WO2016105074A1 - 렌즈 광학계 - Google Patents

렌즈 광학계 Download PDF

Info

Publication number
WO2016105074A1
WO2016105074A1 PCT/KR2015/014082 KR2015014082W WO2016105074A1 WO 2016105074 A1 WO2016105074 A1 WO 2016105074A1 KR 2015014082 W KR2015014082 W KR 2015014082W WO 2016105074 A1 WO2016105074 A1 WO 2016105074A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
sensor
conditional expression
object side
Prior art date
Application number
PCT/KR2015/014082
Other languages
English (en)
French (fr)
Inventor
조재훈
김세진
강선명
이영민
Original Assignee
(주)파트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파트론 filed Critical (주)파트론
Publication of WO2016105074A1 publication Critical patent/WO2016105074A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms

Definitions

  • the present invention relates to a lens optical system, and more particularly to a lens optical system that can be mounted in the camera module for imaging.
  • the imaging camera module includes a lens optical system including at least one lens and an image sensor that receives light passing through the lens optical system and converts the light into an electrical signal.
  • a solid-state imaging device such as a charge coupled device (CCD) or a complementary metal oxide semiconductor image sensor (CMOS image sensor) is widely used.
  • camera modules are widely used in electronic devices such as smartphones, tablet computers, and laptop-top computers. Such electronic devices tend to be gradually miniaturized and thinned to improve user convenience and aesthetics. In addition, the conventional camera device also tends to develop in the form of miniaturization and thinning. Accordingly, camera modules mounted in such electronic devices have also been miniaturized and require a small thickness.
  • a recent camera module requires a lens having a wide angle of view so that more information can be captured with one shot.
  • the problem to be solved by the present invention is to provide a high-performance lens optical system that can be used in combination with a high resolution image sensor while being compact and wide field of view to solve the above problems.
  • the lens optical system of the present invention for solving the above problems is a first lens, a second lens, a third lens, and a fourth lens sequentially arranged from the object side to the sensor side between an object and a sensor in which the image of the object is formed.
  • the first lens has positive refractive power
  • the object side surface of the first lens is convex toward the object side
  • the second lens has negative refractive power
  • the object side surface of the second lens is at least near the optical axis
  • the third lens has positive refractive power
  • the fourth lens has negative refractive power
  • the sensor side of the fourth lens is concave toward the sensor side and has at least one inflection point.
  • f2 denotes a focal length of the second lens
  • f denotes a focal length of the lens optical system
  • the sensor side surface of the first lens may be convex toward the sensor side, and the sensor side surface of the second lens may be concave toward the sensor side.
  • the object side surface of the fourth lens may be convex toward the object side and have at least one inflection point near the optical axis.
  • the object-side surface of the second lens may be a plane within the effective diameter.
  • the object side surface of the second lens may be a plane.
  • all surfaces except the object side surface of the second lens may be aspherical.
  • the aperture may further include an aperture located between the object side surface of the first lens.
  • conditional expression may be further satisfied.
  • SL represents the distance on the optical axis between the aperture and the sensor
  • TTL represents the distance on the optical axis between the object-side surface of the first lens and the sensor.
  • conditional expression may be further satisfied.
  • conditional expression may be further satisfied.
  • V3 represents the Abbe number of the third lens
  • V4 represents the Abbe number of the fourth lens
  • conditional expression may be further satisfied.
  • conditional expression may be further satisfied.
  • TTL represents a distance on the optical axis between the object side surface of the first lens and the sensor
  • BFL represents a distance on the optical axis between the sensor side surface of the fourth lens and the sensor.
  • Lens optical system is a high-performance lens optical system that can be used in combination with a high resolution image sensor while being compact and wide angle of view.
  • Lens optical system has the advantage that the distance between the sensor side of the last lens and the sensor is relatively short, the overall length of the lens optical system is short, and as a result the camera module can be miniaturized.
  • One embodiment of the present invention has the advantage that the spherical aberration and the coma aberration are maintained at a predetermined level or less while the angle of view is wider than the focal length of the lens optical system.
  • 1 is a lens configuration of a lens optical system of a first embodiment according to an embodiment of the present invention.
  • FIG. 2 is a lens configuration of the lens optical system of the second embodiment according to an embodiment of the present invention.
  • FIG. 3 is a lens configuration diagram of the lens optical system of the third embodiment according to the embodiment of the present invention.
  • FIG. 4 is a lens configuration of the lens optical system of the fourth embodiment according to an embodiment of the present invention.
  • FIG. 5 sequentially shows spherical aberration, astigmatism, and distortion aberration of the lens optical system of the first embodiment shown in FIG.
  • FIG. 6 sequentially shows spherical aberration, astigmatism, and distortion aberration of the lens optical system of the second embodiment shown in FIG.
  • FIG. 7 sequentially shows spherical aberration, astigmatism, and distortion aberration of the lens optical system of the third embodiment shown in FIG.
  • FIG. 8 sequentially shows spherical aberration, astigmatism, and distortion aberration of the lens optical system of the fourth embodiment shown in FIG.
  • FIGS. 1 to 5 a lens optical system according to an exemplary embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • 1 to 4 are lens configuration diagrams of the lens optical system according to the first to fourth embodiments, respectively.
  • the lens optical system may include a first lens L1 and a second lens between an object corresponding to a subject of the lens optical system and a sensor IS in which an image of the object is formed.
  • L2 the third lens L3, and the fourth lens L4 are positioned.
  • the first to fourth lenses L1, L2, L3, and L4 are sequentially arranged from the object side to the sensor side.
  • Each lens has two sides facing each other.
  • the plane facing the object side corresponds to the plane of incidence, which is the plane where light enters the lens.
  • the surface facing the sensor side corresponds to an emission surface which is a surface from which light is emitted from the lens.
  • Sn1 the surface that is the object side and the incident surface of the n-th lens
  • Sn2 the surface that is the sensor side and the emission surface
  • the object side surface and the incident surface of the second lens (L2) is represented by S21
  • the sensor side surface and the exit surface is represented by S22
  • the object-side surface and the incident surface of the third lens L3 are represented by S31
  • the sensor-side surface and the exit surface are represented by S32
  • the object-side surface and the incident surface of the fourth lens L4 are represented by S41
  • the sensor-side surface and the exit surface are represented by S42.
  • the first lens L1 has a positive refractive power.
  • S11 is convex on the object side
  • S12 is convex on the sensor side.
  • S11 and S12 may both be formed as an aspherical surface.
  • the first lens L1 may be formed of a plastic material.
  • the second lens L2 has negative refractive power.
  • S21 is a plane at least near the optical axis, and S22 is concave toward the sensor side.
  • S21 may be planar not only near the optical axis but also within the effective diameter of the optical lens system.
  • S21 may be formed in a plane as a whole.
  • S22 may be formed as an aspherical surface.
  • the second lens L2 may be formed of a plastic material.
  • the third lens L3 has a positive refractive power.
  • the third lens L3 has a meniscus shape in which it is convex toward the sensor.
  • S31 is concave to the object side
  • S32 is convex to the sensor side.
  • S31 and S32 may both be formed as an aspherical surface.
  • the third lens L3 may be formed of a plastic material.
  • the fourth lens L4 has negative refractive power.
  • S41 is convex toward the object side near the optical axis
  • S42 is convex toward the sensor side near the optical axis.
  • S41 and S42 may both be formed as an aspherical surface.
  • S41 may include a portion that is convex toward the object side near the optical axis and becomes concave toward the peripheral portion of the lens near the optical axis.
  • S41 may include at least one inflection point.
  • S42 may include a portion that is concave toward the sensor near the optical axis and becomes convex toward the peripheral portion of the lens near the optical axis.
  • S42 may include at least one inflection point.
  • the lens optical system may include an aperture S.
  • the aperture S may be located on the object side of the first lens L1 or may be positioned over the first lens L1. In more detail, the aperture S may be positioned over the object side surface of the first lens L1. The aperture S may block a part of the light to adjust the amount of light irradiated into the lens optical system.
  • the lens optical system may include an optical filter OF.
  • the optical filter OF may be positioned between the fourth lens L4 and the sensor IS.
  • the optical filter OF may block light in a band other than visible light. Specifically, the optical filter OF may block light in the infrared band.
  • the sensor IS may be an image sensor that receives light passing through the lens and converts the light into an electrical signal.
  • the sensor IS is preferably positioned on the rear surface of the fourth lens L4 such that light passing through the first to fourth lenses L4 forms on the object side surface of the sensor.
  • the lens optical system of the embodiments of the present invention having the above configuration may satisfy the following conditional expression.
  • f2 denotes a focal length of the second lens L2 and f denotes a focal length of the lens optical system.
  • Conditional Expression 1 is a conditional expression for limiting the focal length of the second lens L2 with respect to the focal length of the entire lens optical system.
  • the focal length of the second lens L2 satisfies the above condition with respect to the focal length of the lens optical system, the angle of view of the lens optical system may be increased.
  • SL represents a distance on the optical axis between the aperture S and the sensor IS
  • TTL represents a distance on the optical axis between the object side surface of the first lens L1 and the sensor IS.
  • Conditional Expression 2 is a conditional expression for limiting the position of the aperture in the lens optical system.
  • the conditional expression 2 when the SL / TTL is smaller than the lower limit value 0.75, the aperture is positioned on the sensor side with respect to the first lens L1.
  • the SL / TTL is larger than the upper limit value 1.25 in Conditional Expression 2, the aperture is positioned on the object side with respect to the first lens L1.
  • the SL / TTL in order to position the diaphragm S over the object side surface of the first lens L1, the SL / TTL must satisfy the above range.
  • Conditional Expression 3 is a conditional expression that defines the angle of view in the lens optical system.
  • tan ( ⁇ ) / f is less than the lower limit value (1.0) in Conditional Expression 3, the angle of view is too small to implement an optical lens optical system.
  • tan ( ⁇ ) / f is greater than the upper limit (4.0) in Conditional Equation 3, the angle of view may be increased, so that a wide-angle lens optical system may be realized, but spherical aberration and coma aberration may be increased, thereby performing the performance of the lens optical system. Will fall.
  • V3 represents the Abbe number of the third lens L3
  • V4 represents the Abbe number of the fourth lens L4.
  • Conditional Expression 4 is a conditional expression for limiting the optical characteristics of the material forming the third lens (L3) and the fourth lens (L4).
  • (V3 + V4) / 2 in Conditional Expression 4 means an average of Abbe's numbers of the third lens L3 and the fourth lens L4.
  • a plastic resin material having an Abbe number of 50 or more may be used.
  • the third lens L3 and the fourth lens L4 may be made of Z-E48R having an Abbe number of 55.8559 or APEL-5514ML having an Abbe number of 56.0928.
  • the manufacturing cost can be lowered and the lens can be formed compared to the glass lens having similar characteristics. You can increase the range.
  • CRA represents the maximum value among the angles at which the chief ray is incident on the sensor.
  • Conditional Expression 5 is a conditional expression for defining the sensor incident angle of the chief ray.
  • TTL is the distance on the optical axis between the object side surface of the first lens (L1) and the sensor IS
  • the BFL is on the optical axis between the sensor side surface of the fourth lens (L4) and the sensor (IS). Indicates distance.
  • Conditional Expression 6 is a conditional expression for limiting the overall length of the lens optical system to a predetermined level or less.
  • the distance between the sensor side and the sensor side of the last lens tends to decrease.
  • the TTL / BFL is close to the upper limit (4.0) in the conditional expression 6. As the TTL / BFL increases in the lens optical system, the electric field may be shortened.
  • FIGS. 1 and 5 a first embodiment of the present invention will be described with reference to FIGS. 1 and 5.
  • the following is a table of optical data of the lens optical system of the first embodiment shown in FIG.
  • the following table shows the curvature radius (r), lens thickness and distance between lenses (d), refractive index (N d ), focal length (f), Abbe's number (V d ), and lens optics of each lens constituting the lens optical system. Data about focal length, Fno, TTL, and field of view.
  • * indicates that the lens surface is aspheric.
  • the distance unit of r, d and f is mm.
  • the aspherical surface of the lens surface of the lens optical system of the first embodiment shown in Fig. 1 satisfies the aspherical equation of the following equation.
  • z represents the distance from the vertex of the lens in the optical axis direction
  • y represents the distance in the direction perpendicular to the optical axis
  • R denotes the radius of curvature at the apex of the lens
  • K denotes the conic constant
  • a ⁇ 2> -A ⁇ 12> represents an aspherical surface coefficient, respectively.
  • the following is a table of aspherical coefficients of the aspherical surface of the lens surface of the lens optical system of the first embodiment shown in FIG.
  • the target values of the conditional expressions 1 to 6 of the lens optical system of the first embodiment correspond to the conditional expressions 1 to 6.
  • FIG. 5 sequentially shows spherical aberration, astigmatism, and distortion aberration of the lens optical system of the first embodiment shown in FIG.
  • the wavelengths used to measure spherical aberration are 435.8 nm, 486.1 nm, 546.1 nm 587.6 nm and 656.3 nm.
  • the wavelength measured to measure astigmatism and distortion is 546.1 nm.
  • the following is a table relating to optical data of the lens optical system of the second embodiment shown in FIG.
  • the following table shows the curvature radius (r), lens thickness and distance between lenses (d), refractive index (N d ), focal length (f), Abbe's number (V d ), and lens optics of each lens constituting the lens optical system. Data about focal length, Fno, TTL, and field of view.
  • * indicates that the lens surface is aspheric.
  • the distance unit of r, d and f is mm.
  • the aspherical surface of the lens surface of the lens optical system of the second embodiment shown in Fig. 2 satisfies the aspherical equation of the following equation.
  • z represents the distance from the vertex of the lens in the optical axis direction
  • y represents the distance in the direction perpendicular to the optical axis
  • R denotes the radius of curvature at the apex of the lens
  • K denotes the conic constant
  • a ⁇ 2> -A ⁇ 12> represents an aspherical surface coefficient, respectively.
  • the following is a table of aspherical surface coefficients of the aspherical surface among the lens surface of the lens optical system of the second embodiment shown in FIG.
  • the target values of the conditional expressions 1 to 6 of the lens optical system of the second embodiment correspond to the conditional expressions 1 to 6.
  • FIG. 6 sequentially shows spherical aberration, astigmatism, and distortion aberration of the lens optical system of the second embodiment shown in FIG.
  • the wavelengths used to measure spherical aberration are 435.8 nm, 486.1 nm, 546.1 nm 587.6 nm and 656.3 nm.
  • the wavelength measured to measure astigmatism and distortion is 546.1 nm.
  • the following table shows the curvature radius (r), lens thickness and distance between lenses (d), refractive index (N d ), focal length (f), Abbe's number (V d ), and lens optics of each lens constituting the lens optical system. Data about focal length, Fno, TTL, and field of view.
  • * indicates that the lens surface is aspheric.
  • the distance unit of r, d and f is mm.
  • the aspherical surface of the lens surface of the lens optical system of the third embodiment shown in Fig. 3 satisfies the aspherical equation of the following equation.
  • z represents the distance from the vertex of the lens in the optical axis direction
  • y represents the distance in the direction perpendicular to the optical axis
  • R denotes the radius of curvature at the apex of the lens
  • K denotes the conic constant
  • a ⁇ 2> -A ⁇ 12> represents an aspherical surface coefficient, respectively.
  • the following is a table of aspherical coefficients of the aspherical surface of the lens surface of the lens optical system of the third embodiment shown in FIG.
  • the target values of the conditional expressions 1 to 6 of the lens optical system of the third embodiment correspond to the conditional expressions 1 to 6.
  • FIG. 7 sequentially shows spherical aberration, astigmatism, and distortion aberration of the lens optical system of the third embodiment shown in FIG.
  • the wavelengths used to measure spherical aberration are 435.8 nm, 486.1 nm, 546.1 nm 587.6 nm and 656.3 nm.
  • the wavelength measured to measure astigmatism and distortion is 546.1 nm.
  • the following table shows the curvature radius (r), lens thickness and distance between lenses (d), refractive index (N d ), focal length (f), Abbe's number (V d ), and lens optics of each lens constituting the lens optical system. Data about focal length, Fno, TTL, and field of view.
  • * indicates that the lens surface is aspheric.
  • the distance unit of r, d and f is mm.
  • the aspherical surface of the lens surface of the lens optical system of the fourth embodiment shown in Fig. 4 satisfies the aspherical equation of the following equation.
  • z represents the distance from the vertex of the lens in the optical axis direction
  • y represents the distance in the direction perpendicular to the optical axis
  • R denotes the radius of curvature at the apex of the lens
  • K denotes the conic constant
  • a ⁇ 2> -A ⁇ 12> represents an aspherical surface coefficient, respectively.
  • the following is a table of aspherical surface coefficients of the aspherical surface among the lens surface of the lens optical system of the fourth embodiment shown in FIG.
  • the target values of the conditional expressions 1 to 6 of the lens optical system of the fourth embodiment correspond to the conditional expressions 1 to 6.
  • FIG. 8 sequentially illustrates spherical aberration, astigmatism, and distortion aberration of the lens optical system of the fourth embodiment shown in FIG.
  • the wavelengths used to measure spherical aberration are 435.8 nm, 486.1 nm, 546.1 nm 587.6 nm and 656.3 nm.
  • the wavelength measured to measure astigmatism and distortion is 546.1 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

렌즈 광학계가 개시된다. 본 발명의 렌즈 광학계는 물체와 상기 물체의 상이 맺히는 센서 사이에서 상기 물체 측으로부터 상기 센서 측으로 순차적으로 배열된 제1 렌즈, 제2 렌즈, 제3 렌즈 및 제4 렌즈를 포함하고, 상기 제1 렌즈는 정의 굴절력을 갖고, 상기 제1 렌즈의 물체측면은 상기 물체 측으로 볼록하고, 상기 제2 렌즈는 부의 굴절력을 갖고, 상기 제2 렌즈의 물체측면은 적어도 광축 부근에서 평면이고, 상기 제3 렌즈는 정의 굴절력을 갖고, 센서 측으로 볼록한 메니스커스 형상을 가지고, 상기 제4 렌즈는 부의 굴절력을 갖고, 상기 제4 렌즈의 센서측면은 상기 센서 측으로 오목하고 적어도 하나의 변곡점을 가지며, 아래의 조건식을 만족한다. <조건식> 1.0<|f2/f|<3.0 여기서, f2는 상기 제2 렌즈의 초점거리를, f는 상기 렌즈 광학계의 초점거리를 나타낸다.

Description

렌즈 광학계
본 발명은 렌즈 광학계에 관한 것으로, 더욱 상세하게는 촬상용 카메라모듈에 탑재될 수 있는 렌즈 광학계에 관한 것이다.
촬상용 카메라모듈은 적어도 하나의 렌즈를 포함하는 렌즈 광학계와 렌즈 광학계를 통과한 광을 수광하여 전기 신호로 변환하는 이미지 센서를 포함한다. 이미지 센서로는 통상적으로 전하 결합 소자(charge coupled device)(CCD) 또는 씨모스 이미지센서(complimentary metal oxide semiconductor image sensor)(CMOS 이미지센서)와 같은 고체 촬상 소자가 널리 사용되고 있다.
최근의 카메라모듈은 스마트폰, 태블릿 컴퓨터, 랩-탑 컴퓨터 등 전자 장치에 널리 채용되고 있다. 이러한 전자 장치는 사용자의 편의성 및 미감의 향상을 위해서 점차 소형화 및 박형화되는 형태로 발전하는 추세이다. 또한, 종래의 카메라 장치도 역시 점차 소형화 및 박형화되는 형태로 발전하는 추세이다. 이에 따라 이러한 전자 장치에 탑재되는 카메라 모듈도 소형화되고, 두께가 작은 형태가 요구되고 있다.
또한, 최근의 카메라 모듈에는 한 번의 촬영으로 더욱 많은 정보를 촬영할 수 있도록 넓은 화각을 가지는 가지는 렌즈가 요구된다. 그러나 넓은 화각을 가지면서 고해상도의 이미지 센서와 결합되어 사용될 수 있고, 수차 및 왜곡 등 광학적 성능이 우수한 렌즈를 설계하는 것은 난해하다.
따라서 소형이고 화각이 넓으면서 고해상도 이미지 센서와 결합되어 사용될 수 있는 고성능의 렌즈 광학계의 개발이 요구되고 있다.
본 발명이 해결하려는 과제는, 상술한 문제점을 해결하기 위한 것으로서, 소형이고 화각이 넓으면서 고해상도 이미지 센서와 결합되어 사용할 수 있는 고성능의 렌즈 광학계를 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명의 렌즈 광학계는, 물체와 상기 물체의 상이 맺히는 센서 사이에서 상기 물체 측으로부터 상기 센서 측으로 순차적으로 배열된 제1 렌즈, 제2 렌즈, 제3 렌즈 및 제4 렌즈를 포함하고, 상기 제1 렌즈는 정의 굴절력을 갖고, 상기 제1 렌즈의 물체측면은 상기 물체 측으로 볼록하고, 상기 제2 렌즈는 부의 굴절력을 갖고, 상기 제2 렌즈의 물체측면은 적어도 광축 부근에서 평면이고, 상기 제3 렌즈는 정의 굴절력을 갖고, 센서 측으로 볼록한 메니스커스 형상을 가지고, 상기 제4 렌즈는 부의 굴절력을 갖고, 상기 제4 렌즈의 센서측면은 상기 센서 측으로 오목하고 적어도 하나의 변곡점을 가지며, 아래의 조건식을 만족한다.
<조건식>
1.0<|f2/f|<3.0
여기서, f2는 상기 제2 렌즈의 초점거리를, f는 상기 렌즈 광학계의 초점거리를 나타낸다.
본 발명의 일 실시예에 있어서, 상기 제1 렌즈의 센서측면은 상기 센서 측으로 볼록하고, 상기 제2 렌즈의 센서측면은 상기 센서 측으로 오목할 수 있다.
본 발명의 일 실시예에 있어서, 상기 제4 렌즈의 물체측면은 광축 부근에서 상기 물체 측으로 볼록하고 적어도 하나의 변곡점을 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 렌즈의 물체측면은 유효경 내에서 평면일 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 렌즈의 물체측면은 평면일 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 렌즈의 물체측면을 제외한 모든 면이 비구면일 수 있다.
본 발명의 일 실시예에 있어서, 상기 제1 렌즈의 물체측면 사이에 걸쳐 위치하는 조리개를 더 포함할 수 있다.
본 발명의 일 실시예에 있어서, 아래의 조건식을 더 만족할 수 있다.
<조건식>
0.75<SL/TTL<1.25
여기서, SL은 상기 조리개와 상기 센서 사이의 광축 상의 거리를, TTL은 상기 제1 렌즈의 물체측면과 상기 센서 사이의 광축 상의 거리를 나타낸다.
본 발명의 일 실시예에 있어서, 아래의 조건식을 더 만족할 수 있다.
<조건식>
1.0<tan(θ)/f<4.0
여기서, θ는 상기 렌즈 광학계의 화각을, f는 상기 렌즈 광학계의 초점거리를 나타낸다.
본 발명의 일 실시예에 있어서, 아래의 조건식을 더 만족할 수 있다.
<조건식>
50<(V3+V4)/2<60
여기서, V3는 상기 제3 렌즈의 아베수를, V4는 상기 제4 렌즈의 아베수를 나타낸다.
본 발명의 일 실시예에 있어서, 아래의 조건식을 더 만족할 수 있다.
<조건식>
30deg<CRA<35deg
여기서, CRA
본 발명의 일 실시예에 있어서, 아래의 조건식을 더 만족할 수 있다.
<조건식>
2.0<TTL/BFL<4.0
여기서, TTL은 상기 제1 렌즈의 물체측면과 상기 센서 사이의 광축 상의 거리를, 상기 BFL은 상기 제4 렌즈의 센서측면과 상기 센서 사이의 광축 상의 거리를 나타낸다.
본 발명의 일 실시예에 따른 렌즈 광학계는 소형이고 화각이 넓으면서 고해상도 이미지 센서와 결합되어 사용할 수 있는 고성능의 렌즈 광학계이다.
본 발명의 일 실시예에 따른 렌즈 광학계는 마지막 렌즈의 센서측면과 센서 사이의 거리가 상대적으로 짧아 렌즈 광학계 전체의 길이가 짧고 결과적으로 카메라 모듈을 소형화할 수 있다는 장점이 있다.
본 발명의 일 실시예는 렌즈 광학계의 초점거리에 비해 화각이 넓으면서도, 구면 수차 및 코마 수차가 일정 수준 이하로 유지된다는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 제1 실시예의 렌즈 광학계의 렌즈 구성도이다.
도 2는 본 발명의 일 실시예에 따른 제2 실시예의 렌즈 광학계의 렌즈 구성도이다.
도 3은 본 발명의 일 실시예에 따른 제3 실시예의 렌즈 광학계의 렌즈 구성도이다.
도 4는 본 발명의 일 실시예에 따른 제4 실시예의 렌즈 광학계의 렌즈 구성도이다.
도 5는 도 1에 도시된 제1 실시예의 렌즈 광학계의 구면수차, 비점수차 및 왜곡수차를 순차적으로 도시한 것이다.
도 6은 도 2에 도시된 제2 실시예의 렌즈 광학계의 구면수차, 비점수차 및 왜곡수차를 순차적으로 도시한 것이다.
도 7은 도 3에 도시된 제3 실시예의 렌즈 광학계의 구면수차, 비점수차 및 왜곡수차를 순차적으로 도시한 것이다.
도 8은 도 4에 도시된 제4 실시예의 렌즈 광학계의 구면수차, 비점수차 및 왜곡수차를 순차적으로 도시한 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명하는데 있어서, 해당 분야에 이미 공지된 기술 또는 구성에 대한 구체적인 설명을 부가하는 것이 본 발명의 요지를 불분명하게 할 수 있다고 판단되는 경우에는 상세한 설명에서 이를 일부 생략하도록 한다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 실시예들을 적절히 표현하기 위해 사용된 용어들로서, 이는 해당 분야의 관련된 사람 또는 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 첨부한 도 1 내지 도 5를 참조하여, 본 발명의 일 실시예에 따른 렌즈 광학계에 대해 설명한다.
도 1 내지 도 4는 각각 본 발명의 제1 내지 제4 실시예에 따른 렌즈 광학계에 대한 렌즈 구성도이다.
도 1 내지 도 4를 참조하면, 본 발명의 실시예들에 따른 렌즈 광학계는, 렌즈 광학계의 피사체에 해당하는 물체와 물체의 상이 맺히는 센서(IS) 사이에 제1 렌즈(L1), 제2 렌즈(L2), 제3 렌즈(L3) 및 제4 렌즈(L4)가 위치한다. 제1 내지 제4 렌즈(L1, L2, L3, L4)는 물체측에서 센서측으로 순차적으로 배열되어 있다.
각각의 렌즈는 서로 마주보는 양면을 가진다. 하나의 렌즈에 있어서, 물체 측을 바라보는 면은 광이 렌즈로 들어오는 면인 입사면에 해당한다. 또한, 하나의 렌즈에 있어서, 센서 측을 바라보는 면은 렌즈에서 광이 나가는 면인 출사면에 해당한다. 본 명세서에서 n번째 렌즈의 물체측면이자 입사면인 면을 Sn1로 표시하고, 센서측면이자 출사면인 면은 Sn2로 표시하도록 한다. 따라서, 제1 렌즈(L1)의 물체측면이자 입사면은 S11로 표시되고, 센서측면이자 출사면은 S12로 표시된다. 또한, 제2 렌즈(L2)의 물체측면이자 입사면은 S21로 표시되고, 센서측면이자 출사면은 S22로 표시된다. 또한, 제3 렌즈(L3)의 물체측면이자 입사면은 S31로 표시되고, 센서측면이자 출사면은 S32로 표시된다. 또한, 제4 렌즈(L4)의 물체측면이자 입사면은 S41로 표시되고, 센서측면이자 출사면은 S42로 표시된다.
제1 렌즈(L1)는 정(+, positive)의 굴절력을 가진다. 제1 렌즈(L1)에 있어서, S11은 물체 측으로 볼록하고, S12는 센서 측으로 볼록하다. S11과 S12는 모두 비구면으로 형성될 수 있다. 제1 렌즈(L1)는 플라스틱 재질로 형성될 수 있다.
제2 렌즈(L2)는 부(-, negative)의 굴절력을 가진다. 제2 렌즈(L2)에 있어서, S21은 적어도 광축 부근에서 평면이고, S22는 센서 측으로 오목하다. S21은 광축 부근뿐만 아니라 광학 렌즈계의 유효경 내에서 평면일 수 있다. 또한, S21은 전체적으로 평면으로 형성될 수 있다. S22는 비구면으로 형성될 수 있다. 제2 렌즈(L2)는 플라스틱 재질로 형성될 수 있다.
제3 렌즈(L3)는 정(+, positive)의 굴절력을 가진다. 제3 렌즈(L3)는 센서 측으로 볼록한 메니스커스 형상을 가진다. 구체적으로 제3 렌즈(L3)에 있어서, S31은 물체 측으로 오목하고, S32는 센서 측으로 볼록하다. S31과 S32는 모두 비구면으로 형성될 수 있다. 제3 렌즈(L3)는 플라스틱 재질로 형성될 수 있다.
제4 렌즈(L4)는 부(-, negative)의 굴절력을 가진다. 제4 렌즈(L4)에 있어서, S41은 광축 부근에서 물체 측으로 볼록하고, S42는 광축 부근에서 센서 측으로 볼록하다. S41과 S42는 모두 비구면으로 형성될 수 있다. 구체적으로, S41은 광축 부근에서 물체 측으로 볼록하고, 광축 부근에서 렌즈의 주변부로 갈수록 오목해지는 부분을 포함할 수 있다. S41은 적어도 하나의 변곡점을 포함할 수 있다. 또한, S42는 광축 부근에서 센서 측으로 오목하고, 광축 부근에서 렌즈의 주변부로 갈수록 볼록해지는 부분을 포함할 수 있다. S42는 적어도 하나의 변곡점을 포함할 수 있다.
도 1 내지 도 4를 참조하면, 렌즈 광학계는 조리개(S)를 포함할 수 있다.
조리개(S)는 제1 렌즈(L1)의 물체 측에 위치하거나 제1 렌즈(L1)에 걸쳐서 위치할 수 있다. 구체적으로 조리개(S)는 제1 렌즈(L1)의 물체 측 면에 걸쳐서 위치할 수 있다. 조리개(S)는 광의 일부를 차단하여 렌즈 광학계 내부로 조사되는 광의 양을 조절할 수 있다.
렌즈 광학계는 광학 필터(OF)를 포함할 수 있다. 광학 필터(OF)는 제4 렌즈(L4)와 센서(IS) 사이에 위치할 수 있다. 광학 필터(OF)는 가시광선 이외의 대역의 광을 차단할 수 있다. 구체적으로 광학 필터(OF)는 적외선 대역의 광을 차단할 수 있다.
센서(IS)는 렌즈를 통과한 광을 수광하여 전기 신호로 변환하는 이미지 센서일 수 있다. 센서(IS)는 제1 내지 제4 렌즈(L4)를 통과한 광이 센서의 물체측면 상에서 상이 맺히도록 제4 렌즈(L4)의 후면에 위치하는 것이 바람직하다.
상기의 구성을 가지는 본 발명의 실시예들의 렌즈 광학계는 아래의 조건식을 만족할 수 있다.
<조건식 1>
1.0<|f2/f|<3.0
여기서, f2는 상기 제2 렌즈(L2)의 초점거리를, f는 상기 렌즈 광학계의 초점거리를 나타낸다.
조건식 1은 렌즈 광학계의 전체의 초점거리에 대해서, 제2 렌즈(L2)의 초점거리를 제한하는 조건식이다. 제2 렌즈(L2)의 초점거리가 렌즈 광학계의 초점거리에 대해 상기의 조건을 만족하는 경우에, 렌즈 광학계의 화각을 증가시킬 수 있다.
<조건식 2>
0.75<SL/TTL<1.25
여기서, SL은 상기 조리개(S)와 상기 센서(IS) 사이의 광축 상의 거리를, TTL은 상기 제1 렌즈(L1)의 물체측면과 상기 센서(IS) 사이의 광축 상의 거리를 나타낸다.
조건식 2는 렌즈 광학계에 있어서, 조리개의 위치를 한정하는 조건식이다. 조건식 2에서 SL/TTL이 하한값(0.75)보다 작을 경우, 조리개는 제1 렌즈(L1)를 기준으로 센서 측에 위치하게 된다. 그리고 조건식 2에서 SL/TTL이 상한값(1.25)보다 클 경우, 조리개는 제1 렌즈(L1)를 기준으로 물체 측에 위치하게 된다. 도 1 내지 도 4에 도시된 것과 같이, 조리개(S)가 제1 렌즈(L1)의 물체측면에 걸치도록 위치하기 위해서는 조건식 2에서 SL/TTL이 상기의 범위를 만족하여야 한다.
<조건식 3>
1.0<tan(θ)/f<4.0
여기서, θ는 상기 렌즈 광학계의 화각을, f는 상기 렌즈 광학계의 초점거리를 나타낸다.
조건식 3은 렌즈 광학계에서 화각을 한정하는 조건식이다. 조건식 3에서 tan(θ)/f이 하한값(1.0)보다 작을 경우, 화각이 지나치게 작아 광학의 렌즈 광학계를 구현할 수 없게 된다. 반면에, 조건식 3에서 tan(θ)/f이 상한값(4.0)보다 클 경우에는 화각이 증가할 수 있어 광각의 렌즈 광학계의 구현이 가능하지만, 구면 수차 및 코마 수차가 커지게 되어 렌즈 광학계의 성능이 떨어지게 된다.
<조건식 4>
50<(V3+V4)/2<60
여기서, V3는 상기 제3 렌즈(L3)의 아베수를, V4는 상기 제4 렌즈(L4)의 아베수를 나타낸다.
조건식 4는 제3 렌즈(L3)와 제4 렌즈(L4)를 형성하는 재질의 광학적 특징을 제한하는 조건식이다. 조건식 4의 (V3+V4)/2는 제3 렌즈(L3) 및 제4 렌즈(L4)의 아베수의 평균을 의미한다. 제3 렌즈(L3) 및 제4 렌즈(L4)는 아베수 50 이상의 플라스틱 수지재가 사용될 수 있다. 예를 들어, 제3 렌즈(L3) 및 제4 렌즈(L4)는 아베수가 55.8559인 Z-E48R의 재질 또는 아베수가 56.0928인 APEL-5514ML 등이 사용될 수 있다.
제3 렌즈(L3) 및 제4 렌즈(L4)가 상기의 조건을 만족하는 플라스틱 재질로 형성되는 경우, 유사한 특징을 가지는 글라스(glass) 재질의 렌즈에 비해 제조 단가를 낮출 수 있고 렌즈의 성형 가능 범위를 증가시킬 수 있다.
<조건식 5>
30deg<CRA<35deg
여기서, CRA는 주광선이 센서에 입사되는 각 중 최대값을 나타낸다.
조건식 5는 주광선의 센서 입사각도를 한정하는 조건식이다. CRA를 한정하는 것을 통해 화각이 충분히 크면서도 BFL(Back Focal Length)가 작은 렌즈의 설계가 가능해진다.
<조건식 6>
2.0<TTL/BFL<4.0
여기서, TTL은 상기 제1 렌즈(L1)의 물체측면과 상기 센서(IS) 사이의 광축 상의 거리를, 상기 BFL은 상기 제4 렌즈(L4)의 센서측면과 상기 센서(IS) 사이의 광축 상의 거리를 나타낸다.
조건식 6은 렌즈 광학계의 전장을 일정 수준 이하로 제한하는 조건식이다. 전장이 상대적으로 짧은 렌즈 광학계의 경우, 마지막 렌즈의 센서측면과 센서면 사이의 거리가 감소하는 경향이 있다. 도 1 내지 도 4에 도시된 렌즈 광학계에 있어서, 조건식 6에서 TTL/BFL은 상한값(4.0)에 근접한 것이 바람직하다. 렌즈 광학계에서 TTL/BFL이 증가할수록 전장이 짧아질 수 있다.
이하, 도 1 및 도 5를 참조하여 본 발명의 제1 실시예에 대해서 설명하도록 한다.
다음은 도 1에 도시된 제1 실시예의 렌즈 광학계의 광학 데이터에 관한 표이다. 다음의 표는 렌즈 광학계를 구성하는 각 렌즈의 곡률반경(r), 렌즈 두께 및 렌즈 사이의 거리(d), 굴절률(Nd), 초점거리(f), 아베수(Vd), 렌즈 광학계의 초점거리(focal length), Fno, 전장(TTL) 및 화각(FOV)에 관한 데이터를 포함한다.
Figure PCTKR2015014082-appb-T000001
상기 표에서 *는 해당 렌즈면이 비구면임을 나타낸다. 그리고 r, d 및 f의 거리 단위는 mm이다.
또한, 도 1에 도시된 제1 실시예의 렌즈 광학계의 렌즈면 중 비구면인 면은 다음의 수학식의 비구면 방정식을 만족한다.
<수학식>
Figure PCTKR2015014082-appb-I000001
여기서, z는 렌즈의 정점으로부터 광축 방향으로의 거리를, y는 광축에 수직한 방향으로의 거리를 나타낸다. 그리고 R은 렌즈의 정점에 있어서의 곡률반경을, K는 코닉 상수(conic constant)를 나타낸다. 또한, A2 내지 A12는 비구면 계수를 각각 나타낸다.
다음은 도 1에 도시된 제1 실시예의 렌즈 광학계의 렌즈면 중 비구면인 면의 비구면계수에 관한 표이다.
Figure PCTKR2015014082-appb-T000002
다음은 도 1에 도시된 제1 실시예의 렌즈 광학계에 있어서, 조건식 1 내지 6의 값을 정리한 표이다.
Figure PCTKR2015014082-appb-T000003
상기 표에 도시된 것과 같이 제1 실시예의 렌즈 광학계의 조건식 1 내지 6의 대상값은 조건식 1 내지 6과 모두 일치함을 알 수 있다.
도 5는 도 1에 도시된 제1 실시예의 렌즈 광학계의 구면수차, 비점수차 및 왜곡수차를 순차적으로 도시한 것이다. 구면수차를 측정하기 위해 사용한 파장은 435.8nm, 486.1nm, 546.1nm 587.6nm 및 656.3nm이다. 비점수차와 왜곡수차를 측정하기 위해 측정한 파장은 546.1nm이다.
이하, 도 2 및 도 6을 참조하여 본 발명의 제2 실시예에 대해서 설명하도록 한다.
다음은 도 2에 도시된 제2 실시예의 렌즈 광학계의 광학 데이터에 관한 표이다. 다음의 표는 렌즈 광학계를 구성하는 각 렌즈의 곡률반경(r), 렌즈 두께 및 렌즈 사이의 거리(d), 굴절률(Nd), 초점거리(f), 아베수(Vd), 렌즈 광학계의 초점거리(focal length), Fno, 전장(TTL) 및 화각(FOV)에 관한 데이터를 포함한다.
Figure PCTKR2015014082-appb-T000004
상기 표에서 *는 해당 렌즈면이 비구면임을 나타낸다. 그리고 r, d 및 f의 거리 단위는 mm이다.
또한, 도 2에 도시된 제2 실시예의 렌즈 광학계의 렌즈면 중 비구면인 면은 다음의 수학식의 비구면 방정식을 만족한다.
<수학식>
Figure PCTKR2015014082-appb-I000002
여기서, z는 렌즈의 정점으로부터 광축 방향으로의 거리를, y는 광축에 수직한 방향으로의 거리를 나타낸다. 그리고 R은 렌즈의 정점에 있어서의 곡률반경을, K는 코닉 상수(conic constant)를 나타낸다. 또한, A2 내지 A12는 비구면 계수를 각각 나타낸다.
다음은 도 2에 도시된 제2 실시예의 렌즈 광학계의 렌즈면 중 비구면인 면의 비구면계수에 관한 표이다.
Figure PCTKR2015014082-appb-T000005
다음은 도 2에 도시된 제2 실시예의 렌즈 광학계에 있어서, 조건식 1 내지 6의 값을 정리한 표이다.
Figure PCTKR2015014082-appb-T000006
상기 표에 도시된 것과 같이 제2 실시예의 렌즈 광학계의 조건식 1 내지 6의 대상값은 조건식 1 내지 6과 모두 일치함을 알 수 있다.
도 6은 도 2에 도시된 제2 실시예의 렌즈 광학계의 구면수차, 비점수차 및 왜곡수차를 순차적으로 도시한 것이다. 구면수차를 측정하기 위해 사용한 파장은 435.8nm, 486.1nm, 546.1nm 587.6nm 및 656.3nm이다. 비점수차와 왜곡수차를 측정하기 위해 측정한 파장은 546.1nm이다.
이하, 도 3 및 도 7을 참조하여 본 발명의 제3 실시예에 대해서 설명하도록 한다.
다음은 도 3에 도시된 제3 실시예의 렌즈 광학계의 광학 데이터에 관한 표이다. 다음의 표는 렌즈 광학계를 구성하는 각 렌즈의 곡률반경(r), 렌즈 두께 및 렌즈 사이의 거리(d), 굴절률(Nd), 초점거리(f), 아베수(Vd), 렌즈 광학계의 초점거리(focal length), Fno, 전장(TTL) 및 화각(FOV)에 관한 데이터를 포함한다.
Figure PCTKR2015014082-appb-T000007
상기 표에서 *는 해당 렌즈면이 비구면임을 나타낸다. 그리고 r, d 및 f의 거리 단위는 mm이다.
또한, 도 3에 도시된 제3 실시예의 렌즈 광학계의 렌즈면 중 비구면인 면은 다음의 수학식의 비구면 방정식을 만족한다.
<수학식>
Figure PCTKR2015014082-appb-I000003
여기서, z는 렌즈의 정점으로부터 광축 방향으로의 거리를, y는 광축에 수직한 방향으로의 거리를 나타낸다. 그리고 R은 렌즈의 정점에 있어서의 곡률반경을, K는 코닉 상수(conic constant)를 나타낸다. 또한, A2 내지 A12는 비구면 계수를 각각 나타낸다.
다음은 도 3에 도시된 제3 실시예의 렌즈 광학계의 렌즈면 중 비구면인 면의 비구면계수에 관한 표이다.
Figure PCTKR2015014082-appb-T000008
다음은 도 3에 도시된 제3 실시예의 렌즈 광학계에 있어서, 조건식 1 내지 6의 값을 정리한 표이다.
Figure PCTKR2015014082-appb-T000009
상기 표에 도시된 것과 같이 제3 실시예의 렌즈 광학계의 조건식 1 내지 6의 대상값은 조건식 1 내지 6과 모두 일치함을 알 수 있다.
도 7은 도 3에 도시된 제3 실시예의 렌즈 광학계의 구면수차, 비점수차 및 왜곡수차를 순차적으로 도시한 것이다. 구면수차를 측정하기 위해 사용한 파장은 435.8nm, 486.1nm, 546.1nm 587.6nm 및 656.3nm이다. 비점수차와 왜곡수차를 측정하기 위해 측정한 파장은 546.1nm이다.
이하, 도 4 및 도 8을 참조하여 본 발명의 제4 실시예에 대해서 설명하도록 한다.
다음은 도 4에 도시된 제4 실시예의 렌즈 광학계의 광학 데이터에 관한 표이다. 다음의 표는 렌즈 광학계를 구성하는 각 렌즈의 곡률반경(r), 렌즈 두께 및 렌즈 사이의 거리(d), 굴절률(Nd), 초점거리(f), 아베수(Vd), 렌즈 광학계의 초점거리(focal length), Fno, 전장(TTL) 및 화각(FOV)에 관한 데이터를 포함한다.
Figure PCTKR2015014082-appb-T000010
상기 표에서 *는 해당 렌즈면이 비구면임을 나타낸다. 그리고 r, d 및 f의 거리 단위는 mm이다.
또한, 도 4에 도시된 제4 실시예의 렌즈 광학계의 렌즈면 중 비구면인 면은 다음의 수학식의 비구면 방정식을 만족한다.
<수학식>
Figure PCTKR2015014082-appb-I000004
여기서, z는 렌즈의 정점으로부터 광축 방향으로의 거리를, y는 광축에 수직한 방향으로의 거리를 나타낸다. 그리고 R은 렌즈의 정점에 있어서의 곡률반경을, K는 코닉 상수(conic constant)를 나타낸다. 또한, A2 내지 A12는 비구면 계수를 각각 나타낸다.
다음은 도 4에 도시된 제4 실시예의 렌즈 광학계의 렌즈면 중 비구면인 면의 비구면계수에 관한 표이다.
Figure PCTKR2015014082-appb-T000011
다음은 도 4 도시된 제4실시예의 렌즈 광학계에 있어서, 조건식 1 내지 6의 값을 정리한 표이다.
Figure PCTKR2015014082-appb-T000012
상기 표에 도시된 것과 같이 제4실시예의 렌즈 광학계의 조건식 1 내지 6의 대상값은 조건식 1 내지 6과 모두 일치함을 알 수 있다.
도 8은 도 4 도시된 제4실시예의 렌즈 광학계의 구면수차, 비점수차 및 왜곡수차를 순차적으로 도시한 것이다. 구면수차를 측정하기 위해 사용한 파장은 435.8nm, 486.1nm, 546.1nm 587.6nm 및 656.3nm이다. 비점수차와 왜곡수차를 측정하기 위해 측정한 파장은 546.1nm이다.
이상, 본 발명의 렌즈 광학계의 실시예들에 대해 설명하였다. 본 발명은 상술한 실시예 및 첨부한 도면에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자의 관점에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명의 범위는 본 명세서의 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (12)

  1. 물체와 상기 물체의 상이 맺히는 센서 사이에서 상기 물체 측으로부터 상기 센서 측으로 순차적으로 배열된 제1 렌즈, 제2 렌즈, 제3 렌즈 및 제4 렌즈를 포함하고,
    상기 제1 렌즈는 정의 굴절력을 갖고, 상기 제1 렌즈의 물체측면은 상기 물체 측으로 볼록하고,
    상기 제2 렌즈는 부의 굴절력을 갖고, 상기 제2 렌즈의 물체측면은 적어도 광축 부근에서 평면이고,
    상기 제3 렌즈는 정의 굴절력을 갖고, 센서 측으로 볼록한 메니스커스 형상을 가지고,
    상기 제4 렌즈는 부의 굴절력을 갖고, 상기 제4 렌즈의 센서측면은 상기 센서 측으로 오목하고 적어도 하나의 변곡점을 가지며,
    아래의 조건식을 만족하는 렌즈 광학계.
    <조건식>
    1.0<|f2/f|<3.0
    여기서, f2는 상기 제2 렌즈의 초점거리를, f는 상기 렌즈 광학계의 초점거리를 나타낸다.
  2. 제1 항에 있어서,
    상기 제1 렌즈의 센서측면은 상기 센서 측으로 볼록하고,
    상기 제2 렌즈의 센서측면은 상기 센서 측으로 오목한 렌즈 광학계.
  3. 제1 항에 있어서,
    상기 제4 렌즈의 물체측면은 광축 부근에서 상기 물체 측으로 볼록하고 적어도 하나의 변곡점을 가지는 렌즈 광학계.
  4. 제1 항에 있어서,
    상기 제2 렌즈의 물체측면은 유효경 내에서 평면인 렌즈 광학계.
  5. 제1 항에 있어서,
    상기 제2 렌즈의 물체측면은 평면인 렌즈 광학계.
  6. 제1 항에 있어서,
    상기 제2 렌즈의 물체측면을 제외한 모든 면이 비구면인 렌즈 광학계.
  7. 제1 항에 있어서,
    상기 제1 렌즈의 물체측면 사이에 걸쳐 위치하는 조리개를 더 포함하는 렌즈 광학계.
  8. 제7 항에 있어서,
    아래의 조건식을 더 만족하는 렌즈 광학계.
    <조건식>
    0.75<SL/TTL<1.25
    여기서, SL은 상기 조리개와 상기 센서 사이의 광축 상의 거리를, TTL은 상기 제1 렌즈의 물체측면과 상기 센서 사이의 광축 상의 거리를 나타낸다.
  9. 제1 항에 있어서,
    아래의 조건식을 더 만족하는 렌즈 광학계.
    <조건식>
    1.0<tan(θ)/f<4.0
    여기서, θ는 상기 렌즈 광학계의 화각을, f는 상기 렌즈 광학계의 초점거리를 나타낸다.
  10. 제1 항에 있어서,
    아래의 조건식을 더 만족하는 렌즈 광학계.
    <조건식>
    50<(V3+V4)/2<60
    여기서, V3는 상기 제3 렌즈의 아베수를, V4는 상기 제4 렌즈의 아베수를 나타낸다.
  11. 제1 항에 있어서,
    아래의 조건식을 더 만족하는 렌즈 광학계.
    <조건식>
    30deg<CRA<35deg
    여기서, CRA는 주광선이 센서에 입사되는 각 중 최대값을 나타낸다.
  12. 제1 항에 있어서,
    아래의 조건식을 더 만족하는 렌즈 광학계.
    <조건식>
    2.0<TTL/BFL<4.0
    여기서, TTL은 상기 제1 렌즈의 물체측면과 상기 센서 사이의 광축 상의 거리를, 상기 BFL은 상기 제4 렌즈의 센서측면과 상기 센서 사이의 광축 상의 거리를 나타낸다.
PCT/KR2015/014082 2014-12-22 2015-12-22 렌즈 광학계 WO2016105074A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140186430A KR101661922B1 (ko) 2014-12-22 2014-12-22 렌즈 광학계
KR10-2014-0186430 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016105074A1 true WO2016105074A1 (ko) 2016-06-30

Family

ID=56151017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014082 WO2016105074A1 (ko) 2014-12-22 2015-12-22 렌즈 광학계

Country Status (2)

Country Link
KR (1) KR101661922B1 (ko)
WO (1) WO2016105074A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252983A (zh) * 2021-12-27 2022-03-29 季华实验室 一种共口径中长波红外成像光学***

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101956705B1 (ko) * 2017-08-21 2019-03-11 삼성전기주식회사 촬상 광학계
KR102159667B1 (ko) * 2018-11-27 2020-09-24 엘컴텍 주식회사 렌즈 광학계
CN110297306B (zh) * 2019-04-15 2021-06-11 玉晶光电(厦门)有限公司 光学成像镜头
KR20200127756A (ko) 2019-05-03 2020-11-11 삼성전자주식회사 광학 렌즈 시스템 및 그를 포함하는 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110068611A (ko) * 2009-12-16 2011-06-22 삼성전기주식회사 초소형 촬상 광학계
KR20110137627A (ko) * 2010-06-17 2011-12-23 삼성전기주식회사 촬상 광학계
KR20120106022A (ko) * 2011-03-17 2012-09-26 삼성테크윈 주식회사 렌즈계 및 이를 구비한 촬영 장치
KR20130070439A (ko) * 2011-12-19 2013-06-27 엘지이노텍 주식회사 광학계
WO2013111612A1 (ja) * 2012-01-25 2013-08-01 コニカミノルタアドバンストレイヤー株式会社 撮像レンズ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980590B2 (ja) * 2005-07-04 2012-07-18 富士フイルム株式会社 撮像レンズ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110068611A (ko) * 2009-12-16 2011-06-22 삼성전기주식회사 초소형 촬상 광학계
KR20110137627A (ko) * 2010-06-17 2011-12-23 삼성전기주식회사 촬상 광학계
KR20120106022A (ko) * 2011-03-17 2012-09-26 삼성테크윈 주식회사 렌즈계 및 이를 구비한 촬영 장치
KR20130070439A (ko) * 2011-12-19 2013-06-27 엘지이노텍 주식회사 광학계
WO2013111612A1 (ja) * 2012-01-25 2013-08-01 コニカミノルタアドバンストレイヤー株式会社 撮像レンズ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252983A (zh) * 2021-12-27 2022-03-29 季华实验室 一种共口径中长波红外成像光学***
CN114252983B (zh) * 2021-12-27 2023-06-02 季华实验室 一种共口径中长波红外成像光学***

Also Published As

Publication number Publication date
KR20160076341A (ko) 2016-06-30
KR101661922B1 (ko) 2016-10-04

Similar Documents

Publication Publication Date Title
WO2014104787A1 (en) Photographic lens and photographic apparatus using the same
WO2019132283A1 (ko) 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치
WO2015005611A1 (en) Photographing lens and electronic apparatus including the same
WO2012169778A2 (en) Imaging lens and camera module
WO2013024979A2 (en) Imaging lens
WO2013065972A1 (en) Imaging lens
WO2016105074A1 (ko) 렌즈 광학계
WO2017082480A1 (en) Tele-lens and imaging device
WO2018080100A1 (ko) 렌즈 광학계
WO2017164607A1 (ko) 렌즈 광학계 및 촬상 장치
WO2017155303A1 (ko) 촬영 렌즈 광학계
WO2013058534A1 (en) Imaging lens
WO2017160093A1 (ko) 촬영 렌즈 광학계
WO2013089385A1 (en) Imaging lens
WO2021246545A1 (en) Lens optical system
WO2022124850A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2013048089A1 (en) Imaging lens
WO2016140520A1 (ko) 촬상 렌즈, 이를 포함하는 카메라 모듈 및 디지털 기기
WO2017164605A1 (ko) 촬영 렌즈 광학계
WO2016140526A1 (ko) 촬상 렌즈 및 이를 포함하는 카메라 모듈
WO2022050723A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2018080103A1 (ko) 렌즈 광학계
WO2021020760A1 (ko) 렌즈 광학계
WO2021091090A1 (en) Lens assembly and electronic device including the same
WO2017160091A1 (ko) 렌즈 광학계 및 촬상 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873601

Country of ref document: EP

Kind code of ref document: A1