WO2016111137A1 - リチウムイオン電池用電極の製造方法 - Google Patents

リチウムイオン電池用電極の製造方法 Download PDF

Info

Publication number
WO2016111137A1
WO2016111137A1 PCT/JP2015/085446 JP2015085446W WO2016111137A1 WO 2016111137 A1 WO2016111137 A1 WO 2016111137A1 JP 2015085446 W JP2015085446 W JP 2015085446W WO 2016111137 A1 WO2016111137 A1 WO 2016111137A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
electrode
powder layer
squeegee
lithium ion
Prior art date
Application number
PCT/JP2015/085446
Other languages
English (en)
French (fr)
Inventor
優人 細野
淳哉 森
Original Assignee
日本ゼオン株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社, トヨタ自動車株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201580071040.8A priority Critical patent/CN107112509B/zh
Priority to KR1020177017650A priority patent/KR101917625B1/ko
Priority to US15/539,778 priority patent/US10396350B2/en
Priority to JP2016568312A priority patent/JP6402200B2/ja
Priority to EP15877010.7A priority patent/EP3244470B1/en
Publication of WO2016111137A1 publication Critical patent/WO2016111137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0469Electroforming a self-supporting electrode; Electroforming of powdered electrode material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a lithium ion battery electrode, in which a powder containing an electrode active material or the like is compression-molded to produce a lithium ion battery electrode.
  • Lithium-ion batteries which are small and light, have high energy density, and can be repeatedly charged and discharged, is expected to increase in the future from the environmental viewpoint.
  • Lithium-ion batteries are used in the fields of mobile phones and notebook PCs because of their high energy density, but with the expansion and development of applications, further improvements in performance such as lower resistance and larger capacity Is required.
  • a lithium ion battery electrode can be obtained as an electrode sheet.
  • powder is supplied to a base material to form a powder layer on the surface of the base material, and the base material is passed between a pair of press rolls so that the powder layer is formed on the surface of the base material.
  • An electrode sheet manufacturing method for obtaining an electrode sheet by continuously compression-molding is disclosed.
  • An object of the present invention is to provide a method for producing an electrode for a lithium ion battery in which the powder squeezed on the base material does not slide down from the base material until it is conveyed to a pair of press rolls. is there.
  • the present inventors have found that the above object can be achieved by changing the squeegee angle, which is the angle at which the squeegee roll is installed, and have completed the present invention.
  • a pair of press rolls In the method for producing an electrode sheet for a lithium ion battery in which the powder layer is consolidated to the base material, a supply step of supplying the powder onto the base material, and one of the press rolls
  • the squeegee roll in which a squeegee angle ⁇ , which is an angle formed between a vertical line passing through the rotation axis and a line passing through the rotation axis and the rotation axis of the squeegee roll, is disposed at a position of 0 ° to 60 °.
  • Lithium ion battery featuring Manufacturing method of the electrode (2) The electrode for a lithium ion battery according to (1), wherein the powder layer formed by the powder layer forming step has a density of 105 to 150% of a bulk density of the powder.
  • Manufacturing method (3) The method for producing a lithium ion battery according to (1) or (2), wherein the squeegee roll rotates in the same direction as the opposing pressing roll, Is provided.
  • the manufacturing method of the electrode for lithium ion batteries which does not slide down from on a base material before the powder squeezed on the base material is conveyed to a pair of press roll can be provided. it can.
  • FIG. 1 is a diagram showing an outline of a powder molding apparatus 2 used in a method for manufacturing an electrode for a lithium ion battery according to an embodiment of the present invention.
  • the powder molding apparatus 2 has a pressing roll 4 including a pair of rolls 4A and 4B arranged with the rotation shafts 14A and 14B at the same height and arranged horizontally and in parallel.
  • a hopper 8 that accommodates the powder 12 to be supplied onto the base material 6 that is transported in the horizontal direction, and the base material 6 to which the powder 12 has been fed is transported from the horizontal direction to the vertically downward direction along the outer periphery of the roll 4A.
  • a squeegee roll 10 having a cylindrical shape that forms a powder layer 16 having a uniform thickness by squeezing the powder 12 on the substrate 6 in the middle of the process.
