 센서
KR102178376B1 (ko) 2017-11-23 2020-11-13 한국전자기술연구원 전방위 무회전 스캐닝 라이다 시스템
KR102297256B1 (ko) * 2019-09-30 2021-09-03 알엠스 주식회사 라이다 3차원 스캐닝 장치
KR102289878B1 (ko) * 2019-11-27 2021-08-13 국방과학연구소 단일 레이저 빔을 이용한 3차원 스캐닝 수중 라이다 장치 및 그 제어 방법, 컴퓨터 판독 가능한 기록 매체 및 컴퓨터 프로그램
KR200494702Y1 (ko) * 2020-01-15 2021-12-06 주식회사 스트리스 전신주 부착형 라이다 브라켓 장치
KR102592158B1 (ko) 2021-08-10 2023-10-19 조선대학교산학협력단 라이다 스캐닝 시스템
KR102574710B1 (ko) * 2021-12-08 2023-09-06 김동민 레이저 모듈 어셈블리

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130054187A1 (en) * 2010-04-09 2013-02-28 The Trustees Of The Stevens Institute Of Technology Adaptive mechanism control and scanner positioning for improved three-dimensional laser scanning
KR20130037722A (ko) * 2010-07-26 2013-04-16 커먼웰쓰 사이언티픽 앤 인더스트리알 리서치 오거니제이션 3차원 스캐닝 빔 시스템 및 방법
KR20140040094A (ko) * 2011-01-28 2014-04-02 인터치 테크놀로지스 인코퍼레이티드 이동형 원격현전 로봇과의 인터페이싱
US20140182488A1 (en) * 2012-12-27 2014-07-03 Syncmold Enterprise Corp. Lifting and rotating device
KR101449931B1 (ko) * 2013-11-27 2014-10-15 이대봉 라이다용 3차원 공간 스캔장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525891B1 (ko) 2013-02-13 2015-06-03 (주)다인디지컬처 3차원 실내공간 정보 구축을 위한 라이다 데이터 모델링 방법 및 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130054187A1 (en) * 2010-04-09 2013-02-28 The Trustees Of The Stevens Institute Of Technology Adaptive mechanism control and scanner positioning for improved three-dimensional laser scanning
KR20130037722A (ko) * 2010-07-26 2013-04-16 커먼웰쓰 사이언티픽 앤 인더스트리알 리서치 오거니제이션 3차원 스캐닝 빔 시스템 및 방법
KR20140040094A (ko) * 2011-01-28 2014-04-02 인터치 테크놀로지스 인코퍼레이티드 이동형 원격현전 로봇과의 인터페이싱
US20140182488A1 (en) * 2012-12-27 2014-07-03 Syncmold Enterprise Corp. Lifting and rotating device
KR101449931B1 (ko) * 2013-11-27 2014-10-15 이대봉 라이다용 3차원 공간 스캔장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019114316A1 (zh) * 2017-12-11 2019-06-20 同方威视技术股份有限公司 三维扫描装置、机器人及数据处理方法
CN110568423A (zh) * 2019-09-10 2019-12-13 广州文远知行科技有限公司 激光雷达角度标定方法、装置、终端设备及存储介质
CN110568423B (zh) * 2019-09-10 2020-07-24 广州文远知行科技有限公司 激光雷达角度标定方法、装置、终端设备及存储介质
CN112268208A (zh) * 2020-10-19 2021-01-26 北京一数科技有限公司 一种安装座、调节保护装置及激光雷达装置

Also Published As

Publication number Publication date
KR20160084084A (ko) 2016-07-13

Similar Documents

Publication Publication Date Title
WO2016111437A1 (ko) 스캐닝 라이다 장치 및 이에 적용되는 방법
WO2010080012A2 (ko) 팬틸트 장치
WO2017119537A1 (ko) 라이다 시스템을 포함하는 비행체
WO2016200185A1 (ko) 3차원 스캐닝 시스템 및 이를 위한 라인레이저 정렬용 표적기구
EP3829831A1 (en) Moving robot, moving robot system, and method for moving to charging station of moving robot
WO2012165724A1 (ko) 무선 액세스 포인트와 그 무선 액세스 포인트를 제어하는 방법 및 장치
WO2015037825A1 (ko) 세탁기 및 그 제어 방법
WO2010134709A2 (ko) 평판 스캔 모듈, 평판 스캔 시스템, 평판 스캔 모듈의 정렬 오차 측정용 지그 및 이를 이용한 평판 스캔 모듈의 정렬 오차 측정 방법
WO2016060315A1 (ko) 단방향으로 회전하는 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치
WO2016186294A1 (ko) 영상투사장치 및 이를 구비하는 차량
EP3008775A1 (en) Antenna for satellite communication having structure for switching multiple band signals
WO2020190004A1 (ko) 안테나용 클램핑 장치
WO2014104765A1 (ko) 3차원 공간 측정 장치 및 동작 방법
WO2020204458A1 (ko) 광각 고해상도 거리 측정 장치
WO2018135792A1 (en) Transfer module, substrate processing system having transfer chamber, and substrate processing method using substrate transfer system
WO2010002189A2 (ko) 레이저 스캐닝 디스플레이 및 그의 빔 얼라이먼트 방법
WO2020027611A1 (en) Moving robot, moving robot system, and method for moving to charging station of moving robot
WO2019194415A1 (en) Mover robot system and controlling method for the same
CN116532788B (zh) 一种圆柱电池激光加工设备及方法
WO2019143116A1 (ko) 렌즈 어셈블리 및 그를 포함하는 카메라 모듈
WO2021261809A1 (ko) 라이다 장치
WO2016195176A1 (ko) 델타 로봇 캘리브레이션 방법 및 델타 로봇 캘리브레이션 장치
WO2017146403A1 (ko) 표시 시스템
WO2017069482A1 (ko) 선박 및 해양구조물용 능동형 기지국 추적 다중 안테나장치 및 능동형 기지국 추적 안테나장치
WO2020045932A1 (ko) 영상 처리 장치 및 영상 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877157

Country of ref document: EP

Kind code of ref document: A1