WO2016111273A1 - High-strength plated steel sheet and method for producing same - Google Patents

High-strength plated steel sheet and method for producing same Download PDF

Info

Publication number
WO2016111273A1
WO2016111273A1 PCT/JP2016/050068 JP2016050068W WO2016111273A1 WO 2016111273 A1 WO2016111273 A1 WO 2016111273A1 JP 2016050068 W JP2016050068 W JP 2016050068W WO 2016111273 A1 WO2016111273 A1 WO 2016111273A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
steel sheet
less
range
satisfying
Prior art date
Application number
PCT/JP2016/050068
Other languages
French (fr)
Japanese (ja)
Inventor
二村 裕一
宗朗 池田
道治 中屋
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015182115A external-priority patent/JP6085348B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to MX2017009021A priority Critical patent/MX2017009021A/en
Priority to CN201680005037.0A priority patent/CN107109576B/en
Priority to US15/541,862 priority patent/US20180010207A1/en
Priority to KR1020177022028A priority patent/KR101833698B1/en
Publication of WO2016111273A1 publication Critical patent/WO2016111273A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention is a high strength plated steel sheet having a tensile strength of 980 MPa or more, good plating properties, workability including elongation, bendability, and hole expansibility, and excellent delayed fracture resistance, and its production Regarding the method.
  • the plated steel sheet of the present invention includes both hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets.
  • Hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets which are widely used in fields such as automobiles and transportation equipment, are not only high-strength, but also workability such as elongation, bendability, and hole expandability (synonymous with stretch flangeability) Furthermore, it is required to have excellent delayed fracture resistance.
  • Patent Document 1 discloses a hot-dip galvanized steel sheet having a tensile strength of 590 MPa or more and excellent bendability and corrosion resistance of a processed part. Specifically, in Patent Document 1, in order to suppress the occurrence of bending cracks and damage to the plating film due to the internal oxide layer formed on the steel plate side from the interface between the steel plate and the plating layer, the growth of the internal oxide layer is suppressed. Therefore, the growth of the decarburized layer is remarkably accelerated. Further, a near-surface structure is disclosed in which the thickness of the internal oxide layer in the ferrite region formed by decarburization is controlled to be thin.
  • Patent Document 2 discloses a hot-dip galvanized steel sheet having a fatigue strength, hydrogen embrittlement resistance (synonymous with delayed fracture resistance), and a tensile strength excellent in bendability of 770 MPa or more.
  • the steel plate portion is configured to have a soft layer that is in direct contact with the interface with the plating layer, and a soft layer that has ferrite with a maximum area ratio structure.
  • the thickness D of the soft layer and the depth d from the plating / base metal interface of the oxide containing one or more of Si and Mn existing in the steel sheet surface layer portion are d / 4 ⁇ D ⁇ 2d.
  • a hot-dip galvanized steel sheet that satisfies the requirements is disclosed.
  • JP 2011-231367 A Japanese Patent No. 4943558
  • the present invention has been made in view of the above circumstances, and its purpose is that the plating strength is good, the tensile strength excellent in workability of elongation, bendability and hole expansibility, and delayed fracture resistance is 980 MPa or more.
  • An object of the present invention is to provide a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet.
  • the other object of this invention is to provide the manufacturing method of the said hot dip galvanized steel plate and an alloyed hot dip galvanized steel plate.
  • the high-strength galvanized steel sheet having a tensile strength of 980 MPa or more is a galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of the base steel plate.
  • the base steel sheet is, by mass, C: 0.10 to 0.5%, Si: 1 to 3%, Mn: 1.5 to 8%, Al: 0.005 to 3%, P: 0% More than 0.1%, S: more than 0% and 0.05% or less, and N: more than 0% and 0.01% or less, with the balance being iron and inevitable impurities.
  • an internal oxide layer containing at least one oxide selected from the group consisting of Si and Mn, and a layer containing the internal oxide layer are scanned.
  • the soft layer satisfying 90% or less of the Vickers hardness at t / 4 part of the base steel sheet and the metal structure are scanned.
  • SEM scanning Electron Microscope
  • the retained austenite hereinafter referred to as residual ⁇
  • a hard layer composed of a structure containing 5% by volume or more
  • an average depth D of the soft layer is 20 ⁇ m or more
  • an average depth d of the internal oxide layer is It has a gist in that it satisfies 4 ⁇ m or more and less than D.
  • the average depth d of the internal oxide layer and the average depth D of the soft layer satisfy a relationship of D> 2d.
  • the low-temperature transformation generation phase includes high-temperature range bainite having an average interval of 1 ⁇ m or more between adjacent residual austenite, adjacent carbides, or adjacent residual austenite and carbide, Low-temperature region-generated bainite that is more than 50 area% and not more than 95 area% with respect to the entire structure, and the average distance between adjacent residual austenite, adjacent carbides, or adjacent residual austenite and carbide is less than 1 ⁇ m, and tempering Martensite may be included, and the total of the low temperature region bainite and the tempered martensite may be 0 area% or more and less than 20 area% with respect to the entire metal structure.
  • the low-temperature transformation generation phase is, between adjacent residual austenite, adjacent carbides, or high temperature region bainite having an average interval between adjacent residual austenite and carbide of 1 ⁇ m or more, adjacent residual austenite, adjacent carbides, Or a low-temperature zone bainite having an average distance between adjacent retained austenite and carbide of less than 1 ⁇ m, and tempered martensite, and the high-temperature zone bainite is 20 to 80 area% with respect to the entire metal structure, The total of the low temperature region bainite and the tempered martensite may be 20 to 80 area% with respect to the entire metal structure.
  • the low temperature transformation product phase includes adjacent low temperature austenite, adjacent carbides, or low temperature region bainite having an average interval between adjacent residual austenite and carbide of less than 1 ⁇ m, and tempered martensite.
  • the total of bainite and the tempered martensite is more than 50 area% and not more than 95 area% with respect to the entire metal structure, and the average distance between adjacent residual austenite, adjacent carbides, or adjacent residual austenite and carbide.
  • the base steel plate is further in mass%, (A) at least one selected from the group consisting of Cr: more than 0% and 1% or less, Mo: more than 0% and 1% or less, and B: more than 0% and 0.01% or less, (B) at least one selected from the group consisting of Ti: more than 0% and 0.2% or less, Nb: more than 0% and 0.2% or less, and V: more than 0% and 0.2% or less, (C) at least one selected from the group consisting of Cu: more than 0% and 1% or less, and Ni: more than 0% and 1% or less, (D) at least one selected from the group consisting of Ca: more than 0% and 0.01% or less, Mg: more than 0% and 0.01% or less, and rare earth elements: more than 0% and 0.01% or less, It may contain.
  • A at least one selected from the group consisting of Cr: more than 0% and 1% or less, Mo: more than 0% and 1% or less, and B: more than 0%
  • the high-strength plated steel sheet includes a hot rolling step of winding a steel sheet satisfying the components in the base steel sheet at a temperature of 600 ° C. or more, and pickling so that the average depth d of the internal oxide layer remains 4 ⁇ m or more.
  • the high-strength plated steel sheet is a hot rolling process in which a steel sheet satisfying the steel components of the base steel sheet is wound at a temperature of 500 ° C. or higher, and a process of keeping the temperature at a temperature of 500 ° C. or higher for 60 minutes or more.
  • the range up to the above can also be produced by a production method comprising in this order the steps of cooling at an average cooling rate of 10 ° C./second or more and holding in the temperature range of 100 to 540 ° C. for 50 seconds or more.
  • the low-temperature transformation generation phase contains the high-temperature region-generated bainite more than 50% by area and not more than 95 area% with respect to the entire metal structure, and the total of the low-temperature region-generated bainite and the tempered martensite is in the entire metal structure.
  • the high-strength plated steel sheet that is 0 area% or more and less than 20 area% can be manufactured by the following [Ia] or [Ib] manufacturing method.
  • [Ia] A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 600 ° C. or higher, and pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 ⁇ m or more.
  • the low-temperature transformation generation phase contains 20 to 80 area% of the high-temperature region-generated bainite with respect to the entire metal structure, and the total of the low-temperature region-generated bainite and the tempered martensite is 20 to the entire metal structure.
  • the high-strength plated steel sheet containing ⁇ 80 area% can be manufactured by the following manufacturing method [IIa] or [IIb]. [IIa] A hot rolling step of winding a steel plate that satisfies the steel components of the base steel plate at a temperature of 600 ° C. or higher, and pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 ⁇ m or more.
  • the temperature is maintained for 5 to 180 seconds in a temperature range T3 that satisfies the above condition, and then heated to a temperature range T4 that satisfies the following formula (4).
  • the temperature range T4 is maintained for 30 seconds or more. 100 ⁇ T3 (° C.) ⁇ 400 (3) 400 ⁇ T4 (° C.) ⁇ 500 (4)
  • the low-temperature transformation generation phase contains the low-temperature region-generated bainite in an amount of more than 50% by area and not more than 95% by area with respect to the entire metal structure, and the high-temperature region-generated bainite is 0 area% or more and 20 to 20% of the entire metal structure.
  • the high-strength plated steel sheet that is less than area% can be produced by the following production method [IIIa] or [IIIb]. [IIIa] A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 600 ° C. or higher, and pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 ⁇ m or more.
  • the plated steel sheet of the present invention includes an internal oxide layer containing at least one oxide selected from the group consisting of Si and Mn from the interface between the plating layer and the base steel sheet to the base steel sheet side, and a region of the internal oxide layer.
  • a hard layer that is a region other than the soft layer and mainly includes a low-temperature transformation generation phase, includes retained austenite, and may include polygonal ferrite.
  • the average depth d of the internal oxide layer is controlled to be 4 ⁇ m or more and used as a hydrogen trap site, hydrogen embrittlement can be effectively suppressed, and processing of elongation, bendability, and hole expandability is possible.
  • a high-strength plated steel sheet having a tensile strength of 980 MPa or more, which is excellent in all properties and delayed fracture resistance, can be obtained.
  • the bendability is further enhanced.
  • FIG. 1 is a schematic diagram for explaining a layer structure from the interface between a plating layer and a base steel plate to the base steel plate side in the plated steel plate of the present invention.
  • FIG. 2 is a schematic diagram for explaining the procedure for measuring the average depth d of the internal oxide layer in the plated steel sheet of the present invention.
  • FIG. 3 is a diagram for explaining the measurement position of the Vickers hardness used for determining the average depth D of the soft layer.
  • FIG. 4 is a schematic diagram for explaining a procedure for measuring the distance between the center positions of retained austenite, carbides, or retained austenite and carbide.
  • FIG. 5 b are diagrams schematically showing a distribution state of high-temperature region-generated bainite and low-temperature region-generated bainite and tempered martensite.
  • FIG. 6 is a schematic diagram for explaining heat patterns in the T1 temperature range and the T2 temperature range.
  • FIG. 7 is a schematic diagram for explaining heat patterns in the T3 temperature range and the T4 temperature range.
  • the present inventors provide a high-strength plated steel sheet having a high strength of 980 MPa or more and excellent in all of plateability, workability, and delayed fracture resistance in a base steel sheet rich in Si and Mn. For this reason, in particular, studies have been made focusing on the layer structure from the interface between the plating layer and the base steel plate to the base steel plate side. As a result, as shown in the schematic diagram of FIG.
  • the plated steel sheet includes both a hot dip galvanized steel sheet and an alloyed hot dip galvanized steel sheet.
  • the said base steel plate means the steel plate before a hot dip galvanized layer and an alloying hot dip galvanized layer are formed, and the said plated steel plate is a hot dip galvanized layer or alloy on the surface of a base steel plate. It means a steel sheet having a hot dip galvanized layer.
  • high strength means a tensile strength of 980 MPa or more.
  • excellent in workability means excellent in all of elongation, bendability, and hole expandability. For details, when these characteristics are measured by the method described in the examples described later, those satisfying the acceptance criteria of the examples are referred to as “excellent workability”.
  • the plated steel sheet of the present invention has a hot dip galvanized layer or an alloyed hot dip galvanized layer (hereinafter, may be represented by a plated layer) on the surface of the base steel sheet.
  • the characteristic part of the present invention is that it has the following layer configurations (A) to (C) in order from the interface between the base steel plate and the plating layer toward the base steel plate side.
  • the average depth d of the internal oxide layer is 4 ⁇ m or more and less than the average depth D of the soft layer described in (B) described later.
  • (B) Soft layer including the internal oxide layer, where the thickness of the base steel sheet is t, the Vickers hardness satisfies 90% or less of the Vickers hardness at t / 4 part of the base steel sheet.
  • the average depth D of the soft layer is 20 ⁇ m or more.
  • the “low temperature transformation product phase” means bainite and tempered martensite, and does not include martensite (sometimes referred to as fresh martensite) as quenched in the low temperature transformation product phase. Fresh martensite is classified here for convenience in other tissues. “Mainly” means 70% by area or more based on the entire metal structure when the structure fraction is measured by the method described in the examples described later. Details will be described later.
  • the layer structure of the plated steel sheet according to the present invention on the base steel sheet 2 side is from the interface between the plating layer 1 and the base steel sheet 2 toward the base steel sheet 2 side,
  • a hard layer 5 of (C) is provided inside the base steel plate 2 from the layer 4.
  • the soft layer 4 of (B) includes the internal oxide layer 3 of (A). The soft layer 4 and the hard layer 5 are continuously present.
  • the portion directly in contact with the interface between the plating layer 1 and the base steel plate 2 has an internal oxide layer 3 having an average depth d of 4 ⁇ m or more.
  • the average depth means an average value of the depth from the interface, and a detailed measuring method thereof will be described with reference to FIG.
  • the internal oxide layer 3 is composed of an oxide containing at least one of Si and Mn, and a Si and Mn depletion layer in which Si and Mn form an oxide to form a solid solution Si or a small amount of solid solution Mn. .
  • the greatest feature is that the average depth d of the internal oxide layer 3 is controlled to be 4 ⁇ m or more.
  • the internal oxide layer 3 can be used as a hydrogen trap site, hydrogen embrittlement can be suppressed, and bendability, hole expansibility, and delayed fracture resistance are improved.
  • a composite oxide film having Si oxide, Mn oxide, and a composite oxide of Si and Mn is formed on the base steel sheet surface during annealing. It is easy to form and the plating property is hindered.
  • the time of annealing corresponds to an oxidation / reduction process in a continuous hot dip galvanizing line which will be described later.
  • a method in which the surface of the base steel sheet is oxidized in an oxidizing atmosphere to form a Fe oxide film, and then annealed (that is, reduction annealing) in an atmosphere containing hydrogen. Furthermore, by controlling the atmosphere in the furnace, the oxidizable elements are fixed as oxides inside the base steel sheet surface layer, and by reducing the oxidizable elements dissolved in the base steel sheet surface layer, A method for preventing the formation of an oxide film on the surface of the base steel plate is also known.
  • the use of at least one oxide selected from the group consisting of Si and Mn is effective in improving the deterioration of bendability and hole expansibility due to crystallization.
  • the oxide is useful as a hydrogen trap site that can prevent hydrogen from entering the base steel sheet during reduction and improve the deterioration of bendability and hole expandability due to the deterioration of delayed fracture resistance.
  • the d is preferably 6 ⁇ m or more, more preferably 8 ⁇ m or more, and still more preferably more than 10 ⁇ m.
  • the upper limit of the average depth d of the internal oxide layer 3 is at least less than the average depth D of the soft layer 4 described later (B).
  • the upper limit of d is preferably 30 ⁇ m or less. In order to make the internal oxide layer 3 thick, it is necessary to keep it for a long time in a high temperature range after hot rolling, but the above preferred values are generally obtained due to restrictions on productivity and equipment.
  • the d is more preferably 18 ⁇ m or less, and still more preferably 16 ⁇ m or less.
  • the average depth d of the internal oxide layer 3 is controlled so as to satisfy the relational expression D> 2d in relation to the average depth D of the soft layer 4 (B) described later. Is preferable, and in particular, the bendability is further improved.
  • Patent Document 2 the oxide existing depth d and the soft layer thickness substantially correspond to the average depth d of the internal oxide layer and the average depth D of the soft layer described in the present invention.
  • a hot-dip galvanized steel sheet satisfying d / 4 ⁇ D ⁇ 2d is disclosed for the depth D, and the directivity of control is completely different from the relational expression (D> 2d) defined in the present invention.
  • Patent Document 2 describes that the range of the oxide depth d is basically controlled while satisfying the above-described relationship of d / 4 ⁇ D ⁇ 2d.
  • the average depth of the internal oxide layer 3 in the cold-rolled steel sheet before passing through the continuous hot dip galvanizing line is 4 ⁇ m. It is necessary to control as described above. This is because the internal oxide layer after pickling and cold rolling is succeeded to the internal oxide layer in the finally obtained plated steel sheet after passing through the plating line, as shown in the examples described later. Details will be described together with the manufacturing method.
  • the soft layer 4 is a layer including the region of the internal oxide layer 3 of (A) as shown in FIG. This soft layer 4 satisfies the Vickers hardness of 90% or less of the Vickers hardness at the t / 4 part of the base steel plate 2.
  • t is the thickness (mm) of the base steel plate. A detailed method for measuring the Vickers hardness will be described in the column of Examples described later.
  • the soft layer 4 is a soft structure having a Vickers hardness lower than that of the hard layer 5 described later (C), and is excellent in deformability. Therefore, when the soft layer 4 is formed, the bendability is particularly improved. That is, at the time of bending, the base steel plate surface layer portion becomes the starting point of cracking, but the bendability is particularly improved by forming the predetermined soft layer 4 on the base steel plate surface layer as in the present invention. Furthermore, the formation of the soft layer 4 can prevent the oxide in (A) from becoming a starting point of cracking during bending, and can enjoy only the above-described merit as a hydrogen trap site. As a result, not only bendability but also delayed fracture resistance is further improved.
  • the average depth D of the soft layer 4 is set to 20 ⁇ m or more.
  • the D is preferably 22 ⁇ m or more, and more preferably 24 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, and more preferably 60 ⁇ m or less.
  • the hard layer 5 is formed in the base steel plate 2 side of the soft layer 4 of the said (B), as shown in FIG.
  • the hard layer 5 is composed mainly of a low-temperature transformation generation phase, a structure containing residual ⁇ , and may contain polygonal ferrite.
  • the “low-temperature transformation generation phase” means bainite and tempered martensite, and bainite means bainitic ferrite.
  • Bainite is a structure in which carbide is precipitated, and bainitic ferrite is a structure in which carbide is not precipitated.
  • the above “mainly comprising” means that the low-temperature transformation generation phase is 70 area% or more with respect to the entire metal structure when observed with a scanning electron microscope, as described in Examples below.
  • the area ratio of the low-temperature transformation generation phase is preferably 75 area% or more, more preferably 80 area% or more, and still more preferably 85 area% or more.
  • the upper limit of the area ratio of the low-temperature transformation product phase is preferably 95 area% or less, for example, in order to ensure the amount of residual ⁇ produced.
  • the residual ⁇ has the effect of accelerating hardening of the deformed part by transforming into martensite when the steel sheet is deformed under stress, thereby preventing strain concentration. Thereby, the uniform deformability is improved and good elongation is exhibited. Such an effect is generally called a TRIP effect.
  • the residual ⁇ needs to be contained in an amount of 5% by volume or more based on the entire metal structure when the metal structure is measured by the saturation magnetization method.
  • the residual ⁇ is preferably 8% by volume or more, more preferably 10% by volume or more, and still more preferably 12% by volume or more.
  • the upper limit of the residual ⁇ is about 30% by volume or less, preferably 25% by volume or less.
  • Residual ⁇ is mainly generated between the laths of the metal structure.
  • Residual ⁇ is mainly generated between the laths of the metal structure.
  • the hard layer may contain polygonal ferrite in a range of 0 to 10 area% with respect to the entire metal structure when the metal structure is observed with a scanning electron microscope. If the amount of polygonal ferrite produced is excessive, bendability and hole expandability deteriorate. Therefore, the area ratio of polygonal ferrite is preferably 10% or less, more preferably 8% or less, and still more preferably 5% or less with respect to the entire metal structure.
  • the hard layer may contain other structures that may be inevitably mixed in the manufacturing process, for example, pearlite, quenched martensite, and the like, as long as the effects of the present invention are not impaired.
  • MA mixed phase that is a composite phase of quenched martensite and residual ⁇ may be included.
  • the other structure is preferably 15 area% or less at the maximum, and the smaller the better.
  • the formation of the hard layer improves elongation and hole expansibility. That is, cracks at the time of hole expansion are generally generated by stress concentration at the interface between a hard phase such as bainite and a soft phase such as polygonal ferrite. Therefore, in order to suppress the crack, it is necessary to reduce the hardness difference between the hard phase and the soft phase. Therefore, in the present invention, the internal structure of the base steel sheet is mainly composed of a low-temperature transformation generation phase such as bainite, which is a hard phase, and a hard layer in which the ratio of polygonal ferrite which is a soft phase is suppressed to 10 area% or less at maximum, did.
  • the low-temperature transformation generation phase mainly includes (C6-1) high-temperature range generation bainite, (C6-2) includes a high-temperature range generation bainite, a low-temperature range generation bainite, and a tempered martensite composite structure.
  • C6-3 It is preferable to mainly contain low-temperature region bainite and tempered martensite.
  • the high-temperature region-generated bainite means that the average distance between adjacent residual ⁇ , adjacent carbides, or adjacent residual ⁇ and carbide is 1 ⁇ m or more when a cross section of a steel plate subjected to nital corrosion is observed with a scanning electron microscope. It is an organization.
  • the high-temperature region-generated bainite is a bainite structure that is generally generated in a temperature range of 400 ° C. or more and 540 ° C. or less in the cooling process after heating to a temperature of Ac 1 point or higher.
  • the low-temperature region-generated bainite means that the average distance between adjacent residual ⁇ , adjacent carbides, or adjacent residual ⁇ and carbide is less than 1 ⁇ m when a cross section of a steel plate subjected to nital corrosion is observed with a scanning electron microscope. It is an organization.
  • the low temperature region-generated bainite is a bainite structure that is generally generated in a temperature range of 200 ° C. or higher and lower than 400 ° C. in the cooling process after heating to the Ac 1 point or higher.
  • the tempered martensite is a structure having the same action as the low temperature region bainite.
  • the low temperature region bainite and the tempered martensite cannot be distinguished even when observed with a scanning electron microscope, in the present invention, the low temperature region bainite and the tempered martensite are collectively referred to as “low temperature region bainite and the like”. I will call it.
  • the high-temperature region-generated bainite contributes particularly to the improvement of elongation among the mechanical properties of the steel sheet
  • the low-temperature region-generated bainite and the tempered martensite contribute particularly to the improvement of hole expandability among the mechanical properties of the steel sheet.
  • bainite structure and tempered martensite When these two types of bainite structure and tempered martensite are included, it is possible to increase the elongation while ensuring good hole expansibility, and to improve the workability in general. This is considered to be because work hardening ability is increased because non-uniform deformation occurs due to the composite of bainite structure and tempered martensite having different strength levels. That is, since the high temperature region generation bainite is softer than the low temperature region generation bainite and the like, it contributes to improving the workability by increasing the elongation EL of the steel sheet. On the other hand, bainite, etc. produced at low temperatures has small carbides and residual ⁇ , and stress concentration is reduced during deformation.
  • the hole expandability and bendability of the steel sheet are enhanced to improve local deformability and improve workability. Contribute to. And by mixing such a high temperature range generation bainite, a low temperature range generation bainite, etc., work hardening ability improves, elongation improves and workability is improved.
  • the distance between the center positions of the adjacent residual ⁇ is obtained by measuring the center position of each residual ⁇ or each carbide when measuring the most adjacent residual ⁇ , the most adjacent carbides, and the most adjacent residual ⁇ and carbide. This means the distance between the center positions.
  • the center position determines the major axis and minor axis of the residual ⁇ or carbide, and is the position where the major axis and minor axis intersect.
  • the distance between the lines formed by the residual ⁇ and carbide, or the residual ⁇ or carbide continuous in the major axis direction may be 12.
  • the distance between lines may be referred to as the distance between laths.
  • 11 indicates retained austenite or carbide.
  • the reason for distinguishing bainite into “high temperature region bainite” and “low temperature region bainite” by the difference in the generation temperature region and the difference in the average interval such as residual ⁇ as described above is a general academic reason. This is because it is difficult to clearly distinguish bainite in the tissue classification. For example, lath-shaped bainite and bainitic ferrite are classified into upper bainite and lower bainite according to the transformation temperature. However, in the steel type containing a large amount of Si of 1% or more as in the present invention, since precipitation of carbides accompanying bainite transformation is suppressed, it is possible to distinguish these including the martensite structure in the scanning electron microscope observation. Have difficulty. Therefore, in the present invention, bainite is not classified based on an academic organization definition, but is distinguished based on the difference in generation temperature range and the average interval such as residual ⁇ as described above.
  • the average interval is greatly influenced by the holding temperature, but the lath shape of the bainite structure is a flat plate shape, and the above-mentioned interval is observed narrowly or widely depending on the observation surface. . Therefore, the area ratio of bainite generated in each of the high temperature region and the low temperature region is defined including the variation in the interval depending on the observation direction.
  • the distribution state of the high temperature zone bainite and the low temperature zone bainite is not particularly limited.For example, both the high temperature zone bainite and the low temperature zone bainite may be generated in the prior austenite grains. High temperature region bainite, low temperature region bainite, and the like may be generated for each austenite grain.
  • FIG. 5 schematically shows the distribution state of the high temperature region bainite and the low temperature region bainite.
  • reference numeral 21 denotes a high temperature region bainite
  • 22 denotes a low temperature region bainite
  • 23 denotes a prior austenite grain boundary (old ⁇ grain boundary)
  • 24 denotes an MA mixed phase.
  • the high temperature region generation bainite is hatched, and the low temperature region generation bainite is marked with fine dots.
  • FIG. 5a shows a state in which both high-temperature region-generated bainite and low-temperature region-generated bainite are mixed and formed in the prior austenite grains.
  • FIG. 5b shows a state in which high temperature region bainite and low temperature region bainite are generated for each prior austenite grain.
  • the black circles shown in FIG. 5 indicate the MA mixed phase. The MA mixed phase will be described later.
  • any of the following (C6-1), (C6-2), and (C6-3) may be used.
  • the low temperature transformation generation phase includes the high temperature region generation bainite, and the high temperature region generation bainite is more than 50 area% and not more than 95 area% with respect to the entire metal structure.
  • the tempered martensite may be included, and the total of the low temperature region bainite and the tempered martensite is 0 area% or more and less than 20 area% with respect to the entire metal structure.
  • the low temperature transformation product phase includes the high temperature region produced bainite, the low temperature region produced bainite, and the tempered martensite, and the high temperature region produced bainite is 20 to 80 area% with respect to the entire metal structure.
  • the total of the low temperature region bainite and the tempered martensite is 20 to 80 area% with respect to the entire metal structure.
  • C6-3 When the low temperature transformation product phase includes the low temperature region bainite and tempered martensite, the total of the low temperature region bainite and the tempered martensite is 50 areas with respect to the entire metal structure. % Over 95% by area, and may include the high temperature region-generated bainite, and the high temperature region-generated bainite is not less than 0 area% and less than 20 area% with respect to the entire metal structure.
  • the elongation of the steel sheet is improved and the workability can be improved by setting the amount of the high-temperature region-generated bainite to be more than 50 area%.
  • the high temperature region bainite is preferably more than 50 area%, more preferably 65 area% or more, still more preferably 75 area% or more, and particularly preferably 80 area% or more.
  • the high temperature region bainite is preferably 95 area% or less, more preferably 90 area% or less, and still more preferably 85 area% or less.
  • the elongation amount of the steel sheet is improved by setting the generation amount a of the high temperature region bainite to 20 area% or more, and the generation amount b of the low temperature region bainite or the like is 20 area% or more.
  • the high temperature region bainite is preferably 20 area% or more, more preferably 25 area% or more, still more preferably 30 area% or more, and particularly preferably 40 area% or more.
  • the low temperature region bainite or the like is preferably 20 area% or more, more preferably 25 area% or more, still more preferably 30 area% or more, and particularly preferably 40 area% or more.
  • the high temperature region bainite is preferably 80 area% or less, more preferably 75 area% or less, and still more preferably 70 area% or less.
  • the low-temperature region bainite and the like are preferably 80 area% or less, more preferably 75 area% or less, and still more preferably 70 area% or less.
  • the mixing ratio of the high temperature region bainite and the low temperature region bainite may be determined according to the characteristics required for the steel sheet. Specifically, in order to further improve the hole expandability of the workability of the steel sheet, the ratio of the high temperature region-generated bainite should be as small as possible and the ratio of the low temperature region-generated bainite should be as large as possible. On the other hand, in order to further improve the elongation of the workability of the steel sheet, the ratio of the high-temperature region-generated bainite should be as large as possible, and the ratio of the low-temperature region-generated bainite should be as small as possible. Further, in order to further increase the strength of the steel sheet, the ratio of the low temperature region bainite or the like may be increased as much as possible, and the ratio of the high temperature region bainite may be decreased as much as possible.
  • the hole expandability of the steel sheet is improved and the workability can be improved by setting the amount of the low temperature region bainite and the like to be more than 50 area%. Therefore, the low-temperature region-generated bainite or the like is preferably more than 50 area%, more preferably 65 area% or more, still more preferably 75 area% or more, and particularly preferably 80 area% or more. However, if the amount of the low temperature region bainite or the like is excessive, it is difficult to secure the amount of residual ⁇ . Accordingly, the low temperature region bainite or the like is preferably 95 area% or less, more preferably 90 area% or less, and still more preferably 85 area% or less.
  • the number ratio of the MA mixed phase having an equivalent circle diameter exceeding 5 ⁇ m is 0 with respect to the total number of the MA mixed phases. % Or more and less than 15%.
  • the MA mixed phase is generally known as a composite phase of quenched martensite and residual ⁇ , and a part of the structure that was present as untransformed austenite before the final cooling is martensite during the final cooling. It is a structure formed by transformation into a site and the remainder remaining as austenite.
  • the MA mixed phase is a particularly hard structure because carbon is concentrated at a high concentration in the course of the austempering process and a part thereof has a martensite structure. Therefore, the hardness difference between the bainite and the MA mixed phase is large, and stress concentrates during deformation and tends to become a starting point of void formation. Therefore, if the MA mixed phase is excessively generated, the hole expandability and bendability are reduced and the local deformability is reduced. Decreases. Moreover, when MA mixed phase produces
  • the MA mixed phase is easily generated as the residual ⁇ amount is increased and the Si content is increased. However, the generated amount is preferably as
  • the number ratio of MA mixed phases having an equivalent circle diameter exceeding 5 ⁇ m is preferably 0% or more and less than 15% with respect to the total number of MA mixed phases.
  • a coarse MA mixed phase having an equivalent circle diameter exceeding 5 ⁇ m adversely affects local deformability.
  • the MA mixed phase is recommended to be as small as possible because experiments have shown that the MA mixed phase tends to generate voids as its particle size increases.
  • the above metal structure can be measured by the following procedure.
  • High temperature zone bainite, low temperature zone bainite, etc. (low temperature zone bainite + tempered martensite), polygonal ferrite, and pearlite are subjected to nital corrosion at 1/4 of the thickness of the cross section parallel to the rolling direction of the steel sheet. However, it can be identified by observing with a scanning electron microscope at a magnification of about 3000 times.
  • High temperature region bainite and low temperature region bainite are mainly observed in gray, and are observed as a structure in which white or light gray residual ⁇ and the like are dispersed in crystal grains. Therefore, according to the observation with a scanning electron microscope, since the high temperature region bainite and the low temperature region bainite include residual ⁇ and carbides, the area ratio including the residual ⁇ is calculated.
  • Polygonal ferrite is observed as crystal grains that do not contain the above-described white or light gray residual ⁇ or the like inside the crystal grains.
  • Pearlite is observed as a structure in which carbide and ferrite are layered.
  • both carbide and residual ⁇ are observed as a white or light gray structure, and it is difficult to distinguish them from each other.
  • carbides such as cementite, for example, tend to precipitate in the laths rather than between the laths as they are produced in the low temperature range.
  • Residual ⁇ is usually generated between the laths, but the size of the lath becomes smaller as the tissue generation temperature decreases. Therefore, when the distance between the residual ⁇ is wide, it is considered that the residual ⁇ was generated in a high temperature range.
  • the interval of is narrow, it can be considered that it was generated in a low temperature region. Therefore, in the present invention, when the cross-section subjected to Nital corrosion is observed with a scanning electron microscope, focusing on residual ⁇ observed as white or light gray in the observation field, the distance between the center positions between adjacent residual ⁇ is measured. Further, a structure having an average interval of 1 ⁇ m or more is referred to as a high-temperature region-generated bainite, and a structure having an average interval of less than 1 ⁇ m is referred to as a low-temperature region-generated bainite.
  • the volume ratio is measured by the saturation magnetization method. This volume ratio value can be read as the area ratio as it is.
  • the detailed measurement principle by the saturation magnetization method may be referred to “R & D Kobe Steel Engineering Reports, Vol.52, No.3, 2002, p.43-46”.
  • the volume fraction of residual ⁇ is measured by the saturation magnetization method
  • the area ratios of high-temperature region bainite and low-temperature region bainite are measured including the residual ⁇ by observation with a scanning electron microscope. Therefore, the sum of these may exceed 100%.
  • the MA mixed phase undergoes repeller corrosion at 1/4 position of the plate thickness in the cross section parallel to the rolling direction of the steel plate, and is observed as a white structure when observed with an optical microscope at a magnification of about 1000 times. Based on this, the ratio of the number of MA mixed phases having an equivalent circle diameter exceeding 5 ⁇ m may be calculated.
  • the base steel plate is C: 0.10 to 0.5%, Si: 1 to 3%, Mn: 1.5 to 8%, Al: 0.005 to 3%, P: more than 0%, 0.1%
  • S more than 0% and 0.05% or less
  • N more than 0% and 0.01% or less, with the balance being iron and inevitable impurities.
  • C is an element necessary for increasing the strength of the steel sheet and generating residual ⁇ .
  • the amount of C is 0.10% or more, preferably 0.13% or more, more preferably 0.15% or more.
  • the C content is 0.5% or less, preferably 0.4% or less, more preferably 0.3% or less.
  • the Si contributes to increasing the strength of the steel sheet as a solid solution strengthening element, and also suppresses the precipitation of carbides during holding in the temperature range of 100 to 540 ° C. (during austempering), effectively reducing residual ⁇ . It is an extremely important element for the formation of selenium.
  • the Si amount is 1% or more, preferably 1.1% or more, more preferably 1.2% or more.
  • Si when Si is contained excessively, reverse transformation to the ⁇ phase does not occur during annealing and soaking, and a large amount of polygonal ferrite remains, resulting in insufficient strength.
  • Si scale is generated on the surface of the steel sheet during hot rolling to deteriorate the surface properties of the steel sheet. Therefore, the amount of Si is 3% or less, preferably 2.5% or less, more preferably 2.0% or less.
  • Mn is an element necessary for obtaining bainite and tempered martensite. Mn is an element that effectively acts to stabilize ⁇ and generate residual ⁇ .
  • the amount of Mn is 1.5% or more, preferably 1.8% or more, more preferably 2.0% or more.
  • Mn content is 8% or less, preferably 7% or less, more preferably 6% or less, still more preferably 5.0% or less, and particularly preferably 3% or less.
  • Al like Si, is an element that suppresses the precipitation of carbides during austempering and contributes to the formation of residual ⁇ .
  • Al is an element that acts as a deoxidizer in the steel making process.
  • the Al content is 0.005% or more, preferably 0.01% or more, more preferably 0.03% or more.
  • the Al content is 3% or less, preferably 1.5% or less, more preferably 1% or less, still more preferably 0.5% or less, and particularly preferably 0.2% or less.
  • the amount of P is an impurity element inevitably contained in steel, and when the amount of P becomes excessive, the weldability of the steel sheet deteriorates. Therefore, the amount of P is 0.1% or less, preferably 0.08% or less, more preferably 0.05% or less. The amount of P is preferably as small as possible, but it is industrially difficult to reduce it to 0%.
  • the amount of S is 0.05% or less, preferably 0.01% or less, more preferably 0.005% or less.
  • the amount of S should be as small as possible, but it is industrially difficult to make it 0%.
  • N is an impurity element that is inevitably contained in the steel as in the case of P described above.
  • the N content is 0.01% or less, preferably 0.008% or less, more preferably 0.005% or less.
  • the amount of N should be as small as possible, but it is industrially difficult to reduce it to 0%.
  • the high-strength steel sheet according to the present invention satisfies the above component composition, and the remaining components are iron and unavoidable impurities other than P, S, and N.
  • the inevitable impurities include, for example, O (oxygen) and, for example, trump elements such as Pb, Bi, Sb, and Sn.
  • O is preferably, for example, more than 0% and 0.01% or less.
  • O is an element that causes a decrease in elongation, hole expansibility, and bendability when contained in excess. Accordingly, the O content is preferably 0.01% or less, more preferably 0.008% or less, and still more preferably 0.005% or less.
  • the steel sheet of the present invention is further as another element, (A) at least one element selected from the group consisting of Cr: more than 0% and 1% or less, Mo: more than 0% and 1% or less, and B: more than 0% and 0.01% or less, (B) at least one element selected from the group consisting of Ti: more than 0% and 0.2% or less, Nb: more than 0% and 0.2% or less, and V: more than 0% and 0.2% or less, (C) at least one element selected from the group consisting of Cu: more than 0% and 1% or less, and Ni: more than 0% and 1% or less, (D) at least one element selected from the group consisting of Ca: more than 0% and not more than 0.01%, Mg: more than 0% and not more than 0.01%, and rare earth elements: more than 0% and not more than 0.01%, Etc. may be contained.
  • A at least one element selected from the group consisting of Cr: more than 0% and 1% or less, Mo: more than
  • (A) Cr, Mo, and B are elements that effectively act to obtain bainite and tempered martensite, as in the case of Mn, and these elements may be added alone or in combination of two or more. May be used.
  • Cr and Mo are each preferably contained alone in an amount of 0.1% or more, more preferably 0.2% or more.
  • B is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more.
  • Cr and Mo are each preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. When Cr and Mo are used in combination, the total amount is recommended to be 1.5% or less.
  • the amount of B is preferably 0.01% or less, more preferably 0.005% or less, and still more preferably 0.004% or less.
  • Ti, Nb, and V are elements that act to strengthen the steel sheet by forming precipitates such as carbides and nitrides in the steel sheet.
  • Ti, Nb, and V are each preferably contained in an amount of 0.01% or more, more preferably 0.02% or more.
  • Ti, Nb, and V are each independently preferably 0.2% or less, more preferably 0.18% or less, and still more preferably 0.15% or less.
  • Ti, Nb, and V may each be contained alone, or two or more elements that are arbitrarily selected may be contained.
  • Cu and Ni are elements that effectively act to stabilize ⁇ and generate residual ⁇ . These elements can be used alone or in combination. In order to exhibit such an action effectively, it is preferable to contain Cu and Ni individually by 0.05% or more, more preferably 0.1% or more. However, when Cu and Ni are contained excessively, the hot workability deteriorates. Therefore, in the present invention, Cu and Ni are each preferably 1% or less, more preferably 0.8% or less, still more preferably 0.5% or less. In addition, when Cu is contained in excess of 1%, hot workability deteriorates. However, when Ni is added, deterioration of hot workability is suppressed. However, Cu may be added in excess of 1%.
  • Ca, Mg, and rare earth elements are elements that act to finely disperse inclusions in the steel sheet.
  • Ca, Mg and rare earth elements are each preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more.
  • Ca, Mg, and rare earth elements are each independently preferably 0.01% or less, more preferably 0.005% or less, and still more preferably 0.003% or less.
  • Ca, Mg, and a rare earth element may each be contained alone, or two or more elements selected arbitrarily may be contained.
  • the rare earth element is meant to include lanthanoid elements which are 15 elements from La to Lu, and Sc (scandium) and Y (yttrium).
  • lanthanoid elements which are 15 elements from La to Lu, and Sc (scandium) and Y (yttrium).
  • the group consisting of La, Ce and Y It is preferable to contain at least one element selected from the group consisting of La and Ce, and more preferable to contain at least one element selected from the group consisting of La and Ce.
  • the component composition of the base steel sheet used in the present invention has been described above.
  • the manufacturing method of the present invention includes a first manufacturing method in which pickling is performed immediately after hot rolling without holding the heat, and a second manufacturing method in which pickling is performed after warming after hot rolling.
  • the lower limit of the hot rolling coiling temperature is different between the first manufacturing method that does not retain heat depending on the presence or absence of heat retention and the second manufacturing method that retains heat, but the other steps are the same. Details will be described below.
  • the first production method according to the present invention includes a hot rolling step, pickling, cold rolling step, oxidation step, continuous reduction Zn plating line [CGL (Continuous Galvanizing Line)], reduction step, cooling step, and plating. It is roughly divided into processes. And the characteristic part of the present invention is a hot rolling step for obtaining a hot-rolled steel sheet in which an internal oxide layer is formed by winding a steel sheet satisfying the components in the steel of the base steel sheet at a temperature of 600 ° C. or higher, and an internal oxidation process.
  • a hot rolled steel sheet satisfying the steel components of the base steel sheet is prepared.
  • Hot rolling may be performed according to a conventional method.
  • the heating temperature is preferably about 1150 to 1300 ° C.
  • finish rolling temperature is approximately 850 to 950 ° C.
  • the coiling temperature after hot rolling it is important to control the coiling temperature after hot rolling to 600 degreeC or more.
  • an internal oxide layer is formed on the surface of the base steel plate, and a soft layer is also formed by decarburization, so that a desired internal oxide layer and soft layer can be obtained on the steel plate after plating.
  • the coiling temperature is preferably 620 ° C. or higher, more preferably 640 ° C. or higher.
  • the upper limit is preferably 750 ° C. or lower.
  • the hot-rolled steel sheet thus obtained is pickled and cold-rolled so that the average depth d of the internal oxide layer remains at 4 ⁇ m or more.
  • the soft layer remains, so that a desired soft layer can be easily formed after plating.
  • mineral acids such as hydrochloric acid, sulfuric acid, nitric acid can be used.
  • the concentration and temperature of the pickling solution are high and the pickling time is long, the internal oxide layer tends to dissolve and become thin.
  • the concentration and temperature of the pickling solution are low and the pickling time is short, removal of the black skin scale layer by pickling becomes insufficient. Therefore, for example, when hydrochloric acid is used, it is recommended to control the concentration to about 3 to 20%, the temperature to 60 to 90 ° C., and the time to about 35 to 200 seconds.
  • the number of the pickling tanks used at the time of pickling is not particularly limited, and a plurality of pickling tanks may be used.
  • a pickling inhibitor such as an amine, that is, an inhibitor or a pickling accelerator may be added to the pickling solution.
  • cold rolling is performed so that the average depth d of the internal oxide layer remains 4 ⁇ m or more.
  • the cold rolling conditions are preferably controlled so that the cold rolling rate is in the range of about 20 to 70%.
  • oxidation is performed at an air ratio of 0.9 to 1.4 in an oxidation zone.
  • the air ratio means the ratio of the amount of air actually supplied to the amount of air that is theoretically required to completely burn the supplied combustion gas.
  • CO gas is used.
  • Oxidation in an atmosphere where the air ratio falls within the above range promotes decarburization, so that a desired soft layer is formed and bendability is improved.
  • an Fe oxide film can be generated on the surface, and generation of the composite oxide film and the like harmful to the plating property can be suppressed.
  • the air ratio needs to be controlled to 0.9 or more, and is preferably controlled to 1.0 or more.
  • the air ratio is as high as 1.4 or more, an Fe oxide film is excessively generated and cannot be sufficiently reduced in the next reduction furnace, thereby impairing the plateability.
  • the air ratio needs to be controlled to 1.4 or less, and is preferably controlled to 1.2 or less.
  • the preferable lower limit of the oxidation temperature is 500 ° C. or higher, more preferably 750 ° C. or higher.
  • the upper limit with preferable oxidation temperature is 900 degrees C or less, More preferably, it is 850 degrees C or less.
  • the Fe oxide film is reduced in a hydrogen atmosphere in the reduction zone.
  • it is necessary to heat in an austenite single phase region, and soaking is performed in a range of Ac 3 points or more.
  • the soaking temperature is preferably Ac 3 point + 15 ° C. or higher.
  • the upper limit of soaking temperature is not specifically limited, For example, 1000 degrees C or less is preferable.
  • the Ac 3 point is calculated based on the following formula (i).
  • [] represents the content (% by mass) of each element. Calculation is performed by substituting 0 (zero) into the term of the element not contained. This equation is described in “Leslie Steel Material Science” (published by Maruzen Co., Ltd., William C. Leslie, p273).
  • the atmosphere in the reduction zone contains, for example, hydrogen and nitrogen, and the hydrogen concentration is preferably controlled in the range of about 5 to 25% by volume.
  • the dew point is preferably controlled to, for example, ⁇ 30 to ⁇ 60 ° C.
  • the holding time at the time of soaking is not particularly limited, and for example, it is preferably controlled to about 10 to 100 seconds, particularly about 10 to 80 seconds.
  • the average cooling rate in the above temperature range needs to be controlled to 10 ° C./second or more, and preferably 20 ° C./second or more.
  • the upper limit of the average cooling rate is not particularly limited, but is preferably about 100 ° C./second or less in consideration of the ease of controlling the base steel sheet temperature and the equipment cost.
  • the average cooling rate is more preferably 50 ° C./second or less, and further preferably 30 ° C./second or less.
  • the temperature After cooling to an arbitrary stop temperature Z satisfying 100 to 540 ° C., the temperature is maintained in the temperature range of 100 to 540 ° C. for 50 seconds or more. By holding for 50 seconds or more in this temperature range, the low temperature transformation generation phase can be generated.
  • the holding time in the temperature range is preferably 60 seconds or longer, more preferably 70 seconds or longer.
  • the upper limit of the holding time in the said temperature range is not specifically limited, For example, Preferably it is 1500 seconds or less, More preferably, it is 1400 seconds or less, More preferably, it is 1300 seconds or less.
  • the specific conditions for cooling to an arbitrary stop temperature Z satisfying the above 100 to 540 ° C. and holding in the temperature range of 100 to 540 ° C. are not particularly limited, and may be held at the stop temperature Z at a constant temperature. In this temperature range, constant temperature holding may be performed so that the holding temperature is two or more stages.
  • the cooling rate may be changed and the cooling may be performed over a predetermined time within the temperature range, or the heating may be performed over the predetermined time within the temperature range. .
  • two or more stages of multi-stage cooling with different cooling rates may be performed, or two or more stages of multi-stage heating with different heating rates may be performed.
  • the low temperature transformation generation phase includes the high temperature region generation bainite, and the high temperature region generation bainite is more than 50 area% and not more than 95 area% with respect to the entire metal structure,
  • the low-temperature region-generated bainite and the tempered martensite may be included, and the total of the low-temperature region-generated bainite and the tempered martensite is 0% by area or more and less than 20% by area based on the entire metal structure. It is preferable that after the soaking, the following (a1) is satisfied.
  • high-temperature region-generated bainite can be mainly generated in the low-temperature transformation generation phase.
  • the lower limit of the temperature at which the cooling is stopped is more preferably 430 ° C. or higher.
  • the upper limit of the temperature at which the cooling is stopped is more preferably 480 ° C. or less, and further preferably 460 ° C. or less.
  • the holding time in the above temperature range is more preferably 70 seconds or more, still more preferably 100 seconds or more, and particularly preferably 200 seconds or more.
  • the upper limit of the holding time in the said temperature range is not specifically limited, For example, Preferably it is 1500 seconds or less, More preferably, it is 1400 seconds or less, More preferably, it is 1300 seconds or less.
  • the average cooling rate in the above temperature range is preferably controlled to 10 ° C./second or more, more preferably 20 ° C./second or more.
  • the upper limit of the average cooling rate is not particularly limited, but it is preferable to control the temperature to about 100 ° C./second or less in consideration of the ease of control of the base steel sheet temperature and the equipment cost.
  • the average cooling rate is more preferably 50 ° C./second or less, and further preferably 30 ° C./second or less.
  • the low-temperature transformation generation phase includes the high-temperature region generation bainite, the low-temperature region generation bainite, and the tempered martensite.
  • the total of the low-temperature region bainite and the tempered martensite is 20 to 80 area% with respect to the entire metal structure, It is preferable to satisfy any of a2), (b), and (c1).
  • the above-mentioned cooling stop temperature Za2 is set to 380 ° C. or higher and lower than 420 ° C., and maintained in this temperature range for 50 seconds or longer, thereby generating high temperature region bainite, low temperature region bainite, and tempered martensite as a low temperature transformation generation phase.
  • the average interval is higher than that of high-temperature region bainite having an average interval of 1 ⁇ m or more.
  • a state in which low-temperature region bainite having an interval of less than 1 ⁇ m is mixed is obtained.
  • the lower limit of the temperature at which the cooling is stopped is more preferably 390 ° C. or higher.
  • the upper limit of the temperature at which the cooling is stopped is more preferably 410 ° C. or lower.
  • the holding time in the above temperature range is more preferably 70 seconds or more, still more preferably 100 seconds or more, and particularly preferably 200 seconds or more.
  • the upper limit of the holding time in the said temperature range is not specifically limited, For example, Preferably it is 1500 seconds or less, More preferably, it is 1400 seconds or less, More preferably, it is 1300 seconds or less.
  • the amount of high-temperature region-generated bainite can be controlled by holding in the T1 temperature region for a predetermined time, and the untransformed austenite is converted into low-temperature region-generated bainite or martensite by the austempering process that is maintained in the T2 temperature region for a predetermined time. While transforming into sites, carbon can be concentrated to austenite to generate residual ⁇ , and a metal structure defined in the present invention can be generated.
  • the concentration of carbon is limited to the concentration indicated by the To line where the free energy of polygonal ferrite and austenite becomes equal, and the bainite transformation also stops. Strictly speaking, the bainite transformation stops at a concentration slightly deviated from the To line. Since the To line becomes lower in carbon concentration as the temperature is higher, if the austempering process is performed at a relatively high temperature, the bainite transformation stops at a certain level even if the processing time is increased. At this time, since the stability of untransformed austenite is low, a coarse MA mixed phase is generated.
  • the allowable amount of C concentration to the untransformed austenite can be increased by holding in the T2 temperature range, so the low temperature range is higher than the high temperature range.
  • the bainite transformation proceeds and the MA mixed phase becomes smaller.
  • the size of the lath-like structure is smaller when held at the T2 temperature range than when held at the T1 temperature range, the MA mixed phase itself is subdivided even if the MA mixed phase exists. Thus, the MA mixed phase can be reduced.
  • the T1 temperature range defined by the above formula (1) is specifically 400 ° C. or more and 540 ° C. or less.
  • a high temperature range bainite can be generated. That is, when the temperature is maintained at a temperature exceeding 540 ° C., the formation of high temperature bainite is suppressed.
  • polygonal ferrite is excessively generated and pseudo pearlite is generated, so that desired characteristics cannot be obtained. Therefore, the upper limit of the T1 temperature range is preferably 540 ° C. or less, more preferably 520 ° C. or less, and further preferably 500 ° C. or less.
  • the lower limit of the T1 temperature range is preferably 400 ° C. or higher, more preferably 420 ° C. or higher.
  • the holding time in the T1 temperature range is preferably 10 to 100 seconds. If the holding time exceeds 100 seconds, the high-temperature region-generated bainite is excessively generated. Therefore, as will be described later, the amount of low-temperature region-generated bainite or the like cannot be ensured even if the predetermined time is maintained in the T2 temperature region. Accordingly, it is impossible to achieve both strength and workability. Further, if the temperature is held for a long time in the T1 temperature range, carbon is excessively concentrated in the austenite, so that a coarse MA mixed phase is generated even if austempering is performed in the T2 temperature range, and workability deteriorates. Therefore, the holding time is 100 seconds or less, preferably 90 seconds or less, more preferably 80 seconds or less.
  • the holding time in the T1 temperature range is 10 seconds or longer, preferably 15 seconds or longer, more preferably 20 seconds or longer, and even more preferably 30 seconds or longer.
  • the holding time in the T1 temperature range means the time from when the surface temperature of the steel sheet reaches the upper limit temperature in the T1 temperature range to the lower limit temperature in the T1 temperature range.
  • FIG. 6 shows a case where one-stage constant temperature holding is performed, the present invention is not limited to this, and two or more constant temperature holdings with different holding temperatures are performed within the T1 temperature range. May be.
  • FIG. 6 (Ii) in FIG. 6 is, after soaking, after rapidly cooling to an arbitrary temperature Z b satisfying the above formula (1), after changing the cooling rate and cooling over a predetermined time within the T1 temperature range, This is an example in which the cooling rate is changed again to cool to an arbitrary temperature satisfying the above expression (2).
  • FIG. 6 (ii) shows a case where the cooling is performed for a predetermined time within the range of the T1 temperature range, but the present invention is not limited to this, and if it is within the range of the T1 temperature range, it takes a predetermined time. And a step of heating may be included, and cooling and heating may be repeated as appropriate.
  • multi-stage cooling of two or more stages having different cooling rates may be performed instead of single-stage cooling. Further, one-stage heating or multi-stage heating of two or more stages may be performed (not shown).
  • (Iii) in FIG. 6 shows that after soaking, the cooling rate is changed after quenching to an arbitrary temperature Z b satisfying the above formula (1), and up to an arbitrary temperature satisfying the above formula (2).
  • This is an example of gradual cooling at a cooling rate.
  • the residence time in the T1 temperature range may be 10 to 100 seconds.
  • the present invention is not intended to be limited to the heat patterns shown in FIGS. 6 (i) to (iii), and any other heat pattern can be adopted as long as the requirements of the present invention are satisfied.
  • the T2 temperature range defined by the above formula (2) is specifically preferably 200 ° C. or higher and lower than 400 ° C.
  • untransformed austenite that has not been transformed in the T1 temperature range can be transformed into low temperature range bainite or martensite.
  • the bainite transformation proceeds, finally residual ⁇ is generated, and the MA mixed phase is subdivided.
  • this martensite exists as quenching martensite immediately after transformation, it is tempered while being maintained in the T2 temperature region and remains as tempered martensite. This tempered martensite exhibits the same characteristics as low temperature region bainite generated in the temperature region where martensitic transformation occurs.
  • the T2 temperature range is preferably less than 400 ° C., more preferably 390 ° C. or less, and further preferably 380 ° C. or less.
  • the low temperature region bainite is not generated even if kept at a temperature lower than 200 ° C., the carbon concentration in the austenite becomes low, the amount of residual ⁇ cannot be secured, and more quenching martensite is generated, so the strength is high. It becomes high and elongation and local deformability deteriorate.
  • the lower limit of the T2 temperature range is preferably 200 ° C. or higher, more preferably 250 ° C. or higher, and still more preferably 280 ° C. or higher.
  • the holding time in the T2 temperature range satisfying the above formula (2) is preferably 50 seconds or more.
  • the holding time is less than 50 seconds, the amount of low-temperature region bainite and the like is reduced, the carbon concentration in the austenite is lowered and the residual ⁇ amount cannot be secured, and more hardened martensite is produced, It becomes high and elongation and local deformability deteriorate. Further, since carbon concentration is not promoted, the amount of residual ⁇ is reduced, and the elongation cannot be improved.
  • the holding time is preferably 50 seconds or more, more preferably 70 seconds or more, still more preferably 100 seconds or more, and particularly preferably 200 seconds or more.
  • the upper limit of the holding time is not particularly limited, productivity decreases when held for a long time, and concentrated carbon cannot be precipitated as carbides to generate residual ⁇ , resulting in a decrease in elongation and workability. to degrade. Therefore, the upper limit of the holding time may be set to 1800 seconds or less, for example.
  • the holding time in the T2 temperature range means the time from when the surface temperature of the steel sheet reaches the upper limit temperature in the T2 temperature range to the lower limit temperature in the T2 temperature range.
  • the method of holding in the T2 temperature range is not particularly limited as long as the residence time in the T2 temperature range is 50 seconds or more. Even if the temperature is kept constant like the heat pattern in the T1 temperature range shown in FIG. It may be cooled or heated within the T2 temperature range. Further, multistage holding may be performed at different holding temperatures.
  • the Ms point is calculated based on the following formula (ii).
  • the soaking As shown in FIG. 7, it is preferable to rapidly cool to an arbitrary temperature Z c1 or Ms point satisfying the above formula (3) at an average cooling rate of 10 ° C./second or more.
  • the average cooling rate in this section is more preferably 15 ° C./second or more.
  • the upper limit of the average cooling rate is not particularly limited, but may be about 100 ° C./second, for example.
  • the holding time in the T3 temperature range means soaking at a temperature equal to or higher than the Ac 3 point, and then starting heating after holding the steel sheet in the T3 temperature range from the time when the surface temperature of the steel sheet falls below 400 ° C. And the time until the surface temperature of the steel sheet reaches 400 ° C. Therefore, in this invention, since it cools to room temperature after hold
  • the holding time in the T4 temperature range means heating after holding in the T3 temperature range, and starting cooling after holding in the T4 temperature range from the time when the surface temperature of the steel plate reaches 400 ° C. It means the time until the temperature reaches 400 ° C. Therefore, in the present invention, as described above, after soaking, the T4 temperature range is passed while cooling to the T3 temperature range. In the present invention, the time for passing this cooling is in the T4 temperature range. Not included in stay time. This is because, during this cooling, the residence time is too short, so that almost no transformation occurs and no high temperature region bainite is generated.
  • the present invention it is possible to generate a predetermined amount of high temperature region bainite by appropriately controlling the time for holding in the T3 temperature region and the T4 temperature region. Specifically, by maintaining for a predetermined time in the T3 temperature range, the untransformed austenite is transformed into low-temperature range bainite, bainitic ferrite, or martensite, and the austempering process is performed by holding for a predetermined time in the T4 temperature range. In this way, untransformed austenite is transformed into high-temperature-range-generated bainite and bainitic ferrite, and the amount of formation is controlled, and carbon is concentrated to austenite to generate residual ⁇ .
  • the metal structure to be produced can be generated.
  • miniaturize MA mixed phase is also exhibited by hold
  • the T3 temperature range defined by the above formula (3) is specifically preferably 100 ° C. or more and less than 400 ° C.
  • the untransformed austenite can be transformed into low temperature range bainite, bainitic ferrite, or martensite. Further, by securing a sufficient holding time, the bainite transformation proceeds, finally residual ⁇ is generated, and the MA mixed phase is subdivided.
  • this martensite exists as quenching martensite immediately after transformation, it is tempered while being maintained in a T4 temperature range described later, and remains as tempered martensite. This tempered martensite does not adversely affect the elongation, hole expansibility, or bendability of the steel sheet.
  • the T3 temperature range is preferably less than 400 ° C.
  • the T3 temperature range is more preferably 390 ° C. or less, and further preferably 380 ° C. or less.
  • the martensite fraction becomes too large, so that workability deteriorates.
  • the lower limit of the T3 temperature range is preferably 100 ° C. or higher.
  • the T3 temperature range is more preferably 110 ° C. or higher, and still more preferably 120 ° C. or higher.
  • the holding time in the T3 temperature range satisfying the above formula (3) is preferably 5 to 180 seconds.
  • the holding time is preferably 5 seconds or more, more preferably 10 seconds or more, still more preferably 20 seconds or more, and particularly preferably 40 seconds or more.
  • the holding time exceeds 180 seconds, there is a tendency that the low temperature region bainite is excessively generated, and as will be described later, it is difficult to secure the amount of high temperature region bainite and the like even if it is held for a predetermined time in the T4 temperature region. Become. Accordingly, the elongation decreases.
  • the holding time is preferably 180 seconds or less, more preferably 150 seconds or less, still more preferably 120 seconds or less, and particularly preferably 80 seconds or less.
  • the method of holding in the T3 temperature range satisfying the above formula (3) is not particularly limited as long as the residence time in the T3 temperature range is in the above-described range.
  • the heat shown in (iv) to (vi) of FIG. A pattern may be adopted.
  • the present invention is not intended to be limited to this, and heat patterns other than those described above can be appropriately employed as long as the requirements of the present invention are satisfied.
  • FIG. 7 shows that cooling is performed over a predetermined time within the T3 temperature range after rapidly cooling from the temperature Ac 3 or higher to any temperature Z c1 that satisfies the above equation (3), and then changing the cooling rate. Then, it is an example of heating to an arbitrary temperature that satisfies the above formula (4).
  • FIG. 7 (v) shows a case where one-stage cooling is performed, the present invention is not limited to this, and multi-stage cooling of two or more stages having different cooling rates may be performed (not shown). ).
  • FIG. 7 shows that after quenching from an Ac 3 point or higher temperature to an arbitrary temperature Z c1 that satisfies the above formula (3), heating is performed within a T3 temperature range over a predetermined time, and the above formula (4) This is an example of heating to an arbitrary temperature satisfying the above.
  • FIG. 7 shows the case where one-stage heating is performed, the present invention is not limited to this, and multi-stage heating including two or more stages with different heating rates may be performed (not shown). )
  • the T4 temperature range defined by the above formula (4) is specifically preferably 400 ° C. or more and 500 ° C. or less.
  • the upper limit of the T4 temperature range is preferably 500 ° C. or less, more preferably 490 ° C. or less, and further preferably 480 ° C. or less.
  • the lower limit of the T4 temperature range is preferably 400 ° C. or higher, more preferably 420 ° C. or higher, and still more preferably 425 ° C. or higher.
  • the time for holding in the T4 temperature range satisfying the above formula (4) is preferably 30 seconds or more. According to the present invention, even if the holding time in the T4 temperature range is about 30 seconds, the low temperature range bainite or the like is generated in the high temperature range because the low temperature range bainite or the like is generated by holding the T3 temperature range for a predetermined time in advance. Since the generation of the generated bainite is promoted, the generation amount of the high temperature region generated bainite can be ensured. However, when the holding time is shorter than 30 seconds, many untransformed portions remain and carbon concentration is insufficient, so that martensitic transformation occurs during the final cooling from the T4 temperature range.
  • the holding time in the T4 temperature range is more preferably 50 seconds or more, and still more preferably 100 seconds. Above, especially preferably 200 seconds or more.
  • the upper limit when holding in the T4 temperature range is not particularly limited, but even if it is held for a long time, the formation of the high temperature range bainite is saturated and the productivity is lowered, so that it is preferably 1800 seconds or less, more preferably 1500 seconds. Hereinafter, it is more preferably set to 1000 seconds or less.
  • the method of holding in the T4 temperature range satisfying the above formula (4) is not particularly limited as long as the residence time in the T4 temperature range is 30 seconds or more, and in the T4 temperature range as in the heat pattern in the T3 temperature range. It may be held at a constant temperature, or may be cooled or heated within the T4 temperature range.
  • the present invention after being held in the T3 temperature range on the low temperature side, it is held in the T4 temperature range on the high temperature side. However, the low temperature zone bainite generated in the T3 temperature range is heated to the T3 temperature range.
  • the present inventors have confirmed that the lath interval, that is, the above average interval does not change, although the tempering causes recovery of the underlying structure.
  • the formation of polygonal ferrite can be suppressed by controlling the average cooling rate.
  • the average cooling rate in the above temperature range is preferably controlled to 10 ° C./second or more, more preferably 20 ° C./second or more.
  • the upper limit of the average cooling rate is not particularly limited, but it is preferable to control the temperature to about 100 ° C./second or less in consideration of the ease of control of the base steel sheet temperature and the equipment cost.
  • the average cooling rate is more preferably 50 ° C./second or less, and further preferably 30 ° C./second or less.
  • the low-temperature transformation generation phase contains the low-temperature region generation bainite and tempered martensite, and the total of the low-temperature region generation bainite and tempered martensite is 50% relative to the entire metal structure. It is more than area% and not more than 95 area%, and may include the high-temperature region-generated bainite.
  • the high-temperature region-generated bainite is used for producing a base steel sheet having a surface area of 0 to 20% by area with respect to the entire metal structure. After the soaking, it is preferable to satisfy either of the following (a3) or (c2).
  • the above-mentioned cooling stop temperature Z a3 is set to 150 ° C. or higher and lower than 380 ° C., and is maintained in this temperature range for 50 seconds or longer, so that low temperature region bainite and tempered martensite are mainly generated in the low temperature transformation generation phase. Can do.
  • the lower limit of the temperature at which the cooling is stopped is more preferably 170 ° C. or higher.
  • the upper limit of the temperature at which the cooling is stopped is more preferably 370 ° C. or less, and further preferably 350 ° C. or less.
  • the holding time in the above temperature range is more preferably 70 seconds or more, still more preferably 100 seconds or more, and particularly preferably 200 seconds or more.
  • the upper limit of the holding time in the said temperature range is not specifically limited, For example, Preferably it is 1500 seconds or less, More preferably, it is 1400 seconds or less, More preferably, it is 1300 seconds or less.
  • the condition of (c2) is the same as that of (c1) above.
  • the cooling stop temperature Z c2 is set within the T3 temperature region depending on the components.
  • the martensite is tempered to become tempered martensite.
  • low temperature region bainite and the like are mainly used.
  • high temperature region bainite is also generated, but since the amount of tempered martensite is increased, the result is mainly low temperature region bainite.
  • the formation of polygonal ferrite can be suppressed by controlling the average cooling rate.
  • the average cooling rate in the above temperature range is preferably controlled to 10 ° C./second or more, more preferably 20 ° C./second or more.
  • the upper limit of the average cooling rate is not particularly limited, but it is preferable to control the temperature to about 100 ° C./second or less in consideration of the ease of control of the base steel sheet temperature and the equipment cost.
  • the average cooling rate is more preferably 50 ° C./second or less, and further preferably 30 ° C./second or less.
  • hot dip galvanizing is performed according to a conventional method.
  • the method of hot dip galvanizing is not particularly limited, and for example, the preferred lower limit of the plating bath temperature is 400 ° C. or higher, more preferably 440 ° C. or higher.
  • the upper limit with preferable plating bath temperature is 500 degrees C or less, More preferably, it is 470 degrees C or less.
  • the composition of the plating bath is not particularly limited, and a known hot dip galvanizing bath may be used.
  • the cooling conditions after hot dip galvanizing are not particularly limited, and for example, the average cooling rate to room temperature is preferably controlled to about 1 ° C./second or more, more preferably 5 ° C./second or more.
  • the upper limit of the average cooling rate is not particularly defined, but is preferably controlled to about 50 ° C./second or less in consideration of ease of control of the base steel sheet temperature and equipment cost.
  • the average cooling rate is preferably 40 ° C./second or less, more preferably 30 ° C./second or less.
  • an alloying treatment may be performed by a conventional method as necessary.
  • the conditions for the alloying treatment are also not particularly limited. For example, after performing hot dip galvanization under the above conditions, about 500 to 600 ° C., particularly about 500 to 550 ° C., about 5 to 30 seconds, especially about 10 to 25 seconds. It is preferable to carry out holding. If the temperature and time are below the above range, alloying becomes insufficient. On the other hand, if the temperature and time exceed the above range, the retained austenite is reduced due to precipitation of carbides, and desired characteristics cannot be obtained. Furthermore, polygonal ferrite is also easily generated.
  • the alloying treatment may be performed using, for example, a heating furnace, a direct fire, or an infrared heating furnace.
  • the heating means is not particularly limited, and for example, conventional means such as gas heating, induction heater heating, that is, heating by a high frequency induction heating device can be adopted.
  • an alloyed hot-dip galvanized steel sheet is obtained by cooling according to a conventional method.
  • the average cooling rate to room temperature is preferably controlled to about 1 ° C./second or more.
  • the upper limit of the average cooling rate is not particularly defined, but is preferably controlled to about 50 ° C./second or less in consideration of ease of control of the base steel sheet temperature and equipment cost.
  • the second production method includes a hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 500 ° C. or higher, and a step of keeping the temperature at a temperature of 500 ° C. or higher for 60 minutes or more.
  • Pickling and cold rolling so that the average depth d of the inner oxide layer remains 4 ⁇ m or more, oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4, and reducing zone Then, the step of soaking in a range of Ac 3 points or more, and after soaking, cooling to an arbitrary stop temperature Z satisfying 100 to 540 ° C., and the range from 750 ° C. to 500 ° C.
  • the first manufacturing method is an average cooling rate of 10 ° C. / Cooling in at least one second and holding in the temperature range of 100 to 540 ° C. for at least 50 seconds, and in this order.
  • the lower limit of the coiling temperature after hot rolling is set to 500 ° C. or more, and the heat retaining step is provided after the hot rolling step. Only the first manufacturing method is different. Therefore, only the difference will be described below.
  • the first manufacturing method may be referred to.
  • the reason for providing the heat-retaining step as described above is that it is possible to maintain for a long time in a temperature range that can be oxidized by heat-retaining, and to expand the lower limit of the coiling temperature range from which a desired internal oxide layer and soft layer can be obtained. .
  • the uniformity of the base steel sheet can be improved by reducing the temperature difference between the surface layer and the inside of the base steel sheet.
  • the coiling temperature after hot rolling is controlled to 500 ° C. or higher.
  • the temperature can be set lower than 600 ° C. which is the lower limit of the winding temperature in the first manufacturing method described above.
  • the winding temperature is preferably 540 ° C. or higher, more preferably 570 ° C. or higher.
  • the preferable upper limit of coiling temperature is the same as the 1st manufacturing method mentioned above, and it is preferable to set it as 750 degrees C or less.
  • the hot-rolled steel sheet thus obtained is kept at a temperature of 500 ° C. or more for 60 minutes or more. Thereby, a desired internal oxide layer can be obtained. It is preferable to keep the hot-rolled steel sheet in a heat-insulating device, for example, so that the above-mentioned effect due to heat insulation is effectively exhibited.
  • the apparatus used in the present invention is not particularly limited as long as it is made of a heat insulating material, and as such a material, for example, a ceramic fiber is preferably used.
  • the heat retention temperature is preferably 540 ° C. or higher, more preferably 560 ° C. or higher.
  • the heat retention time is preferably 100 minutes or more, more preferably 120 minutes or more.
  • the plated steel sheet of the present invention obtained by the above-described production method is further subjected to various coatings and coating ground treatments, for example, chemical conversion treatment such as phosphate treatment; organic coating treatment, for example, formation of an organic coating such as a film laminate. May be.
  • various coatings and coating ground treatments for example, chemical conversion treatment such as phosphate treatment; organic coating treatment, for example, formation of an organic coating such as a film laminate. May be.
  • paint used for various coatings known resins such as epoxy resins, fluororesins, silicone acrylic resins, polyurethane resins, acrylic resins, polyester resins, phenol resins, alkyd resins, melamine resins and the like can be used. From the viewpoint of corrosion resistance, an epoxy resin, a fluororesin, and a silicon acrylic resin are preferable.
  • a curing agent may be used together with the resin.
  • the paint may also contain known additives such as coloring pigments, coupling agents, leveling agents, sensitizers, antioxidants, UV stabilizers, flame retardants and the like.
  • the form of paint is not particularly limited, and any form of paint such as solvent-based paint, water-based paint, water-dispersed paint, powder paint, and electrodeposition paint can be used.
  • the coating method is not particularly limited, and a dipping method, a roll coater method, a spray method, a curtain flow coater method, an electrodeposition coating method, and the like can be used. What is necessary is just to set suitably the thickness of coating layers, such as a plating layer, an organic membrane
  • the high-strength plated steel sheet of the present invention has high strength, and is excellent in workability (elongation, bendability, and hole expandability) and delayed fracture resistance. For this reason, automotive strength components such as front and rear side members, crash parts such as crash boxes, pillars such as center pillar reinforcements, roof rail reinforcements, side sills, floor members, kick parts, etc. Can be used for parts.
  • the obtained hot-rolled steel sheet was pickled under the following conditions, and then cold-rolled at a cold rolling rate of 50%.
  • the plate thickness after cold rolling is 1.2 mm.
  • Pickling solution 10% hydrochloric acid, temperature: 82 ° C., pickling time: as shown in Tables 2 to 4.
  • annealing oxidation, reduction
  • cooling were performed in the continuous hot-dip Zn plating line under the conditions shown in Tables 2 to 4 below.
  • the temperature of the oxidation furnace installed in the continuous molten Zn plating line was set to 800 ° C.
  • Tables 2 to 4 below show the air ratio in the oxidation furnace.
  • the hydrogen concentration in the reduction furnace installed in the continuous hot dip Zn plating line was 20% by volume, the balance was nitrogen and inevitable impurities, and the dew point was controlled at -45 ° C.
  • soaking was performed at the maximum reached temperature shown in Tables 2 to 4 below.
  • the holding times at the highest temperatures shown in Tables 2 to 4 below were all 50 seconds.
  • Tables 2 to 4 below show the temperatures of the Ac 3 points calculated based on the component compositions shown in Table 1 and the above formula (i).
  • GI hot dip galvanized steel sheet
  • GA alloyed hot dip galvanized steel sheet
  • the average depth of the internal oxide layer was measured not only on the plated steel sheet but also on the base steel sheet after pickling and cold rolling for reference. This is to confirm that the desired average depth of the internal oxide layer has already been obtained in the cold-rolled steel sheet before annealing by controlling the coiling temperature and pickling conditions after hot rolling. It is.
  • Each element amount profile in the depth direction of the base steel sheet was measured by continuously dispersing the emission lines in the Ar plasma of each element of O, Fe, and Zn to be sputtered.
  • the sputtering conditions were as follows, and the measurement region was set to a depth of 50 ⁇ m from the plating layer surface. (Sputtering conditions) Pulse sputtering frequency: 50Hz Anode diameter (analysis area): Diameter 6 mm Discharge power: 30W Ar gas pressure: 2.5 hPa
  • the position where the Zn content and the Fe content from the surface of the plating layer 1 are equal is defined as the interface between the plating layer 1 and the base steel plate 2.
  • the average value of the O amount at each measurement position at a depth of 40 to 50 ⁇ m from the surface of the plating layer 1 is defined as the bulk O amount average value, and a range higher by 0.02%, that is, the O amount ⁇ (bulk O The amount average value + 0.02%) was defined as the internal oxide layer 3, and the maximum depth was defined as the internal oxide layer depth.
  • the results are shown in Tables 5 to 7 below.
  • “x” indicates a measurement point of Vickers hardness, and the distance between the measurement points; that is, the distance between “x” and “x” in FIG. 3 is at least 15 ⁇ m or more.
  • the metal structure of the base steel plate which comprises a plated steel plate was observed in the following procedure.
  • the metal structure fraction was determined for the low temperature transformation phase, polygonal ferrite, and residual ⁇ .
  • required the area ratio by distinguishing in high temperature range production
  • the area ratio of high-temperature region-generated bainite, low-temperature region-generated bainite and the like that is, low-temperature region-generated bainite + tempered martensite
  • SEM scanning electron microscope
  • (4-1) Area ratio of polygonal ferrite such as high-temperature region-generated bainite, low-temperature region-generated bainite, etc. After polishing the surface of the cross-section parallel to the rolling direction of the base steel sheet, and further electrolytically polishing, The 1 ⁇ 4 position was observed with SEM at 5 magnifications at 3000 magnifications. The observation visual field was about 50 ⁇ m ⁇ about 50 ⁇ m.
  • the average interval between residual ⁇ and carbides observed as white or light gray was measured based on the method described above.
  • the area ratios of the high-temperature region-generated bainite and the low-temperature region-generated bainite, which are distinguished by these average intervals, were measured by a point calculation method.
  • the hole expandability was evaluated by the hole expansion rate ⁇ .
  • the hole expansion rate ⁇ was measured by conducting a hole expansion test based on the Japan Iron and Steel Federation standard JFS T1001. Specifically, after punching a hole with a diameter of 10 mm in a plated steel sheet, a punch having a 60 ° cone was pushed into the hole in a state where the periphery was constrained, and the hole diameter at the crack initiation limit was measured.
  • the bendability was evaluated by the limit bending radius R.
  • the critical bending radius R was measured by performing a V-bending test based on JIS Z2248.
  • the test piece was obtained by cutting out the No. 1 test piece defined in JIS Z2204 from the plated steel sheet so that the direction perpendicular to the rolling direction of the plated steel sheet was the longitudinal direction, that is, the bending ridge line coincided with the rolling direction. Using.
  • the plate thickness of the test piece is 1.4 mm.
  • the V-bending test was performed after mechanical grinding was performed on the end face in the longitudinal direction of the test piece so that no crack was generated.
  • the V-bending test is performed by setting the die-to-punch angle to 90 °, and changing the tip radius of the punch in units of 0.5 mm, and obtaining the punch tip radius that can be bent without cracks as the limit bending radius R. It was. The results are shown in Tables 5 to 7 below. In addition, the presence or absence of crack generation was observed using a loupe, and the determination was made based on the absence of hair crack generation.
  • the mechanical properties of the plated steel plate were evaluated according to the criteria of elongation EL, hole expansion ratio ⁇ , and critical bending radius R according to the metal structure and tensile strength TS of the steel plate. That is, among the low-temperature transformation generation phases, when the amount of high-temperature region-generated bainite increases, the elongation is improved among the mechanical properties, and when the amount of low-temperature region-generated bainite increases, the hole expandability among the mechanical properties. It becomes easy to improve. Further, the mechanical properties of the steel plate are greatly affected by the tensile strength TS of the steel plate. Therefore, required EL, ⁇ , and R differ depending on the metal structure and tensile strength TS of the steel plate.
  • the main component of high-temperature region-generated bainite means the metal structure described in (C6-1) above, and the high-temperature region-generated bainite is greater than 50 area% and less than or equal to 95 area% with respect to the entire metal structure.
  • the low temperature region bainite and the tempered martensite may be included, and the total of the low temperature region bainite and the tempered martensite is 0 area% or more and less than 20 area% with respect to the entire metal structure.
  • the composite structure such as high temperature region bainite and low temperature region bainite means the metal structure described in the above (C6-2), and the high temperature region bainite is compared to the whole metal structure.
  • the total of the low-temperature region bainite and the tempered martensite is 20 to 80 area% with respect to the entire metal structure.
  • the main component such as low temperature region bainite means the metal structure described in (C6-3) above, and the low temperature region bainite is more than 50 area% and not more than 95 area% with respect to the whole metal structure, Bainite may be included, and the high-temperature region-generated bainite is 0 area% or more and less than 20 area% with respect to the entire metal structure.
  • TS 980 MPa or more.
  • 0.01M-KSCN 0.01M-KSCN
  • No. Examples 20 to 24, 31 to 39, 42, and 43 are examples that do not satisfy the requirements defined in the present invention.
  • No. No. 20 is an example in which the amount of C is small, the amount of residual ⁇ produced is small, and the strength is insufficient.
  • No. No. 21 is an example in which the amount of Si is small, the internal oxide layer is not sufficiently formed, and the bendability and delayed fracture resistance are deteriorated.
  • No. No. 22 is an example in which the amount of Mn is small. Since hardenability is poor, polygonal ferrite is excessively generated, and the low-temperature transformation generation phase is not sufficiently generated. Further, the amount of residual ⁇ produced was small. As a result, TS decreased.
  • No. 23 and 31 are examples in which the coiling temperature at the time of hot rolling is low, and the average depth of the internal oxide layer after pickling and cold rolling is shallow, so the average depth d of the internal oxide layer after plating, The average depth D has also become shallower. As a result, bendability, delayed fracture resistance, and plating properties were reduced.
  • No. 24 is an example in which the heat retention time at the time of hot rolling is insufficient, and since the average depth of the internal oxide layer after pickling and cold rolling is shallow, the average depth d of the internal oxide layer after plating, the average of the soft layer The depth D has also become shallower. As a result, bendability, delayed fracture resistance, and plating properties were reduced.
  • No. Nos. 32 and 42 are examples in which the pickling time is long, and the internal oxide layer is dissolved, and the average depth d of the desired internal oxide layer and the average depth D of the soft layer cannot be obtained and become shallow. It was. As a result, bendability, delayed fracture resistance, and plating properties were reduced.
  • No. No. 34 is an example where the soaking temperature at the time of annealing is low, and it becomes a two-phase region annealing. Polygonal ferrite is excessively generated, and the low-temperature transformation generation phase is not sufficiently generated. As a result, the desired hard layer could not be obtained and ⁇ decreased.
  • No. No. 35 is an example in which the average cooling rate after soaking during annealing is small. Polygonal ferrite was excessively generated during cooling, so that the low-temperature transformation generation phase was not sufficiently generated. Further, residual ⁇ was not sufficiently generated. As a result, TS became low.
  • No. No. 36 is an example in which the austempering time is too short, and a structure such as massive ⁇ A was excessively generated, and the low-temperature transformation generation phase was not sufficiently generated. As a result, ⁇ was low and the bendability was also lowered.
  • No. No. 37 was an example in which the cooling stop temperature after soaking was too low, and many untransformed portions remained after the austempering treatment, and the low-temperature transformation product phase was not sufficiently produced. As a result, ⁇ was low and the bendability was also lowered.
  • No. No. 38 is an example in which the cooling stop temperature after soaking is too low, and the residual ⁇ was not sufficiently generated. As a result, EL became low.
  • No. No. 39 is an example in which the cooling stop temperature after soaking was too high, and polygonal ferrite was excessively generated, so that the low-temperature transformation generation phase was not sufficiently generated. As a result, ⁇ was low and the bendability was also lowered.

Abstract

Provided are a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet having a tensile strength of at least 980 MPa, having excellent plating properties, and having excellent workability in terms of extensibility, bendability and hole expandability, and delayed fracture resistance. Disclosed is a high-strength plated steel sheet that is a plated steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of a base material steel sheet, and that comprises, in order from the interface between the base material steel sheet and the galvanized layer toward the base material steel sheet side: an inner oxide layer including at least one type of oxide selected from the group consisting of Si and Mn; a soft layer that is a layer including said inner oxide layer, and that has a Vickers hardness which is 90% or less of the Vickers hardness at a t/4 position of the base material steel sheet, where t is the thickness of the base material steel sheet; and a hard layer constituted by a structure including, with respect to the entire metallographic structure, greater than or equal to 70% by area of a low-temperature transformation-forming phase, from 0% to 10% by area, inclusive, of polygonal ferrite, and greater than or equal to 5% by volume of retained austenite. The average depth D of the soft layer is 20 µm or greater, the average depth d of the inner oxide layer is 4 µm or greater and less than D, and the tensile strength is 980 MPa or greater.

Description

高強度めっき鋼板、並びにその製造方法High-strength plated steel sheet and its manufacturing method
 本発明は、引張強度が980MPa以上であり、めっき性が良好で、伸び、曲げ性、および穴拡げ性を含む加工性、並びに耐遅れ破壊特性に優れた高強度めっき鋼板、更には、その製造方法に関する。本発明のめっき鋼板は、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の両方を含む。 The present invention is a high strength plated steel sheet having a tensile strength of 980 MPa or more, good plating properties, workability including elongation, bendability, and hole expansibility, and excellent delayed fracture resistance, and its production Regarding the method. The plated steel sheet of the present invention includes both hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets.
 自動車や輸送機などの分野で汎用される溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板は、高強度化に加え、伸び、曲げ性、および穴拡げ性(伸びフランジ性と同義)の加工性、更には耐遅れ破壊特性に優れていることが要求される。 Hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets, which are widely used in fields such as automobiles and transportation equipment, are not only high-strength, but also workability such as elongation, bendability, and hole expandability (synonymous with stretch flangeability) Furthermore, it is required to have excellent delayed fracture resistance.
 高強度化と加工性の確保のためには、鋼中にSiやMnなどの強化元素を多く添加することが有効である。しかし、SiやMnは易酸化性元素であり、表面に形成されるSi酸化物、Mn酸化物、SiとMnの複合酸化物を有する複合酸化膜などによって溶融亜鉛めっきの濡れ性が著しく劣化し、不めっきなどの問題が生じる。そこで、SiやMnを多く含むめっき鋼板において、不めっきを発生させずに、加工性などを高める技術が種々提案されている。 In order to increase strength and ensure workability, it is effective to add a lot of reinforcing elements such as Si and Mn into the steel. However, Si and Mn are easily oxidizable elements, and wettability of hot dip galvanization is significantly deteriorated by Si oxides, Mn oxides formed on the surface, and composite oxide films having composite oxides of Si and Mn. Problems such as non-plating occur. Therefore, various techniques for improving workability and the like without causing non-plating in a plated steel sheet containing a large amount of Si and Mn have been proposed.
 例えば、特許文献1には、引張強度が590MPa以上で曲げ性および加工部の耐食性に優れた溶融亜鉛めっき鋼板が開示されている。詳細には特許文献1では、鋼板とめっき層との界面から鋼板側に形成される内部酸化層に起因する曲げ割れの発生やめっき被膜の損傷を抑制できるように、内部酸化層の成長に対して脱炭層の成長を著しく速めている。更に、脱炭により形成されたフェライト領域における内部酸化層の厚さが薄くなるように制御された表面近傍組織が開示されている。 For example, Patent Document 1 discloses a hot-dip galvanized steel sheet having a tensile strength of 590 MPa or more and excellent bendability and corrosion resistance of a processed part. Specifically, in Patent Document 1, in order to suppress the occurrence of bending cracks and damage to the plating film due to the internal oxide layer formed on the steel plate side from the interface between the steel plate and the plating layer, the growth of the internal oxide layer is suppressed. Therefore, the growth of the decarburized layer is remarkably accelerated. Further, a near-surface structure is disclosed in which the thickness of the internal oxide layer in the ferrite region formed by decarburization is controlled to be thin.
 また、特許文献2には、疲労耐久性、耐水素脆化(耐遅れ破壊特性と同義)、曲げ性に優れた引張強さが770MPa以上の溶融亜鉛めっき鋼板が開示されている。詳細には特許文献2では、鋼板部を、めっき層との界面に直接接する軟質層と、フェライトを面積率最大の組織とする軟質層とを有する構成としている。更に、前記軟質層の厚さDと、鋼板表層部に存在するSi、Mnの1種以上を含む酸化物の、めっき/地鉄界面からの深さdとが、d/4≦D≦2dを満たす溶融亜鉛めっき鋼板が開示されている。 Patent Document 2 discloses a hot-dip galvanized steel sheet having a fatigue strength, hydrogen embrittlement resistance (synonymous with delayed fracture resistance), and a tensile strength excellent in bendability of 770 MPa or more. Specifically, in Patent Document 2, the steel plate portion is configured to have a soft layer that is in direct contact with the interface with the plating layer, and a soft layer that has ferrite with a maximum area ratio structure. Furthermore, the thickness D of the soft layer and the depth d from the plating / base metal interface of the oxide containing one or more of Si and Mn existing in the steel sheet surface layer portion are d / 4 ≦ D ≦ 2d. A hot-dip galvanized steel sheet that satisfies the requirements is disclosed.
特開2011-231367号公報JP 2011-231367 A 特許第4943558号公報Japanese Patent No. 4943558
 上記のとおり、これまでにも、SiおよびMnを多く含むめっき鋼板の加工性などを向上させる技術は種々提案されている。しかし、当該めっき鋼板に要求される多様な特性、すなわち、980MPa以上の高強度で、めっき性が良好で、伸び、曲げ性、および穴拡げ性の加工性に優れ、耐遅れ破壊特性も全て兼ね備えた技術の提供が望まれている。 As described above, various techniques for improving the workability of a plated steel sheet containing a large amount of Si and Mn have been proposed so far. However, various properties required for the plated steel sheet, that is, high strength of 980 MPa or more, good plating properties, excellent workability of elongation, bendability and hole expansibility, and all delayed fracture resistance. The provision of new technology is desired.
 本発明は上記事情に鑑みてなされたものであり、その目的は、めっき性が良好で、伸び、曲げ性、および穴拡げ性の加工性、並びに耐遅れ破壊特性に優れた引張強度が980MPa以上の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を提供することにある。また、本発明の他の目的は、上記溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is that the plating strength is good, the tensile strength excellent in workability of elongation, bendability and hole expansibility, and delayed fracture resistance is 980 MPa or more. An object of the present invention is to provide a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet. Moreover, the other object of this invention is to provide the manufacturing method of the said hot dip galvanized steel plate and an alloyed hot dip galvanized steel plate.
 上記課題を解決することのできた本発明に係る引張強度が980MPa以上である高強度めっき鋼板とは、素地鋼板の表面に、溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有するめっき鋼板であって、前記素地鋼板は、質量%で、C:0.10~0.5%、Si:1~3%、Mn:1.5~8%、Al:0.005~3%、P:0%超0.1%以下、S:0%超0.05%以下、およびN:0%超0.01%以下を含有し、残部が鉄および不可避不純物からなる。そして、前記素地鋼板と前記めっき層との界面から素地鋼板側に向って順に、SiおよびMnよりなる群から選択される少なくとも一種の酸化物を含む内部酸化層と、前記内部酸化層を含む層であって、且つ、前記素地鋼板の板厚をtとしたとき、ビッカース硬さが、前記素地鋼板のt/4部におけるビッカース硬さの90%以下を満足する軟質層と、金属組織を走査型電子顕微鏡(SEM;Scanning Electron Microscope)で観察したときに、前記金属組織全体に対して低温変態生成相を70面積%以上含み、前記金属組織全体に対してポリゴナルフェライトは0面積%以上10面積%以下であり、前記金属組織を飽和磁化法で測定したときに、前記金属組織全体に対して残留オーステナイト(以下、残留γと表記することがある。)を5体積%以上含む組織で構成される硬質層とを有し、且つ、前記軟質層の平均深さDが20μm以上、および前記内部酸化層の平均深さdが4μm以上、前記D未満を満足する点に要旨を有する。 The high-strength galvanized steel sheet having a tensile strength of 980 MPa or more according to the present invention that has solved the above-mentioned problems is a galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of the base steel plate. The base steel sheet is, by mass, C: 0.10 to 0.5%, Si: 1 to 3%, Mn: 1.5 to 8%, Al: 0.005 to 3%, P: 0% More than 0.1%, S: more than 0% and 0.05% or less, and N: more than 0% and 0.01% or less, with the balance being iron and inevitable impurities. And in order from the interface between the base steel plate and the plating layer toward the base steel plate side, an internal oxide layer containing at least one oxide selected from the group consisting of Si and Mn, and a layer containing the internal oxide layer And, when the thickness of the base steel sheet is t, the soft layer satisfying 90% or less of the Vickers hardness at t / 4 part of the base steel sheet and the metal structure are scanned. When observed with a scanning electron microscope (SEM; Scanning Electron Microscope), it contains 70% by area or more of the low-temperature transformation generation phase with respect to the entire metal structure, and the polygonal ferrite is 0 area% or more and 10 with respect to the entire metal structure. When the metal structure is measured by a saturation magnetization method, the retained austenite (hereinafter referred to as residual γ) And a hard layer composed of a structure containing 5% by volume or more), an average depth D of the soft layer is 20 μm or more, and an average depth d of the internal oxide layer is It has a gist in that it satisfies 4 μm or more and less than D.
 前記内部酸化層の平均深さdと前記軟質層の平均深さDは、D>2dの関係を満足することが好ましい。 It is preferable that the average depth d of the internal oxide layer and the average depth D of the soft layer satisfy a relationship of D> 2d.
 前記低温変態生成相は、隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm以上である高温域生成ベイナイトを含み、前記高温域生成ベイナイトは、前記金属組織全体に対して50面積%超95面積%以下であり、隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm未満である低温域生成ベイナイト、および焼戻しマルテンサイトを含んでもよく、前記低温域生成ベイナイトおよび前記焼戻しマルテンサイトの合計は、前記金属組織全体に対して0面積%以上20面積%未満であってもよい。 The low-temperature transformation generation phase includes high-temperature range bainite having an average interval of 1 μm or more between adjacent residual austenite, adjacent carbides, or adjacent residual austenite and carbide, Low-temperature region-generated bainite that is more than 50 area% and not more than 95 area% with respect to the entire structure, and the average distance between adjacent residual austenite, adjacent carbides, or adjacent residual austenite and carbide is less than 1 μm, and tempering Martensite may be included, and the total of the low temperature region bainite and the tempered martensite may be 0 area% or more and less than 20 area% with respect to the entire metal structure.
 前記低温変態生成相は、隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm以上である高温域生成ベイナイト、隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm未満である低温域生成ベイナイト、および焼戻しマルテンサイトを含み、前記高温域生成ベイナイトは、前記金属組織全体に対して20~80面積%であり、前記低温域生成ベイナイトおよび前記焼戻しマルテンサイトの合計は、前記金属組織全体に対して20~80面積%であってもよい。 The low-temperature transformation generation phase is, between adjacent residual austenite, adjacent carbides, or high temperature region bainite having an average interval between adjacent residual austenite and carbide of 1 μm or more, adjacent residual austenite, adjacent carbides, Or a low-temperature zone bainite having an average distance between adjacent retained austenite and carbide of less than 1 μm, and tempered martensite, and the high-temperature zone bainite is 20 to 80 area% with respect to the entire metal structure, The total of the low temperature region bainite and the tempered martensite may be 20 to 80 area% with respect to the entire metal structure.
 前記低温変態生成相は、隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm未満である低温域生成ベイナイト、および焼戻しマルテンサイトを含み、前記低温域生成ベイナイトおよび前記焼戻しマルテンサイトの合計は、前記金属組織全体に対して50面積%超95面積%以下であり、隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm以上である高温域生成ベイナイトを含んでもよく、前記高温域生成ベイナイトは、前記金属組織全体に対して0面積%以上20面積%未満であってもよい。 The low temperature transformation product phase includes adjacent low temperature austenite, adjacent carbides, or low temperature region bainite having an average interval between adjacent residual austenite and carbide of less than 1 μm, and tempered martensite. The total of bainite and the tempered martensite is more than 50 area% and not more than 95 area% with respect to the entire metal structure, and the average distance between adjacent residual austenite, adjacent carbides, or adjacent residual austenite and carbide. May include high-temperature region-generated bainite that is 1 μm or more, and the high-temperature region-generated bainite may be 0 area% or more and less than 20 area% with respect to the entire metal structure.
 前記素地鋼板は、更に、質量%で、
(a)Cr:0%超1%以下、Mo:0%超1%以下、およびB:0%超0.01%以下よりなる群から選択される少なくとも一種、
(b)Ti:0%超0.2%以下、Nb:0%超0.2%以下、およびV:0%超0.2%以下よりなる群から選択される少なくとも一種、
(c)Cu:0%超1%以下、およびNi:0%超1%以下よりなる群から選択される少なくとも一種、
(d)Ca:0%超0.01%以下、Mg:0%超0.01%以下、および希土類元素:0%超0.01%以下よりなる群から選択される少なくとも一種、
を含有してもよい。
The base steel plate is further in mass%,
(A) at least one selected from the group consisting of Cr: more than 0% and 1% or less, Mo: more than 0% and 1% or less, and B: more than 0% and 0.01% or less,
(B) at least one selected from the group consisting of Ti: more than 0% and 0.2% or less, Nb: more than 0% and 0.2% or less, and V: more than 0% and 0.2% or less,
(C) at least one selected from the group consisting of Cu: more than 0% and 1% or less, and Ni: more than 0% and 1% or less,
(D) at least one selected from the group consisting of Ca: more than 0% and 0.01% or less, Mg: more than 0% and 0.01% or less, and rare earth elements: more than 0% and 0.01% or less,
It may contain.
 上記高強度めっき鋼板は、前記素地鋼板の鋼中成分を満足する鋼板を、600℃以上の温度で巻取る熱間圧延工程と、内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、酸化帯にて、0.9~1.4の空気比で酸化する工程と、還元帯にて、Ac3点以上の範囲で均熱する工程と、均熱後、100~540℃を満たす任意の停止温度Zまで冷却すると共に、750℃から、前記停止温度Zまたは500℃のうち高い方の温度までの範囲は平均冷却速度10℃/秒以上で冷却し、前記100~540℃の温度域で50秒以上保持する工程、をこの順序で含む製造方法によって製造できる。 The high-strength plated steel sheet includes a hot rolling step of winding a steel sheet satisfying the components in the base steel sheet at a temperature of 600 ° C. or more, and pickling so that the average depth d of the internal oxide layer remains 4 μm or more. A step of cold rolling, a step of oxidizing in the oxidation zone at an air ratio of 0.9 to 1.4, a step of soaking in the range of Ac 3 or more in the reduction zone, and after soaking , Cooling to an arbitrary stop temperature Z satisfying 100 to 540 ° C., and cooling from 750 ° C. to the higher one of the stop temperature Z or 500 ° C. at an average cooling rate of 10 ° C./second or more, It can be manufactured by a manufacturing method including the step of holding in the temperature range of 100 to 540 ° C. for 50 seconds or more in this order.
 また、上記高強度めっき鋼板は、前記素地鋼板の鋼中成分を満足する鋼板を、500℃以上の温度で巻取る熱間圧延工程と、500℃以上の温度で60分以上保温する工程と、内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、酸化帯にて、0.9~1.4の空気比で酸化する工程と、還元帯にて、Ac3点以上の範囲で均熱する工程と、均熱後、100~540℃を満たす任意の停止温度Zまで冷却すると共に、750℃から、前記停止温度Zまたは500℃のうち高い方の温度までの範囲は平均冷却速度10℃/秒以上で冷却し、前記100~540℃の温度域で50秒以上保持する工程、をこの順序で含む製造方法によっても製造できる。 The high-strength plated steel sheet is a hot rolling process in which a steel sheet satisfying the steel components of the base steel sheet is wound at a temperature of 500 ° C. or higher, and a process of keeping the temperature at a temperature of 500 ° C. or higher for 60 minutes or more. Pickling and cold rolling so that the average depth d of the inner oxide layer remains at 4 μm or more, oxidizing step in an oxidation zone at an air ratio of 0.9 to 1.4, and reducing zone, Ac soaking in a range of 3 points or more, and after soaking, cooling to an arbitrary stop temperature Z satisfying 100 to 540 ° C., and from 750 ° C. to the higher one of the stop temperature Z or 500 ° C. The range up to the above can also be produced by a production method comprising in this order the steps of cooling at an average cooling rate of 10 ° C./second or more and holding in the temperature range of 100 to 540 ° C. for 50 seconds or more.
 上記低温変態生成相が、上記高温域生成ベイナイトを、上記金属組織全体に対して50面積%超95面積%以下含み、上記低温域生成ベイナイトおよび上記焼戻しマルテンサイトの合計は、上記金属組織全体に対して0面積%以上20面積%未満である上記高強度めっき鋼板は、下記[Ia]または[Ib]の製造方法によって製造できる。
 [Ia]前記素地鋼板の鋼中成分を満足する鋼板を、600℃以上の温度で巻取る熱間圧延工程と、内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、酸化帯にて、0.9~1.4の空気比で酸化する工程と、還元帯にて、Ac3点以上の範囲で均熱する工程と、均熱後、下記(a1)を満足する工程、をこの順序で含む製造方法。
 [Ib]前記素地鋼板の鋼中成分を満足する鋼板を、500℃以上の温度で巻取る熱間圧延工程と、500℃以上の温度で60分以上保温する工程と、内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、酸化帯にて、0.9~1.4の空気比で酸化する工程と、還元帯にて、Ac3点以上の範囲で均熱する工程と、均熱後、下記(a1)を満足する工程、をこの順序で含む製造方法。
 (a1)420℃以上500℃以下を満たす任意の停止温度Za1まで冷却すると共に、750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、前記420~500℃の温度域で50秒以上保持する。
The low-temperature transformation generation phase contains the high-temperature region-generated bainite more than 50% by area and not more than 95 area% with respect to the entire metal structure, and the total of the low-temperature region-generated bainite and the tempered martensite is in the entire metal structure. On the other hand, the high-strength plated steel sheet that is 0 area% or more and less than 20 area% can be manufactured by the following [Ia] or [Ib] manufacturing method.
[Ia] A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 600 ° C. or higher, and pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 μm or more. A step of oxidizing in the oxidation zone at an air ratio of 0.9 to 1.4, a step of soaking in the range of Ac 3 or more in the reduction zone, and after soaking, the following (a1 ) Satisfying the steps, in this order, a manufacturing method.
[Ib] A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 500 ° C. or higher, a step of keeping warm at a temperature of 500 ° C. or higher for 60 minutes, and an average depth of the internal oxide layer Pickling and cold rolling so that the thickness d remains 4 μm or more, oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4, and reducing zone in a range of Ac 3 points or more And a step of satisfying the following (a1) after soaking, in this order.
(A1) Cooling to an arbitrary stop temperature Z a1 satisfying 420 ° C. or more and 500 ° C. or less, and cooling at an average cooling rate of 10 ° C./second or more in the range from 750 ° C. to 500 ° C. Hold for more than 50 seconds in the area
 上記低温変態生成相が、上記高温域生成ベイナイトを、上記金属組織全体に対して20~80面積%含み、上記低温域生成ベイナイトおよび上記焼戻しマルテンサイトの合計で、上記金属組織全体に対して20~80面積%含む上記高強度めっき鋼板は、下記[IIa]または[IIb]の製造方法によって製造できる。
 [IIa]前記素地鋼板の鋼中成分を満足する鋼板を、600℃以上の温度で巻取る熱間圧延工程と、内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、酸化帯にて、0.9~1.4の空気比で酸化する工程と、還元帯にて、Ac3点以上の範囲で均熱する工程と、均熱後、下記(a2)、(b)、(c1)のいずれかを満足する工程、をこの順序で含む製造方法。
 [IIb]前記素地鋼板の鋼中成分を満足する鋼板を、500℃以上の温度で巻取る熱間圧延工程と、500℃以上の温度で60分以上保温する工程と、内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、酸化帯にて、0.9~1.4の空気比で酸化する工程と、還元帯にて、Ac3点以上の範囲で均熱する工程と、均熱後、下記(a2)、(b)、(c1)のいずれかを満足する工程、をこの順序で含む製造方法。
 (a2)380℃以上420℃未満を満たす任意の停止温度Za2まで冷却すると共に、750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、前記380℃以上420℃未満の温度域で50秒以上保持する。
 (b)下記式(1)を満たす任意の停止温度Zbまで冷却すると共に、750℃から、前記停止温度Zbまたは500℃のうち高い方の温度までの範囲は平均冷却速度を10℃/秒以上で冷却し、下記式(1)を満たす温度域T1で10~100秒間保持し、次いで、下記式(2)を満たす温度域T2に冷却し、この温度域T2で50秒以上保持する。
400≦T1(℃)≦540 ・・・(1)
200≦T2(℃)<400 ・・・(2)
 (c1)下記式(3)を満たす任意の停止温度Zc1またはMs点まで冷却すると共に、750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、下記式(3)を満たす温度域T3で5~180秒間保持し、次いで、下記式(4)を満たす温度域T4に加熱し、この温度域T4で30秒以上保持する。
100≦T3(℃)<400 ・・・(3)
400≦T4(℃)≦500 ・・・(4)
The low-temperature transformation generation phase contains 20 to 80 area% of the high-temperature region-generated bainite with respect to the entire metal structure, and the total of the low-temperature region-generated bainite and the tempered martensite is 20 to the entire metal structure. The high-strength plated steel sheet containing ˜80 area% can be manufactured by the following manufacturing method [IIa] or [IIb].
[IIa] A hot rolling step of winding a steel plate that satisfies the steel components of the base steel plate at a temperature of 600 ° C. or higher, and pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 μm or more. A step of oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4, a step of soaking in the range of Ac 3 or more in the reduction zone, and after soaking, the following (a2 ), (B), and a process that satisfies any one of (c1) in this order.
[IIb] A hot rolling step of winding a steel plate that satisfies the components in the steel of the base steel plate at a temperature of 500 ° C. or higher, a step of keeping the temperature at a temperature of 500 ° C. or higher for 60 minutes, and an average depth of the internal oxide layer Pickling and cold rolling so that the thickness d remains 4 μm or more, oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4, and reducing zone in a range of Ac 3 points or more And a step of satisfying any of the following (a2), (b), and (c1) after soaking, in this order.
(A2) While cooling to an arbitrary stop temperature Z a2 satisfying 380 ° C. or more and less than 420 ° C., the range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more. Hold for at least 50 seconds in the temperature range.
(B) While cooling to an arbitrary stop temperature Z b satisfying the following formula (1), the range from 750 ° C. to the higher one of the stop temperature Z b or 500 ° C. is an average cooling rate of 10 ° C. / Cool for at least 2 seconds, hold for 10 to 100 seconds in the temperature range T1 satisfying the following formula (1), then cool to the temperature range T2 satisfying the following formula (2), and hold for at least 50 seconds in this temperature range T2. .
400 ≦ T1 (° C.) ≦ 540 (1)
200 ≦ T2 (° C.) <400 (2)
(C1) While cooling to an arbitrary stop temperature Z c1 or Ms point satisfying the following formula (3), the range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more, and the following formula (3) The temperature is maintained for 5 to 180 seconds in a temperature range T3 that satisfies the above condition, and then heated to a temperature range T4 that satisfies the following formula (4). The temperature range T4 is maintained for 30 seconds or more.
100 ≦ T3 (° C.) <400 (3)
400 ≦ T4 (° C.) ≦ 500 (4)
 上記低温変態生成相が、上記低温域生成ベイナイトを、上記金属組織全体に対して50面積%超95面積%以下含み、上記高温域生成ベイナイトは、上記金属組織全体に対して0面積%以上20面積%未満である上記高強度めっき鋼板は、下記[IIIa]または[IIIb]の製造方法によって製造できる。
 [IIIa]前記素地鋼板の鋼中成分を満足する鋼板を、600℃以上の温度で巻取る熱間圧延工程と、内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、酸化帯にて、0.9~1.4の空気比で酸化する工程と、還元帯にて、Ac3点以上の範囲で均熱する工程と、均熱後、下記(a3)または(c2)のいずれかを満足する工程、をこの順序で含む製造方法。
 [IIIb]前記素地鋼板の鋼中成分を満足する鋼板を、500℃以上の温度で巻取る熱間圧延工程と、500℃以上の温度で60分以上保温する工程と、内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、酸化帯にて、0.9~1.4の空気比で酸化する工程と、還元帯にて、Ac3点以上の範囲で均熱する工程と、均熱後、下記(a3)または(c2)のいずれかを満足する工程、をこの順序で含む製造方法。
 (a3)150℃以上380℃未満を満たす任意の停止温度Za3まで冷却すると共に、750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、前記150℃以上380℃未満の温度域で50秒以上保持する。
 (c2)下記式(3)を満たす任意の停止温度Zc2またはMs点まで冷却すると共に、750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、下記式(3)を満たす温度域T3で5~180秒間保持し、次いで、下記式(4)を満たす温度域T4に加熱し、この温度域T4で30秒以上保持する。
100≦T3(℃)<400 ・・・(3)
400≦T4(℃)≦500 ・・・(4)
The low-temperature transformation generation phase contains the low-temperature region-generated bainite in an amount of more than 50% by area and not more than 95% by area with respect to the entire metal structure, and the high-temperature region-generated bainite is 0 area% or more and 20 to 20% of the entire metal structure. The high-strength plated steel sheet that is less than area% can be produced by the following production method [IIIa] or [IIIb].
[IIIa] A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 600 ° C. or higher, and pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 μm or more. A step of oxidizing in the oxidation zone at an air ratio of 0.9 to 1.4, a step of soaking in the range of Ac 3 or more in the reduction zone, and after soaking, the following (a3 ) Or (c2) satisfying either of these steps in this order.
[IIIb] A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 500 ° C. or higher, a step of keeping warm at a temperature of 500 ° C. or higher for 60 minutes, and an average depth of the internal oxide layer Pickling and cold rolling so that the thickness d remains 4 μm or more, oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4, and reducing zone in a range of Ac 3 points or more And a step of satisfying any of the following (a3) or (c2) after soaking, in this order.
(A3) While cooling to an arbitrary stop temperature Z a3 satisfying 150 ° C. or more and less than 380 ° C., the range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more. Hold for at least 50 seconds in the temperature range.
(C2) While cooling to an arbitrary stop temperature Z c2 or Ms point satisfying the following formula (3), the range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more, and the following formula (3) The temperature is maintained for 5 to 180 seconds in a temperature range T3 that satisfies the above condition, and then heated to a temperature range T4 that satisfies the following formula (4). The temperature range T4 is maintained for 30 seconds or more.
100 ≦ T3 (° C.) <400 (3)
400 ≦ T4 (° C.) ≦ 500 (4)
 本発明のめっき鋼板は、めっき層と素地鋼板との界面から素地鋼板側にかけて、SiおよびMnよりなる群から選択される少なくとも一種の酸化物を含む内部酸化層と、当該内部酸化層の領域を含む軟質層と、当該軟質層以外の領域であって、低温変態生成相を主体とし、残留オーステナイトを含み、ポリゴナルフェライトを含んでもよい硬質層とを有するように構成されている。そして、特に、内部酸化層の平均深さdを4μm以上に厚く制御して水素トラップサイトとして活用しているため、水素脆化を有効に抑制でき、伸び、曲げ性、および穴拡げ性の加工性、耐遅れ破壊特性の全てに優れた引張強度980MPa以上の高強度めっき鋼板が得られる。好ましくは、内部酸化層の平均深さdと、当該内部酸化層の領域を含む軟質層の平均深さDとの関係を適切に制御しているため、特に曲げ性が一層高められる。 The plated steel sheet of the present invention includes an internal oxide layer containing at least one oxide selected from the group consisting of Si and Mn from the interface between the plating layer and the base steel sheet to the base steel sheet side, and a region of the internal oxide layer. And a hard layer that is a region other than the soft layer and mainly includes a low-temperature transformation generation phase, includes retained austenite, and may include polygonal ferrite. In particular, since the average depth d of the internal oxide layer is controlled to be 4 μm or more and used as a hydrogen trap site, hydrogen embrittlement can be effectively suppressed, and processing of elongation, bendability, and hole expandability is possible. A high-strength plated steel sheet having a tensile strength of 980 MPa or more, which is excellent in all properties and delayed fracture resistance, can be obtained. Preferably, since the relationship between the average depth d of the internal oxide layer and the average depth D of the soft layer including the region of the internal oxide layer is appropriately controlled, the bendability is further enhanced.
図1は、本発明のめっき鋼板における、めっき層と素地鋼板との界面から素地鋼板側にかけての層構成を説明する模式図である。FIG. 1 is a schematic diagram for explaining a layer structure from the interface between a plating layer and a base steel plate to the base steel plate side in the plated steel plate of the present invention. 図2は、本発明のめっき鋼板における、内部酸化層の平均深さdの測定手順を説明する模式図である。FIG. 2 is a schematic diagram for explaining the procedure for measuring the average depth d of the internal oxide layer in the plated steel sheet of the present invention. 図3は、軟質層の平均深さDを決定するために用いた、ビッカース硬さの測定位置を説明する図である。FIG. 3 is a diagram for explaining the measurement position of the Vickers hardness used for determining the average depth D of the soft layer. 図4は、残留オーステナイト同士、炭化物同士、または残留オーステナイトと炭化物との中心位置間距離を測定する手順を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a procedure for measuring the distance between the center positions of retained austenite, carbides, or retained austenite and carbide. 図5のa、図5のbは、高温域生成ベイナイト、並びに低温域生成ベイナイトおよび焼戻しマルテンサイトの分布状態を模式的に示す図である。FIG. 5 a and FIG. 5 b are diagrams schematically showing a distribution state of high-temperature region-generated bainite and low-temperature region-generated bainite and tempered martensite. 図6は、T1温度域とT2温度域におけるヒートパターンを説明するための模式図である。FIG. 6 is a schematic diagram for explaining heat patterns in the T1 temperature range and the T2 temperature range. 図7は、T3温度域とT4温度域におけるヒートパターンを説明するための模式図である。FIG. 7 is a schematic diagram for explaining heat patterns in the T3 temperature range and the T4 temperature range.
 本発明者らは、SiおよびMnを多く含む素地鋼板において、980MPa以上の高強度を有し、且つ、めっき性、加工性、および耐遅れ破壊特性のすべてに優れた高強度めっき鋼板を提供するため、特に、めっき層と素地鋼板との界面から素地鋼板側にかけての層構成に着目して検討を重ねてきた。その結果、後記する図1の模式図に示すように、
(a)めっき層と素地鋼板との界面から素地鋼板側にかけての層構成を、SiおよびMnよりなる群から選択される少なくとも一種の酸化物を含む内部酸化層を含む軟質層と、当該軟質層以外の領域であって、低温変態生成相を主体とし、残留オーステナイトを含み、ポリゴナルフェライトを含んでもよい硬質層を有するように構成すると共に、
(b)上記内部酸化層の平均深さdを4μm以上に厚く制御すると、当該内部酸化層が水素トラップサイトとして機能し、水素脆化を有効に抑制できるため、所期の目的を達成できること、
(c)好ましくは、上記内部酸化層の平均深さdと、上記内部酸化層の領域を含む軟質層の平均深さDとの関係を適切に制御すれば、特に曲げ性が一層高められることを見出し、本発明を完成した。
The present inventors provide a high-strength plated steel sheet having a high strength of 980 MPa or more and excellent in all of plateability, workability, and delayed fracture resistance in a base steel sheet rich in Si and Mn. For this reason, in particular, studies have been made focusing on the layer structure from the interface between the plating layer and the base steel plate to the base steel plate side. As a result, as shown in the schematic diagram of FIG.
(A) a soft layer including an internal oxide layer containing at least one oxide selected from the group consisting of Si and Mn, the layer structure from the interface between the plating layer and the base steel plate to the base steel plate side, and the soft layer It is a region other than, mainly composed of a low-temperature transformation generation phase, including residual austenite, and having a hard layer that may include polygonal ferrite,
(B) When the average depth d of the internal oxide layer is controlled to be 4 μm or more, the internal oxide layer functions as a hydrogen trap site, and hydrogen embrittlement can be effectively suppressed, so that the intended purpose can be achieved.
(C) Preferably, if the relationship between the average depth d of the internal oxide layer and the average depth D of the soft layer including the region of the internal oxide layer is appropriately controlled, the bendability is particularly improved. The present invention has been completed.
 本明細書において、めっき鋼板とは溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の両方を含む。 In the present specification, the plated steel sheet includes both a hot dip galvanized steel sheet and an alloyed hot dip galvanized steel sheet.
 また、本明細書において、上記素地鋼板とは溶融亜鉛めっき層および合金化溶融亜鉛めっき層が形成される前の鋼板を意味し、上記めっき鋼板とは素地鋼板の表面に溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有する鋼板を意味する。 Moreover, in this specification, the said base steel plate means the steel plate before a hot dip galvanized layer and an alloying hot dip galvanized layer are formed, and the said plated steel plate is a hot dip galvanized layer or alloy on the surface of a base steel plate. It means a steel sheet having a hot dip galvanized layer.
 また、本明細書において「高強度」とは、引張強度が980MPa以上を意味する。 In addition, in this specification, “high strength” means a tensile strength of 980 MPa or more.
 また、本明細書において「加工性に優れた」とは、伸び、曲げ性、および穴拡げ性の全てに優れることを意味する。詳細は後記する実施例に記載の方法でこれらの特性を測定したとき、実施例の合格基準を満足するものを「加工性に優れる」と呼ぶ。 Further, in this specification, “excellent in workability” means excellent in all of elongation, bendability, and hole expandability. For details, when these characteristics are measured by the method described in the examples described later, those satisfying the acceptance criteria of the examples are referred to as “excellent workability”.
 上述したように本発明のめっき鋼板は、素地鋼板の表面に、溶融亜鉛めっき層または合金化溶融亜鉛めっき層(以下、めっき層で代表させることがある。)を有している。そして本発明の特徴部分は、素地鋼板とめっき層の界面から素地鋼板側に向って順に、下記(A)~(C)の層構成を有する点にある。
(A)内部酸化層:SiおよびMnよりなる群から選択される少なくとも一種の酸化物を含む層である。内部酸化層の平均深さdは、4μm以上、後記する(B)に記載の軟質層の平均深さD未満である。
(B)軟質層:上記内部酸化層を含み、上記素地鋼板の板厚をtとしたとき、ビッカース硬さが、上記素地鋼板のt/4部におけるビッカース硬さの90%以下を満足する。軟質層の平均深さDは、20μm以上である。
(C)硬質層:低温変態生成相を主体とし、残留γを含み、ポリゴナルフェライトを含んでもよい組織で構成される。「低温変態生成相」とは、ベイナイトおよび焼戻しマルテンサイトを意味し、本明細書では、低温変態生成相に焼入ままのマルテンサイト(フレッシュマルテンサイトと呼ばれることもある。)は含まない。フレッシュマルテンサイトは、本明細書では、その他の組織に便宜上分類する。「主体とする」とは、後記する実施例の記載の方法で組織分率を測定したとき、金属組織全体に対して70面積%以上を意味する。詳細は後述する。
As described above, the plated steel sheet of the present invention has a hot dip galvanized layer or an alloyed hot dip galvanized layer (hereinafter, may be represented by a plated layer) on the surface of the base steel sheet. The characteristic part of the present invention is that it has the following layer configurations (A) to (C) in order from the interface between the base steel plate and the plating layer toward the base steel plate side.
(A) Internal oxide layer: a layer containing at least one oxide selected from the group consisting of Si and Mn. The average depth d of the internal oxide layer is 4 μm or more and less than the average depth D of the soft layer described in (B) described later.
(B) Soft layer: including the internal oxide layer, where the thickness of the base steel sheet is t, the Vickers hardness satisfies 90% or less of the Vickers hardness at t / 4 part of the base steel sheet. The average depth D of the soft layer is 20 μm or more.
(C) Hard layer: composed of a structure mainly composed of a low-temperature transformation generation phase, containing residual γ, and possibly containing polygonal ferrite. The “low temperature transformation product phase” means bainite and tempered martensite, and does not include martensite (sometimes referred to as fresh martensite) as quenched in the low temperature transformation product phase. Fresh martensite is classified here for convenience in other tissues. “Mainly” means 70% by area or more based on the entire metal structure when the structure fraction is measured by the method described in the examples described later. Details will be described later.
 以下、図1を参照しながら、本発明を特徴付ける上記(A)~(C)の層構成について、順に詳述する。 Hereinafter, the layer configurations (A) to (C) that characterize the present invention will be described in detail with reference to FIG.
 図1に示すように、本発明のめっき鋼板における素地鋼板2側の層構成は、めっき層1と素地鋼板2の界面から素地鋼板2側に向って、(B)の軟質層4と、軟質層4より素地鋼板2側の内部に(C)の硬質層5とを有する。上記(B)の軟質層4は、(A)の内部酸化層3を含む。また上記軟質層4と上記硬質層5は連続的に存在する。 As shown in FIG. 1, the layer structure of the plated steel sheet according to the present invention on the base steel sheet 2 side is from the interface between the plating layer 1 and the base steel sheet 2 toward the base steel sheet 2 side, A hard layer 5 of (C) is provided inside the base steel plate 2 from the layer 4. The soft layer 4 of (B) includes the internal oxide layer 3 of (A). The soft layer 4 and the hard layer 5 are continuously present.
 (A)内部酸化層について
 まず、めっき層1と素地鋼板2の界面に直接接する部分は、平均深さdが4μm以上の内部酸化層3を有する。ここで、平均深さとは、上記界面からの深さの平均値を意味し、その詳細な測定方法は、後記する実施例の欄において図2を用いて説明する。
(A) Internal oxide layer First, the portion directly in contact with the interface between the plating layer 1 and the base steel plate 2 has an internal oxide layer 3 having an average depth d of 4 μm or more. Here, the average depth means an average value of the depth from the interface, and a detailed measuring method thereof will be described with reference to FIG.
 上記内部酸化層3は、SiおよびMnの少なくとも一種を含む酸化物と、SiとMnが酸化物を形成することにより周囲に固溶Siや固溶Mnの少ないSiおよびMnの空乏層とからなる。 The internal oxide layer 3 is composed of an oxide containing at least one of Si and Mn, and a Si and Mn depletion layer in which Si and Mn form an oxide to form a solid solution Si or a small amount of solid solution Mn. .
 本発明では、上記内部酸化層3の平均深さdを4μm以上に厚く制御したところに最大の特徴がある。これにより、当該内部酸化層3を水素トラップサイトとして活用でき、水素脆化を抑制できると共に、曲げ性、穴拡げ性、耐遅れ破壊特性が向上する。なお、本発明のようにSiおよびMnといった易酸化性元素を多く含む素地鋼板では、焼鈍時に、素地鋼板表面にSi酸化物、Mn酸化物、SiとMnの複合酸化物を有する複合酸化膜が形成され易く、めっき性が阻害される。焼鈍時とは、後記する連続溶融亜鉛めっきラインにおける酸化・還元工程に相当する。そこで、その対策として、酸化雰囲気で素地鋼板表面を酸化させてFe酸化膜を生成させた後、水素を含む雰囲気中で焼鈍(即ち、還元焼鈍)する方法が知られている。さらに、炉内雰囲気を制御することで易酸化性元素を素地鋼板表層内部に酸化物として固定させ、素地鋼板表層に固溶している易酸化性元素を低減させることで、易酸化性元素の素地鋼板表面への酸化膜の形成を防止する方法も知られている。 In the present invention, the greatest feature is that the average depth d of the internal oxide layer 3 is controlled to be 4 μm or more. Thereby, the internal oxide layer 3 can be used as a hydrogen trap site, hydrogen embrittlement can be suppressed, and bendability, hole expansibility, and delayed fracture resistance are improved. In the base steel sheet containing a large amount of easily oxidizable elements such as Si and Mn as in the present invention, a composite oxide film having Si oxide, Mn oxide, and a composite oxide of Si and Mn is formed on the base steel sheet surface during annealing. It is easy to form and the plating property is hindered. The time of annealing corresponds to an oxidation / reduction process in a continuous hot dip galvanizing line which will be described later. Therefore, as a countermeasure, a method is known in which the surface of the base steel sheet is oxidized in an oxidizing atmosphere to form a Fe oxide film, and then annealed (that is, reduction annealing) in an atmosphere containing hydrogen. Furthermore, by controlling the atmosphere in the furnace, the oxidizable elements are fixed as oxides inside the base steel sheet surface layer, and by reducing the oxidizable elements dissolved in the base steel sheet surface layer, A method for preventing the formation of an oxide film on the surface of the base steel plate is also known.
 しかしながら、本発明者らの検討結果によれば、SiおよびMnを多く含む素地鋼板をめっきするために汎用される酸化還元法において、還元時の水素雰囲気で水素が素地鋼板に侵入して水素脆化による曲げ性と穴拡げ性の劣化が発生すること;これらの劣化を改善するには、SiおよびMnよりなる群から選択される少なくとも一種の酸化物の活用が有効であることが分かった。詳細には、上記酸化物は、還元時における素地鋼板内部への水素侵入を防ぎ、耐遅れ破壊特性の低下に起因した曲げ性および穴拡げ性の劣化を改善し得る水素トラップサイトとして有用であり、その効果を有効に発揮させるには、上記酸化物を含む内部酸化層の平均深さdを4μm以上と厚く形成することが不可欠であることが判明した。上記dは、6μm以上が好ましく、8μm以上がより好ましく、10μm超が更に好ましい。 However, according to the examination results of the present inventors, in the oxidation-reduction method widely used for plating a base steel plate rich in Si and Mn, hydrogen penetrates into the base steel plate in a hydrogen atmosphere at the time of reduction, and hydrogen embrittlement occurs. It has been found that the use of at least one oxide selected from the group consisting of Si and Mn is effective in improving the deterioration of bendability and hole expansibility due to crystallization. Specifically, the oxide is useful as a hydrogen trap site that can prevent hydrogen from entering the base steel sheet during reduction and improve the deterioration of bendability and hole expandability due to the deterioration of delayed fracture resistance. In order to effectively exhibit the effect, it has been found that it is indispensable to form an average depth d of the internal oxide layer containing the oxide as thick as 4 μm or more. The d is preferably 6 μm or more, more preferably 8 μm or more, and still more preferably more than 10 μm.
 本発明において、内部酸化層3の平均深さdの上限は、少なくとも、後記する(B)の軟質層4の平均深さD未満である。上記dの上限は、30μm以下が好ましい。内部酸化層3を厚くするには、熱延巻取り後の高温域での長時間保持が必要であるが、生産性および設備上の制約により、おおむね、上記の好ましい値になるからである。上記dは、18μm以下がより好ましく、16μm以下が更に好ましい。 In the present invention, the upper limit of the average depth d of the internal oxide layer 3 is at least less than the average depth D of the soft layer 4 described later (B). The upper limit of d is preferably 30 μm or less. In order to make the internal oxide layer 3 thick, it is necessary to keep it for a long time in a high temperature range after hot rolling, but the above preferred values are generally obtained due to restrictions on productivity and equipment. The d is more preferably 18 μm or less, and still more preferably 16 μm or less.
 更に本発明では、上記内部酸化層3の平均深さdを、後記する(B)の軟質層4の平均深さDとの関係で、D>2dの関係式を満足するように制御することが好ましく、これにより特に曲げ性が一層向上する。 Further, in the present invention, the average depth d of the internal oxide layer 3 is controlled so as to satisfy the relational expression D> 2d in relation to the average depth D of the soft layer 4 (B) described later. Is preferable, and in particular, the bendability is further improved.
 これに対し、前述した特許文献2には、本発明に記載の内部酸化層の平均深さdおよび軟質層の平均深さDに、ほぼ対応する酸化物の存在深さdおよび軟質層の厚さDについて、d/4≦D≦2dを満たす溶融亜鉛めっき鋼板が開示されており、本発明で規定する上記関係式(D>2d)とは、制御の方向性が全く相違する。また、上記特許文献2には、基本的に前述したd/4≦D≦2dの関係を満足しつつ酸化物の存在深さdの範囲を制御することが記載されているのであって、本発明のように内部酸化層3の平均深さdを4μm以上に厚く制御するとの基本思想は全くない。勿論、これにより、水素トラップサイトとしての作用が有効に発揮され、曲げ性、穴拡げ性、耐遅れ破壊特性が向上するという本発明の効果も記載されていない。 On the other hand, in Patent Document 2 described above, the oxide existing depth d and the soft layer thickness substantially correspond to the average depth d of the internal oxide layer and the average depth D of the soft layer described in the present invention. A hot-dip galvanized steel sheet satisfying d / 4 ≦ D ≦ 2d is disclosed for the depth D, and the directivity of control is completely different from the relational expression (D> 2d) defined in the present invention. Patent Document 2 describes that the range of the oxide depth d is basically controlled while satisfying the above-described relationship of d / 4 ≦ D ≦ 2d. There is no basic idea of controlling the average depth d of the internal oxide layer 3 to 4 μm or more as in the present invention. Of course, this does not describe the effect of the present invention that the action as a hydrogen trap site is effectively exhibited and the bendability, hole expansibility, and delayed fracture resistance are improved.
 なお、本発明において、上記内部酸化層3の平均深さdを4μm以上に制御するには、連続溶融亜鉛めっきラインに通板する前の冷延鋼板における内部酸化層3の平均深さを4μm以上に制御することが必要である。後記する実施例に示すように、酸洗、冷間圧延後の内部酸化層は、めっきライン通板後の最終的に得られるめっき鋼板中の内部酸化層に引き継がれるからである。詳細は、製造方法と併せて説明する。 In the present invention, in order to control the average depth d of the internal oxide layer 3 to 4 μm or more, the average depth of the internal oxide layer 3 in the cold-rolled steel sheet before passing through the continuous hot dip galvanizing line is 4 μm. It is necessary to control as described above. This is because the internal oxide layer after pickling and cold rolling is succeeded to the internal oxide layer in the finally obtained plated steel sheet after passing through the plating line, as shown in the examples described later. Details will be described together with the manufacturing method.
 (B)軟質層について
 本発明において軟質層4は、図1に示すように、上記(A)の内部酸化層3の領域を含む層である。この軟質層4は、ビッカース硬さが、素地鋼板2のt/4部におけるビッカース硬さの90%以下を満足するものである。ここで、tは素地鋼板の板厚(mm)である。上記ビッカース硬さの詳細な測定方法は、後記する実施例の欄で説明する。
(B) Soft Layer In the present invention, the soft layer 4 is a layer including the region of the internal oxide layer 3 of (A) as shown in FIG. This soft layer 4 satisfies the Vickers hardness of 90% or less of the Vickers hardness at the t / 4 part of the base steel plate 2. Here, t is the thickness (mm) of the base steel plate. A detailed method for measuring the Vickers hardness will be described in the column of Examples described later.
 上記軟質層4は、後記する(C)の硬質層5よりビッカース硬さが低い軟質の組織であり、変形能に優れるため、軟質層4が形成されることによって、特に曲げ性が向上する。すなわち、曲げ加工時には、素地鋼板表層部が割れの起点となるが、本発明のように素地鋼板表層に所定の軟質層4を形成させることにより、特に曲げ性が改善される。更に上記軟質層4の形成により、上記(A)内の酸化物が曲げ加工時における割れの起点となることを防止でき、前述した水素トラップサイトとしてのメリットのみを享受できる。その結果、曲げ性のみならず耐遅れ破壊特性も一層向上する。 The soft layer 4 is a soft structure having a Vickers hardness lower than that of the hard layer 5 described later (C), and is excellent in deformability. Therefore, when the soft layer 4 is formed, the bendability is particularly improved. That is, at the time of bending, the base steel plate surface layer portion becomes the starting point of cracking, but the bendability is particularly improved by forming the predetermined soft layer 4 on the base steel plate surface layer as in the present invention. Furthermore, the formation of the soft layer 4 can prevent the oxide in (A) from becoming a starting point of cracking during bending, and can enjoy only the above-described merit as a hydrogen trap site. As a result, not only bendability but also delayed fracture resistance is further improved.
 このような軟質層形成による効果を有効に発揮させるには、上記軟質層4の平均深さDを20μm以上とする。上記Dは、22μm以上が好ましく、24μm以上がより好ましい。一方、上記軟質層4の平均深さDが厚すぎると、めっき鋼板自体の強度が低下するため、その上限は100μm以下が好ましく、60μm以下がより好ましい。 In order to effectively exhibit the effect of forming such a soft layer, the average depth D of the soft layer 4 is set to 20 μm or more. The D is preferably 22 μm or more, and more preferably 24 μm or more. On the other hand, if the average depth D of the soft layer 4 is too thick, the strength of the plated steel sheet itself is lowered. Therefore, the upper limit is preferably 100 μm or less, and more preferably 60 μm or less.
 (C)硬質層について
 本発明において硬質層5は、図1に示すように、上記(B)の軟質層4の素地鋼板2側に形成される。この硬質層5は、低温変態生成相を主体とし、残留γを含み、ポリゴナルフェライトを含んでもよい組織で構成される。
(C) Hard layer In this invention, the hard layer 5 is formed in the base steel plate 2 side of the soft layer 4 of the said (B), as shown in FIG. The hard layer 5 is composed mainly of a low-temperature transformation generation phase, a structure containing residual γ, and may contain polygonal ferrite.
 (C1)上記「低温変態生成相」とは、ベイナイトおよび焼戻しマルテンサイトを意味し、ベイナイトはベイニティックフェライトを含む意味である。ベイナイトは炭化物が析出した組織であり、ベイニティックフェライトは炭化物が析出していない組織である。 (C1) The “low-temperature transformation generation phase” means bainite and tempered martensite, and bainite means bainitic ferrite. Bainite is a structure in which carbide is precipitated, and bainitic ferrite is a structure in which carbide is not precipitated.
 上記「主体とする」とは、後記する実施例に記載するように、走査型電子顕微鏡で観察したときに、低温変態生成相が金属組織全体に対して70面積%以上を意味する。上記低温変態生成相の面積率は、好ましくは75面積%以上、より好ましくは80面積%以上、更に好ましくは85面積%以上である。上記低温変態生成相の面積率の上限は、残留γの生成量を確保するために、例えば、95面積%以下が好ましい。 The above “mainly comprising” means that the low-temperature transformation generation phase is 70 area% or more with respect to the entire metal structure when observed with a scanning electron microscope, as described in Examples below. The area ratio of the low-temperature transformation generation phase is preferably 75 area% or more, more preferably 80 area% or more, and still more preferably 85 area% or more. The upper limit of the area ratio of the low-temperature transformation product phase is preferably 95 area% or less, for example, in order to ensure the amount of residual γ produced.
 (C2)上記残留γは、鋼板が応力を受けて変形する際にマルテンサイトに変態することによって変形部の硬化を促し、歪の集中を防ぐ効果がある。それにより均一変形能が向上して良好な伸びを発揮する。こうした効果は、一般的にTRIP効果と呼ばれている。 (C2) The residual γ has the effect of accelerating hardening of the deformed part by transforming into martensite when the steel sheet is deformed under stress, thereby preventing strain concentration. Thereby, the uniform deformability is improved and good elongation is exhibited. Such an effect is generally called a TRIP effect.
 これらの効果を発揮させるために、上記残留γは、金属組織を飽和磁化法で測定したとき、金属組織全体に対して5体積%以上含有させる必要がある。残留γは、好ましくは8体積%以上、より好ましくは10体積%以上、更に好ましくは12体積%以上である。しかし残留γの生成量が多くなり過ぎると、後述するMA混合相も過剰に生成し、MA混合相が粗大化し易くなるため、局所変形能(穴拡げ性および曲げ性)を低下させる。従って残留γの上限は30体積%程度以下、好ましくは25体積%以下である。 In order to exert these effects, the residual γ needs to be contained in an amount of 5% by volume or more based on the entire metal structure when the metal structure is measured by the saturation magnetization method. The residual γ is preferably 8% by volume or more, more preferably 10% by volume or more, and still more preferably 12% by volume or more. However, if the amount of residual γ generated becomes too large, the MA mixed phase described later is excessively generated and the MA mixed phase is likely to be coarsened, so that local deformability (hole expansibility and bendability) is lowered. Therefore, the upper limit of the residual γ is about 30% by volume or less, preferably 25% by volume or less.
 残留γは、金属組織のラス間に主に生成しているが、例えば、ブロックやパケットなどのラス状組織の集合体や、旧オーステナイトの粒界上に、後述するMA混合相の一部として塊状に存在することもある。 Residual γ is mainly generated between the laths of the metal structure. For example, as a part of the MA mixed phase described later on the aggregate of lath-like structures such as blocks and packets or the grain boundaries of the prior austenite May be present in bulk.
 (C3)上記硬質層は、金属組織を走査型電子顕微鏡で観察したときに、該金属組織全体に対してポリゴナルフェライトを0面積%以上10面積%以下の範囲で含んでも良い。ポリゴナルフェライトの生成量が過剰になると、曲げ性および穴拡げ性が劣化する。従ってポリゴナルフェライトの面積率は、金属組織全体に対して好ましくは10%以下、より好ましくは8%以下、更に好ましくは5%以下である。 (C3) The hard layer may contain polygonal ferrite in a range of 0 to 10 area% with respect to the entire metal structure when the metal structure is observed with a scanning electron microscope. If the amount of polygonal ferrite produced is excessive, bendability and hole expandability deteriorate. Therefore, the area ratio of polygonal ferrite is preferably 10% or less, more preferably 8% or less, and still more preferably 5% or less with respect to the entire metal structure.
 (C4)上記硬質層は、上記組織のほか、本発明の作用を損なわない範囲で、製造上不可避的に混入し得るその他の組織、例えば、パーライト、焼入れマルテンサイトなどを含んでもいても良い。また、焼入れマルテンサイトと残留γとの複合相であるMA混合相を含んでもよい。上記その他の組織は、最大でも15面積%以下であることが好ましく、少ない程良い。 (C4) In addition to the above structure, the hard layer may contain other structures that may be inevitably mixed in the manufacturing process, for example, pearlite, quenched martensite, and the like, as long as the effects of the present invention are not impaired. Moreover, MA mixed phase that is a composite phase of quenched martensite and residual γ may be included. The other structure is preferably 15 area% or less at the maximum, and the smaller the better.
 (C5)以上の通り、上記硬質層の形成により、伸びおよび穴拡げ性が向上する。即ち、穴拡げ時のき裂は、一般に、例えばベイナイトなどの硬質相と、例えばポリゴナルフェライトなどの軟質相との界面で応力が集中することによって発生する。そのため、上記き裂を抑制するには、硬質相と軟質相との硬度差を低減する必要がある。そこで本発明では、素地鋼板内部の組織を、硬質相であるベイナイトなどの低温変態生成相を主体とし、軟質相であるポリゴナルフェライトの占める比率を最大で10面積%以下に抑制した硬質層とした。 (C5) As described above, the formation of the hard layer improves elongation and hole expansibility. That is, cracks at the time of hole expansion are generally generated by stress concentration at the interface between a hard phase such as bainite and a soft phase such as polygonal ferrite. Therefore, in order to suppress the crack, it is necessary to reduce the hardness difference between the hard phase and the soft phase. Therefore, in the present invention, the internal structure of the base steel sheet is mainly composed of a low-temperature transformation generation phase such as bainite, which is a hard phase, and a hard layer in which the ratio of polygonal ferrite which is a soft phase is suppressed to 10 area% or less at maximum, did.
 (C6)本発明では、上記低温変態生成相を構成するベイナイトを、高温域生成ベイナイトと低温域生成ベイナイトに区別することが好ましい。即ち、上記低温変態生成相は、(C6-1)高温域生成ベイナイトを主として含むか、(C6-2)高温域生成ベイナイト、低温域生成ベイナイト、および焼戻しマルテンサイトの複合組織を含むか、(C6-3)低温域生成ベイナイトと焼戻しマルテンサイトを主として含むことが好ましい。 (C6) In the present invention, it is preferable to distinguish the bainite constituting the low-temperature transformation generation phase into a high-temperature range generation bainite and a low-temperature range generation bainite. That is, the low-temperature transformation generation phase mainly includes (C6-1) high-temperature range generation bainite, (C6-2) includes a high-temperature range generation bainite, a low-temperature range generation bainite, and a tempered martensite composite structure. C6-3) It is preferable to mainly contain low-temperature region bainite and tempered martensite.
 上記高温域生成ベイナイトとは、ナイタール腐食した鋼板断面を走査型電子顕微鏡で観察したときに、隣接する残留γ同士、隣接する炭化物同士、または隣接する残留γと炭化物との平均間隔が1μm以上になっている組織である。上記高温域生成ベイナイトは、Ac1点以上の温度に加熱した後の冷却過程において、おおむね、400℃以上540℃以下の温度域で生成するベイナイト組織である。 The high-temperature region-generated bainite means that the average distance between adjacent residual γ, adjacent carbides, or adjacent residual γ and carbide is 1 μm or more when a cross section of a steel plate subjected to nital corrosion is observed with a scanning electron microscope. It is an organization. The high-temperature region-generated bainite is a bainite structure that is generally generated in a temperature range of 400 ° C. or more and 540 ° C. or less in the cooling process after heating to a temperature of Ac 1 point or higher.
 上記低温域生成ベイナイトとは、ナイタール腐食した鋼板断面を走査型電子顕微鏡で観察したときに、隣接する残留γ同士、隣接する炭化物同士、または隣接する残留γと炭化物との平均間隔が1μm未満になっている組織である。上記低温域生成ベイナイトは、上記Ac1点以上に加熱した後の冷却過程において、おおむね、200℃以上400℃未満の温度域で生成するベイナイト組織である。 The low-temperature region-generated bainite means that the average distance between adjacent residual γ, adjacent carbides, or adjacent residual γ and carbide is less than 1 μm when a cross section of a steel plate subjected to nital corrosion is observed with a scanning electron microscope. It is an organization. The low temperature region-generated bainite is a bainite structure that is generally generated in a temperature range of 200 ° C. or higher and lower than 400 ° C. in the cooling process after heating to the Ac 1 point or higher.
 上記焼戻しマルテンサイトは、上記低温域生成ベイナイトと同様の作用を有する組織である。なお、上記低温域生成ベイナイトと上記焼戻しマルテンサイトは、走査型電子顕微鏡で観察しても区別できないため、本発明では、低温域生成ベイナイトと焼戻しマルテンサイトをまとめて「低温域生成ベイナイト等」と呼ぶこととする。 The tempered martensite is a structure having the same action as the low temperature region bainite. In addition, since the low temperature region bainite and the tempered martensite cannot be distinguished even when observed with a scanning electron microscope, in the present invention, the low temperature region bainite and the tempered martensite are collectively referred to as “low temperature region bainite and the like”. I will call it.
 上記高温域生成ベイナイトは鋼板の機械的特性のうち、特に伸び向上に寄与し、上記低温域生成ベイナイトおよび上記焼戻しマルテンサイトは鋼板の機械的特性のうち、特に穴拡げ性向上に寄与する。 The high-temperature region-generated bainite contributes particularly to the improvement of elongation among the mechanical properties of the steel sheet, and the low-temperature region-generated bainite and the tempered martensite contribute particularly to the improvement of hole expandability among the mechanical properties of the steel sheet.
 そしてこれら2種類のベイナイト組織および焼戻しマルテンサイトを含む場合は、良好な穴拡げ性を確保した上で、伸びを高めることができ、加工性全般が高められる。これは強度レベルの異なるベイナイト組織および焼戻しマルテンサイトを複合化することによって不均一変形が生じるため、加工硬化能が上昇することに起因すると考えられる。即ち、高温域生成ベイナイトは、低温域生成ベイナイト等よりも軟質であるため、鋼板の伸びELを高めて加工性を改善するのに寄与する。一方、低温域生成ベイナイト等は、炭化物および残留γが小さく、変形に際して応力集中が軽減されるため、鋼板の穴拡げ性や曲げ性を高めて局所変形能を向上して加工性を改善するのに寄与する。そして、こうした高温域生成ベイナイトと低温域生成ベイナイト等を混在させることによって、加工硬化能が向上し、伸びが向上して加工性が改善される。 When these two types of bainite structure and tempered martensite are included, it is possible to increase the elongation while ensuring good hole expansibility, and to improve the workability in general. This is considered to be because work hardening ability is increased because non-uniform deformation occurs due to the composite of bainite structure and tempered martensite having different strength levels. That is, since the high temperature region generation bainite is softer than the low temperature region generation bainite and the like, it contributes to improving the workability by increasing the elongation EL of the steel sheet. On the other hand, bainite, etc. produced at low temperatures has small carbides and residual γ, and stress concentration is reduced during deformation. Therefore, the hole expandability and bendability of the steel sheet are enhanced to improve local deformability and improve workability. Contribute to. And by mixing such a high temperature range generation bainite, a low temperature range generation bainite, etc., work hardening ability improves, elongation improves and workability is improved.
 ここで、上記高温域生成ベイナイトおよび上記低温域生成ベイナイト等について詳細に説明する。 Here, the high temperature region bainite and the low temperature region bainite will be described in detail.
 上記隣接する残留γ同士の中心位置間距離、隣接する炭化物同士の中心位置間距離、または隣接する残留γと隣接する炭化物との中心位置間距離をまとめて、以下、「残留γ等の平均間隔」ということがある。上記中心位置間距離は、最も隣接している残留γ同士、最も隣接している炭化物同士、最も隣接している残留γと炭化物について測定したときに、各残留γまたは各炭化物について中心位置を求め、この中心位置同士の距離を意味する。上記中心位置は、残留γまたは炭化物について長径と短径を決定し、長径と短径が交差する位置とする。 Summarizing the distance between the center positions of the adjacent residual γ, the distance between the center positions of the adjacent carbides, or the distance between the center positions of the adjacent residual γ and the adjacent carbide, There are times. The distance between the center positions is obtained by measuring the center position of each residual γ or each carbide when measuring the most adjacent residual γ, the most adjacent carbides, and the most adjacent residual γ and carbide. This means the distance between the center positions. The center position determines the major axis and minor axis of the residual γ or carbide, and is the position where the major axis and minor axis intersect.
 但し、残留γまたは炭化物がラスの境界上に析出する場合は、複数の残留γと炭化物が連なってその形態は針状または板状になるため、中心位置間距離は、隣接する残留γ同士、隣接する炭化物同士、または隣接する残留γと隣接する炭化物の距離ではなく、図4に示すように、残留γおよび炭化物、或いは残留γまたは炭化物が長径方向に連なって形成する線と線の間隔を中心位置間距離12とすればよい。線と線の間隔は、ラス間距離と呼ばれることがある。なお、図4において、11は残留オーステナイトまたは炭化物を示す。 However, when the residual γ or carbide precipitates on the lath boundary, a plurality of residual γ and carbide are connected to form a needle shape or a plate shape. Rather than the distance between adjacent carbides, or adjacent residual γ and adjacent carbide, as shown in FIG. 4, the distance between the lines formed by the residual γ and carbide, or the residual γ or carbide continuous in the major axis direction, The distance between the center positions may be 12. The distance between lines may be referred to as the distance between laths. In FIG. 4, 11 indicates retained austenite or carbide.
 本発明において、ベイナイトを上記のように生成温度域の相違および残留γ等の平均間隔の相違によって「高温域生成ベイナイト」と「低温域生成ベイナイト等」に区別した理由は、一般的な学術的組織分類ではベイナイトを明瞭に区別し難いからである。例えば、ラス状のベイナイトとベイニティックフェライトは、変態温度に応じて上部ベイナイトと下部ベイナイトに分類される。しかし本発明のようにSiを1%以上と多く含んだ鋼種では、ベイナイト変態に伴う炭化物の析出が抑制されるため、走査型電子顕微鏡観察では、マルテンサイト組織も含めてこれらを区別することは困難である。そこで本発明では、ベイナイトを学術的な組織定義により分類するのではなく、上記のように生成温度域の相違および残留γ等の平均間隔に基づいて区別した次第である。 In the present invention, the reason for distinguishing bainite into “high temperature region bainite” and “low temperature region bainite” by the difference in the generation temperature region and the difference in the average interval such as residual γ as described above is a general academic reason. This is because it is difficult to clearly distinguish bainite in the tissue classification. For example, lath-shaped bainite and bainitic ferrite are classified into upper bainite and lower bainite according to the transformation temperature. However, in the steel type containing a large amount of Si of 1% or more as in the present invention, since precipitation of carbides accompanying bainite transformation is suppressed, it is possible to distinguish these including the martensite structure in the scanning electron microscope observation. Have difficulty. Therefore, in the present invention, bainite is not classified based on an academic organization definition, but is distinguished based on the difference in generation temperature range and the average interval such as residual γ as described above.
 上記平均間隔は、保持温度に大きく影響を受けるが、ベイナイト組織のラス形状は、平べったい板状を呈しており、観察面によっては前述の間隔が狭く観察されたり、広く観察されたりする。従って、高温域、低温域でそれぞれ生成するベイナイトの面積率は、それらの観察方位による間隔のバラツキも含めて規定している。 The average interval is greatly influenced by the holding temperature, but the lath shape of the bainite structure is a flat plate shape, and the above-mentioned interval is observed narrowly or widely depending on the observation surface. . Therefore, the area ratio of bainite generated in each of the high temperature region and the low temperature region is defined including the variation in the interval depending on the observation direction.
 上記高温域生成ベイナイトと上記低温域生成ベイナイト等の分布状態は特に限定されず、例えば、旧オーステナイト粒内に高温域生成ベイナイトと低温域生成ベイナイト等の両方が生成していてもよいし、旧オーステナイト粒毎に高温域生成ベイナイトと低温域生成ベイナイト等が夫々生成していてもよい。 The distribution state of the high temperature zone bainite and the low temperature zone bainite is not particularly limited.For example, both the high temperature zone bainite and the low temperature zone bainite may be generated in the prior austenite grains. High temperature region bainite, low temperature region bainite, and the like may be generated for each austenite grain.
 高温域生成ベイナイトと低温域生成ベイナイト等の分布状態を模式的に図5に示す。図5において、21は高温域生成ベイナイト、22は低温域生成ベイナイト等、23は旧オーステナイト粒界(旧γ粒界)、24はMA混合相をそれぞれ示している。図5では、高温域生成ベイナイトには斜線を付し、低温域生成ベイナイト等には細かい点々を付した。図5のaは、旧オーステナイト粒内に高温域生成ベイナイトと低温域生成ベイナイト等の両方が混合して生成している様子を示している。図5のbは、旧オーステナイト粒毎に高温域生成ベイナイトと低温域生成ベイナイト等が夫々生成している様子を示している。図5中に示した黒丸は、MA混合相を示している。MA混合相については後述する。 FIG. 5 schematically shows the distribution state of the high temperature region bainite and the low temperature region bainite. In FIG. 5, reference numeral 21 denotes a high temperature region bainite, 22 denotes a low temperature region bainite, 23 denotes a prior austenite grain boundary (old γ grain boundary), and 24 denotes an MA mixed phase. In FIG. 5, the high temperature region generation bainite is hatched, and the low temperature region generation bainite is marked with fine dots. FIG. 5a shows a state in which both high-temperature region-generated bainite and low-temperature region-generated bainite are mixed and formed in the prior austenite grains. FIG. 5b shows a state in which high temperature region bainite and low temperature region bainite are generated for each prior austenite grain. The black circles shown in FIG. 5 indicate the MA mixed phase. The MA mixed phase will be described later.
 本発明では、下記(C6-1)、(C6-2)、(C6-3)のいずれかであってもよい。
 (C6-1)上記低温変態生成相は、上記高温域生成ベイナイトを含み、該高温域生成ベイナイトは、上記金属組織全体に対して50面積%超95面積%以下であり、上記低温域生成ベイナイトおよび上記焼戻しマルテンサイトを含んでもよく、上記低温域生成ベイナイトおよび上記焼戻しマルテンサイトの合計は、上記金属組織全体に対して0面積%以上20面積%未満である。
 (C6-2)上記低温変態生成相は、上記高温域生成ベイナイト、低温域生成ベイナイト、および焼戻しマルテンサイトを含み、上記高温域生成ベイナイトは、上記金属組織全体に対して20~80面積%であり、上記低温域生成ベイナイトおよび上記焼戻しマルテンサイトの合計は、上記金属組織全体に対して20~80面積%である。
 (C6-3)上記低温変態生成相は、上記低温域生成ベイナイト、および焼戻しマルテンサイトを含む場合は、上記低温域生成ベイナイトおよび上記焼戻しマルテンサイトの合計は、上記金属組織全体に対して50面積%超95面積%以下であり、上記高温域生成ベイナイトを含んでもよく、上記高温域生成ベイナイトは、上記金属組織全体に対して0面積%以上20面積%未満である。
In the present invention, any of the following (C6-1), (C6-2), and (C6-3) may be used.
(C6-1) The low temperature transformation generation phase includes the high temperature region generation bainite, and the high temperature region generation bainite is more than 50 area% and not more than 95 area% with respect to the entire metal structure. And the tempered martensite may be included, and the total of the low temperature region bainite and the tempered martensite is 0 area% or more and less than 20 area% with respect to the entire metal structure.
(C6-2) The low temperature transformation product phase includes the high temperature region produced bainite, the low temperature region produced bainite, and the tempered martensite, and the high temperature region produced bainite is 20 to 80 area% with respect to the entire metal structure. In addition, the total of the low temperature region bainite and the tempered martensite is 20 to 80 area% with respect to the entire metal structure.
(C6-3) When the low temperature transformation product phase includes the low temperature region bainite and tempered martensite, the total of the low temperature region bainite and the tempered martensite is 50 areas with respect to the entire metal structure. % Over 95% by area, and may include the high temperature region-generated bainite, and the high temperature region-generated bainite is not less than 0 area% and less than 20 area% with respect to the entire metal structure.
 上記(C6-1)の場合は、上記高温域生成ベイナイトの生成量を50面積%超とすることによって鋼板の伸びが向上し、加工性を改善できる。従って上記高温域生成ベイナイトは50面積%超が好ましく、より好ましくは65面積%以上、更に好ましくは75面積%以上、特に好ましくは80面積%以上である。しかし上記高温域生成ベイナイトの生成量が過剰になると残留γの生成量を確保しにくくなる。従って上記高温域生成ベイナイトは95面積%以下が好ましく、より好ましくは90面積%以下、更に好ましくは85面積%以下である。 In the case of the above (C6-1), the elongation of the steel sheet is improved and the workability can be improved by setting the amount of the high-temperature region-generated bainite to be more than 50 area%. Accordingly, the high temperature region bainite is preferably more than 50 area%, more preferably 65 area% or more, still more preferably 75 area% or more, and particularly preferably 80 area% or more. However, when the production amount of the high temperature region bainite becomes excessive, it becomes difficult to secure the production amount of residual γ. Therefore, the high temperature region bainite is preferably 95 area% or less, more preferably 90 area% or less, and still more preferably 85 area% or less.
 上記(C6-2)の場合は、上記高温域生成ベイナイトの生成量aを20面積%以上とすることによって鋼板の伸びが向上し、上記低温域生成ベイナイト等の生成量bを20面積%以上とすることによって鋼板の穴拡げ性が向上し、加工性を改善できる。従って上記高温域生成ベイナイトは20面積%以上が好ましく、より好ましくは25面積%以上、更に好ましくは30面積%以上、特に好ましくは40面積%以上である。上記低温域生成ベイナイト等は20面積%以上が好ましく、より好ましくは25面積%以上、更に好ましくは30面積%以上、特に好ましくは40面積%以上である。しかし上記高温域生成ベイナイトの生成量aおよび上記低温域生成ベイナイト等の生成量bが過剰になると残留γの生成量を確保しにくくなる。従って上記高温域生成ベイナイトは80面積%以下が好ましく、より好ましくは75面積%以下、更に好ましくは70面積%以下である。上記低温域生成ベイナイト等は80面積%以下が好ましく、より好ましくは75面積%以下、更に好ましくは70面積%以下である。 In the case of (C6-2), the elongation amount of the steel sheet is improved by setting the generation amount a of the high temperature region bainite to 20 area% or more, and the generation amount b of the low temperature region bainite or the like is 20 area% or more. By doing, the hole expansibility of a steel plate improves and workability can be improved. Accordingly, the high temperature region bainite is preferably 20 area% or more, more preferably 25 area% or more, still more preferably 30 area% or more, and particularly preferably 40 area% or more. The low temperature region bainite or the like is preferably 20 area% or more, more preferably 25 area% or more, still more preferably 30 area% or more, and particularly preferably 40 area% or more. However, if the production amount a of the high-temperature region generation bainite and the generation amount b of the low-temperature region generation bainite or the like are excessive, it is difficult to secure the generation amount of residual γ. Accordingly, the high temperature region bainite is preferably 80 area% or less, more preferably 75 area% or less, and still more preferably 70 area% or less. The low-temperature region bainite and the like are preferably 80 area% or less, more preferably 75 area% or less, and still more preferably 70 area% or less.
 上記生成量aと上記生成量bの関係は、それぞれの範囲が上記範囲を満足していれば特に限定されず、a>b、a<b、a=bのいずれの態様も含まれる。 The relationship between the generation amount a and the generation amount b is not particularly limited as long as each range satisfies the above range, and includes any form of a> b, a <b, and a = b.
 上記高温域生成ベイナイトと、上記低温域生成ベイナイト等の混合比率は、鋼板に要求される特性に応じて定めればよい。具体的には、鋼板の加工性のうち穴拡げ性を一層向上させるには、高温域生成ベイナイトの比率をできるだけ小さくし、低温域生成ベイナイト等の比率をできるだけ大きくすればよい。一方、鋼板の加工性のうち伸びを一層向上させるには、高温域生成ベイナイトの比率をできるだけ大きくし、低温域生成ベイナイト等の比率をできるだけ小さくすればよい。また、鋼板の強度を一層高めるには、低温域生成ベイナイト等の比率をできるだけ大きくし、高温域生成ベイナイトの比率をできるだけ小さくすればよい。 The mixing ratio of the high temperature region bainite and the low temperature region bainite may be determined according to the characteristics required for the steel sheet. Specifically, in order to further improve the hole expandability of the workability of the steel sheet, the ratio of the high temperature region-generated bainite should be as small as possible and the ratio of the low temperature region-generated bainite should be as large as possible. On the other hand, in order to further improve the elongation of the workability of the steel sheet, the ratio of the high-temperature region-generated bainite should be as large as possible, and the ratio of the low-temperature region-generated bainite should be as small as possible. Further, in order to further increase the strength of the steel sheet, the ratio of the low temperature region bainite or the like may be increased as much as possible, and the ratio of the high temperature region bainite may be decreased as much as possible.
 上記(C6-3)の場合は、上記低温域生成ベイナイト等の生成量を50面積%超とすることによって鋼板の穴拡げ性が向上し、加工性を改善できる。従って上記低温域生成ベイナイト等は50面積%超が好ましく、より好ましくは65面積%以上、更に好ましくは75面積%以上、特に好ましくは80面積%以上である。しかし上記低温域生成ベイナイト等の生成量が過剰になると残留γの生成量を確保しにくくなる。従って上記低温域生成ベイナイト等は95面積%以下が好ましく、より好ましくは90面積%以下、更に好ましくは85面積%以下である。 In the case of the above (C6-3), the hole expandability of the steel sheet is improved and the workability can be improved by setting the amount of the low temperature region bainite and the like to be more than 50 area%. Therefore, the low-temperature region-generated bainite or the like is preferably more than 50 area%, more preferably 65 area% or more, still more preferably 75 area% or more, and particularly preferably 80 area% or more. However, if the amount of the low temperature region bainite or the like is excessive, it is difficult to secure the amount of residual γ. Accordingly, the low temperature region bainite or the like is preferably 95 area% or less, more preferably 90 area% or less, and still more preferably 85 area% or less.
 上記(C6-2)および上記(C6-3)の場合において、MA混合相を含むときは、円相当直径が5μmを超えるMA混合相の個数割合が、MA混合相の全個数に対して0%以上15%未満であることが好ましい。 In the case of (C6-2) and (C6-3) above, when the MA mixed phase is included, the number ratio of the MA mixed phase having an equivalent circle diameter exceeding 5 μm is 0 with respect to the total number of the MA mixed phases. % Or more and less than 15%.
 上記MA混合相とは、焼入れマルテンサイトと残留γとの複合相として一般的に知られており、最終冷却前までは未変態のオーステナイトとして存在していた組織の一部が、最終冷却時にマルテンサイトに変態し、残りはオーステナイトのまま残存することによって生成する組織である。MA混合相は、特にオーステンパ処理の過程で炭素が高濃度に濃化し、しかも一部がマルテンサイト組織になっているため、非常に硬い組織である。そのためベイナイトとMA混合相との硬度差は大きく、変形に際して応力が集中してボイド発生の起点となりやすいので、MA混合相が過剰に生成すると、穴拡げ性や曲げ性が低下して局所変形能が低下する。また、MA混合相が過剰に生成すると、強度が高くなる傾向がある。MA混合相は、残留γ量が多くなるほど、またSi含有量が多くなるほど生成し易くなるが、その生成量はできるだけ少ない方が好ましい。 The MA mixed phase is generally known as a composite phase of quenched martensite and residual γ, and a part of the structure that was present as untransformed austenite before the final cooling is martensite during the final cooling. It is a structure formed by transformation into a site and the remainder remaining as austenite. The MA mixed phase is a particularly hard structure because carbon is concentrated at a high concentration in the course of the austempering process and a part thereof has a martensite structure. Therefore, the hardness difference between the bainite and the MA mixed phase is large, and stress concentrates during deformation and tends to become a starting point of void formation. Therefore, if the MA mixed phase is excessively generated, the hole expandability and bendability are reduced and the local deformability is reduced. Decreases. Moreover, when MA mixed phase produces | generates excessively, there exists a tendency for intensity | strength to become high. The MA mixed phase is easily generated as the residual γ amount is increased and the Si content is increased. However, the generated amount is preferably as small as possible.
 上記MA混合相は、円相当直径が5μmを超えるMA混合相の個数割合が、MA混合相の全個数に対して0%以上15%未満であることが好ましい。円相当直径が5μmを超える粗大なMA混合相は、局所変形能に悪影響を及ぼす。 In the MA mixed phase, the number ratio of MA mixed phases having an equivalent circle diameter exceeding 5 μm is preferably 0% or more and less than 15% with respect to the total number of MA mixed phases. A coarse MA mixed phase having an equivalent circle diameter exceeding 5 μm adversely affects local deformability.
 なお、上記MA混合相は、その粒径が大きくなるほどボイドが発生し易くなる傾向が実験により認められたため、MA混合相はできるだけ小さいことが推奨される。 It should be noted that the MA mixed phase is recommended to be as small as possible because experiments have shown that the MA mixed phase tends to generate voids as its particle size increases.
 上記の金属組織は、次の手順で測定できる。 The above metal structure can be measured by the following procedure.
 高温域生成ベイナイト、低温域生成ベイナイト等(低温域生成ベイナイト+焼戻しマルテンサイト)、ポリゴナルフェライト、およびパーライトは、鋼板の圧延方向に平行な断面のうち、板厚の1/4位置をナイタール腐食し、走査型電子顕微鏡で倍率3000倍程度で観察すれば識別できる。 High temperature zone bainite, low temperature zone bainite, etc. (low temperature zone bainite + tempered martensite), polygonal ferrite, and pearlite are subjected to nital corrosion at 1/4 of the thickness of the cross section parallel to the rolling direction of the steel sheet. However, it can be identified by observing with a scanning electron microscope at a magnification of about 3000 times.
 高温域生成ベイナイトおよび低温域生成ベイナイト等は、主に灰色で観察され、結晶粒の中に白色もしくは薄い灰色の残留γ等が分散している組織として観察される。従って走査型電子顕微鏡観察によれば、高温域生成ベイナイトおよび低温域生成ベイナイト等には、残留γや炭化物も含まれるため、残留γ等も含めた面積率として算出される。 High temperature region bainite and low temperature region bainite are mainly observed in gray, and are observed as a structure in which white or light gray residual γ and the like are dispersed in crystal grains. Therefore, according to the observation with a scanning electron microscope, since the high temperature region bainite and the low temperature region bainite include residual γ and carbides, the area ratio including the residual γ is calculated.
 ポリゴナルフェライトは、結晶粒の内部に上述した白色もしくは薄い灰色の残留γ等を含まない結晶粒として観察される。パーライトは、炭化物とフェライトが層状になった組織として観察される。 Polygonal ferrite is observed as crystal grains that do not contain the above-described white or light gray residual γ or the like inside the crystal grains. Pearlite is observed as a structure in which carbide and ferrite are layered.
 鋼板の断面をナイタール腐食すると、炭化物と残留γは、いずれも白色もしくは薄い灰色の組織として観察され、両者を区別することは困難である。これらのうち例えば、セメンタイトのような炭化物は、低温域で生成するほど、ラス間よりもラス内に析出する傾向があるため、炭化物同士の間隔が広い場合は、高温域で生成したと考えられ、炭化物同士の間隔が狭い場合は、低温域で生成したと考えることができる。残留γは、通常ラス間に生成するが、ラスの大きさは組織の生成温度が低くなるほど小さくなるため、残留γ同士の間隔が広い場合は、高温域で生成したと考えられ、残留γ同士の間隔が狭い場合は、低温域で生成したと考えることができる。従って本発明ではナイタール腐食した断面を走査型電子顕微鏡観察し、観察視野内に白色または薄い灰色として観察される残留γ等に着目し、隣接する残留γ等間の中心位置間距離を測定したときに、この平均間隔が1μm以上である組織を高温域生成ベイナイト、平均間隔が1μm未満である組織を低温域生成ベイナイト等とする。 When the cross section of the steel plate is subjected to Nital corrosion, both carbide and residual γ are observed as a white or light gray structure, and it is difficult to distinguish them from each other. Of these, carbides such as cementite, for example, tend to precipitate in the laths rather than between the laths as they are produced in the low temperature range. When the distance between the carbides is narrow, it can be considered that the carbides are generated in a low temperature range. Residual γ is usually generated between the laths, but the size of the lath becomes smaller as the tissue generation temperature decreases. Therefore, when the distance between the residual γ is wide, it is considered that the residual γ was generated in a high temperature range. When the interval of is narrow, it can be considered that it was generated in a low temperature region. Therefore, in the present invention, when the cross-section subjected to Nital corrosion is observed with a scanning electron microscope, focusing on residual γ observed as white or light gray in the observation field, the distance between the center positions between adjacent residual γ is measured. Further, a structure having an average interval of 1 μm or more is referred to as a high-temperature region-generated bainite, and a structure having an average interval of less than 1 μm is referred to as a low-temperature region-generated bainite.
 残留γは、走査型電子顕微鏡観察による組織の同定ができないため、飽和磁化法により体積率を測定する。この体積率の値はそのまま面積率と読み替えることができる。飽和磁化法による詳細な測定原理は、「R&D神戸製鋼技報、Vol.52、No.3、2002年、p.43~46」を参照すれば良い。 Since the residual γ cannot be identified by a scanning electron microscope, the volume ratio is measured by the saturation magnetization method. This volume ratio value can be read as the area ratio as it is. The detailed measurement principle by the saturation magnetization method may be referred to “R & D Kobe Steel Engineering Reports, Vol.52, No.3, 2002, p.43-46”.
 このように残留γの体積率は飽和磁化法で測定しているのに対し、高温域生成ベイナイトおよび低温域生成ベイナイト等の面積率は走査型電子顕微鏡観察で残留γを含めて測定しているため、これらの合計は100%を超える場合がある。 Thus, while the volume fraction of residual γ is measured by the saturation magnetization method, the area ratios of high-temperature region bainite and low-temperature region bainite are measured including the residual γ by observation with a scanning electron microscope. Therefore, the sum of these may exceed 100%.
 MA混合相は、鋼板の圧延方向に平行な断面のうち、板厚の1/4位置をレペラー腐食し、倍率1000倍程度で光学顕微鏡観察すれば、白色組織として観察されるため、この結果に基づいて上記円相当直径が5μmを超えるMA混合相の個数割合を算出すればよい。 The MA mixed phase undergoes repeller corrosion at 1/4 position of the plate thickness in the cross section parallel to the rolling direction of the steel plate, and is observed as a white structure when observed with an optical microscope at a magnification of about 1000 times. Based on this, the ratio of the number of MA mixed phases having an equivalent circle diameter exceeding 5 μm may be calculated.
 以上、本発明を最も特徴付けるめっき層と素地鋼板の界面から素地鋼板側に向けての層構成について説明した。 The layer structure from the interface between the plating layer and the base steel sheet, which characterizes the present invention, to the base steel sheet side has been described above.
 次に、本発明に用いられる素地鋼板の成分組成について説明する。 Next, the component composition of the base steel sheet used in the present invention will be described.
 上記素地鋼板は、C:0.10~0.5%、Si:1~3%、Mn:1.5~8%、Al:0.005~3%、P:0%超0.1%以下、S:0%超0.05%以下、およびN:0%超0.01%以下を含有し、残部が鉄および不可避不純物からなる。 The base steel plate is C: 0.10 to 0.5%, Si: 1 to 3%, Mn: 1.5 to 8%, Al: 0.005 to 3%, P: more than 0%, 0.1% Hereinafter, S: more than 0% and 0.05% or less, and N: more than 0% and 0.01% or less, with the balance being iron and inevitable impurities.
 Cは、鋼板の強度を高めると共に、残留γを生成させるために必要な元素である。本発明では、C量は0.10%以上、好ましくは0.13%以上、より好ましくは0.15%以上である。しかし、Cを過剰に含有すると溶接性が低下する。従ってC量は0.5%以下、好ましくは0.4%以下、より好ましくは0.3%以下とする。 C is an element necessary for increasing the strength of the steel sheet and generating residual γ. In the present invention, the amount of C is 0.10% or more, preferably 0.13% or more, more preferably 0.15% or more. However, when C is contained excessively, weldability is lowered. Therefore, the C content is 0.5% or less, preferably 0.4% or less, more preferably 0.3% or less.
 Siは、固溶強化元素として鋼板の高強度化に寄与する他、100~540℃の温度範囲での保持中に(オーステンパ処理中に)炭化物が析出するのを抑制し、残留γを効果的に生成させるうえで大変重要な元素である。本発明では、Si量は1%以上、好ましくは1.1%以上、より好ましくは1.2%以上である。しかしSiを過剰に含有すると、焼鈍での加熱、均熱時にγ相への逆変態が起こらず、ポリゴナルフェライトが多量に残存し、強度不足になる。また、熱間圧延の際に鋼板表面にSiスケールを発生して鋼板の表面性状を悪化させる。従ってSi量は3%以下、好ましくは2.5%以下、より好ましくは2.0%以下である。 Si contributes to increasing the strength of the steel sheet as a solid solution strengthening element, and also suppresses the precipitation of carbides during holding in the temperature range of 100 to 540 ° C. (during austempering), effectively reducing residual γ. It is an extremely important element for the formation of selenium. In the present invention, the Si amount is 1% or more, preferably 1.1% or more, more preferably 1.2% or more. However, when Si is contained excessively, reverse transformation to the γ phase does not occur during annealing and soaking, and a large amount of polygonal ferrite remains, resulting in insufficient strength. In addition, Si scale is generated on the surface of the steel sheet during hot rolling to deteriorate the surface properties of the steel sheet. Therefore, the amount of Si is 3% or less, preferably 2.5% or less, more preferably 2.0% or less.
 Mnは、ベイナイトおよび焼戻しマルテンサイトを得るために必要な元素である。またMnは、γを安定化させて残留γを生成させるのにも有効に作用する元素である。本発明では、Mn量は1.5%以上、好ましくは1.8%以上、より好ましくは2.0%以上とする。しかしMnを過剰に含有すると、ベイナイトのうち、高温域生成ベイナイトの生成が著しく抑制される。また、Mnの過剰添加は、溶接性の劣化や偏析による加工性の劣化を招く。従ってMn量は8%以下、好ましくは7%以下、より好ましくは6%以下、更に好ましくは5.0%以下、特に好ましくは3%以下とする。 Mn is an element necessary for obtaining bainite and tempered martensite. Mn is an element that effectively acts to stabilize γ and generate residual γ. In the present invention, the amount of Mn is 1.5% or more, preferably 1.8% or more, more preferably 2.0% or more. However, when Mn is contained excessively, generation of high-temperature region-generated bainite is remarkably suppressed among bainite. Further, excessive addition of Mn causes deterioration of weldability and workability due to segregation. Accordingly, the Mn content is 8% or less, preferably 7% or less, more preferably 6% or less, still more preferably 5.0% or less, and particularly preferably 3% or less.
 Alは、Siと同様、オーステンパ処理中に炭化物が析出するのを抑制し、残留γを生成させるのに寄与する元素である。またAlは、製鋼工程で脱酸剤として作用する元素である。本発明では、Al量は0.005%以上、好ましくは0.01%以上、より好ましくは0.03%以上とする。しかしAlを過剰に含有すると、鋼板中の介在物が多くなり過ぎて延性が劣化する。従ってAl量は3%以下、好ましくは1.5%以下、より好ましくは1%以下、更に好ましくは0.5%以下、特に好ましくは0.2%以下とする。 Al, like Si, is an element that suppresses the precipitation of carbides during austempering and contributes to the formation of residual γ. Al is an element that acts as a deoxidizer in the steel making process. In the present invention, the Al content is 0.005% or more, preferably 0.01% or more, more preferably 0.03% or more. However, when Al is contained excessively, the inclusions in the steel sheet increase so much that ductility deteriorates. Accordingly, the Al content is 3% or less, preferably 1.5% or less, more preferably 1% or less, still more preferably 0.5% or less, and particularly preferably 0.2% or less.
 Pは、鋼に不可避的に含まれる不純物元素であり、P量が過剰になると鋼板の溶接性が劣化する。従ってP量は0.1%以下、好ましくは0.08%以下、より好ましくは0.05%以下である。P量はできるだけ少ない方が良いが、0%にすることは工業的に困難である。 P P is an impurity element inevitably contained in steel, and when the amount of P becomes excessive, the weldability of the steel sheet deteriorates. Therefore, the amount of P is 0.1% or less, preferably 0.08% or less, more preferably 0.05% or less. The amount of P is preferably as small as possible, but it is industrially difficult to reduce it to 0%.
 Sは、上記Pと同様、鋼に不可避的に含まれる不純物元素であり、S量が過剰になると鋼板の溶接性が劣化する。また、Sは鋼板中に硫化物系介在物を形成し、これが増大すると加工性が低下する。本発明では、S量は0.05%以下、好ましくは0.01%以下、より好ましくは0.005%以下である。S量はできるだけ少ない方が良いが、0%にすること工業的に困難である。 S is an impurity element inevitably contained in the steel as in the case of the above P, and when the amount of S is excessive, the weldability of the steel sheet deteriorates. Further, S forms sulfide inclusions in the steel sheet, and when this increases, the workability decreases. In the present invention, the amount of S is 0.05% or less, preferably 0.01% or less, more preferably 0.005% or less. The amount of S should be as small as possible, but it is industrially difficult to make it 0%.
 Nは、上記Pと同様、鋼に不可避的に含まれる不純物元素であり、Nを過剰に含有すると、窒化物が多量に析出して伸び、穴拡げ性、および曲げ性の劣化を引き起こす。本発明では、N量は0.01%以下、好ましくは0.008%以下、より好ましくは0.005%以下である。N量はできるだけ少ない方が良いが、0%にすること工業的に困難である。 N is an impurity element that is inevitably contained in the steel as in the case of P described above. When N is excessively contained, a large amount of nitride precipitates and extends, causing deterioration of hole expansibility and bendability. In the present invention, the N content is 0.01% or less, preferably 0.008% or less, more preferably 0.005% or less. The amount of N should be as small as possible, but it is industrially difficult to reduce it to 0%.
 本発明に係る高強度鋼板は、上記成分組成を満足するものであり、残部成分は鉄および上記P、S、N以外の不可避不純物である。 The high-strength steel sheet according to the present invention satisfies the above component composition, and the remaining components are iron and unavoidable impurities other than P, S, and N.
 上記不可避不純物としては、例えば、O(酸素)や、例えば、Pb、Bi、Sb、Snなどのトランプ元素などが含まれる。 The inevitable impurities include, for example, O (oxygen) and, for example, trump elements such as Pb, Bi, Sb, and Sn.
 上記不可避不純物のうち、Oは、例えば、0%超0.01%以下であることが好ましい。Oは、過剰に含有すると伸び、穴拡げ性、および曲げ性の低下を招く元素である。従ってO量は0.01%以下であることが好ましく、より好ましくは0.008%以下、更に好ましくは0.005%以下である。 Of the above inevitable impurities, O is preferably, for example, more than 0% and 0.01% or less. O is an element that causes a decrease in elongation, hole expansibility, and bendability when contained in excess. Accordingly, the O content is preferably 0.01% or less, more preferably 0.008% or less, and still more preferably 0.005% or less.
 本発明の鋼板は、更に他の元素として、
 (a)Cr:0%超1%以下、Mo:0%超1%以下、およびB:0%超0.01%以下よりなる群から選択される少なくとも一種の元素、
 (b)Ti:0%超0.2%以下、Nb:0%超0.2%以下、およびV:0%超0.2%以下よりなる群から選択される少なくとも一種の元素、
 (c)Cu:0%超1%以下、およびNi:0%超1%以下よりなる群から選択される少なくとも一種の元素、
 (d)Ca:0%超0.01%以下、Mg:0%超0.01%以下、および希土類元素:0%超0.01%以下よりなる群から選択される少なくとも一種の元素、
等を含有しても良い。
The steel sheet of the present invention is further as another element,
(A) at least one element selected from the group consisting of Cr: more than 0% and 1% or less, Mo: more than 0% and 1% or less, and B: more than 0% and 0.01% or less,
(B) at least one element selected from the group consisting of Ti: more than 0% and 0.2% or less, Nb: more than 0% and 0.2% or less, and V: more than 0% and 0.2% or less,
(C) at least one element selected from the group consisting of Cu: more than 0% and 1% or less, and Ni: more than 0% and 1% or less,
(D) at least one element selected from the group consisting of Ca: more than 0% and not more than 0.01%, Mg: more than 0% and not more than 0.01%, and rare earth elements: more than 0% and not more than 0.01%,
Etc. may be contained.
 (a)Cr、Mo、およびBは、上記Mnと同様、ベイナイトと焼戻しマルテンサイトを得るために有効に作用する元素であり、これらの元素は、単独で添加してもよいし、二種以上を用いてもよい。こうした作用を有効に発揮させるには、CrとMoは、夫々単独で、0.1%以上含有させることが好ましく、より好ましくは0.2%以上である。Bは0.0005%以上含有させることが好ましく、より好ましくは0.001%以上である。しかし上記元素を過剰に含有すると、ベイナイトのうち、高温域生成ベイナイトの生成が著しく抑制される。また、過剰な添加はコスト高となる。特に、Bを過剰に含有すると、鋼板中にホウ化物を生成して延性を劣化させる。従ってCrとMoは、夫々1%以下であることが好ましく、より好ましくは0.8%以下、更に好ましくは0.5%以下である。CrとMoを併用する場合は、合計量を1.5%以下とすることが推奨される。B量は0.01%以下であることが好ましく、より好ましくは0.005%以下、更に好ましくは0.004%以下である。 (A) Cr, Mo, and B are elements that effectively act to obtain bainite and tempered martensite, as in the case of Mn, and these elements may be added alone or in combination of two or more. May be used. In order to effectively exhibit such an action, Cr and Mo are each preferably contained alone in an amount of 0.1% or more, more preferably 0.2% or more. B is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, when the said element is contained excessively, the production | generation of the high temperature range production | generation bainite will be suppressed remarkably among bainite. In addition, excessive addition increases the cost. In particular, when B is contained excessively, a boride is generated in the steel sheet and the ductility is deteriorated. Accordingly, Cr and Mo are each preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. When Cr and Mo are used in combination, the total amount is recommended to be 1.5% or less. The amount of B is preferably 0.01% or less, more preferably 0.005% or less, and still more preferably 0.004% or less.
 (b)Ti、Nb、およびVは、鋼板中に炭化物や窒化物等の析出物を形成し、鋼板を強化するのに作用する元素である。こうした作用を有効に発揮させるには、Ti、Nb、およびVは、夫々単独で、0.01%以上含有させることが好ましく、より好ましくは0.02%以上である。しかし過剰に含有すると、粒界に炭化物が析出し、鋼板の穴拡げ性や曲げ性が劣化する。従って本発明では、Ti、Nb、およびVは、夫々単独で、0.2%以下であることが好ましく、より好ましくは0.18%以下、更に好ましくは0.15%以下である。Ti、Nb、およびVは、夫々単独で含有させてもよいし、任意に選ばれる2種以上の元素を含有させてもよい。 (B) Ti, Nb, and V are elements that act to strengthen the steel sheet by forming precipitates such as carbides and nitrides in the steel sheet. In order to exhibit such an action effectively, Ti, Nb, and V are each preferably contained in an amount of 0.01% or more, more preferably 0.02% or more. However, when it contains excessively, a carbide will precipitate in a grain boundary and the hole expansibility and bendability of a steel plate will deteriorate. Therefore, in the present invention, Ti, Nb, and V are each independently preferably 0.2% or less, more preferably 0.18% or less, and still more preferably 0.15% or less. Ti, Nb, and V may each be contained alone, or two or more elements that are arbitrarily selected may be contained.
 (c)CuとNiは、γを安定化させて残留γを生成させるのに有効に作用する元素である。これらの元素は、単独で、或いは併用できる。こうした作用を有効に発揮させるには、CuとNiは、夫々単独で0.05%以上含有させることが好ましく、より好ましくは0.1%以上である。しかしCuとNiを過剰に含有すると、熱間加工性が劣化する。従って本発明では、CuとNiは、夫々単独で1%以下とすることが好ましく、より好ましくは0.8%以下、更に好ましくは0.5%以下である。なお、Cuを1%を超えて含有させると熱間加工性が劣化するが、Niを添加すれば熱間加工性の劣化は抑制されるため、CuとNiを併用する場合は、コスト高となるが1%を超えてCuを添加してもよい。 (C) Cu and Ni are elements that effectively act to stabilize γ and generate residual γ. These elements can be used alone or in combination. In order to exhibit such an action effectively, it is preferable to contain Cu and Ni individually by 0.05% or more, more preferably 0.1% or more. However, when Cu and Ni are contained excessively, the hot workability deteriorates. Therefore, in the present invention, Cu and Ni are each preferably 1% or less, more preferably 0.8% or less, still more preferably 0.5% or less. In addition, when Cu is contained in excess of 1%, hot workability deteriorates. However, when Ni is added, deterioration of hot workability is suppressed. However, Cu may be added in excess of 1%.
 (d)Ca、Mg、および希土類元素(REM)は、鋼板中の介在物を微細分散させるのに作用する元素である。こうした作用を有効に発揮させるには、Ca、Mg、および希土類元素は、夫々単独で、0.0005%以上含有させることが好ましく、より好ましくは0.001%以上である。しかし過剰に含有すると、鋳造性や熱間加工性などを劣化させ、製造し難くなる。また、過剰添加は、鋼板の延性を劣化させる原因となる。従って本発明では、Ca、Mg、および希土類元素は、夫々単独で、0.01%以下であることが好ましく、より好ましくは0.005%以下、更に好ましくは0.003%以下である。Ca、Mg、および希土類元素は、夫々単独で含有させてもよいし、任意に選ばれる2種以上の元素を含有させてもよい。 (D) Ca, Mg, and rare earth elements (REM) are elements that act to finely disperse inclusions in the steel sheet. In order to exhibit such an action effectively, Ca, Mg and rare earth elements are each preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, when it contains excessively, castability, hot workability, etc. will deteriorate and it will become difficult to manufacture. Further, excessive addition causes the ductility of the steel sheet to deteriorate. Therefore, in the present invention, Ca, Mg, and rare earth elements are each independently preferably 0.01% or less, more preferably 0.005% or less, and still more preferably 0.003% or less. Ca, Mg, and a rare earth element may each be contained alone, or two or more elements selected arbitrarily may be contained.
 上記希土類元素とは、LaからLuまでの15元素であるランタノイド元素、およびSc(スカンジウム)とY(イットリウム)を含む意味であり、これらの元素のなかでも、La、Ce、およびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよびCeよりなる群から選ばれる少なくとも1種の元素を含有させるのがよい。 The rare earth element is meant to include lanthanoid elements which are 15 elements from La to Lu, and Sc (scandium) and Y (yttrium). Among these elements, the group consisting of La, Ce and Y It is preferable to contain at least one element selected from the group consisting of La and Ce, and more preferable to contain at least one element selected from the group consisting of La and Ce.
 以上、本発明に用いられる素地鋼板の成分組成について説明した。 The component composition of the base steel sheet used in the present invention has been described above.
 次に、本発明に係るめっき鋼板を製造する方法について説明する。 Next, a method for producing a plated steel sheet according to the present invention will be described.
 本発明の製造方法は、熱延巻取り後に保温せずに直ちに酸洗する第一の製造方法と、熱延巻取り後に保温してから酸洗する第二の製造方法を含む。保温の有無により、保温を行なわない第一の製造方法と、保温を行なう第二の製造方法とは、熱延巻取温度の下限が相違するが、それ以外の工程は同じである。以下、詳述する。 The manufacturing method of the present invention includes a first manufacturing method in which pickling is performed immediately after hot rolling without holding the heat, and a second manufacturing method in which pickling is performed after warming after hot rolling. The lower limit of the hot rolling coiling temperature is different between the first manufacturing method that does not retain heat depending on the presence or absence of heat retention and the second manufacturing method that retains heat, but the other steps are the same. Details will be described below.
 [第一の製造方法(保温なし)]
 本発明に係る第一の製造方法は、熱間圧延工程、酸洗、冷間圧延工程、連続溶融Znめっきライン[CGL(Continuous Galvanizing Line)]での酸化工程、還元工程、冷却工程、およびめっき工程とに大別される。そして本発明の特徴部分は、上記素地鋼板の鋼中成分を満足する鋼板を、600℃以上の温度で巻取ることにより内部酸化層を形成した熱延鋼板を得る熱間圧延工程と、内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、酸化帯にて、0.9~1.4の空気比で酸化する工程と、還元帯にて、Ac3点以上の範囲で均熱する工程と、均熱後、100~540℃を満たす任意の停止温度Zまで冷却すると共に、750℃から、前記停止温度Zまたは500℃のうち高い方の温度までの範囲は平均冷却速度10℃/秒以上で冷却し、前記100~540℃の温度域で50秒以上保持する工程、をこの順序で含むところにある。以下、工程順に説明する。
[First manufacturing method (no heat retention)]
The first production method according to the present invention includes a hot rolling step, pickling, cold rolling step, oxidation step, continuous reduction Zn plating line [CGL (Continuous Galvanizing Line)], reduction step, cooling step, and plating. It is roughly divided into processes. And the characteristic part of the present invention is a hot rolling step for obtaining a hot-rolled steel sheet in which an internal oxide layer is formed by winding a steel sheet satisfying the components in the steel of the base steel sheet at a temperature of 600 ° C. or higher, and an internal oxidation process. Pickling and cold rolling so that the average depth d of the layer remains 4 μm or more, oxidizing step in an oxidation zone at an air ratio of 0.9 to 1.4, and reducing zone Ac 3 A step of soaking in the range above the point, and after soaking, cooling to an arbitrary stop temperature Z satisfying 100 to 540 ° C., and from 750 ° C. to the higher one of the stop temperature Z or 500 ° C. The range includes a step of cooling at an average cooling rate of 10 ° C./second or more and holding in the temperature range of 100 to 540 ° C. for 50 seconds or more in this order. Hereinafter, it demonstrates in order of a process.
 まず、上記素地鋼板の鋼中成分を満足する熱延鋼板を準備する。 First, a hot rolled steel sheet satisfying the steel components of the base steel sheet is prepared.
 熱間圧延は常法に従って行えばよく、例えば、オーステナイト粒の粗大化を防止するために、加熱温度は1150~1300℃程度とすることが好ましい。 Hot rolling may be performed according to a conventional method. For example, in order to prevent coarsening of austenite grains, the heating temperature is preferably about 1150 to 1300 ° C.
 また、仕上げ圧延温度は、おおむね、850~950℃に制御することが好ましい。 Further, it is preferable to control the finish rolling temperature to approximately 850 to 950 ° C.
 そして本発明では、熱間圧延後の巻取温度を600℃以上に制御することが重要である。これにより、素地鋼板表面に内部酸化層を形成させ、かつ脱炭により軟質層も形成するので、めっき後の鋼板に所望とする内部酸化層と軟質層を得ることができるようになる。巻取温度が600℃未満の場合は、内部酸化層および軟質層が充分に生成されない。また、熱延鋼板の強度が高くなり、冷延性が低下する。巻取温度は、好ましくは620℃以上であり、より好ましくは640℃以上である。但し、巻取温度が高くなり過ぎると、黒皮スケールが成長し過ぎて、後工程の酸洗で溶解できないため、その上限は750℃以下とすることが好ましい。 And in this invention, it is important to control the coiling temperature after hot rolling to 600 degreeC or more. Thereby, an internal oxide layer is formed on the surface of the base steel plate, and a soft layer is also formed by decarburization, so that a desired internal oxide layer and soft layer can be obtained on the steel plate after plating. When the winding temperature is less than 600 ° C., the internal oxide layer and the soft layer are not sufficiently formed. Moreover, the strength of the hot-rolled steel sheet is increased, and the cold-rollability is reduced. The coiling temperature is preferably 620 ° C. or higher, more preferably 640 ° C. or higher. However, if the coiling temperature becomes too high, the black skin scale grows too much and cannot be dissolved by the subsequent pickling, so the upper limit is preferably 750 ° C. or lower.
 次に、このようにして得られた熱延鋼板を、内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延を行なう。これにより、内部酸化層のみならず軟質層も残るため、めっき後に所望とする軟質層も生成させやすくなる。酸洗条件の制御によって内部酸化層の厚さを制御することは公知であり、具体的には、所望とする内部酸化層の厚さを確保できるように、用いる酸洗液の種類や濃度などに応じて、酸洗の温度や時間などを適切に制御すれば良い。 Next, the hot-rolled steel sheet thus obtained is pickled and cold-rolled so that the average depth d of the internal oxide layer remains at 4 μm or more. As a result, not only the internal oxide layer but also the soft layer remains, so that a desired soft layer can be easily formed after plating. It is known to control the thickness of the internal oxide layer by controlling the pickling conditions. Specifically, the type and concentration of the pickling solution used so as to ensure the desired thickness of the internal oxide layer. Depending on the conditions, the temperature and time of pickling may be appropriately controlled.
 上記酸洗液としては、例えば、塩酸、硫酸、硝酸などの鉱酸を用いることができる。 As the pickling solution, for example, mineral acids such as hydrochloric acid, sulfuric acid, nitric acid can be used.
 また、一般に酸洗液の濃度や温度が高く、酸洗時間が長いと、内部酸化層が溶解して薄くなる傾向にある。逆に、酸洗液の濃度や温度が低く、酸洗時間が短いと、酸洗による黒皮スケール層の除去が不充分になる。よって、例えば塩酸を用いる場合、濃度を約3~20%、温度を60~90℃、時間を約35~200秒に制御することが推奨される。 In general, when the concentration and temperature of the pickling solution are high and the pickling time is long, the internal oxide layer tends to dissolve and become thin. On the other hand, when the concentration and temperature of the pickling solution are low and the pickling time is short, removal of the black skin scale layer by pickling becomes insufficient. Therefore, for example, when hydrochloric acid is used, it is recommended to control the concentration to about 3 to 20%, the temperature to 60 to 90 ° C., and the time to about 35 to 200 seconds.
 なお、酸洗時に用いる酸洗槽の数は特に限定されず、複数の酸洗槽を使用してもよい。また、酸洗液には、例えばアミンなどの酸洗抑制剤、すなわちインヒビターや、酸洗促進剤などを添加してもよい。 In addition, the number of the pickling tanks used at the time of pickling is not particularly limited, and a plurality of pickling tanks may be used. In addition, a pickling inhibitor such as an amine, that is, an inhibitor or a pickling accelerator may be added to the pickling solution.
 酸洗後は、内部酸化層の平均深さdが4μm以上残るように冷間圧延を行なう。冷延条件は、冷延率が約20~70%の範囲に制御することが好ましい。 After pickling, cold rolling is performed so that the average depth d of the internal oxide layer remains 4 μm or more. The cold rolling conditions are preferably controlled so that the cold rolling rate is in the range of about 20 to 70%.
 次に、酸化および還元を行なう。 Next, oxidation and reduction are performed.
 詳細には、まず、酸化帯にて、0.9~1.4の空気比で酸化する。空気比とは、供給される燃焼ガスを完全燃焼させるために理論上必要となる空気量に対して、実際に供給される空気量の比を意味する。後述する実施例では、COガスを使用している。空気比が1より高いと酸素が過剰状態となり、空気比が1より低いと酸素が不足状態となる。 In detail, first, oxidation is performed at an air ratio of 0.9 to 1.4 in an oxidation zone. The air ratio means the ratio of the amount of air actually supplied to the amount of air that is theoretically required to completely burn the supplied combustion gas. In the examples described later, CO gas is used. When the air ratio is higher than 1, oxygen is in an excess state, and when the air ratio is lower than 1, oxygen is in a shortage state.
 空気比が上記範囲となる雰囲気で酸化することにより、脱炭が促進されるため、所望とする軟質層が形成され、曲げ性が改善される。また、表面にFe酸化膜を生成させることができ、めっき性に有害な上記複合酸化膜などの生成を抑制できる。空気比が0.9未満では、脱炭が不十分となり、充分な軟質層が形成されないため、曲げ性が劣化する。また、上記Fe酸化膜の生成が不十分となり、上記複合酸化膜などの生成を抑制できずにめっき性が劣化する。上記空気比は、0.9以上に制御する必要があり、1.0以上に制御することが好ましい。一方、空気比が1.4超と高くなると、Fe酸化膜が過剰に生成し、次の還元炉で十分に還元できず、めっき性が阻害される。上記空気比は、1.4以下に制御する必要があり、1.2以下に制御することが好ましい。 Oxidation in an atmosphere where the air ratio falls within the above range promotes decarburization, so that a desired soft layer is formed and bendability is improved. In addition, an Fe oxide film can be generated on the surface, and generation of the composite oxide film and the like harmful to the plating property can be suppressed. When the air ratio is less than 0.9, decarburization is insufficient and a sufficient soft layer is not formed, so that the bendability is deteriorated. Further, the generation of the Fe oxide film becomes insufficient, and the formation of the composite oxide film or the like cannot be suppressed, so that the plating property is deteriorated. The air ratio needs to be controlled to 0.9 or more, and is preferably controlled to 1.0 or more. On the other hand, if the air ratio is as high as 1.4 or more, an Fe oxide film is excessively generated and cannot be sufficiently reduced in the next reduction furnace, thereby impairing the plateability. The air ratio needs to be controlled to 1.4 or less, and is preferably controlled to 1.2 or less.
 上記酸化帯では、特に空気比を制御することが重要であり、それ以外の条件は、通常用いられる条件を採用できる。例えば、酸化温度の好ましい下限は500℃以上であり、より好ましくは750℃以上である。また、酸化温度の好ましい上限は900℃以下であり、より好ましくは850℃以下である。 In the above oxidation zone, it is particularly important to control the air ratio, and for other conditions, the conditions normally used can be adopted. For example, the preferable lower limit of the oxidation temperature is 500 ° C. or higher, more preferably 750 ° C. or higher. Moreover, the upper limit with preferable oxidation temperature is 900 degrees C or less, More preferably, it is 850 degrees C or less.
 次いで、還元帯にて、Fe酸化膜を水素雰囲気で還元する。本発明では、所望とする硬質層を得るため、オーステナイト単相域で加熱する必要があり、Ac3点以上の範囲で均熱処理する。均熱温度がAc3点を下回ると、ポリゴナルフェライトが過剰になる。均熱温度は、好ましくはAc3点+15℃以上である。均熱温度の上限は特に限定されないが、例えば、1000℃以下が好ましい。 Next, the Fe oxide film is reduced in a hydrogen atmosphere in the reduction zone. In the present invention, in order to obtain a desired hard layer, it is necessary to heat in an austenite single phase region, and soaking is performed in a range of Ac 3 points or more. When the soaking temperature falls below the Ac 3 point, polygonal ferrite becomes excessive. The soaking temperature is preferably Ac 3 point + 15 ° C. or higher. Although the upper limit of soaking temperature is not specifically limited, For example, 1000 degrees C or less is preferable.
 なお、本発明においてAc3点は、下記式(i)に基づいて算出される。式中[ ]は各元素の含有量(質量%)を表す。含有しない元素の項には、0(ゼロ)を代入して計算する。この式は、「レスリー鉄鋼材料学」(丸善株式会社発行、William C. Leslie著、p273)に記載されている。
Ac3(℃)=910-203×[C]1/2-15.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]+13.1×[W]-{30×[Mn]+11×[Cr]+20×[Cu]-700×[P]-400×[Al]-120×[As]-400×[Ti]} ・・・(i)
In the present invention, the Ac 3 point is calculated based on the following formula (i). In the formula, [] represents the content (% by mass) of each element. Calculation is performed by substituting 0 (zero) into the term of the element not contained. This equation is described in “Leslie Steel Material Science” (published by Maruzen Co., Ltd., William C. Leslie, p273).
Ac 3 (° C.) = 910−203 × [C] 1/2 −15.2 × [Ni] + 44.7 × [Si] + 104 × [V] + 31.5 × [Mo] + 13.1 × [W] -{30 × [Mn] + 11 × [Cr] + 20 × [Cu] −700 × [P] −400 × [Al] −120 × [As] −400 × [Ti]} (i)
 上記還元炉では、特に均熱温度を制御することが重要であり、それ以外の条件は、通常用いられる条件を採用できる。 In the above-mentioned reduction furnace, it is particularly important to control the soaking temperature, and other conditions can be employed normally.
 還元帯の雰囲気は、例えば、水素と窒素を含み、水素濃度は約5~25体積%の範囲に制御することが好ましい。 The atmosphere in the reduction zone contains, for example, hydrogen and nitrogen, and the hydrogen concentration is preferably controlled in the range of about 5 to 25% by volume.
 また、露点は、例えば、-30~-60℃に制御することが好ましい。 In addition, the dew point is preferably controlled to, for example, −30 to −60 ° C.
 また、均熱処理時の保持時間は特に限定されず、例えば10~100秒程度、特に10~80秒程度に制御することが好ましい。 Further, the holding time at the time of soaking is not particularly limited, and for example, it is preferably controlled to about 10 to 100 seconds, particularly about 10 to 80 seconds.
 均熱後は、100~540℃を満たす任意の停止温度Zまで冷却すると共に、750℃から、前記停止温度Zまたは500℃のうち高い方の温度までの範囲は平均冷却速度10℃/秒以上で冷却し、前記100~540℃の温度域で50秒以上保持する。 After soaking, it is cooled to an arbitrary stop temperature Z satisfying 100 to 540 ° C., and the range from 750 ° C. to the higher one of the stop temperature Z or 500 ° C. is an average cooling rate of 10 ° C./second or more. And is kept in the temperature range of 100 to 540 ° C. for 50 seconds or longer.
 上記温度範囲における平均冷却速度を制御することによって、ポリゴナルフェライトの生成を抑制でき、低温変態生成相の生成量を確保できる。上記温度範囲における平均冷却速度は、10℃/秒以上に制御する必要があり、好ましくは20℃/秒以上である。上記平均冷却速度の上限は特に限定されないが、素地鋼板温度の制御のし易さや、設備コストなどを考慮すると、おおむね、100℃/秒以下が好ましい。上記平均冷却速度は、より好ましくは50℃/秒以下、更に好ましくは30℃/秒以下である。 By controlling the average cooling rate in the above temperature range, the formation of polygonal ferrite can be suppressed, and the amount of low-temperature transformation generation phase can be secured. The average cooling rate in the above temperature range needs to be controlled to 10 ° C./second or more, and preferably 20 ° C./second or more. The upper limit of the average cooling rate is not particularly limited, but is preferably about 100 ° C./second or less in consideration of the ease of controlling the base steel sheet temperature and the equipment cost. The average cooling rate is more preferably 50 ° C./second or less, and further preferably 30 ° C./second or less.
 上記100~540℃を満たす任意の停止温度Zまで冷却した後は、該100~540℃の温度域で50秒以上保持する。この温度域で50秒以上保持することにより、上記低温変態生成相を生成させることができる。上記温度域での保持時間は、好ましくは60秒以上、より好ましくは70秒以上である。上記温度域での保持時間の上限は特に限定されないが、例えば、好ましくは1500秒以下、より好ましくは1400秒以下、更に好ましくは1300秒以下である。 After cooling to an arbitrary stop temperature Z satisfying 100 to 540 ° C., the temperature is maintained in the temperature range of 100 to 540 ° C. for 50 seconds or more. By holding for 50 seconds or more in this temperature range, the low temperature transformation generation phase can be generated. The holding time in the temperature range is preferably 60 seconds or longer, more preferably 70 seconds or longer. Although the upper limit of the holding time in the said temperature range is not specifically limited, For example, Preferably it is 1500 seconds or less, More preferably, it is 1400 seconds or less, More preferably, it is 1300 seconds or less.
 上記100~540℃を満たす任意の停止温度Zまで冷却し、この100~540℃の温度域で保持するときの具体的な条件は特に限定されず、停止温度Zで恒温保持してもよいし、この温度域の範囲内において、保持温度が異なる2段階以上となるように恒温保持を行なってもよい。また、停止温度Zまで急冷した後、冷却速度を変更し、この温度域の範囲内で所定時間かけて冷却してもよいし、この温度域の範囲内で所定時間かけて加熱してもよい。また、この温度域の範囲内で、冷却と加熱を適宜繰り返してもよい。また、冷却速度が異なる二段以上の多段冷却を行なってもよいし、昇温速度が異なる二段以上の多段加熱を行なってもよい。 The specific conditions for cooling to an arbitrary stop temperature Z satisfying the above 100 to 540 ° C. and holding in the temperature range of 100 to 540 ° C. are not particularly limited, and may be held at the stop temperature Z at a constant temperature. In this temperature range, constant temperature holding may be performed so that the holding temperature is two or more stages. In addition, after rapidly cooling to the stop temperature Z, the cooling rate may be changed and the cooling may be performed over a predetermined time within the temperature range, or the heating may be performed over the predetermined time within the temperature range. . Moreover, you may repeat cooling and a heating suitably within the range of this temperature range. Moreover, two or more stages of multi-stage cooling with different cooling rates may be performed, or two or more stages of multi-stage heating with different heating rates may be performed.
 上記(C6-1)のように、上記低温変態生成相が、上記高温域生成ベイナイトを含み、該高温域生成ベイナイトが、上記金属組織全体に対して50面積%超95面積%以下であり、上記低温域生成ベイナイトおよび上記焼戻しマルテンサイトを含んでもよく、上記低温域生成ベイナイトおよび上記焼戻しマルテンサイトの合計は、上記金属組織全体に対して0面積%以上20面積%未満の素地鋼板を製造するには、上記均熱後、下記(a1)を満足することが好ましい。 As in the above (C6-1), the low temperature transformation generation phase includes the high temperature region generation bainite, and the high temperature region generation bainite is more than 50 area% and not more than 95 area% with respect to the entire metal structure, The low-temperature region-generated bainite and the tempered martensite may be included, and the total of the low-temperature region-generated bainite and the tempered martensite is 0% by area or more and less than 20% by area based on the entire metal structure. It is preferable that after the soaking, the following (a1) is satisfied.
 (a1)420℃以上500℃以下を満たす任意の停止温度Za1まで冷却すると共に、750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、前記420~500℃の温度域で50秒以上保持する。 (A1) Cooling to an arbitrary stop temperature Z a1 satisfying 420 ° C. or more and 500 ° C. or less, and cooling at an average cooling rate of 10 ° C./second or more in the range from 750 ° C. to 500 ° C. Hold for more than 50 seconds in the area
 上記冷却停止温度Za1を、420℃以上500℃以下とし、この温度域で50秒以上保持することによって、低温変態生成相のなかでも、高温域生成ベイナイトを主に生成させることができる。上記冷却を停止する温度の下限は、より好ましくは430℃以上である。上記冷却を停止する温度の上限は、より好ましくは480℃以下であり、更に好ましくは460℃以下である。 By setting the cooling stop temperature Z a1 to 420 ° C. or more and 500 ° C. or less and maintaining it in this temperature range for 50 seconds or more, high-temperature region-generated bainite can be mainly generated in the low-temperature transformation generation phase. The lower limit of the temperature at which the cooling is stopped is more preferably 430 ° C. or higher. The upper limit of the temperature at which the cooling is stopped is more preferably 480 ° C. or less, and further preferably 460 ° C. or less.
 上記温度域での保持時間は、より好ましくは70秒以上、更に好ましくは100秒以上、特に好ましくは200秒以上である。上記温度域での保持時間の上限は特に限定されないが、例えば、好ましくは1500秒以下、より好ましくは1400秒以下、更に好ましくは1300秒以下である。 The holding time in the above temperature range is more preferably 70 seconds or more, still more preferably 100 seconds or more, and particularly preferably 200 seconds or more. Although the upper limit of the holding time in the said temperature range is not specifically limited, For example, Preferably it is 1500 seconds or less, More preferably, it is 1400 seconds or less, More preferably, it is 1300 seconds or less.
 また、上記平均冷却速度を制御することによって、ポリゴナルフェライトの生成を抑制し、高温域生成ベイナイトの生成を促進できる。上記温度範囲における平均冷却速度は、10℃/秒以上に制御することが好ましく、より好ましくは20℃/秒以上である。上記平均冷却速度の上限は特に限定されないが、素地鋼板温度の制御のし易さや、設備コストなどを考慮すると、おおむね、100℃/秒以下に制御することが好ましい。上記平均冷却速度は、より好ましくは50℃/秒以下であり、更に好ましくは30℃/秒以下である。 Also, by controlling the average cooling rate, it is possible to suppress the formation of polygonal ferrite and promote the formation of high temperature region bainite. The average cooling rate in the above temperature range is preferably controlled to 10 ° C./second or more, more preferably 20 ° C./second or more. The upper limit of the average cooling rate is not particularly limited, but it is preferable to control the temperature to about 100 ° C./second or less in consideration of the ease of control of the base steel sheet temperature and the equipment cost. The average cooling rate is more preferably 50 ° C./second or less, and further preferably 30 ° C./second or less.
 上記(C6-2)のように、上記低温変態生成相が、上記高温域生成ベイナイト、低温域生成ベイナイト、および焼戻しマルテンサイトを含み、上記高温域生成ベイナイトは、上記金属組織全体に対して20~80面積%であり、上記低温域生成ベイナイトおよび上記焼戻しマルテンサイトの合計は、上記金属組織全体に対して20~80面積%である素地鋼板を製造するには、上記均熱後、下記(a2)、(b)、(c1)のいずれかを満足することが好ましい。 As in (C6-2), the low-temperature transformation generation phase includes the high-temperature region generation bainite, the low-temperature region generation bainite, and the tempered martensite. In order to produce a base steel sheet having a total area of ˜80 area%, and the total of the low-temperature region bainite and the tempered martensite is 20 to 80 area% with respect to the entire metal structure, It is preferable to satisfy any of a2), (b), and (c1).
 (a2)380℃以上420℃未満を満たす任意の停止温度Za2まで冷却すると共に、750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、前記380℃以上420℃未満の温度域で50秒以上保持する。 (A2) While cooling to an arbitrary stop temperature Z a2 satisfying 380 ° C. or more and less than 420 ° C., the range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more. Hold for at least 50 seconds in the temperature range.
 上記冷却停止温度Za2を、380℃以上420℃未満とし、この温度域で50秒以上保持することによって、低温変態生成相として、高温域生成ベイナイト、低温域生成ベイナイト、および焼戻しマルテンサイトを生成させることができる。即ち、400℃前後の温度で保持することによって、上述した残留γ同士、炭化物同士、或いは残留γと炭化物の間隔がおおよそ1μm前後となるように分散する。残留γや炭化物は、球状ではなく、枕のような塊になって析出している。そのため、観察断面では、残留γと炭化物の方向が一定になっていないため、残留γ同士、炭化物同士、或いは残留γと炭化物の間隔を測定すると、平均間隔が1μm以上の高温域生成ベイナイトと平均間隔が1μm未満の低温域生成ベイナイトが混在した状態となる。上記冷却を停止する温度の下限は、より好ましくは390℃以上である。上記冷却を停止する温度の上限は、より好ましくは410℃以下である。 The above-mentioned cooling stop temperature Za2 is set to 380 ° C. or higher and lower than 420 ° C., and maintained in this temperature range for 50 seconds or longer, thereby generating high temperature region bainite, low temperature region bainite, and tempered martensite as a low temperature transformation generation phase. Can be made. That is, by holding at a temperature of about 400 ° C., the residual γ described above, the carbides, or the distance between the residual γ and the carbides is dispersed to be about 1 μm. Residual γ and carbides are not spherical but are deposited as a pillow-like lump. Therefore, since the direction of residual γ and carbide is not constant in the observed cross section, when measuring the distance between residual γ, between carbides, or between residual γ and carbide, the average interval is higher than that of high-temperature region bainite having an average interval of 1 μm or more. A state in which low-temperature region bainite having an interval of less than 1 μm is mixed is obtained. The lower limit of the temperature at which the cooling is stopped is more preferably 390 ° C. or higher. The upper limit of the temperature at which the cooling is stopped is more preferably 410 ° C. or lower.
 上記温度域での保持時間は、より好ましくは70秒以上、更に好ましくは100秒以上、特に好ましくは200秒以上である。上記温度域での保持時間の上限は特に限定されないが、例えば、好ましくは1500秒以下、より好ましくは1400秒以下、更に好ましくは1300秒以下である。 The holding time in the above temperature range is more preferably 70 seconds or more, still more preferably 100 seconds or more, and particularly preferably 200 seconds or more. Although the upper limit of the holding time in the said temperature range is not specifically limited, For example, Preferably it is 1500 seconds or less, More preferably, it is 1400 seconds or less, More preferably, it is 1300 seconds or less.
 (b)下記式(1)を満たす任意の停止温度Zbまで冷却すると共に、750℃から、前記停止温度Zbまたは500℃のうち高い方の温度までの範囲は平均冷却速度を10℃/秒以上で冷却し、下記式(1)を満たす温度域T1で10~100秒間保持し、次いで、下記式(2)を満たす温度域T2に冷却し、この温度域T2で50秒以上保持する。
400≦T1(℃)≦540 ・・・(1)
200≦T2(℃)<400 ・・・(2)
(B) While cooling to an arbitrary stop temperature Z b satisfying the following formula (1), the range from 750 ° C. to the higher one of the stop temperature Z b or 500 ° C. is an average cooling rate of 10 ° C. / Cool for at least 2 seconds, hold for 10 to 100 seconds in the temperature range T1 satisfying the following formula (1), then cool to the temperature range T2 satisfying the following formula (2), and hold for at least 50 seconds in this temperature range T2. .
400 ≦ T1 (° C.) ≦ 540 (1)
200 ≦ T2 (° C.) <400 (2)
 上記式(1)を満たす任意の温度Zbまで冷却した後は、上記T1温度域で10~100秒間保持した後、上記式(2)を満たすT2温度域で50秒以上保持してもよい。T1温度域とT2温度域に保持する時間を夫々適切に制御することによって、高温域生成ベイナイトと低温域生成ベイナイト等を所定量ずつ生成させることができる。具体的には、T1温度域で所定時間保持することにより、高温域生成ベイナイトの生成量を制御でき、T2温度域で所定時間保持するオーステンパ処理によって、未変態オーステナイトを低温域生成ベイナイト、またはマルテンサイトに変態させると共に、炭素をオーステナイトへ濃化させて残留γを生成させ、本発明で規定する金属組織を生成させることができる。 After cooling to an arbitrary temperature Z b satisfying the above formula (1), it may be held for 10 to 100 seconds in the T1 temperature range and then held for 50 seconds or more in the T2 temperature range satisfying the above formula (2). . By appropriately controlling the time for holding in the T1 temperature range and the T2 temperature range, it is possible to generate a predetermined amount of high temperature region bainite, low temperature region bainite, and the like. Specifically, the amount of high-temperature region-generated bainite can be controlled by holding in the T1 temperature region for a predetermined time, and the untransformed austenite is converted into low-temperature region-generated bainite or martensite by the austempering process that is maintained in the T2 temperature region for a predetermined time. While transforming into sites, carbon can be concentrated to austenite to generate residual γ, and a metal structure defined in the present invention can be generated.
 また、T1温度域における保持と、T2温度域における保持を組み合わせることにより、MA混合相の生成を抑制できる効果も発揮される。このメカニズムは、次のように考えられる。一般的に、SiやAlを添加すると、炭化物の析出が抑制されるため、鋼中にはフリーな炭素が存在することとなり、オーステンパ処理ではベイナイト変態と共に炭素が未変態オーステナイトへ濃化する現象が認められる。炭素が未変態オーステナイトへ濃化することにより、残留γを多く生成させることができる。 In addition, by combining the holding in the T1 temperature range and the holding in the T2 temperature range, the effect of suppressing the generation of the MA mixed phase is also exhibited. This mechanism is considered as follows. In general, when Si or Al is added, precipitation of carbides is suppressed, so that free carbon exists in the steel, and in the austempering process, carbon is concentrated to untransformed austenite along with bainite transformation. Is recognized. A large amount of residual γ can be generated by concentrating carbon to untransformed austenite.
 ここで炭素が未変態オーステナイトへ濃化する現象について説明する。炭素の濃化量は、ポリゴナルフェライトとオーステナイトの自由エネルギーが等しくなるTo線で示される濃度までに制限されるため、ベイナイト変態も停止することが知られている。厳密には、To線より少しずれた濃度でベイナイト変態は停止する。このTo線は、温度が高いほど低炭素濃度側になることから、オーステンパ処理を比較的高温で行うと、処理時間を長くしてもベイナイト変態がある程度のところで停止してしまう。このとき未変態のオーステナイトの安定性は低いため、粗大なMA混合相が生成する。 Here, the phenomenon of carbon concentration to untransformed austenite will be described. It is known that the concentration of carbon is limited to the concentration indicated by the To line where the free energy of polygonal ferrite and austenite becomes equal, and the bainite transformation also stops. Strictly speaking, the bainite transformation stops at a concentration slightly deviated from the To line. Since the To line becomes lower in carbon concentration as the temperature is higher, if the austempering process is performed at a relatively high temperature, the bainite transformation stops at a certain level even if the processing time is increased. At this time, since the stability of untransformed austenite is low, a coarse MA mixed phase is generated.
 そこで本発明では、上記T1温度域で保持した後、上記T2温度域で保持することにより未変態オーステナイトへのC濃度の許容量を多くすることができるため、高温域よりも低温域の方が、ベイナイト変態が進行し、MA混合相が小さくなる。また、上記T1温度域で保持する場合に比べて、上記T2温度域で保持する場合は、ラス状組織のサイズが小さくなるため、MA混合相が存在したとしても、MA混合相自体も細分化され、MA混合相を小さくできる。更に、T1温度域で所定時間保持した後、T2温度域で保持しているため、T2温度域での保持を開始した時点で、既に高温域生成ベイナイトが生成している。従ってT2温度域では、高温域生成ベイナイトがきっかけとなり、低温域生成ベイナイトの変態が促進されるため、オーステンパ処理の時間を短縮できるという効果も発揮される。 Therefore, in the present invention, after holding in the T1 temperature range, the allowable amount of C concentration to the untransformed austenite can be increased by holding in the T2 temperature range, so the low temperature range is higher than the high temperature range. The bainite transformation proceeds and the MA mixed phase becomes smaller. Further, since the size of the lath-like structure is smaller when held at the T2 temperature range than when held at the T1 temperature range, the MA mixed phase itself is subdivided even if the MA mixed phase exists. Thus, the MA mixed phase can be reduced. Furthermore, since it hold | maintains in T2 temperature range after hold | maintaining for a predetermined time in T1 temperature range, the high temperature range production | generation bainite has already produced | generated when the holding | maintenance in T2 temperature range was started. Accordingly, in the T2 temperature region, the high temperature region-generated bainite is a trigger, and the transformation of the low temperature region-generated bainite is promoted, so that the effect of shortening the time of the austempering treatment is also exhibited.
 本発明において、上記式(1)で規定するT1温度域は、具体的には、400℃以上540℃以下とする。このT1温度域で所定時間保持することによって、高温域生成ベイナイトを生成させることができる。即ち、540℃を超える温度域で保持すると、高温域生成ベイナイトの生成が抑制され、その反面、ポリゴナルフェライトが過剰に生成し、また擬似パーライトが生成するため、所望の特性が得られない。従ってT1温度域の上限は好ましくは540℃以下、より好ましくは520℃以下、更に好ましくは500℃以下である。一方、保持温度が400℃を下回ると、高温域生成ベイナイトが生成しないため、伸びが低下して加工性を改善できない。従ってT1温度域の下限は、好ましくは400℃以上、より好ましくは420℃以上である。 In the present invention, the T1 temperature range defined by the above formula (1) is specifically 400 ° C. or more and 540 ° C. or less. By maintaining the temperature in the T1 temperature range for a predetermined time, a high temperature range bainite can be generated. That is, when the temperature is maintained at a temperature exceeding 540 ° C., the formation of high temperature bainite is suppressed. On the other hand, polygonal ferrite is excessively generated and pseudo pearlite is generated, so that desired characteristics cannot be obtained. Therefore, the upper limit of the T1 temperature range is preferably 540 ° C. or less, more preferably 520 ° C. or less, and further preferably 500 ° C. or less. On the other hand, if the holding temperature is lower than 400 ° C., high temperature region bainite is not generated, so that elongation is lowered and workability cannot be improved. Therefore, the lower limit of the T1 temperature range is preferably 400 ° C. or higher, more preferably 420 ° C. or higher.
 上記T1温度域で保持する時間は、好ましくは10~100秒とする。保持時間が100秒を超えると、高温域生成ベイナイトが過剰に生成するため、後述するように、上記T2温度域で所定時間保持しても低温域生成ベイナイト等の生成量を確保できない。従って強度と加工性を両立させることができない。また、T1温度域で長時間保持すると、炭素がオーステナイト中に濃化し過ぎるため、T2温度域でオーステンパ処理しても粗大なMA混合相が生成し、加工性が劣化する。従って保持時間は100秒以下とし、好ましくは90秒以下、より好ましくは80秒以下である。しかしT1温度域での保持時間が短過ぎると高温域生成ベイナイトの生成量が少なくなるため、伸びが低下し、加工性を改善できない。従ってT1温度域での保持時間は10秒以上とし、好ましくは15秒以上、より好ましくは20秒以上、更に好ましくは30秒以上である。 The holding time in the T1 temperature range is preferably 10 to 100 seconds. If the holding time exceeds 100 seconds, the high-temperature region-generated bainite is excessively generated. Therefore, as will be described later, the amount of low-temperature region-generated bainite or the like cannot be ensured even if the predetermined time is maintained in the T2 temperature region. Accordingly, it is impossible to achieve both strength and workability. Further, if the temperature is held for a long time in the T1 temperature range, carbon is excessively concentrated in the austenite, so that a coarse MA mixed phase is generated even if austempering is performed in the T2 temperature range, and workability deteriorates. Therefore, the holding time is 100 seconds or less, preferably 90 seconds or less, more preferably 80 seconds or less. However, if the holding time in the T1 temperature region is too short, the amount of high-temperature region-generated bainite is reduced, so that elongation is lowered and workability cannot be improved. Accordingly, the holding time in the T1 temperature range is 10 seconds or longer, preferably 15 seconds or longer, more preferably 20 seconds or longer, and even more preferably 30 seconds or longer.
 本発明において、T1温度域での保持時間とは、鋼板の表面温度が、T1温度域の上限温度に到達した時点から、T1温度域の下限温度に到達するまでの時間を意味する。 In the present invention, the holding time in the T1 temperature range means the time from when the surface temperature of the steel sheet reaches the upper limit temperature in the T1 temperature range to the lower limit temperature in the T1 temperature range.
 上記式(1)を満たすT1温度域で保持するには、例えば、図6の(i)~(iii)に示すヒートパターンを採用すればよい。 In order to maintain the temperature in the T1 temperature range that satisfies the above formula (1), for example, the heat patterns shown in (i) to (iii) of FIG. 6 may be employed.
 図6の(i)は、均熱後、上記式(1)を満たす任意の温度Zbまで急冷した後、この温度Zbで所定時間恒温保持する例であり、恒温保持後、上記式(2)を満足する任意の温度まで冷却している。図6(i)には、一段階の恒温保持を行った場合について示しているがこれに限定されず、T1温度域の範囲内であれば、保持温度が異なる2段階以上の恒温保持を行ってもよい。 (I) in FIG. 6 is an example in which, after soaking, the sample is rapidly cooled to an arbitrary temperature Z b satisfying the above formula (1), and then kept at this temperature Z b for a predetermined time. Cooling to an arbitrary temperature satisfying 2). Although FIG. 6 (i) shows a case where one-stage constant temperature holding is performed, the present invention is not limited to this, and two or more constant temperature holdings with different holding temperatures are performed within the T1 temperature range. May be.
 図6の(ii)は、均熱後、上記式(1)を満たす任意の温度Zbまで急冷した後、冷却速度を変更し、T1温度域の範囲内で所定時間かけて冷却した後、再度冷却速度を変更して上記式(2)を満足する任意の温度まで冷却する例である。図6(ii)には、T1温度域の範囲内で所定時間かけて冷却した場合を示しているが、本発明はこれに限定されず、T1温度域の範囲内であれば、所定時間かけて加熱する工程を含んでいても良いし、冷却と加熱を適宜繰り返してもよい。また、図6(ii)に示すように一段冷却ではなく、冷却速度が異なる二段以上の多段冷却を行ってもよい。また、一段加熱や、二段以上の多段加熱を行なってもよい(図示せず)。 (Ii) in FIG. 6 is, after soaking, after rapidly cooling to an arbitrary temperature Z b satisfying the above formula (1), after changing the cooling rate and cooling over a predetermined time within the T1 temperature range, This is an example in which the cooling rate is changed again to cool to an arbitrary temperature satisfying the above expression (2). FIG. 6 (ii) shows a case where the cooling is performed for a predetermined time within the range of the T1 temperature range, but the present invention is not limited to this, and if it is within the range of the T1 temperature range, it takes a predetermined time. And a step of heating may be included, and cooling and heating may be repeated as appropriate. In addition, as shown in FIG. 6 (ii), multi-stage cooling of two or more stages having different cooling rates may be performed instead of single-stage cooling. Further, one-stage heating or multi-stage heating of two or more stages may be performed (not shown).
 図6の(iii)は、均熱後、上記式(1)を満たす任意の温度Zbまで急冷した後、冷却速度を変更し、上記式(2)を満足する任意の温度までを、同じ冷却速度で徐冷する例である。このように徐冷する場合であっても、T1温度域内での滞留時間が10~100秒であればよい。 (Iii) in FIG. 6 shows that after soaking, the cooling rate is changed after quenching to an arbitrary temperature Z b satisfying the above formula (1), and up to an arbitrary temperature satisfying the above formula (2). This is an example of gradual cooling at a cooling rate. Even in such a case of slow cooling, the residence time in the T1 temperature range may be 10 to 100 seconds.
 本発明は図6の(i)~(iii)に示したヒートパターンに限定する趣旨ではなく、本発明の要件を満足する限り、上記以外のヒートパターンを適宜採用できる。 The present invention is not intended to be limited to the heat patterns shown in FIGS. 6 (i) to (iii), and any other heat pattern can be adopted as long as the requirements of the present invention are satisfied.
 本発明において、上記式(2)で規定するT2温度域は、具体的には、好ましくは200℃以上400℃未満とする。この温度域で所定時間保持することにより、上記T1温度域で変態しなかった未変態オーステナイトを、低温域生成ベイナイト、またはマルテンサイトに変態させることができる。また、充分な保持時間を確保することによりベイナイト変態が進行して、最終的に残留γが生成し、MA混合相も細分化される。このマルテンサイトは、変態直後は焼入れマルテンサイトとして存在するが、T2温度域で保持している間に焼戻され、焼戻しマルテンサイトとして残留する。この焼戻しマルテンサイトは、マルテンサイト変態が起こる温度域で生成する低温域生成ベイナイトと同等の特性を示す。しかし400℃以上で保持すると、粗大なMA混合相が生成するため、伸びや局所変形能が低下して加工性を改善できない。従ってT2温度域は、好ましくは400℃未満、より好ましくは390℃以下、更に好ましくは380℃以下である。一方、200℃を下回る温度で保持しても低温域生成ベイナイトが生成しないため、オーステナイト中の炭素濃度が低くなり、残留γ量を確保できず、さらに焼入れマルテンサイトが多く生成するので、強度が高くなり、伸びおよび局所変形能が悪くなる。また、オーステナイト中の炭素濃度が低くなり、残留γ量を確保できないため、伸びを高めることができない。従ってT2温度域の下限は、好ましくは200℃以上、より好ましくは250℃以上、更に好ましくは280℃以上である。 In the present invention, the T2 temperature range defined by the above formula (2) is specifically preferably 200 ° C. or higher and lower than 400 ° C. By maintaining in this temperature range for a predetermined time, untransformed austenite that has not been transformed in the T1 temperature range can be transformed into low temperature range bainite or martensite. Further, by securing a sufficient holding time, the bainite transformation proceeds, finally residual γ is generated, and the MA mixed phase is subdivided. Although this martensite exists as quenching martensite immediately after transformation, it is tempered while being maintained in the T2 temperature region and remains as tempered martensite. This tempered martensite exhibits the same characteristics as low temperature region bainite generated in the temperature region where martensitic transformation occurs. However, if the temperature is maintained at 400 ° C. or higher, a coarse MA mixed phase is generated, so that elongation and local deformability are lowered, and workability cannot be improved. Accordingly, the T2 temperature range is preferably less than 400 ° C., more preferably 390 ° C. or less, and further preferably 380 ° C. or less. On the other hand, since the low temperature region bainite is not generated even if kept at a temperature lower than 200 ° C., the carbon concentration in the austenite becomes low, the amount of residual γ cannot be secured, and more quenching martensite is generated, so the strength is high. It becomes high and elongation and local deformability deteriorate. Moreover, since the carbon concentration in austenite becomes low and the amount of residual γ cannot be secured, the elongation cannot be increased. Therefore, the lower limit of the T2 temperature range is preferably 200 ° C. or higher, more preferably 250 ° C. or higher, and still more preferably 280 ° C. or higher.
 上記式(2)を満たすT2温度域で保持する時間は、好ましくは50秒以上とする。保持時間が50秒を下回ると、低温域生成ベイナイト等の生成量が少なくなり、オーステナイト中の炭素濃度が低くなって残留γ量を確保できず、さらに焼入れマルテンサイトが多く生成するので、強度が高くなり、伸びおよび局所変形能が悪くなる。また、炭素の濃化が促進されないため、残留γ量が少なくなり、伸びを改善できない。また、上記T1温度域で生成したMA混合相を微細化できないため、局所変形能を改善できない。従って保持時間は、好ましくは50秒以上、より好ましくは70秒以上、更に好ましくは100秒以上、特に好ましくは200秒以上とする。保持時間の上限は特に限定されないが、長時間保持すると生産性が低下するほか、濃化した炭素が炭化物として析出して残留γを生成させることができず、伸びの低下を招き、加工性が劣化する。従って保持時間の上限は、例えば1800秒以下とすればよい。 The holding time in the T2 temperature range satisfying the above formula (2) is preferably 50 seconds or more. When the holding time is less than 50 seconds, the amount of low-temperature region bainite and the like is reduced, the carbon concentration in the austenite is lowered and the residual γ amount cannot be secured, and more hardened martensite is produced, It becomes high and elongation and local deformability deteriorate. Further, since carbon concentration is not promoted, the amount of residual γ is reduced, and the elongation cannot be improved. Moreover, since the MA mixed phase produced | generated in the said T1 temperature range cannot be refined | miniaturized, local deformability cannot be improved. Accordingly, the holding time is preferably 50 seconds or more, more preferably 70 seconds or more, still more preferably 100 seconds or more, and particularly preferably 200 seconds or more. Although the upper limit of the holding time is not particularly limited, productivity decreases when held for a long time, and concentrated carbon cannot be precipitated as carbides to generate residual γ, resulting in a decrease in elongation and workability. to degrade. Therefore, the upper limit of the holding time may be set to 1800 seconds or less, for example.
 本発明において、T2温度域での保持時間とは、鋼板の表面温度が、T2温度域の上限温度に到達した時点から、T2温度域の下限温度に到達するまでの時間を意味する。 In the present invention, the holding time in the T2 temperature range means the time from when the surface temperature of the steel sheet reaches the upper limit temperature in the T2 temperature range to the lower limit temperature in the T2 temperature range.
 上記T2温度域で保持する方法は、T2温度域での滞留時間が50秒以上となれば特に限定されず、上記図6に示したT1温度域内におけるヒートパターンのように、恒温保持してもよいし、T2温度域内で冷却または加熱してもよい。また、異なる保持温度で多段階保持を行ってもよい。 The method of holding in the T2 temperature range is not particularly limited as long as the residence time in the T2 temperature range is 50 seconds or more. Even if the temperature is kept constant like the heat pattern in the T1 temperature range shown in FIG. It may be cooled or heated within the T2 temperature range. Further, multistage holding may be performed at different holding temperatures.
 (c1)下記式(3)を満たす任意の停止温度Zc1またはMs点まで冷却すると共に、750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、下記式(3)を満たす温度域T3で5~180秒間保持し、次いで、下記式(4)を満たす温度域T4に加熱し、この温度域T4で30秒以上保持する。
100≦T3(℃)<400 ・・・(3)
400≦T4(℃)≦500 ・・・(4)
(C1) While cooling to an arbitrary stop temperature Z c1 or Ms point satisfying the following formula (3), the range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more, and the following formula (3) The temperature is maintained for 5 to 180 seconds in a temperature range T3 that satisfies the above condition, and then heated to a temperature range T4 that satisfies the following formula (4). The temperature range T4 is maintained for 30 seconds or more.
100 ≦ T3 (° C.) <400 (3)
400 ≦ T4 (° C.) ≦ 500 (4)
 なお、上記Ms点は、下記式(ii)に基づいて算出される。式中[ ]は各元素の含有量(質量%)を表す。含有しない元素の項には、0(ゼロ)を代入して計算する。この式は、「レスリー鉄鋼材料学」(丸善株式会社発行、William C. Leslie著、p231)に記載されている。
Ms(℃)=561-474×[C]-33×[Mn]-17×[Ni]-17×[Cr]-21×[Mo] ・・・(ii)
The Ms point is calculated based on the following formula (ii). In the formula, [] represents the content (% by mass) of each element. Calculation is performed by substituting 0 (zero) into the term of the element not contained. This equation is described in “Leslie Steel Material Science” (published by Maruzen Co., Ltd., William C. Leslie, p231).
Ms (° C.) = 561−474 × [C] −33 × [Mn] −17 × [Ni] −17 × [Cr] −21 × [Mo] (ii)
 上記均熱した後は、図7に示すように、上記式(3)を満たす任意の温度Zc1またはMs点まで平均冷却速度10℃/秒以上で急冷することが好ましい。Ac3点以上の温度域から上記式(3)を満たす任意の温度Zc1またはMs点までの範囲を急冷することにより、オーステナイトがポリゴナルフェライトに変態するのを抑制し、低温域生成ベイナイトやマルテンサイトを所定量生成させることができる。この区間の平均冷却速度は、より好ましくは15℃/秒以上である。平均冷却速度の上限は特に限定されないが、例えば、100℃/秒程度であればよい。 After the soaking, as shown in FIG. 7, it is preferable to rapidly cool to an arbitrary temperature Z c1 or Ms point satisfying the above formula (3) at an average cooling rate of 10 ° C./second or more. By rapidly cooling the range from the temperature range Ac 3 or higher to any temperature Z c1 or Ms point satisfying the above equation (3), the transformation of austenite to polygonal ferrite is suppressed, A predetermined amount of martensite can be generated. The average cooling rate in this section is more preferably 15 ° C./second or more. The upper limit of the average cooling rate is not particularly limited, but may be about 100 ° C./second, for example.
 上記式(3)を満たす任意の温度Zc1またはMs点まで冷却した後は、図7に示すように、上記式(3)を満たすT3温度域で5~180秒間保持した後、上記式(4)を満たすT4温度域に加熱し、このT4温度域で30秒以上保持する。 After cooling to an arbitrary temperature Z c1 or Ms point that satisfies the above formula (3), as shown in FIG. 7, after holding for 5 to 180 seconds in a T3 temperature range that satisfies the above formula (3), the above formula ( Heat to T4 temperature range satisfying 4), and hold at this T4 temperature range for 30 seconds or more.
 本発明において、T3温度域での保持時間とは、Ac3点以上の温度で均熱した後、鋼板の表面温度が、400℃を下回った時点から、T3温度域で保持した後に加熱を開始し、鋼板の表面温度が、400℃に到達するまでの時間を意味する。従って、本発明では、後述するように、T4温度域で保持した後、室温まで冷却しているため、鋼板はT3温度域を再度通過することとなるが、本発明では、この冷却時に通過する時間は、T3温度域における滞在時間に含めていない。この冷却時には、変態は殆ど完了しているため、低温域生成ベイナイトは生成しないからである。 In the present invention, the holding time in the T3 temperature range means soaking at a temperature equal to or higher than the Ac 3 point, and then starting heating after holding the steel sheet in the T3 temperature range from the time when the surface temperature of the steel sheet falls below 400 ° C. And the time until the surface temperature of the steel sheet reaches 400 ° C. Therefore, in this invention, since it cools to room temperature after hold | maintaining in T4 temperature range so that it may mention later, although a steel plate will pass T3 temperature range again, in this invention, it passes at the time of this cooling. The time is not included in the residence time in the T3 temperature range. This is because, during this cooling, the transformation is almost completed, and thus no low temperature region bainite is generated.
 また、T4温度域での保持時間とは、T3温度域で保持した後に加熱し、鋼板の表面温度が、400℃となる時点から、T4温度域で保持した後に冷却を開始し、鋼板の表面温度が、400℃に到達するまでの時間を意味する。従って、本発明では、上述したように、均熱後、T3温度域へ冷却する途中で、T4温度域を通過しているが、本発明では、この冷却時に通過する時間は、T4温度域における滞在時間に含めていない。この冷却時には、滞在時間が短過ぎるため、変態は殆ど起こらず、高温域生成ベイナイトは生成しないからである。 In addition, the holding time in the T4 temperature range means heating after holding in the T3 temperature range, and starting cooling after holding in the T4 temperature range from the time when the surface temperature of the steel plate reaches 400 ° C. It means the time until the temperature reaches 400 ° C. Therefore, in the present invention, as described above, after soaking, the T4 temperature range is passed while cooling to the T3 temperature range. In the present invention, the time for passing this cooling is in the T4 temperature range. Not included in stay time. This is because, during this cooling, the residence time is too short, so that almost no transformation occurs and no high temperature region bainite is generated.
 本発明では、T3温度域とT4温度域に保持する時間を夫々適切に制御することによって、高温域生成ベイナイトを所定量生成させることができる。具体的には、T3温度域で所定時間保持することにより、未変態オーステナイトを低温域生成ベイナイト、ベイニティックフェライト、またはマルテンサイトに変態させ、T4温度域で所定時間保持してオーステンパ処理を行うことによって、さらに未変態オーステナイトを高温域生成ベイナイトとベイニティックフェライトへと変態させ、その生成量を制御するとともに、炭素をオーステナイトへ濃化させて残留γを生成させることで、本発明で規定する金属組織を生成させることができる。 In the present invention, it is possible to generate a predetermined amount of high temperature region bainite by appropriately controlling the time for holding in the T3 temperature region and the T4 temperature region. Specifically, by maintaining for a predetermined time in the T3 temperature range, the untransformed austenite is transformed into low-temperature range bainite, bainitic ferrite, or martensite, and the austempering process is performed by holding for a predetermined time in the T4 temperature range. In this way, untransformed austenite is transformed into high-temperature-range-generated bainite and bainitic ferrite, and the amount of formation is controlled, and carbon is concentrated to austenite to generate residual γ. The metal structure to be produced can be generated.
 また、T3温度域で保持した後、T4温度域で保持することにより、MA混合相を微細化できる効果も発揮される。即ち、Ac3点以上の温度で均熱した後、平均冷却速度10℃/秒以上でT3温度域における任意の温度Zc1またはMs点まで急冷し、このT3温度域で保持することによって、マルテンサイトや低温域生成ベイナイトが生成するため、未変態部が微細化し、また未変態部への炭素濃化も適度に抑制されるため、MA混合相が微細化する。 Moreover, after hold | maintaining in T3 temperature range, the effect which can refine | miniaturize MA mixed phase is also exhibited by hold | maintaining in T4 temperature range. That is, after soaking at a temperature of Ac 3 point or higher, it is rapidly cooled to an arbitrary temperature Z c1 or Ms point in the T3 temperature range at an average cooling rate of 10 ° C./second or more, and maintained in this T3 temperature range, thereby Since sites and low-temperature region-generated bainite are generated, the untransformed part is refined, and carbon concentration in the untransformed part is moderately suppressed, so that the MA mixed phase is refined.
 本発明において、上記式(3)で規定するT3温度域は,具体的には、好ましくは100℃以上、400℃未満とする。この温度域で所定時間保持することにより、未変態オーステナイトを、低温域生成ベイナイト、ベイニティックフェライト、またはマルテンサイトに変態させることができる。また、充分な保持時間を確保することによりベイナイト変態が進行して、最終的に残留γが生成し、MA混合相も細分化される。このマルテンサイトは、変態直後は焼入れマルテンサイトとして存在するが、後述するT4温度域で保持している間に焼戻され、焼戻しマルテンサイトとして残留する。この焼戻しマルテンサイトは、鋼板の伸び、穴拡げ性、または曲げ性のいずれにも悪影響を及ぼさない。しかし400℃以上で保持すると、低温域生成ベイナイトやマルテンサイトが生成せず、ベイナイト組織を複合化できない。また、粗大なMA混合相が生成するため、MA混合相を微細化できず、局所変形能が低下して曲げ性や穴拡げ性を改善できない。従ってT3温度域は、好ましくは400℃未満とする。T3温度域は、より好ましくは390℃以下、更に好ましくは380℃以下である。一方、100℃を下回る温度で保持しても、マルテンサイト分率が多く成り過ぎるため、加工性が劣化する。また、100℃を下回る温度で保持しても低温域生成ベイナイトは生成するが、上記のようにマルテンサイトの分率が多くなりすぎ、低温域生成ベイナイト等の分率が多くなるので、加工性が劣化する。従ってT3温度域の下限は、好ましくは100℃以上とする。T3温度域は、より好ましくは110℃以上、更に好ましくは120℃以上である。 In the present invention, the T3 temperature range defined by the above formula (3) is specifically preferably 100 ° C. or more and less than 400 ° C. By holding for a predetermined time in this temperature range, the untransformed austenite can be transformed into low temperature range bainite, bainitic ferrite, or martensite. Further, by securing a sufficient holding time, the bainite transformation proceeds, finally residual γ is generated, and the MA mixed phase is subdivided. Although this martensite exists as quenching martensite immediately after transformation, it is tempered while being maintained in a T4 temperature range described later, and remains as tempered martensite. This tempered martensite does not adversely affect the elongation, hole expansibility, or bendability of the steel sheet. However, when it is kept at 400 ° C. or higher, low temperature region bainite and martensite are not generated, and the bainite structure cannot be combined. Further, since a coarse MA mixed phase is generated, the MA mixed phase cannot be refined, and the local deformability is lowered, so that the bendability and the hole expandability cannot be improved. Therefore, the T3 temperature range is preferably less than 400 ° C. The T3 temperature range is more preferably 390 ° C. or less, and further preferably 380 ° C. or less. On the other hand, even if it is kept at a temperature lower than 100 ° C., the martensite fraction becomes too large, so that workability deteriorates. Moreover, even if it hold | maintains at the temperature of less than 100 degreeC, a low temperature area | region production | generation bainite will produce | generate, but since the fraction of a martensite increases too much and the fraction of a low temperature area production | generation bainite etc. increases as mentioned above, workability Deteriorates. Therefore, the lower limit of the T3 temperature range is preferably 100 ° C. or higher. The T3 temperature range is more preferably 110 ° C. or higher, and still more preferably 120 ° C. or higher.
 上記式(3)を満たすT3温度域で保持する時間は、好ましくは5~180秒とする。保持時間が5秒を下回ると、低温域生成ベイナイトの生成量が少なくなり、ベイナイト組織の複合化や、MA混合相の微細化が図れないため、穴拡げ性や曲げ性などが低下する。従って保持時間は、好ましくは5秒以上、より好ましくは10秒以上、更に好ましくは20秒以上、特に好ましくは40秒以上とする。しかし保持時間が180秒を超えると、低温域生成ベイナイトが過剰に生成する傾向があり、後述するように、T4温度域で所定時間保持しても高温域生成ベイナイト等の生成量を確保できにくくなる。従って伸びが低下する。従って保持時間は、好ましくは180秒以下、より好ましくは150秒以下、更に好ましくは120秒以下、特に好ましくは80秒以下とする。 The holding time in the T3 temperature range satisfying the above formula (3) is preferably 5 to 180 seconds. When the holding time is less than 5 seconds, the amount of low-temperature region bainite generated is reduced, and the bainite structure cannot be combined and the MA mixed phase cannot be refined, so that hole expansibility and bendability are deteriorated. Accordingly, the holding time is preferably 5 seconds or more, more preferably 10 seconds or more, still more preferably 20 seconds or more, and particularly preferably 40 seconds or more. However, when the holding time exceeds 180 seconds, there is a tendency that the low temperature region bainite is excessively generated, and as will be described later, it is difficult to secure the amount of high temperature region bainite and the like even if it is held for a predetermined time in the T4 temperature region. Become. Accordingly, the elongation decreases. Accordingly, the holding time is preferably 180 seconds or less, more preferably 150 seconds or less, still more preferably 120 seconds or less, and particularly preferably 80 seconds or less.
 上記式(3)を満たすT3温度域で保持する方法は、T3温度域での滞留時間が上述した範囲であれば特に限定されず、例えば、図7の(iv)~(vi)に示すヒートパターンを採用すればよい。但し、本発明はこれに限定する趣旨ではなく、本発明の要件を満足する限り、上記以外のヒートパターンを適宜採用できる。 The method of holding in the T3 temperature range satisfying the above formula (3) is not particularly limited as long as the residence time in the T3 temperature range is in the above-described range. For example, the heat shown in (iv) to (vi) of FIG. A pattern may be adopted. However, the present invention is not intended to be limited to this, and heat patterns other than those described above can be appropriately employed as long as the requirements of the present invention are satisfied.
 図7の(iv)は、Ac3点以上の温度から上記式(3)を満たす任意の温度Zc1まで急冷した後、この温度Zc1で所定時間恒温保持する例であり、恒温保持後、上記式(4)を満足する任意の温度まで加熱している。図7の(iv)では、一段階の恒温保持を行った場合について示しているが、本発明はこれに限定されず、T3温度域の範囲内であれば、保持温度が異なる2段階以上の恒温保持を行ってもよい(図示せず)。 Of (iv) is 7, after quenching from Ac 3 point or higher temperature to any temperature Z c1 satisfying the above expression (3), an example in which a predetermined time incubated at this temperature Z c1, after isothermal holding, Heating is performed to an arbitrary temperature satisfying the above formula (4). Although (iv) of FIG. 7 shows the case where one-step constant temperature holding is performed, the present invention is not limited to this, and two or more steps with different holding temperatures are provided as long as they are within the T3 temperature range. Constant temperature holding may be performed (not shown).
 図7の(v)は、Ac3点以上の温度から上記式(3)を満たす任意の温度Zc1まで急冷した後、冷却速度を変更し、T3温度域の範囲内で所定時間かけて冷却した後、上記(4)式を満足する任意の温度まで加熱する例である。図7の(v)では、一段階の冷却を行った場合について示しているが、本発明はこれに限定されず、冷却速度が異なる二段以上の多段冷却を行ってもよい(図示せず)。 (V) in FIG. 7 shows that cooling is performed over a predetermined time within the T3 temperature range after rapidly cooling from the temperature Ac 3 or higher to any temperature Z c1 that satisfies the above equation (3), and then changing the cooling rate. Then, it is an example of heating to an arbitrary temperature that satisfies the above formula (4). Although FIG. 7 (v) shows a case where one-stage cooling is performed, the present invention is not limited to this, and multi-stage cooling of two or more stages having different cooling rates may be performed (not shown). ).
 図7の(vi)は、Ac3点以上の温度から上記式(3)を満たす任意の温度Zc1まで急冷した後、T3温度域の範囲内で所定時間かけて加熱し、上記式(4)を満足する任意の温度まで加熱する例である。図7の(vi)では、一段階の加熱を行った場合について示しているが、本発明はこれに限定されず、昇温速度が異なる二段以上の多段加熱を行ってもよい(図示せず)。 (Vi) in FIG. 7 shows that after quenching from an Ac 3 point or higher temperature to an arbitrary temperature Z c1 that satisfies the above formula (3), heating is performed within a T3 temperature range over a predetermined time, and the above formula (4) This is an example of heating to an arbitrary temperature satisfying the above. Although (vi) in FIG. 7 shows the case where one-stage heating is performed, the present invention is not limited to this, and multi-stage heating including two or more stages with different heating rates may be performed (not shown). )
 本発明において、上記式(4)で規定するT4温度域は、具体的には、好ましくは400℃以上、500℃以下とする。この温度域で所定時間保持することによって、高温域生成ベイナイトとベイニティックフェライトを生成させることができる。即ち、500℃を超える温度域で保持すると、軟質なポリゴナルフェライトや擬似パーライトなどが所定量を超えて存在し、所望の特性が得られない。従ってT4温度域の上限は、好ましくは500℃以下、より好ましくは490℃以下、更に好ましくは480℃以下とする。一方、T4温度域における保持温度が、400℃を下回ると、高温域生成ベイナイトが生成しないため、伸びが低下する。従ってT4温度域の下限は、好ましくは400℃以上、より好ましくは420℃以上、更に好ましくは425℃以上とする。 In the present invention, the T4 temperature range defined by the above formula (4) is specifically preferably 400 ° C. or more and 500 ° C. or less. By maintaining the temperature in this temperature range for a predetermined time, it is possible to generate high temperature range bainite and bainitic ferrite. In other words, when held in a temperature range exceeding 500 ° C., soft polygonal ferrite, pseudo pearlite and the like are present in excess of a predetermined amount, and desired characteristics cannot be obtained. Therefore, the upper limit of the T4 temperature range is preferably 500 ° C. or less, more preferably 490 ° C. or less, and further preferably 480 ° C. or less. On the other hand, when the holding temperature in the T4 temperature range is lower than 400 ° C., the high temperature range bainite is not generated, so that the elongation decreases. Therefore, the lower limit of the T4 temperature range is preferably 400 ° C. or higher, more preferably 420 ° C. or higher, and still more preferably 425 ° C. or higher.
 上記式(4)を満たすT4温度域で保持する時間は、好ましくは30秒以上とする。本発明によれば、T4温度域における保持時間を30秒程度としても、予め上記T3温度域で所定時間保持して低温域生成ベイナイト等を生成させているため、低温域生成ベイナイト等が高温域生成ベイナイトの生成を促進するため、高温域生成ベイナイトの生成量を確保できる。しかし保持時間が30秒より短くなると、未変態部が多く残り、炭素濃化が不充分なため、T4温度域からの最終冷却時にマルテンサイト変態が起こる。そのため硬質なMA混合相が生成し、曲げ性や穴拡げ性などの加工性が低下する。生産性を向上させる観点からは、T4温度域での保持時間はできるだけ短くする方が好ましいが、高温域生成ベイナイトを確実に生成させるためには、より好ましくは50秒以上、更に好ましくは100秒以上、特に好ましくは200秒以上、とする。T4温度域で保持するときの上限は特に限定されないが、長時間保持しても高温域生成ベイナイトの生成は飽和し、また生産性が低下するため、好ましくは1800秒以下、より好ましくは1500秒以下、更に好ましくは1000秒以下とする。 The time for holding in the T4 temperature range satisfying the above formula (4) is preferably 30 seconds or more. According to the present invention, even if the holding time in the T4 temperature range is about 30 seconds, the low temperature range bainite or the like is generated in the high temperature range because the low temperature range bainite or the like is generated by holding the T3 temperature range for a predetermined time in advance. Since the generation of the generated bainite is promoted, the generation amount of the high temperature region generated bainite can be ensured. However, when the holding time is shorter than 30 seconds, many untransformed portions remain and carbon concentration is insufficient, so that martensitic transformation occurs during the final cooling from the T4 temperature range. Therefore, a hard MA mixed phase is generated, and workability such as bendability and hole expandability is lowered. From the viewpoint of improving productivity, it is preferable to keep the holding time in the T4 temperature range as short as possible. However, in order to reliably generate the high temperature range bainite, it is more preferably 50 seconds or more, and still more preferably 100 seconds. Above, especially preferably 200 seconds or more. The upper limit when holding in the T4 temperature range is not particularly limited, but even if it is held for a long time, the formation of the high temperature range bainite is saturated and the productivity is lowered, so that it is preferably 1800 seconds or less, more preferably 1500 seconds. Hereinafter, it is more preferably set to 1000 seconds or less.
 上記式(4)を満たすT4温度域で保持する方法は、T4温度域での滞留時間が30秒以上となれば特に限定されず、上記T3温度域内におけるヒートパターンのように、T4温度域における任意の温度で恒温保持してもよいし、T4温度域内で冷却または加熱してもよい。 The method of holding in the T4 temperature range satisfying the above formula (4) is not particularly limited as long as the residence time in the T4 temperature range is 30 seconds or more, and in the T4 temperature range as in the heat pattern in the T3 temperature range. It may be held at a constant temperature, or may be cooled or heated within the T4 temperature range.
 なお、本発明では、低温側のT3温度域で保持した後、高温側のT4温度域で保持しているが、T3温度域で生成した低温域生成ベイナイト等については、T3温度域に加熱され、焼戻しによって下部組織の回復は生じるものの、ラス間隔、すなわち上記平均間隔は変化しないことを本発明者らは確認している。 In the present invention, after being held in the T3 temperature range on the low temperature side, it is held in the T4 temperature range on the high temperature side. However, the low temperature zone bainite generated in the T3 temperature range is heated to the T3 temperature range. The present inventors have confirmed that the lath interval, that is, the above average interval does not change, although the tempering causes recovery of the underlying structure.
 上記(a2)、上記(b)、および上記(c1)において、上記平均冷却速度を制御することによって、ポリゴナルフェライトの生成を抑制できる。その結果、高温域生成ベイナイト、低温域生成ベイナイト、および焼戻しマルテンサイトの生成量を確保できる。上記温度範囲における平均冷却速度は、10℃/秒以上に制御することが好ましく、より好ましくは20℃/秒以上である。上記平均冷却速度の上限は特に限定されないが、素地鋼板温度の制御のし易さや、設備コストなどを考慮すると、おおむね、100℃/秒以下に制御することが好ましい。上記平均冷却速度は、より好ましくは50℃/秒以下であり、更に好ましくは30℃/秒以下である。 In the above (a2), (b), and (c1), the formation of polygonal ferrite can be suppressed by controlling the average cooling rate. As a result, it is possible to secure the amount of high-temperature region-generated bainite, low-temperature region-generated bainite, and tempered martensite. The average cooling rate in the above temperature range is preferably controlled to 10 ° C./second or more, more preferably 20 ° C./second or more. The upper limit of the average cooling rate is not particularly limited, but it is preferable to control the temperature to about 100 ° C./second or less in consideration of the ease of control of the base steel sheet temperature and the equipment cost. The average cooling rate is more preferably 50 ° C./second or less, and further preferably 30 ° C./second or less.
 上記(C6-3)のように、上記低温変態生成相が、上記低温域生成ベイナイトおよび焼戻しマルテンサイトを含み、該低温域生成ベイナイトおよび焼戻しマルテンサイトの合計が、上記金属組織全体に対して50面積%超95面積%以下であり、上記高温域生成ベイナイトを含んでもよく、上記高温域生成ベイナイトは、上記金属組織全体に対して0面積%以上20面積%未満の素地鋼板を製造するには、上記均熱後、下記(a3)または(c2)のいずれかを満足することが好ましい。 As in the above (C6-3), the low-temperature transformation generation phase contains the low-temperature region generation bainite and tempered martensite, and the total of the low-temperature region generation bainite and tempered martensite is 50% relative to the entire metal structure. It is more than area% and not more than 95 area%, and may include the high-temperature region-generated bainite. The high-temperature region-generated bainite is used for producing a base steel sheet having a surface area of 0 to 20% by area with respect to the entire metal structure. After the soaking, it is preferable to satisfy either of the following (a3) or (c2).
 (a3)150℃以上380℃未満を満たす任意の停止温度Za3まで冷却すると共に、750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、前記150℃以上380℃未満の温度域で50秒以上保持する。 (A3) While cooling to an arbitrary stop temperature Z a3 satisfying 150 ° C. or more and less than 380 ° C., the range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more. Hold for at least 50 seconds in the temperature range.
 上記冷却停止温度Za3を、150℃以上380℃未満とし、この温度域で50秒以上保持することによって、低温変態生成相のなかでも、低温域生成ベイナイトおよび焼戻しマルテンサイトを主に生成させることができる。上記冷却を停止する温度の下限は、より好ましくは170℃以上である。上記冷却を停止する温度の上限は、より好ましくは370℃以下であり、更に好ましくは350℃以下である。 The above-mentioned cooling stop temperature Z a3 is set to 150 ° C. or higher and lower than 380 ° C., and is maintained in this temperature range for 50 seconds or longer, so that low temperature region bainite and tempered martensite are mainly generated in the low temperature transformation generation phase. Can do. The lower limit of the temperature at which the cooling is stopped is more preferably 170 ° C. or higher. The upper limit of the temperature at which the cooling is stopped is more preferably 370 ° C. or less, and further preferably 350 ° C. or less.
 上記温度域での保持時間は、より好ましくは70秒以上、更に好ましくは100秒以上、特に好ましくは200秒以上である。上記温度域での保持時間の上限は特に限定されないが、例えば、好ましくは1500秒以下、より好ましくは1400秒以下、更に好ましくは1300秒以下である。 The holding time in the above temperature range is more preferably 70 seconds or more, still more preferably 100 seconds or more, and particularly preferably 200 seconds or more. Although the upper limit of the holding time in the said temperature range is not specifically limited, For example, Preferably it is 1500 seconds or less, More preferably, it is 1400 seconds or less, More preferably, it is 1300 seconds or less.
 (c2)下記式(3)を満たす任意の停止温度Zc2またはMs点まで冷却すると共に、750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、下記式(3)を満たす温度域T3で5~180秒間保持し、次いで、下記式(4)を満たす温度域T4に加熱し、この温度域T4で30秒以上保持する。
100≦T3(℃)<400 ・・・(3)
400≦T4(℃)≦500 ・・・(4)
(C2) While cooling to an arbitrary stop temperature Z c2 or Ms point satisfying the following formula (3), the range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more, and the following formula (3) The temperature is maintained for 5 to 180 seconds in a temperature range T3 that satisfies the above condition, and then heated to a temperature range T4 that satisfies the following formula (4). The temperature range T4 is maintained for 30 seconds or more.
100 ≦ T3 (° C.) <400 (3)
400 ≦ T4 (° C.) ≦ 500 (4)
 上記(c2)の条件は、上記(c1)と同じであるが、低温域生成ベイナイト等を主体に生成させるには、成分にもよるが、上記冷却停止温度Zc2を上記T3温度域のなかでも比較的低温側としてマルテンサイトを多く生成させ、これを上記T4温度域に加熱することによって、マルテンサイトが焼戻され、焼戻しマルテンサイトとなる。その結果、低温域生成ベイナイト等が主体となる。この場合、上記T4温度域に加熱することによって、高温域生成ベイナイトも生成するが、焼戻しマルテンサイト量が多くなるため、結果的に、低温域生成ベイナイト等が主体となる。 The condition of (c2) is the same as that of (c1) above. However, in order to mainly produce low-temperature region-generated bainite or the like, the cooling stop temperature Z c2 is set within the T3 temperature region depending on the components. However, by generating a lot of martensite on the relatively low temperature side and heating it to the T4 temperature range, the martensite is tempered to become tempered martensite. As a result, low temperature region bainite and the like are mainly used. In this case, by heating to the T4 temperature range, high temperature region bainite is also generated, but since the amount of tempered martensite is increased, the result is mainly low temperature region bainite.
 上記(a3)および上記(c2)において、上記平均冷却速度を制御することによって、ポリゴナルフェライトの生成を抑制できる。その結果、低温域生成ベイナイト、および焼戻しマルテンサイトの生成量を確保できる。上記温度範囲における平均冷却速度は、10℃/秒以上に制御することが好ましく、より好ましくは20℃/秒以上である。上記平均冷却速度の上限は特に限定されないが、素地鋼板温度の制御のし易さや、設備コストなどを考慮すると、おおむね、100℃/秒以下に制御することが好ましい。上記平均冷却速度は、より好ましくは50℃/秒以下であり、更に好ましくは30℃/秒以下である。 In the above (a3) and (c2), the formation of polygonal ferrite can be suppressed by controlling the average cooling rate. As a result, it is possible to secure the amount of low temperature region bainite and tempered martensite produced. The average cooling rate in the above temperature range is preferably controlled to 10 ° C./second or more, more preferably 20 ° C./second or more. The upper limit of the average cooling rate is not particularly limited, but it is preferable to control the temperature to about 100 ° C./second or less in consideration of the ease of control of the base steel sheet temperature and the equipment cost. The average cooling rate is more preferably 50 ° C./second or less, and further preferably 30 ° C./second or less.
 その後、常法に従って、溶融亜鉛めっきを行なう。溶融亜鉛めっきの方法は特に限定されず、例えば、めっき浴温度の好ましい下限は400℃以上であり、より好ましくは440℃以上である。また、めっき浴温度の好ましい上限は500℃以下であり、より好ましくは470℃以下である。 Thereafter, hot dip galvanizing is performed according to a conventional method. The method of hot dip galvanizing is not particularly limited, and for example, the preferred lower limit of the plating bath temperature is 400 ° C. or higher, more preferably 440 ° C. or higher. Moreover, the upper limit with preferable plating bath temperature is 500 degrees C or less, More preferably, it is 470 degrees C or less.
 めっき浴の組成は特に限定されず、公知の溶融亜鉛めっき浴を用いればよい。 The composition of the plating bath is not particularly limited, and a known hot dip galvanizing bath may be used.
 また、溶融亜鉛めっき後の冷却条件も特に限定されず、例えば、常温までの平均冷却速度を、好ましくは約1℃/秒以上、より好ましくは5℃/秒以上に制御するのがよい。上記平均冷却速度の上限は特に規定されないが、素地鋼板温度の制御のし易さや、設備コストなどを考慮すると、約50℃/秒以下に制御するのが好ましい。上記平均冷却速度は、好ましくは40℃/秒以下、より好ましくは30℃/秒以下である。 Also, the cooling conditions after hot dip galvanizing are not particularly limited, and for example, the average cooling rate to room temperature is preferably controlled to about 1 ° C./second or more, more preferably 5 ° C./second or more. The upper limit of the average cooling rate is not particularly defined, but is preferably controlled to about 50 ° C./second or less in consideration of ease of control of the base steel sheet temperature and equipment cost. The average cooling rate is preferably 40 ° C./second or less, more preferably 30 ° C./second or less.
 溶融亜鉛めっきを行なった後は、更に、必要に応じて、常法により合金化処理を施しても良い。 After the hot dip galvanization, an alloying treatment may be performed by a conventional method as necessary.
 合金化処理の条件も特に限定されず、例えば、上記条件で溶融亜鉛めっきを行なった後、500~600℃程度、特に500~550℃程度で、5~30秒程度、特に10~25秒程度保持して行うことが好ましい。温度と時間が上記範囲を下回ると、合金化が不充分となり、一方、上記範囲を超えると炭化物の析出により残留オーステナイトが減少して所望の特性が得られない。更にポリゴナルフェライトも生成し易くなる。 The conditions for the alloying treatment are also not particularly limited. For example, after performing hot dip galvanization under the above conditions, about 500 to 600 ° C., particularly about 500 to 550 ° C., about 5 to 30 seconds, especially about 10 to 25 seconds. It is preferable to carry out holding. If the temperature and time are below the above range, alloying becomes insufficient. On the other hand, if the temperature and time exceed the above range, the retained austenite is reduced due to precipitation of carbides, and desired characteristics cannot be obtained. Furthermore, polygonal ferrite is also easily generated.
 上記合金化処理は、例えば、加熱炉、直火、または赤外線加熱炉などを用いて行えばよい。 The alloying treatment may be performed using, for example, a heating furnace, a direct fire, or an infrared heating furnace.
 加熱手段も特に限定されず、例えば、ガス加熱、インダクションヒーター加熱、すなわち高周波誘導加熱装置による加熱など慣用の手段を採用できる。 The heating means is not particularly limited, and for example, conventional means such as gas heating, induction heater heating, that is, heating by a high frequency induction heating device can be adopted.
 合金化処理の後、常法に従って冷却することにより合金化溶融亜鉛めっき鋼板が得られる。常温までの平均冷却速度は、約1℃/秒以上に制御することが好ましい。上記平均冷却速度の上限は特に規定されないが、素地鋼板温度の制御のし易さや、設備コストなどを考慮すると、約50℃/秒以下に制御するのが好ましい。 After the alloying treatment, an alloyed hot-dip galvanized steel sheet is obtained by cooling according to a conventional method. The average cooling rate to room temperature is preferably controlled to about 1 ° C./second or more. The upper limit of the average cooling rate is not particularly defined, but is preferably controlled to about 50 ° C./second or less in consideration of ease of control of the base steel sheet temperature and equipment cost.
 [第二の製造方法(保温あり)]
 本発明に係る第二の製造方法は、上記素地鋼板の鋼中成分を満足する鋼板を、500℃以上の温度で巻取る熱間圧延工程と、500℃以上の温度で60分以上保温する工程と、内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、酸化帯にて、0.9~1.4の空気比で酸化する工程と、還元帯にて、Ac3点以上の範囲で均熱する工程と、均熱後、100~540℃を満たす任意の停止温度Zまで冷却すると共に、750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、前記100~540℃の温度域で50秒以上保持する工程と、この順序で含む。前述した第一の製造方法と対比すると、上記第二の製造方法では、熱延後巻取温度の下限を500℃以上にしたこと、熱延工程の後に保温工程を設けたことの二点でのみ上記第一の製造方法と相違する。よって、以下では、当該相違点のみ説明する。上記第一の製造方法と一致する工程は、上記第一の製造方法を参照すればよい。
[Second manufacturing method (with heat retention)]
The second production method according to the present invention includes a hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 500 ° C. or higher, and a step of keeping the temperature at a temperature of 500 ° C. or higher for 60 minutes or more. Pickling and cold rolling so that the average depth d of the inner oxide layer remains 4 μm or more, oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4, and reducing zone Then, the step of soaking in a range of Ac 3 points or more, and after soaking, cooling to an arbitrary stop temperature Z satisfying 100 to 540 ° C., and the range from 750 ° C. to 500 ° C. is an average cooling rate of 10 ° C. / Cooling in at least one second and holding in the temperature range of 100 to 540 ° C. for at least 50 seconds, and in this order. In contrast to the first manufacturing method described above, in the second manufacturing method, the lower limit of the coiling temperature after hot rolling is set to 500 ° C. or more, and the heat retaining step is provided after the hot rolling step. Only the first manufacturing method is different. Therefore, only the difference will be described below. For the steps consistent with the first manufacturing method, the first manufacturing method may be referred to.
 上記のように保温工程を設けた理由は、保温により酸化できる温度域での長時間保持が可能となり、所望の内部酸化層と軟質層が得られる巻取温度範囲の下限を広げられるためである。また、素地鋼板の表層と内部の温度差を少なくして素地鋼板の均一性も高められるという利点もある。 The reason for providing the heat-retaining step as described above is that it is possible to maintain for a long time in a temperature range that can be oxidized by heat-retaining, and to expand the lower limit of the coiling temperature range from which a desired internal oxide layer and soft layer can be obtained. . There is also an advantage that the uniformity of the base steel sheet can be improved by reducing the temperature difference between the surface layer and the inside of the base steel sheet.
 まず、上記第二の製造方法では、熱間圧延後の巻取温度を500℃以上に制御する。上記第二の製造方法では、以下に詳述するように、その後に保温工程を設けたため、前述した第一の製造方法における巻取温度の下限である600℃よりも低く設定できる。巻取温度は、好ましくは540℃以上、より好ましくは570℃以上である。なお、巻取温度の好ましい上限は前述した第一の製造方法と同じであり、750℃以下とすることが好ましい。 First, in the second manufacturing method, the coiling temperature after hot rolling is controlled to 500 ° C. or higher. In the second manufacturing method, as described in detail below, since a heat retaining step is provided thereafter, the temperature can be set lower than 600 ° C. which is the lower limit of the winding temperature in the first manufacturing method described above. The winding temperature is preferably 540 ° C. or higher, more preferably 570 ° C. or higher. In addition, the preferable upper limit of coiling temperature is the same as the 1st manufacturing method mentioned above, and it is preferable to set it as 750 degrees C or less.
 次に、このようにして得られた熱延鋼板を500℃以上の温度で60分以上保温する。これにより、所望の内部酸化層を得ることができる。保温による上記効果が有効に発揮されるよう、上記熱延鋼板を、例えば断熱性のある装置に入れて保温することが好ましい。 Next, the hot-rolled steel sheet thus obtained is kept at a temperature of 500 ° C. or more for 60 minutes or more. Thereby, a desired internal oxide layer can be obtained. It is preferable to keep the hot-rolled steel sheet in a heat-insulating device, for example, so that the above-mentioned effect due to heat insulation is effectively exhibited.
 本発明に用いられる上記装置は、断熱性の素材で構成されていれば特に限定されず、このような素材として、例えば、セラミックファイバーなどが好ましく用いられる。 The apparatus used in the present invention is not particularly limited as long as it is made of a heat insulating material, and as such a material, for example, a ceramic fiber is preferably used.
 上記効果を有効に発揮させるためには、500℃以上の温度で60分以上保温することが必要である。保温温度は、好ましくは540℃以上、より好ましくは560℃以上である。保温時間は、好ましくは100分以上、より好ましくは120分以上である。なお、上記温度および時間の上限は、酸洗性や生産性などを考慮すると、おおむね、700℃以下、500分以下に制御することが好ましい。 In order to exhibit the above effect effectively, it is necessary to keep the temperature at 500 ° C. or more for 60 minutes or more. The heat retention temperature is preferably 540 ° C. or higher, more preferably 560 ° C. or higher. The heat retention time is preferably 100 minutes or more, more preferably 120 minutes or more. In addition, it is preferable to control the upper limit of the said temperature and time to about 700 degrees C or less and 500 minutes or less when pickling property, productivity, etc. are considered.
 以上、本発明に係る第一および第二の製造方法について説明した。 The first and second production methods according to the present invention have been described above.
 上記製造方法によって得られる本発明のめっき鋼板には、更に各種塗装や塗装下地処理、例えば、リン酸塩処理などの化成処理;有機皮膜処理、例えば、フィルムラミネートなどの有機皮膜の形成などを行なってもよい。 The plated steel sheet of the present invention obtained by the above-described production method is further subjected to various coatings and coating ground treatments, for example, chemical conversion treatment such as phosphate treatment; organic coating treatment, for example, formation of an organic coating such as a film laminate. May be.
 各種塗装に用いる塗料には、公知の樹脂、例えば、エポキシ樹脂、フッ素樹脂、シリコンアクリル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリエステル樹脂、フェノール樹脂、アルキッド樹脂、メラミン樹脂などを用いることができる。耐食性の観点から、エポキシ樹脂、フッ素樹脂、シリコンアクリル樹脂が好ましい。前記樹脂とともに、硬化剤を用いても良い。また塗料は、公知の添加剤、例えば、着色用顔料、カップリング剤、レベリング剤、増感剤、酸化防止剤、紫外線安定剤、難燃剤などを含有していても良い。 As the paint used for various coatings, known resins such as epoxy resins, fluororesins, silicone acrylic resins, polyurethane resins, acrylic resins, polyester resins, phenol resins, alkyd resins, melamine resins and the like can be used. From the viewpoint of corrosion resistance, an epoxy resin, a fluororesin, and a silicon acrylic resin are preferable. A curing agent may be used together with the resin. The paint may also contain known additives such as coloring pigments, coupling agents, leveling agents, sensitizers, antioxidants, UV stabilizers, flame retardants and the like.
 本発明において塗料形態に特に限定はなく、あらゆる形態の塗料、例えば、溶剤系塗料、水系塗料、水分散型塗料、粉体塗料、電着塗料などを使用できる。 In the present invention, the form of paint is not particularly limited, and any form of paint such as solvent-based paint, water-based paint, water-dispersed paint, powder paint, and electrodeposition paint can be used.
 また塗装方法も特に限定されず、ディッピング法、ロールコーター法、スプレー法、カーテンフローコーター法、電着塗装法などを使用できる。めっき層、有機皮膜、化成処理皮膜、塗膜などの被覆層の厚みは、用途に応じて適宜設定すれば良い。 The coating method is not particularly limited, and a dipping method, a roll coater method, a spray method, a curtain flow coater method, an electrodeposition coating method, and the like can be used. What is necessary is just to set suitably the thickness of coating layers, such as a plating layer, an organic membrane | film | coat, a chemical conversion treatment film, and a coating film, according to a use.
 本発明の高強度めっき鋼板は、高強度で、しかも加工性(伸び、曲げ性、および穴拡げ性)、耐遅れ破壊特性に優れている。そのため、自動車用強度部品、例えば、フロントやリア部のサイドメンバ、クラッシュボックスなどの衝突部品をはじめ、センターピラーレインフォースなどのピラー類、ルーフレールレインフォース、サイドシル、フロアメンバー、キック部などの車体構成部品に使用できる。 The high-strength plated steel sheet of the present invention has high strength, and is excellent in workability (elongation, bendability, and hole expandability) and delayed fracture resistance. For this reason, automotive strength components such as front and rear side members, crash parts such as crash boxes, pillars such as center pillar reinforcements, roof rail reinforcements, side sills, floor members, kick parts, etc. Can be used for parts.
 本願は、2015年1月9日に出願された日本国特許出願第2015-3705号、および2015年9月15日に出願された日本国特許出願第2015-182115号に基づく優先権の利益を主張するものである。上記日本国特許出願第2015-3705号、および上記日本国特許出願第2015-182115号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2015-3705 filed on January 9, 2015 and Japanese Patent Application No. 2015-182115 filed on September 15, 2015. It is what I insist. The entire contents of the above Japanese Patent Application No. 2015-3705 and the above Japanese Patent Application No. 2015-182115 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and can be implemented with modifications within a range that can be adapted to the above and the gist. They are all included in the technical scope of the present invention.
 下記表1に示す成分を含有し、残部は鉄および不可避不純物からなるスラブを1250℃に加熱し、仕上げ圧延温度900℃で2.4mmまで熱間圧延した後、下記表2~表4に示す温度で巻き取り、熱延鋼板を製造した。なお、下記表3に示したNo.24~32、35、37、39、下記表4に示したNo.41、43、47、49~51については、巻き取った熱延鋼板をセラミックファイバーの断熱装置に入れて、保温した。下記表3、表4に、500℃以上で保温したときの時間を示す。保温時間は、コイル外周部に熱電対を取り付けて測定した。 It contains the components shown in Table 1 below, and the balance is iron and inevitable impurities slab heated to 1250 ° C. and hot rolled to 2.4 mm at a finish rolling temperature of 900 ° C., then shown in Tables 2 to 4 below. It was wound up at a temperature to produce a hot rolled steel sheet. In addition, No. shown in Table 3 below. 24 to 32, 35, 37, 39, No. shown in Table 4 below. As for Nos. 41, 43, 47, and 49 to 51, the rolled hot-rolled steel sheet was put in a ceramic fiber heat insulating device and kept warm. Tables 3 and 4 below show the time when the temperature was kept at 500 ° C. or higher. The heat retention time was measured by attaching a thermocouple to the outer periphery of the coil.
 次に、得られた熱延鋼板を、以下の条件で酸洗した後、冷延率50%で冷間圧延した。冷延後の板厚は1.2mmである。
酸洗液:10%塩酸、温度:82℃、酸洗時間:表2~表4のとおり。
Next, the obtained hot-rolled steel sheet was pickled under the following conditions, and then cold-rolled at a cold rolling rate of 50%. The plate thickness after cold rolling is 1.2 mm.
Pickling solution: 10% hydrochloric acid, temperature: 82 ° C., pickling time: as shown in Tables 2 to 4.
 次に、連続溶融Znめっきラインにて、下記表2~表4に示す条件で焼鈍(酸化、還元)および冷却を行なった。連続溶融Znめっきラインに設置された酸化炉の温度は800℃とした。下記表2~表4に、酸化炉における空気比を示す。また、連続溶融Znめっきラインに設置された還元炉における水素濃度は20体積%とし、残部は窒素および不可避不純物、露点は-45℃に制御した。還元炉では、最高到達温度を下記表2~表4に示す温度として均熱処理した。下記表2~表4に示す最高到達温度での保持時間はすべて50秒とした。なお、下記表2~表4には、表1に示した成分組成および上記式(i)に基づいて算出したAc3点の温度を示す。 Next, annealing (oxidation, reduction) and cooling were performed in the continuous hot-dip Zn plating line under the conditions shown in Tables 2 to 4 below. The temperature of the oxidation furnace installed in the continuous molten Zn plating line was set to 800 ° C. Tables 2 to 4 below show the air ratio in the oxidation furnace. The hydrogen concentration in the reduction furnace installed in the continuous hot dip Zn plating line was 20% by volume, the balance was nitrogen and inevitable impurities, and the dew point was controlled at -45 ° C. In the reduction furnace, soaking was performed at the maximum reached temperature shown in Tables 2 to 4 below. The holding times at the highest temperatures shown in Tables 2 to 4 below were all 50 seconds. Tables 2 to 4 below show the temperatures of the Ac 3 points calculated based on the component compositions shown in Table 1 and the above formula (i).
 均熱後、100~540℃を満たす任意の停止温度Zまで冷却すると共に、750℃から、前記停止温度Zまたは500℃のうち高い方の温度までの範囲を、下記表2~表4に示す平均冷却速度で冷却し、この温度で下記表2~表4に示す時間保持した。このとき、具体的には、下記表2~表4に示したNo.20、25、34、44、46、50は上記(a1)、No.1、2、10、21~23、31、33、35、36、42は上記(a2)、No.13~15、18、24、27、32、37、45、49、52は上記(a3)、No.6、9、12、17、30、43は上記(b)、No.3~5、7、8、11、16、26、28、29、41、47、48、51は上記(c1)、No.19は上記(c2)に示したヒートパターンに基づいて冷却停止温度を決定すると共に、冷却停止後の保持を行なった。なお、下記表2~表4には、表1に示した成分組成および上記式(ii)に基づいて算出したMs点の温度を示す。 After soaking, it is cooled to an arbitrary stop temperature Z satisfying 100 to 540 ° C., and ranges from 750 ° C. to the higher one of the stop temperature Z or 500 ° C. are shown in Tables 2 to 4 below. The solution was cooled at an average cooling rate and held at this temperature for the time shown in Tables 2 to 4 below. At this time, specifically, No. 1 shown in Tables 2 to 4 below. 20, 25, 34, 44, 46, 50 are the above (a1), No. 1, 2, 10, 21 to 23, 31, 33, 35, 36, 42 are the above (a2), no. 13 to 15, 18, 24, 27, 32, 37, 45, 49, 52 are the above (a3), No. 6, 9, 12, 17, 30, 43 are the above (b), no. 3-5, 7, 8, 11, 16, 26, 28, 29, 41, 47, 48, 51 are the above (c1), No. No. 19 determined the cooling stop temperature based on the heat pattern shown in (c2) above, and held after the cooling stop. Tables 2 to 4 below show the temperature at the Ms point calculated based on the component composition shown in Table 1 and the above formula (ii).
 冷却停止後、その温度で保持した場合は、下記表2~表4では、冷却停止温度の欄とオーステンパ温度の欄に同じ温度を示し、冷却停止温度で保持したときの時間をオーステンパ時間の欄に示した。冷却停止後、その温度で保持してから加熱するか、冷却し、温度を変化させた場合は、変化後の温度をオーステンパ温度の欄に示し、変化後の温度での保持時間をオーステンパ時間の欄に示した。 When holding at that temperature after stopping cooling, in Tables 2 to 4 below, the same temperature is shown in the cooling stop temperature column and the austempering temperature column, and the time when holding at the cooling stop temperature is the austempering time column It was shown to. When cooling is stopped and then heated or cooled and the temperature is changed, the changed temperature is shown in the austempering temperature column, and the holding time at the changed temperature is the austempered time. Shown in the column.
 その後、460℃の亜鉛めっき浴に浸漬し、5秒程度浸漬した後、室温まで平均冷却速度5℃/秒で冷却し、溶融亜鉛めっき鋼板(GI)を得た。合金化溶融亜鉛めっき鋼板(GA)については、上記の亜鉛めっき浴に浸漬して溶融亜鉛めっきを施した後、500℃に加熱し、この温度で20秒間保持して合金化処理を行なってから、室温まで平均冷却速度10℃/秒で冷却した。下記表2~表4にGIまたはGAの区別を示す。 Thereafter, it was immersed in a 460 ° C. galvanizing bath and immersed for about 5 seconds, and then cooled to room temperature at an average cooling rate of 5 ° C./second to obtain a hot dip galvanized steel sheet (GI). For the alloyed hot dip galvanized steel sheet (GA), after dip galvanizing by immersing in the above galvanizing bath, it is heated to 500 ° C. and kept at this temperature for 20 seconds before being alloyed. And cooled to room temperature at an average cooling rate of 10 ° C./second. Tables 2 to 4 below show the distinction between GI and GA.
 得られた溶融亜鉛めっき鋼板(GI)または合金化溶融亜鉛めっき鋼板(GA)について、以下の特性を評価した。 The following properties were evaluated for the obtained hot-dip galvanized steel sheet (GI) or alloyed hot-dip galvanized steel sheet (GA).
 なお、内部酸化層の平均深さは、以下に示すように、めっき鋼板のみならず、参考のため、酸洗、冷間圧延後の素地鋼板についても同様に測定した。これは、熱間圧延後の巻取温度や酸洗条件などの制御により、焼鈍前の冷延鋼板において、既に、所望とする内部酸化層の平均深さが得られていることを確認するためである。 In addition, as shown below, the average depth of the internal oxide layer was measured not only on the plated steel sheet but also on the base steel sheet after pickling and cold rolling for reference. This is to confirm that the desired average depth of the internal oxide layer has already been obtained in the cold-rolled steel sheet before annealing by controlling the coiling temperature and pickling conditions after hot rolling. It is.
 (1)めっき鋼板における内部酸化層の平均深さdの測定
 めっき鋼板の板幅をWとしたとき、W/4部からサイズ50mm×50mmの試験片を採取した後、グロー放電発光分析法(GD-OES;Glow Discharge-Optical Emission Spectroscopy)にて、めっき層表面からのO量、Fe量、およびZn量をそれぞれ分析し、定量した。詳細には、堀場製作所製GD-PROFILER2型GDA750のGD-OES装置を用いて、上記試験片の表面を、Arグロー放電領域内で高周波スパッタリングした。スパッタされるO、Fe、Znの各元素のArプラズマ内における発光線を連続的に分光することによって、素地鋼板の深さ方向における各元素量プロファイル測定した。スパッタ条件は以下のとおりであり、測定領域は、めっき層表面から深さ50μmまでとした。
 (スパッタリング条件)
パルススパッタ周波数 :50Hz
アノード径(分析面積):直径6mm
放電電力       :30W
Arガス圧      :2.5hPa
(1) Measurement of the average depth d of the internal oxide layer in the plated steel sheet When the width of the plated steel sheet is W, a specimen having a size of 50 mm × 50 mm is taken from W / 4 part, and then the glow discharge emission analysis method ( The amount of O, the amount of Fe, and the amount of Zn from the plating layer surface were each analyzed and quantified by GD-OES; Glow Discharge-Optical Emission Spectroscopy). Specifically, the surface of the test piece was subjected to high-frequency sputtering in an Ar glow discharge region using a GD-PROFILER 2 type GDA750 GD-OES apparatus manufactured by Horiba. Each element amount profile in the depth direction of the base steel sheet was measured by continuously dispersing the emission lines in the Ar plasma of each element of O, Fe, and Zn to be sputtered. The sputtering conditions were as follows, and the measurement region was set to a depth of 50 μm from the plating layer surface.
(Sputtering conditions)
Pulse sputtering frequency: 50Hz
Anode diameter (analysis area): Diameter 6 mm
Discharge power: 30W
Ar gas pressure: 2.5 hPa
 分析結果を図2に示す。図2において、めっき層1表面からのZn量とFe量が等しくなる位置をめっき層1と素地鋼板2の界面とした。 The analysis results are shown in FIG. In FIG. 2, the position where the Zn content and the Fe content from the surface of the plating layer 1 are equal is defined as the interface between the plating layer 1 and the base steel plate 2.
 また、めっき層1表面から深さ40~50μmでの各測定位置におけるO量の平均値をバルクのO量平均値とし、それより0.02%高い範囲、すなわち、O量≧(バルクのO量平均値+0.02%)を内部酸化層3と定義し、その最大深さを内部酸化層深さとした。同様の試験を、3つの試験片を用いて実施し、その平均を内部酸化層3の平均深さd(μm)とした。結果を下記表5~表7に示す。 Further, the average value of the O amount at each measurement position at a depth of 40 to 50 μm from the surface of the plating layer 1 is defined as the bulk O amount average value, and a range higher by 0.02%, that is, the O amount ≧ (bulk O The amount average value + 0.02%) was defined as the internal oxide layer 3, and the maximum depth was defined as the internal oxide layer depth. A similar test was performed using three test pieces, and the average was defined as the average depth d (μm) of the internal oxide layer 3. The results are shown in Tables 5 to 7 below.
 (2)酸洗・冷間圧延後の内部酸化層深さの測定(参考)
 酸洗・冷間圧延後の素地鋼板を用いたこと以外は上記(1)と同様にして、内部酸化層の平均深さを算出した。算出結果を下記表2~表4に示す。
(2) Measurement of internal oxide layer depth after pickling and cold rolling (reference)
The average depth of the internal oxide layer was calculated in the same manner as in the above (1) except that the base steel sheet after pickling and cold rolling was used. The calculation results are shown in Tables 2 to 4 below.
 (3)軟質層の平均深さDの測定
 めっき鋼板の板幅W方向に対して垂直な断面であるW/4部を露出させ、サイズ20mm×20mmの試験片を採取した後、樹脂に埋め込み、めっき層と素地鋼板の界面から素地鋼板の板厚t内部に向かってビッカース硬さを測定した。測定はビッカース硬度計を用い、荷重3gfにて行った。詳細には、図3に示すように、めっき層1と素地鋼板2の界面から板厚内部深さ10μmの測定位置から、板厚内部に向かって5μmピッチごとに測定を行い、深さ100μmまでビッカース硬さを測定した。図3において×はビッカース硬さの測定点を示しており、測定点同士の間隔;すなわち図3中、×と×の距離は、最低でも15μm以上とした。各深さでビッカース硬さをn=1ずつ測定し、板厚内部方向の硬さ分布を調査した。更に、素地鋼板の板厚をtとしたとき、t/4部におけるビッカース硬さを、ビッカース硬度計を用いて荷重1kgfにて測定した(n=1)。素地鋼板のt/4部におけるビッカース硬さと比較してビッカース硬さが90%以下の領域を軟質層とし、その深さを計算した。同様の試験を同じ試験片で10箇所実施し、その平均を軟質層の平均深さD(μm)とした。結果を下記表5~表7に示す。下記表5~表7には、内部酸化層の平均深さdと軟質層の平均深さDに基づいて、D/2dの値を算出した結果も併せて示す。
(3) Measurement of average depth D of soft layer After exposing W / 4 part which is a cross section perpendicular to the plate width W direction of the plated steel sheet, a test piece having a size of 20 mm × 20 mm was collected and embedded in resin. The Vickers hardness was measured from the interface between the plating layer and the base steel plate toward the inside of the thickness t of the base steel plate. The measurement was performed using a Vickers hardness meter at a load of 3 gf. Specifically, as shown in FIG. 3, from the measurement position of the plate thickness internal depth 10 μm from the interface between the plating layer 1 and the base steel plate 2, the measurement is performed every 5 μm pitch toward the plate thickness inside to the depth of 100 μm. Vickers hardness was measured. In FIG. 3, “x” indicates a measurement point of Vickers hardness, and the distance between the measurement points; that is, the distance between “x” and “x” in FIG. 3 is at least 15 μm or more. The Vickers hardness was measured at each depth n = 1, and the hardness distribution in the thickness direction was investigated. Furthermore, when the thickness of the base steel sheet is t, the Vickers hardness at t / 4 part was measured with a load of 1 kgf using a Vickers hardness meter (n = 1). The area where the Vickers hardness was 90% or less compared with the Vickers hardness at t / 4 part of the base steel sheet was defined as the soft layer, and the depth was calculated. A similar test was performed at 10 locations on the same test piece, and the average was defined as the average depth D (μm) of the soft layer. The results are shown in Tables 5 to 7 below. Tables 5 to 7 below also show the results of calculating the value of D / 2d based on the average depth d of the internal oxide layer and the average depth D of the soft layer.
 (4)めっき鋼板の組織分率の測定方法
 めっき鋼板を構成する素地鋼板の金属組織を次の手順で観察した。金属組織分率は、低温変態生成相、ポリゴナルフェライト、および残留γについて求めた。なお、低温変態生成相は、高温域生成ベイナイトと低温域生成ベイナイト等に区別して面積率を求めた。具体的には、金属組織のうち、高温域生成ベイナイト、低温域生成ベイナイト等(即ち、低温域生成ベイナイト+焼戻しマルテンサイト)、およびポリゴナルフェライトの面積率は走査型電子顕微鏡(SEM)観察した結果に基づいて算出し、残留γの体積率は飽和磁化法で測定した。
(4) Measuring method of the structure fraction of a plated steel plate The metal structure of the base steel plate which comprises a plated steel plate was observed in the following procedure. The metal structure fraction was determined for the low temperature transformation phase, polygonal ferrite, and residual γ. In addition, the low-temperature transformation production | generation phase calculated | required the area ratio by distinguishing in high temperature range production | generation bainite, low temperature range production | generation bainite, etc. Specifically, among the metal structures, the area ratio of high-temperature region-generated bainite, low-temperature region-generated bainite and the like (that is, low-temperature region-generated bainite + tempered martensite) and polygonal ferrite were observed with a scanning electron microscope (SEM). Based on the results, the volume fraction of residual γ was measured by the saturation magnetization method.
 (4-1)高温域生成ベイナイト、低温域生成ベイナイト等、ポリゴナルフェライトの面積率
 素地鋼板の圧延方向に平行な断面の表面を研磨し、更に電解研磨した後、ナイタール腐食させて板厚の1/4位置をSEMで、倍率3000倍で5視野観察した。観察視野は約50μm×約50μmとした。
(4-1) Area ratio of polygonal ferrite such as high-temperature region-generated bainite, low-temperature region-generated bainite, etc. After polishing the surface of the cross-section parallel to the rolling direction of the base steel sheet, and further electrolytically polishing, The ¼ position was observed with SEM at 5 magnifications at 3000 magnifications. The observation visual field was about 50 μm × about 50 μm.
 次に、観察視野内において、白色または薄い灰色として観察される残留γと炭化物の平均間隔を前述した方法に基づいて測定した。これらの平均間隔によって区別される高温域生成ベイナイトおよび低温域生成ベイナイト等の面積率は、点算法により測定した。 Next, in the observation field of view, the average interval between residual γ and carbides observed as white or light gray was measured based on the method described above. The area ratios of the high-temperature region-generated bainite and the low-temperature region-generated bainite, which are distinguished by these average intervals, were measured by a point calculation method.
 高温域生成ベイナイトの面積率をa(%)、低温域生成ベイナイトと焼戻しマルテンサイトとの合計面積率をb(%)、ポリゴナルフェライトの面積率をc(%)として結果を下記表5~表7に示す。上記面積率aと上記面積率bの合計が、低温変態生成相の面積率となる。 The results are shown in Tables 5 to 5 below, where a (%) is the area ratio of the high temperature region bainite, b (%) is the total area ratio of the low temperature region bainite and tempered martensite, and c (%) is the polygonal ferrite area ratio. Table 7 shows. The sum of the area ratio a and the area ratio b is the area ratio of the low temperature transformation generation phase.
 (4-2)残留γの体積率
 金属組織のうち、残留γの体積率は、飽和磁化法で測定した。具体的には、素地鋼板の飽和磁化Iと、400℃で15時間熱処理した標準試料の飽和磁化Isを測定し、下記式から残留γの体積率Vγrを求めた。飽和磁化の測定は、理研電子製の直流磁化B-H特性自動記録装置「modelBHS-40」を用い、最大印加磁化を5000(Oe)として室温で測定した。結果を下記表5~表7に示す。
Vγr=(1-I/Is)×100
(4-2) Volume ratio of residual γ Of the metal structure, the volume ratio of residual γ was measured by a saturation magnetization method. Specifically, the saturation magnetization I of the base steel sheet and the saturation magnetization Is of a standard sample heat-treated at 400 ° C. for 15 hours were measured, and the volume fraction Vγr of residual γ was obtained from the following equation. The saturation magnetization was measured at room temperature using a direct current magnetization BH characteristic automatic recording device “model BHS-40” manufactured by Riken Denshi with a maximum applied magnetization of 5000 (Oe). The results are shown in Tables 5 to 7 below.
Vγr = (1−I / Is) × 100
 (4-3)MA混合相の個数割合
 素地鋼板の圧延方向に平行な断面の表面を研磨し、光学顕微鏡で、倍率1000倍で5視野観察し、残留γと焼入れマルテンサイトとが複合したMA混合相の円相当直径を測定した。MA混合相の全個数に対して、観察断面での円相当直径が5μmを超えるMA混合相の個数割合を算出した。MA混合相が観察されないか、個数割合が15%未満の場合を「A」、15%以上の場合を「B」とし、評価結果を下記表5~表7に示す。なお、本発明では、評価Aであることが好ましい。
(4-3) Number ratio of MA mixed phase The surface of a cross section parallel to the rolling direction of the base steel plate is polished, and observed with an optical microscope at five magnifications at 1000 magnifications, and MA in which residual γ and quenching martensite are combined. The equivalent circle diameter of the mixed phase was measured. The ratio of the number of MA mixed phases in which the equivalent circle diameter in the observation cross section exceeds 5 μm was calculated with respect to the total number of MA mixed phases. The case where no MA mixed phase is observed or the number ratio is less than 15% is “A”, and the case where the number ratio is 15% or more is “B”. The evaluation results are shown in Tables 5 to 7 below. In the present invention, evaluation A is preferred.
 (4-4)なお、一部の素地鋼板については、低温変態生成相、ポリゴナルフェライト、残留γ以外に、パーライトなどの金属組織が認められた。 (4-4) In addition, for some of the base steel sheets, metal structures such as pearlite were observed in addition to the low-temperature transformation generation phase, polygonal ferrite, and residual γ.
 (5)機械的特性の評価
 めっき鋼板の機械的特性は、引張強度TS、伸びEL、穴拡げ率λ、限界曲げ半径Rに基づいて評価した。
(5) Evaluation of mechanical properties The mechanical properties of the plated steel sheet were evaluated based on the tensile strength TS, the elongation EL, the hole expansion ratio λ, and the critical bending radius R.
 (5-1)引張強度TSと伸びELは、JIS Z2241に基づいて引張試験を行って測定した。試験片としては、めっき鋼板の圧延方向に対して垂直な方向が長手方向となるように、JIS Z2201で規定される5号試験片をめっき鋼板から切り出したものを用いた。引張強度TSおよび伸びELを測定した結果を下記表5~表7に示す。 (5-1) Tensile strength TS and elongation EL were measured by performing a tensile test based on JIS Z2241. As the test piece, a No. 5 test piece defined in JIS Z2201 was cut out from the plated steel plate so that the direction perpendicular to the rolling direction of the plated steel plate was the longitudinal direction. The results of measurement of tensile strength TS and elongation EL are shown in Tables 5 to 7 below.
 (5-2)穴拡げ性は、穴拡げ率λによって評価した。穴拡げ率λは、日本鉄鋼連盟規格JFS T1001に基づいて穴拡げ試験を実施して測定した。詳細には、めっき鋼板に直径10mmの穴を打ち抜いた後、周囲を拘束した状態で60°円錐のポンチを穴に押し込み、亀裂発生限界における穴の直径を測定した。下記式から穴拡げ率λ(%)を求めた。下記式中、Dfは亀裂発生限界における穴の直径(mm)、D0は初期穴の直径(mm)をそれぞれ示す。結果を下記表5~表7に示す。
穴拡げ率λ(%)={(Df-D0)/D0}×100
(5-2) The hole expandability was evaluated by the hole expansion rate λ. The hole expansion rate λ was measured by conducting a hole expansion test based on the Japan Iron and Steel Federation standard JFS T1001. Specifically, after punching a hole with a diameter of 10 mm in a plated steel sheet, a punch having a 60 ° cone was pushed into the hole in a state where the periphery was constrained, and the hole diameter at the crack initiation limit was measured. The hole expansion rate λ (%) was obtained from the following formula. In the following formula, Df represents the diameter (mm) of the hole at the crack initiation limit, and D0 represents the diameter (mm) of the initial hole. The results are shown in Tables 5 to 7 below.
Hole expansion ratio λ (%) = {(Df−D0) / D0} × 100
 (5-3)曲げ性は、限界曲げ半径Rによって評価した。限界曲げ半径Rは、JIS Z2248に基づいてV曲げ試験を行なって測定した。試験片は、めっき鋼板の圧延方向に対して垂直な方向が長手方向、即ち、曲げ稜線が圧延方向と一致するように、JIS Z2204で規定される1号試験片をめっき鋼板から切り出したものを用いた。試験片の板厚は1.4mmである。なお、上記V曲げ試験は、亀裂が発生しないように試験片の長手方向の端面に機械研削を施してから行った。 (5-3) The bendability was evaluated by the limit bending radius R. The critical bending radius R was measured by performing a V-bending test based on JIS Z2248. The test piece was obtained by cutting out the No. 1 test piece defined in JIS Z2204 from the plated steel sheet so that the direction perpendicular to the rolling direction of the plated steel sheet was the longitudinal direction, that is, the bending ridge line coincided with the rolling direction. Using. The plate thickness of the test piece is 1.4 mm. The V-bending test was performed after mechanical grinding was performed on the end face in the longitudinal direction of the test piece so that no crack was generated.
 上記V曲げ試験は、ダイとパンチの角度を90°とし、パンチの先端半径を0.5mm単位で変えて行い、亀裂が発生せずに曲げることができるパンチ先端半径を限界曲げ半径Rとして求めた。結果を下記表5~表7に示す。なお、亀裂発生の有無はルーペを用いて観察し、ヘアークラック発生なしを基準として判定した。 The V-bending test is performed by setting the die-to-punch angle to 90 °, and changing the tip radius of the punch in units of 0.5 mm, and obtaining the punch tip radius that can be bent without cracks as the limit bending radius R. It was. The results are shown in Tables 5 to 7 below. In addition, the presence or absence of crack generation was observed using a loupe, and the determination was made based on the absence of hair crack generation.
 めっき鋼板の機械的特性は、鋼板の金属組織および引張強度TSに応じた伸びEL、穴拡げ率λ、限界曲げ半径Rの基準に従って評価した。即ち、上記低温変態生成相のうち、高温域生成ベイナイトの生成量が多くなると、機械的特性のうち伸びが向上し、低温域生成ベイナイトの生成量が多くなると、機械的特性のうち穴拡げ性が向上しやすくなる。また、鋼板の機械的特性は、鋼板の引張強度TSに大きく影響を受ける。そのため、鋼板の金属組織および引張強度TSによって、要求されるEL、λ、Rは異なる。そこで、本発明では、鋼板の金属組織および引張強度TSレベルに応じて下記表8に示した基準に従って機械的特性を評価した。下記表8において、高温域生成ベイナイト主体とは、上記(C6-1)で説明した金属組織を意味し、金属組織全体に対して、高温域生成ベイナイトが50面積%超95面積%以下であり、低温域生成ベイナイトおよび焼戻しマルテンサイトを含んでもよく、上記低温域生成ベイナイトおよび上記焼戻しマルテンサイトの合計は、上記金属組織全体に対して0面積%以上20面積%未満である。高温域生成ベイナイトと低温域生成ベイナイト等の複合組織とは、上記(C6-2)で説明した金属組織を意味し、金属組織全体に対して、高温域生成ベイナイトが、金属組織全体に対して20~80面積%であり、低温域生成ベイナイトおよび焼戻しマルテンサイトの合計が、金属組織全体に対して20~80面積%である。低温域生成ベイナイト等主体とは、上記(C6-3)で説明した金属組織を意味し、金属組織全体に対して、低温域生成ベイナイトが50面積%超95面積%以下であり、高温域生成ベイナイトを含んでもよく、上記高温域生成ベイナイトは、上記金属組織全体に対して0面積%以上20面積%未満である。 The mechanical properties of the plated steel plate were evaluated according to the criteria of elongation EL, hole expansion ratio λ, and critical bending radius R according to the metal structure and tensile strength TS of the steel plate. That is, among the low-temperature transformation generation phases, when the amount of high-temperature region-generated bainite increases, the elongation is improved among the mechanical properties, and when the amount of low-temperature region-generated bainite increases, the hole expandability among the mechanical properties. It becomes easy to improve. Further, the mechanical properties of the steel plate are greatly affected by the tensile strength TS of the steel plate. Therefore, required EL, λ, and R differ depending on the metal structure and tensile strength TS of the steel plate. Therefore, in the present invention, mechanical properties were evaluated according to the criteria shown in Table 8 below according to the metal structure of the steel sheet and the tensile strength TS level. In Table 8 below, the main component of high-temperature region-generated bainite means the metal structure described in (C6-1) above, and the high-temperature region-generated bainite is greater than 50 area% and less than or equal to 95 area% with respect to the entire metal structure. The low temperature region bainite and the tempered martensite may be included, and the total of the low temperature region bainite and the tempered martensite is 0 area% or more and less than 20 area% with respect to the entire metal structure. The composite structure such as high temperature region bainite and low temperature region bainite means the metal structure described in the above (C6-2), and the high temperature region bainite is compared to the whole metal structure. The total of the low-temperature region bainite and the tempered martensite is 20 to 80 area% with respect to the entire metal structure. The main component such as low temperature region bainite means the metal structure described in (C6-3) above, and the low temperature region bainite is more than 50 area% and not more than 95 area% with respect to the whole metal structure, Bainite may be included, and the high-temperature region-generated bainite is 0 area% or more and less than 20 area% with respect to the entire metal structure.
 上記評価基準に基づいて、EL、λ、Rの全ての特性が満足している場合を合格、何れかの特性が基準値に満たない場合を不合格とした。なお、本発明では、TSが980MPa以上を前提としており、TSが980MPa未満の場合は、EL、λ、Rが良好であっても対象外として扱う。 Based on the above evaluation criteria, the case where all the characteristics of EL, λ, and R were satisfied was determined to be acceptable, and the case where any characteristic did not satisfy the reference value was determined to be unacceptable. In the present invention, it is assumed that TS is 980 MPa or more. When TS is less than 980 MPa, even if EL, λ, and R are good, it is treated as not applicable.
 (6)耐遅れ破壊特性試験
 めっき鋼板の板幅W方向に対して垂直な断面であるW/4部を露出させ、150mm(W)×30mm(L)の試験片を切り出し、最小曲げ半径にてU曲げ加工を行った後、ボルトで締め付け、U曲げ加工試験片の外側表面に1000MPaの引張応力を負荷した。引張応力の測定は、U曲げ加工試験片の外側に歪ゲージを貼り付け、歪を引張応力に換算して行った。その後、U曲げ加工試験片のエッジ部をマスキングし、電気化学的に水素をチャージさせた。水素チャージは、試験片を、0.1M-H2SO4(pH=3)と0.01M-KSCNの混合溶液中に浸漬し、室温且つ100μA/mm2の定電流の条件で行なった。上記水素チャージ試験の結果、24時間割れない場合を合格、すなわち耐遅れ破壊特性に優れると評価した。評価結果を下記表5~表7に示す。
(6) Delayed fracture resistance test Exposing the W / 4 section, which is a cross section perpendicular to the sheet width W direction of the plated steel sheet, cutting out a test piece of 150 mm (W) × 30 mm (L) to the minimum bending radius After the U-bending was performed, the bolt was tightened and a tensile stress of 1000 MPa was applied to the outer surface of the U-bending test piece. The tensile stress was measured by attaching a strain gauge on the outside of the U-bending test piece and converting the strain into tensile stress. Then, the edge part of the U bending process test piece was masked, and hydrogen was charged electrochemically. The hydrogen charging was performed by immersing the test piece in a mixed solution of 0.1M-H 2 SO 4 (pH = 3) and 0.01M-KSCN under the conditions of room temperature and a constant current of 100 μA / mm 2 . As a result of the hydrogen charge test, the case where it did not crack for 24 hours was evaluated as pass, that is, excellent in delayed fracture resistance. The evaluation results are shown in Tables 5 to 7 below.
 (7)めっき外観
 めっき鋼板の外観を目視で観察し、不めっきの発生の有無に基づいてめっき性を評価した。不めっき発生の有無を下記表5~表7に示す。
(7) Plating appearance The appearance of the plated steel sheet was visually observed, and the plating property was evaluated based on whether or not non-plating occurred. The presence or absence of non-plating is shown in Tables 5 to 7 below.
 下記表5~表7から以下のように考察できる。 The following Table 5 to Table 7 can be considered as follows.
 No.1~19、25~30、41、44~52は、いずれも本発明の要件を満足する例であり、強度、加工性[伸びEL、穴拡げ率λ、限界曲げ半径R]、耐遅れ破壊特性の全てが良好で、不めっきも発生しなかった。特に内部酸化層の平均深さdと軟質層の平均深さDが、D>2dの関係を満足し、下記表4および表5中、「D/2d」の値が1.00超のNo.29(D/2d=1.20)は、上記関係を満足しないNo.8(D/2d=0.81)に比べ、曲げ性が向上した。同様の傾向は、内部酸化層の平均深さdと軟質層の平均深さDが、D>2dの関係を満足するNo.30(D/2d=1.16)と、上記関係を満足しないNo.12(D/2d=0.85)についても認められた。 No. 1 to 19, 25 to 30, 41, 44 to 52 are examples that satisfy the requirements of the present invention, and are strength, workability [elongation EL, hole expansion ratio λ, critical bending radius R], delayed fracture resistance All of the characteristics were good and no plating occurred. In particular, the average depth d of the internal oxide layer and the average depth D of the soft layer satisfy the relationship of D> 2d, and in Tables 4 and 5 below, the value of “D / 2d” exceeds 1.00. . 29 (D / 2d = 1.20) is No. which does not satisfy the above relationship. Compared to 8 (D / 2d = 0.81), the bendability was improved. A similar tendency is obtained when the average depth d of the internal oxide layer and the average depth D of the soft layer satisfy the relationship of D> 2d. No. 30 (D / 2d = 1.16), which does not satisfy the above relationship. 12 (D / 2d = 0.85) was also observed.
 これに対し、No.20~24、31~39、42、43は、本発明で規定する要件を満足しない例である。 On the other hand, No. Examples 20 to 24, 31 to 39, 42, and 43 are examples that do not satisfy the requirements defined in the present invention.
 No.20は、C量が少ない例であり、残留γの生成量が少なくなり、強度不足となった。 No. No. 20 is an example in which the amount of C is small, the amount of residual γ produced is small, and the strength is insufficient.
 No.21は、Si量が少ない例であり、内部酸化層が充分に生成されず、曲げ性および耐遅れ破壊特性が低下した。 No. No. 21 is an example in which the amount of Si is small, the internal oxide layer is not sufficiently formed, and the bendability and delayed fracture resistance are deteriorated.
 No.22は、Mn量が少ない例であり、焼入れ性が悪いためポリゴナルフェライトが過剰に生成し、低温変態生成相が充分に生成しなかった。また、残留γの生成量が少なかった。その結果、TSが低下した。 No. No. 22 is an example in which the amount of Mn is small. Since hardenability is poor, polygonal ferrite is excessively generated, and the low-temperature transformation generation phase is not sufficiently generated. Further, the amount of residual γ produced was small. As a result, TS decreased.
 No.23および31は、熱延時の巻取温度が低い例であり、酸洗・冷延後の内部酸化層の平均深さが浅いため、めっき後の内部酸化層の平均深さd、軟質層の平均深さDも浅くなった。その結果、曲げ性、耐遅れ破壊特性、およびめっき性が低下した。 No. 23 and 31 are examples in which the coiling temperature at the time of hot rolling is low, and the average depth of the internal oxide layer after pickling and cold rolling is shallow, so the average depth d of the internal oxide layer after plating, The average depth D has also become shallower. As a result, bendability, delayed fracture resistance, and plating properties were reduced.
 No.24は、熱延時の保温時間が不充分な例であり、酸洗・冷延後の内部酸化層の平均深さが浅いため、めっき後の内部酸化層の平均深さd、軟質層の平均深さDも浅くなった。その結果、曲げ性、耐遅れ破壊特性、およびめっき性が低下した。 No. 24 is an example in which the heat retention time at the time of hot rolling is insufficient, and since the average depth of the internal oxide layer after pickling and cold rolling is shallow, the average depth d of the internal oxide layer after plating, the average of the soft layer The depth D has also become shallower. As a result, bendability, delayed fracture resistance, and plating properties were reduced.
 No.32、42は、酸洗時間が長い例であり、内部酸化層が溶解されてしまい、所望とする内部酸化層の平均深さd、および軟質層の平均深さDが得られずに浅くなった。その結果、曲げ性、耐遅れ破壊特性、およびめっき性が低下した。 No. Nos. 32 and 42 are examples in which the pickling time is long, and the internal oxide layer is dissolved, and the average depth d of the desired internal oxide layer and the average depth D of the soft layer cannot be obtained and become shallow. It was. As a result, bendability, delayed fracture resistance, and plating properties were reduced.
 No.33、43は、酸化炉での空気比が低く、Fe酸化膜が充分に生成されなかったため、めっき性が低下した。また、軟質層も充分に生成されなかったため、曲げ性、および耐遅れ破壊特性も低下した。 No. In Nos. 33 and 43, the air ratio in the oxidation furnace was low, and the Fe oxide film was not sufficiently generated, so that the plating property was lowered. Further, since the soft layer was not sufficiently formed, the bendability and delayed fracture resistance were also deteriorated.
 No.34は、焼鈍時の均熱温度が低い例であり、二相域焼鈍となり、ポリゴナルフェライトが過剰に生成し、低温変態生成相が充分に生成しなかった。その結果、所望とする硬質層が得られず、λが低下した。 No. No. 34 is an example where the soaking temperature at the time of annealing is low, and it becomes a two-phase region annealing. Polygonal ferrite is excessively generated, and the low-temperature transformation generation phase is not sufficiently generated. As a result, the desired hard layer could not be obtained and λ decreased.
 No.35は、焼鈍時における均熱後の平均冷却速度が小さい例であり、冷却中にポリゴナルフェライトが過剰に生成したため、低温変態生成相が充分に生成しなかった。また、残留γも充分に生成されなかった。その結果、TSが低くなった。 No. No. 35 is an example in which the average cooling rate after soaking during annealing is small. Polygonal ferrite was excessively generated during cooling, so that the low-temperature transformation generation phase was not sufficiently generated. Further, residual γ was not sufficiently generated. As a result, TS became low.
 No.36は、オーステンパ時間が短すぎる例であり、塊状МAなどの組織が過剰に生成し、低温変態生成相が充分に生成しなかった。その結果、λが低く、曲げ性も低下した。 No. No. 36 is an example in which the austempering time is too short, and a structure such as massive МA was excessively generated, and the low-temperature transformation generation phase was not sufficiently generated. As a result, λ was low and the bendability was also lowered.
 No.37は、均熱後の冷却停止温度が低すぎる例であり、オーステンパ処理後に未変態部が多く残り、低温変態生成相が充分に生成しなかった。その結果、λが低く、曲げ性も低下した。 No. No. 37 was an example in which the cooling stop temperature after soaking was too low, and many untransformed portions remained after the austempering treatment, and the low-temperature transformation product phase was not sufficiently produced. As a result, λ was low and the bendability was also lowered.
 No.38は、均熱後の冷却停止温度が低すぎる例であり、残留γが充分に生成されなかった。その結果、ELが低くなった。 No. No. 38 is an example in which the cooling stop temperature after soaking is too low, and the residual γ was not sufficiently generated. As a result, EL became low.
 No.39は、均熱後の冷却停止温度が高すぎる例であり、ポリゴナルフェライトが過剰に生成したため、低温変態生成相が充分に生成しなかった。その結果、λが低く、曲げ性も低下した。 No. No. 39 is an example in which the cooling stop temperature after soaking was too high, and polygonal ferrite was excessively generated, so that the low-temperature transformation generation phase was not sufficiently generated. As a result, λ was low and the bendability was also lowered.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 1 めっき層
 2 素地鋼板
 3 内部酸化層
 4 軟質層
 5 硬質層
DESCRIPTION OF SYMBOLS 1 Plating layer 2 Base steel plate 3 Internal oxide layer 4 Soft layer 5 Hard layer

Claims (14)

  1.  素地鋼板の表面に、溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有するめっき鋼板であって、
     前記素地鋼板は、質量%で、
     C :0.10~0.5%、
     Si:1~3%、
     Mn:1.5~8%、
     Al:0.005~3%、
     P :0%超0.1%以下、
     S :0%超0.05%以下、および
     N :0%超0.01%以下を含有し、
     残部が鉄および不可避不純物からなり、
     前記素地鋼板と前記めっき層との界面から素地鋼板側に向って順に、
     SiおよびMnよりなる群から選択される少なくとも一種の酸化物を含む内部酸化層と、
     前記内部酸化層を含む層であって、且つ、前記素地鋼板の板厚をtとしたとき、ビッカース硬さが、前記素地鋼板のt/4部におけるビッカース硬さの90%以下を満足する軟質層と、
     金属組織を走査型電子顕微鏡で観察したときに、
     前記金属組織全体に対して低温変態生成相を70面積%以上含み、
     前記金属組織全体に対してポリゴナルフェライトは0面積%以上10面積%以下であり、
     前記金属組織を飽和磁化法で測定したときに、前記金属組織全体に対して残留オーステナイトを5体積%以上含む組織で構成される硬質層とを有し、且つ、
     前記軟質層の平均深さDが20μm以上、および
     前記内部酸化層の平均深さdが4μm以上、前記D未満
    を満足し、引張強度が980MPa以上である高強度めっき鋼板。
    A plated steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of the base steel sheet,
    The base steel plate is mass%,
    C: 0.10 to 0.5%,
    Si: 1 to 3%,
    Mn: 1.5-8%
    Al: 0.005 to 3%,
    P: more than 0% and 0.1% or less,
    S: more than 0% and 0.05% or less, and N: more than 0% and 0.01% or less,
    The balance consists of iron and inevitable impurities,
    In order from the interface between the base steel plate and the plating layer toward the base steel plate side,
    An internal oxide layer comprising at least one oxide selected from the group consisting of Si and Mn;
    A soft layer satisfying 90% or less of the Vickers hardness at t / 4 part of the base steel sheet when the thickness of the base steel sheet is t, the layer including the internal oxide layer. Layers,
    When observing the metal structure with a scanning electron microscope,
    Including 70 area% or more of the low-temperature transformation generation phase with respect to the entire metal structure,
    Polygonal ferrite is 0 area% or more and 10 area% or less with respect to the entire metal structure,
    A hard layer composed of a structure containing 5 volume% or more of retained austenite with respect to the entire metal structure when the metal structure is measured by a saturation magnetization method, and
    A high-strength plated steel sheet in which the average depth D of the soft layer is 20 μm or more, and the average depth d of the internal oxide layer is 4 μm or more, less than D, and the tensile strength is 980 MPa or more.
  2.  前記内部酸化層の平均深さdと前記軟質層の平均深さDは、
     D>2dの関係を満足する請求項1に記載の高強度めっき鋼板。
    The average depth d of the internal oxide layer and the average depth D of the soft layer are:
    The high-strength plated steel sheet according to claim 1 satisfying a relationship of D> 2d.
  3.  前記低温変態生成相は、
     隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm以上である高温域生成ベイナイトを含み、
     前記高温域生成ベイナイトは、前記金属組織全体に対して50面積%超95面積%以下であり、
     隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm未満である低温域生成ベイナイト、および焼戻しマルテンサイトを含んでもよく、
     前記低温域生成ベイナイトおよび前記焼戻しマルテンサイトの合計は、前記金属組織全体に対して0面積%以上20面積%未満である請求項1または2に記載の高強度めっき鋼板。
    The low temperature transformation generation phase is
    Including high temperature region bainite in which the average distance between adjacent residual austenite, adjacent carbides, or adjacent residual austenite and carbide is 1 μm or more,
    The high-temperature region-generated bainite is more than 50 area% and not more than 95 area% with respect to the entire metal structure,
    Adjacent residual austenite, adjacent carbides, or low-temperature region bainite having an average interval between adjacent residual austenite and carbide of less than 1 μm, and tempered martensite may be included,
    3. The high-strength plated steel sheet according to claim 1, wherein a total of the low temperature region bainite and the tempered martensite is 0 area% or more and less than 20 area% with respect to the entire metal structure.
  4.  前記低温変態生成相は、
     隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm以上である高温域生成ベイナイト、
     隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm未満である低温域生成ベイナイト、および
     焼戻しマルテンサイトを含み、
     前記高温域生成ベイナイトは、前記金属組織全体に対して20~80面積%であり、
     前記低温域生成ベイナイトおよび前記焼戻しマルテンサイトの合計は、前記金属組織全体に対して20~80面積%である請求項1または2に記載の高強度めっき鋼板。
    The low temperature transformation generation phase is
    High temperature zone bainite in which the average distance between adjacent residual austenite, adjacent carbides, or adjacent residual austenite and carbide is 1 μm or more,
    Including low-temperature region bainite in which the average distance between adjacent residual austenite, adjacent carbides, or adjacent residual austenite and carbide is less than 1 μm, and tempered martensite,
    The high temperature region-generated bainite is 20 to 80% by area with respect to the entire metal structure,
    The high-strength plated steel sheet according to claim 1 or 2, wherein the total of the low-temperature region-generated bainite and the tempered martensite is 20 to 80 area% with respect to the entire metal structure.
  5.  前記低温変態生成相は、
     隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm未満である低温域生成ベイナイト、および焼戻しマルテンサイトを含み、
     前記低温域生成ベイナイトおよび前記焼戻しマルテンサイトの合計は、前記金属組織全体に対して50面積%超95面積%以下であり、
     隣接する残留オーステナイト同士、隣接する炭化物同士、または隣接する残留オーステナイトと炭化物との平均間隔が1μm以上である高温域生成ベイナイトを含んでもよく、
     前記高温域生成ベイナイトは、前記金属組織全体に対して0面積%以上20面積%未満である請求項1または2に記載の高強度めっき鋼板。
    The low temperature transformation generation phase is
    Including low-temperature region bainite having an average interval between adjacent residual austenites, adjacent carbides, or adjacent residual austenite and carbides of less than 1 μm, and tempered martensite,
    The total of the low temperature region bainite and the tempered martensite is more than 50 area% and 95 area% or less with respect to the entire metal structure,
    Adjacent residual austenite, adjacent carbides, or may include high temperature region bainite having an average interval between adjacent residual austenite and carbide of 1 μm or more,
    The high-strength plated steel sheet according to claim 1 or 2, wherein the high-temperature region-generated bainite is 0 area% or more and less than 20 area% with respect to the entire metal structure.
  6.  前記素地鋼板が、更に、質量%で、以下の(a)~(d)のいずれかに属する1種以上を含有する請求項1に記載の高強度めっき鋼板。
    (a)Cr:0%超1%以下、Mo:0%超1%以下、およびB:0%超0.01%以下よりなる群から選択される少なくとも一種。
    (b)Ti:0%超0.2%以下、Nb:0%超0.2%以下、およびV:0%超0.2%以下よりなる群から選択される少なくとも一種。
    (c)Cu:0%超1%以下、およびNi:0%超1%以下よりなる群から選択される少なくとも一種。
    (d)Ca:0%超0.01%以下、Mg:0%超0.01%以下、および希土類元素:0%超0.01%以下よりなる群から選択される少なくとも一種。
    The high-strength plated steel sheet according to claim 1, wherein the base steel sheet further contains one or more of the following (a) to (d) in mass%.
    (A) At least one selected from the group consisting of Cr: more than 0% and 1% or less, Mo: more than 0% and 1% or less, and B: more than 0% and 0.01% or less.
    (B) At least one selected from the group consisting of Ti: more than 0% and 0.2% or less, Nb: more than 0% and 0.2% or less, and V: more than 0% and 0.2% or less.
    (C) At least one selected from the group consisting of Cu: more than 0% and 1% or less and Ni: more than 0% and 1% or less.
    (D) At least one selected from the group consisting of Ca: more than 0% and not more than 0.01%, Mg: more than 0% and not more than 0.01%, and rare earth elements: more than 0% and not more than 0.01%.
  7.  請求項1に記載の高強度めっき鋼板を製造する方法であって、
     前記素地鋼板の鋼中成分を満足する鋼板を、600℃以上の温度で巻取る熱間圧延工程と、
     内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、
     酸化帯にて、0.9~1.4の空気比で酸化する工程と、
     還元帯にて、Ac3点以上の範囲で均熱する工程と、
     均熱後、100~540℃を満たす任意の停止温度Zまで冷却すると共に、750℃から、前記停止温度Zまたは500℃のうち高い方の温度までの範囲は平均冷却速度10℃/秒以上で冷却し、前記100~540℃の温度域で50秒以上保持する工程、
    をこの順序で含む高強度めっき鋼板の製造方法。
    A method for producing the high-strength plated steel sheet according to claim 1,
    A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 600 ° C. or higher;
    Pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 μm or more;
    Oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4;
    In the reduction zone, soaking in a range of Ac 3 points or more,
    After soaking, it is cooled to an arbitrary stop temperature Z satisfying 100 to 540 ° C., and the range from 750 ° C. to the higher one of the stop temperature Z or 500 ° C. is an average cooling rate of 10 ° C./second or more. Cooling and holding in the temperature range of 100 to 540 ° C. for 50 seconds or more,
    A method for producing a high-strength galvanized steel sheet including the above in this order.
  8.  請求項1に記載の高強度めっき鋼板を製造する方法であって、
     前記素地鋼板の鋼中成分を満足する鋼板を、500℃以上の温度で巻取る熱間圧延工程と、
     500℃以上の温度で60分以上保温する工程と、
     内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、
     酸化帯にて、0.9~1.4の空気比で酸化する工程と、
     還元帯にて、Ac3点以上の範囲で均熱する工程と、
     均熱後、100~540℃を満たす任意の停止温度Zまで冷却すると共に、750℃から、前記停止温度Zまたは500℃のうち高い方の温度までの範囲は平均冷却速度10℃/秒以上で冷却し、前記100~540℃の温度域で50秒以上保持する工程、
    をこの順序で含む高強度めっき鋼板の製造方法。
    A method for producing the high-strength plated steel sheet according to claim 1,
    A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 500 ° C. or higher;
    Maintaining the temperature at a temperature of 500 ° C. or more for 60 minutes or more;
    Pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 μm or more;
    Oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4;
    In the reduction zone, soaking in a range of Ac 3 points or more,
    After soaking, it is cooled to an arbitrary stop temperature Z satisfying 100 to 540 ° C., and the range from 750 ° C. to the higher one of the stop temperature Z or 500 ° C. is an average cooling rate of 10 ° C./second or more. Cooling and holding in the temperature range of 100 to 540 ° C. for 50 seconds or more,
    A method for producing a high-strength galvanized steel sheet including the above in this order.
  9.  請求項3に記載の高強度めっき鋼板を製造する方法であって、
     前記素地鋼板の鋼中成分を満足する鋼板を、600℃以上の温度で巻取る熱間圧延工程と、
     内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、
     酸化帯にて、0.9~1.4の空気比で酸化する工程と、
     還元帯にて、Ac3点以上の範囲で均熱する工程と、
     均熱後、下記(a1)を満足する工程、
    をこの順序で含む高強度めっき鋼板の製造方法。
     (a1)420℃以上500℃以下を満たす任意の停止温度Za1まで冷却すると共に、
     750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、
     前記420~500℃の温度域で50秒以上保持する。
    A method for producing the high strength plated steel sheet according to claim 3,
    A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 600 ° C. or higher;
    Pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 μm or more;
    Oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4;
    In the reduction zone, soaking in a range of Ac 3 points or more,
    A step of satisfying the following (a1) after soaking,
    A method for producing a high-strength galvanized steel sheet including the above in this order.
    (A1) While cooling to an arbitrary stop temperature Z a1 that satisfies 420 ° C. or more and 500 ° C. or less,
    The range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    The temperature is maintained at 420 to 500 ° C. for 50 seconds or longer.
  10.  請求項4に記載の高強度めっき鋼板を製造する方法であって、
     前記素地鋼板の鋼中成分を満足する鋼板を、600℃以上の温度で巻取る熱間圧延工程と、
     内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、
     酸化帯にて、0.9~1.4の空気比で酸化する工程と、
     還元帯にて、Ac3点以上の範囲で均熱する工程と、
     均熱後、下記(a2)、(b)、(c1)のいずれかを満足する工程、
    をこの順序で含む高強度めっき鋼板の製造方法。
     (a2)380℃以上420℃未満を満たす任意の停止温度Za2まで冷却すると共に、
     750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、
     前記380℃以上420℃未満の温度域で50秒以上保持する。
     (b)下記式(1)を満たす任意の停止温度Zbまで冷却すると共に、
     750℃から、前記停止温度Zbまたは500℃のうち高い方の温度までの範囲は平均冷却速度を10℃/秒以上で冷却し、
     下記式(1)を満たす温度域T1で10~100秒間保持し、
     次いで、下記式(2)を満たす温度域T2に冷却し、
     この温度域T2で50秒以上保持する。
    400≦T1(℃)≦540 ・・・(1)
    200≦T2(℃)<400 ・・・(2)
     (c1)下記式(3)を満たす任意の停止温度Zc1またはMs点まで冷却すると共に、
     750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、
     下記式(3)を満たす温度域T3で5~180秒間保持し、
     次いで、下記式(4)を満たす温度域T4に加熱し、
     この温度域T4で30秒以上保持する。
    100≦T3(℃)<400 ・・・(3)
    400≦T4(℃)≦500 ・・・(4)
    A method for producing the high-strength plated steel sheet according to claim 4,
    A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 600 ° C. or higher;
    Pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 μm or more;
    Oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4;
    In the reduction zone, soaking in a range of Ac 3 points or more,
    A step of satisfying any of the following (a2), (b), and (c1) after soaking,
    A method for producing a high-strength galvanized steel sheet including the above in this order.
    (A2) While cooling to an arbitrary stop temperature Z a2 that satisfies 380 ° C. or more and less than 420 ° C.,
    The range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    The temperature is maintained at 380 ° C. or higher and lower than 420 ° C. for 50 seconds or longer.
    (B) While cooling to an arbitrary stop temperature Z b satisfying the following formula (1),
    The range from 750 ° C. to the higher one of the stop temperature Z b or 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    Hold for 10 to 100 seconds in the temperature range T1 satisfying the following formula (1),
    Then, it is cooled to a temperature range T2 that satisfies the following formula (2),
    Hold in this temperature range T2 for 50 seconds or more.
    400 ≦ T1 (° C.) ≦ 540 (1)
    200 ≦ T2 (° C.) <400 (2)
    (C1) While cooling to an arbitrary stop temperature Z c1 or Ms point satisfying the following formula (3),
    The range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    Hold for 5 to 180 seconds in the temperature range T3 satisfying the following formula (3),
    Subsequently, it heats to temperature range T4 which satisfy | fills following formula (4),
    Hold in this temperature region T4 for 30 seconds or more.
    100 ≦ T3 (° C.) <400 (3)
    400 ≦ T4 (° C.) ≦ 500 (4)
  11.  請求項5に記載の高強度めっき鋼板を製造する方法であって、
     前記素地鋼板の鋼中成分を満足する鋼板を、600℃以上の温度で巻取る熱間圧延工程と、
     内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、
     酸化帯にて、0.9~1.4の空気比で酸化する工程と、
     還元帯にて、Ac3点以上の範囲で均熱する工程と、
     均熱後、下記(a3)または(c2)のいずれかを満足する工程、
    をこの順序で含む高強度めっき鋼板の製造方法。
     (a3)150℃以上380℃未満を満たす任意の停止温度Za3まで冷却すると共に、
     750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、
     前記150℃以上380℃未満の温度域で50秒以上保持する。
     (c2)下記式(3)を満たす任意の停止温度Zc2またはMs点まで冷却すると共に、
     750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、
     下記式(3)を満たす温度域T3で5~180秒間保持し、
     次いで、下記式(4)を満たす温度域T4に加熱し、
     この温度域T4で30秒以上保持する。
    100≦T3(℃)<400 ・・・(3)
    400≦T4(℃)≦500 ・・・(4)
    A method for producing the high strength plated steel sheet according to claim 5,
    A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 600 ° C. or higher;
    Pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 μm or more;
    Oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4;
    In the reduction zone, soaking in a range of Ac 3 points or more,
    A step of satisfying either of the following (a3) or (c2) after soaking:
    A method for producing a high-strength galvanized steel sheet including the above in this order.
    (A3) While cooling to an arbitrary stop temperature Z a3 satisfying 150 ° C. or more and less than 380 ° C.,
    The range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    The temperature is maintained at 150 ° C. or higher and lower than 380 ° C. for 50 seconds or longer.
    (C2) While cooling to an arbitrary stop temperature Z c2 or Ms point satisfying the following formula (3),
    The range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    Hold for 5 to 180 seconds in the temperature range T3 satisfying the following formula (3),
    Subsequently, it heats to temperature range T4 which satisfy | fills following formula (4),
    Hold in this temperature region T4 for 30 seconds or more.
    100 ≦ T3 (° C.) <400 (3)
    400 ≦ T4 (° C.) ≦ 500 (4)
  12.  請求項3に記載の高強度めっき鋼板を製造する方法であって、
     前記素地鋼板の鋼中成分を満足する鋼板を、500℃以上の温度で巻取る熱間圧延工程と、
     500℃以上の温度で60分以上保温する工程と、
     内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、
     酸化帯にて、0.9~1.4の空気比で酸化する工程と、
     還元帯にて、Ac3点以上の範囲で均熱する工程と、
     均熱後、下記(a1)を満足する工程、
    をこの順序で含む高強度めっき鋼板の製造方法。
     (a1)420℃以上500℃以下を満たす任意の停止温度Za1まで冷却すると共に、
     750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、
     前記420~500℃の温度域で50秒以上保持する。
    A method for producing the high strength plated steel sheet according to claim 3,
    A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 500 ° C. or higher;
    Maintaining the temperature at a temperature of 500 ° C. or more for 60 minutes or more;
    Pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 μm or more;
    Oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4;
    In the reduction zone, soaking in a range of Ac 3 points or more,
    A step of satisfying the following (a1) after soaking,
    A method for producing a high-strength galvanized steel sheet including the above in this order.
    (A1) While cooling to an arbitrary stop temperature Z a1 that satisfies 420 ° C. or more and 500 ° C. or less,
    The range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    The temperature is maintained at 420 to 500 ° C. for 50 seconds or longer.
  13.  請求項4に記載の高強度めっき鋼板を製造する方法であって、
     前記素地鋼板の鋼中成分を満足する鋼板を、500℃以上の温度で巻取る熱間圧延工程と、
     500℃以上の温度で60分以上保温する工程と、
     内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、
     酸化帯にて、0.9~1.4の空気比で酸化する工程と、
     還元帯にて、Ac3点以上の範囲で均熱する工程と、
     均熱後、下記(a2)、(b)、(c1)のいずれかを満足する工程、
    をこの順序で含む高強度めっき鋼板の製造方法。
     (a2)380℃以上420℃未満を満たす任意の停止温度Za2まで冷却すると共に、
     750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、
     前記380℃以上420℃未満の温度域で50秒以上保持する。
     (b)下記式(1)を満たす任意の停止温度Zbまで冷却すると共に、
     750℃から、前記停止温度Zbまたは500℃のうち高い方の温度までの範囲は平均冷却速度を10℃/秒以上で冷却し、
     下記式(1)を満たす温度域T1で10~100秒間保持し、
     次いで、下記式(2)を満たす温度域T2に冷却し、
     この温度域T2で50秒以上保持する。
    400≦T1(℃)≦540 ・・・(1)
    200≦T2(℃)<400 ・・・(2)
     (c1)下記式(3)を満たす任意の停止温度Zc1またはMs点まで冷却すると共に、
     750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、
     下記式(3)を満たす温度域T3で5~180秒間保持し、
     次いで、下記式(4)を満たす温度域T4に加熱し、
     この温度域T4で30秒以上保持する。
    100≦T3(℃)<400 ・・・(3)
    400≦T4(℃)≦500 ・・・(4)
    A method for producing the high-strength plated steel sheet according to claim 4,
    A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 500 ° C. or higher;
    Maintaining the temperature at a temperature of 500 ° C. or more for 60 minutes or more;
    Pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 μm or more;
    Oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4;
    In the reduction zone, soaking in a range of Ac 3 points or more,
    A step of satisfying any of the following (a2), (b), and (c1) after soaking,
    A method for producing a high-strength galvanized steel sheet including the above in this order.
    (A2) While cooling to an arbitrary stop temperature Z a2 that satisfies 380 ° C. or more and less than 420 ° C.,
    The range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    The temperature is maintained at 380 ° C. or higher and lower than 420 ° C. for 50 seconds or longer.
    (B) While cooling to an arbitrary stop temperature Z b satisfying the following formula (1),
    The range from 750 ° C. to the higher one of the stop temperature Z b or 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    Hold for 10 to 100 seconds in the temperature range T1 satisfying the following formula (1),
    Then, it is cooled to a temperature range T2 that satisfies the following formula (2),
    Hold in this temperature range T2 for 50 seconds or more.
    400 ≦ T1 (° C.) ≦ 540 (1)
    200 ≦ T2 (° C.) <400 (2)
    (C1) While cooling to an arbitrary stop temperature Z c1 or Ms point satisfying the following formula (3),
    The range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    Hold for 5 to 180 seconds in the temperature range T3 satisfying the following formula (3),
    Subsequently, it heats to temperature range T4 which satisfy | fills following formula (4),
    Hold in this temperature region T4 for 30 seconds or more.
    100 ≦ T3 (° C.) <400 (3)
    400 ≦ T4 (° C.) ≦ 500 (4)
  14.  請求項5に記載の高強度めっき鋼板を製造する方法であって、
     前記素地鋼板の鋼中成分を満足する鋼板を、500℃以上の温度で巻取る熱間圧延工程と、
     500℃以上の温度で60分以上保温する工程と、
     内部酸化層の平均深さdが4μm以上残るように酸洗、冷間圧延する工程と、
     酸化帯にて、0.9~1.4の空気比で酸化する工程と、
     還元帯にて、Ac3点以上の範囲で均熱する工程と、
     均熱後、下記(a3)または(c2)のいずれかを満足する工程、
    をこの順序で含む高強度めっき鋼板の製造方法。
     (a3)150℃以上380℃未満を満たす任意の停止温度Za3まで冷却すると共に、
     750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、
     前記150℃以上380℃未満の温度域で50秒以上保持する。
     (c2)下記式(3)を満たす任意の停止温度Zc2またはMs点まで冷却すると共に、
     750℃から500℃までの範囲は平均冷却速度10℃/秒以上で冷却し、
     下記式(3)を満たす温度域T3で5~180秒間保持し、
     次いで、下記式(4)を満たす温度域T4に加熱し、
     この温度域T4で30秒以上保持する。
    100≦T3(℃)<400 ・・・(3)
    400≦T4(℃)≦500 ・・・(4)
    A method for producing the high strength plated steel sheet according to claim 5,
    A hot rolling step of winding a steel plate satisfying the steel components of the base steel plate at a temperature of 500 ° C. or higher;
    Maintaining the temperature at a temperature of 500 ° C. or more for 60 minutes or more;
    Pickling and cold rolling so that the average depth d of the internal oxide layer remains 4 μm or more;
    Oxidizing in an oxidation zone at an air ratio of 0.9 to 1.4;
    In the reduction zone, soaking in a range of Ac 3 points or more,
    A step of satisfying either of the following (a3) or (c2) after soaking:
    A method for producing a high-strength galvanized steel sheet including the above in this order.
    (A3) While cooling to an arbitrary stop temperature Z a3 satisfying 150 ° C. or more and less than 380 ° C.,
    The range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    The temperature is maintained at 150 ° C. or higher and lower than 380 ° C. for 50 seconds or longer.
    (C2) While cooling to an arbitrary stop temperature Z c2 or Ms point satisfying the following formula (3),
    The range from 750 ° C. to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more,
    Hold for 5 to 180 seconds in the temperature range T3 satisfying the following formula (3),
    Subsequently, it heats to temperature range T4 which satisfy | fills following formula (4),
    Hold in this temperature region T4 for 30 seconds or more.
    100 ≦ T3 (° C.) <400 (3)
    400 ≦ T4 (° C.) ≦ 500 (4)
PCT/JP2016/050068 2015-01-09 2016-01-05 High-strength plated steel sheet and method for producing same WO2016111273A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2017009021A MX2017009021A (en) 2015-01-09 2016-01-05 High-strength plated steel sheet and method for producing same.
CN201680005037.0A CN107109576B (en) 2015-01-09 2016-01-05 High-intensitive coated steel sheet and its manufacturing method
US15/541,862 US20180010207A1 (en) 2015-01-09 2016-01-05 High-strength plated steel sheet and method for producing same
KR1020177022028A KR101833698B1 (en) 2015-01-09 2016-01-05 High Strength Plated Steel Sheet and Manufacturing Method Thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015003705 2015-01-09
JP2015-003705 2015-01-09
JP2015182115A JP6085348B2 (en) 2015-01-09 2015-09-15 High-strength plated steel sheet and its manufacturing method
JP2015-182115 2015-09-15

Publications (1)

Publication Number Publication Date
WO2016111273A1 true WO2016111273A1 (en) 2016-07-14

Family

ID=56355961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050068 WO2016111273A1 (en) 2015-01-09 2016-01-05 High-strength plated steel sheet and method for producing same

Country Status (1)

Country Link
WO (1) WO2016111273A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025674A1 (en) * 2016-08-03 2018-02-08 株式会社神戸製鋼所 High-strength steel plate and manufacturing method thereof
WO2018151331A1 (en) * 2017-02-20 2018-08-23 新日鐵住金株式会社 High strength steel plate
WO2018151322A1 (en) * 2017-02-20 2018-08-23 新日鐵住金株式会社 High strength steel sheet
CN110914464A (en) * 2017-07-31 2020-03-24 日本制铁株式会社 Hot-dip galvanized steel sheet
WO2020162560A1 (en) * 2019-02-06 2020-08-13 日本製鉄株式会社 Hot-dip galvanized steel sheet and manufacturing method therefor
EP3663426A4 (en) * 2017-07-31 2020-11-25 Nippon Steel Corporation Zinc hot-dipped steel sheet
EP3663425A4 (en) * 2017-07-31 2020-11-25 Nippon Steel Corporation Zinc hot-dipped steel sheet
WO2022196733A1 (en) * 2021-03-17 2022-09-22 日本製鉄株式会社 Steel sheet, steel member, and coated steel member
WO2022230400A1 (en) * 2021-04-27 2022-11-03 日本製鉄株式会社 Steel sheet and plated steel sheet
WO2022230401A1 (en) * 2021-04-27 2022-11-03 日本製鉄株式会社 Steel sheet and plated steel sheet
WO2022230399A1 (en) * 2021-04-27 2022-11-03 日本製鉄株式会社 Steel sheet and plated steel sheet
CN115362275A (en) * 2020-03-31 2022-11-18 杰富意钢铁株式会社 Steel sheet, component and method for producing same
CN115354237A (en) * 2022-08-29 2022-11-18 东北大学 Hot-rolled ultrahigh-strength steel plate with tensile strength of 1000MPa and preparation method thereof
KR20240027747A (en) 2021-08-02 2024-03-04 닛폰세이테츠 가부시키가이샤 high strength steel plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517257A (en) * 2003-01-15 2006-07-20 新日本製鐵株式会社 High strength hot dip galvanized steel sheet and method for producing the same
JP2006233333A (en) * 2005-01-31 2006-09-07 Nippon Steel Corp High-strength galvannealed steel sheet with fine appearance, manufacturing method therefor and manufacturing facility
WO2011025042A1 (en) * 2009-08-31 2011-03-03 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and process for producing same
JP2011231367A (en) * 2010-04-27 2011-11-17 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet and method for producing the same
JP2013122074A (en) * 2011-12-12 2013-06-20 Jfe Steel Corp High-strength steel sheet and method of producing the same
WO2014021452A1 (en) * 2012-08-03 2014-02-06 新日鐵住金株式会社 Galvanized steel sheet and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517257A (en) * 2003-01-15 2006-07-20 新日本製鐵株式会社 High strength hot dip galvanized steel sheet and method for producing the same
JP2006233333A (en) * 2005-01-31 2006-09-07 Nippon Steel Corp High-strength galvannealed steel sheet with fine appearance, manufacturing method therefor and manufacturing facility
WO2011025042A1 (en) * 2009-08-31 2011-03-03 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and process for producing same
JP2011231367A (en) * 2010-04-27 2011-11-17 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet and method for producing the same
JP2013122074A (en) * 2011-12-12 2013-06-20 Jfe Steel Corp High-strength steel sheet and method of producing the same
WO2014021452A1 (en) * 2012-08-03 2014-02-06 新日鐵住金株式会社 Galvanized steel sheet and manufacturing method therefor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025674A1 (en) * 2016-08-03 2018-02-08 株式会社神戸製鋼所 High-strength steel plate and manufacturing method thereof
WO2018151331A1 (en) * 2017-02-20 2018-08-23 新日鐵住金株式会社 High strength steel plate
WO2018151322A1 (en) * 2017-02-20 2018-08-23 新日鐵住金株式会社 High strength steel sheet
US11408046B2 (en) 2017-02-20 2022-08-09 Nippon Steel Corporation High strength steel sheet
US11261505B2 (en) 2017-02-20 2022-03-01 Nippon Steel Corporation High strength steel sheet
US11268181B2 (en) 2017-07-31 2022-03-08 Nippon Steel Corporation Hot-dip galvanized steel sheet
CN110914464A (en) * 2017-07-31 2020-03-24 日本制铁株式会社 Hot-dip galvanized steel sheet
EP3663426A4 (en) * 2017-07-31 2020-11-25 Nippon Steel Corporation Zinc hot-dipped steel sheet
EP3663424A4 (en) * 2017-07-31 2020-11-25 Nippon Steel Corporation Zinc hot-dipped steel sheet
EP3663425A4 (en) * 2017-07-31 2020-11-25 Nippon Steel Corporation Zinc hot-dipped steel sheet
CN110914464B (en) * 2017-07-31 2021-10-15 日本制铁株式会社 Hot-dip galvanized steel sheet
JP6777272B1 (en) * 2019-02-06 2020-10-28 日本製鉄株式会社 Hot-dip galvanized steel sheet and its manufacturing method
WO2020162560A1 (en) * 2019-02-06 2020-08-13 日本製鉄株式会社 Hot-dip galvanized steel sheet and manufacturing method therefor
CN115362275A (en) * 2020-03-31 2022-11-18 杰富意钢铁株式会社 Steel sheet, component and method for producing same
CN115362275B (en) * 2020-03-31 2024-03-01 杰富意钢铁株式会社 Steel sheet, component, and method for manufacturing same
WO2022196733A1 (en) * 2021-03-17 2022-09-22 日本製鉄株式会社 Steel sheet, steel member, and coated steel member
WO2022230400A1 (en) * 2021-04-27 2022-11-03 日本製鉄株式会社 Steel sheet and plated steel sheet
WO2022230401A1 (en) * 2021-04-27 2022-11-03 日本製鉄株式会社 Steel sheet and plated steel sheet
WO2022230399A1 (en) * 2021-04-27 2022-11-03 日本製鉄株式会社 Steel sheet and plated steel sheet
KR20240027747A (en) 2021-08-02 2024-03-04 닛폰세이테츠 가부시키가이샤 high strength steel plate
CN115354237A (en) * 2022-08-29 2022-11-18 东北大学 Hot-rolled ultrahigh-strength steel plate with tensile strength of 1000MPa and preparation method thereof
CN115354237B (en) * 2022-08-29 2023-11-14 东北大学 Hot-rolled ultrahigh-strength steel plate with tensile strength of 1000MPa and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6085347B2 (en) High-strength plated steel sheet and its manufacturing method
JP6085348B2 (en) High-strength plated steel sheet and its manufacturing method
WO2016111273A1 (en) High-strength plated steel sheet and method for producing same
WO2015005191A1 (en) High-strength plated steel sheet having superior plating properties, workability, and delayed fracture resistance, and method for producing same
WO2015146692A1 (en) High-strength alloyed hot-dipped galvanized steel sheet having excellent workability and delayed fracture resistance, and method for producing same
KR101605980B1 (en) High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance, and method for producing same
JP5418047B2 (en) High strength steel plate and manufacturing method thereof
JP6010144B2 (en) High strength plated steel sheet excellent in plating property, workability and delayed fracture resistance, and method for producing the same
JP5454745B2 (en) High strength steel plate and manufacturing method thereof
JP6414246B2 (en) High strength steel plate and manufacturing method thereof
JP6458833B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
JP6093411B2 (en) High strength plated steel sheet excellent in plating property, workability and delayed fracture resistance, and method for producing the same
JP6093412B2 (en) High strength plated steel sheet excellent in plating property, workability and delayed fracture resistance, and method for producing the same
WO2016111272A1 (en) High-strength plated steel sheet and method for producing same
JP2018193614A (en) High strength plating steel sheet excellent in plating property, processability and delayed fracture resistance, and manufacturing method therefor
JP5685167B2 (en) High-strength steel sheet with excellent workability and method for producing the same
WO2016111275A1 (en) High-strength plated steel sheet having excellent plating properties, workability, and delayed fracture resistance, and method for producing same
WO2016111274A1 (en) High-strength plated steel sheet having excellent plating properties, workability, and delayed fracture resistance, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15541862

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/009021

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177022028

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16735012

Country of ref document: EP

Kind code of ref document: A1