  • the squeegee roll 10 has a squeegee angle ⁇ at a position of 0 ° to 60 °, preferably 5 ° to 40 °, and a position where the peripheral surface of the roll 4A and the peripheral surface of the squeegee roll 10 are at a predetermined interval. Is arranged.
  • the squeegee angle ⁇ is an angle formed by a vertical line passing through the rotating shaft 14A of the roll 4A and a line passing through the rotating shaft 14A and the rotating shaft 10A of the squeegee roll 10.
  • the squeegee roll 10 rotates in the same direction as the opposing roll 4A. That is, the squeegee roll 10 squeezes the powder on the substrate 6 while rotating in the direction opposite to the conveying direction of the substrate 6 to which the powder 12 is supplied.
  • the hopper 8 When manufacturing the electrode sheet 20 as an electrode for a lithium ion battery using the powder molding apparatus 2, first, the hopper 8 is placed on the base material 6 that is conveyed in the horizontal direction and coated with the binder. Powder 12 is supplied (supply process).
  • the base material 6 supplied with the powder 12 is changed in the conveying direction vertically downward along the outer periphery of the roll 4 ⁇ / b> A, and the powder 12 supplied to the surface of the base material 6 by the squeegee roll 10 is changed to the squeegee.
  • the powder layer 16 is formed on the surface of the substrate 6 (powder layer forming step).
  • the powder layer 16 squeezed here has a density of 105% to 150% of the bulk density of the powder 12.
  • the base material 6 on which the powder layer 16 is formed is conveyed to the press point of the press roll 4 and passes between the pair of rolls 4A and 4B (consolidation step). Thereby, the powder layer 16 is consolidated on the surface of the base material 6, and the electrode sheet 20 is manufactured.
  • the powder 12 is deposited between the roll 4A and the squeegee roll 10 on the upstream side of the squeegee roll 10 as shown in FIG. Therefore, since the powder 12 is in a state where its own weight is applied before the powder 12 is squeezed by the squeegee roll 10, the density of the powder layer 16 immediately after the squeegee increases. As a result, the grip force of the powder layer 16 is increased, so that the powder 12 does not fall from the powder layer 16 before being pressed by the pair of rolls 4A and 4B, and the electrode sheet 20 is uniform in thickness and density. Can be manufactured.
  • the substrate 6 may be a thin film substrate, and usually has a thickness of 1 ⁇ m to 1000 ⁇ m, preferably 5 ⁇ m to 800 ⁇ m.
  • metal foil or carbon such as aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, and other alloys, conductive polymer, paper, natural fiber, polymer fiber, fabric, polymer resin A film etc. are mentioned, It can select suitably according to the objective.
  • the polymer resin film include polyester resin films such as polyethylene terephthalate and polyethylene naphthalate, plastic films and sheets including polyimide, polypropylene, polyphenylene sulfide, polyvinyl chloride, aramid film, PEN, PEEK, and the like. It is done.
  • the electrode sheet 20 for a lithium ion battery electrode when manufacturing the electrode sheet 20 for a lithium ion battery electrode, a metal foil, a carbon film, or a conductive polymer film can be used as the substrate 6, and a metal is preferably used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance.
  • the surface of the base material 6 may be subjected to treatment such as coating treatment, drilling, buffing, sandblasting and / or etching.
  • the coating liquid for the binder is an SBR aqueous dispersion, and the concentration of SBR is 10 to 40 wt%.
  • the glass transition temperature of SBR is in the range of ⁇ 50 ° C. to 30 ° C.
  • the coating liquid for the binder may contain a thickener or a surfactant in order to adjust the viscosity and wettability of the coating liquid. Known thickeners and surfactants can be used.
  • water-based polyacrylic acid (PAA), organic solvent-based polyvinylidene fluoride (PVDF), or the like may be used as the binder.
  • Examples of the powder 12 accommodated in the hopper 8 include composite particles containing an electrode active material.
  • the composite particles include an electrode active material and a binder, and may include other dispersants, conductive materials, and additives as necessary.
  • examples of the positive electrode active material include metal oxides capable of reversibly doping and dedoping lithium ions.
  • the metal oxide include lithium cobaltate, lithium nickelate, lithium manganate, and lithium iron phosphate.
  • the positive electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.
  • the active material of the negative electrode as the counter electrode of the positive electrode for lithium ion batteries includes graphitizable carbon, non-graphitizable carbon, low crystalline carbon such as pyrolytic carbon (amorphous carbon), graphite (natural graphite) , Artificial graphite), alloy materials such as tin and silicon, oxides such as silicon oxide, tin oxide, and lithium titanate.
  • the electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.
  • the shape of the electrode active material for the lithium ion battery electrode is preferably a granulated particle.
  • the shape of the particles is spherical, a higher density electrode can be formed during electrode molding.
  • the volume average particle diameter of the electrode active material for a lithium ion battery electrode is usually 0.1 to 100 ⁇ m, preferably 0.5 to 50 ⁇ m, more preferably 0.8 to 30 ⁇ m for both the positive electrode and the negative electrode.
  • the binder used for the composite particles is not particularly limited as long as it is a compound capable of binding the electrode active materials to each other.
  • a suitable binder is a dispersion type binder having a property of being dispersed in a solvent.
  • the dispersion-type binder include high molecular compounds such as silicon polymers, fluorine-containing polymers, conjugated diene polymers, acrylate polymers, polyimides, polyamides, polyurethanes, and preferably fluorine-containing polymers. Conjugated diene polymers and acrylate polymers, more preferably conjugated diene polymers and acrylate polymers.
  • the shape of the dispersion-type binder is not particularly limited, but is preferably particulate.
  • the binding property is good, and it is possible to suppress deterioration of the capacity of the manufactured electrode and deterioration due to repeated charge and discharge.
  • the particulate binder include those in which the particles of the binder such as latex are dispersed in water, and particulates obtained by drying such a dispersion.
  • the amount of the binder is such that the adhesion between the obtained electrode active material layer and the substrate can be sufficiently secured and the internal resistance can be lowered.
  • the amount is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight.
  • a dispersant may be used for the composite particles as necessary.
  • the dispersant include cellulose polymers such as carboxymethyl cellulose and methyl cellulose, and ammonium salts or alkali metal salts thereof. These dispersants can be used alone or in combination of two or more.
  • a conductive material may be used for the composite particles as necessary.
  • the conductive material include conductive carbon black such as furnace black, acetylene black, and ketjen black (a registered trademark of Akzo Nobel Chemicals, Besloten, Fennaut Shap). Among these, acetylene black and ketjen black are preferable. These conductive materials can be used alone or in combination of two or more.
  • the composite particles are obtained by granulating using an electrode active material, a binder, and other components such as the conductive material added as necessary, and include at least an electrode active material and a binder, Each of the above does not exist as an independent particle, but forms one particle by two or more components including an electrode active material and a binder as constituent components. Specifically, a plurality of (more preferably several to several tens) electrode active materials are formed by combining a plurality of individual particles of the two or more components to form secondary particles. It is preferable that the particles are bound to form particles.
  • the production method of the composite particles is not particularly limited, and can be produced by a known granulation method such as a fluidized bed granulation method, a spray drying granulation method, or a rolling bed granulation method.
  • the volume average particle diameter of the composite particles is usually in the range of 0.1 to 1000 ⁇ m, preferably 1 to 500 ⁇ m, more preferably 30 to 250 ⁇ m from the viewpoint of easily obtaining an electrode active material layer having a desired thickness.
  • the average particle size of the composite particles is a volume average particle size calculated by measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3100; manufactured by Shimadzu Corporation).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 基材上に供給された電極活物質を含む粉体をスキージロールによりスキージして粉体層を形成した後、前記基材を鉛直下方向に搬送しながら、一対のプレス用ロールにより、前記基材に前記粉体層を圧密して電極シートを製造するリチウムイオン電池用電極の製造方法において、前記基材上に前記粉体を供給する供給工程と、一方の前記プレス用ロールの回転軸を通る鉛直線と、前記回転軸と前記スキージロールの回転軸を通る線の成す角度であるスキージ角度θが、0°~60°の位置に配置された前記スキージロールにより、前記基材上に供給された前記粉体を均し前記粉体層を形成する粉体層形成工程と、前記一対のプレス用ロールにより前記基材に前記粉体層を圧密する圧密工程と、を含む。

Description

リチウムイオン電池用電極の製造方法
 本発明は、電極活物質等を含む粉体を圧縮成形してリチウムイオン電池用電極を製造するリチウムイオン電池用電極の製造方法に関するものである。
 小型で軽量、且つエネルギー密度が高く、繰り返し充放電が可能なリチウムイオン電池は、環境対応からも今後の需要の拡大が見込まれている。リチウムイオン電池は、エネルギー密度が大きいことから、携帯電話やノート型パソコン等の分野で利用されているが、用途の拡大や発展に伴い、低抵抗化、大容量化等、より一層の性能向上が求められている。
 リチウムイオン電池用電極は電極シートとして得ることができる。例えば、特許文献1には、基材に粉体を供給して基材の表面に粉体層を形成し、基材を一対のプレス用ロール間を通過させて基材の表面に粉体層を連続的に圧縮成形することにより電極シートを得る電極シートの製造方法が開示されている。
特開2009-224623号公報
 ところで、上述の電極シートの製造方法を用いて電極シートを製造する場合、基材を一対のプレス用ロール間を通過させる際には、基材が上方から下方に搬送されることから、基材上に供給された粉体が一対のプレス用ロールへ搬送されるまでの間に基材上から滑り落ちることがあり電極シートの厚みや密度にむらが生じていた。
 本発明の目的は、基材上においてスキージされた粉体が一対のプレス用ロールへ搬送されるまでの間に基材上から滑り落ちることがないリチウムイオン電池用電極の製造方法を提供することである。
 本発明者らは、鋭意検討の結果、スキージロールが設置される角度であるスキージ角度を変更することにより、上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、
(1)基材上に供給された電極活物質を含む粉体をスキージロールによりスキージして粉体層を形成した後、前記基材を鉛直下方向に搬送しながら、一対のプレス用ロールにより、前記基材に前記粉体層を圧密して電極シートを製造するリチウムイオン電池用電極の製造方法において、前記基材上に前記粉体を供給する供給工程と、一方の前記プレス用ロールの回転軸を通る鉛直線と、前記回転軸と前記スキージロールの回転軸を通る線の成す角度であるスキージ角度θが、0°~60°の位置に配置された前記スキージロールにより、前記基材上に供給された前記粉体を均し前記粉体層を形成する粉体層形成工程と、前記一対のプレス用ロールにより前記基材に前記粉体層を圧密する圧密工程と、を含むことを特徴とするリチウムイオン電池用電極の製造方法、
(2)前記粉体層形成工程により形成された前記粉体層は、前記粉体のかさ密度の105~150%の密度を有することを特徴とする(1)に記載のリチウムイオン電池用電極の製造方法、
(3)前記スキージロールが対向する前記プレス用ロールと同方向に回転することを特徴とする(1)または(2)に記載のリチウムイオン電池の製造方法、
が提供される。
 本発明によれば、基材上においてスキージされた粉体が一対のプレス用ロールへ搬送されるまでの間に基材上から滑り落ちることがないリチウムイオン電池用電極の製造方法を提供することができる。
本発明の実施の形態に係る粉体成形装置の概略を示す図である。
 以下、図面を参照して本発明の実施の形態に係るリチウムイオン電池用電極の製造方法について説明する。図1は、本発明の実施の形態に係るリチウムイオン電池用電極の製造方法に用いる粉体成形装置2の概略を示す図である。図1に示すように、粉体成形装置2は、回転軸14A,14Bが同じ高さで、水平かつ平行に配列された一対のロール4A,4Bからなるプレス用ロール4を有している。また水平方向に搬送される基材6上に供給する粉体12を収容するホッパー8、粉体12が供給された基材6がロール4Aの外周に沿って水平方向から鉛直下方向に搬送される途中において基材6上の粉体12をスキージし、均一な厚みの粉体層16を形成する円柱形状のスキージロール10を有している。
 スキージロール10は、スキージ角度θが、0°~60°、好ましくは5°~40°の位置にあって、かつロール4Aの周面とスキージロール10の周面とが所定の間隔となる位置に配置されている。ここでスキージ角度θとは、ロール4Aの回転軸14Aを通る鉛直線と、回転軸14Aとスキージロール10の回転軸10Aを通る線との成す角度である。またスキージロール10は、対向するロール4Aと同方向に回転する。即ちスキージロール10は、粉体12が供給された基材6の搬送方向と逆方向に回転しながら、基材6上の粉体をスキージする。
 この粉体成形装置2を用いてリチウムイオン電池用電極としての電極シート20を製造する場合には、まず、水平方向に搬送される、結着材が塗布された基材6上にホッパー8から粉体12が供給される(供給工程)。
 次に、粉体12が供給された基材6は、ロール4Aの外周に沿って鉛直下方向へ搬送方向が変更され、スキージロール10によって基材6の表面に供給された粉体12がスキージされ、基材6の表面に粉体層16が形成される(粉体層形成工程)。ここでスキージされた粉体層16は粉体12のかさ密度の105%~150%の密度を有する。
 粉体層16が形成された基材6は、プレス用ロール4のプレス点まで搬送され、一対のロール4A、ロール4B間を通過する(圧密工程)。これにより、基材6の表面に粉体層16が圧密され電極シート20が製造される。
 この実施の形態に係るリチウムイオン電池用電極の製造方法においては、図1に示すようにスキージロール10の上流側でロール4Aとスキージロール10の間に粉体12が堆積した状態となる。従ってスキージロール10により粉体12がスキージされる前に粉体12に自重がかかった状態になることから、スキージ直後の粉体層16の密度が大きくなる。これにより粉体層16のグリップ力が高くなるため、一対のロール4A,4Bによりプレスされる前に粉体層16から粉体12が落下することなく、厚みや密度にむらの無い電極シート20を製造することができる。
 なお、この実施の形態において、基材6としては、薄いフィルム状の基材であればよく、通常、厚さ1μm~1000μm、好ましくは5μm~800μmである。基材6としては、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金などの金属箔または炭素、導電性高分子、紙、天然繊維、高分子繊維、布帛、高分子樹脂フィルムなどが挙げられ、目的に応じて適宜選択することができる。高分子樹脂フィルムとしては、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル樹脂フィルム、ポリイミド、ポリプロピレン、ポリフェニレンサルファイド、ポリ塩化ビニル、アラミドフィルム、PEN、PEEK等を含んで構成されるプラスチックフィルム、シート等が挙げられる。
 これらの中でも、リチウムイオン電池電極用の電極シート20を製造する場合には、基材6として、金属箔または炭素フィルム、導電性高分子フィルムを用いることができ、好適には金属が用いられる。これらの中で導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用することが好ましい。また、基材6の表面には塗膜処理、穴あけ加工、バフ加工、サンドブラスト加工及び/又はエッチング加工等の処理が施されていても良い。
 結着材用の塗液は、SBR水分散液であり、SBRの濃度は、10~40wt%である。SBRのガラス転移温度は、-50℃~30℃の範囲内である。結着材用の塗液には、塗液の粘度やぬれ性を調整するために、増粘剤や界面活性剤が含まれていてもよい。増粘剤や界面活性剤としては、公知のものを使用することができる。また、結着材として、SBR以外にも、水系のポリアクリル酸(PAA)や、有機溶媒系のポリフッ化ビニリデン(PVDF)などを用いてもよい。
 ホッパー8に収容される粉体12としては、電極活物質を含む複合粒子が挙げられる。複合粒子は、電極活物質及び結着材を含み、必要に応じてその他の分散剤、導電材および添加剤を含んでもよい。
 複合粒子をリチウムイオン電池の電極材料として用いる場合、正極用活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能な金属酸化物が挙げられる。かかる金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、燐酸鉄リチウム等を挙げることができる。なお、上記にて例示した正極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。
 なお、リチウムイオン電池用正極の対極としての負極の活物質としては、易黒鉛化性炭素、難黒鉛化性炭素、熱分解炭素などの低結晶性炭素(非晶質炭素)、グラファイト(天然黒鉛、人造黒鉛)、錫やケイ素等の合金系材料、ケイ素酸化物、錫酸化物、チタン酸リチウム等の酸化物、等が挙げられる。なお、上記に例示した電極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。
 リチウムイオン電池電極用の電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
 リチウムイオン電池電極用の電極活物質の体積平均粒子径は、正極、負極ともに通常0.1~100μm、好ましくは0.5~50μm、より好ましくは0.8~30μmである。
 複合粒子に用いられる結着材としては、前記電極活物質を相互に結着させることができる化合物であれば特に制限はない。好適な結着材は、溶媒に分散する性質のある分散型結着材である。分散型結着材として、例えば、シリコン系重合体、フッ素含有重合体、共役ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、好ましくはフッ素含有重合体、共役ジエン系重合体およびアクリレート系重合体、より好ましくは共役ジエン系重合体およびアクリレート系重合体が挙げられる。
 分散型結着材の形状は、特に制限はないが、粒子状であることが好ましい。粒子状であることにより、結着性が良く、また、作製した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができる。粒子状の結着材としては、例えば、ラテックスのごとき結着材の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粒子状のものが挙げられる。
 結着材の量は、得られる電極活物質層と基材との密着性が充分に確保でき、かつ、内部抵抗を低くすることができる観点から、電極活物質100重量部に対して、乾燥重量基準で通常は0.1~50重量部、好ましくは0.5~20重量部、より好ましくは1~15重量部である。
 複合粒子には、前述のように必要に応じて分散剤を用いてもよい。分散剤の具体例としては、カルボキシメチルセルロース、メチルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩などが挙げられる。これらの分散剤は、それぞれ単独でまたは2種以上を組み合わせて使用できる。
 複合粒子には、前述のように必要に応じて導電材を用いてもよい。導電材の具体例としては、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびケッチェンブラックが好ましい。これらの導電材は、単独でまたは二種類以上を組み合わせて用いることができる。
 複合粒子は、電極活物質、結着材および必要に応じ添加される前記導電材等他の成分を用いて造粒することにより得られ、少なくとも電極活物質、結着材を含んでなるが、前記のそれぞれが個別に独立した粒子として存在するのではなく、構成成分である電極活物質、結着材を含む2成分以上によって一粒子を形成するものである。具体的には、前記2成分以上の個々の粒子の複数個が結合して二次粒子を形成しており、複数個(好ましくは数個~数十個)の電極活物質が、結着材によって結着されて粒子を形成しているものが好ましい。
 複合粒子の製造方法は特に制限されず、流動層造粒法、噴霧乾燥造粒法、転動層造粒法などの公知の造粒法により製造することができる。
 複合粒子の体積平均粒子径は、所望の厚みの電極活物質層を容易に得る観点から、通常0.1~1000μm、好ましくは1~500μm、より好ましくは30~250μmの範囲である。
 なお、複合粒子の平均粒子径は、レーザー回折式粒度分布測定装置(たとえば、SALD-3100;島津製作所製)にて測定し、算出される体積平均粒子径である。

Claims (3)

  1.  基材上に供給された電極活物質を含む粉体をスキージロールによりスキージして粉体層を形成した後、前記基材を鉛直下方向に搬送しながら、一対のプレス用ロールにより、前記基材に前記粉体層を圧密して電極シートを製造するリチウムイオン電池用電極の製造方法において、
     前記基材上に前記粉体を供給する供給工程と、
     一方の前記プレス用ロールの回転軸を通る鉛直線と、前記回転軸と前記スキージロールの回転軸を通る線の成す角度であるスキージ角度θが、0°~60°の位置に配置された前記スキージロールにより、前記基材上に供給された前記粉体を均し前記粉体層を形成する粉体層形成工程と、
     前記一対のプレス用ロールにより前記基材に前記粉体層を圧密する圧密工程と、
    を含むことを特徴とするリチウムイオン電池用電極の製造方法。
  2.  前記粉体層形成工程により形成された前記粉体層は、前記粉体のかさ密度の105~150%の密度を有することを特徴とする請求項1に記載のリチウムイオン電池用電極の製造方法。
  3.  前記スキージロールが対向する前記プレス用ロールと同方向に回転することを特徴とする請求項1または2に記載のリチウムイオン電池の製造方法。
PCT/JP2015/085446 2015-01-05 2015-12-18 リチウムイオン電池用電極の製造方法 WO2016111137A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580071040.8A CN107112509B (zh) 2015-01-05 2015-12-18 锂离子电池用电极的制造方法
KR1020177017650A KR101917625B1 (ko) 2015-01-05 2015-12-18 리튬 이온 전지용 전극의 제조 방법
US15/539,778 US10396350B2 (en) 2015-01-05 2015-12-18 Method for manufacturing electrode for lithium ion battery
JP2016568312A JP6402200B2 (ja) 2015-01-05 2015-12-18 リチウムイオン電池用電極の製造方法
EP15877010.7A EP3244470B1 (en) 2015-01-05 2015-12-18 Method for manufacturing electrode for lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015000293 2015-01-05
JP2015-000293 2015-01-05

Publications (1)

Publication Number Publication Date
WO2016111137A1 true WO2016111137A1 (ja) 2016-07-14

Family

ID=56355839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085446 WO2016111137A1 (ja) 2015-01-05 2015-12-18 リチウムイオン電池用電極の製造方法

Country Status (6)

Country Link
US (1) US10396350B2 (ja)
EP (1) EP3244470B1 (ja)
JP (1) JP6402200B2 (ja)
KR (1) KR101917625B1 (ja)
CN (1) CN107112509B (ja)
WO (1) WO2016111137A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033689A1 (ja) 2019-08-19 2021-02-25 富士フイルム株式会社 電極用成形体の製造方法
WO2022196365A1 (ja) * 2021-03-18 2022-09-22 パナソニックIpマネジメント株式会社 粉体塗工装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301819B2 (ja) * 2014-11-26 2018-03-28 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法
JP7099378B2 (ja) * 2019-03-13 2022-07-12 トヨタ自動車株式会社 電極シートの製造方法
WO2021033690A1 (ja) * 2019-08-19 2021-02-25 富士フイルム株式会社 電極用成形体の製造方法
DE102022211993A1 (de) * 2022-11-11 2024-05-16 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Trockenfilms

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212608A (ja) * 2000-11-10 2002-07-31 Ishikawajima Harima Heavy Ind Co Ltd 粉末圧延装置および粉末圧延方法
WO2012165057A1 (ja) * 2011-06-03 2012-12-06 株式会社Ihi 粉末圧延装置
WO2014156357A1 (ja) * 2013-03-29 2014-10-02 トヨタ自動車株式会社 粉体塗工装置、およびそれを用いたリチウムイオン電池用電極の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149960A (ja) * 2007-12-21 2009-07-09 Ihi Corp 粉末圧延装置及び粉末圧延方法
JP2009224623A (ja) 2008-03-17 2009-10-01 Nippon Zeon Co Ltd ハイブリッドキャパシタ用電極シートおよびその製造方法
JP5163289B2 (ja) 2008-05-28 2013-03-13 株式会社Ihi 粉末圧延装置
US8655713B2 (en) * 2008-10-28 2014-02-18 Novell, Inc. Techniques for help desk management
JP2013077560A (ja) * 2011-09-14 2013-04-25 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法
JP5640996B2 (ja) * 2012-01-11 2014-12-17 トヨタ自動車株式会社 電池用電極の製造方法及び電池用電極
JP2016100067A (ja) * 2014-11-18 2016-05-30 日本ゼオン株式会社 リチウムイオン電池用電極の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212608A (ja) * 2000-11-10 2002-07-31 Ishikawajima Harima Heavy Ind Co Ltd 粉末圧延装置および粉末圧延方法
WO2012165057A1 (ja) * 2011-06-03 2012-12-06 株式会社Ihi 粉末圧延装置
WO2014156357A1 (ja) * 2013-03-29 2014-10-02 トヨタ自動車株式会社 粉体塗工装置、およびそれを用いたリチウムイオン電池用電極の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033689A1 (ja) 2019-08-19 2021-02-25 富士フイルム株式会社 電極用成形体の製造方法
US11605805B2 (en) 2019-08-19 2023-03-14 Fujifilm Corporation Method of manufacturing formed body for electrode
WO2022196365A1 (ja) * 2021-03-18 2022-09-22 パナソニックIpマネジメント株式会社 粉体塗工装置

Also Published As

Publication number Publication date
EP3244470B1 (en) 2019-08-07
CN107112509B (zh) 2020-04-28
US20170352874A1 (en) 2017-12-07
JPWO2016111137A1 (ja) 2017-10-12
KR20170086118A (ko) 2017-07-25
US10396350B2 (en) 2019-08-27
EP3244470A4 (en) 2018-07-11
CN107112509A (zh) 2017-08-29
EP3244470A1 (en) 2017-11-15
JP6402200B2 (ja) 2018-10-10
KR101917625B1 (ko) 2018-11-13

Similar Documents

Publication Publication Date Title
JP6402200B2 (ja) リチウムイオン電池用電極の製造方法
KR102227863B1 (ko) 리튬 이온 이차 전지 전극용 시트의 제조 방법
JP6211429B2 (ja) リチウムイオン電池用電極の製造方法
JP2016115569A (ja) リチウムイオン電池用電極の製造方法
KR102230705B1 (ko) 전기 화학 소자 전극용 복합 입자의 제조 방법
JP2010278125A (ja) 電気化学素子用電極の製造方法及び電気化学素子
JPWO2014192652A1 (ja) 電気化学素子電極用バインダー、電気化学素子電極用粒子複合体、電気化学素子電極、電気化学素子及び電気化学素子電極の製造方法
JP2016100067A (ja) リチウムイオン電池用電極の製造方法
JP2016115567A (ja) リチウムイオン電池用電極の製造方法
WO2014208684A1 (ja) リチウムイオン電池用電極の製造方法
JP5999237B2 (ja) 粉体圧延装置及び圧延シートの製造方法
JP6209457B2 (ja) リチウムイオン電池用電極の製造方法
JP6533053B2 (ja) リチウムイオン電池用電極の製造方法
JP5944853B2 (ja) リチウムイオン二次電池電極用シートの製造装置およびリチウムイオン二次電池電極用シートの製造方法
JP5845753B2 (ja) 粉体圧延装置及び圧延シートの製造方法
JP6274935B2 (ja) リチウムイオン電池用電極の製造方法
JP2016115432A (ja) リチウムイオン電池用電極の製造方法
JP2015130279A (ja) リチウムイオン電池用電極の製造方法
JP2016115568A (ja) リチウムイオン電池用電極の製造方法
JP5790353B2 (ja) 粉体圧延装置及び圧延シートの製造方法
JP6215737B2 (ja) リチウムイオン電池用電極の製造方法
JP5845748B2 (ja) 粉体圧延装置及び圧延シートの製造方法
JP2015146245A (ja) リチウムイオン電池用電極の製造方法及びリチウムイオン電池用電極の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568312

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15539778

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177017650

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015877010

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE