WO2016109938A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2016109938A1
WO2016109938A1 PCT/CN2015/070183 CN2015070183W WO2016109938A1 WO 2016109938 A1 WO2016109938 A1 WO 2016109938A1 CN 2015070183 W CN2015070183 W CN 2015070183W WO 2016109938 A1 WO2016109938 A1 WO 2016109938A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
image
satisfies
image pickup
Prior art date
Application number
PCT/CN2015/070183
Other languages
English (en)
French (fr)
Inventor
戴付建
黄林
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to PCT/CN2015/070183 priority Critical patent/WO2016109938A1/zh
Priority to US14/913,646 priority patent/US10114196B2/en
Priority to EP15831202.5A priority patent/EP3244248B1/en
Publication of WO2016109938A1 publication Critical patent/WO2016109938A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to imaging technology, and more particularly to an imaging lens.
  • the corresponding imaging lens With the performance improvement and size reduction of a charge-coupled device (CCD) and a complementary metal-oxide semiconductor (CMOS) image sensor, the corresponding imaging lens also needs to meet high image quality and Miniaturization requirements.
  • CCD charge-coupled device
  • CMOS complementary metal-oxide semiconductor
  • the camera lenses used in portable electronic products are mostly three- to five-piece camera lenses, but with the popularity of portable electronic products, the requirements for pixel and imaging quality of miniaturized cameras are getting higher and higher.
  • the camera lens will not meet the needs of electronic products, so there is a need for a camera lens for use in portable electronic products, which can meet the miniaturization characteristics of electronic products while having high pixels and high-quality images.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention needs to provide an imaging lens that includes, in order from the object side to the image side, a first lens having a positive refractive power, a side surface of which is a convex surface, a second lens, a third lens, and a fourth lens.
  • the side surface is a concave surface; a fifth lens having a positive refractive power; a sixth lens and a seventh lens having a negative refractive power; and the imaging lens includes an aperture disposed between the object and the second lens.
  • the camera lens satisfies the relationship:
  • TTL is the total length of the lens of the imaging lens
  • ImgH is half of the diameter of the effective pixel area of the imaging lens on the imaging surface
  • CT1 is the center thickness of the first lens
  • CT2 is the center thickness of the second lens.
  • the first lens image side is a concave surface
  • the fifth lens image side is a convex surface
  • the seventh lens object side is a concave surface
  • the camera lens also satisfies the following relationship:
  • f23 is a combined focal length of the second lens and the third lens, and f is an effective focal length of the imaging lens.
  • the camera lens also satisfies the conditional expression:
  • f1 is a focal length of the first lens
  • R1 and R2 are curvature radii of the object side surface and the image side surface of the first lens, respectively.
  • the camera lens also satisfies the conditional expression:
  • f5 is the focal length of the fifth lens
  • R10 is the radius of curvature of the image side surface of the fifth lens
  • the camera lens also satisfies the conditional expression:
  • f7 is the focal length of the seventh lens
  • R13 is the radius of curvature of the object side surface of the seventh lens.
  • the camera lens also satisfies the conditional expression:
  • f123 is the combined focal length of the first lens, the second lens, and the third lens.
  • the second lens has a negative refractive power
  • the object side surface is a convex surface and the image side surface is a concave surface
  • the third lens has a positive refractive power
  • the object side surface is a convex surface and the image side surface is a concave surface.
  • the fourth lens image side is convex
  • the side of the fifth lens object is a concave surface; the side surface of the sixth lens object is a convex surface.
  • the present patent also provides another imaging lens, which includes, in order from the object side to the image side, a first lens having a positive refractive power, a convex surface thereof, a second lens having a negative refractive power, and a third lens a convex surface, the image side is a concave surface; a fourth lens; a fifth lens having a positive refractive power; a sixth lens; a seventh lens having a negative refractive power; and the imaging lens includes an aperture disposed on the object and the first Between the two lenses.
  • the camera lens satisfies the following relationship:
  • TTL is the total length of the camera lens
  • ImgH is half the diameter of the effective pixel area on the imaging surface.
  • the camera lens also satisfies the conditional expression:
  • f123 is the combined focal length of the first lens, the second lens, and the third lens
  • f567 is the combined focal length of the fifth lens, the sixth lens, and the seventh lens.
  • the second lens object has a convex side and the image side has a concave surface.
  • the first lens image side is a concave surface
  • the fifth lens image side is a convex surface
  • the seventh lens object side is a concave surface
  • the third lens of the camera lens has a positive refractive power.
  • the camera lens satisfies the following relationship:
  • f23 is the combined focal length of the second and third lenses, and the overall focal length of the f-image lens.
  • the camera lens satisfies the following relationship:
  • f567 is the combined focal length of the fifth lens, the sixth lens, and the seventh lens.
  • the camera lens satisfies the following relationship:
  • f1 is the focal length of the first lens
  • R1 and R2 are the radii of curvature of the first lens object side and the image side surface, respectively.
  • the camera lens satisfies the following relationship:
  • f5 is the focal length of the fifth lens and R10 is the radius of curvature of the side surface of the fifth lens image.
  • the camera lens satisfies the following relationship:
  • f7 is the focal length of the seventh lens and R13 is the radius of curvature of the side surface of the seventh lens.
  • the fourth lens object has a concave side and the image side has a convex surface.
  • the side of the fifth lens object is a concave surface; the side surface of the sixth lens object is a convex surface.
  • FIG. 1 is a schematic view of an image pickup lens according to Embodiment 1 of the present invention.
  • FIG. 2 is an axial chromatic aberration diagram (mm) of the imaging lens of Embodiment 1
  • FIG. 3 is an astigmatism diagram (mm) of the imaging lens of Embodiment 1
  • FIG. 4 is a distortion diagram (%) of the imaging lens of Embodiment 1.
  • Figure 5 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 1;
  • Figure 6 is a schematic view of an image pickup lens according to Embodiment 2 of the present invention.
  • FIG. 7 is an axial chromatic aberration diagram (mm) of the imaging lens of Embodiment 2;
  • FIG. 8 is an astigmatism of the imaging lens of Embodiment 2.
  • Figure 9 is a distortion diagram (%) of the imaging lens of Embodiment 2;
  • Figure 10 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 2;
  • Figure 11 is a schematic view of an image pickup lens according to Embodiment 3 of the present invention.
  • FIG. 12 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 3;
  • FIG. 13 is an astigmatism diagram (mm) of the imaging lens of Example 3; and
  • FIG. 14 is a distortion diagram (%) of the imaging lens of Example 3.
  • Figure 15 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 3;
  • Figure 16 is a schematic view of an image pickup lens according to Embodiment 4 of the present invention.
  • FIG. 17 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 4;
  • FIG. 18 is an astigmatism diagram (mm) of the imaging lens of Example 4; and
  • FIG. 19 is a distortion diagram (%) of the imaging lens of Example 4.
  • 20 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 4;
  • Figure 21 is a schematic view of an image pickup lens according to Embodiment 5 of the present invention.
  • FIG. 22 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 5;
  • FIG. 23 is an astigmatism diagram (mm) of the imaging lens of Example 5; and
  • FIG. 24 is a distortion diagram (%) of the imaging lens of Example 5.
  • Figure 25 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 5;
  • Figure 26 is a schematic diagram of an image pickup lens according to Embodiment 6 of the present invention.
  • FIG. 27 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 6
  • FIG. 28 is an astigmatism diagram (mm) of the imaging lens of Example 6
  • FIG. 29 is a distortion diagram (%) of the imaging lens of Example 6.
  • Figure 30 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 6;
  • Figure 31 is a schematic view of an image pickup lens according to Embodiment 7 of the present invention.
  • FIG. 32 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 7
  • FIG. 33 is an astigmatism diagram (mm) of the imaging lens of Example 7
  • FIG. 34 is a distortion diagram (%) of the imaging lens of Example 7.
  • 35 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 7;
  • Figure 36 is a schematic diagram of an image pickup lens according to Embodiment 8 of the present invention.
  • FIG. 37 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 8
  • FIG. 38 is an astigmatism diagram (mm) of the imaging lens of Example 8
  • FIG. 39 is a distortion diagram (%) of the imaging lens of Example 8.
  • 40 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 8;
  • Figure 41 is a schematic view of an image pickup lens according to Embodiment 9 of the present invention.
  • FIG. 42 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 9
  • FIG. 43 is an astigmatism diagram (mm) of the imaging lens of Example 9
  • FIG. 44 is a distortion diagram (%) of the imaging lens of Example 9.
  • Fig. 45 is a chromatic aberration diagram (um) of the imaging lens magnification of the ninth embodiment.
  • Figure 46 is a schematic diagram of an image pickup lens according to Embodiment 10 of the present invention.
  • FIG. 47 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 10; and FIG. 48 is an imaging lens of Embodiment 10. An astigmatism diagram (mm); FIG. 49 is a distortion diagram (%) of the imaging lens of Embodiment 10; and FIG. 50 is an imaging lens magnification chromatic aberration diagram (um) of Embodiment 10.
  • Figure 51 is a schematic view of an image pickup lens according to Embodiment 11 of the present invention.
  • FIG. 52 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 11
  • FIG. 53 is an astigmatism diagram (mm) of the imaging lens of Example 11
  • FIG. 54 is a distortion diagram (%) of the imaging lens of Example 11.
  • Fig. 55 is a chromatic aberration diagram (um) of the imaging lens magnification of the eleventh embodiment.
  • Figure 56 is a schematic diagram of an image pickup lens according to Embodiment 12 of the present invention.
  • FIG. 57 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 12
  • FIG. 58 is an astigmatism diagram (mm) of the imaging lens of Example 12
  • FIG. 59 is a distortion diagram (%) of the imaging lens of Example 12.
  • Fig. 60 is an imaging lens magnification chromatic aberration diagram (um) of the twelfth embodiment.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • an image pickup lens includes a positive refractive power from the object side to the image side.
  • the first lens E1, the object side surface S1 is a convex surface; the second lens E2; the third lens E3; the fourth lens E4, the object side surface S7 is a concave surface; the fifth lens E5 having a positive refractive power; the sixth lens E6 and a seventh lens E7 having a negative refractive power; the imaging lens includes a stop STO disposed between the subject and the second lens E2.
  • the camera lens satisfies the relationship:
  • TTL is the total length of the lens of the imaging lens
  • ImgH is half of the diameter of the effective pixel area of the imaging lens on the imaging surface
  • CT1 is the center thickness of the first lens
  • CT2 is the center thickness of the second lens.
  • the first lens E1 includes an object side surface S1 and an image side surface S2
  • the second lens E2 includes an object side surface S3 and an image side surface S4
  • the third lens E3 includes an object side surface S5 and an image side surface S6, and a fourth
  • the lens E4 includes an image side surface S7 and an image side surface S8,
  • the fifth lens E5 includes an object side surface S9 and an image side surface S10
  • the sixth lens E6 includes an object side surface S11 and an image side surface S12
  • the seventh lens E7 includes an object side.
  • the surface S13 and the image side surface S14 The surface S13 and the image side surface S14.
  • the first lens E1 is concave on the image side surface S2; the image side surface E10 is a convex surface on the fifth lens E5; and the object side surface E13 is a concave surface on the seventh lens E7.
  • Such a shape design can further improve image quality and promote miniaturization.
  • the camera lens also satisfies the following relationship:
  • f23 is the combined focal length of the second lens E2 and the third lens E3, and f is the effective focal length of the imaging lens.
  • the above formula is conducive to correcting the astigmatism of the camera lens.
  • the camera lens also satisfies the conditional expression:
  • f1 is a focal length of the first lens E1
  • R1 and R2 are curvature radii of the object side surface S1 and the image side surface S2 of the first lens E1, respectively.
  • the limitation of the first lens by the above two modes can ensure that the imaging lens has a large angle of view, and the appropriate distribution of refractive power contributes to the miniaturization of the lens.
  • the camera lens also satisfies the conditional expression:
  • f5 is the focal length of the fifth lens E5
  • R10 is the radius of curvature of the image side surface S10 of the fifth lens E5.
  • the definition of the fifth lens E5 by the above conditional expression can effectively make the light angle of the image pickup lens gentle, and reduce the tolerance sensitivity.
  • the camera lens also satisfies the conditional expression:
  • f7 is the focal length of the seventh lens
  • R13 is the radius of curvature of the object side surface of the seventh lens.
  • the seventh lens that satisfies the requirements of the above formula, in combination with other lens shapes and power characteristics, can well correct various aberrations of the system, reduce distortion, and improve the resolution of the lens.
  • the camera lens also satisfies the conditional expression:
  • f123 is the combined focal length of the first lens, the second lens, and the third lens.
  • the second lens has a negative refractive power
  • the object side surface is a convex surface and the image side surface is a concave surface
  • the third lens has a positive refractive power
  • the object side surface is a convex surface and the image side surface is a concave surface.
  • the fourth lens image side is convex
  • the side of the fifth lens object is a concave surface; the side surface of the sixth lens object is a convex surface.
  • the present invention provides an image pickup lens comprising, in order from the object side to the image side, a first lens having a positive refractive power, a convex surface thereof, a second lens having a negative refractive power, and a third lens.
  • a side surface of the object is a convex surface
  • the image side is a concave surface; a fourth lens; a fifth lens having a positive refractive power; a sixth lens; a seventh lens having a negative refractive power; and the imaging lens includes an aperture disposed on the object Between the second lens and the second lens.
  • the camera lens satisfies the following relationship:
  • TTL is the total length of the camera lens
  • ImgH is half the diameter of the effective pixel area on the imaging surface.
  • the above formula can be advantageous for miniaturization of the lens.
  • the camera satisfies the following relationship:
  • f123 is the combined focal length of the first lens, the second lens, and the third lens
  • f567 is the combined focal length of the fifth lens, the sixth lens, and the seventh lens.
  • the reasonable distribution of the upper type of refractive power is beneficial to the miniaturization of the lens on the one hand, and increases the angle of view on the other hand, and improves the imaging quality of the lens.
  • the second lens object has a convex side and the image side has a concave surface; the third lens has a positive refractive power in the imaging lens; the first lens image side has a concave surface, and the fifth lens image Side is convex, seventh The side of the lens is concave.
  • Such a tortuosity and shape fit can further improve image quality and promote miniaturization.
  • the camera lens satisfies the following relationship:
  • f23 is the combined focal length of the second and third lenses, and the overall focal length of the f-image lens.
  • the above formula is conducive to correcting the astigmatism of the camera lens.
  • the camera lens satisfies the following relationship:
  • the camera lens satisfies the following relationship:
  • f1 is the focal length of the first lens
  • R1 and R2 are the radii of curvature of the first lens object side and the image side surface, respectively.
  • the limitation of the first lens by the above two modes can ensure that the imaging lens has a large angle of view, and the appropriate distribution of refractive power contributes to the miniaturization of the lens.
  • the camera lens satisfies the following relationship:
  • f5 is the focal length of the fifth lens and R10 is the radius of curvature of the side surface of the fifth lens image.
  • the definition of the fifth lens E5 by the above conditional expression can effectively make the light angle of the image pickup lens gentle, and reduce the tolerance sensitivity.
  • the camera lens satisfies the following relationship:
  • f7 is the focal length of the seventh lens and R13 is the radius of curvature of the side surface of the seventh lens.
  • the seventh lens that satisfies the requirements of the above formula, in combination with other lens shapes and power characteristics, can well correct various aberrations of the system, reduce distortion, and improve the resolution of the lens.
  • the side surface of the fourth lens object is a concave surface
  • the image side surface is a convex surface
  • the side surface of the fifth lens object is a concave surface
  • the side surface of the sixth lens object is a convex surface
  • the definition of the shape of the above formula can be beneficial to further shorten the total length of the lens and improve the image quality.
  • the pupil plane is STO.
  • the pupil plane STO and the object side surface S3 of the second lens E2 are attached together.
  • the pupil plane STO is on the side of the first lens object. Before S1.
  • the light passes through the image pickup lens and passes through the filter E8 having the object side surface S15 and the image side surface S16, and is imaged on the image forming surface S17.
  • the first lens E1, the second lens E2, the third lens E3, the fourth lens E4, the fifth lens E5, the sixth lens E6, and the seventh lens E7 portion may be aspherical lenses.
  • the aspherical shape is determined by the following formula:
  • h is the height from any point on the aspheric surface to the optical axis
  • c is the curvature of the vertex
  • k is the cone constant
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 2 is an axial chromatic aberration diagram (mm) of the imaging lens of the first embodiment
  • FIG. 3 is an astigmatism diagram (mm) of the imaging lens of the first embodiment
  • FIG. 4 is a distortion diagram (%) of the imaging lens of the first embodiment
  • 5 is a magnification chromatic aberration diagram (um) of the imaging lens of the first embodiment, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 7 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 2
  • FIG. 8 is an astigmatism diagram (mm) of the imaging lens of Example 2
  • FIG. 9 is a distortion diagram (%) of the imaging lens of Example 2.
  • 10 is a magnification chromatic aberration diagram (um) of the imaging lens of the second embodiment, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 12 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 3
  • FIG. 13 is an astigmatism diagram (mm) of the imaging lens of Example 3
  • FIG. 14 is a distortion diagram (%) of the imaging lens of Example 3.
  • 15 is a magnification chromatic aberration diagram (um) of the imaging lens of the third embodiment, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 17 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 4
  • FIG. 18 is an astigmatism diagram (mm) of the imaging lens of Example 4
  • FIG. 19 is a distortion diagram (%) of the imaging lens of Example 4.
  • 20 is a magnification chromatic aberration diagram (um) of the imaging lens of the fourth embodiment, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 22 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 5
  • FIG. 23 is an astigmatism diagram (mm) of the imaging lens of Example 5
  • FIG. 24 is a distortion diagram (%) of the imaging lens of Example 5.
  • 25 is a magnification chromatic aberration diagram (um) of the imaging lens of the fifth embodiment, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 27 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 6
  • FIG. 28 is an astigmatism diagram (mm) of the imaging lens of Example 6
  • FIG. 29 is a distortion diagram (%) of the imaging lens of Example 6.
  • 30 is a magnification chromatic aberration diagram (um) of the imaging lens of the sixth embodiment, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 32 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 7
  • FIG. 33 is an astigmatism diagram (mm) of the imaging lens of Example 7
  • FIG. 34 is a distortion diagram (%) of the imaging lens of Example 7.
  • 35 is a magnification chromatic aberration diagram (um) of the imaging lens of the seventh embodiment, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 37 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 8
  • FIG. 38 is an astigmatism diagram (mm) of the imaging lens of Example 8
  • FIG. 39 is a distortion diagram (%) of the imaging lens of Example 8.
  • 40 is a magnification chromatic aberration diagram (um) of the imaging lens of the eighth embodiment, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 42 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 9
  • FIG. 43 is an astigmatism diagram (mm) of the imaging lens of Example 9
  • FIG. 44 is a distortion diagram (%) of the imaging lens of Example 9.
  • 45 is a magnification chromatic aberration diagram (um) of the imaging lens of the ninth embodiment, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 47 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 10
  • FIG. 48 is an astigmatism diagram (mm) of the imaging lens of Example 10
  • FIG. 49 is a distortion diagram (%) of the imaging lens of Example 10.
  • Fig. 50 is a magnification chromatic aberration diagram (um) of the imaging lens of the tenth embodiment, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 52 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 11
  • FIG. 53 is an astigmatism diagram (mm) of the imaging lens of Example 11
  • FIG. 54 is a distortion diagram (%) of the imaging lens of Example 11.
  • 55 is a magnification chromatic aberration diagram (um) of the imaging lens of the eleventh embodiment, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • the camera lens satisfies the conditions of the following table:
  • FIG. 57 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 12
  • FIG. 58 is an astigmatism diagram (mm) of the imaging lens of Example 12
  • FIG. 59 is a distortion diagram (%) of the imaging lens of Example 12.
  • 60 is a magnification chromatic aberration diagram (um) of the imaging lens of the embodiment 12, and it can be seen that the aberration of the imaging lens is effectively controlled.
  • Embodiment 1 2 3 4 5 6 TTL/ImgH 1.62 2.1 1.44 1.44 1.44 1.6 CT1/CT2 2.25 2.1 2.04 2.28 2.28 1.96 F123/f567 -0.41 -0.57 -0.61 -0.51 -0.59 -0.37 F23/f 4.16 -11.4 -7.74 -1.1 -1.09 4.74 F1/f 1.24 1.05 1.05 1 1.04 1.58 (R1+R2)/(R1-R2) -3 -1.9 -1.87 -1.32 -1.44 -3 F5/f 1.95 1.32 1.49 2.04 2.16 2.37 R10/f -0.51 -0.33 -0.33 -0.33 -0.33 -0.64 F7/f -0.64 -0.65 -0.66 -0.82 -1.04 -0.97 R13/f -0.38 -0.72 -0.74 -1.43 -2.55 -0.63 f/f123 1.03 0.91 0.88

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像镜头,由物侧至像侧依次为:具有正屈折力物侧面(S1)为凸面的第一透镜(E1),第二透镜(E2),第三透镜(E3),物侧面(S7)为凹面的第四透镜(E4),具有正屈折力的第五透镜(E5),第六透镜(E6)及具有负屈折力的第七透镜(E7)。摄像镜头包含光阑(STO),置于被摄物与第二透镜(E2)之间。摄像镜头满足公式:TTL/ImgH<2.4;1.5<CT1/CT2<4;其中,TTL为摄像镜头总长,ImgH为摄像镜头在成像面(S17)上有效像素区域的半径,CT1为第一透镜的中心厚度,CT2为第二透镜的中心厚度。摄像镜头视场角较大、小型化、成像品质高。

Description

摄像镜头 技术领域
本发明涉及成像技术,尤其是涉及一种摄像镜头。
背景技术
随着电耦合器件(charge-coupled device,CCD)及互补式金属氧化物半导体(complementary metal-oxide semiconductor,CMOS)图像传感器的性能提高及尺寸减小,对应的摄像镜头也需满足高成像品质及小型化的要求。
目前便携式电子产品上所使用的摄像镜头多为三片至五片式的摄像镜头,但随着便携式电子产品的盛行,带动小型化摄像头对像素和成像质量的要求越来越高,现有的摄像镜头将无法满足电子产品的需求,因此需要一种应用于便携式电子产品上的摄像镜头,在具备高像素和能够获取高质量图像的基础上,同时可迎合电子产品的小型化特性。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
为此,本发明需要提供一种摄像镜头,其由物侧至像侧依次包括具有正屈折力的第一透镜,其物侧面为凸面;第二透镜;第三透镜;第四透镜,其物侧面为凹面;具有正屈折力的第五透镜;第六透镜及具有负屈折力的第七透镜;所述摄像镜头包含一光阑,设置于被摄物与第二透镜之间。所述摄像镜头满足关系式:
TTL/ImgH<2.4;
1.5<CT1/CT2<4;
其中,TTL为所述摄像镜头的镜头总长,ImgH为所述摄像镜头在成像面上有效像素区域直径的一半,CT1为第一透镜的中心厚度,CT2为第二透镜的中心厚度。
在某些实施方式中,所述第一透镜像侧面为凹面;第五透镜像侧面为凸面;第七透镜物侧面为凹面。
在某些实施方式中,所述摄像镜头还满足下列关系式:
|f23/f|<12;
其中,f23为所述第二透镜与所述第三透镜的组合焦距,f为所述摄像镜头的有效焦距。
在某些实施方式中,所述摄像镜头还满足条件式:
0<f1/f<2;及
-4<(R1+R2)/(R1-R2)<-1;
其中,f1为所述第一透镜的焦距,R1、R2分别为所述第一透镜的物侧表面和像侧表面的曲率半径。
在某些实施方式中,所述摄像镜头还满足条件式:
0<f5/f<6.5;及
-2.5<R10/f<0
其中,f5为第五透镜的焦距,R10为第五透镜的像侧表面的曲率半径。
在某些实施方式中,所述摄像镜头还满足条件式:
-1.5<f7/f<0;及
-3.0<R13/f<0;
其中,f7为所述第七透镜的焦距,R13为所述第七透镜的物侧表面的曲率半径。
在某些实施方式中,所述摄像镜头还满足条件式:
0.5<f/f123<1.5;
其中,f123为第一透镜、第二透镜、第三透镜的组合焦距。
在某些实施方式中,所述第二透镜具有负屈折力,其物侧面为凸面而像侧面为凹面,第三透镜具有正屈折力,其物侧面为凸面而像侧面为凹面。
在某些实施方式中,所述第四透镜像侧面为凸面;
在某些实施方式中,所述第五透镜物侧面为凹面;第六透镜物侧面为凸面。
本专利还提供另一种摄像镜头,由物侧至像侧依次包含:具有正屈折力的第一透镜,其物侧面为凸面;具有负屈折力的第二透镜;第三透镜,其物侧面为凸面,像侧面为凹面;第四透镜;具有正屈折力的第五透镜;第六透镜;具有负屈折力的第七透镜;所述摄像镜头包含一光阑,设置于被摄物与第二透镜之间。所述摄像镜头满足下列关系式:
TTL/ImgH<2.4;
其中,TTL为摄像镜头的总长,ImgH为成像面上有效像素区域直径的一半。
在某些实施方式中,所述摄像镜头还满足条件式:
f123/f567≦-0.3;
其中,f123为第一透镜、第二透镜、第三透镜的组合焦距,f567为第五透镜、第六透镜、第七透镜的组合焦距。
在某些实施方式中,所述第二透镜物侧面为凸面,像侧面为凹面。
在某些实施方式中,所述第一透镜像侧面为凹面,第五透镜像侧面为凸面,第七透镜物侧面为凹面。
在某些实施方式中,所述摄像镜头中第三透镜具有正的屈折力。
在某些实施方式中,所述摄像镜头满足下列关系式:
|f23/f|<12;
其中,f23为第二、第三透镜的组合焦距,f摄像镜头的整体焦距。
在某些实施方式中,所述摄像镜头满足以下关系式:
-5<f567/f<-1;
其中,f567为第五透镜、第六透镜、第七透镜的组合焦距。
在某些实施方式中,所述摄像镜头满足以下关系式:
1≤f1/f<2;及
-4<(R1+R2)/(R1-R2)<-1;
其中,f1为第一透镜的焦距,R1、R2分别为第一透镜物侧面和像侧面的曲率半径。
在某些实施方式中,所述摄像镜头满足以下关系式:
0<f5/f<3;及
-1<R10/f<0;
其中,f5为第五透镜的焦距,R10为第五透镜像侧面的曲率半径。
在某些实施方式中,所述摄像镜头满足以下关系式:
-1.5<f7/f<0;及
-3.0<R13/f<0;
其中,f7为第七透镜的焦距,R13为第七透镜物侧面的曲率半径。
在某些实施方式中,所述第四透镜物侧面为凹面,像侧面为凸面。
在某些实施方式中,第五透镜物侧面为凹面;第六透镜物侧面为凸面。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施例1的摄像镜头的示意图;
图2是实施例1的摄像镜头的轴上色差图(mm);图3是实施例1的摄像镜头的像散图(mm);图4是实施例1的摄像镜头的畸变图(%);图5是实施例1的摄像镜头倍率色差图(um);
图6是本发明实施例2的摄像镜头的示意图;
图7是实施例2的摄像镜头的轴上色差图(mm);图8是实施例2的摄像镜头的像散 图(mm);图9是实施例2的摄像镜头的畸变图(%);图10是实施例2的摄像镜头倍率色差图(um);
图11是本发明实施例3的摄像镜头的示意图;
图12是实施例3的摄像镜头的轴上色差图(mm);图13是实施例3的摄像镜头的像散图(mm);图14是实施例3的摄像镜头的畸变图(%);图15是实施例3的摄像镜头倍率色差图(um);
图16是本发明实施例4的摄像镜头的示意图;
图17是实施例4的摄像镜头的轴上色差图(mm);图18是实施例4的摄像镜头的像散图(mm);图19是实施例4的摄像镜头的畸变图(%);图20是实施例4的摄像镜头倍率色差图(um);
图21是本发明实施例5的摄像镜头的示意图;
图22是实施例5的摄像镜头的轴上色差图(mm);图23是实施例5的摄像镜头的像散图(mm);图24是实施例5的摄像镜头的畸变图(%);图25是实施例5的摄像镜头倍率色差图(um);
图26是本发明实施例6的摄像镜头的示意图;
图27是实施例6的摄像镜头的轴上色差图(mm);图28是实施例6的摄像镜头的像散图(mm);图29是实施例6的摄像镜头的畸变图(%);图30是实施例6的摄像镜头倍率色差图(um);
图31是本发明实施例7的摄像镜头的示意图;
图32是实施例7的摄像镜头的轴上色差图(mm);图33是实施例7的摄像镜头的像散图(mm);图34是实施例7的摄像镜头的畸变图(%);图35是实施例7的摄像镜头倍率色差图(um);
图36是本发明实施例8的摄像镜头的示意图;
图37是实施例8的摄像镜头的轴上色差图(mm);图38是实施例8的摄像镜头的像散图(mm);图39是实施例8的摄像镜头的畸变图(%);图40是实施例8的摄像镜头倍率色差图(um);
图41是本发明实施例9的摄像镜头的示意图;
图42是实施例9的摄像镜头的轴上色差图(mm);图43是实施例9的摄像镜头的像散图(mm);图44是实施例9的摄像镜头的畸变图(%);图45是实施例9的摄像镜头倍率色差图(um)。
图46是本发明实施例10的摄像镜头的示意图;
图47是实施例10的摄像镜头的轴上色差图(mm);图48是实施例10的摄像镜头的 像散图(mm);图49是实施例10的摄像镜头的畸变图(%);图50是实施例10的摄像镜头倍率色差图(um)。
图51是本发明实施例11的摄像镜头的示意图;
图52是实施例11的摄像镜头的轴上色差图(mm);图53是实施例11的摄像镜头的像散图(mm);图54是实施例11的摄像镜头的畸变图(%);图55是实施例11的摄像镜头倍率色差图(um)。
图56是本发明实施例12的摄像镜头的示意图;
图57是实施例12的摄像镜头的轴上色差图(mm);图58是实施例12的摄像镜头的像散图(mm);图59是实施例12的摄像镜头的畸变图(%);及图60是实施例12的摄像镜头倍率色差图(um)。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明较佳实施方式的摄像镜头由物侧至像侧依次包括具有正屈折力 的第一透镜E1,其物侧面S1为凸面;第二透镜E2;第三透镜E3;第四透镜E4,其物侧面S7为凹面;具有正屈折力的第五透镜E5;第六透镜E6及具有负屈折力的第七透镜E7;所述摄像镜头包含一光阑STO,设置于被摄物与第二透镜E2之间。摄像镜头满足关系式:
TTL/ImgH<2.4;
1.5<CT1/CT2<4;
其中,TTL为所述摄像镜头的镜头总长,ImgH为所述摄像镜头在成像面上有效像素区域直径的一半,CT1为第一透镜的中心厚度,CT2为第二透镜的中心厚度。
上面两个条件式有利于摄像镜头的小型化。
具体的,第一透镜E1包括物侧表面S1及像侧表面S2,第二透镜E2包括物侧表面S3及像侧表面S4,第三透镜E3包括物侧表面S5及像侧表面S6,第四透镜E4包括像侧表面S7及像侧表面S8,第五透镜E5包括物侧表面S9及像侧表面S10,第六透镜E6包括物侧表面S11及像侧表面S12,第七透镜E7包括物侧表面S13及像侧表面S14。
在某些实施方式中,所述第一透镜E1像侧面S2为凹面;第五透镜E5像侧面E10为凸面;第七透镜E7物侧面E13为凹面。
如此的形状设计可进一步提高成像品质及促进小型化。
在某些实施方式中,所述摄像镜头还满足下列关系式:
|f23/f|<12;
其中,f23为所述第二透镜E2与所述第三透镜E3的组合焦距,f为所述摄像镜头的有效焦距。
上式要求有利于修正摄像镜头的象散。
在某些实施方式中,所述摄像镜头还满足条件式:
0<f1/f<2;及
-4<(R1+R2)/(R1-R2)<-1;
其中,f1为所述第一透镜E1的焦距,R1、R2分别为所述第一透镜E1的物侧表面S1和像侧表面S2的曲率半径。
以上两式对第一透镜的限制可保证本摄像镜头具有较大的视场角,且适当的屈折力分配有助于镜头的小型化设计。
在某些实施方式中,所述摄像镜头还满足条件式:
0<f5/f<6.5;及
-2.5<R10/f<0
其中,f5为第五透镜E5的焦距,R10为第五透镜E5的像侧表面S10的曲率半径。
上面的条件式对第五透镜E5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。
在某些实施方式中,所述摄像镜头还满足条件式:
-1.5<f7/f<0;及
-3.0<R13/f<0;
其中,f7为所述第七透镜的焦距,R13为所述第七透镜的物侧表面的曲率半径。
满足上式要求的第七透镜,在配合其他透镜形状和光焦度特征,可良好的校正***各种像差,减小畸变,提高本镜头的解析度。
在某些实施方式中,所述摄像镜头还满足条件式:
0.5<f/f123<1.5;
其中,f123为第一透镜、第二透镜、第三透镜的组合焦距。
满足上述条件式有利于缩短摄像镜头的总长,增大视场角。
在某些实施方式中,所述第二透镜具有负屈折力,其物侧面为凸面而像侧面为凹面,第三透镜具有正屈折力,其物侧面为凸面而像侧面为凹面。
在某些实施方式中,所述第四透镜像侧面为凸面;
在某些实施方式中,所述第五透镜物侧面为凹面;第六透镜物侧面为凸面。
另一方面,本发明提供一种摄像镜头,由物侧至像侧依次包括:具有正屈折力的第一透镜,其物侧面为凸面;具有负屈折力的第二透镜;第三透镜,其物侧面为凸面,像侧面为凹面;第四透镜;具有正屈折力的第五透镜;第六透镜;具有负屈折力的第七透镜;所述摄像镜头包含一光阑,置于被摄物与第二透镜之间。
摄像镜头满足下列关系式:
TTL/ImgH<2.4;
其中,TTL为摄像镜头的总长,ImgH为成像面上有效像素区域直径的一半。
上式要求可有利于镜头的小型化。
在某些实施方式中,所述摄像头满足下列关系式:
f123/f567≤-0.3;
其中,f123为第一透镜、第二透镜、第三透镜的组合焦距,f567为所述第五透镜、第六透镜、第七透镜的组合焦距。
上式屈折力的合理分配一方面有利于镜头的小型化,另一方面可增大视场角,并提高镜头的成像质量。
在某些实施方式中,所述第二透镜物侧面为凸面,像侧面为凹面;所述摄像镜头中第三透镜具有正的屈折力;所述第一透镜像侧面为凹面,第五透镜像侧面为凸面,第七 透镜物侧面为凹面。
如此的曲折力及形状配合可进一步提高成像品质及促进小型化。
在某些实施方式中,所述摄像镜头满足下列关系式:
|f23/f|<12;
其中,f23为第二、第三透镜的组合焦距,f摄像镜头的整体焦距。
上式要求有利于修正摄像镜头的象散。
在某些实施方式中,所述摄像镜头满足以下关系式:
-5<f567/f<-1;
有利于摄像镜头的小型化特性,结合形状特征可提高成像质量,降低公差敏感度。
在某些实施方式中,所述摄像镜头满足以下关系式:
1≤f1/f<2;及
-4<(R1+R2)/(R1-R2)<-1;
其中,f1为第一透镜的焦距,R1、R2分别为第一透镜物侧面和像侧面的曲率半径。
以上两式对第一透镜的限制可保证本摄像镜头具有较大的视场角,且适当的屈折力分配有助于镜头的小型化设计。
在某些实施方式中,所述摄像镜头满足以下关系式:
0<f5/f<3;及
-1<R10/f<0;
其中,f5为第五透镜的焦距,R10为第五透镜像侧面的曲率半径。
上面的条件式对第五透镜E5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。
在某些实施方式中,所述摄像镜头满足以下关系式:
-1.5<f7/f<0;及
-3.0<R13/f<0;
其中,f7为第七透镜的焦距,R13为第七透镜物侧面的曲率半径。
满足上式要求的第七透镜,在配合其他透镜形状和光焦度特征,可良好的校正***各种像差,减小畸变,提高本镜头的解析度。
在某些实施方式中,所述第四透镜物侧面为凹面,像侧面为凸面,第五透镜物侧面为凹面;第六透镜物侧面为凸面。
上式对于形状的限定可有利于进一步缩短镜头总长,提高成像质量。
光阑面为STO,在下面的具体实施例4、5中,光阑面STO和第二镜片E2的物侧面S3贴合在一起,其余实施例中,光阑面STO在第一镜片物侧面S1之前。
成像时,光线穿过摄像镜头后经过具有物侧表面S15及像侧表面S16的滤光片E8后成像于成像面S17。
在某些实施方式中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6及第七透镜E7部分可为非球面透镜。
非球面的面形由以下公式决定:
Figure PCTCN2015070183-appb-000001
其中,h是非球面上任一点到光轴的高度,c是顶点曲率,k是锥形常数,Ai是非球面第i-th阶的修正系数。
实施例1
实施例1中,摄像镜头满足下面表格的条件:
表1
Figure PCTCN2015070183-appb-000002
Figure PCTCN2015070183-appb-000003
表2
表面编号 A4 A6 A8 A10 A12
S1 -6.1281E-03 4.3661E-03 0.0000E+00 0.0000E+00 0.0000E+00
S2 -1.0340E-02 -2.8693E-03 0.0000E+00 0.0000E+00 0.0000E+00
S3 -1.0662E-01 1.5664E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 -8.0168E-02 4.9781E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.2354E-02 1.9507E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 -1.5146E-02 2.2755E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -4.8131E-02 4.9967E-02 0.0000E+00 0.0000E+00 0.0000E+00
S8 -5.6105E-02 1.5113E-02 0.0000E+00 0.0000E+00 0.0000E+00
S9 3.5339E-02 -2.9113E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 3.0582E-02 1.6911E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -8.8267E-02 -6.5051E-03 0.0000E+00 0.0000E+00 0.0000E+00
S12 -6.9849E-02 5.0946E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 3.9881E-02 -6.9052E-03 1.7282E-03 -4.3049E-04 3.7072E-05
S14 -9.5037E-03 1.3831E-03 -1.0179E-03 1.9753E-04 -1.5595E-05
另外,TTL=5mm;f1=5.46mm;f2=-6.86mm;f3=4.83mm;f4=-130.97mm;f5=8.56mm;f6=9.67mm;f7=-2.79mm及f=4.39mm;Semi-FOV=34.8°;光阑值为:2.1。
图2是实施例1的摄像镜头的轴上色差图(mm),图3是实施例1的摄像镜头的像散图(mm),图4是实施例1的摄像镜头的畸变图(%),图5是实施例1的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
实施例2
实施例2中,摄像镜头满足下面表格的条件:
表3
Figure PCTCN2015070183-appb-000004
Figure PCTCN2015070183-appb-000005
表4
Figure PCTCN2015070183-appb-000006
Figure PCTCN2015070183-appb-000007
另外,TTL=6.06mm;f1=5.25mm;f2=-7.49mm;f3=8.35mm;f4=19.3mm;f5=6.63mm;f6=36.3mm;f7=-3.23mm及f=5mm;Semi-FOV=29.1°;光阑值为:2.2。
图7是实施例2的摄像镜头的轴上色差图(mm),图8是实施例2的摄像镜头的像散图(mm),图9是实施例2的摄像镜头的畸变图(%),图10是实施例2的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
实施例3
实施例3中,摄像镜头满足下面表格的条件:
表5
Figure PCTCN2015070183-appb-000008
Figure PCTCN2015070183-appb-000009
表6
表面编号 A4 A6 A8 A10 A12
S1 4.1137E-03 4.8437E-04 -9.0742E-03 1.7686E-02 -3.1560E-02
S2 -1.7156E-02 -5.0734E-02 -5.8181E-03 -1.5245E-02 8.3683E-03
S3 -6.7316E-02 -1.8944E-02 -3.1239E-02 1.2889E-02 2.0622E-02
S4 -4.6421E-02 2.0324E-02 -5.2405E-03 -1.4123E-02 1.3309E-02
S5 -1.1623E-02 1.1368E-02 1.7479E-02 2.2284E-02 6.3358E-03
S6 -1.0431E-02 -1.3060E-02 2.4245E-02 2.3074E-02 5.9134E-02
S7 -6.7780E-02 -9.0797E-02 5.7161E-02 -1.1590E-01 9.1159E-02
S8 -4.4747E-02 4.3948E-02 -1.8143E-01 9.3766E-02 -1.0675E-02
S9 -1.8909E-02 2.8632E-01 -3.7285E-01 1.4453E-01 -1.7647E-02
S10 -1.7181E-01 3.2157E-01 -2.4013E-01 8.4819E-02 -1.1901E-02
S11 -4.4428E-02 -2.6406E-02 -3.4194E-02 2.1436E-02 -3.5760E-03
S12 2.9240E-03 -5.9897E-02 1.5351E-02 -1.8595E-04 -1.6596E-04
S13 -2.4075E-02 1.9672E-02 -3.6949E-03 2.7681E-04 -6.2307E-06
S14 -6.3963E-02 2.6426E-02 -6.7816E-03 8.3730E-04 -4.3511E-05
另外,TTL=4.6mm;f1=3.97mm;f2=-5.98mm;f3=7.23mm;f4=11.71mm;f5=5.65mm;f6=20.75mm;f7=-2.52mm及f=3.8mm;Semi-FOV=40.12°;光阑值为:2.2。
图12是实施例3的摄像镜头的轴上色差图(mm),图13是实施例3的摄像镜头的像散图(mm),图14是实施例3的摄像镜头的畸变图(%),图15是实施例3的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
实施例4
实施例4中,摄像镜头满足下面表格的条件:
表7
Figure PCTCN2015070183-appb-000010
Figure PCTCN2015070183-appb-000011
表8
表面编号 A4 A6 A8 A10 A12
S1 -5.1416E-03 -1.2128E-03 -2.4734E-02 1.1492E-02 -1.0847E-02
S2 -2.0033E-02 -4.2786E-02 1.6011E-02 2.2182E-04 -6.0326E-03
S3 -6.8270E-02 3.6065E-03 -8.6404E-03 1.9859E-02 -6.9015E-03
S4 -5.4722E-02 3.3975E-02 -5.4177E-03 -4.1785E-02 1.2526E-02
S5 -8.9509E-03 3.3411E-02 2.1274E-02 2.3570E-02 -8.8472E-03
S6 -4.0341E-02 1.5133E-02 2.9609E-02 8.5444E-03 6.1346E-02
S7 -1.1182E-01 -1.7736E-02 -1.0771E-01 1.2388E-01 -3.2202E-02
S8 -6.1477E-02 8.6932E-02 -2.8045E-01 1.9728E-01 -4.4097E-02
S9 8.3204E-02 1.9274E-01 -4.3565E-01 2.8230E-01 -6.8409E-02
S10 3.2551E-02 3.7401E-02 -3.2150E-02 1.0152E-02 -1.7346E-03
S11 1.5951E-02 -1.3179E-01 6.4844E-02 -2.5399E-02 4.5296E-03
S12 -4.4337E-02 -2.3117E-02 7.0558E-04 2.7616E-03 -4.0520E-04
S13 -9.1441E-02 5.1277E-02 -1.0945E-02 1.0994E-03 -4.3547E-05
S14 -5.7770E-02 2.4857E-02 -6.5762E-03 8.3469E-04 -4.3061E-05
另外,TTL=4.6mm;f1=3.68mm;f2=-5.87mm;f3=8.17mm;f4=11.69mm;f5=7.52mm;f6=19.49mm;f7=-3.02mm及f=3.68mm;Semi-FOV=41°;光阑值为:1.82。
图17是实施例4的摄像镜头的轴上色差图(mm),图18是实施例4的摄像镜头的像散图(mm),图19是实施例4的摄像镜头的畸变图(%),图20是实施例4的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
实施例5
实施例5中,摄像镜头满足下面表格的条件:
表9
Figure PCTCN2015070183-appb-000012
Figure PCTCN2015070183-appb-000013
表10
表面编号 A4 A6 A8 A10 A12
S1 -5.3452E-03 -2.7365E-03 -2.5665E-02 9.1352E-03 -8.5374E-03
S2 -2.3393E-02 -4.3487E-02 1.6294E-02 2.3406E-03 -6.4866E-03
S3 -7.4720E-02 2.2225E-03 -5.7296E-03 2.0937E-02 -8.1600E-03
S4 -5.7589E-02 3.2101E-02 -7.2057E-03 -4.3444E-02 1.5521E-02
S5 -8.7910E-03 4.2258E-02 2.4520E-02 2.3251E-02 -9.4761E-03
S6 -4.1689E-02 2.4085E-02 3.5272E-02 7.8986E-03 6.7339E-02
S7 -1.0983E-01 -1.9335E-02 -1.0436E-01 1.3126E-01 -2.9742E-02
S8 -5.4740E-02 1.8799E-03 -1.9343E-01 1.7893E-01 -4.4518E-02
S9 1.3561E-01 -1.2004E-02 -2.3501E-01 2.3095E-01 -7.2491E-02
S10 8.8204E-02 -8.9585E-02 8.4307E-02 -3.4605E-02 4.7295E-03
S11 3.3539E-02 -2.0998E-01 1.6780E-01 -7.1993E-02 1.1419E-02
S12 -1.6374E-02 -6.2213E-02 3.5748E-02 -1.1135E-02 1.3256E-03
S13 -6.8808E-02 1.8910E-02 -8.0312E-04 -2.2227E-04 2.0719E-05
S14 -5.9820E-02 1.9903E-02 -3.6800E-03 3.0981E-04 -1.1731E-05
另外,TTL=4.6mm;f1=3.84mm;f2=-6.74mm;f3=8.15mm;f4=10.85mm;f5=8.05mm;f6=-47.24mm;f7=-3.88mm及f=3.72mm;Semi-FOV=40.7°;光阑值为:1.82。
图22是实施例5的摄像镜头的轴上色差图(mm),图23是实施例5的摄像镜头的像散图(mm),图24是实施例5的摄像镜头的畸变图(%),图25是实施例5的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
实施例6
实施例6中,摄像镜头满足下面表格的条件:
表11
Figure PCTCN2015070183-appb-000014
Figure PCTCN2015070183-appb-000015
表12
表面编号 A4 A6 A8 A10 A12
S1 -2.6425E-03 -1.4698E-03 0.0000E+00 0.0000E+00 0.0000E+00
S2 -7.0065E-03 -5.4218E-03 0.0000E+00 0.0000E+00 0.0000E+00
S3 -1.1180E-01 1.9060E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 -7.7056E-02 5.6481E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.1578E-02 2.8228E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 -2.2806E-02 -5.6465E-04 0.0000E+00 0.0000E+00 0.0000E+00
S7 -7.5933E-02 2.0409E-02 0.0000E+00 0.0000E+00 0.0000E+00
S8 -5.3155E-02 1.6507E-02 0.0000E+00 0.0000E+00 0.0000E+00
S9 4.9898E-02 -2.9816E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 1.9171E-02 -9.4507E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -4.8874E-02 -1.5298E-02 0.0000E+00 0.0000E+00 0.0000E+00
S12 -3.9523E-02 -1.4138E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 7.9724E-03 4.0928E-03 -1.5660E-04 -1.1237E-04 9.8831E-06
S14 1.0775E-03 -9.3161E-03 2.5279E-03 -2.8624E-04 9.6282E-06
另外,TTL=4.71mm;f1=5.52mm;f2=-11.39mm;f3=6.58mm;f4=19.04mm;f5=8.3mm;f6=21.9mm;f7=-3.4mm及f=3.53mm;Semi-FOV=42.2°;光阑值为:1.9。
图27是实施例6的摄像镜头的轴上色差图(mm),图28是实施例6的摄像镜头的像散图(mm),图29是实施例6的摄像镜头的畸变图(%),图30是实施例6的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
实施例7
实施例7中,摄像镜头满足下面表格的条件:
表13
Figure PCTCN2015070183-appb-000016
Figure PCTCN2015070183-appb-000017
表14
表面编号 A4 A6 A8 A10 A12
S1 2.2668E-03 5.6045E-03 0.0000E+00 0.0000E+00 0.0000E+00
S2 -1.3073E-02 6.3133E-03 0.0000E+00 0.0000E+00 0.0000E+00
S3 -1.0949E-01 2.3381E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 -9.3655E-02 3.5186E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 -2.8729E-02 8.3078E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 -3.8635E-02 3.0793E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -7.4960E-02 2.7970E-02 0.0000E+00 0.0000E+00 0.0000E+00
S8 -9.8822E-02 7.5891E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -2.3394E-02 -2.2577E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 6.5182E-03 1.2636E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -5.1135E-02 -9.0605E-04 0.0000E+00 0.0000E+00 0.0000E+00
S12 -5.9963E-02 6.2650E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -2.5048E-02 2.2374E-02 -5.1952E-03 5.4485E-04 -2.2198E-05
S14 -5.4221E-02 2.0748E-02 -5.2541E-03 6.5785E-04 -3.5085E-05
另外,TTL=5mm;f1=4.36mm;f2=-12.25mm;f3=92.5mm;f4=14.43mm;f5=3.76mm;f6=-45.93mm;f7=-2.41mm及f=4.36mm;Semi-FOV=36.3;光阑值为:2.1。
图32是实施例7的摄像镜头的轴上色差图(mm),图33是实施例7的摄像镜头的像散图(mm),图34是实施例7的摄像镜头的畸变图(%),图35是实施例7的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
实施例8
实施例8中,摄像镜头满足下面表格的条件:
表15
Figure PCTCN2015070183-appb-000018
Figure PCTCN2015070183-appb-000019
表16
表面编号 A4 A6 A8 A10 A12
S1 -2.1968E-03 7.5211E-03 0.0000E+00 0.0000E+00 0.0000E+00
S2 -3.5995E-02 -6.2508E-03 0.0000E+00 0.0000E+00 0.0000E+00
S3 -1.1153E-01 1.7394E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 -9.4307E-02 4.0258E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.8135E-02 1.2453E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 -8.0454E-03 1.9044E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -4.5654E-02 3.4257E-02 0.0000E+00 0.0000E+00 0.0000E+00
S8 -7.5216E-02 9.5966E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.6339E-02 -3.5083E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 6.8145E-04 4.0310E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -7.2528E-02 8.6547E-03 0.0000E+00 0.0000E+00 0.0000E+00
S12 -1.0426E-03 -3.5001E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -3.0196E-02 6.7729E-02 -2.7788E-02 4.9652E-03 -3.5379E-04
S14 -5.0899E-02 1.8477E-02 -4.0970E-03 5.2460E-04 -3.2776E-05
另外,TTL=5mm;f1=4.71mm;f2=-6.91mm;f3=5.89mm;f4=-22.85mm;f5=6.05mm;f6=5.68mm;f7=-2.08mm及f=4.36mm;Semi-FOV=36°;光阑值为:2.1。
图37是实施例8的摄像镜头的轴上色差图(mm),图38是实施例8的摄像镜头的像散图(mm),图39是实施例8的摄像镜头的畸变图(%),图40是实施例8的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
实施例9
实施例9中,摄像镜头满足下面表格的条件:
表17
Figure PCTCN2015070183-appb-000020
Figure PCTCN2015070183-appb-000021
表18
Figure PCTCN2015070183-appb-000022
另外,TTL=5.52mm;f1=5.42mm;f2=-8.04mm;f3=5.1mm;f4=-10.2mm;f5=4.28mm;f6=10.11mm;f7=-2.1mm及f=5mm;Semi-FOV=30.2°;光阑值为:2.18。
图42是实施例9的摄像镜头的轴上色差图(mm),图43是实施例9的摄像镜头的像散图(mm),图44是实施例9的摄像镜头的畸变图(%),图45是实施例9的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
实施例10
实施例10中,摄像镜头满足下面表格的条件:
表19
Figure PCTCN2015070183-appb-000023
Figure PCTCN2015070183-appb-000024
表20
表面编号 A4 A6 A8 A10 A12
S1 -1.3352E-03 6.0232E-03 0.0000E+00 0.0000E+00 0.0000E+00
S2 -1.8159E-02 2.9754E-05 0.0000E+00 0.0000E+00 0.0000E+00
S3 -1.1572E-01 1.3876E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 -9.1056E-02 4.6865E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.4447E-02 1.8116E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 -1.7845E-02 2.8726E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -4.0260E-02 5.4464E-02 0.0000E+00 0.0000E+00 0.0000E+00
S8 -5.7788E-02 2.3057E-02 0.0000E+00 0.0000E+00 0.0000E+00
S9 2.6078E-02 -2.6125E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 3.0520E-02 2.8855E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -3.4493E-02 -8.9498E-03 0.0000E+00 0.0000E+00 0.0000E+00
S12 -1.6663E-02 -4.8296E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 3.9674E-02 -2.0115E-02 3.9068E-03 -5.2039E-04 3.6822E-05
S14 4.0482E-02 -3.3334E-02 8.9626E-03 -1.1828E-03 5.7590E-05
另外,TTL=5.0mm;f1=4.94mm;f2=-8.0mm;f3=5.81mm;f4=-37.7mm;f5=7.57mm;f6=98.2mm;f7=-4.11mm及f=4.41mm;Semi-FOV=36°;光阑值为:2.1。
图47是实施例10的摄像镜头的轴上色差图(mm),图48是实施例10的摄像镜头的像散图(mm),图49是实施例10的摄像镜头的畸变图(%),图50是实施例10的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
实施例11
实施例11中,摄像镜头满足下面表格的条件:
表21
Figure PCTCN2015070183-appb-000025
Figure PCTCN2015070183-appb-000026
表22
表面编号 A4 A6 A8 A10 A12
S1 -4.0134E-03 7.1500E-03 0.0000E+00 0.0000E+00 0.0000E+00
S2 -3.0943E-02 -6.0379E-03 0.0000E+00 0.0000E+00 0.0000E+00
S3 -1.1013E-01 2.6265E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 -6.0757E-02 5.3177E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 -5.2997E-03 6.8294E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 -1.9562E-02 1.7328E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -7.5556E-02 2.3310E-02 0.0000E+00 0.0000E+00 0.0000E+00
S8 -9.6740E-02 6.1506E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -2.2250E-02 -2.5318E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -7.6243E-03 1.7176E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -3.4769E-02 -5.0305E-03 0.0000E+00 0.0000E+00 0.0000E+00
S12 -1.0115E-02 -2.1405E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -5.4269E-02 5.1557E-02 -1.5913E-02 2.1966E-03 -1.1471E-04
S14 -1.7013E-02 -1.6409E-04 6.3244E-04 -2.2280E-04 1.8203E-05
另外,TTL=5.03mm;f1=5.25mm;f2=-11.12mm;f3=6.7mm;f4=-85.0mm;f5=27.07mm;f6=6.7mm;f7=-3.24mm及f=4.4mm;Semi-FOV=36°;光阑值为:2.1。
图52是实施例11的摄像镜头的轴上色差图(mm),图53是实施例11的摄像镜头的像散图(mm),图54是实施例11的摄像镜头的畸变图(%),图55是实施例11的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
实施例12
实施例12中,摄像镜头满足下面表格的条件:
表23
Figure PCTCN2015070183-appb-000027
Figure PCTCN2015070183-appb-000028
表24
表面编号 A4 A6 A8 A10 A12
S1 -3.1295E-03 -9.3657E-04 0.0000E+00 0.0000E+00 0.0000E+00
S2 -2.5849E-02 -2.2194E-04 0.0000E+00 0.0000E+00 0.0000E+00
S3 -7.1894E-02 8.8495E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 -3.8474E-02 3.8289E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 1.5806E-02 3.7937E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.0327E-02 1.7867E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -5.1188E-02 4.0425E-02 0.0000E+00 0.0000E+00 0.0000E+00
S8 -4.3124E-02 1.2066E-02 0.0000E+00 0.0000E+00 0.0000E+00
S9 2.8885E-02 -1.1791E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 2.5107E-02 -2.2291E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -4.4871E-02 -1.5157E-02 0.0000E+00 0.0000E+00 0.0000E+00
S12 -6.2404E-02 7.0044E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 1.7420E-02 -6.3214E-04 1.3154E-03 -4.0534E-04 3.1978E-05
S14 1.4388E-02 -6.3657E-03 -3.7915E-04 3.0347E-04 -3.0336E-05
另外,TTL=6.35mm;f1=4.89mm;f2=18.07mm;f3=-30.1mm;f4=-11.4mm;f5=5.72mm;f6=39mm;f7=-5.37mm及f=5.3mm;Semi-FOV=28°;光阑值为:2.23。
图57是实施例12的摄像镜头的轴上色差图(mm),图58是实施例12的摄像镜头的像散图(mm),图59是实施例12的摄像镜头的畸变图(%),图60是实施例12的摄像镜头倍率色差图(um),可见,摄像镜头的像差得到有效控制。
在实施例1-12中,各条件式满足下面表格的条件:
表25
Embodiment 1 2 3 4 5 6
TTL/ImgH 1.62 2.1 1.44 1.44 1.44 1.6
CT1/CT2 2.25 2.1 2.04 2.28 2.28 1.96
f123/f567 -0.41 -0.57 -0.61 -0.51 -0.59 -0.37
f23/f 4.16 -11.4 -7.74 -1.1 -1.09 4.74
f1/f 1.24 1.05 1.05 1 1.04 1.58
(R1+R2)/(R1-R2) -3 -1.9 -1.87 -1.32 -1.44 -3
f5/f 1.95 1.32 1.49 2.04 2.16 2.37
R10/f -0.51 -0.33 -0.33 -0.33 -0.33 -0.64
f7/f -0.64 -0.65 -0.66 -0.82 -1.04 -0.97
R13/f -0.38 -0.72 -0.74 -1.43 -2.55 -0.63
f/f123 1.03 0.91 0.88 0.87 0.9 0.83
f567/f -2.36 -1.92 -1.87 -2.26 -1.87 -3.28
表26
Figure PCTCN2015070183-appb-000029
Figure PCTCN2015070183-appb-000030
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、折射率/阿贝系数或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、折射率/阿贝系数或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (22)

  1. 一种摄像镜头,其特征在于,由物侧至像侧依次包含:
    具有正屈折力的第一透镜,其物侧面为凸面;
    第二透镜;
    第三透镜;
    第四透镜,其物侧面为凹面;
    具有正屈折力的第五透镜;
    第六透镜;
    具有负屈折力的第七透镜;
    所述摄像镜头包括一光阑,设置于被摄物与第二透镜之间;
    所述摄像镜头满足下列关系式:
    TTL/ImgH<2.4;
    1.5<CT1/CT2<4;
    其中,TTL为摄像镜头的总长,ImgH为成像面上有效像素区域直径的一半,CT1为第一透镜的中心厚度,CT2为第二透镜的中心厚度。
  2. 如权利要求1所述的摄像镜头,其特征在于,所述第一透镜像侧面为凹面,第五透镜像侧面为凸面,第七透镜物侧面为凹面。
  3. 如权利要求1-2任意一项所述的摄像镜头,其特征在于,所述镜头满足下列关系式:
    |f23/f|<12;
    其中,f23为第二、第三透镜的组合焦距,f为所述摄像镜头的有效焦距。
  4. 如权利要求1-2任意一项所述的摄像镜头,其特征在于,所述镜头满足以下关系式:
    0<f1/f<2;及
    -4<(R1+R2)/(R1-R2)<-1;
    其中,f1为第一透镜的焦距,R1、R2分别为第一透镜物侧面和像侧面的曲率半径。
  5. 如权利要求1-2任意一项所述的摄像镜头,其特征在于,所述镜头满足以下关系式:
    0<f5/f<6.5;及
    -2.5<R10/f<0;
    其中,f5为第五透镜的焦距,R10为第五透镜像侧面的曲率半径。
  6. 如权利要求1-2任意一项所述的摄像镜头,其特征在于,所述镜头满足以下关系式:
    -1.5<f7/f<0;及
    -3.0<R13/f<0;
    其中,f7为第七透镜的焦距,R13为第七透镜物侧面的曲率半径。
  7. 如权利要求1-2任意一项所述的摄像镜头,其特征在于,所述镜头满足以下关系式:
    0.5<f/f123<1.5;
    其中,f123为第一透镜、第二透镜、第三透镜的组合焦距。
  8. 如权利要求1-2任意一项所述的摄像镜头,其特征在于,所述第二透镜具有负屈折力,其物侧面为凸面而像侧面为凹面,第三透镜具有正屈折力,其物侧面为凸面而像侧面为凹面。
  9. 如权利要求1-2任意一项所述的摄像镜头,其特征在于,所述第四透镜像侧面为凸面。
  10. 如权利要求1-2任意一项所述的摄像镜头,其特征在于,所述第五透镜物侧面为凹面;第六透镜物侧面为凸面。
  11. 一种摄像镜头,其特征在于,由物侧至像侧依次包含:
    具有正屈折力的第一透镜,其物侧面为凸面;
    具有负屈折力的第二透镜;
    第三透镜,其物侧面为凸面而像侧面为凹面;
    第四透镜;
    具有正屈折力的第五透镜;
    第六透镜;
    具有负屈折力的第七透镜;
    所述摄像镜头包括一光阑,置于被摄物与第二透镜之间;
    所述摄像镜头满足下列关系式:
    TTL/ImgH<2.4;
    其中,TTL为摄像镜头的总长,ImgH为成像面上有效像素区域直径的一半。
  12. 如权利要求11所述的摄像镜头,其特征在于,所述摄像头满足下列关系式:
    f123/f567≤-0.3;
    其中,f123为第一透镜、第二透镜、第三透镜的组合焦距,f567为所述第五透镜、第六透镜、第七透镜的组合焦距。
  13. 如权利要求11所述的摄像镜头,其特征在于,所述第二透镜物侧面为凸面,像侧面为凹面。
  14. 如权利要求11所述的摄像镜头,其特征在于,所述第一透镜像侧面为凹面,第五透镜像侧面为凸面,第七透镜物侧面为凹面。
  15. 如权利要求11所述的摄像镜头,其特征在于,所述摄像镜头中第三透镜具有正的屈折力。
  16. 如权利要求12-15任意一项所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    |f23/f|<12;
    其中,f23为第二、第三透镜的组合焦距,f摄像镜头的整体焦距。
  17. 如权利要求12-15任意一项所述的摄像镜头,其特征在于,所述摄像镜头满足以下关系式:
    -5<f567/f<-1;
    其中,f567为所述第五透镜、第六透镜、第七透镜的组合焦距。
  18. 如权利要求12-15任意一项所述的摄像镜头,其特征在于,所述摄像镜头满足以下关系式:
    1≤f1/f<2;及
    -4<(R1+R2)/(R1-R2)<-1;
    其中,f1为第一透镜的焦距,R1、R2分别为第一透镜物侧面和像侧面的曲率半径。
  19. 如权利要求12-15任意一项所述的摄像镜头,其特征在于,所述摄像镜头满足以下关系式:
    0<f5/f<3;及
    -1<R10/f<0;
    其中,f5为第五透镜的焦距,R10为第五透镜像侧面的曲率半径。
  20. 如权利要求12-15任意一项所述的摄像镜头,其特征在于,所述摄像镜头满足以下关系式:
    -1.5<f7/f<0;及
    -3.0<R13/f<0;
    其中,f7为第七透镜的焦距,R13为第七透镜物侧面的曲率半径。
  21. 如权利要求12-15任意一项所述的摄像镜头,其特征在于,所述第四透镜物侧面为凹面,像侧面为凸面。
  22. 如权利要求12-15任意一项所述的摄像镜头,其特征在于,第五透镜物侧面为凹面;第六透镜物侧面为凸面。
PCT/CN2015/070183 2015-01-06 2015-01-06 摄像镜头 WO2016109938A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/070183 WO2016109938A1 (zh) 2015-01-06 2015-01-06 摄像镜头
US14/913,646 US10114196B2 (en) 2015-01-06 2015-01-06 Camera lens
EP15831202.5A EP3244248B1 (en) 2015-01-06 2015-01-06 Camera lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/070183 WO2016109938A1 (zh) 2015-01-06 2015-01-06 摄像镜头

Publications (1)

Publication Number Publication Date
WO2016109938A1 true WO2016109938A1 (zh) 2016-07-14

Family

ID=56355401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070183 WO2016109938A1 (zh) 2015-01-06 2015-01-06 摄像镜头

Country Status (3)

Country Link
US (1) US10114196B2 (zh)
EP (1) EP3244248B1 (zh)
WO (1) WO2016109938A1 (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9706093B2 (en) 2015-02-17 2017-07-11 Largan Precision Co., Ltd. Photographing system, image capturing unit and electronic device
TWI631382B (zh) * 2017-07-19 2018-08-01 大立光電股份有限公司 攝像系統透鏡組、取像裝置及電子裝置
TWI645227B (zh) * 2017-01-06 2018-12-21 先進光電科技股份有限公司 光學成像系統(五)
TWI646366B (zh) * 2017-01-06 2019-01-01 先進光電科技股份有限公司 光學成像系統(六)
TWI646368B (zh) * 2018-03-21 2019-01-01 先進光電科技股份有限公司 光學成像系統(四)
CN109143535A (zh) * 2017-06-16 2019-01-04 大立光电股份有限公司 摄像***镜片组、取像装置及电子装置
TWI650575B (zh) * 2017-05-22 2019-02-11 先進光電科技股份有限公司 光學成像系統(一)
TWI650591B (zh) * 2018-03-21 2019-02-11 先進光電科技股份有限公司 光學成像系統(二)
TWI650577B (zh) * 2018-03-21 2019-02-11 先進光電科技股份有限公司 光學成像系統(一)
TWI650589B (zh) * 2018-03-21 2019-02-11 先進光電科技股份有限公司 光學成像系統(二)
TWI650578B (zh) * 2018-03-21 2019-02-11 先進光電科技股份有限公司 光學成像系統(一)
TWI650590B (zh) * 2018-03-21 2019-02-11 先進光電科技股份有限公司 光學成像系統(三)
WO2019056758A1 (zh) * 2017-09-21 2019-03-28 浙江舜宇光学有限公司 摄像透镜组
CN109557636A (zh) * 2017-09-25 2019-04-02 大立光电股份有限公司 光学摄像镜头、取像装置及电子装置
US10310227B2 (en) 2017-02-18 2019-06-04 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US10429617B2 (en) 2017-01-06 2019-10-01 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US10473896B2 (en) 2017-01-06 2019-11-12 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US10502933B2 (en) 2017-01-06 2019-12-10 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US10571658B2 (en) 2017-01-06 2020-02-25 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US10670837B2 (en) 2017-07-19 2020-06-02 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
US20200241254A1 (en) * 2016-02-04 2020-07-30 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US11143845B2 (en) 2019-03-20 2021-10-12 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
CN114089515A (zh) * 2019-01-21 2022-02-25 大立光电股份有限公司 摄像光学透镜组
US11782248B2 (en) 2017-06-03 2023-10-10 Largan Precision Co., Ltd. Image capturing lens assembly, imaging apparatus and electronic device
US11994748B2 (en) 2018-02-22 2024-05-28 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI536040B (zh) 2015-04-16 2016-06-01 大立光電股份有限公司 光學鏡頭組、取像裝置及電子裝置
CN106324810B (zh) * 2015-06-29 2019-08-06 亚太精密工业(深圳)有限公司 成像镜头
JP6452643B2 (ja) * 2016-05-13 2019-01-16 カンタツ株式会社 撮像レンズ
TWI614517B (zh) * 2017-01-04 2018-02-11 大立光電股份有限公司 影像擷取系統、取像裝置及電子裝置
JP6611098B2 (ja) * 2017-10-10 2019-11-27 カンタツ株式会社 撮像レンズ
TWI636295B (zh) * 2017-11-23 2018-09-21 大立光電股份有限公司 光學取像鏡頭、取像裝置及電子裝置
CN108107555B (zh) * 2017-12-29 2019-11-26 玉晶光电(厦门)有限公司 光学成像镜头
KR102166130B1 (ko) 2018-01-24 2020-10-15 삼성전기주식회사 촬상 광학계
KR102041700B1 (ko) * 2018-02-09 2019-11-27 삼성전기주식회사 촬상 광학계
CN108279484B (zh) * 2018-03-13 2024-01-26 浙江舜宇光学有限公司 光学成像***
TWI660196B (zh) * 2018-03-30 2019-05-21 大立光電股份有限公司 攝像用光學鏡頭、取像裝置及電子裝置
KR102081312B1 (ko) * 2018-05-29 2020-02-25 삼성전기주식회사 촬상 광학계
CN116520531A (zh) 2018-05-29 2023-08-01 三星电机株式会社 光学成像***
KR20200003552A (ko) * 2018-07-02 2020-01-10 삼성전기주식회사 촬상 광학계
US10598902B2 (en) * 2018-07-20 2020-03-24 AAC Technologies Pte. Ltd. Camera optical lens
CN109031628B (zh) * 2018-10-29 2023-08-04 浙江舜宇光学有限公司 光学成像镜片组
CN109239894B (zh) * 2018-11-28 2024-04-23 浙江舜宇光学有限公司 光学成像***
CN109975956B (zh) * 2019-05-08 2024-04-02 浙江舜宇光学有限公司 光学成像透镜组
CN110346919B (zh) 2019-08-14 2024-04-19 浙江舜宇光学有限公司 光学成像镜头
CN110596858B (zh) * 2019-08-16 2021-07-30 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2022088087A1 (zh) * 2020-10-30 2022-05-05 欧菲光集团股份有限公司 光学成像***、取像装置及电子装置
CN112485889B (zh) * 2020-11-26 2022-04-12 江西联创电子有限公司 光学成像镜头及成像设备
WO2022116145A1 (zh) * 2020-12-04 2022-06-09 欧菲光集团股份有限公司 光学***、取像装置及电子装置
CN115248494B (zh) * 2022-07-14 2024-02-27 广东弘景光电科技股份有限公司 一种高像素日夜两用型光学***及其应用的摄像模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597641A (en) * 1983-09-08 1986-07-01 Asahi Kogaku Kogyo Kabushiki Kaisha Variable-power copying lens
CN202886720U (zh) * 2012-07-06 2013-04-17 大立光电股份有限公司 光学影像拾取***组
CN203941337U (zh) * 2013-07-02 2014-11-12 富士胶片株式会社 摄像镜头及具备摄像镜头的摄像装置
CN203965708U (zh) * 2013-09-11 2014-11-26 康达智株式会社 摄像镜头
CN204028445U (zh) * 2013-06-21 2014-12-17 康达智株式会社 摄像镜头

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410199B2 (ja) * 2008-11-26 2014-02-05 Hoya株式会社 ズームレンズ系及びそれを用いた電子撮像装置
US10018805B2 (en) * 2013-10-14 2018-07-10 Samsung Electro-Mechanics Co., Ltd. Lens module
JP6265334B2 (ja) * 2014-03-20 2018-01-24 株式会社オプトロジック 撮像レンズ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597641A (en) * 1983-09-08 1986-07-01 Asahi Kogaku Kogyo Kabushiki Kaisha Variable-power copying lens
CN202886720U (zh) * 2012-07-06 2013-04-17 大立光电股份有限公司 光学影像拾取***组
CN204028445U (zh) * 2013-06-21 2014-12-17 康达智株式会社 摄像镜头
CN203941337U (zh) * 2013-07-02 2014-11-12 富士胶片株式会社 摄像镜头及具备摄像镜头的摄像装置
CN203965708U (zh) * 2013-09-11 2014-11-26 康达智株式会社 摄像镜头

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9904038B2 (en) 2015-02-17 2018-02-27 Largan Precision Co., Ltd. Photographing system, image capturing unit and electronic device
US9706093B2 (en) 2015-02-17 2017-07-11 Largan Precision Co., Ltd. Photographing system, image capturing unit and electronic device
US20200241254A1 (en) * 2016-02-04 2020-07-30 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US11630284B2 (en) * 2016-02-04 2023-04-18 Largan Precision Co., Ltd. Photographing optical lens assembly including seven lenses of +−++−−+, +−−−+−+, +−−+−−+, +−−++−+, +−+−−−+ or +−+−+−−refractive powers, image capturing device and electronic device
US11892608B2 (en) 2016-02-04 2024-02-06 Largan Precision Co., Ltd. Photographing optical lens assembly including seven lenses of +-++--+, +---+-+, +--+--+, +--++-+, +-+---+ or +-+-+-- refractive powers, image capturing device and electronic device
TWI646366B (zh) * 2017-01-06 2019-01-01 先進光電科技股份有限公司 光學成像系統(六)
US10429617B2 (en) 2017-01-06 2019-10-01 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US10571658B2 (en) 2017-01-06 2020-02-25 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
TWI645227B (zh) * 2017-01-06 2018-12-21 先進光電科技股份有限公司 光學成像系統(五)
US10502933B2 (en) 2017-01-06 2019-12-10 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US10473896B2 (en) 2017-01-06 2019-11-12 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US10295785B2 (en) 2017-01-06 2019-05-21 Ability Opto-Electronics Technology Co. Ltd. Optical image capturing system
US10429618B2 (en) 2017-01-06 2019-10-01 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US11971528B2 (en) 2017-02-18 2024-04-30 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US11256069B2 (en) 2017-02-18 2022-02-22 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US10564403B2 (en) 2017-02-18 2020-02-18 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US11573408B2 (en) 2017-02-18 2023-02-07 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US10310227B2 (en) 2017-02-18 2019-06-04 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
TWI650575B (zh) * 2017-05-22 2019-02-11 先進光電科技股份有限公司 光學成像系統(一)
US10359606B2 (en) 2017-05-22 2019-07-23 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US11782248B2 (en) 2017-06-03 2023-10-10 Largan Precision Co., Ltd. Image capturing lens assembly, imaging apparatus and electronic device
CN109143535A (zh) * 2017-06-16 2019-01-04 大立光电股份有限公司 摄像***镜片组、取像装置及电子装置
US11487091B2 (en) 2017-07-19 2022-11-01 Largan Precision Co., Ltd. Photographing lens assembly, imaging apparatus and electronic device
US11656443B2 (en) 2017-07-19 2023-05-23 Largan Precision Co., Ltd. Photographing lens assembly, imaging apparatus and electronic device
US10670837B2 (en) 2017-07-19 2020-06-02 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
US10838173B2 (en) 2017-07-19 2020-11-17 Largan Precision Co., Ltd. Photographing lens assembly, imaging apparatus and electronic device
TWI631382B (zh) * 2017-07-19 2018-08-01 大立光電股份有限公司 攝像系統透鏡組、取像裝置及電子裝置
WO2019056758A1 (zh) * 2017-09-21 2019-03-28 浙江舜宇光学有限公司 摄像透镜组
CN109557636B (zh) * 2017-09-25 2021-06-08 大立光电股份有限公司 光学摄像镜头、取像装置及电子装置
CN109557636A (zh) * 2017-09-25 2019-04-02 大立光电股份有限公司 光学摄像镜头、取像装置及电子装置
US11994748B2 (en) 2018-02-22 2024-05-28 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
TWI650590B (zh) * 2018-03-21 2019-02-11 先進光電科技股份有限公司 光學成像系統(三)
TWI650578B (zh) * 2018-03-21 2019-02-11 先進光電科技股份有限公司 光學成像系統(一)
TWI650589B (zh) * 2018-03-21 2019-02-11 先進光電科技股份有限公司 光學成像系統(二)
TWI650577B (zh) * 2018-03-21 2019-02-11 先進光電科技股份有限公司 光學成像系統(一)
TWI650591B (zh) * 2018-03-21 2019-02-11 先進光電科技股份有限公司 光學成像系統(二)
TWI646368B (zh) * 2018-03-21 2019-01-01 先進光電科技股份有限公司 光學成像系統(四)
CN114089515A (zh) * 2019-01-21 2022-02-25 大立光电股份有限公司 摄像光学透镜组
US11143845B2 (en) 2019-03-20 2021-10-12 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device

Also Published As

Publication number Publication date
US20170357081A1 (en) 2017-12-14
EP3244248A1 (en) 2017-11-15
EP3244248A4 (en) 2018-08-22
EP3244248B1 (en) 2021-02-24
US10114196B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2016109938A1 (zh) 摄像镜头
CN104597582B (zh) 摄像镜头
WO2021073275A1 (zh) 光学成像镜头
WO2017041456A1 (zh) 摄像镜头
CN110554484B (zh) 光学成像***
WO2016197604A1 (zh) 成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2017020587A1 (zh) 超广角镜头
WO2020001066A1 (zh) 摄像镜头
WO2016161797A1 (zh) 摄像镜头
WO2016179986A1 (zh) 广角成像镜头
WO2017166475A1 (zh) 摄像镜头
WO2021238648A1 (zh) 光学成像镜头及成像设备
WO2016109956A1 (zh) 摄像镜头
WO2018192126A1 (zh) 摄像镜头
WO2015062351A1 (zh) 具有六片镜片的镜头***
WO2021184165A1 (zh) 光学***、摄像模组及电子装置
WO2017148078A1 (zh) 超广角摄像镜头
CN113820832B (zh) 光学成像镜头
EP4170407A1 (en) Seven-lens imaging objective
WO2019080528A1 (zh) 光学成像镜头
CN112394483A (zh) 光学成像***、取像模组和电子装置
CN113534408B (zh) 光学***、摄像模组及电子设备
CN112748553B (zh) 光学成像镜头
CN112799211B (zh) 光学***、取像模组及电子设备

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015831202

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14913646

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE