WO2016111203A1 - Method for producing 1,3-butadiene - Google Patents

Method for producing 1,3-butadiene Download PDF

Info

Publication number
WO2016111203A1
WO2016111203A1 PCT/JP2015/086235 JP2015086235W WO2016111203A1 WO 2016111203 A1 WO2016111203 A1 WO 2016111203A1 JP 2015086235 W JP2015086235 W JP 2015086235W WO 2016111203 A1 WO2016111203 A1 WO 2016111203A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
stage
acetaldehyde
butadiene
supplied
Prior art date
Application number
PCT/JP2015/086235
Other languages
French (fr)
Japanese (ja)
Inventor
海野 洋
広樹 松山
千津 稲木
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Publication of WO2016111203A1 publication Critical patent/WO2016111203A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene

Definitions

  • It relates to a method for producing 1,3-butadiene from ethanol.
  • Butadiene production from ethanol is an industrially proven technology in the past, but lost its competitiveness with the completion of butadiene extractive distillation technology for C4 fraction obtained from naphtha crackers.
  • ETB ethanol
  • C4 fraction obtained from naphtha crackers C4 fraction obtained from naphtha crackers.
  • An object of the present invention is to provide a production method for improving 1,3-butadiene selectivity.
  • ethanol was dehydrogenated in the first stage to synthesize acetaldehyde, and then in the second stage, 1,3- When synthesizing butadiene, A method for producing 1,3-butadiene, characterized in that, in the total amount of ethanol and acetaldehyde supplied to the second-stage reactor, the ethanol supply ratio is in the range of 60 to 90 mol%.
  • [5] Either [1] or [2], wherein the ethanol raw material is supplied to the first and second stage reactors, and the separated ethanol is supplied to the first stage reactor.
  • [6] Either [1] or [2], wherein the ethanol raw material is supplied to the first and second stage reactors, and the separated ethanol is supplied to the second stage reactor.
  • [7] The method for producing 1,3-butadiene according to any one of [2] to [6], wherein the content of acetaldehyde in ethanol to be recycled is 10 mol% or less.
  • [8] The 1,3-butadiene according to any one of [1] to [7], wherein no component separation is performed between the first-stage and second-stage reactors in the process described above. Production method.
  • the supply of recycled acetaldehyde to the second-stage reactor avoids the suppression of the conversion rate of the first-stage reactor, and ethanol and acetaldehyde to be supplied to the second-stage reactor.
  • the yield of 1,3-butadiene can be improved.
  • ethanol and acetaldehyde which are the raw materials, are separated when recycled, and ethanol is supplied to the first stage reactor and acetaldehyde is supplied to the second stage reactor. It is also possible to optimize the ratio of ethanol and acetaldehyde supplied to the second-stage reactor.
  • the construction cost is reduced by not separating the components between the reactors. It is also possible to reduce the manufacturing cost.
  • FIG. 1 is an explanatory diagram showing the flow of the method for producing 1,3-butadiene according to the present invention.
  • the 1,3-butadiene production apparatus 10 of this embodiment includes a first-stage reactor 11, a second-stage reactor 12, and a separation and purification apparatus 13.
  • the mixture of ethanol and acetaldehyde is sent to the second stage reactor 12 to synthesize 1,3-butadiene from ethanol and acetaldehyde.
  • Separation and purification unit 13 separates and purifies the reactor outlet gas containing 1,3-butadiene obtained in the second-stage reactor 12 and purifies the C4 fraction, light gas, heavy component, water, ethanol, acetaldehyde, etc. Isolate. Of these, unreacted ethanol and acetaldehyde are preferably recycled separately, and ethanol is sent to the first-stage reactor 11 or the second-stage reactor 12, and acetaldehyde is sent to the second-stage reactor 12.
  • First stage reactor 11 In the first stage reactor, a reaction represented by the following formula is performed, and acetaldehyde is synthesized from ethanol.
  • the ethanol raw material is not particularly limited, and examples thereof include biomass-derived ethanol such as sugar cane and corn, petroleum or natural gas, and coal-derived ethanol. In addition, if ethanol derived from biomass is used, it can contribute to greenhouse gas reduction.
  • a known copper catalyst or silver catalyst disclosed in JP-A-2005-342675, JP-A-2011-532, or the like is used.
  • Cu-based materials, metals of group 8 of the periodic table of elements such as Ni, Pd, and Pt can be suitably used, and those containing Cu are more preferable.
  • Cu alone or a material containing a two-component metal obtained by adding a transition metal element such as Cr, Co, Ni, Fe, or Mn to this can be used, and a material containing Cu and Ni is preferably used.
  • those containing a metal having three or more components are also preferably used.
  • those in which these are further supported on silicon dioxide, aluminum oxide, titanium oxide, zeolite or the like can be used.
  • CuO, ZnO, CuO / ZnO, etc. can also be used as a catalyst.
  • the reaction conditions are not particularly limited, and the reaction is usually carried out in the range of about 200 to 300 ° C. under the conditions of 0.1 to 1.0 MPa.
  • Examples of the method for bringing the raw material into contact with the catalyst include a suspension bed system, a fluidized bed system, and a fixed bed system. Further, the present invention may be either a gas phase method or a liquid phase method, but it is preferable to use the gas phase method.
  • the raw material gas for example, ethanol gas
  • the raw material gas is diluted. It may be supplied to the reactor without being diluted, or may be appropriately diluted with an inert gas such as nitrogen or water vapor and supplied to the reactor.
  • the ethanol raw material can be supplied to one or both of the first stage reactor and the second stage reactor.
  • the unreacted ethanol recovered in the first stage reactor is supplied, an embodiment in which the ethanol raw material is not supplied to the first stage reactor is also possible.
  • ethanol recovered from the reactor outlet gas containing 1,3-butadiene obtained in the second stage reactor 12 it is preferable to supply ethanol recovered from the reactor outlet gas containing 1,3-butadiene obtained in the second stage reactor 12 to the first stage reactor. You may supply.
  • the first-stage reactor a part of ethanol is converted to acetaldehyde, and this reaction has an equilibrium conversion rate. Therefore, when supplying the unreacted ethanol collected in the first stage, the conversion efficiency to acetaldehyde can be increased by separating the contained acetaldehyde and supplying only ethanol.
  • the content of acetaldehyde in the ethanol to be recycled is preferably 10 mol% or less from the viewpoint of ethanol conversion.
  • Second stage reactor 12 In the second-stage reactor, a reaction represented by the following formula is performed from a mixture of acetaldehyde and ethanol synthesized in the first-stage reactor to synthesize 1,3-butadiene.
  • the ratio of ethanol is 60 to 90 mol%, more preferably 70 to 80 mol%, out of the total of ethanol and acetaldehyde (total when added) supplied to the second stage reactor.
  • the amount of acetaldehyde necessary for the second-stage reaction can be secured, and the synthesis efficiency of 1,3-butadiene can be increased.
  • an ethanol raw material may be added to the second-stage reactor. In this way, it is possible to optimize the ethanol: acetaldehyde mol ratio supplied to the second-stage reactor.
  • the second stage reactor for example, ZrO 2 / SiO 2 , HfO 2 / SiO 2 , Ta 2 O 5 disclosed in Non-Patent Document Industrial and Engineering Chemistry, vol. 42, p.359-372 (1950), etc. / SiO 2 , MgO-SiO 2 disclosed in Non-Patent Document Bulletin of the Chemical Society of Japan, vol. 45, p.655-659 (1972), Non-patent Document Industrial and Engineering Chemistry Process Design and Development, ZnO—Al 2 O 3 and the like disclosed in vol.2, p.45-51 (1963) are used as the catalyst, but the type of the catalyst is not particularly limited.
  • the shape of the catalyst is not particularly limited, and it can be used even if it is granular, columnar, cylindrical or honeycomb.
  • the same method as the first-stage reactor can be adopted, and examples thereof include a suspension bed method, a fluidized bed method, and a fixed bed method.
  • the present invention may be either a gas phase method or a liquid phase method, but it is preferable to use a gas phase method.
  • the raw material gas for example, ethanol gas, preferably a mixture of ethanol gas and acetaldehyde gas
  • the solution may be appropriately diluted by the above and supplied to the reactor.
  • the contact time between the raw material and the catalyst can be controlled by adjusting the feed rate of the raw material, and the weight space velocity (WHSV) is 1.0 to 40 g-(EtOH + AcH ) as the total value of the raw material ethanol and the raw material acetaldehyde. ) ⁇ G ⁇ cat ⁇ 1 ⁇ h ⁇ 1 , preferably 1.0 to 5.0 g ⁇ (EtOH + AcH) ⁇ g ⁇ cat ⁇ 1 ⁇ h ⁇ 1 . If WHSV is too low, the 1,3-butadiene selectivity decreases. On the other hand, if WHSV is too high, the butadiene yield decreases.
  • WHSV weight space velocity
  • the reaction temperature is, for example, about 300 to 400 ° C., preferably 330 to 360 ° C.
  • the reaction pressure can be appropriately set within a wide range from normal pressure to high pressure. From the viewpoint of production efficiency and apparatus configuration, it is preferable to set the pressure to 0.1 to 1.0 MPa.
  • Separation and purification unit 13 After completion of the reaction, the reaction product is sent to the separation / purification device 13, for example, by a separation means such as distillation, extraction, absorption, etc., or a separation means that combines these, light gas, C4 fraction, heavy fraction, water, It can be separated into ethanol, acetaldehyde and the like.
  • FIG. 2 is an explanatory diagram showing an ethanol supply mode in the flow of the method for producing 1,3-butadiene of the present invention.
  • Various side reaction products are generated depending on the catalyst used in the first stage reactor 11 and the reaction conditions.
  • Various side reaction products are generated depending on the catalyst used in the second-stage reactor 12 and the reaction conditions.
  • the accompanying side reaction product is converted into acetaldehyde or ethanol in the first-stage reactor 11, as shown in FIG. 2 (a)
  • the ethanol raw material is supplied in the first-stage and second-stage reactions. It is preferable to supply the ethanol separated and separated to the first-stage reactor 11.
  • the accompanying side reaction product contributes to the decrease in the catalytic activity of the first-stage reactor 11, as shown in FIG.
  • the separated ethanol is preferably supplied to the second-stage reactor 12.
  • the ethanol: acetaldehyde molar (EtOH: AcH) ratio is 1: 9, 2: 8, 3: 7, 4: 6, 5: 5, 6: 4, 7: 3, 8:
  • Example 2 Ethanol / acetaldehyde ratio supplied to the second stage reactor Of the total ethanol and acetaldehyde supplied to the second stage reactor, ZrO 2 / SiO 2 (1.0 wt% ) 0.63 g of catalyst was charged into a fixed bed flow type reactor, and an experiment was conducted under the following reaction conditions.
  • the 1,3-butadiene selectivity was high when the ethanol supply ratio was in the range of 60 to 90 mol%. Further, higher results were obtained in the range of 70 to 80 mol%.
  • the higher the acetaldehyde ratio the smaller the amount of ethylene and diethyl ether produced, resulting in C5-C8 carbonization. As a result, the amount of hydrogen produced increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

[Problem] The present invention addresses the problem of providing a production method which improves the selectivity of 1,3-butadiene in a two-stage method (American method). A method for producing 1,3-butadiene with use of a two-stage reactor, which is characterized in that when acetaldehyde is synthesized by dehydrogenating ethanol in the first stage and subsequently 1,3-butadiene is synthesized from ethanol and acetaldehyde in the second stage as shown by the reaction formulae below, the supply ratio of ethanol in the total of ethanol and acetaldehyde to be supplied to the reactor of the second stage is set to a value within the range of 60-90 mol%. CH3CH2OH → CH3CHO + H2 (First stage) CH3CH2OH + CH3CHO → CH2=CH-CH=CH2 +2H2O (Second stage)

Description

1,3-ブタジエンの製造方法Method for producing 1,3-butadiene
 エタノールからの1,3-ブタジエンを製造する方法に関する。 It relates to a method for producing 1,3-butadiene from ethanol.
 エタノールからのブタジエン製造(ETB)法は、過去に工業実績のある技術であるが、ナフサクラッカーより得られたC4留分のブタジエン抽出蒸留技術の完成に伴い競争力を失ったため、一部の地域を除いて現在では使用されていない。しかしながら、近年、アジアを中心とした自動車普及台数の伸びとクラッカー原料の軽質化に伴う世界的なブタジエン需給ギャップの拡大が懸念されており、ブタジエンを単産できるETBプロセスへの関心が高まっている。 Butadiene production from ethanol (ETB) is an industrially proven technology in the past, but lost its competitiveness with the completion of butadiene extractive distillation technology for C4 fraction obtained from naphtha crackers. Currently not used except for. However, in recent years, there are concerns about the expansion of the global butadiene supply-demand gap accompanying the growth in the number of automobiles, especially in Asia, and the lighter cracker raw materials, and there is an increasing interest in the ETB process that can produce butadiene alone.
 ETB製造プロセスには、一段でエタノールからブタジエンを合成する一段法(Lebedev法)と、まずエタノールを脱水素してアセトアルデヒドを合成し、エタノールとアセトアルデヒドからブタジエンを合成する二段法(American法)がある。なお、それぞれのプロセスに使用される触媒は異なる。
・一段法
2 CH3CH2OH → CH2=CH-CH=CH2 + 2 H2O + H2
・二段法
CH3CH2OH → CH3CHO + H2
CH3CH2OH + CH3CHO → CH2=CH-CH=CH2 + 2 H2O

 1940年代から現在に至るまで、ETB反応の触媒に関する特許・文献が多数公表されているがプロセスに関する特許は少なく、1940年代のエタノールおよびアセトアルデヒドのリサイクルに関する特許(特許文献1~3)などが知られているのみである。
In the ETB manufacturing process, there is a one-step method (Lebedev method) in which butadiene is synthesized from ethanol in one step, and a two-step method (American method) in which ethanol is first dehydrogenated to synthesize acetaldehyde, and butadiene is synthesized from ethanol and acetaldehyde. is there. The catalyst used for each process is different.
・ One-step method
2 CH 3 CH 2 OH → CH 2 = CH-CH = CH 2 + 2 H 2 O + H 2
・ Two-stage method
CH 3 CH 2 OH → CH 3 CHO + H 2
CH 3 CH 2 OH + CH 3 CHO → CH 2 = CH-CH = CH 2 + 2 H 2 O

From the 1940s to the present, many patents and documents related to ETB reaction catalysts have been published, but there are few patents related to processes, and patents related to ethanol and acetaldehyde recycling in the 1940s (Patent Documents 1 to 3) are known. Only.
 しかしながら、これらの特許は2段法(American法)を対象としているものではないため、各段に供給する原料比率を示唆しているものはない。また、生成物のリサイクル量および供給する反応器を規定するものではなかった。 However, since these patents do not cover the two-stage method (American method), there is no suggestion of the ratio of raw materials supplied to each stage. Also, the amount of product recycled and the reactor to be supplied were not specified.
米国特許第2393381号U.S. Pat. No. 2,393,381 米国特許第2395057号U.S. Pat. No. 2395057 米国特許第2403743号U.S. Pat. No. 2,043,743
 本発明の課題は、1,3-ブタジエン選択率を向上させる製造方法を提供することである。 An object of the present invention is to provide a production method for improving 1,3-butadiene selectivity.
 このような状況のもと、本発明者らは、上記課題を解決すべく鋭意検討した。その結果、2段法(American法)を採用し、反応過程を複数器で段階的に行うことが有効であることが分かった。 Under such circumstances, the present inventors diligently studied to solve the above problems. As a result, it was found that it is effective to adopt a two-stage method (American method) and to carry out the reaction process step by step with a plurality of vessels.
 上記の反応式で示されるように、1段目の反応器ではエタノールの一部がアセトアルデヒドに転換するが、この反応には平衡転化率が存在する。これを考慮し、2段の反応器を使用し、それぞれの反応器へ供給する原料組成を最適化することによって、1段目反応の平衡反応阻害を緩和することが重要であることを本発明者らは見出し、本発明を完成するに至った。
[1]2段の反応器を用いて、以下の反応式に示されるように1段目でエタノールを脱水素してアセトアルデヒドを合成したのち、2段目でエタノールとアセトアルデヒドとから1,3-ブタジエンを合成するに際し、
 2段目の反応器に供給するエタノールとアセトアルデヒドの合計の内、エタノールの供給割合を60~90mol%の範囲とすることを特徴とする1,3-ブタジエンの製造方法。
As shown in the above reaction formula, a part of ethanol is converted to acetaldehyde in the first-stage reactor, and this reaction has an equilibrium conversion rate. In view of this, it is important to mitigate the equilibrium reaction inhibition of the first stage reaction by using two stage reactors and optimizing the raw material composition supplied to each reactor. The inventors have found and have completed the present invention.
[1] Using a two-stage reactor, as shown in the following reaction formula, ethanol was dehydrogenated in the first stage to synthesize acetaldehyde, and then in the second stage, 1,3- When synthesizing butadiene,
A method for producing 1,3-butadiene, characterized in that, in the total amount of ethanol and acetaldehyde supplied to the second-stage reactor, the ethanol supply ratio is in the range of 60 to 90 mol%.
 CH3CH2OH → CH3CHO + H2   (1段目)
 CH3CH2OH + CH3CHO → CH2=CH-CH=CH2 + 2 H2O    (2段目)
[2]生成物から、未反応のエタノールとアセトアルデヒドを分離して別々にリサイクルを行うことを特徴とする[1]に記載の1,3-ブタジエンの製造方法。
[3]分離したエタノールは1段目の反応器に供給し、アセトアルデヒドは2段目の反応器に供給することを特徴とする[2]に記載の1,3-ブタジエンの製造方法。
[4]エタノール原料の供給を、2段目の反応器に行うことを特徴とする[1]~[3]のいずれかに記載の1,3-ブタジエンの製造方法。
[5]エタノール原料の供給を1段目および2段目の反応器に行い、分離したエタノールの供給を1段目の反応器に行うことを特徴とする[1]または[2]のいずれかに記載の1,3-ブタジエンの製造方法。
[6]エタノール原料の供給を1段目および2段目の反応器に行い、分離したエタノールの供給を2段目の反応器に行うことを特徴とする[1]または[2]のいずれかに記載の1,3-ブタジエンの製造方法。
[7]リサイクルするエタノール中のアセトアルデヒドの含有率が10mol%以下であることを特徴とする[2]~[6]のいずれかに記載の1,3-ブタジエンの製造方法。
[8]上述したプロセスに関し、1段目、2段目の反応器の間において成分分離を行わないことを特徴とする[1]~[7]のいずれかに記載の1,3-ブタジエンの製造方法。
CH 3 CH 2 OH → CH 3 CHO + H 2 (first stage)
CH 3 CH 2 OH + CH 3 CHO → CH 2 = CH-CH = CH 2 + 2 H 2 O (2nd stage)
[2] The method for producing 1,3-butadiene according to [1], wherein unreacted ethanol and acetaldehyde are separated from the product and recycled separately.
[3] The method for producing 1,3-butadiene according to [2], wherein the separated ethanol is supplied to a first-stage reactor, and acetaldehyde is supplied to a second-stage reactor.
[4] The method for producing 1,3-butadiene according to any one of [1] to [3], wherein the ethanol raw material is supplied to a second-stage reactor.
[5] Either [1] or [2], wherein the ethanol raw material is supplied to the first and second stage reactors, and the separated ethanol is supplied to the first stage reactor. A method for producing 1,3-butadiene as described in 1. above.
[6] Either [1] or [2], wherein the ethanol raw material is supplied to the first and second stage reactors, and the separated ethanol is supplied to the second stage reactor. A method for producing 1,3-butadiene as described in 1. above.
[7] The method for producing 1,3-butadiene according to any one of [2] to [6], wherein the content of acetaldehyde in ethanol to be recycled is 10 mol% or less.
[8] The 1,3-butadiene according to any one of [1] to [7], wherein no component separation is performed between the first-stage and second-stage reactors in the process described above. Production method.
 本発明によれば、リサイクルされるアセトアルデヒドを2段目の反応器に供給することによって1段目の反応器の転化率の抑制を回避し、さらに2段目の反応器に供給するエタノールとアセトアルデヒドの比率を最適化することによって、1,3-ブタジエン収率を向上させることができる。 According to the present invention, the supply of recycled acetaldehyde to the second-stage reactor avoids the suppression of the conversion rate of the first-stage reactor, and ethanol and acetaldehyde to be supplied to the second-stage reactor. By optimizing the ratio of 1,3-butadiene, the yield of 1,3-butadiene can be improved.
 また、生成物のうち原料であるエタノールとアセトアルデヒドをリサイクルする際に分離し、エタノールを1段目反応器、アセトアルデヒドを2段目反応器に供給することによって、2段目に必要なアセトアルデヒド量を確保し、2段目の反応器に供給するエタノールとアセトアルデヒドとの比率の最適化を図ることも可能である。 In addition, ethanol and acetaldehyde, which are the raw materials, are separated when recycled, and ethanol is supplied to the first stage reactor and acetaldehyde is supplied to the second stage reactor. It is also possible to optimize the ratio of ethanol and acetaldehyde supplied to the second-stage reactor.
 さらに、本来2段法(American法)において2段の反応器の間に分離設備が存在していたが、本発明によれば、反応器間にて成分分離を行わないことによって、建設費・製造コストの削減につなげることも可能となる。 Furthermore, although separation equipment originally existed between the two-stage reactors in the two-stage method (American method), according to the present invention, the construction cost is reduced by not separating the components between the reactors. It is also possible to reduce the manufacturing cost.
本発明の製造方法の概略を示す概念図である。It is a conceptual diagram which shows the outline of the manufacturing method of this invention. 本発明の製造方法の概略におけるエタノールの供給態様を示す概念図である。It is a conceptual diagram which shows the supply aspect of ethanol in the outline of the manufacturing method of this invention. 実施例1における、原料中のエタノール含量とエタノール平衡転化率の関係を示すグラフである。It is a graph which shows the relationship between the ethanol content in a raw material in Example 1, and an ethanol equilibrium conversion rate.
 以下、本発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the present invention will be described.
 図1は、本発明の1,3-ブタジエンの製造方法の流れを示す説明図である。 FIG. 1 is an explanatory diagram showing the flow of the method for producing 1,3-butadiene according to the present invention.
 この実施形態の1,3-ブタジエンの製造装置10は、1段目反応器11、2段目反応器12、分離精製器13を備えている。 The 1,3-butadiene production apparatus 10 of this embodiment includes a first-stage reactor 11, a second-stage reactor 12, and a separation and purification apparatus 13.
 1段目反応器11でエタノールを脱水素してアセトアルデヒドを合成したのち、エタノールとアセトアルデヒドの混合物は、2段目反応器12に送られ、エタノールとアセトアルデヒドとから1,3-ブタジエンを合成する。 After dehydrogenating ethanol in the first stage reactor 11 to synthesize acetaldehyde, the mixture of ethanol and acetaldehyde is sent to the second stage reactor 12 to synthesize 1,3-butadiene from ethanol and acetaldehyde.
 分離精製器13は、2段目反応器12で得られた1,3-ブタジエンを含む反応器出口ガスを分離、精製しC4留分と、軽質ガス、重質分、水、エタノール、アセトアルデヒドなどを分離する。この内、未反応のエタノール、アセトアルデヒドは、好ましくは、別々にリサイクルされ、エタノールは1段目反応器11または2段目反応器12に、アセトアルデヒドは2段目反応器12に送られる。
1段目反応器11
 1段目反応器内では下記式で表される反応が行われ、エタノールからアセトアルデヒドが合成される。
Separation and purification unit 13 separates and purifies the reactor outlet gas containing 1,3-butadiene obtained in the second-stage reactor 12 and purifies the C4 fraction, light gas, heavy component, water, ethanol, acetaldehyde, etc. Isolate. Of these, unreacted ethanol and acetaldehyde are preferably recycled separately, and ethanol is sent to the first-stage reactor 11 or the second-stage reactor 12, and acetaldehyde is sent to the second-stage reactor 12.
First stage reactor 11
In the first stage reactor, a reaction represented by the following formula is performed, and acetaldehyde is synthesized from ethanol.
 CH3CH2OH → CH3CHO + H
 エタノール原料としては、特に限定されることが無く、例えば、サトウキビやトウモロコシなどのバイオマス由来のエタノールや、石油若しくは天然ガス、石炭由来のエタノールなどを挙げることができる。なお、バイオマス由来のエタノールを使用すれば、温室効果ガス削減に貢献することができる。
CH 3 CH 2 OH → CH 3 CHO + H 2
The ethanol raw material is not particularly limited, and examples thereof include biomass-derived ethanol such as sugar cane and corn, petroleum or natural gas, and coal-derived ethanol. In addition, if ethanol derived from biomass is used, it can contribute to greenhouse gas reduction.
 エタノールの脱水素反応では、例えば、特開2005-342675号公報、特開2011-532号公報などに開示された公知の銅触媒や銀触媒が使用される。具体的には、Cu系や、Ni、Pd、Pt等の元素周期表8族の金属等を好適に用いることができ、中でもCuを含有するものが更に好ましい。例えばCu単独あるいはこれにCr、Co、Ni、Fe、Mn等の遷移金属元素を加えた2成分の金属を含むものが挙げられ、CuとNiを含有するものが好ましく用いられる。更に3成分以上の金属を含むものも好ましく用いられる。またこれらをさらに二酸化ケイ素、酸化アルミニウム、酸化チタン、ゼオライト等に担持させたもの等も用いられる。さらに触媒としてCuO、ZnO、CuO/ZnOなどを使用することもできる。 In the ethanol dehydrogenation reaction, for example, a known copper catalyst or silver catalyst disclosed in JP-A-2005-342675, JP-A-2011-532, or the like is used. Specifically, Cu-based materials, metals of group 8 of the periodic table of elements such as Ni, Pd, and Pt can be suitably used, and those containing Cu are more preferable. For example, Cu alone or a material containing a two-component metal obtained by adding a transition metal element such as Cr, Co, Ni, Fe, or Mn to this can be used, and a material containing Cu and Ni is preferably used. Further, those containing a metal having three or more components are also preferably used. Further, those in which these are further supported on silicon dioxide, aluminum oxide, titanium oxide, zeolite or the like can be used. Furthermore, CuO, ZnO, CuO / ZnO, etc. can also be used as a catalyst.
 反応条件としては特に制限されるものではなく、通常200~300℃程度の範囲で、0.1~1.0MPaの条件で反応を行う。 The reaction conditions are not particularly limited, and the reaction is usually carried out in the range of about 200 to 300 ° C. under the conditions of 0.1 to 1.0 MPa.
 原料を上記触媒に接触させる方法としては、例えば、懸濁床方式、流動床方式、固定床方式等を挙げることができる。また、本発明は、気相法、液相法のいずれであってもよいが、気相法を用いることが好ましい
 気相で反応を行う場合、原料ガス(例えば、エタノールガス)は、希釈することなく反応器に供給してもよく、窒素、水蒸気、などの不活性ガスにより適宜希釈して反応器に供給してもよい。
Examples of the method for bringing the raw material into contact with the catalyst include a suspension bed system, a fluidized bed system, and a fixed bed system. Further, the present invention may be either a gas phase method or a liquid phase method, but it is preferable to use the gas phase method. When the reaction is performed in the gas phase, the raw material gas (for example, ethanol gas) is diluted. It may be supplied to the reactor without being diluted, or may be appropriately diluted with an inert gas such as nitrogen or water vapor and supplied to the reactor.
 エタノール原料は1段目反応器および2段目反応器のいずれかまたは両方に供給されることが可能である。1段目反応器に回収した未反応エタノールを供給する場合、1段目反応器にエタノール原料を供給しない態様も可能である。 The ethanol raw material can be supplied to one or both of the first stage reactor and the second stage reactor. When the unreacted ethanol recovered in the first stage reactor is supplied, an embodiment in which the ethanol raw material is not supplied to the first stage reactor is also possible.
 前記のように、2段目反応器12で得られた1,3-ブタジエンを含む反応器出口ガスから回収したエタノールを1段目反応器に供給することが好ましいが、2段目反応器に供給してもよい。1段目の反応器ではエタノールの一部がアセトアルデヒドに転換するが、この反応には平衡転化率が存在する。したがって1段目に回収した未反応エタノールを供給する場合、含まれるアセトアルデヒドを分離し、エタノールのみを供給すると、アセトアルデヒドへの転換効率を高めることができる。 As described above, it is preferable to supply ethanol recovered from the reactor outlet gas containing 1,3-butadiene obtained in the second stage reactor 12 to the first stage reactor. You may supply. In the first-stage reactor, a part of ethanol is converted to acetaldehyde, and this reaction has an equilibrium conversion rate. Therefore, when supplying the unreacted ethanol collected in the first stage, the conversion efficiency to acetaldehyde can be increased by separating the contained acetaldehyde and supplying only ethanol.
 1段目反応器では、リサイクルするエタノール中のアセトアルデヒドの含有率を10mol%以下にすることが、エタノール転化率の点で好ましい。 In the first stage reactor, the content of acetaldehyde in the ethanol to be recycled is preferably 10 mol% or less from the viewpoint of ethanol conversion.
 本発明では、副生物の水素や水の影響が少なく、1段目と2段目の反応器の間で成分分離を行わなくても、高い1,3-ブタジエン転換率を達成できる。
2段目反応器12
 2段目反応器では、1段目反応器で合成されたアセトアルデヒドとエタノールとの混合物から、下記式で表される反応が行われ、1,3-ブタジエンが合成される。
CH3CH2OH + CH3CHO → CH2=CH-CH=CH2 + 2 H2O
 本発明では、2段目の反応器に供給するエタノールとアセトアルデヒド(追加した場合はそれぞれ合計)の合計の内、エタノールの割合を60~90mol%、さらに好ましくは70~80mol%の範囲とする。このような所定の範囲で供給することで、2段目の反応に必要なアセトアルデヒド量を確保し、1,3-ブタジエンの合成効率を高めることができる。回収したアセトアルデヒドをリサイクルする場合、アセトアルデヒドを2段目反応器に供給することが好ましい。また、必要に応じて、エタノール原料を、2段目反応器に追加してもよい。このようにすれば、2段目の反応器に供給するエタノール:アセトアルデヒドのmol比を最適化できる。
In the present invention, the effects of hydrogen and water as by-products are small, and a high 1,3-butadiene conversion rate can be achieved without performing component separation between the first and second reactors.
Second stage reactor 12
In the second-stage reactor, a reaction represented by the following formula is performed from a mixture of acetaldehyde and ethanol synthesized in the first-stage reactor to synthesize 1,3-butadiene.
CH 3 CH 2 OH + CH 3 CHO → CH 2 = CH-CH = CH 2 + 2 H 2 O
In the present invention, the ratio of ethanol is 60 to 90 mol%, more preferably 70 to 80 mol%, out of the total of ethanol and acetaldehyde (total when added) supplied to the second stage reactor. By supplying in such a predetermined range, the amount of acetaldehyde necessary for the second-stage reaction can be secured, and the synthesis efficiency of 1,3-butadiene can be increased. When the recovered acetaldehyde is recycled, it is preferable to supply acetaldehyde to the second-stage reactor. Further, if necessary, an ethanol raw material may be added to the second-stage reactor. In this way, it is possible to optimize the ethanol: acetaldehyde mol ratio supplied to the second-stage reactor.
 2段目反応器では、たとえば、非特許文献Industrial and Engineering Chemistry, vol. 42, p.359-372 (1950)などに開示されたZrO/SiO, HfO/SiO, Ta/SiOや、非特許文献Bulletin of the Chemical Society of Japan, vol.45, p.655-659 (1972)などに開示されたMgO-SiO、非特許文献Industrial and Engineering Chemistry Process Design and Development, vol.2, p.45-51 (1963)などに開示されたZnO-Alなどが触媒として使用されるが、触媒の種類として特に制限されるものではない。 In the second stage reactor, for example, ZrO 2 / SiO 2 , HfO 2 / SiO 2 , Ta 2 O 5 disclosed in Non-Patent Document Industrial and Engineering Chemistry, vol. 42, p.359-372 (1950), etc. / SiO 2 , MgO-SiO 2 disclosed in Non-Patent Document Bulletin of the Chemical Society of Japan, vol. 45, p.655-659 (1972), Non-patent Document Industrial and Engineering Chemistry Process Design and Development, ZnO—Al 2 O 3 and the like disclosed in vol.2, p.45-51 (1963) are used as the catalyst, but the type of the catalyst is not particularly limited.
 触媒の形状としては特に制限されるものではなく、粒状、円柱状、円筒状、ハニカム状のものであっても使用できる。 The shape of the catalyst is not particularly limited, and it can be used even if it is granular, columnar, cylindrical or honeycomb.
 上記触媒に接触させる方法としては、前記1段目反応器同様の方式を採用でき、例えば、懸濁床方式、流動床方式、固定床方式等を挙げることができる。また、本発明は、気相法、液相法のいずれであってもよいが、気相法を用いることが好ましい。 気相で反応を行う場合、原料ガス(例えば、エタノールガス、好ましくはエタノールガスとアセトアルデヒドガスの混合物)は、希釈することなく反応器に供給してもよく、窒素、水蒸気、などの不活性ガスにより適宜希釈して反応器に供給してもよい。 As the method for contacting with the catalyst, the same method as the first-stage reactor can be adopted, and examples thereof include a suspension bed method, a fluidized bed method, and a fixed bed method. The present invention may be either a gas phase method or a liquid phase method, but it is preferable to use a gas phase method. When the reaction is carried out in the gas phase, the raw material gas (for example, ethanol gas, preferably a mixture of ethanol gas and acetaldehyde gas) may be supplied to the reactor without dilution, and inert gas such as nitrogen, water vapor, etc. The solution may be appropriately diluted by the above and supplied to the reactor.
 原料と触媒との接触時間は、原料の供給速度を調整することによりコントロールすることができ、重量空間速度(WHSV)は原料エタノールと原料アセトアルデヒドの合計値として1.0~40g-(EtOH + AcH)・g-cat -1・h-1、好ましくは1.0~5.0g-(EtOH + AcH)・g-cat -1・h-1の範囲が好ましい。WHSVが低すぎると1,3-ブタジエン選択率が低下する。一方、WHSVが高すぎるとブタジエン収率が低下する。 The contact time between the raw material and the catalyst can be controlled by adjusting the feed rate of the raw material, and the weight space velocity (WHSV) is 1.0 to 40 g-(EtOH + AcH ) as the total value of the raw material ethanol and the raw material acetaldehyde. ) · G −cat −1 · h −1 , preferably 1.0 to 5.0 g − (EtOH + AcH) · g −cat −1 · h −1 . If WHSV is too low, the 1,3-butadiene selectivity decreases. On the other hand, if WHSV is too high, the butadiene yield decreases.
 反応温度としては、例えば300~400℃程度、好ましくは330~360℃の範囲にある。 The reaction temperature is, for example, about 300 to 400 ° C., preferably 330 to 360 ° C.
 反応圧力は、常圧から高圧までの広い範囲で適宜設定できる。製造効率や装置構成などの観点から、0.1~1.0MPaに設定することが好ましい。
分離精製器13
 反応終了後、反応生成物は、分離精製器13に送られ、例えば蒸留、抽出、吸収等の分離手段や、これらを組み合わせた分離手段により、軽質ガス、C4留分、重質分、水、エタノール、アセトアルデヒド等に分離することができる。
The reaction pressure can be appropriately set within a wide range from normal pressure to high pressure. From the viewpoint of production efficiency and apparatus configuration, it is preferable to set the pressure to 0.1 to 1.0 MPa.
Separation and purification unit 13
After completion of the reaction, the reaction product is sent to the separation / purification device 13, for example, by a separation means such as distillation, extraction, absorption, etc., or a separation means that combines these, light gas, C4 fraction, heavy fraction, water, It can be separated into ethanol, acetaldehyde and the like.
 本発明では、2段目の反応器に供給するエタノールとアセトアルデヒドの合計の内、エタノールの割合を所定の範囲とすることで1,3-ブタジエン収率を向上させることが可能となる。また、生成物のうち原料であるエタノールとアセトアルデヒドをリサイクルする際に分離し、別々にエタノールを1段目または2段目反応器、アセトアルデヒドを2段目反応器に供給することによって、2段目の反応器に供給するエタノール:アセトアルデヒドのmol比の最適比を達成できるため、1,3-ブタジエンの生産効率が非常に高い。図2は、本発明の1,3-ブタジエンの製造方法の流れにおいてエタノールの供給態様について示す説明図である。1段目反応器11に用いられる触媒と反応条件によって様々な副反応生成物が発生する。また、2段目反応器12に用いられる触媒と反応条件によって様々な副反応生成物が発生する。これらのうち、分離精製器13において分離されたエタノールに同伴する副反応生成物が存在することがある。同伴する副反応生成物が1段目反応器11にてアセトアルデヒドもしくはエタノールに変換される場合は、図2(a)に示されるように、エタノール原料の供給を1段目および2段目の反応器に行い、分離されたエタノールは1段目反応器11に供給することが望ましい。一方、同伴する副反応生成物が1段目反応器11の触媒活性の低下に資する場合は、図2(b)に示されるように、エタノール原料の供給を1段目および2段目の反応器に行い、分離されたエタノールは2段目反応器12に供給することが望ましい。 In the present invention, it is possible to improve the 1,3-butadiene yield by setting the ratio of ethanol within a predetermined range of the total of ethanol and acetaldehyde supplied to the second-stage reactor. In addition, ethanol and acetaldehyde, which are raw materials, are separated when recycled, and ethanol is supplied separately to the first or second stage reactor and acetaldehyde is supplied to the second stage reactor. Since the optimum molar ratio of ethanol: acetaldehyde fed to the reactor can be achieved, the production efficiency of 1,3-butadiene is very high. FIG. 2 is an explanatory diagram showing an ethanol supply mode in the flow of the method for producing 1,3-butadiene of the present invention. Various side reaction products are generated depending on the catalyst used in the first stage reactor 11 and the reaction conditions. Various side reaction products are generated depending on the catalyst used in the second-stage reactor 12 and the reaction conditions. Among these, there may be a side reaction product accompanying the ethanol separated in the separation / purifier 13. When the accompanying side reaction product is converted into acetaldehyde or ethanol in the first-stage reactor 11, as shown in FIG. 2 (a), the ethanol raw material is supplied in the first-stage and second-stage reactions. It is preferable to supply the ethanol separated and separated to the first-stage reactor 11. On the other hand, when the accompanying side reaction product contributes to the decrease in the catalytic activity of the first-stage reactor 11, as shown in FIG. The separated ethanol is preferably supplied to the second-stage reactor 12.
 また、1段目と2段目の反応器の間に成分分離を行う必要がなく、建設費・製造コストの削減につながる。
[実施例]
 以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
[実施例1]
1段目反応器における平衡転化率
 1段目反応器で起こるエタノールからアセトアルデヒドに転換する反応に関して、平衡転化率の検討を行った。
In addition, it is not necessary to separate components between the first and second stage reactors, leading to a reduction in construction costs and manufacturing costs.
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to these Examples at all.
[Example 1]
Equilibrium conversion in the first-stage reactor The equilibrium conversion ratio was examined for the reaction from ethanol to acetaldehyde that occurs in the first-stage reactor.
 固定床流通型反応器に、エタノール:アセトアルデヒドのモル(EtOH:AcH)比が1:9、2:8、3:7、4:6、5:5、6:4、7:3、8:2、9:1、10:0で仕込んだ原料を装入し、反応温度は260℃、反応圧力は0.25MPaG(0.35MPa)で、CuO/ZnO触媒存在下に、WHSV = 3.0g-(EtOH + AcH)・g-cat -1・h-1という条件で反応させ、アセトアルデヒド転化率を検討した。 In a fixed bed flow reactor, the ethanol: acetaldehyde molar (EtOH: AcH) ratio is 1: 9, 2: 8, 3: 7, 4: 6, 5: 5, 6: 4, 7: 3, 8: The raw materials charged at 2, 9: 1, 10: 0 were charged, the reaction temperature was 260 ° C., the reaction pressure was 0.25 MPaG (0.35 MPa), and WHSV = 3.0 g in the presence of a CuO / ZnO catalyst. Reaction was carried out under the condition of-(EtOH + AcH) · g -cat -1 · h -1 to examine the acetaldehyde conversion rate.
 検討結果を図3に示す。 The examination results are shown in FIG.
 エタノール単独原料に比べて、エタノール:アセトアルデヒド= 9mol:1molの割合で供給した場合、平衡転化率は約5%低下することがわかる。このことからエタノールとアセトアルデヒドを事前に分離し、エタノールのみを1段目反応器に供給することにより、効率的にアセトアルデヒドを得ることができると判明した。また1段目の反応に使用される原料中に含まれるアセトアルデヒドの量を10mol%未満にすれば、高い平衡転化率が達成できることも判明した。
[実施例2]
2段目反応器に供給するエタノール/アセトアルデヒド比
 2段目反応器に供給するエタノールとアセトアルデヒドの合計の内、エタノールの供給割合の影響について検討するため、ZrO2/SiO2(1.0重量%) 触媒0.63gを固定床流通型反応器に充填し、以下の反応条件で実験を行った。
It can be seen that when the ratio of ethanol: acetaldehyde = 9 mol: 1 mol is supplied as compared with the raw material of ethanol alone, the equilibrium conversion is reduced by about 5%. From this, it was found that acetaldehyde can be efficiently obtained by separating ethanol and acetaldehyde in advance and supplying only ethanol to the first-stage reactor. It has also been found that a high equilibrium conversion can be achieved if the amount of acetaldehyde contained in the raw material used for the first stage reaction is less than 10 mol%.
[Example 2]
Ethanol / acetaldehyde ratio supplied to the second stage reactor Of the total ethanol and acetaldehyde supplied to the second stage reactor, ZrO 2 / SiO 2 (1.0 wt% ) 0.63 g of catalyst was charged into a fixed bed flow type reactor, and an experiment was conducted under the following reaction conditions.
 反応器に窒素を流しながら360℃まで昇温し、原料ガスとして、mol比で100/0、95/5、90/10、80/20、75/25、70/30、60/40、50/50の割合で混合したエタノールとアセトアルデヒド(計15.4Nml/min)および窒素(6.8Nml/min)を混合して反応器に供給し、圧力を0.26MPaG (0.36MPa)まで昇圧した(WHSV = 3g-(EtOH + AcH)・g-cat -1・h-1)。反応開始6~15分後の反応器出口ガス組成をガスクロマトグラフにより求めた。 While flowing nitrogen through the reactor, the temperature was raised to 360 ° C., and the raw material gases were 100/0, 95/5, 90/10, 80/20, 75/25, 70/30, 60/40, 50 in molar ratios. Ethanol, acetaldehyde (15.4 Nml / min in total) and nitrogen (6.8 Nml / min) mixed at a ratio of 50/50 were mixed and supplied to the reactor, and the pressure was increased to 0.26 MPaG (0.36 MPa). (WHSV = 3g - (EtOH + AcH) · g -cat -1 · h -1). The gas composition at the outlet of the reactor 6 to 15 minutes after the start of the reaction was determined by gas chromatography.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 エタノールの供給割合が60~90mol%の範囲で1,3-ブタジエン選択率が高い結果となった。また、70~80mol%の範囲でさらに高い結果となった。一方、生成物のうちリサイクルをしたとしても原料とならないエチレン、ジエチルエーテル、C5-C8炭化水素類に関しては、アセトアルデヒドの割合が増えるほど、エチレン、ジエチルエーテルの生成量が少なくなり、C5-C8炭化水素類の生成量が多くなる結果となった。 As a result, the 1,3-butadiene selectivity was high when the ethanol supply ratio was in the range of 60 to 90 mol%. Further, higher results were obtained in the range of 70 to 80 mol%. On the other hand, for ethylene, diethyl ether, and C5-C8 hydrocarbons that are not recycled even if recycled, the higher the acetaldehyde ratio, the smaller the amount of ethylene and diethyl ether produced, resulting in C5-C8 carbonization. As a result, the amount of hydrogen produced increased.
 この結果から、2段目の反応器に供給するエタノールとアセトアルデヒドの合計の内、エタノールの供給割合は60~90mol%の範囲が最適であることが明らかとなった。
[実施例3]
 2段目反応器において供給する原料中に水素が共存している状態で、水素が共存していない状態と比べてブタジエン収率が保たれるかどうか検討するためにZrO2/SiO2(1.0重量%)触媒0.63gを固定床流通型反応器に充填し、以下の反応条件で実験を行った。
From this result, it became clear that the ethanol supply ratio in the range of 60 to 90 mol% is optimal in the total of ethanol and acetaldehyde supplied to the second-stage reactor.
[Example 3]
In order to examine whether the butadiene yield is maintained in the state where hydrogen is present in the raw material supplied in the second stage reactor as compared with the case where hydrogen is not present, ZrO 2 / SiO 2 (1 0.03 wt%) catalyst was charged into a fixed bed flow reactor and the experiment was conducted under the following reaction conditions.
 反応器に窒素を流しながら360℃まで昇温し、原料ガスとしてエタノール(12.3Nml/min)とアセトアルデヒド(3.1Nml/min)および窒素(6.7Nml/min)を混合して反応器に供給し、圧力を0.26MPaGまで昇圧した(WHSV = 3g-(EtOH + AcH)・g-cat -1・h-1、エタノール/アセトアルデヒド/窒素/水素(mol比) = 56/14/30/0)。 While flowing nitrogen into the reactor, the temperature was raised to 360 ° C., and ethanol (12.3 Nml / min), acetaldehyde (3.1 Nml / min) and nitrogen (6.7 Nml / min) were mixed as raw material gases. supplied, by boosting the pressure to 0.26MPaG (WHSV = 3g - (EtOH + AcH) · g -cat -1 · h -1, ethanol / acetaldehyde / nitrogen / hydrogen (mol ratio) = 56/14/30 / 0).
 また、原料ガスとしてエタノール(12.3Nml/min)とアセトアルデヒド(3.1Nml/min)および窒素(4.5Nml/min)、水素(2.3Nml/min)を混合して反応器に供給し、圧力を0.26MPaGまで昇圧した(WHSV = 3g-(EtOH + AcH)・g-cat -1・h-1, エタノール/アセトアルデヒド/窒素/水素(mol比) = 56/14/10/20)。 Further, ethanol (12.3 Nml / min), acetaldehyde (3.1 Nml / min), nitrogen (4.5 Nml / min), and hydrogen (2.3 Nml / min) were mixed as raw material gases and supplied to the reactor, The pressure was increased to 0.26 MPaG (WHSV = 3 g− (EtOH + AcH) · g −cat −1 · h −1 , ethanol / acetaldehyde / nitrogen / hydrogen (mol ratio) = 56/14/10/20).
 各実験において反応開始3~4時間後の反応器出口ガス組成をガスクロマトグラフにより求めた。 In each experiment, the gas composition at the outlet of the reactor 3 to 4 hours after the start of the reaction was determined by gas chromatography.
 結果を表2に示す。 The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 原料中に水素が共存している状態と、水素が共存していない状態とでのブタジエン選択率の差は1.0%以内であり、水素が共存してもブタジエン選択率は変わらないことが明らかとなった。 The difference in butadiene selectivity between the state where hydrogen coexists in the raw material and the state where hydrogen does not coexist is within 1.0%, and even if hydrogen coexists, the butadiene selectivity may not change. It became clear.
 この結果から、1段目反応器と2段目反応器との間で水素を分離する必要がないことが分かった。
[実施例4]
 2段目反応器において供給する原料中に水が共存している状態で、水が共存していない状態と比べてブタジエン収率が保たれるかどうか検討するために、ZrO2/SiO2(1.0重量%) 触媒0.63gを固定床流通型反応器に充填し、以下の反応条件で実験を行った。
From this result, it was found that it was not necessary to separate hydrogen between the first stage reactor and the second stage reactor.
[Example 4]
In order to examine whether the butadiene yield can be maintained in the state where water coexists in the raw material supplied in the second stage reactor as compared with the state where water does not coexist, ZrO 2 / SiO 2 ( 1.0 wt%) 0.63 g of catalyst was charged into a fixed bed flow type reactor, and an experiment was conducted under the following reaction conditions.
 反応器に窒素を流しながら360℃まで昇温し、原料ガスとしてエタノール(12.3Nml/min)とアセトアルデヒド(3.1Nml/min)および窒素(6.7Nml/min)を混合して反応器に供給し、圧力を0.26MPaGまで昇圧した(WHSV = 3g-(EtOH + AcH)・g-cat -1・h-1、エタノール/アセトアルデヒド/窒素/水(mol比) = 56/14/30/0)。 While flowing nitrogen into the reactor, the temperature was raised to 360 ° C., and ethanol (12.3 Nml / min), acetaldehyde (3.1 Nml / min) and nitrogen (6.7 Nml / min) were mixed as raw material gases. supplied, by boosting the pressure to 0.26MPaG (WHSV = 3g - (EtOH + AcH) · g -cat -1 · h -1, ethanol / acetaldehyde / nitrogen / water (mol ratio) = 56/14/30 / 0).
 また反応器に窒素を流しながら360℃まで昇温し、原料ガスとしてエタノール(12.3Nml/min)とアセトアルデヒド(3.1Nml/min)および窒素(5.7Nml/min)、水(1.1Nml/min)を混合して反応器に供給し、圧力を0.26MPaGまで昇圧した(WHSV = 3g-(EtOH + AcH)・g-cat -1・h-1、エタノール/アセトアルデヒド/窒素/水(mol比) = 56/14/25/5)。各実験において反応開始3~4時間後の反応器出口ガス組成における生成物の選択率をガスクロマトグラフにより求めた。 結果を表3に示す。
Further, the temperature was raised to 360 ° C. while flowing nitrogen into the reactor, and ethanol (12.3 Nml / min), acetaldehyde (3.1 Nml / min), nitrogen (5.7 Nml / min), water (1.1 Nml) were used as source gases. / min) was fed to the reactor were mixed and boosting the pressure to 0.26MPaG (WHSV = 3g - (EtOH + AcH) · g -cat -1 · h -1, ethanol / acetaldehyde / nitrogen / water ( mol ratio) = 56/14/25/5). In each experiment, the product selectivity in the reactor outlet gas composition 3 to 4 hours after the start of the reaction was determined by gas chromatography. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 原料中に水が共存している状態と、水が共存していない状態とでのブタジエン収率の差は1.0%以内であり、水が共存してもブタジエン選択率は変わらないことが明らかとなった。 The difference in butadiene yield between the state in which water coexists in the raw material and the state in which water does not coexist is within 1.0%, and the butadiene selectivity may not change even if water coexists. It became clear.
 この結果から、1段目反応器と2段目反応器との間で水を分離する必要がなく、リサイクルされる原料に水が含まれていても構わないことが分かった。 From this result, it was found that there is no need to separate water between the first-stage reactor and the second-stage reactor, and the recycled material may contain water.
10・・・製造装置
11・・・1段目反応器
12・・・2段目反応器
13・・・分離精製器
DESCRIPTION OF SYMBOLS 10 ... Manufacturing apparatus 11 ... 1st stage reactor 12 ... 2nd stage reactor 13 ... Separation refiner

Claims (8)

  1.  2段の反応器を用いて、以下の反応式に示されるように1段目でエタノールを脱水素してアセトアルデヒドを合成したのち、2段目でエタノールとアセトアルデヒドとから1,3-ブタジエンを合成するに際し、
     2段目の反応器に供給するエタノールとアセトアルデヒドの合計の内、エタノールの供給割合を60~90mol%の範囲とすることを特徴とする1,3-ブタジエンの製造方法。
     CH3CH2OH → CH3CHO + H2   (1段目)
     CH3CH2OH + CH3CHO → CH2=CH-CH=CH2 + 2 H2O    (2段目)
    Using a two-stage reactor, ethanol is dehydrogenated in the first stage to synthesize acetaldehyde as shown in the following reaction formula, and then 1,3-butadiene is synthesized from ethanol and acetaldehyde in the second stage. When doing
    A method for producing 1,3-butadiene, characterized in that, in the total amount of ethanol and acetaldehyde supplied to the second-stage reactor, the ethanol supply ratio is in the range of 60 to 90 mol%.
    CH 3 CH 2 OH → CH 3 CHO + H 2 (first stage)
    CH 3 CH 2 OH + CH 3 CHO → CH 2 = CH-CH = CH 2 + 2 H 2 O (2nd stage)
  2.  生成物から、未反応のエタノールとアセトアルデヒドを分離して別々にリサイクルを行うことを特徴とする請求項1に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to claim 1, wherein unreacted ethanol and acetaldehyde are separated from the product and recycled separately.
  3.  分離したエタノールは1段目の反応器に供給し、アセトアルデヒドは2段目の反応器に供給することを特徴とする請求項2に記載の1,3-ブタジエンの製造方法。 3. The method for producing 1,3-butadiene according to claim 2, wherein the separated ethanol is supplied to the first-stage reactor, and acetaldehyde is supplied to the second-stage reactor.
  4.  エタノール原料の供給を、2段目の反応器に行うことを特徴とする請求項1~3のいずれかに記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to any one of claims 1 to 3, wherein the ethanol raw material is supplied to the second-stage reactor.
  5.  エタノール原料の供給を1段目および2段目の反応器に行い、分離したエタノールの供給を1段目の反応器に行うことを特徴とする請求項1に記載の1,3-ブタジエンの製造方法。 2. The production of 1,3-butadiene according to claim 1, wherein the ethanol raw material is supplied to the first and second stage reactors, and the separated ethanol is supplied to the first stage reactor. Method.
  6.  エタノール原料の供給を1段目および2段目の反応器に行い、分離したエタノールの供給を2段目の反応器に行うことを特徴とする請求項1に記載の1,3-ブタジエンの製造方法。 2. The production of 1,3-butadiene according to claim 1, wherein the ethanol raw material is supplied to the first and second reactors, and the separated ethanol is supplied to the second reactor. Method.
  7.  リサイクルするエタノール中のアセトアルデヒドの含有率が10mol%以下であることを特徴とする請求項2~6のいずれかに記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to any one of claims 2 to 6, wherein the content of acetaldehyde in ethanol to be recycled is 10 mol% or less.
  8.  上述したプロセスに関し、1段目、2段目の反応器の間において成分分離を行わないことを特徴とする請求項1~7のいずれかに記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to any one of claims 1 to 7, wherein no component separation is performed between the first-stage and second-stage reactors in the above-described process.
PCT/JP2015/086235 2015-01-05 2015-12-25 Method for producing 1,3-butadiene WO2016111203A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015000155 2015-01-05
JP2015-000155 2015-01-05

Publications (1)

Publication Number Publication Date
WO2016111203A1 true WO2016111203A1 (en) 2016-07-14

Family

ID=56355900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086235 WO2016111203A1 (en) 2015-01-05 2015-12-25 Method for producing 1,3-butadiene

Country Status (1)

Country Link
WO (1) WO2016111203A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006250A1 (en) * 2019-07-05 2021-01-14 積水化学工業株式会社 Method for producing 1,3-butadiene
WO2021006252A1 (en) * 2019-07-05 2021-01-14 積水化学工業株式会社 1,3-butadiene manufacturing method
WO2021193457A1 (en) * 2020-03-23 2021-09-30 積水化学工業株式会社 Method for producing 1,3-butadiene and device for producing 1,3-butadiene

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153654A (en) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd Synthesis system, rubber chemical for tire, synthetic rubber for tire and pneumatic tire
WO2013125389A1 (en) * 2012-02-20 2013-08-29 株式会社ダイセル Method for producing 1,3-butadiene
JP2013535465A (en) * 2010-07-29 2013-09-12 オブシュチェスティヴォ エス オグラニチェノイ オトヴェツヴェノスユ “ユニジット” One-step process for producing butadiene
JP2014210755A (en) * 2013-04-22 2014-11-13 昭和電工株式会社 Method for producing butadiene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535465A (en) * 2010-07-29 2013-09-12 オブシュチェスティヴォ エス オグラニチェノイ オトヴェツヴェノスユ “ユニジット” One-step process for producing butadiene
JP2012153654A (en) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd Synthesis system, rubber chemical for tire, synthetic rubber for tire and pneumatic tire
WO2013125389A1 (en) * 2012-02-20 2013-08-29 株式会社ダイセル Method for producing 1,3-butadiene
JP2014210755A (en) * 2013-04-22 2014-11-13 昭和電工株式会社 Method for producing butadiene

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006250A1 (en) * 2019-07-05 2021-01-14 積水化学工業株式会社 Method for producing 1,3-butadiene
WO2021006252A1 (en) * 2019-07-05 2021-01-14 積水化学工業株式会社 1,3-butadiene manufacturing method
JPWO2021006252A1 (en) * 2019-07-05 2021-09-13 積水化学工業株式会社 Method for producing 1,3-butadiene
JPWO2021006250A1 (en) * 2019-07-05 2021-09-13 積水化学工業株式会社 Method for producing 1,3-butadiene
CN114364649A (en) * 2019-07-05 2022-04-15 积水化学工业株式会社 Method for producing 1, 3-butadiene
US11472753B2 (en) 2019-07-05 2022-10-18 Sekisui Chemical Co., Ltd. Method for producing 1,3-butadiene
US11479518B2 (en) 2019-07-05 2022-10-25 Sekisui Chemical Co., Ltd. Method for producing 1,3-butadiene
WO2021193457A1 (en) * 2020-03-23 2021-09-30 積水化学工業株式会社 Method for producing 1,3-butadiene and device for producing 1,3-butadiene

Similar Documents

Publication Publication Date Title
EP2364342B1 (en) Catalytic cracking process of a stream of hydrocarbons for maximization of light olefins
JP4879574B2 (en) Process for producing ethylene and propylene
JPWO2006009099A1 (en) Process for producing ethylene and propylene
EA016088B1 (en) Method for producing light olefin processing via dimethyl ether and system therefor
US10035740B2 (en) Multi-stage oxidative dehydrogenation process with inter-stage cooling
ZA200208833B (en) Process for the preparation of hydrocarbons.
JPWO2007032448A1 (en) Process for producing ethylene and propylene
CN110072813B (en) Process for converting synthesis gas to olefins using bifunctional chromium oxide/zinc oxide-SAPO-34 catalysts
WO2016111203A1 (en) Method for producing 1,3-butadiene
US10526258B2 (en) Process for producing butadiene by oxidative dehydrogenation of butylene
RU2228922C2 (en) Method for production of hydrocarbons from carbon monoxide and hydrogen
TWI577658B (en) Method for preparation of dimethyl 1,4-cyclohexanedicarboxylate and method for preparation of 1,4-cyclohexanedimethanol
CN112739671A (en) Selective hydrogenolysis in combination with MTBE production
CN106673938A (en) Method for producing cyclopentene by selective hydrogenation of cyclopentadiene
WO2015152159A1 (en) Method for producing unsaturated hydrocarbon
WO2017001284A1 (en) Process for producing cumene and/or ethylbenzene from a mixed hydrocarbon feedstream
CN105461526A (en) Method for preparing cyclopentanone through dehydrogenation of cyclopentanol
US10384993B2 (en) Method for producing hydrocarbons and alcohols
JP2010001241A (en) Method for producing hydrocarbon from carbon monoxide and hydrogen
EP3551329A1 (en) Process for preparing a molybdenum-platinum-based catalyst for the synthesis of benzene by transalkylation
CN112830858B (en) Method for producing aromatic hydrocarbon by dehydrogenating and aromatizing light hydrocarbon
US9682896B2 (en) Production method for olefin, and dehydration catalyst employed in same
EP3303269B1 (en) Process for the selective hydrogenation of acetylene to ethylene
CN101805239A (en) By the selection hydrofining of acetylene being contained the aromatic fraction of acetylene
US9120734B2 (en) Two-step system and method for the production of methyl isobutyl ketone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP