WO2016104897A1 - Method for efficiently processing signal in isr activated state in nbifom - Google Patents

Method for efficiently processing signal in isr activated state in nbifom Download PDF

Info

Publication number
WO2016104897A1
WO2016104897A1 PCT/KR2015/006745 KR2015006745W WO2016104897A1 WO 2016104897 A1 WO2016104897 A1 WO 2016104897A1 KR 2015006745 W KR2015006745 W KR 2015006745W WO 2016104897 A1 WO2016104897 A1 WO 2016104897A1
Authority
WO
WIPO (PCT)
Prior art keywords
nbifom
isr
request
network
terminal
Prior art date
Application number
PCT/KR2015/006745
Other languages
French (fr)
Korean (ko)
Inventor
윤명준
류진숙
김현숙
김래영
김재현
김태훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2016104897A1 publication Critical patent/WO2016104897A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration

Definitions

  • the present disclosure relates to mobile communication.
  • the 3GPP which enacts the technical specifications of the mobile communication system, has been trying to optimize and improve the performance of 3GPP technologies since late 2004 in order to respond to various forums and new technologies related to 4G mobile communication. Started research on Term Evolution / System Architecture Evolution technology.
  • 3GPP SAE centered on 3GPP SA WG2
  • 3GPP SA WG2 is a study on network technology aimed at determining network structure and supporting mobility between heterogeneous networks in parallel with LTE work of 3GPP TSG RAN.
  • Recent important standardization issues of 3GPP Is one of. This is a work to develop a 3GPP system into a system supporting various radio access technologies based on IP, and has been aimed at an optimized packet-based system that minimizes transmission delay with improved data transmission capability.
  • the Evolved Packet System (EPS) high-level reference model defined by 3GPP SA WG2 includes non-roaming cases and roaming cases in various scenarios. See TS 23.401 and TS 23.402.
  • the network structure diagram of FIG. 1 is a simple reconfiguration.
  • 1 is a structural diagram of an evolved mobile communication network.
  • the EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (S-GW) 52, a PDN Packet Data Network Gateway (GW) 53, and a Mobility Management Entity (MME). 51, a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG).
  • S-GW Serving Gateway
  • GW Packet Data Network Gateway
  • MME Mobility Management Entity
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • ePDG enhanced Packet Data Gateway
  • the S-GW 52 acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB 22 and the PDN GW 53.
  • the S-GW 52 serves as a local mobility anchor point. That is, packets may be routed through the S-GW 52 for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • the S-GW 52 may be connected to other 3GPP networks (RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • 3GPP networks RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • PDN GW (or P-GW) 53 corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW 53 may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the S-GW 52 and the PDN GW 53 are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option. have.
  • the MME 51 is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. .
  • the MME 51 controls control plane functions related to subscriber and session management.
  • the MME 51 manages a number of eNodeBs 22 and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME 51 performs security procedures, terminal-to-network session handling, idle terminal location management, and the like.
  • the SGSN handles all packet data, such as user's mobility management and authentication to other connecting 3GPP networks (e.g., GPRS networks, UTRAN / GERAN).
  • 3GPP networks e.g., GPRS networks, UTRAN / GERAN.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an IP service network eg, IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used within PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handover). (It enables user and bearer information exchange for inter 3GPP access network mobility in Idle and / or active state.
  • This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides relevant control and mobility support between the GPRS core and SGW's 3GPP anchor functionality. It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW.In addition, if Direct Tunnel is not established, it provides the user plane tunneling .
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and PDN GW.
  • SGW relocation Because of UE mobility and for connections to the PDN GW where the SGW is not co-located for the required PDN connectivity.
  • It provides user plane tunneling and tunnel management between Serving GW and PDN GW. used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • Figure 2 is an exemplary view showing the functions of the main nodes of the E-UTRAN and the general EPC in general.
  • the eNodeB 20 is responsible for routing to the gateway, scheduling and sending paging messages, scheduling and sending broadcaster channels (BCHs), and uplink and downlink resources while the RRC connection is active. Function for dynamic allocation, configuration and provision for measurement of the eNodeB 20, radio bearer control, radio admission control, and connection mobility control. Within the EPC, paging can occur, LTE_IDLE state management, user planes can perform encryption, EPS bearer control, NAS signaling encryption and integrity protection.
  • BCHs broadcaster channels
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a UE and an eNodeB
  • FIG. 4 is a structure of a radio interface protocol in a user plane between a terminal and a base station. Another example is shown.
  • the radio interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ UL hybrid automatic repeat request
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • the PDCCH includes resource allocation and transmission format of downlink-shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, and random access transmitted on PDSCH. Resource allocation of higher layer control messages such as responses, sets of transmit power control commands for individual UEs in any UE group, activation of voice over internet protocol (VoIP), and the like.
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • the Medium Access Control (MAC) layer is responsible for mapping various logical channels to various transport channels, and also for multiplexing logical channel multiplexing to map multiple logical channels to one transport channel. Play a role.
  • the MAC layer is connected to the RLC layer, which is the upper layer, by a logical channel.
  • the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • TM Transparent Mode
  • UM Un-acknowledged Mode
  • AM Acknowledged Mode, Response mode
  • the AM RLC performs a retransmission function through an automatic repeat and request (ARQ) function for reliable data transmission.
  • ARQ automatic repeat and request
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size. This transmits only the necessary information in the header portion of the data, thereby increasing the transmission efficiency of the radio section.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection When there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection RRC connection
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED There are several cases in which the UE in RRC_IDLE state needs to establish an RRC connection. For example, when an uplink data transmission is necessary due to a user's call attempt, or when a paging message is received from E-UTRAN, Send a response message.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM Evolved Session Management
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID This is called EPS Bearer ID.
  • MLR maximum bit rate
  • GRR guaranteed bit rate
  • AMBR aggregated maximum bit rate
  • 5a is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE 10 to obtain UL synchronization or to allocate UL radio resources to the base station, that is, the eNodeB 20.
  • the UE 10 receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB 20.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • UE 10 transmits a randomly selected random access preamble to eNodeB 20.
  • the UE 10 selects one of the 64 candidate random access preambles. Then, the corresponding subframe is selected by the PRACH configuration index.
  • UE 10 transmits the selected random access preamble in the selected subframe.
  • the eNodeB 20 Upon receiving the random access preamble, the eNodeB 20 sends a random access response (RAR) to the UE 10.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE 10 detects a PDCCH masked with a random access-RNTI (RA-RNTI). The UE 10 receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC radio resource control
  • an RRC state is shown depending on whether RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE 10 is in a logical connection with an entity of the RRC layer of the eNodeB 20. If the RRC state is connected, the RRC state is connected. A state that is not connected is called an RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE 10.
  • the UE 10 in the idle state cannot be understood by the eNodeB 20, and is managed by a core network in units of a tracking area, which is a larger area than a cell.
  • the tracking area is a collection unit of cells. That is, the idle state UE (10) is identified only in the presence of a large area unit, in order to receive the normal mobile communication services such as voice or data, the terminal must transition to the connected state (connected state).
  • the UE 10 When the user first powers up the UE 10, the UE 10 first searches for a suitable cell and then remains in an idle state in that cell. When the UE 10 staying in the idle state needs to establish an RRC connection, the UE 10 establishes an RRC connection with the RRC layer of the eNodeB 20 through an RRC connection procedure and performs an RRC connection state ( connected state).
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or an uplink data transmission is necessary, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which the UE 10 sends an RRC connection request message to the eNodeB 20, and the eNodeB 20 transmits an RRC connection setup message to the UE 10. And a process in which the UE 10 sends an RRC connection setup complete message to the eNodeB 20. This process will be described in more detail with reference to FIG. 4B.
  • the UE 10 When the UE 10 in idle state attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to the paging of the eNodeB 20, the UE 10 first performs an RRC connection. A RRC connection request message is transmitted to the eNodeB 20.
  • the eNB 10 When the RRC connection request message is received from the UE 10, the eNB 10 accepts the RRC connection request of the UE 10 when the radio resources are sufficient, and establishes an RRC connection that is a response message (RRC connection). setup) message is transmitted to the UE 10.
  • RRC connection a response message
  • the UE 10 When the UE 10 receives the RRC connection setup message, the UE 10 transmits an RRC connection setup complete message to the eNodeB 20. When the UE 10 successfully transmits an RRC connection establishment message, the UE 10 establishes an RRC connection with the eNodeB 20 and transitions to the RRC connected mode.
  • 6A and 6B show an architecture for connecting a WLAN to an EPC.
  • FIG. 6A shows an architecture in which a WLAN is connected to a P-GW via an S2a interface.
  • a WLAN access network (particularly, in the case of the S2a interface, is a trusted WLAN access network because it is an interface that connects trusted non-3GPP access with the EPC) is connected to the P-GW via the S2a interface.
  • the structure of the Trusted WLAN Access Network (TWAN) will be referred to the contents described in TS 23.402.
  • FIG. 6B shows an architecture in which a WLAN is connected to a P-GW via an S2b interface.
  • the WLAN access network (in particular, the S2b interface is an untrusted WLAN access network because it is an interface that connects untrusted non-3GPP access with the EPC) is connected to the P-GW via the S2b interface. It is connected to the P-GW via an evolved packet data gateway (ePDG).
  • ePDG evolved packet data gateway
  • WLAN a trusted WLAN and an untrusted WLAN may be referred to as WLANs without distinction.
  • FIG. 7A is an exemplary diagram illustrating an example of IFOM technology.
  • the IFOM provides the same PDN connection through several different accesses at the same time. This IFOM provides a bypass to seamless WLAN.
  • IFOM also provides for passing the IP flow of the same PDN connection from one access to another.
  • FIG. 7B is an exemplary diagram illustrating an example of the MAPCON technology.
  • MAPCON technology is to connect multiple PDN connections, easily IP flows to other APNs through other access systems.
  • This MAPCON technology allows the UE 10 to create a new PDN connection on an access that was not previously used.
  • the UE 10 may create a new PDN connection in an optional one of several previously used accesses.
  • the UE 10 may transfer all or some of all PDN connections that are already connected to another access.
  • the operator In order to divert traffic to non-3GPP access, the operator provides a policy to the terminal, and the terminal may bypass its data to the wireless LAN according to the policy.
  • an access network discovery and selection function (ANDSF) based on 3GPP has been improved to provide a policy related to a wireless LAN.
  • 8A and 8B illustrate a network control entity for access network selection.
  • the ANDSF may be present in the home network of the UE 10 (hereinafter referred to as “HPLMN”). Also, as can be seen with reference to FIG. 8B, the ANDSF may also exist in a visited network of the UE 10 (hereinafter referred to as 'VPLMN'). As such, when located in the home network, it may be referred to as H-ANDSF 61, and may be called as V-ANDSF 62 when located in the visited network.
  • ANDSF 60 collectively refers to H-ANDSF 61 or V-ANDSF 62.
  • the ANDSF may provide information about an inter-system mobility policy, information for access network discovery, and information about inter-system routing, for example, a routing rule.
  • IFOM is performed by the UE's initiative decision and uses DSMIP (Dual Stack Mobile IP), which is a host-based mobility protocol.
  • DSMIP Direct Stack Mobile IP
  • NBIFOM Network Based IP Flow Mobility
  • an intermediate network node e.g., MME or SGSN
  • P-GW PDN Gateway
  • a method of processing ISR Idle mode Signaling Reduction
  • the step of checking whether the ISR deactivation condition is satisfied Locally deactivating the ISR when the ISR deactivation condition is satisfied, wherein the ISR deactivation condition is that both the UE and the Packet Data Network (PDN) gateway are NBIFOM (Network Based IP Flow Mobility).
  • ISR Interle mode Signaling Reduction
  • the terminal In case that the terminal is attached to the WLAN as an SCM (attachment) to the WLAN or located in the WLAN coverage, the terminal after the establishment of the PDN canon for the terminal established the existing tracking area (TA) or routing (RA) It may be a case of moving to another TA or RA out of an area) and a case in which the terminal is currently in an ISR activation state.
  • TA tracking area
  • RA routing
  • locally deactivating the ISR may include locally deactivating the ISR by changing a temporary identity used in next update (TIN) of at least one of a tracking area update (TAU) and a routing area update (RAU). It may include.
  • TIN temporary identity used in next update
  • TAU tracking area update
  • RAU routing area update
  • the step of checking whether the ISR deactivation condition is satisfied may be performed by the UE performing NBIFOM Capability Negotiation (NBIFOM Capability Negotiation) confirming NBIFOM capability with the PDN gateway. It may include checking whether both the UE and the PDN gateway support NBIFOM.
  • a method for processing Network Based IP Flow Mobility (NBIFOM) in the network entity that is in charge of the control plane in the mobile communication network NBIFOM request from the network node Receiving a Downlink Data Notification (DDN) message that includes information indicating that the message is due to; Transmitting a paging including information indicating that the terminal is due to the NBIFOM request; Receiving a service request including information indicating that the terminal is due to the NBIFOM request; If the network entity does not support the NBIFOM, it may include transmitting a denial of service to the terminal.
  • DDN Downlink Data Notification
  • the method may further include transmitting a DDN rejection message to the network node that includes information indicating that a service is not supported when the network entity does not support the NBIFOM.
  • the network node receives an update bearer request generated by the NBIFOM request from another network node, and when the DDN rejection message is received, sends the update bearer response including information indicating that the service is not supported. Can be sent to
  • the terminal for processing ISR (Idle mode Signaling Reduction) in a wireless communication system, the storage means for storing the ISR deactivation condition; A controller for determining whether the ISR deactivation condition is satisfied and locally deactivating the ISR when the ISR deactivation condition is satisfied, wherein the ISR deactivation condition includes: the terminal and a packet data network (PDN) gateway; Are all supporting Network Based IP Flow Mobility (NBIFOM), when the terminal is attached to the WLAN as an SCM or located in WLAN coverage, the terminal is established after the PDN is established for the terminal. This may be a case where the mobile station moves out of the existing tracking area or routing area and moves to another TA or RA, and the terminal is currently in an ISR activation state.
  • ISR Interference Signaling Reduction
  • the controller may locally deactivate the ISR by changing a temporary identity used in next update (TIN) of at least one of a tracking area update (TAU) and a routing area update (RAU).
  • TIN temporary identity used in next update
  • TAU tracking area update
  • RAU routing area update
  • the controller may perform NBIFOM Capability Negotiation (NBIFOM Capability Negotiation) confirming NBIFOM capability with each other in the PDN connection establishment process, so that both the UE and the PDN gateway support NBIFOM. It may be to check whether or not.
  • NBIFOM Capability Negotiation NBIFOM Capability Negotiation
  • a network entity in charge of a control plane in a mobile communication network provides a downlink data notification (DDN) message including information indicating that the network node is due to an NBIFOM request.
  • DDN downlink data notification
  • the controller may control the transceiver to transmit a DDN rejection message including information indicating that a service is not supported to the network node when the network entity does not support the NBIFOM.
  • 1 is a structural diagram of an evolved mobile communication network.
  • Figure 2 is an exemplary view showing the architecture of a general E-UTRAN and a general EPC.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a UE and an eNodeB.
  • FIG. 4 is another exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station.
  • 5a is a flowchart illustrating a random access procedure in 3GPP LTE.
  • RRC radio resource control
  • 6A and 6B show an architecture for connecting a WLAN to an EPC.
  • FIG. 7A is an exemplary diagram illustrating an example of an IFOM technique
  • FIG. 7B is an exemplary diagram illustrating an example of a MAPCON technique.
  • 8A and 8B illustrate a network control entity for access network selection.
  • FIG. 10 shows a UE initiated IP flow mobility process.
  • 11 shows a situation in which UTRAN and E-UTRAN are mixed.
  • FIG. 12 is a flowchart illustrating a flow of idle mode signaling reduction (ISR) for solving a problem situation illustrated in FIG. 11.
  • ISR idle mode signaling reduction
  • 13 is a signal flow diagram illustrating downlink data transmission when ISR is activated.
  • FIG. 16 illustrates a signaling reduction gain according to the first method during the second disclosure of the present specification.
  • FIG. 17 illustrates signaling gains when the local ISR deactivation scheme according to the first disclosure and the signaling reduction scheme through the DDN according to the second disclosure are applied together.
  • FIG. 18 is a block diagram illustrating a configuration of a UE 100 and an MME 510 according to an embodiment of the present invention.
  • the present invention is described based on the Universal Mobile Telecommunication System (UMTS) and the Evolved Packet Core (EPC), the present invention is not limited to such a communication system, but also to all communication systems and methods to which the technical spirit of the present invention can be applied. Can be applied.
  • UMTS Universal Mobile Telecommunication System
  • EPC Evolved Packet Core
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • a user equipment UE
  • the illustrated UE may be referred to in terms of terminal, mobile equipment (ME), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a PDA, a smart phone, a multimedia device, or a non-portable device such as a PC or a vehicle-mounted device.
  • GSM EDGE Radio Access Network An acronym for GSM EDGE Radio Access Network, and refers to a wireless access section connecting a core network and a terminal by GSM / EDGE.
  • UTRAN Abbreviation for Universal Terrestrial Radio Access Network, and refers to a wireless access section connecting a terminal and a core network of 3G mobile communication.
  • E-UTRAN Abbreviation for Evolved Universal Terrestrial Radio Access Network, and refers to a 4G mobile communication, that is, a wireless access section connecting a terminal to a LTE network.
  • UMTS stands for Universal Mobile Telecommunication System and means a core network of 3G mobile communication.
  • UE / MS means User Equipment / Mobile Station, terminal equipment.
  • EPS stands for Evolved Packet System and means a core network supporting a Long Term Evolution (LTE) network.
  • LTE Long Term Evolution
  • UMTS evolved network
  • PDN Public Data Network
  • PDN connection connection from the terminal to the PDN, that is, association (connection) between the terminal represented by the IP address and the PDN represented by the APN
  • PDN-GW Packet Data Network Gateway
  • Network node of EPS network that performs UE IP address allocation, Packet screening & filtering, Charging data collection
  • Serving GW Network node of EPS network performing Mobility anchor, Packet routing, Idle mode packet buffering, Triggering MME to page UE
  • PCRF Policy and Charging Rule Function
  • APN Access Point Name: A name of an access point managed in a network, which is provided to a UE. (Example) internet.mnc012.mcc345.gprs
  • Tunnel Endpoint Identifier End point ID of a tunnel established between nodes in a network, and is set for each section in bearer units of each UE.
  • NodeB A base station of a UMTS network, which is installed outdoors, and a cell coverage scale corresponds to a macro cell.
  • eNodeB A base station of an evolved packet system (EPS), which is installed outdoors, and a cell coverage size corresponds to a macro cell.
  • EPS evolved packet system
  • NodeB A term referring to NodeB and eNodeB.
  • MME Mobility Management Entity
  • a session is a channel for data transmission.
  • the unit may be a PDN, a bearer, or an IP flow unit.
  • the difference in each unit can be divided into the entire target network unit (APN or PDN unit), the QoS classification unit (Bearer unit), and the destination IP address unit as defined in 3GPP.
  • PDN connection (connection) A connection from the terminal to the PDN, that is, the association (connection) between the terminal represented by the IP address and the PDN represented by the APN.
  • UE Context Context information of UE used to manage UE in the network, ie Context Information composed of UE id, mobility (current location, etc.), session attributes (QoS, priority, etc.)
  • NAS Non-Access-Stratum: Upper stratum of the control plane (control plane) between the UE and the MME. Support mobility management, session management, IP address maintenance between UE and network
  • RAT Abbreviation for Radio Access Technology, which means GERAN, UTRAN, E-UTRAN and the like.
  • Local Operating Environment Information This is a set of implementation specific parameters which describe the local environment in which the UE is operating.
  • Presence Reporting Area This area is defined for the purpose of reporting the presence of the UE in the 3GPP packet domain due to policy control and / or charging reasons.
  • the presence reporting area consists of a neighboring or non-neighboring tracking area or a set of eNodeBs and / or cells.
  • ANDSF Access Network Discovery and Selection Function: Provides a policy that allows a terminal to discover and select available access on an operator basis as a network entity.
  • ISRP Inter-System Routing Policy
  • IFOM IP Flow Mobility
  • MAPCON Multi Access PDN Connectivity
  • NSWO non-seamless WLAN offload
  • IP Flow Mobility (IFOM) rule This rule prioritizes the access technology / access networks that should be used by the UE when it is able to route traffic that matches a particular IP traffic filter on a particular APN or any APN. It's a list. In addition, this rule may specify for which wireless access the traffic that matches a particular IP traffic filter on a particular APN or any APN is restricted.
  • IOM IP Flow Mobility
  • MAPCON Multi Access PDN Connectivity
  • This rule is a list of prioritized access technologies / access networks that should be used by the UE when it is possible to route PDN connections to a particular APN.
  • this rule may specify to which radio access the PDN connection to a particular APN should be restricted.
  • Non-seamless WLAN offload (NSWO) rule This rule specifies which traffic should be bypassed non-seamlessly to the WLAN or not.
  • ISMP Inter-System Mobility Policy
  • RAN rule Evaluates a RAN rule programmed in the UE with Radio Access Network (RAN) Assistance Parameters received from the network.
  • the RAN rule is also referred to as WLAN interworking supported by the RAN used without ANDSF ISRP / ISMP.
  • the AS (Access Stratum) layer of the UE carries the move-traffic-to-WLAN indication and WLAN identifier together to the upper layer of the UE. In this case, the UE selects the WLAN to move all offloadable PDN connections to the WLAN.
  • the access stratum (AS) layer of the UE delivers a move-traffic-from-WLAN indication to a higher layer of the UE.
  • the UE moves all PDN connections on the WLAN to 3GPP.
  • a detailed description of the RAN rule can be found with reference to 3GPP TS 23.401, TS 23.060, TS 23.402, TS 36.300, TS 36.304, TS 36.331, TS 25.304 and TS 25.331.
  • Multi-access PDN connection A PDN connection in which traffic can be routed through 3GPP access and / or WLAN access. Each IP flow is only routed through one accessor at a time.
  • NBIFOM One of the main operations of NBIFOM is a process of installing a routing rule between the UE and a P-GW (PDN Gateway).
  • a UE or P-GW
  • the PGW or UE
  • the PGW sends an acknowledgment / reject to it as a response message.
  • the NBIFOM procedure is divided into UE initiated and Network initiated NBIFOM procedures according to the initiated entity.
  • a network initiated IP flow mobility process may be performed as follows.
  • UE 100 attaches to PDN GW 530 via E-UTRAN and TWAN (Trusted WLAN Access Network) simultaneously.
  • E-UTRAN E-UTRAN
  • TWAN Trusted WLAN Access Network
  • PCRF 550b determines to update the routing rule.
  • the PCRF 550a, 550b sends a Policy and Charging Rules Provision message including the routing rule to the PDN GW 530.
  • the PDN GW 530 sends an S-GW 520 an Update Bearer Request or Update Notification (as specified in RFC 7077) that includes the new routing rule.
  • the S-GW 520 forwards this information to the MME 510 via an update bearer request.
  • the MME 510 sends the routing rule to the UE 100 via NAS signaling.
  • the UE determines whether to accept or reject the routing rule.
  • the UE 100 sends the approved routing rule to the MME 510 via NAS signaling.
  • the MME 510 returns an Update Bearer Response message to the S-GW 520.
  • the message includes a routing rule approved by the UE 100.
  • the MME 510 communicates the information to the S-GW 520 via an Update Bearer Response / Update Notification Acknowledgment (as specified in RFC 7077).
  • FIG. 10 shows a UE initiated IP flow mobility process.
  • the UE initiated IP flow mobility process may be performed as follows.
  • UE 100 simultaneously connects to 3GPP or non-3GPP accesses and establishes multiple IP flows of the same PDN connection.
  • the UE 100 sends a Bearer Resource Modification (Request Bearer Resource Modification) message including a routing rule requested by the UE 100 to the eNodeB 200.
  • Bearer Resource Modification Request Bearer Resource Modification
  • the eNodeB 200 sends a Bearer Resource Command message including the routing rule to the MME 510.
  • the MME 510 transmits the routing rule to the PDN GW 530 through the S-GW 520.
  • the PDN GW 530 initiates the IP_CAN modification process and provides the routing rules to the PCRFs 550a and 550b.
  • the PDN GW 530 performs a dedicated bearer activation procedure or bearer modification procedure to confirm the routing rule, as described in TS 23.401.
  • 11 shows a situation in which UTRAN and E-UTRAN are mixed.
  • an eNodeB of an E-UTRAN may be located in an area where a NodeB of the UTRAN (ie, a third generation radio access network) exists.
  • the illustrated Tracking Area Identity (TAI) list indicates an area where E-UTRAN provides a service as an E-UTRAN location registration unit and includes cells of one or more eNodeBs.
  • TAI Tracking Area Identity
  • routing area indicates an area where the UTRAN provides a service as a UTRAN location registration unit and includes one or more NodeB cells.
  • the illustrated UE 100 is located at the boundary between the E-UTRAN and the UTRAN, and can camp on any one.
  • camping on means that the UE 100 accesses a cell after completing a cell selection procedure or a cell reselection procedure.
  • the location registration is performed by the MME 510, while the UE 100 camps on the UTRAN cell.
  • location registration is performed by a Serving General Packet Radio Service Support Node (SGSN) 420.
  • SGSN Serving General Packet Radio Service Support Node
  • the location registration procedure may be continued, thereby causing waste of network resources.
  • FIG. 12 is a flowchart illustrating a flow of idle mode signaling reduction (ISR) for solving a problem situation illustrated in FIG. 11.
  • ISR idle mode signaling reduction
  • ISR Interle mode Signaling Reduction
  • the ISR scheme enables the UE 100 to not perform location registration from a later location when the UE 100 has already registered a location by traveling between the E-UTRAN and the UTRAN once in an idle mode. Specifically, it is as follows.
  • the UE 100 may contact the MME 510. Send an Attach Request message.
  • the MME 510 sends an update location request message to the HSS 540 to inform the attach of the UE 100.
  • the HSS 540 stores an ID of the MME 510 attached by the UE 100, and the HSS 540 sends an update location acknowledgment message containing subscriber information. Send to MME 510 to respond. The MME 510 sends an attach accept message to the UE 100. Through this, the UE 100 completes the attachment procedure to the MME 510 of the E-UTRAN cell that is currently camping on, and also registers the location of the UE 100 to the HSS 540.
  • the UE 100 moves in the E-UTRAN cell and moves to the coverage area of the UTRAN cell. At this time, the UE 100 reselects the UTRAN. Therefore, the UE 100 must register its location by performing a Routing Area Update (RAU) procedure on the UTRAN.
  • RAU Routing Area Update
  • the UE 100 sends a RAU Request message to the SGSN 420 to perform location registration with the HSS 540 through the Serving General Packet Radio Service Support Node (SGSN) 420.
  • the SGSN 420 recognizes from the RAU request message that the UE 100 previously registered location with the MME 510. Accordingly, the SGSN 420 sends a context request message to the MME 510 to obtain a context for the UE 100 from the MME 510 to which the UE 100 has registered a location.
  • SGSN Serving General Packet Radio Service Support Node
  • the MME 510 sends a context response message containing the context for the UE 100 to the SGSN 420 in response to the context request message sent by the SGSN 420.
  • the MME 510 notifies the SGSN 420 that the MME 510 itself can support the ISR function by including the 'ISR capability' or 'ISR Supported' parameter in the context response message.
  • the context information about the UE 100 included in the context response message typically includes MM (Mobility Management) context information and EPS PDN connection information of the UE.
  • the EPS PDN Connection information includes bearer context information.
  • the MME 510 may include context information for the UE 100 to be included in the context response message based on the MM context and EPS bearer context information of the UE 100 maintained by the MME 510. Set.
  • the SGSN 420 determines whether to activate ISR for the UE 100.
  • the SGSN 420 analyzes or confirms the 'ISR capability' or ISR Supported 'parameter of the context response message (Context Response) received from the MME 510 to confirm that the MME 510 supports the ISR function. Can be.
  • the SGSN 420 also supports the ISR function, so the SGSN 420 determines to activate the ISR.
  • the SGSN 420 determines to activate the ISR function. Accordingly, the SGSN 420 sends a context acknowledgment message to the MME 510 as a response to the context response message sent by the MME 510.
  • the context confirmation message includes the parameter 'ISR Activated' to inform the MME 510 that the ISR function is activated for the UE 100.
  • the SGSN 420 and the MME 510 store mutual IDs.
  • the MME 510 that receives a context acknowledgment (Context Ack) message including the 'ISR Activated' parameter from the SGSN 420 maintains the context for the UE 100.
  • Context Ack context acknowledgment
  • the SGSN 420 sends an Update Location Request message to inform the HSS 540 of the location registration of the UE 100.
  • the HSS 540 stores an ID of the SGSN 420 in which the UE 100 performs the RAU, and confirms an update location including the subscriber information of the UE 100 in the SGSN 420. ) Respond by sending a message.
  • the SGSN 420 sends a RAU Accept message to the UE 100.
  • the RAU acceptance includes the 'ISR Activated' parameter to inform the UE 100 that the ISR function is activated.
  • the location of the terminal is registered through the attachment procedure and the RAU procedure, and the ISR is activated because the MME 510 and the SGSN 420 support the ISR function.
  • the UE 100 moves back from the UTRAN to the E-UTRAN, even if the E-UTRAN cell is reselected, since the ISR is currently active, the UE 100 registers the location with the MME 510. You do not have to do it.
  • the UE 100 does not leave the routing area (RA) registered through the SGSN 420 and the tracking area identity (TA) registered through the MME 540, as long as it does not leave the network. There is no need to perform location registration again.
  • This feature is called ISR.
  • a routing area (RA) registered by the UE 100 through the SGSN 420 and a tracking area identity (TAI) list registered through the MME 510 are referred to as an ISR area.
  • the ISR function can reduce waste of network resources by eliminating the repetitive location registration procedure when the UE frequently moves between the E-UTRAN and the UTRAN / GERAN.
  • the S-GW receives a data or signaling message from the P-GW If received, the UE knows that ISR is active and sends a DDN message to both MME / SGSN.
  • MT Mobile Terminating
  • the MME / SGSN receiving the DDN message makes a paging request to each of the eNodeB / RNC. After the UE receives the paging in the cell to which it belongs, the UE responds to the paging with the service request.
  • the MME informs the S-GW that the UE is in the E-UTRAN network through a bearer change request.
  • the S-GW sends a stop paging indication to the SGSN after the UE knows that the UE is in the E-UTRAN network, and the SGSN receives the paging to stop paging.
  • SGSN informs the S-GW that the UE is in the UTRAN / GERAN network by requesting a bearer change, and the S-GW sends a stop paging indication to the MME.
  • the downlink data transfer process when the ISR is activated is as follows.
  • 13 is a signal flow diagram illustrating downlink data transmission when ISR is activated.
  • FIG. 13 assumes that ISR (Idle mode Signaling Reduction) is activated.
  • FIG. 13 shows how downlink data is transmitted to a UE in idle mode (or ECM_IDLE state) when ISR is activated.
  • the UE 100 will be described centering on a state where the E-UTRAN cell is camped on.
  • the Serving Gateway (Serving GW: hereinafter referred to as 'S-GW') 520 receives the downlink data packet for the UE 100 via the P-GW 530.
  • the S-GW 50 buffers a downlink data packet and serves a mobility management node or a mobility management entity (MME) serving a UE 100 that is a receiver of the downlink data packet. identify the mobility management entity.
  • MME mobility management entity
  • the S-GW 520 After the identification procedure of the S-GW 520, after confirming that the ISR is activated for the UE 100, the mobility management node, that is, the MME 510 and the SGSN 410, both of the UE ( Identify that it is servicing 100). Therefore, the S-GW 520 must make a paging request to both the MME 510 and the SGSN 410 serving the UE 100.
  • the S-GW 520 sends a downlink data notification message (DDN) to the MME 510 and the SGSN 410, respectively.
  • DDN downlink data notification message
  • each of the MME 510 and SGSN 410 sends a downlink data notification acknowledgment message (DDN ACK) to the S-GW 520. send.
  • DDN ACK downlink data notification acknowledgment message
  • each of the MME 510 and the SGSN 410 sends a paging message to the UE 100 through its network.
  • the MME 510 sends a paging message to each of the eNodeBs 200 belonging to the tracking area (s) registered by the UE 100 (2a). Meanwhile, SGSN 410 sends a paging message to RNC / BSC 300 (2b).
  • the terminal 100 sets up a user plane as a path via the E-UTRAN by performing a service request procedure.
  • the S-GW 520 transmits stop paging for each of the MME 510 and SGSN 410.
  • the S-GW 520 then transmits downlink data to the UE 100 via the E-UTRAN (ie, via the eNodeB 200).
  • Step 4b the UE 100 is paging via the UTRAN / GERAN (ie, 3b described above) ⁇ Step 4b). Then, if the user plane of step 5 described above is set, downlink data is transmitted from the S-GW 520 via UTRAN / GERAN (that is, through the RNC / BSC 300 and NodeB (not shown)). 100).
  • the network manages the location of the UE in units of an ISR, thereby paging to the ISR region in order to transmit downlink data to the UE 100 in an idle mode. do.
  • WLAN connection modes supported by TWAN connecting to WLAN through S2a interface include SCM (Single-Connection Mode) and MCM (Multi-Connection Mode).
  • SCM can operate using the existing WLAN-AP as it is, but can support only one connection / connection.
  • MCM must support WLCP (WLANP) in addition to existing WLAN-AP, and UE must also support WLCP. But it has the advantage of supporting multiple connections / connections at the same time.
  • WLANP WLANCP
  • NBIFOM can forward routing rules to the UE through WLCP in WLAN MCM, but SCM has not yet presented a way to forward routing rules.
  • SCM has not yet presented a way to forward routing rules.
  • NBIFOM forwards through 3GPP network and extended EAP protocol (extended). A method of delivering routing rules using the EAP protocol is under discussion.
  • the TWAN and / or the UE does not support the MCM or the UE is not yet connected to the WLAN (i.e., connected only to 3GPP access) or other circumstances for which routing rules cannot be sent to the WLAN. Suggest an action.
  • the routing rule that the P-GW intends to transmit to the UE may be for changing an IP flow (s) from WLAN to 3GPP access, or vice versa to change from 3GPP access to WLAN.
  • a network (usually a P-GW) checks whether a UE, a serving network node (eg, MME or SGSN), and S-GW support NBIFOM.
  • a serving network node eg, MME or SGSN
  • S-GW support NBIFOM
  • the P-GW supports NBIFOM. This process is called a NBIFOM capability discovery / negotiation process.
  • the UE When the UE makes a PDN connection / connection request (PDN connection request), it informs the Protocol Configuration Option (PCO) whether NBIFOM is supported, and the P-GW also informs the UE whether the NBIFOM is supported by the PCO through the above check.
  • PDN connection request PDN connection request
  • PCO Protocol Configuration Option
  • the MME / SGSN / S-GW may inform the P-GW whether the NBIFOM is supported by the UE during the PDN connection request process.
  • the NBIFOM capability discovery / negotiation is made when a PDN connection is made. Therefore, when the serving node (eg, MME / SGSN) is changed due to mobility of the UE, a situation in which the serving node supports NBIFOM in the P-GW may send a NBIFOM request.
  • the serving node eg, MME / SGSN
  • the UE attaches to the E-UTRAN access and then leaves the E-UTRAN to become an ISR activated state through a Routing Area Update (RAU) process in the UTRAN.
  • RAU Routing Area Update
  • the UE initially performs a PDN connection request at the time of attachment in the E-UTRAN. At this time, the UE informs the network that it supports NBIFOM, and the MME and S-GW also inform the P-GW that they support NBIFOM. This allows the P-GW to enable NBIFOM.
  • the UE additionally makes a PDN connection to the WLAN to receive services such as video streaming.
  • the MME supports NBIFOM, but SGSN does not support NBIFOM. This means that the SGSN cannot carry the NBIFOM request transmitted by the P-GW to the UE.
  • the WLAN operates in SCM mode and cannot send an NBIFOM request to the WLAN, thus sending a routing rule through 3GPP access.
  • the UE i.e., MME and SGSN
  • MME and SGSN serving nodes serving the UE
  • NBIFOM a service request for NBIFOM to switch to connected mode and wastes power by performing unnecessary operations.
  • the network can also put unnecessary load on the network by performing unnecessary signaling.
  • the P-GW 530 when the P-GW 530 receives a request to change a routing rule from the PCRF 550, the P-GW 530 transmits an Update bearer request message to the UE 100 for an NBIFOM request.
  • the S-GW 520 Upon receiving this, the S-GW 520 knows that the UE 100 is in an activated ISR state and transmits a downlink data notification (DDN) message to both the MME 510a / SGSN 510b.
  • DDN downlink data notification
  • MME (510a) / SGSN (510b) receives the paging to the UE (100).
  • the UE 100 is in the UTRAN network, listens to paging, and sends a service request to the SGSN 510b.
  • the SGSN 510b receives the resource allocation in the radio section and sets the UE 100 to the connected mode, and then sends a bearer change request to the S-GW 520.
  • the S-GW 520 that receives the bearer change request to the SGSN 510b knows that the UE 100 is connected to the UTRAN network and sends a stop paging indication to the MME 510a, and the MME 510a sends a stop paging indication. You will receive this and will stop paging.
  • the S-GW 520 performs a bearer change request / response procedure with the P-GW 530 and then transmits an update bearer request that has been buffered to the SGSN 510b. do.
  • the SGSN 510b that received the update bearer request could not interpret the message as it was an NBIFOM request and sent an update bearer response, Cause IE, the cause information, as "Service not supported” to send the request. I will refuse.
  • the S-GW 520 receives the update bearer response and transmits Cause IE, which is the cause information, to the P-GW 530 as "Service not supported".
  • the disclosures herein propose a mechanism for reducing signaling caused by NBIFOM requests when the UE is in ISR mode.
  • the disclosures herein describe how to prevent paging of both UTRAN / E-UTRAN through local ISR deactivation when the UE satisfies the condition that the NBIFOM request occurs in the P-GW and the DDN message.
  • the S-GW 520 informs that the data buffered is an NBIFOM request, and proposes a method of not performing a service request when the MME / SGSN does not support NBIFOM. Each operation may be performed independently or may be performed together.
  • the first of the disclosures proposes a signaling reduction scheme through local ISR deactivation
  • the second of the disclosures of the disclosure proposes a signaling reduction scheme through DDN.
  • the first disclosure of the present specification provides a method for reducing signaling through local ISR deactivation as follows.
  • ISR is a method for reducing signaling when inter-RAT cell reselection is performed.
  • the ISR activation is determined by the network and the RAU / Tracking Area Update (RAU) acknowledgment (ACK) message indicates whether to activate the ISR.
  • RAU Tracking Area Update
  • ACK acknowledgment
  • the UE 100 When the ISR is activated, the UE 100 does not need to perform the RAU / TAU if it is in the tracking area and the routing area where the location registration has already been performed even if the RAT is changed.
  • the UE 100 does not know which access (ie, whether it is in E-UTRAN or in UTRAN / GERAN), and if there is incoming (MT) data, the S-GW 520 may determine the MME ( 510a) / SGSN 510b both request paging to receive a response from the UE.
  • the UE 100 may deactivate the ISR locally without signaling with the network by changing the Temporary Identity used in Next update (TIN) value in the TAU / RAU under certain conditions.
  • TIN Temporary Identity used in Next update
  • the UE 100 may deactivate the ISR by changing the TIN value of the TAU / RAU in the following procedure.
  • the procedure to be performed may be performed in the following order.
  • the UE 100 performs NBIFOM capability negotiation during a PDN connection establishment to confirm that both the UE 100 and the P-GW 530 support NBIFOM.
  • the UE 100 checks whether the UE 100 moves out of a tracking area (TA) / routing area (RA) where a PDN connection is established and moves to another TA / RA.
  • TA tracking area
  • RA routing area
  • the UE 100 performs local ISR deactivation.
  • the terminal UE 100 may check whether the ISR deactivation condition is satisfied and, if the ISR deactivation condition is satisfied, locally deactivate the ISR.
  • the ISR deactivation condition if the terminal and the PDN (Packet Data Network) gateway (P-GW, 530) both support NBIFOM (Network Based IP Flow Mobility), the terminal is attached to the WLAN to the SCM (Attach) or located in WLAN coverage, when the terminal moves out of the existing tracking area (TA) or routing area (TA) to another TA or RA after the PDN is established for the terminal and This may mean a case where the UE is currently in an ISR activation state.
  • PDN Packet Data Network gateway
  • the deactivation of the local ISR may be performed by changing the TIN of at least one of the TAU and the RAU.
  • the terminal in the process of establishing a PDN connection, whether the terminal and the PDN gateway both support the NBIFOM by performing the NBIFOM capability negotiation to confirm the NBIFOM capability (Capability) with the PDN gateway. You can check.
  • 'NBIFOM capability negotiation' may mean a process in which the UE and the P-GW confirm each other's NBIFOM capability.
  • the NBIFOM capability negotiation process is performed while the PDN establishment process is performed.
  • the PGW supports NBIFOM and checks and responds to the NBIFOM capability.
  • PCO Protocol Configuration Option
  • intermediate nodes eg, MME, SGW, SGSN, TWAG, etc.
  • MME Mobility Management Entity
  • SGW Serving Gateway
  • SGSN Serving Gateway
  • TWAG TWAG
  • an existing process needs to be changed and intermediate nodes must support them.
  • steps 3a, 4a, and 6a of FIG. 15 may be signaling, which is substantially reduced.
  • a process of checking whether ISR is supported through signaling between MME 510a / SGSN 510b is performed.
  • the MME 510a / SGSN 510b knows whether they support NBIFOM
  • the MME 510a / SGSN 510b checks each other's NBIFOM capabilities through signaling between the MME 510a / SGSN 510b and according to the NBIFOM capability. It may be determined whether to allow ISR activation of the UE.
  • the MME 510a / SGSN 510b indicates whether NBIFOM is supported in the context request message, and the node receiving the context request sets an ISR supported indication as follows.
  • the second disclosure of the present specification provides a method for reducing signaling through DDN as follows.
  • the S-GW 520 When the S-GW 520 receives the NBIFOM request from the P-GW 530, and sends the DDN message to the MME 510a / SGSN 510b when the UE is ISR activated. At this time, the DDN message is sent with the information that occurred due to the NBIFOM request of the P-GW (530). This can be implemented, for example, by marking or marking 'NBIFOM triggered' using the 'private extension field' of the DDN.
  • the signaling scheme via DDN may be divided into a first scheme and a second scheme as follows.
  • the MME 510a / SGSN 510b that has received the DDN finds the UE 100 through paging, and the MME 510a / SGSN 510b that has received the service request from the UE 100 has its own. If the NBIFOM is supported, the service request procedure is performed. If the NBIFOM is not supported, the UE 100 transmits a child through a service reject (Cause # 97: Message type non-existent or not implemented). Maintain Idle) mode.
  • a service reject Create # 97: Message type non-existent or not implemented. Maintain Idle
  • the MME 510a / SGSN 510b sets the cause information (Cause Information Element (IE)) as 'Service not supported' and sends a DDN Failure message to the S-GW 520.
  • S-GW 520 updates the bearer response with the cause information (Cause IE) as 'Service not supported' in response to the NBIFOM request of the P-GW 530.
  • Send In this case, the P-GW 530 knows that the MME 510a / SGSN 510b does not support NBIFOM and no longer sends an NBIFOM request.
  • FIG. 16 illustrates a signaling reduction gain according to the first method during the second disclosure of the present specification.
  • the S-GW 520 when the S-GW 520 receives an update bearer request for an NBIFOM request, the S-GW 520 marks or marks 'NBIFOM triggered' in a 'private extension field' of the DDN message to display a DDN message.
  • MME 510a / SGSN 510b To MME 510a / SGSN 510b.
  • the DDN message may include information indicating that the DDN message is due to the NBIFOM request (eg, 'NBIFOM triggered' information marked in the 'private extension field').
  • the MME 510a / SGSN 510b receiving the paging performs paging.
  • 'NBIFOM triggered' is also marked and sent to the paging message.
  • the paging message may also include information indicating that the paging message is due to the NBIFOM request (eg, 'NBIFOM triggered').
  • the UE 100 is in the UTRAN network, listens to paging, and sends a service request.
  • the UE 100 may indicate that the service request is a response to the request or triggered paging (NBIFOM triggered paging) by the NBIFOM. Mark and send NBIFOM triggered '.
  • the SGSN 510b receiving the service request knows that the service request is triggered by the NBIFOM request, the SGSN 510b does not support the NBIFOM and thus receives the service information of the UE 100 as the cause information (for example, cause value # 97).
  • Reject (Step 5a of FIG. 16) as 'Message type non-existent or not implemented' and cause information (Cause IE) to the S-GW 520.
  • the S-GW 520 receives the stop paging indication to the MME 510a since the UE 100 responds to the paging of the SGSN 510b but may determine that the SGSN 510b does not support NBIFOM. To stop paging.
  • the S-GW 520 sets the cause information (Cause IE) as 'Service not supported', thereby updating the update bearer response ( If the P-GW 530 sends an update bearer response, the P-GW 530 does not support the NBIFOM in the MME 510a / SGSN 510b.
  • the P-GW 530 no longer sends an NBIFOM request.
  • the signaling reduction through the DDN according to the first scheme is performed by the steps 'S1-AP: Initial Context setup request', 'Radio Bearer Establishment' and the like as shown in FIG. 'S1-AP: Initial Context setup Complete' and steps 7 to 11 (update bearer response) may be signaling to substantially reduce.
  • a network entity eg, MME 510a / SGSN 510b requests NBIFOM from a network node (eg, S-GW 520).
  • a network node eg, S-GW 520.
  • DDN Downlink Data Notification
  • a paging including information indicating that the NBIFOM request is due to the UE and indicates that the NBIFOM request is received from the terminal. If a service request including information is received and the network entity does not support the NBIFOM, signaling may be reduced by transmitting a denial of service to the terminal.
  • the network entity may transmit a DDN rejection message to the network node that includes information indicating that a service is not supported.
  • the network node receives an update bearer request generated by the NBIFOM request from another network node (for example, P-GW 530), and if the DDN rejection message is received, the service is not supported. And may send an update bearer response to the other network node that includes the information.
  • another network node for example, P-GW 530
  • the network entity when the network entity receives a context request message from another network entity and the network entity does not support NBIFOM, the network entity indicates whether or not ISR is supported in response to the context request.
  • the ISR Supported 'parameter may be set to not supported regardless of whether the network entity supports ISR, and the context response may be transmitted.
  • the network node may transmit the DDN message including information indicating that the request is due to an NBIFOM request to the network entity.
  • PDN Packet Data Network
  • the MME 510a or SGSN 510b receiving the DDN does not support NBIFOM, it notifies the NDN that it does not support NBIFOM in response to the DDN (additionally, it will not perform paging).
  • Information (cause information: cause IE) is transmitted to the S-GW 520.
  • the MME 510a or SGSN 510b may set and transmit cause information (cause IE) informing the information while sending a DDN acknowledgment message to the S-GW 520. .
  • cause information cause IE
  • the MME 510a or SGSN 510b that does not support the NBIFOM does not perform paging.
  • DDN DDN Rejection Indication
  • a serving node that is, a serving node that supports NBIFOM
  • the S-GW 520 receives the DDN. It can be inferred that it is located in the RAT of the serving node that does not currently support NBIFOM.
  • the S-GW 520 updates the bearer response with the cause information (Cause IE) as 'Service not supported' in response to the NBIFOM request of the P-GW 530. Send)
  • the P-GW 530 knows that the MME 510a / SGSN 510b does not support NBIFOM and no longer sends an NBIFOM request.
  • FIG. 17 illustrates signaling gains when the local ISR deactivation scheme according to the first disclosure and the signaling reduction scheme through the DDN according to the second disclosure are applied together.
  • the network end determines the NBIFOM request without ending up to the UE 100.
  • the steps 3a, 4a, 4b, 5, 6a, 7, 8, 9, 10 and 11 can be signaling which is actually reduced.
  • FIG. 18 is a block diagram illustrating a configuration of a UE 100 and an MME 510 according to an embodiment of the present invention.
  • the UE 100 includes a storage means 102, a processor 101, and a transceiver 103.
  • the MME 510 includes a storage means 512, a processor 511, and a transceiver 513.
  • the storage means 102, 512 store the method described above.
  • the processors 101 and 511 control the storage means 102 and 512 and the transceivers 103 and 513. Specifically, the controllers 101 and 511 execute the methods stored in the storage means 102 and 512, respectively. The processors 101 and 511 transmit the aforementioned signals through the transceivers 103 and 513.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A disclosure of the present specification provides a method for efficiently processing a signal in an idle mode signaling reduction (ISR) activated state in network based IP flow mobility (NBIFOM). The method, which is a method for processing idle mode signaling reduction (ISR) by a terminal in a wireless communication system, may comprise the steps of: checking whether an ISR deactivation condition has been satisfied; and locally deactivating the ISR when the ISR deactivation condition has been satisfied, wherein the ISR deactivation condition includes a case in which both the terminal and a packet data network (PDN) gateway support network based IP flow mobility (NBIFOM), a case in which the terminal is attached to a WLAN by SCM or is located in the coverage of a WLAN, a case in which a PDN connection to the terminal is established and then the terminal departs from the existing tracking area (TA) or routing area (RA) and moves to another TA or another RA, and a case in which the terminal is currently in an ISR activated state.

Description

[규칙 제26조에 의한 보정 07.09.2015] NBIFOM에서 ISR 활성화 상태 상에서의 효율적인 신호 처리 방법[Revision by Rule 26 07.09.2015] Efficient Signal Processing Method in ISR Enabled State in NBIFOM
본 명세서는 이동통신에 관한 것이다.The present disclosure relates to mobile communication.
이동통신 시스템의 기술 규격을 제정하는 3GPP에서는 4세대 이동통신과 관련된 여러 포럼들 및 새로운 기술에 대응하기 위하여, 2004년 말경부터 3GPP 기술들의 성능을 최적화 시키고 향상시키려는 노력의 일환으로 LTE/SAE (Long Term Evolution/System Architecture Evolution) 기술에 대한 연구를 시작하였다. The 3GPP, which enacts the technical specifications of the mobile communication system, has been trying to optimize and improve the performance of 3GPP technologies since late 2004 in order to respond to various forums and new technologies related to 4G mobile communication. Started research on Term Evolution / System Architecture Evolution technology.
3GPP SA WG2을 중심으로 진행된 SAE는 3GPP TSG RAN의 LTE 작업과 병행하여 네트워크의 구조를 결정하고 이 기종 망간의 이동성을 지원하는 것을 목적으로 하는 망 기술에 관한 연구이며, 최근 3GPP의 중요한 표준화 이슈들 중 하나이다. 이는 3GPP 시스템을 IP 기반으로 하여 다양한 무선 접속 기술들을 지원하는 시스템으로 발전 시키기 위한 작업으로, 보다 향상된 데이터 전송 능력으로 전송 지연을 최소화 하는, 최적화된 패킷 기반 시스템을 목표로 작업이 진행되어 왔다.SAE, centered on 3GPP SA WG2, is a study on network technology aimed at determining network structure and supporting mobility between heterogeneous networks in parallel with LTE work of 3GPP TSG RAN. Recent important standardization issues of 3GPP Is one of. This is a work to develop a 3GPP system into a system supporting various radio access technologies based on IP, and has been aimed at an optimized packet-based system that minimizes transmission delay with improved data transmission capability.
3GPP SA WG2에서 정의한 EPS (Evolved Packet System) 상위 수준 참조 모델(reference model)은 비로밍 케이스(non-roaming case) 및 다양한 시나리오의 로밍 케이스(roaming case)를 포함하고 있으며, 상세 내용은 3GPP 표준문서 TS 23.401과 TS 23.402에서 참조할 수 있다. 도 1의 네트워크 구조도는 이를 간략하게 재구성 한 것이다.The Evolved Packet System (EPS) high-level reference model defined by 3GPP SA WG2 includes non-roaming cases and roaming cases in various scenarios. See TS 23.401 and TS 23.402. The network structure diagram of FIG. 1 is a simple reconfiguration.
도 1은 진화된 이동 통신 네트워크의 구조도이다.1 is a structural diagram of an evolved mobile communication network.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, S-GW(Serving Gateway)(52), PDN GW(Packet Data Network Gateway)(53), MME(Mobility Management Entity) (51), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.The EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (S-GW) 52, a PDN Packet Data Network Gateway (GW) 53, and a Mobility Management Entity (MME). 51, a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG).
S-GW(52)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB(22)와 PDN GW(53) 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말(또는 User Equipment : UE)이 eNodeB(22)에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, S-GW(52)는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 S-GW(52)를 통해서 패킷들이 라우팅될 수 있다. 또한, S-GW(52)는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.The S-GW 52 acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB 22 and the PDN GW 53. In addition, when the terminal (or user equipment: UE) moves over the area served by the eNodeB 22, the S-GW 52 serves as a local mobility anchor point. That is, packets may be routed through the S-GW 52 for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later). In addition, the S-GW 52 may be connected to other 3GPP networks (RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
PDN GW(또는 P-GW) (53)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW(53)는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.PDN GW (or P-GW) 53 corresponds to the termination point of the data interface towards the packet data network. The PDN GW 53 may support policy enforcement features, packet filtering, charging support, and the like. In addition, mobility management between 3GPP networks and non-3GPP networks (for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
도 1의 네트워크 구조의 예시에서는 S-GW(52)와 PDN GW(53)가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.Although the example of the network structure of FIG. 1 shows that the S-GW 52 and the PDN GW 53 are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option. have.
MME(51)는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME(51)는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME(51)는 수많은 eNodeB(22)들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME(51)는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.The MME 51 is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. . The MME 51 controls control plane functions related to subscriber and session management. The MME 51 manages a number of eNodeBs 22 and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks. In addition, the MME 51 performs security procedures, terminal-to-network session handling, idle terminal location management, and the like.
SGSN은 다른 접속 3GPP 네트워크(예를 들어, GPRS 네트워크, UTRAN/GERAN)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.The SGSN handles all packet data, such as user's mobility management and authentication to other connecting 3GPP networks (e.g., GPRS networks, UTRAN / GERAN).
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.The ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말(또는 UE)은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.As described with reference to FIG. 1, a terminal (or UE) having IP capability is provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. Access to an IP service network (eg, IMS).
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.1 illustrates various reference points (eg, S1-U, S1-MME, etc.). In the 3GPP system, a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point. Table 1 below summarizes the reference points shown in FIG. 1. In addition to the examples of Table 1, there may be various reference points according to the network structure.
표 1
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 평면 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 평면 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(Idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in Idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 평면 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 평면 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. UE 이동성으로 인해, 그리고 요구되는 PDN 커넥션성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
Table 1
Reference point Explanation
S1-MME Reference point for the control plane protocol between E-UTRAN and MME
S1-U Reference point between E-UTRAN and Serving GW for the per bearer user plane tunneling and inter eNodeB path switching during handover
S3 Reference point between MME and SGSN that provides user and bearer information exchange for mobility between 3GPP access networks in idle and / or active state. This reference point can be used within PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handover). (It enables user and bearer information exchange for inter 3GPP access network mobility in Idle and / or active state. This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
S4 Reference point between SGW and SGSN that provides relevant control and mobility support between the GPRS core and SGW's 3GPP anchor functionality. It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW.In addition, if Direct Tunnel is not established, it provides the user plane tunneling .)
S5 Reference point providing user plane tunneling and tunnel management between the SGW and PDN GW. It is used for SGW relocation because of UE mobility and for connections to the PDN GW where the SGW is not co-located for the required PDN connectivity.It provides user plane tunneling and tunnel management between Serving GW and PDN GW. used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 Reference point between MME and SGW
SGi Reference point between the PDN GW and the PDN. The PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services. It is the reference point between the PDN GW and the packet data network.Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.)
도 2는 일반적으로 E-UTRAN과 일반적인 EPC의 주요 노드의 기능을 나타낸 예시도이다.Figure 2 is an exemplary view showing the functions of the main nodes of the E-UTRAN and the general EPC in general.
도시된 바와 같이, eNodeB(20)는 RRC 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 상향링크 및 하향 링크에서의 자원을 UE에게 동적 할당, eNodeB(20)의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, EPS 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다. As shown, the eNodeB 20 is responsible for routing to the gateway, scheduling and sending paging messages, scheduling and sending broadcaster channels (BCHs), and uplink and downlink resources while the RRC connection is active. Function for dynamic allocation, configuration and provision for measurement of the eNodeB 20, radio bearer control, radio admission control, and connection mobility control. Within the EPC, paging can occur, LTE_IDLE state management, user planes can perform encryption, EPS bearer control, NAS signaling encryption and integrity protection.
도 3는 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a UE and an eNodeB, and FIG. 4 is a structure of a radio interface protocol in a user plane between a terminal and a base station. Another example is shown.
상기 무선인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling)전달을 위한 제어평면(Control Plane)으로 구분된다. The radio interface protocol is based on the 3GPP radio access network standard. The air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
상기 프로토콜 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.The protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다. Hereinafter, each layer of the radio protocol of the control plane shown in FIG. 3 and the radio protocol in the user plane shown in FIG. 4 will be described.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.The physical layer, which is the first layer, provides an information transfer service using a physical channel. The physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel. In addition, data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.The physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis. Here, one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis. One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers. The transmission time interval (TTI), which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다. According to 3GPP LTE, the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다. The PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe. The wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.Unlike the PDCCH, the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다. The PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ). The ACK / NACK signal for uplink (UL) data on the PUSCH transmitted by the wireless device is transmitted on the PHICH.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.The Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame. The PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB). In comparison, system information transmitted on the PDSCH indicated by the PDCCH is called a system information block (SIB).
PDCCH는 DL-SCH(downlink-shared channel)의 자원 할당 및 전송 포맷, UL-SCH(uplink shared channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(voice over internet protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.The PDCCH includes resource allocation and transmission format of downlink-shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, and random access transmitted on PDSCH. Resource allocation of higher layer control messages such as responses, sets of transmit power control commands for individual UEs in any UE group, activation of voice over internet protocol (VoIP), and the like. A plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs. The PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs). CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel. The CCE corresponds to a plurality of resource element groups. The format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.Control information transmitted through the PDCCH is called downlink control information (DCI). DCI is a resource allocation of PDSCH (also called DL grant), a PUSCH resource allocation (also called UL grant), a set of transmit power control commands for individual UEs in any UE group. And / or activation of Voice over Internet Protocol (VoIP).
제2계층에는 여러 가지 계층이 존재한다. 먼저 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면 (Control Plane)의 정보를 전송하는 제어채널 (Control Channel)과 사용자평면 (User Plane)의 정보를 전송하는 트래픽채널 (Traffic Channel)로 나뉜다.There are several layers in the second layer. First, the Medium Access Control (MAC) layer is responsible for mapping various logical channels to various transport channels, and also for multiplexing logical channel multiplexing to map multiple logical channels to one transport channel. Play a role. The MAC layer is connected to the RLC layer, which is the upper layer, by a logical channel. The logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
제2계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다. 또한, 각각의 무선베어러 (Radio Bearer; RB)가 요구하는 다양한 QoS를 보장할 수 있도록 하기 위해 TM (Transparent Mode, 투명모드), UM (Un-acknowledged Mode, 무응답모드), 및 AM (Acknowledged Mode, 응답모드)의 세가지 동작 모드를 제공하고 있다. 특히, AM RLC는 신뢰성 있는 데이터 전송을 위해 자동 반복 및 요청 (Automatic Repeat and Request; ARQ) 기능을 통한 재전송 기능을 수행하고 있다.The Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role. In addition, in order to guarantee various QoS required by each radio bearer (RB), TM (Transparent Mode), UM (Un-acknowledged Mode), and AM (Acknowledged Mode, Response mode). In particular, the AM RLC performs a retransmission function through an automatic repeat and request (ARQ) function for reliable data transmission.
제2계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 이는 데이터의 헤더(Header) 부분에서 반드시 필요한 정보만을 전송하도록 하여, 무선 구간의 전송효율을 증가시키는 역할을 한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.The Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size. This transmits only the necessary information in the header portion of the data, thereby increasing the transmission efficiency of the radio section. In addition, in the LTE system, the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.The radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release. In this case, RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC휴지상태(Idle Mode)에 있게 된다.When there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.Hereinafter, the RRC state and the RRC connection method of the UE will be described. The RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell. That is, the terminal in the RRC_IDLE state is only detected whether the terminal exists in a larger area than the cell, and the terminal must transition to the RRC_CONNECTED state in order to receive a normal mobile communication service such as voice or data. Each TA is identified by a tracking area identity (TAI). The terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on) 한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell. When it is necessary to establish an RRC connection, the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state. There are several cases in which the UE in RRC_IDLE state needs to establish an RRC connection. For example, when an uplink data transmission is necessary due to a user's call attempt, or when a paging message is received from E-UTRAN, Send a response message.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.A non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.The following describes the NAS layer shown in FIG. 3 in detail.
NAS 계층에 속하는 ESM (Evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.ESM (Evolved Session Management) belonging to the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network. The default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN). At this time, the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer. LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth. In case of Default bearer, Non-GBR bearer is assigned. In the case of a dedicated bearer, a bearer having a QoS characteristic of GBR or non-GBR may be allocated.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 와 GBR(guaranteed bit rate) 또는 AMBR (Aggregated maximum bit rate) 의 QoS 특성을 가진다. The bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID. One EPS bearer has QoS characteristics of a maximum bit rate (MBR), a guaranteed bit rate (GBR), or an aggregated maximum bit rate (AMBR).
도 5a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다. 5a is a flowchart illustrating a random access procedure in 3GPP LTE.
랜덤 액세스 과정은 UE(10)가 기지국, 즉 eNodeB(20)과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다. The random access procedure is used for the UE 10 to obtain UL synchronization or to allocate UL radio resources to the base station, that is, the eNodeB 20.
UE(10)는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB(20)로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다. The UE 10 receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB 20. Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다. Transmission of the random access preamble is limited to a specific time and frequency resource for each cell. The PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
UE(10)은 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB(20)로 전송한다. UE(10)은 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE(10)은 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다. UE 10 transmits a randomly selected random access preamble to eNodeB 20. The UE 10 selects one of the 64 candidate random access preambles. Then, the corresponding subframe is selected by the PRACH configuration index. UE 10 transmits the selected random access preamble in the selected subframe.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB(20)은 랜덤 액세스 응답(random access response, RAR)을 UE(10)로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE(10)은 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE(10)은 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.Upon receiving the random access preamble, the eNodeB 20 sends a random access response (RAR) to the UE 10. The random access response is detected in two steps. First, the UE 10 detects a PDCCH masked with a random access-RNTI (RA-RNTI). The UE 10 receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
도 5b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.5b illustrates a connection process in a radio resource control (RRC) layer.
도 5b에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE(10)의 RRC 계층의 엔티티(entity)가 eNodeB(20)의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 상태(idle state)라고 부른다. As shown in FIG. 5B, an RRC state is shown depending on whether RRC is connected. The RRC state refers to whether or not an entity of the RRC layer of the UE 10 is in a logical connection with an entity of the RRC layer of the eNodeB 20. If the RRC state is connected, the RRC state is connected. A state that is not connected is called an RRC idle state.
상기 연결 상태(Connected state)의 UE(10)은 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE(10)을 효과적으로 제어할 수 있다. 반면에 유휴 상태(idle state)의 UE(10)은 eNodeB(20)이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 상태(idle state) UE(10)은 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.Since the UE 10 in the connected state has an RRC connection, the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE 10. On the other hand, the UE 10 in the idle state cannot be understood by the eNodeB 20, and is managed by a core network in units of a tracking area, which is a larger area than a cell. The tracking area is a collection unit of cells. That is, the idle state UE (10) is identified only in the presence of a large area unit, in order to receive the normal mobile communication services such as voice or data, the terminal must transition to the connected state (connected state).
사용자가 UE(10)의 전원을 맨 처음 켰을 때, 상기 UE(10)은 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 상태(idle state)에 머무른다. 상기 유휴 상태(idle state)에 머물러 있던 UE(10)은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 eNodeB(20)의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다. When the user first powers up the UE 10, the UE 10 first searches for a suitable cell and then remains in an idle state in that cell. When the UE 10 staying in the idle state needs to establish an RRC connection, the UE 10 establishes an RRC connection with the RRC layer of the eNodeB 20 through an RRC connection procedure and performs an RRC connection state ( connected state).
상기 유휴 상태(Idle state)에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다. There are several cases in which the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or an uplink data transmission is necessary, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
유휴 상태(idle state)의 UE(10)이 상기 eNodeB(20)와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE(10)이 eNodeB(20)으로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB(20)가 UE(10)로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE(10)이 eNodeB(20)으로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 4b를 참조하여 보다 상세하게 설명하면 다음과 같다.In order to establish an RRC connection with the eNodeB 20, the UE 10 in an idle state must proceed with an RRC connection procedure as described above. The RRC connection process is largely a process in which the UE 10 sends an RRC connection request message to the eNodeB 20, and the eNodeB 20 transmits an RRC connection setup message to the UE 10. And a process in which the UE 10 sends an RRC connection setup complete message to the eNodeB 20. This process will be described in more detail with reference to FIG. 4B.
1) 유휴 상태(Idle state)의 UE(10)은 통화 시도, 데이터 전송 시도, 또는 eNodeB(20)의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE(10)은 RRC 연결 요청(RRC connection request) 메시지를 eNodeB(20)으로 전송한다. 1) When the UE 10 in idle state attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to the paging of the eNodeB 20, the UE 10 first performs an RRC connection. A RRC connection request message is transmitted to the eNodeB 20.
2) 상기 UE(10)로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB(10) 는 무선 자원이 충분한 경우에는 상기 UE(10)의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE(10)로 전송한다.2) When the RRC connection request message is received from the UE 10, the eNB 10 accepts the RRC connection request of the UE 10 when the radio resources are sufficient, and establishes an RRC connection that is a response message (RRC connection). setup) message is transmitted to the UE 10.
3) 상기 UE(10)이 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB(20)로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE(10)이 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE(10)은 eNodeB(20)과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.3) When the UE 10 receives the RRC connection setup message, the UE 10 transmits an RRC connection setup complete message to the eNodeB 20. When the UE 10 successfully transmits an RRC connection establishment message, the UE 10 establishes an RRC connection with the eNodeB 20 and transitions to the RRC connected mode.
한편, 최근에는 데이터의 폭발적인 증가로 인하여 이동통신 사업자의 3GPP 액세스의 혼잡이 가중되고 있다. 이를 완화하기 위한 방안으로는 사용자 단말의 데이터를 비-3GPP 액세스인, 무선랜(WLAN)을 통해 우회(offload)시키려는 움직임이 있다. 이하, 무선랜을 EPC에 연결하기 위한 아키텍처를 설명한다.On the other hand, in recent years, due to the explosive increase of data, the congestion of 3GPP access of the mobile communication operators is increasing. As a way to alleviate this, there is a movement to offload data of a user terminal through a WLAN, which is a non-3GPP access. Hereinafter, an architecture for connecting a WLAN to an EPC will be described.
도 6a 및 도 6b는 무선랜을 EPC에 연결하는 아키텍처를 나타낸다6A and 6B show an architecture for connecting a WLAN to an EPC.
도 6a는 WLAN이 S2a 인터페이스를 통해 P-GW에 연결된 아키텍처를 보여준다. 도 6a에서 볼 수 있듯이 WLAN 액세스 네트워크(특히, S2a 인터페이스의 경우 신뢰되는 비-3GPP 액세스를 EPC와 연결하는 인터페이스이므로 신뢰되는 WLAN 액세스 네트워크가 됨)는 S2a 인터페이스를 통해 P-GW와 연결된다. TWAN(Trusted WLAN Access Network)에 대한 구조는 TS 23.402에 기술된 내용을 참고하기로 한다.6A shows an architecture in which a WLAN is connected to a P-GW via an S2a interface. As shown in FIG. 6A, a WLAN access network (particularly, in the case of the S2a interface, is a trusted WLAN access network because it is an interface that connects trusted non-3GPP access with the EPC) is connected to the P-GW via the S2a interface. The structure of the Trusted WLAN Access Network (TWAN) will be referred to the contents described in TS 23.402.
도 6b는 WLAN이 S2b 인터페이스를 통해 P-GW에 연결된 아키텍처를 보여준다. 도 6b에서 볼 수 있듯이 WLAN 액세스 네트워크(특히, S2b 인터페이스의 경우 신뢰되지 않는 비-3GPP 액세스를 EPC와 연결하는 인터페이스이므로 신뢰되지 않는 WLAN 액세스 네트워크가 됨)는 S2b 인터페이스를 통해 P-GW와 연결되어 있는 ePDG(Evolved Packet Data Gateway)를 통해 P-GW에 연결된다.6B shows an architecture in which a WLAN is connected to a P-GW via an S2b interface. As can be seen in FIG. 6B, the WLAN access network (in particular, the S2b interface is an untrusted WLAN access network because it is an interface that connects untrusted non-3GPP access with the EPC) is connected to the P-GW via the S2b interface. It is connected to the P-GW via an evolved packet data gateway (ePDG).
이하에서 신뢰되는 WLAN과 신뢰되지 않는 WLAN은 구분 없이 WLAN으로 지칭될 수 있다.In the following, a trusted WLAN and an untrusted WLAN may be referred to as WLANs without distinction.
한편, 전술한 바와 같이 사용자 단말의 데이터를 사업자의 3GPP 액세스를 거치치 않고, 비-3GPP 액세스인 무선랜(WLAN)을 통해 우회(offload)시키려는 움직임에 따라, 다중 무선 액세스(Multiple radio access)를 지원하기 위한 IFOM(IP Flow Mobility and Seamless Offload), MAPCON(Multi Access PDN Connectivity) 등의 기술이 제안된 바 있다. MAPCON 기술은 3GPP 액세스와 Wi-Fi 액세스를 각각의 PDN 커넥션(connection)으로 두고 데이터를 전송하는 것이고, IFOM 기술은 3GPP 액세스와 Wi-Fi 액세스를 하나의 PDN이나 P-GW 에 묶어 데이터를 전송하는 것을 일컫는다.On the other hand, as described above, in accordance with the movement to bypass the data of the user terminal through the WLAN (WLAN), which is a non-3GPP access without going through the 3GPP access of the operator, multiple radio access (Multiple radio access) To support this, technologies such as IP Flow Mobility and Seamless Offload (IFOM) and MAPCON (Multi Access PDN Connectivity) have been proposed. MAPCON technology transmits data with 3GPP access and Wi-Fi access as separate PDN connections, and IFOM technology transmits data by binding 3GPP access and Wi-Fi access to a single PDN or P-GW. It is called.
도 7a는 IFOM 기술의 예를 나타낸 예시도이다.7A is an exemplary diagram illustrating an example of IFOM technology.
도 7a을 참조하면, IFOM은 동일한 PDN 커넥션을 동시에 다른 여러 액세스들을 통해 제공하는 것이다. 이러한 IFOM은 끊김없는(Seamless) WLAN으로의 우회를 제공한다.Referring to FIG. 7A, the IFOM provides the same PDN connection through several different accesses at the same time. This IFOM provides a bypass to seamless WLAN.
또한 IFOM은 동일한 하나의 PDN 커넥션의 IP 흐름을 하나의 액세스로부터 다른 액세스로 전달하는 것을 제공한다. IFOM also provides for passing the IP flow of the same PDN connection from one access to another.
도 7b는 MAPCON 기술의 예를 나타낸 예시도이다.7B is an exemplary diagram illustrating an example of the MAPCON technology.
도 7b를 참조하여 알 수 있는 바와 같이, MAPCON 기술은 여러 PDN 커넥션, 쉽게 IP 흐름(flow)들을 다른 액세스 시스템을 통하여 다른 APN들로 연결시키는 것이다.As can be seen with reference to FIG. 7B, MAPCON technology is to connect multiple PDN connections, easily IP flows to other APNs through other access systems.
이러한 MAPCON 기술에 따라 UE(10)는 이전에 사용되지 않았던 액세스 상에서 새로운 PDN 커넥션을 생성할 수 있다. 또는 UE(10)는 이전에 사용된 여러 액세스들 중에서 선택적인 하나에 새로운 PDN 커넥션을 생성할 수 있다. 또는, UE(10)는 이미 연결되어 있는 모든 PDN 커넥션들 중 전부 또는 일부를 다른 액세스로 이전시킬 수도 있다.This MAPCON technology allows the UE 10 to create a new PDN connection on an access that was not previously used. Alternatively, the UE 10 may create a new PDN connection in an optional one of several previously used accesses. Or, the UE 10 may transfer all or some of all PDN connections that are already connected to another access.
이상과 같이 UE의 트래픽을 무선랜(Wireless LAN)으로 우회시킬 수 있는 기술덕분에, 이동통신 사업자의 3GPP 액세스의 혼잡을 덜 수 있게 되었다.As described above, thanks to the technology capable of diverting UE traffic to a wireless LAN, it is possible to reduce congestion of 3GPP access of a mobile operator.
트래픽을 비-3GPP 액세스로 우회시키기 위해서 사업자는 정책을 단말에게 제공하고, 상기 단말은 상기 정책에 따라 자신의 데이터를 무선랜(Wireless LAN)으로 우회시킬 수 있다.In order to divert traffic to non-3GPP access, the operator provides a policy to the terminal, and the terminal may bypass its data to the wireless LAN according to the policy.
이와 같은 정책을 단말에게 프로비저닝(provisioning)하기 위해서, 3GPP에 기반한 ANDSF(Access Network Discovery and Selection Function)가 무선랜(Wireless LAN)과 관련된 정책을 제공할 수 있도록 개선되었다.In order to provision such a policy to the terminal, an access network discovery and selection function (ANDSF) based on 3GPP has been improved to provide a policy related to a wireless LAN.
도 8a 및 도 8b는 액세스 네트워크 선택을 위한 네트워크 제어 엔티티를 나타낸다. 8A and 8B illustrate a network control entity for access network selection.
도 8a을 참조하여 알 수 있는 바와 같이, ANDSF는 UE(10)의 홈 네트워크(Home Public Land Mobile Network: 이하 ‘HPLMN’이라 함)에 존재할 수 있다. 또한 도 8b을 참조하여 알 수 있는 바와 같이, ANDSF는 UE(10)의 방문 네트워크(Visited Public Land Mobile Network: 이하 ‘VPLMN’이라 함)에도 존재할 수 있다. 이와 같이 홈 네트워크에 위치할 때, H-ANDSF(61)로 불릴 수 있고, 방문 네트워크에 위치할 때 V-ANDSF(62)로 불릴 수 있다. 이하, ANDSF(60)은 H-ANDSF(61) 또는 V-ANDSF(62)를 통칭한다.As can be seen with reference to FIG. 8A, the ANDSF may be present in the home network of the UE 10 (hereinafter referred to as “HPLMN”). Also, as can be seen with reference to FIG. 8B, the ANDSF may also exist in a visited network of the UE 10 (hereinafter referred to as 'VPLMN'). As such, when located in the home network, it may be referred to as H-ANDSF 61, and may be called as V-ANDSF 62 when located in the visited network. Hereinafter, ANDSF 60 collectively refers to H-ANDSF 61 or V-ANDSF 62.
상기 ANDSF는 시스템간(inter-system) 이동 정책에 대한 정보, 액세스 네트워크 탐색을 위한 정보, 그리고 시스템간(inter-system) 라우팅에 관한 정보, 예컨대 Routing Rule를 제공할 수 있다.The ANDSF may provide information about an inter-system mobility policy, information for access network discovery, and information about inter-system routing, for example, a routing rule.
전술한, IFOM은 UE의 주도적인 결정에 의해서 수행되며, 호스트(host) 기반의 이동성 프로토콜(mobility protocol)인 DSMIP(Dual Stack Mobile IP)를 사용한다. As described above, IFOM is performed by the UE's initiative decision and uses DSMIP (Dual Stack Mobile IP), which is a host-based mobility protocol.
한편, 네트워크 기반 프로토콜인 GTP 내지는 PMIP을 사용하는 S2a 및 S2b 인터페이스를 통하여 IFOM을 제공하는 기술을 NBIFOM(Network Based IP Flow Mobility)라고 한다. Meanwhile, a technology for providing IFOM through S2a and S2b interfaces using GTP or PMIP, which is a network-based protocol, is called NBIFOM (Network Based IP Flow Mobility).
그러나, 현재까지는 NBIFOM에 대해서 논의만 되고 있고, 구체적인 기술이 제시되지 않고 있다.However, only NBIFOM has been discussed so far, and no specific technology has been presented.
특히, ISR(Idle mode Signaling Reduction)이 활성화된 상태에서 UE 및 P-GW(PDN Gateway) 사이의 중간(Intermediate) 네트워크 노드(예를 들어, MME 또는 SGSN)가 NBIFOM을 지원하지 않는 경우, 많은 시그널링이 발생하는 문제점이 있다.In particular, a lot of signaling when an intermediate network node (e.g., MME or SGSN) between a UE and a PDN Gateway (P-GW) does not support NBIFOM with Idle Mode Signaling Reduction (ISR) enabled There is a problem that occurs.
따라서, 본 명세서의 일 개시는 전술한 문제점을 해결할 수 있는 방안을 제시하는 것을 목적으로 한다.Therefore, one disclosure of the present specification is intended to propose a solution that can solve the above problems.
상기와 같은 목적을 달성하기 위하여, 본 명세서의 일 개시에 따른 방법은, 무선 통신 시스템에서 단말에 의한 ISR(Idle mode Signaling Reduction)의 처리 방법으로서, ISR 비활성화 조건이 만족되었는지 확인하는 단계와; 상기 ISR 비활성화 조건이 만족된 경우, ISR을 국부적으로(Locally) 비활성화하는 단계를 포함하되, 상기 ISR 비활성화 조건은, 상기 단말 및 PDN(Packet Data Network) 게이트 웨이가 모두 NBIFOM(Network Based IP Flow Mobility)을 지원하는 경우, 상기 단말이 WLAN에 SCM으로 어태치(Attach)되어 있거나 WLAN 커버리지에 위치하는 경우, 상기 단말에 대한 PDN 커넉션이 수립된 후 상기 단말이 기존 TA(Tracking Area) 또는 RA(Routing Area)를 벗어나 다른 TA 또는 RA로 이동한 경우 및 상기 단말이 현재 ISR 활성화 상태인 경우일 수 있다.In order to achieve the above object, a method according to one disclosure of the present disclosure, a method of processing ISR (Idle mode Signaling Reduction) by the terminal in a wireless communication system, the step of checking whether the ISR deactivation condition is satisfied; Locally deactivating the ISR when the ISR deactivation condition is satisfied, wherein the ISR deactivation condition is that both the UE and the Packet Data Network (PDN) gateway are NBIFOM (Network Based IP Flow Mobility). In case that the terminal is attached to the WLAN as an SCM (attachment) to the WLAN or located in the WLAN coverage, the terminal after the establishment of the PDN canon for the terminal established the existing tracking area (TA) or routing (RA) It may be a case of moving to another TA or RA out of an area) and a case in which the terminal is currently in an ISR activation state.
또한, 상기 ISR을 국부적으로 비활성화하는 단계는, TAU(Tracking Area Update) 및 RAU(Routing Area Update) 중 적어도 하나의 TIN(Temporary Identity used in Next update)을 변경함에 의해 상기 ISR을 국부적으로 비활성화하는 단계를 포함할 수 있다.In addition, locally deactivating the ISR may include locally deactivating the ISR by changing a temporary identity used in next update (TIN) of at least one of a tracking area update (TAU) and a routing area update (RAU). It may include.
또한, ISR 비활성화 조건이 만족되었는지 확인하는 단계는, PDN 커넥션 수립 과정에서, 상기 단말이 상기 PDN 게이트 웨이와 서로의 NBIFOM 능력(Capability)을 확인하는 NBIFOM 능력 협상(NBIFOM Capability Negotiation)을 수행함에 의해 상기 단말 및 PDN 게이트 웨이가 모두 NBIFOM을 지원하는지 여부를 확인하는 단계를 포함할 수 있다.In addition, the step of checking whether the ISR deactivation condition is satisfied may be performed by the UE performing NBIFOM Capability Negotiation (NBIFOM Capability Negotiation) confirming NBIFOM capability with the PDN gateway. It may include checking whether both the UE and the PDN gateway support NBIFOM.
상기와 같은 목적을 달성하기 위하여, 본 명세서의 일 개시에 따른 방법은, 이동통신 네트워크 내의 제어 평면을 담당하는 네트워크 엔티티에서 NBIFOM(Network Based IP Flow Mobility)을 처리하는 방법으로서, 네트워크 노드로부터 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 DDN(Downlink Data Notification) 메시지를 수신하는 단계와; 단말로 상기 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 페이징을 송신하는 단계와; 상기 단말로부터 상기 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 서비스 요청을 수신하는 단계와; 상기 네트워크 엔티티가 상기 NBIFOM을 지원하지 않는 경우, 상기 단말로 서비스 거절을 송신하는 단계를 포함할 수 있다.In order to achieve the above object, the method according to one disclosure of the present specification, a method for processing Network Based IP Flow Mobility (NBIFOM) in the network entity that is in charge of the control plane in the mobile communication network, NBIFOM request from the network node Receiving a Downlink Data Notification (DDN) message that includes information indicating that the message is due to; Transmitting a paging including information indicating that the terminal is due to the NBIFOM request; Receiving a service request including information indicating that the terminal is due to the NBIFOM request; If the network entity does not support the NBIFOM, it may include transmitting a denial of service to the terminal.
또한, 상기 방법은, 상기 네트워크 엔티티가 상기 NBIFOM을 지원하지 않는 경우, 서비스가 지원되지 않는다는 정보를 포함하는 DDN 거절 메시지를 상기 네트워크 노드로 송신하는 단계를 더 포함할 수 있다.In addition, the method may further include transmitting a DDN rejection message to the network node that includes information indicating that a service is not supported when the network entity does not support the NBIFOM.
여기서, 상기 네트워크 노드는, 다른 네트워크 노드로부터 상기 NBIFOM 요청에 의해 발생한 업데이트 베어러 요청을 수신하고, 상기 DDN 거절 메시지가 수신된 경우, 서비스가 지원되지 않는다는 정보를 포함하는 업데이트 베어러 응답을 상기 다른 네트워크 노드에 송신할 수 있다.Here, the network node receives an update bearer request generated by the NBIFOM request from another network node, and when the DDN rejection message is received, sends the update bearer response including information indicating that the service is not supported. Can be sent to
상기와 같은 목적을 달성하기 위하여, 본 명세서의 일 개시에 따른 단말은, 무선 통신 시스템에서 ISR(Idle mode Signaling Reduction)을 처리하는 단말로서, ISR 비활성화 조건을 저장하는 저장 수단과; 상기 ISR 비활성화 조건이 만족되었는지 확인하고, 상기 ISR 비활성화 조건이 만족된 경우, ISR을 국부적으로(Locally) 비활성화하는 컨트롤러를 포함하되, 상기 ISR 비활성화 조건은, 상기 단말 및 PDN(Packet Data Network) 게이트 웨이가 모두 NBIFOM(Network Based IP Flow Mobility)을 지원하는 경우, 상기 단말이 WLAN에 SCM으로 어태치(Attach)되어 있거나 WLAN 커버리지에 위치하는 경우, 상기 단말에 대한 PDN 커넉션이 수립된 후 상기 단말이 기존 TA(Tracking Area) 또는 RA(Routing Area)를 벗어나 다른 TA 또는 RA로 이동한 경우 및 상기 단말이 현재 ISR 활성화 상태인 경우일 수 있다.In order to achieve the above object, the terminal according to the present disclosure, a terminal for processing ISR (Idle mode Signaling Reduction) in a wireless communication system, the storage means for storing the ISR deactivation condition; A controller for determining whether the ISR deactivation condition is satisfied and locally deactivating the ISR when the ISR deactivation condition is satisfied, wherein the ISR deactivation condition includes: the terminal and a packet data network (PDN) gateway; Are all supporting Network Based IP Flow Mobility (NBIFOM), when the terminal is attached to the WLAN as an SCM or located in WLAN coverage, the terminal is established after the PDN is established for the terminal. This may be a case where the mobile station moves out of the existing tracking area or routing area and moves to another TA or RA, and the terminal is currently in an ISR activation state.
또한, 상기 컨트롤러는, TAU(Tracking Area Update) 및 RAU(Routing Area Update) 중 적어도 하나의 TIN(Temporary Identity used in Next update)을 변경함에 의해 상기 ISR을 국부적으로 비활성화하는 것일 수 있다.The controller may locally deactivate the ISR by changing a temporary identity used in next update (TIN) of at least one of a tracking area update (TAU) and a routing area update (RAU).
또한, 상기 컨트롤러는, PDN 커넥션 수립 과정에서, 상기 PDN 게이트 웨이와 서로의 NBIFOM 능력(Capability)을 확인하는 NBIFOM 능력 협상(NBIFOM Capability Negotiation)을 수행함에 의해 상기 단말 및 PDN 게이트 웨이가 모두 NBIFOM을 지원하는지 여부를 확인하는 것일 수 있다.In addition, the controller may perform NBIFOM Capability Negotiation (NBIFOM Capability Negotiation) confirming NBIFOM capability with each other in the PDN connection establishment process, so that both the UE and the PDN gateway support NBIFOM. It may be to check whether or not.
상기와 같은 목적을 달성하기 위하여, 본 명세서의 일 개시에 따른 이동통신 네트워크 내의 제어 평면을 담당하는 네트워크 엔티티는, 네트워크 노드로부터 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 DDN(Downlink Data Notification) 메시지를 수신하는 송수신부와; 단말로 상기 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 페이징을 송신하고, 상기 단말로부터 상기 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 서비스 요청을 수신하고, 상기 네트워크 엔티티가 상기 NBIFOM을 지원하지 않는 경우, 상기 단말로 서비스 거절을 송신하도록 상기 송수신부를 제어하는 컨트롤러를 포함할 수 있다.In order to achieve the above object, a network entity in charge of a control plane in a mobile communication network according to one disclosure of the present specification provides a downlink data notification (DDN) message including information indicating that the network node is due to an NBIFOM request. A transceiver for receiving; If the terminal transmits a paging including information indicating that the request is due to the NBIFOM request, receives a service request including information indicating that the request is due to the NBIFOM request, and the network entity does not support the NBIFOM. It may include a controller for controlling the transceiver to transmit a denial of service to the terminal.
또한, 상기 컨트롤러는, 상기 네트워크 엔티티가 상기 NBIFOM을 지원하지 않는 경우, 서비스가 지원되지 않는다는 정보를 포함하는 DDN 거절 메시지를 상기 네트워크 노드로 송신하도록 상기 송수신부를 제어하는 것일 수 있다.The controller may control the transceiver to transmit a DDN rejection message including information indicating that a service is not supported to the network node when the network entity does not support the NBIFOM.
본 명세서의 개시에 의하면, 종래 기술의 문제점을 해결할 수 있다.According to the disclosure of the present specification, it is possible to solve the problems of the prior art.
도 1은 진화된 이동 통신 네트워크의 구조도이다.1 is a structural diagram of an evolved mobile communication network.
도 2는 일반적으로 E-UTRAN과 일반적인 EPC의 아키텍처를 나타낸 예시도이다.Figure 2 is an exemplary view showing the architecture of a general E-UTRAN and a general EPC.
도 3는 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이다. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a UE and an eNodeB.
도 4는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다. 4 is another exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station.
도 5a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.5a is a flowchart illustrating a random access procedure in 3GPP LTE.
도 5b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.5b illustrates a connection process in a radio resource control (RRC) layer.
도 6a 및 도 6b는 무선랜을 EPC에 연결하는 아키텍처를 나타낸다6A and 6B show an architecture for connecting a WLAN to an EPC.
도 7a는 IFOM 기술의 예를 나타낸 예시도이고, 도 7b는 MAPCON 기술의 예를 나타낸 예시도이다.7A is an exemplary diagram illustrating an example of an IFOM technique, and FIG. 7B is an exemplary diagram illustrating an example of a MAPCON technique.
도 8a 및 도 8b는 액세스 네트워크 선택을 위한 네트워크 제어 엔티티를 나타낸다.  8A and 8B illustrate a network control entity for access network selection.
도 9는 Network initiated IP flow mobility 과정을 나타낸다.9 shows a network initiated IP flow mobility process.
도 10은 UE initiated IP flow mobility 과정을 나타낸다.10 shows a UE initiated IP flow mobility process.
도 11은 UTRAN과 E-UTRAN이 혼재된 상황을 나타낸다.11 shows a situation in which UTRAN and E-UTRAN are mixed.
도 12는 도 11에 도시된 문제 상황을 해결하기 위한 ISR(Idle mode Signaling Reduction)의 흐름을 나타낸 흐름도이다.12 is a flowchart illustrating a flow of idle mode signaling reduction (ISR) for solving a problem situation illustrated in FIG. 11.
도 13은 ISR이 활성화 되어 있는 경우에 하향링크의 데이터 전달을 도시한 신호 흐름도이다.13 is a signal flow diagram illustrating downlink data transmission when ISR is activated.
도 14는 ISR이 활성화된 경우에 있어서 NBIFOM 요청에 의한 시그널링을 나타낸다.14 illustrates signaling by an NBIFOM request when ISR is activated.
도 15는 본 명세서의 제1 개시에 따른 시그널링 감소 이득을 나타낸다.15 illustrates a signaling reduction gain according to the first disclosure of the present specification.
도 16은 본 명세서의 제2 개시 중 제1 방안에 따른 시그널링 감소 이득을 나타낸다.16 illustrates a signaling reduction gain according to the first method during the second disclosure of the present specification.
도 17은 본 명세서의 제1 개시에 따른 국부적 ISR 비활성화 방안 및 제2 개시 에 따른 DDN을 통한 시그널링 감소 방안이 함께 적용되었을 때의 시그널링 이득을 나타낸다.FIG. 17 illustrates signaling gains when the local ISR deactivation scheme according to the first disclosure and the signaling reduction scheme through the DDN according to the second disclosure are applied together.
도 18은 본 발명의 실시예에 따른 UE(100) 및 MME(510)의 구성 블록도이다.18 is a block diagram illustrating a configuration of a UE 100 and an MME 510 according to an embodiment of the present invention.
본 발명은 UMTS(Universal Mobile Telecommunication System) 및 EPC(Evolved Packet Core)를 기준으로 설명되나, 본 발명은 이러한 통신 시스템에만 한정되는 것이 아니라, 본 발명의 기술적 사상이 적용될 수 있는 모든 통신 시스템 및 방법에도 적용될 수 있다.Although the present invention is described based on the Universal Mobile Telecommunication System (UMTS) and the Evolved Packet Core (EPC), the present invention is not limited to such a communication system, but also to all communication systems and methods to which the technical spirit of the present invention can be applied. Can be applied.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.It is to be noted that the technical terms used herein are merely used to describe particular embodiments, and are not intended to limit the present invention. In addition, the technical terms used in the present specification should be interpreted as meanings generally understood by those skilled in the art unless they are specifically defined in this specification, and are overly inclusive. It should not be interpreted in the sense of or in the sense of being excessively reduced. In addition, when the technical terms used herein are incorrect technical terms that do not accurately represent the spirit of the present invention, it should be replaced with technical terms that can be understood correctly by those skilled in the art. In addition, the general terms used in the present invention should be interpreted as defined in the dictionary or according to the context before and after, and should not be interpreted in an excessively reduced sense.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.Also, the singular forms used herein include the plural forms unless the context clearly indicates otherwise. In the present application, terms such as “consisting of” or “having” should not be construed as necessarily including all of the various components, or various steps described in the specification, and some of the components or some of the steps are included. It should be construed that it may not be, or may further include additional components or steps.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다. In addition, terms including ordinal numbers, such as first and second, as used herein may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is said to be "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but other components may be present in between. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or similar components will be given the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted. In addition, in describing the present invention, when it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, it should be noted that the accompanying drawings are only for easily understanding the spirit of the present invention and should not be construed as limiting the spirit of the present invention by the accompanying drawings. The spirit of the present invention should be construed to extend to all changes, equivalents, and substitutes in addition to the accompanying drawings.
첨부된 도면에서는 예시적으로 UE(User Equipment)가 도시되어 있으나, 도시된 상기 UE는 단말(Terminal), ME(Mobile Equipment), 등의 용어로 언급될 수 도 있다. 또한, 상기 UE는 노트북, 휴대폰, PDA, 스마트 폰(Smart Phone), 멀티미디어 기기등과 같이 휴대 가능한 기기일 수 있거나, PC, 차량 탑재 장치와 같이 휴대 불가능한 기기일 수 있다. In the accompanying drawings, although a user equipment (UE) is illustrated as an example, the illustrated UE may be referred to in terms of terminal, mobile equipment (ME), and the like. In addition, the UE may be a portable device such as a laptop, a mobile phone, a PDA, a smart phone, a multimedia device, or a non-portable device such as a PC or a vehicle-mounted device.
용어의 정의Definition of Terms
이하 도면을 참조하여 설명하기 앞서, 본 발명의 이해를 돕고자, 본 명세서에서 사용되는 용어를 간략하게 정의하기로 한다.Before describing with reference to the drawings, in order to help the understanding of the present invention, terms used herein will be briefly defined.
GERAN: GSM EDGE Radio Access Network의 약자로서, GSM/EDGE에 의한 코어 네트워크와 단말을 연결하는 무선 접속 구간을 말한다.GERAN: An acronym for GSM EDGE Radio Access Network, and refers to a wireless access section connecting a core network and a terminal by GSM / EDGE.
UTRAN: Universal Terrestrial Radio Access Network의 약자로서, 3세대 이동통신의 코어 네트워크와 단말을 연결하는 무선 접속 구간을 말한다.UTRAN: Abbreviation for Universal Terrestrial Radio Access Network, and refers to a wireless access section connecting a terminal and a core network of 3G mobile communication.
E-UTRAN: Evolved Universal Terrestrial Radio Access Network의 약자로서, 4세대 이동통신, 즉 LTE의 코어 네트워크와 단말을 연결하는 무선 접속 구간을 말한다.E-UTRAN: Abbreviation for Evolved Universal Terrestrial Radio Access Network, and refers to a 4G mobile communication, that is, a wireless access section connecting a terminal to a LTE network.
UMTS: Universal Mobile Telecommunication System의 약자로서 3세대 이동통신의 코어 네트워크를 의미한다.UMTS: stands for Universal Mobile Telecommunication System and means a core network of 3G mobile communication.
UE/MS : User Equipment/Mobile Station, 단말 장치를 의미 함.UE / MS: means User Equipment / Mobile Station, terminal equipment.
EPS: Evolved Packet System의 약자로서, LTE(Long Term Evolution) 네트워크를 지원하는 코어 네트워크를 의미한다. UMTS가 진화된 형태의 네트워크EPS: stands for Evolved Packet System and means a core network supporting a Long Term Evolution (LTE) network. UMTS evolved network
PDN (Public Data Network): 서비스를 제공하는 서버가 위치한 독립적인망Public Data Network (PDN): An independent network on which servers providing services are located
PDN connection: 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결) PDN connection: connection from the terminal to the PDN, that is, association (connection) between the terminal represented by the IP address and the PDN represented by the APN
PDN-GW (Packet Data Network Gateway) : UE IP address allocation, Packet screening & filtering, Charging data collection 기능을 수행하는 EPS망의 네트워크 노드PDN-GW (Packet Data Network Gateway): Network node of EPS network that performs UE IP address allocation, Packet screening & filtering, Charging data collection
Serving GW(Serving Gateway) : 이동성 담당(Mobility anchor), 패킷 라우팅(Packet routing), 유휴 모드 패킷 버퍼링(Idle mode packet buffering), Triggering MME to page UE 기능을 수행하는 EPS망의 네트워크 노드Serving GW (Serving Gateway): Network node of EPS network performing Mobility anchor, Packet routing, Idle mode packet buffering, Triggering MME to page UE
PCRF(Policy and Charging Rule Function) : 서비스 flow 별로 차별화된 QoS 및 과금 정책을 동적(dynamic) 으로 적용하기 위한 정책 결정(Policy decision)을 수행하는 EPS망의 노드 PCRF (Policy and Charging Rule Function): Node of EPS network that performs policy decision to apply differentiated QoS and charging policy dynamically according to service flow
APN (Access Point Name): 네트워크에서 관리하는 접속 포인트의 이름으로서 UE에게 제공된다. (예) internet.mnc012.mcc345.gprsAPN (Access Point Name): A name of an access point managed in a network, which is provided to a UE. (Example) internet.mnc012.mcc345.gprs
TEID(Tunnel Endpoint Identifier) : 네트워크 내 노드들 간에 설정된 터널의 End point ID, 각 UE의 bearer 단위로 구간별로 설정된다.Tunnel Endpoint Identifier (TEID): End point ID of a tunnel established between nodes in a network, and is set for each section in bearer units of each UE.
NodeB: UMTS 네트워크의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.NodeB: A base station of a UMTS network, which is installed outdoors, and a cell coverage scale corresponds to a macro cell.
eNodeB: EPS(Evolved Packet System) 의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.eNodeB: A base station of an evolved packet system (EPS), which is installed outdoors, and a cell coverage size corresponds to a macro cell.
(e)NodeB: NodeB와 eNodeB를 지칭하는 용어이다.(e) NodeB: A term referring to NodeB and eNodeB.
MME: Mobility Management Entity의 약자로서, UE에 대한 세션과 이동성을 제공하기 위해 EPS 내에서 각 엔티티를 제어하는 역할을 한다.MME, which stands for Mobility Management Entity, serves to control each entity in EPS to provide session and mobility for the UE.
세션(Session): 세션은 데이터 전송을 위한 통로로써 그 단위는 PDN, Bearer, IP flow 단위 등이 될 수 있다. 각 단위의 차이는 3GPP에서 정의한 것처럼 대상 네트워크 전체 단위(APN 또는 PDN 단위), 그 내에서 QoS로 구분하는 단위(Bearer 단위), 목적지 IP 주소 단위로 구분할 수 있다.Session: A session is a channel for data transmission. The unit may be a PDN, a bearer, or an IP flow unit. The difference in each unit can be divided into the entire target network unit (APN or PDN unit), the QoS classification unit (Bearer unit), and the destination IP address unit as defined in 3GPP.
PDN 커넥션(connection) : 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)을 나타낸다. 이는 세션이 형성될 수 있도록 코어 네트워크 내의 엔티티간 연결(단말-PDN GW)을 의미한다.PDN connection (connection): A connection from the terminal to the PDN, that is, the association (connection) between the terminal represented by the IP address and the PDN represented by the APN. This means an inter-entity connection (terminal-PDN GW) in the core network so that a session can be established.
UE Context : 네크워크에서 UE를 관리하기 위해 사용되는 UE의 상황 정보, 즉, UE id, 이동성(현재 위치 등), 세션의 속성(QoS, 우선순위 등)으로 구성된 상황 정보UE Context: Context information of UE used to manage UE in the network, ie Context Information composed of UE id, mobility (current location, etc.), session attributes (QoS, priority, etc.)
NAS (Non-Access-Stratum) : UE와 MME간의 제어 플레인(control plane)의 상위 stratum. UE와 네트워크간의 이동성 관리(Mobility management)와 세션 관리 (Session management), IP 주소 관리 (IP address maintenance) 등을 지원NAS (Non-Access-Stratum): Upper stratum of the control plane (control plane) between the UE and the MME. Support mobility management, session management, IP address maintenance between UE and network
RAT: Radio Access Technology의 약자로서, GERAN, UTRAN, E-UTRAN 등을 의미한다.RAT: Abbreviation for Radio Access Technology, which means GERAN, UTRAN, E-UTRAN and the like.
로컬 운영 환경 정보(Local Operating Environment Information): This is a set of implementation specific parameters which describe the local environment in which the UE is operating.Local Operating Environment Information: This is a set of implementation specific parameters which describe the local environment in which the UE is operating.
존재 보고 영역(Presence Reporting Area): 정책 제어 및/또는 과금 이유 등으로 인하여 3GPP 패킷 도메인 내에서의 UE의 존재를 보고하기 위한 목적으로 정의되는 영역이다. E-UTRAN의 경우에, 존재 보고 영역은 이웃하는 혹은 이웃하지 않는 트래킹 영역 또는 eNodeB 및/또는 셀들의 집합으로 이루어진다. 존재 보고 영역은 2가지 타입이 존재하는데, 하나는 UE-전용(UE-dedicated) 존재 보고 영역이고, 다른 하나는 핵심 네트워크가 미리 설정한 존재 보고 영역이다. Presence Reporting Area: This area is defined for the purpose of reporting the presence of the UE in the 3GPP packet domain due to policy control and / or charging reasons. In the case of E-UTRAN, the presence reporting area consists of a neighboring or non-neighboring tracking area or a set of eNodeBs and / or cells. There are two types of presence reporting areas, one is a UE-dedicated presence reporting area and the other is a presence reporting area preset by the core network.
ANDSF (Access Network Discovery and Selection Function) : 하나의 네트워크 entity로써 사업자 단위로 단말이 사용가능한 access 를 발견하고 선택하도록 하는 Policy를 제공ANDSF (Access Network Discovery and Selection Function): Provides a policy that allows a terminal to discover and select available access on an operator basis as a network entity.
ISRP(Inter-System Routing Policy): UE가 여러 무선 액세스 인터페이스들 중 어느 것으로 IP 트래픽을 라우팅해야 하는지를 사업자(operator)가 정의한 규칙이다. 이러한, ISRP는 패킷 서비스(또는 IP flow 또는 IP 트래픽 또는 애플리케이션)를 라우팅/조정(steering) 하기 위해 선호되는 (즉, 우선순위가 높은) 또는 제한되는 액세스 네트워크를 정의한 정책으로 다음과 같이 3 종류의 규칙을 포함할 수 있다. 즉, ISRP는 다음과 같이 IFOM(IP Flow Mobility) 규칙, MAPCON(Multi Access PDN Connectivity) 규칙 그리고 NSWO(Non-seamless WLAN offload) 규칙으로 구분될 수 있다.Inter-System Routing Policy (ISRP): An operator-defined rule for which of the various radio access interfaces the UE should route IP traffic. ISRP is a policy that defines preferred (i.e., high priority) or restricted access networks for routing / steering packet services (or IP flows or IP traffic or applications). May contain rules. That is, the ISRP may be classified into an IP Flow Mobility (IFOM) rule, a Multi Access PDN Connectivity (MAPCON) rule, and a non-seamless WLAN offload (NSWO) rule as follows.
- IFOM(IP Flow Mobility) 규칙: 이 규칙은 특정 APN 또는 임의 APN 상에서 특정 IP 트래픽 필터와 매칭되는 트래픽을 라우팅할 수 있을 때, UE에 의해서 사용되어야 하는 액세스 테크놀로지/액세스 네트워크들을 우선순위에 따라 정리한 리스트이다. 또한, 이 규칙은 특정 APN 또는 임의 APN 상에서 특정 IP 트래픽 필터와 매칭되는 트래픽이 어느 무선 액세스에 대해서 제한되는지를 지정할 수 있다.IP Flow Mobility (IFOM) rule: This rule prioritizes the access technology / access networks that should be used by the UE when it is able to route traffic that matches a particular IP traffic filter on a particular APN or any APN. It's a list. In addition, this rule may specify for which wireless access the traffic that matches a particular IP traffic filter on a particular APN or any APN is restricted.
- MAPCON(Multi Access PDN Connectivity) 규칙: 이 규칙은 특정 APN에 대한 PDN 커넥션을 라우팅할 수 있을때, UE에 의해서 사용되어야 하는 액세스 테크놀로지/액세스 네트워크들을 우선순위에 따라 정리한 리스트이다. 또한, 이 규칙은 특정 APN으로의 PDN 커넥션을 어느 무선 액세스에 대해서 제한해야 할지를 지정할 수 있다. MAPCON (Multi Access PDN Connectivity) rule: This rule is a list of prioritized access technologies / access networks that should be used by the UE when it is possible to route PDN connections to a particular APN. In addition, this rule may specify to which radio access the PDN connection to a particular APN should be restricted.
- NSWO(Non-seamless WLAN offload) 규칙: 이 규칙은 어느 트래픽이 non-seamless하게 WLAN으로 우회되어야 할지 우회되지 말아야 할지를 지정한다. Non-seamless WLAN offload (NSWO) rule: This rule specifies which traffic should be bypassed non-seamlessly to the WLAN or not.
ISMP(Inter-System Mobility Policy): UE에 의해서 수행되는 시스템 간 이동성 결정에 영향을 미치도록 사업자가 정의한 규칙의 집합이다. UE가 단독의 무선 액세스 인터페이스 상에서 IP 트래픽을 라우팅할 수 있을 때, UE는 가장 적합한 액세스 테크놀로지 타입 또는 액세스 네트워크를 주어진 시간에 선택하기 위해서, ISMP를 사용할 수 있다. Inter-System Mobility Policy (ISMP): A set of rules defined by an operator to influence intersystem mobility decisions performed by a UE. When the UE can route IP traffic on a single radio access interface, the UE can use ISMP to select the most appropriate access technology type or access network at a given time.
RAN 규칙(rule): 네트워크로부터 수신된 RAN(Radio Access Network) 지원 정보(Assistance Parameters)를 가지고 UE에 프로그램되어 있는 RAN 규칙을 평가한다. RAN 규칙은 ANDSF ISRP/ISMP 없이 사용되는 RAN이 지원하는 WLAN 인터워킹으로도 일컬어진다. 트래픽을 WLAN으로 이동시키기 위한 RAN 규칙이 충족되었을 때, UE의 AS(Access Stratum) 계층은 move-traffic-to-WLAN 인디케이션과 WLAN 식별자를 함께 UE의 상위 계층으로 전달한다. 이 경우 UE는 WLAN을 선택하여 모든 offloadable PDN connection을 WLAN으로 이동시킨다. 또는, 트래픽을 3GPP 액세스로 이동시키기 위한 RAN 규칙이 충족되었을 때, UE의 AS(Access Stratum) 계층은 move-traffic-from-WLAN 인디케이션을 UE의 상위 계층으로 전달한다. 이 경우 UE는 WLAN 상의 모든 PDN connection을 3GPP로 이동시킨다. RAN 규칙에 대한 상세한 설명은 3GPP TS 23.401, TS 23.060, TS 23.402, TS 36.300, TS 36.304, TS 36.331, TS 25.304 그리고 TS 25.331를 참조하여 알 수 있다. RAN rule: Evaluates a RAN rule programmed in the UE with Radio Access Network (RAN) Assistance Parameters received from the network. The RAN rule is also referred to as WLAN interworking supported by the RAN used without ANDSF ISRP / ISMP. When the RAN rule for moving traffic to the WLAN is met, the AS (Access Stratum) layer of the UE carries the move-traffic-to-WLAN indication and WLAN identifier together to the upper layer of the UE. In this case, the UE selects the WLAN to move all offloadable PDN connections to the WLAN. Or, when the RAN rule for moving traffic to 3GPP access is met, the access stratum (AS) layer of the UE delivers a move-traffic-from-WLAN indication to a higher layer of the UE. In this case, the UE moves all PDN connections on the WLAN to 3GPP. A detailed description of the RAN rule can be found with reference to 3GPP TS 23.401, TS 23.060, TS 23.402, TS 36.300, TS 36.304, TS 36.331, TS 25.304 and TS 25.331.
다중 액세스(Multi-access) PDN 커넥션 : 트래픽이 3GPP 액세스 및/또는 WLAN 액세스를 통해 라우팅될 수 있는 PDN 커넥션. 각 IP 플로우는 한 순간에 하나의 액세르를 통해서만 라우팅된다.Multi-access PDN connection: A PDN connection in which traffic can be routed through 3GPP access and / or WLAN access. Each IP flow is only routed through one accessor at a time.
한편, 이하에서는 도면을 참조하여 설명하기로 한다.On the other hand, it will be described below with reference to the drawings.
< NBIFORM(Network Based IP Flow Mobility) 절차 ><NBIFORM (Network Based IP Flow Mobility) Procedure>
NBIFOM의 주요 동작 중 하나는 UE와 P-GW(PDN Gateway)간의 라우팅 규칙(routing rule)을 인스톨(install)하는 과정이다. One of the main operations of NBIFOM is a process of installing a routing rule between the UE and a P-GW (PDN Gateway).
UE(또는 P-GW)가 라운팅 규칙을 PGW(또는 UE)로 보내면 PGW(또는 UE)는 이에 대한 승인(accept)/거절(reject)을 응답(response) 메시지로 보내주게 된다.When a UE (or P-GW) sends a routing rule to the PGW (or UE), the PGW (or UE) sends an acknowledgment / reject to it as a response message.
NBIFOM 절차(procedure)는 개시하는(Initiated) 주체에 따라 UE initiated 와 Network initiated NBIFOM 절차로 나누어진다.The NBIFOM procedure is divided into UE initiated and Network initiated NBIFOM procedures according to the initiated entity.
도 9는 Network initiated IP flow mobility 과정을 나타낸다.9 shows a network initiated IP flow mobility process.
도 9를 참조하면, Network initiated IP flow mobility 과정은 아래와 같이 수행될 수 있다.Referring to FIG. 9, a network initiated IP flow mobility process may be performed as follows.
1. UE(100)가 동시에(simultaneously) E-UTRAN 및 TWAN(Trusted WLAN Access Network)을 통해 PDN GW(530)에 어태지(Attach)된다.1. UE 100 attaches to PDN GW 530 via E-UTRAN and TWAN (Trusted WLAN Access Network) simultaneously.
2. PCRF(550b)가 라우팅 규칙을 업데이트하는 것을 결정한다.2. PCRF 550b determines to update the routing rule.
3. PCRF(550a, 550b)는 상기 라우팅 규칙을 포함하는 정책 및 차징 규칙 제공 메시지(Policy and Charging Rules Provision message)를 상기 PDN GW(530)에 보낸다.3. The PCRF 550a, 550b sends a Policy and Charging Rules Provision message including the routing rule to the PDN GW 530.
4-5. 상기 PDN GW(530)는 S-GW(520)에 상기 새로운 라우팅 규칙을 포함하는 업데이트 베어러 요청(Update Bearer Request) 또는 업데이트 통지(Update Notification)(RFC 7077에 명시된 바와 같이)를 보낸다. 상기 S-GW(520)는 이 정보를 업데이트 베어러 요청을 통해 MME(510)에 전달한다.4-5. The PDN GW 530 sends an S-GW 520 an Update Bearer Request or Update Notification (as specified in RFC 7077) that includes the new routing rule. The S-GW 520 forwards this information to the MME 510 via an update bearer request.
6. 상기 MME(510)는 NAS 시그널링을 통해 상기 라우팅 규칙을 상기 UE(100)에 보낸다.6. The MME 510 sends the routing rule to the UE 100 via NAS signaling.
7. 상기 UE는 상기 라우팅 규칙을 승인(Accept)하거나 거절(Reject)할 지 결정한다. 상기 UE(100)는 상기 승인된 라우팅 규칙을 NAS 시그널링을 통해 상기 MME(510)에 보낸다.7. The UE determines whether to accept or reject the routing rule. The UE 100 sends the approved routing rule to the MME 510 via NAS signaling.
8-9. 상기 MME(510)는 업데이트 베어러 응답(Update Bearer Response) 메시지를 상기 S-GW(520)에 리턴한다. 상기 메시지는 UE(100)에 의해 승인된 라우팅 규칙을 포함한다. 상기 MME(510)는 상기 정보를 업데이트 베어러 응답(Update Bearer Response)/업데이트 통지 확인(Update Notification Acknowledgment)(RFC 7077에 명시된 바와 같이)을 통해 상기 S-GW(520)에 전달한다.8-9. The MME 510 returns an Update Bearer Response message to the S-GW 520. The message includes a routing rule approved by the UE 100. The MME 510 communicates the information to the S-GW 520 via an Update Bearer Response / Update Notification Acknowledgment (as specified in RFC 7077).
도 10은 UE initiated IP flow mobility 과정을 나타낸다.10 shows a UE initiated IP flow mobility process.
도 10을 참조하면, UE initiated IP flow mobility 과정은 아래와 같이 수행될 수 있다.Referring to FIG. 10, the UE initiated IP flow mobility process may be performed as follows.
1. UE(100)는 3GPP 또는 비-3GPP 액세스들에 동시에 연결되고 동일 PDN 커넥션의 다중 IP 플로우(multiple IP flows of the same PDN connection)를 수립한다.1. UE 100 simultaneously connects to 3GPP or non-3GPP accesses and establishes multiple IP flows of the same PDN connection.
2. 상기 UE(100)는 상기 UE(100)에 의해 요청된 라우팅 규칭을 포함하는 베어러 자원 변경 요청(Request Bearer Resource Modification) 메시지를 eNodeB(200)에 보낸다.2. The UE 100 sends a Bearer Resource Modification (Request Bearer Resource Modification) message including a routing rule requested by the UE 100 to the eNodeB 200.
3. 상기 eNodeB(200)는 상기 라우팅 규칙을 포함하는 베어러 자원 명령(Bearer Resource Command) 메시지를 MME(510)에 보낸다.3. The eNodeB 200 sends a Bearer Resource Command message including the routing rule to the MME 510.
4-5. 상기 MME(510)는 S-GW(520)를 통해 상기 라우팅 규칙을 PDN GW(530)에 전달한다.4-5. The MME 510 transmits the routing rule to the PDN GW 530 through the S-GW 520.
6. 상기 PDN GW(530)는 IP_CAN 수정 과정을 개시하고, 상기 라우팅 규칙을 PCRF(550a, 550b)에 제공한다.6. The PDN GW 530 initiates the IP_CAN modification process and provides the routing rules to the PCRFs 550a and 550b.
7. 상기 PDN GW(530)는 TS 23.401에 기술된 바와 같이, 상기 라우팅 규칙을 확인하는 데디케이트 베어러 활성화 과정(Dedicated Bearer activation procedure) 또는 베어러 변경 과정(Bearer modification procedure)을 수행한다. 7. The PDN GW 530 performs a dedicated bearer activation procedure or bearer modification procedure to confirm the routing rule, as described in TS 23.401.
8. TS 23.402에 기술된 바와 같이, 적절한 TWAM 자원 해제/변경 과정들이 수행된다.8. As described in TS 23.402, appropriate TWAM resource release / change procedures are performed.
< ISR (Idle mode Signalling Reduction) ><ISR (Idle mode Signaling Reduction)>
이하에서는 도 11 내지 도 12를 참조하여 ISR에 대해 설명한다.Hereinafter, the ISR will be described with reference to FIGS. 11 to 12.
도 11은 UTRAN과 E-UTRAN이 혼재된 상황을 나타낸다.11 shows a situation in which UTRAN and E-UTRAN are mixed.
도 11을 참조하여 알 수 있는 바와 같이, UTRAN(즉, 3세대 무선 액세스 네트워크)의 NodeB가 존재하는 지역에 E-UTRAN(즉, 4세대 무선 액세스 네트워크)의 eNodeB가 배치될 수 있다. As can be seen with reference to FIG. 11, an eNodeB of an E-UTRAN (ie, a fourth generation radio access network) may be located in an area where a NodeB of the UTRAN (ie, a third generation radio access network) exists.
도시된 TAI(Tracking Area Identity)리스트는 E-UTRAN 위치 등록 단위로E-UTRAN이 서비스를 제공하는 지역을 가리키며 하나 또는 다수의 eNodeB의 셀(cell)을 포함한다. The illustrated Tracking Area Identity (TAI) list indicates an area where E-UTRAN provides a service as an E-UTRAN location registration unit and includes cells of one or more eNodeBs.
그리고, 도시된 RA(Routing Area)는 UTRAN 위치 등록 단위로 UTRAN이 서비스를 제공하는 지역을 가리키며 하나 또는 다수의 NodeB의 셀을 포함한다.In addition, the illustrated routing area (RA) indicates an area where the UTRAN provides a service as a UTRAN location registration unit and includes one or more NodeB cells.
도시된 UE(100)는 E-UTRAN과 UTRAN의 경계에 위치하며, 어느 하나에 캠프 온(camp on)할 수 있다. 여기서 캠프 온이란, UE(100)가 셀 선택(cell selection) 절차 또는 셀 재선택(cell reselection) 절차를 마치고 셀(cell)에 엑세스하는 것을 말한다. 만약, UE(100)가 E-UTRAN 셀(cell)에 캠프 온(camp on) 한 경우, MME(510)로 위치 등록을 수행하게 되고, 반면 UE(100)가 UTRAN 셀에 캠프 온(camp on) 한 경우 SGSN(Serving General packet radio Service Support Node)(420)으로 위치 등록을 수행하게 된다.The illustrated UE 100 is located at the boundary between the E-UTRAN and the UTRAN, and can camp on any one. Here, camping on means that the UE 100 accesses a cell after completing a cell selection procedure or a cell reselection procedure. If the UE 100 camps on the E-UTRAN cell, the location registration is performed by the MME 510, while the UE 100 camps on the UTRAN cell. In one case, location registration is performed by a Serving General Packet Radio Service Support Node (SGSN) 420.
그런데, 도시된 바와 같이 UE(100)가 E-UTRAN과 UTRAN의 경계에 위치한 경우, 예기치 않는 셀 재선택 절차를 반복함으로써, 위치 등록 절차가 계속 수행되고, 그로 인해 네트워크 자원의 낭비가 발생할 수 있다.However, when the UE 100 is located at the boundary between the E-UTRAN and the UTRAN as shown, by repeating the unexpected cell reselection procedure, the location registration procedure may be continued, thereby causing waste of network resources. .
도 12는 도 11에 도시된 문제 상황을 해결하기 위한 ISR(Idle mode Signaling Reduction)의 흐름을 나타낸 흐름도이다.12 is a flowchart illustrating a flow of idle mode signaling reduction (ISR) for solving a problem situation illustrated in FIG. 11.
ISR(Idle mode Signaling Reduction)은 UE(100)가 E-UTRAN과 UTRAN 사이를 왕래하는 경우 위치 등록을 위한 시그널링을 줄여 네트워크 자원의 효율을 높여주는 기법이다. 상기 ISR 기법은 UE(100)가 휴지모드(idle mode)인 경우 E-UTRAN과 UTRAN 사이를 한차례 왕래하여 이미 위치 등록을 한 경우, 이후의 왕래부터는 위치 등록을 수행하지 않을 수 있도록 한다. 구체적으로 설명하면 다음과 같다. ISR (Idle mode Signaling Reduction) is a technique that increases the efficiency of network resources by reducing the signaling for location registration when the UE 100 travels between the E-UTRAN and UTRAN. The ISR scheme enables the UE 100 to not perform location registration from a later location when the UE 100 has already registered a location by traveling between the E-UTRAN and the UTRAN once in an idle mode. Specifically, it is as follows.
도 12를 참조하면, UE(100)가 최초 E-UTRAN 셀에 캠프 온 함에 따라, MME(510)를 통해 HSS(540)에 위치등록을 수행하기 위해, UE(100)은 MME(510)에 어태취 요청(Attach Request) 메시지를 보낸다. MME(510)는 HSS(540)로 UE(100)의 어태취(attach)를 알리기 위해 업데이트 위치 요청 메시지 (Update Location Request)를 보낸다.Referring to FIG. 12, as the UE 100 camps on an initial E-UTRAN cell, in order to perform location registration with the HSS 540 through the MME 510, the UE 100 may contact the MME 510. Send an Attach Request message. The MME 510 sends an update location request message to the HSS 540 to inform the attach of the UE 100.
이때, HSS(540)는 UE(100)가 어태취(attach)한 MME(510)의 ID(Identity)를 저장하며, HSS(540)는 가입자 정보를 담은 업데이트 위치 확인 메시지(Update Location Ack)를 MME(510)에게 보내 응답한다. MME(510)는 UE(100)에게 어태취 수락 메시지(Attach Accept)를 보낸다. 이를 통해 UE(100)는 현재 캠프 온하고 있는 E-UTRAN 셀의 MME(510)에 어태취 절차를 완료하고 또한, HSS(540)에 UE(100)의 위치를 등록하게 된다.In this case, the HSS 540 stores an ID of the MME 510 attached by the UE 100, and the HSS 540 sends an update location acknowledgment message containing subscriber information. Send to MME 510 to respond. The MME 510 sends an attach accept message to the UE 100. Through this, the UE 100 completes the attachment procedure to the MME 510 of the E-UTRAN cell that is currently camping on, and also registers the location of the UE 100 to the HSS 540.
이후, UE(100)가 E-UTRAN 셀에서 이동을 하여 UTRAN 셀의 커버리지 지역으로 이동하였다고 가정한다. 이때, UE(100)은 UTRAN을 재선택(reselect)한다. 그러므로, UE(100)은 UTRAN에 RAU(Routing Area Update) 절차를 수행하여 자신의 위치를 등록 하여야 한다.Subsequently, assume that the UE 100 moves in the E-UTRAN cell and moves to the coverage area of the UTRAN cell. At this time, the UE 100 reselects the UTRAN. Therefore, the UE 100 must register its location by performing a Routing Area Update (RAU) procedure on the UTRAN.
따라서, UE(100)은 SGSN(Serving General packet radio Service Support Node)(420)을 통해 HSS(540)에 위치등록을 수행하고자, SGSN(420)으로 RAU 요청(RAU Request) 메시지를 보낸다. SGSN(420)은 RAU 요청 메시지로부터 UE(100)이 이전에 MME(510)에 위치 등록한 것을 인식한다. 따라서, SGSN(420)은 UE(100)가 위치 등록하였던 MME(510)로부터 UE(100)에 대한 컨텍스트 (context)를 얻기 위해, MME(510)에게 컨텍스트 요청(Context Request) 메시지를 보낸다.Accordingly, the UE 100 sends a RAU Request message to the SGSN 420 to perform location registration with the HSS 540 through the Serving General Packet Radio Service Support Node (SGSN) 420. The SGSN 420 recognizes from the RAU request message that the UE 100 previously registered location with the MME 510. Accordingly, the SGSN 420 sends a context request message to the MME 510 to obtain a context for the UE 100 from the MME 510 to which the UE 100 has registered a location.
MME(510)는 SGSN(420)이 보낸 컨텍스트 요청(Context Request) 메시지 에 대한 응답으로, UE(100)에 대한 컨텍스트(context)를 담은 컨텍스트 응답(Context Response) 메시지를 SGSN(420)에게 보낸다. 이때, MME(510)가 상기 컨텍스트 응답 메시지에 ‘ISR capability’ 또는‘ISR Supported’ 파라미터를 포함시킴으로써, MME(510) 자신이 ISR 기능을 지원할 수 있음을 SGSN(420)에게 알린다. 한편, 컨텍스트 응답(Context Response) 메시지에 포함된 UE(100)에 대한 컨텍스트 정보는 대표적으로 단말의 MM(Mobility Management) 컨텍스트(Context) 정보 및 EPS PDN 연결 (Connections) 정보를 포함한다. 여기서, EPS PDN 연결(Connections) 정보는 베어러 컨텍스트(Bearer Context) 정보를 포함한다. MME(510)는 자신이 유지하고 있는 상기 UE(100)에 대한 MM 컨텍스트 및 EPS 베어러 컨텍스트(bearer context) 정보에 기반하여 상기 컨텍스트 응답(Context Response) 메시지 에 포함시킬 UE(100)에 대한 컨텍스트 정보를 세팅한다. The MME 510 sends a context response message containing the context for the UE 100 to the SGSN 420 in response to the context request message sent by the SGSN 420. At this time, the MME 510 notifies the SGSN 420 that the MME 510 itself can support the ISR function by including the 'ISR capability' or 'ISR Supported' parameter in the context response message. Meanwhile, the context information about the UE 100 included in the context response message typically includes MM (Mobility Management) context information and EPS PDN connection information of the UE. In this case, the EPS PDN Connection information includes bearer context information. The MME 510 may include context information for the UE 100 to be included in the context response message based on the MM context and EPS bearer context information of the UE 100 maintained by the MME 510. Set.
SGSN(420)은 상기 UE(100)에 대해 ISR을 활성화(activate)할 것인지를 결정한다. 보다 상세히 설명하면, SGSN(420)은 MME(510)로부터 받은 컨텍스트 응답 메시지(Context Response)의 ‘ISR capability’ 또는 ISR Supported’ 파라미터를 분석 내지 확인함으로써, MME(510)가 ISR 기능을 지원함을 확인할 수 있다. 또한, SGSN(420) 역시 ISR 기능을 지원하므로, SGSN(420)은 ISR을 활성화(activate)할 것을 결정한다. SGSN 420 determines whether to activate ISR for the UE 100. In more detail, the SGSN 420 analyzes or confirms the 'ISR capability' or ISR Supported 'parameter of the context response message (Context Response) received from the MME 510 to confirm that the MME 510 supports the ISR function. Can be. In addition, the SGSN 420 also supports the ISR function, so the SGSN 420 determines to activate the ISR.
SGSN(420)은 ISR 기능을 활성화를 결정하게 된다. 따라서, SGSN(420)은 MME(510)가 보낸 컨텍스트 응답(Context Response) 메시지에 대한 응답으로서, 컨텍스트 확인(Context Ack) 메시지 를 MME(510)에게 보낸다. 이때, 상기 컨텍스트 확인 메시지에는 ‘ISR 활성화 (ISR Activated)’ 파라미터를 포함시킴으로써, 상기 UE(100)에 대해 ISR 기능이 활성화되었음을 MME(510)에게 알리게 된다. SGSN 420 determines to activate the ISR function. Accordingly, the SGSN 420 sends a context acknowledgment message to the MME 510 as a response to the context response message sent by the MME 510. In this case, the context confirmation message includes the parameter 'ISR Activated' to inform the MME 510 that the ISR function is activated for the UE 100.
한편, ISR이 활성화(activate)되면, SGSN(420)과 MME(510)는 상호간의 ID(Identity)를 저장한다. 그리고, ‘ISR 활성화 (ISR Activated)’ 파라미터가 포함된 컨텍스트 확인(Context Ack) 메시지 를 SGSN(420)으로부터 수신한 MME(510)는, UE(100)에 대한 컨텍스트 (context)를 계속 유지한다.Meanwhile, when the ISR is activated, the SGSN 420 and the MME 510 store mutual IDs. In addition, the MME 510 that receives a context acknowledgment (Context Ack) message including the 'ISR Activated' parameter from the SGSN 420 maintains the context for the UE 100.
SGSN(420)은 HSS(540)로 UE(100)의 위치등록을 알리기 위해 업데이트 위치요청(Update Location Request) 메시지를 보낸다. 그리고, HSS(540)는 UE(100)이 RAU를 수행한 SGSN(420)의 ID(Identity)를 저장하며, SGSN(420)에게 UE(100)의 가입자 정보를 담은 업데이트 위치 확인(Update Location Ack) 메시지를 보내 응답한다.The SGSN 420 sends an Update Location Request message to inform the HSS 540 of the location registration of the UE 100. In addition, the HSS 540 stores an ID of the SGSN 420 in which the UE 100 performs the RAU, and confirms an update location including the subscriber information of the UE 100 in the SGSN 420. ) Respond by sending a message.
SGSN(420)은 UE(100)에게 RAU 수락(RAU Accept) 메시지를 보낸다. 이때, 상기 RAU 수락에는 ‘ISR 활성화(ISR Activated)’ 파라미터를 포함시킴으로써, UE(100)에게 ISR 기능이 활성화 (activate)되었음을 알린다.The SGSN 420 sends a RAU Accept message to the UE 100. At this time, the RAU acceptance includes the 'ISR Activated' parameter to inform the UE 100 that the ISR function is activated.
이상, 상기 어태취 절차 및 상기 RAU 절차를 통하여, 단말의 위치를 등록하였고 또한, MME(510) 및 SGSN(420)이 ISR 기능을 지원하기에 ISR이 활성화되었다.As described above, the location of the terminal is registered through the attachment procedure and the RAU procedure, and the ISR is activated because the MME 510 and the SGSN 420 support the ISR function.
따라서, UE(100)가 다시 UTRAN에서 E-UTRAN로 이동함으로써, E-UTRAN 셀이 재선택(reselect)되더라도, 현재 ISR이 활성화되어 있기 때문에, UE(100)은 MME(510)로 위치 등록을 수행하지 않아도 된다.Accordingly, when the UE 100 moves back from the UTRAN to the E-UTRAN, even if the E-UTRAN cell is reselected, since the ISR is currently active, the UE 100 registers the location with the MME 510. You do not have to do it.
즉, ISR이 활성화(activate)된 후에, UE(100)은 SGSN(420)을 통해 등록한 RA(routing area) 및 MME(540)를 통해 등록한 TA(tracking area identity) 리스트를 벗어나지 않는 한, 네트워크로의 위치 등록을 다시 수행할 필요가 없다. 이러한 기능이, 곧 ISR이다. 한편, UE(100)이 SGSN(420)을 통해 등록한 RA(routing area)과 MME(510)를 통해 등록한 TAI(tracking area identity) 리스트를 합쳐 ISR 지역(area)라 한다. 이상과 같이, ISR 기능은 UE가 E-UTRAN과 UTRAN/GERAN 사이를 자주 이동하게 되는 경우 반복적인 위치등록 절차를 없앰으로써 네트워크 자원의 낭비를 줄일 수 있다.That is, after the ISR is activated, the UE 100 does not leave the routing area (RA) registered through the SGSN 420 and the tracking area identity (TA) registered through the MME 540, as long as it does not leave the network. There is no need to perform location registration again. This feature is called ISR. Meanwhile, a routing area (RA) registered by the UE 100 through the SGSN 420 and a tracking area identity (TAI) list registered through the MME 510 are referred to as an ISR area. As described above, the ISR function can reduce waste of network resources by eliminating the repetitive location registration procedure when the UE frequently moves between the E-UTRAN and the UTRAN / GERAN.
한편, ISR이 활성화된(activated) UE로 착신(MT: Mobile Terminating) 데이터가 있을 경우, UE에게 데이터를 보내기 위해 페이징을 하는 과정에 대해 살펴보면, S-GW가 P-GW로부터 데이터 또는 시그널링 메시지를 수신했을 경우, UE가 ISR 활성화 상태임을 알고 MME/SGSN으로 모두 DDN메시지를 보내게 된다. On the other hand, when there is Mobile Terminating (MT) data to an ISR activated UE, the process of paging to send data to the UE, the S-GW receives a data or signaling message from the P-GW If received, the UE knows that ISR is active and sends a DDN message to both MME / SGSN.
DDN 메시지를 수신한 MME/SGSN은 각각 eNodeB /RNC 로 페이징 요청을 하게 된다. UE는 자신이 속해있는 셀에서 페이징을 수신한 후 서비스 요청으로 페이징에 대한 응답을 하게 된다. The MME / SGSN receiving the DDN message makes a paging request to each of the eNodeB / RNC. After the UE receives the paging in the cell to which it belongs, the UE responds to the paging with the service request.
만일 UE가 E-UTRAN에 있었으면 MME가 베어러 변경 요청을 통해서 S-GW에게 UE가 E-UTRAN망에 있음을 알린다. S-GW는 UE가 E-UTRAN망에 있다는 것을 알게 된 후 스탑(Stop) 페이징 지시(indication)를 SGSN으로 보내고, 이를 받은 SGSN은 페이징을 그만하게 된다. 만일 UE가 UTRAN/GERAN에 있었을 경우에는 SGSN이 베러러 변경 요청을 통해서 S-GW에게 UE가 UTRAN/GERAN망에 있음을 알리고 S-GW는 MME에게 스탑 페이징 지시를 보내게 된다.If the UE was in the E-UTRAN, the MME informs the S-GW that the UE is in the E-UTRAN network through a bearer change request. The S-GW sends a stop paging indication to the SGSN after the UE knows that the UE is in the E-UTRAN network, and the SGSN receives the paging to stop paging. If the UE was in UTRAN / GERAN, SGSN informs the S-GW that the UE is in the UTRAN / GERAN network by requesting a bearer change, and the S-GW sends a stop paging indication to the MME.
도 13을 참조하여 ISR이 활성화 되어 있는 경우에 하향링크의 데이터 전달 과정을 살펴보면 아래와 같다.Referring to FIG. 13, the downlink data transfer process when the ISR is activated is as follows.
도 13은 ISR이 활성화 되어 있는 경우에 하향링크의 데이터 전달을 도시한 신호 흐름도이다.13 is a signal flow diagram illustrating downlink data transmission when ISR is activated.
도 13은 ISR(Idle mode Signalling Reduction)이 활성화된 상태를 전제한다. 한, 도 13은 ISR이 활성화(activate)되어 있는 경우, 휴지모드(idle mode) 상태(또는 ECM_IDLE 상태)인 단말로 어떻게 하향링크 데이터(downlink data)를 전달하는지를 보여준다.FIG. 13 assumes that ISR (Idle mode Signaling Reduction) is activated. In addition, FIG. 13 shows how downlink data is transmitted to a UE in idle mode (or ECM_IDLE state) when ISR is activated.
이하에서는 UE(100)이 E-UTRAN 셀에 캠프 온(camp on)하고 있는 상태를 중심으로 설명한다.Hereinafter, the UE 100 will be described centering on a state where the E-UTRAN cell is camped on.
1. P-GW(530)를 거쳐 서빙 게이트웨이(Serving GW: 이하 ‘S-GW’라 한다)(520)가 UE(100)에 대한 하향링크 데이터 패킷(downlink data packet)을 수신한다.1. The Serving Gateway (Serving GW: hereinafter referred to as 'S-GW') 520 receives the downlink data packet for the UE 100 via the P-GW 530.
2a. S-GW(50)는 하향링크 데이터 패킷(downlink data packet)을 버퍼링하고, 하향링크 데이터 패킷의 수신자인 UE(100)를 서비스하고 있는 이동성 관리 노드(mobility management node) 또는 이동성 관리 엔티티(MME: mobility management entity)를 식별한다(identify). 이러한 S-GW(520)의 식별절차에 의해, 상기 UE(100)에 대해 ISR이 활성화(activate)되어 있음을 확인한 후, 이동성 관리 노드 즉, MME(510)와 SGSN(410) 모두가 UE(100)를 서비스하고 있음을 식별한다. 따라서, S-GW(520)는 상기 UE(100)를 서비스하고 있는 MME(510)와 SGSN(410) 모두에게 페이징(paging) 요청을 해야 한다.2a. The S-GW 50 buffers a downlink data packet and serves a mobility management node or a mobility management entity (MME) serving a UE 100 that is a receiver of the downlink data packet. identify the mobility management entity. By the identification procedure of the S-GW 520, after confirming that the ISR is activated for the UE 100, the mobility management node, that is, the MME 510 and the SGSN 410, both of the UE ( Identify that it is servicing 100). Therefore, the S-GW 520 must make a paging request to both the MME 510 and the SGSN 410 serving the UE 100.
즉, S-GW(520)는 MME(510) 및 SGSN(410)으로 다운링크 데이터 통지 메시지(DDN: Downlink Data Notification)를 각각 보낸다.That is, the S-GW 520 sends a downlink data notification message (DDN) to the MME 510 and the SGSN 410, respectively.
2b. 상기 다운링크 데이터 통지 메시지(Downlink Data Notification)에 대한 응답으로, MME(510) 및 SGSN(410) 각각은 다운링크 데이터 통지 확인 메시지(DDN ACK: Downlink Data Notification ACK)를 S-GW(520)에게 보낸다. 2b. In response to the downlink data notification message, each of the MME 510 and SGSN 410 sends a downlink data notification acknowledgment message (DDN ACK) to the S-GW 520. send.
3a(3b). 그리고, MME(510) 및 SGSN(410) 각각은 자신이 서비스하는 네트워크를 통하여 UE(100)에게 페이징 메시지를 보낸다. 3a (3b). In addition, each of the MME 510 and the SGSN 410 sends a paging message to the UE 100 through its network.
즉, MME(510)는 UE(100)가 등록한 트래킹 지역(tracking area(s))에 속하는 각 eNodeB(200)에게 페이징(Paging) 메시지를 보낸다(2a). 한편, SGSN(410)은 RNC/BSC(300)로 페이징 메시지를 보낸다(2b).That is, the MME 510 sends a paging message to each of the eNodeBs 200 belonging to the tracking area (s) registered by the UE 100 (2a). Meanwhile, SGSN 410 sends a paging message to RNC / BSC 300 (2b).
4a(4b). MME(510)로부터 상기 페이징 메시지를 수신한 eNodeB(200)들은 UE(100)에게 페이징을 한다(4a). 한편, SGSN(410)으로부터 상기 페이징 메시지를 수신한 RNC/BSC(300)는 UE(100)에게 페이징을 한다(4b).4a (4b). The eNodeBs 200 that receive the paging message from the MME 510 page the UE 100 (4a). Meanwhile, the RNC / BSC 300 that receives the paging message from the SGSN 410 makes a paging to the UE 100 (4b).
그런데, UE(100)가 현재 E-UTRAN 셀(cell)에 캠프 온(camp on)하고 있는 것으로 전제한 바, 결국 UE(100)는 E-UTRAN을 경유한 페이징(즉, 전술된 3a번 ~ 4a번 단계)에 대하여 응답을 하게 된다. However, it is assumed that the UE 100 is currently camping on the E-UTRAN cell, so that the UE 100 eventually paging through the E-UTRAN (that is, the above-mentioned 3a ~). Answer step 4a).
5. 그리고, 단말(100)은 서비스 요청 절차(Service Request Procedure)를 수행함으로써, E-UTRAN을 경유하는 경로(path)로 사용자 평면(user plane)을 설정(setup)한다. 5. Then, the terminal 100 sets up a user plane as a path via the E-UTRAN by performing a service request procedure.
6a(6b). 다음으로, ISR이 활성화되고 페이징 응답이 수신되면, S-GW(520)는 MME(510) 및 SGSN(410) 각각에 대하여 스탑 페이징(Stop paging)을 송신한다.6a (6b). Next, when the ISR is activated and a paging response is received, the S-GW 520 transmits stop paging for each of the MME 510 and SGSN 410.
이후, S-GW(520)는 E-UTRAN을 통해(즉, eNodeB(200)를 경유하여) UE(100)로 다운링크 데이터(downlink data)를 전송한.The S-GW 520 then transmits downlink data to the UE 100 via the E-UTRAN (ie, via the eNodeB 200).
한편, UE(100)가 만일 E-UTRAN이 아닌, UTRAN/GERAN 셀(cell)에 캠프 온(camp on)하고 있다면, UE(100)는 UTRAN/GERAN을 경유하는 페이징(즉, 전술된 3b번 ~ 4b번 단계)에 응답할 것이다. 그리고, 전술된 5번 단계의 사용자 평면이 설정되면, 다운링크 데이터는 S-GW(520)로부터 UTRAN/GERAN을 통해(즉, RNC/BSC(300) 및 NodeB(미도시)를 통해) UE(100)로 전송될 것이다.On the other hand, if the UE 100 is camping on the UTRAN / GERAN cell, not the E-UTRAN, the UE 100 is paging via the UTRAN / GERAN (ie, 3b described above) ~ Step 4b). Then, if the user plane of step 5 described above is set, downlink data is transmitted from the S-GW 520 via UTRAN / GERAN (that is, through the RNC / BSC 300 and NodeB (not shown)). 100).
이상과 같이, 네트워크는 단말의 위치를 ISR 지역(area) 단위로 관리하게 됨으로써, 휴지 모드(idle mode) 상태인 UE(100)에게 다운링크 데이터(downlink data)를 전송하기 위해 ISR 지역으로 페이징을 한다.As described above, the network manages the location of the UE in units of an ISR, thereby paging to the ISR region in order to transmit downlink data to the UE 100 in an idle mode. do.
상기 서비스 요청 절차(Service Request Procedure)에 대한 상세한 설명은 표준문서 3GPP TS 23.401의 5.3.4절에 개진된 사항을 원용한다.For the detailed description of the above service request procedure, use the items described in Section 5.3.4 of 3GPP TS 23.401.
< WLAN 연결 모드 ><WLAN Connection Mode>
S2a 인터페이스를 통해 WLAN에 접속하는 TWAN에서 지원하는 WLAN 연결모드에는 SCM(Single-Connection Mode)와 MCM(Multi-Connection Mode) 가 있다. WLAN connection modes supported by TWAN connecting to WLAN through S2a interface include SCM (Single-Connection Mode) and MCM (Multi-Connection Mode).
SCM에서는 기존의 WLAN-AP를 그대로 사용하여 동작시킬 수 있으나 하나의 커넥션/연결만 지원할 수 있다. SCM can operate using the existing WLAN-AP as it is, but can support only one connection / connection.
MCM에서는 기존의 WLAN-AP 에 WLCP(WLAN Control Protocol)을 추가적으로 지원해야 하며 UE도 WLCP를 지원해야 한다. 하지만 동시에 여러 개의 커넥션/연결을 지원할 수 있는 장점이 있다. MCM must support WLCP (WLANP) in addition to existing WLAN-AP, and UE must also support WLCP. But it has the advantage of supporting multiple connections / connections at the same time.
NBIFOM은 WLAN MCM에서 WLCP를 통해서 라우팅 규칙(routing rule)을 UE로 전달할 수 있지만 SCM 에서는 아직까지 라우팅 규칙을 전달할 수 있는 방법이 제시되어 있지 않으며 현재 3GPP 네트워크를 통해서 전달하는 방법과 확장 EAP 프로토콜(extended EAP protocol)을 사용하여 라우팅 규칙을 전달하는 방법이 논의 중에 있다. NBIFOM can forward routing rules to the UE through WLCP in WLAN MCM, but SCM has not yet presented a way to forward routing rules. Currently, NBIFOM forwards through 3GPP network and extended EAP protocol (extended). A method of delivering routing rules using the EAP protocol is under discussion.
본 명세서에서는 TWAN 및/또는 UE가 MCM을 지원하지 않아서 또는 UE가 아직 WLAN에 접속하지 않은 상태에서(즉, 3GPP access에만 접속한 상태) 혹은 다른 기타 이유로 라우팅 규칙을 WLAN로 보낼 수 없는 상황에서의 동작을 제안한다.In this specification, the TWAN and / or the UE does not support the MCM or the UE is not yet connected to the WLAN (i.e., connected only to 3GPP access) or other circumstances for which routing rules cannot be sent to the WLAN. Suggest an action.
상기 P-GW가 UE로 전송하고자 하는 라우팅 규칙은 IP 플로우(flow(s))를 WLAN에서 3GPP 액세스로 변경하기 위함일 수도 있고 그 반대로 3GPP 액세스에서 WLAN으로 변경하기 위함일 수도 있다.The routing rule that the P-GW intends to transmit to the UE may be for changing an IP flow (s) from WLAN to 3GPP access, or vice versa to change from 3GPP access to WLAN.
한편, 네트워크(통상적으로 P-GW)는 UE와의 NBIFOM 사용을 활성화하기 위해서는 UE, 서빙 네트워크 노드(예를 들어, MME 또는 SGSN), S-GW의 NBIFOM 지원 여부(capability)를 확인한다. Meanwhile, in order to activate NBIFOM use with a UE, a network (usually a P-GW) checks whether a UE, a serving network node (eg, MME or SGSN), and S-GW support NBIFOM.
여기서 P-GW는 NBIFOM을 지원하는 것으로 가정한다. 이러한 과정을 NBIFOM 능력 발견/협상(NBIFOM capability discovery/negotiation) 과정이라고 한다. It is assumed here that the P-GW supports NBIFOM. This process is called a NBIFOM capability discovery / negotiation process.
UE가 PDN 커넥션/연결 요청(PDN connection request)을 할 때 PCO(Protocol Configuration Option)에 NBIFOM 지원 여부를 알리며 P-GW 또한 위의 확인을 통해 PCO를 통해서 UE로 NBIFOM 지원 여부를 알린다. When the UE makes a PDN connection / connection request (PDN connection request), it informs the Protocol Configuration Option (PCO) whether NBIFOM is supported, and the P-GW also informs the UE whether the NBIFOM is supported by the PCO through the above check.
UE가 PDN 커넥션 요청 과정 중에 MME/SGSN/S-GW는 P-GW에게 NBIFOM 지원여부를 P-GW에게 알릴 수 있다.The MME / SGSN / S-GW may inform the P-GW whether the NBIFOM is supported by the UE during the PDN connection request process.
그러나, 상기 NBIFOM 능력 발견/협상(NBIFOM capability discovery/negotiation)은 PDN 커넥션을 맺을 경우에 하도록 되어 있다. 따라서 UE가 이동성이 있어서 서빙 노드(예를 들어, MME/SGSN)가 바뀌는 경우에는 P-GW에서 해당 서빙 노드가 NBIFOM을 지원하는지 알지 못하고 NBIFOM 요청을 보내는 상황이 발생할 수 있다. However, the NBIFOM capability discovery / negotiation is made when a PDN connection is made. Therefore, when the serving node (eg, MME / SGSN) is changed due to mobility of the UE, a situation in which the serving node supports NBIFOM in the P-GW may send a NBIFOM request.
이 경우, MME/SGSN이 NBIFOM을 지원하지 못하는 상황에서 필요 없는 NBIFOM과 관련된 시그널링을 수행하게 된다. 특히 UE가 ISR 모드 내지 ISR 활성화 상태에 있을 경우에는 E-UTRAN 및 UTRAN/GERAN 양쪽으로 페이징을 통해 UE를 호출하는 과정이 필요해 더 많은 시그널링이 발생하게 된다. In this case, in the situation where the MME / SGSN does not support NBIFOM, unnecessary NBIFOM related signaling is performed. In particular, when the UE is in the ISR mode or the ISR activation state, it is necessary to call the UE through paging to both the E-UTRAN and the UTRAN / GERAN so that more signaling occurs.
구체적으로, UE는 도 12에 개시된 바와 같이 E-UTRAN 액세스에 어테치(attach) 한 후 E-UTRAN을 벗어나서 UTRAN에서 RAU(Routeing Area Update) 과정을 통해 ISR 활성화(activated) 상태가 된다. In detail, as shown in FIG. 12, the UE attaches to the E-UTRAN access and then leaves the E-UTRAN to become an ISR activated state through a Routing Area Update (RAU) process in the UTRAN.
UE가 최초에 E-UTRAN에서 어테치 시 PDN 커넥션 요청을 함께 수행하는 바, 이 때 자신이 NBIFOM을 지원함을 네트워크로 알리며, MME 및 S-GW 역시 자신이 NBIFOM을 지원함을 P-GW로 알린다. 이를 통해 P-GW는 NBIFOM을 활성화(enable)시킬 수 있다.The UE initially performs a PDN connection request at the time of attachment in the E-UTRAN. At this time, the UE informs the network that it supports NBIFOM, and the MME and S-GW also inform the P-GW that they support NBIFOM. This allows the P-GW to enable NBIFOM.
UE가 UTRAN으로 이동하여 RAU(Routeing Area Update) 과정을 수행 시에는 상기 NBIFOM 능력 발견/협상 과정이 발생하지 않는다. 따라서, SGSN이 NBIFOM을 지원하지 못하는데도 불구하고 P-GW는 이를 알 방법이 없다. 이에 여전히 NBIFOM은 활성화(enable)되어 있는 상태가 된다.When the UE moves to UTRAN to perform a Routing Area Update (RAU) process, the NBIFOM capability discovery / negotiation process does not occur. Thus, although SGSN does not support NBIFOM, the P-GW has no way of knowing this. NBIFOM is still enabled.
이후에 UE는 추가적으로 WLAN으로 PDN 커넥션을 만들어 비디오 스트리밍과 같은 서비스를 받고 있으며, MME는 NBIFOM을 지원하지만 SGSN은 NBIFOM을 지원하지 않는다. 이는 SGSN은 P-GW가 UE로 전송하는 NBIFOM 요청을 전달할 수 없음을 의미한다. Afterwards, the UE additionally makes a PDN connection to the WLAN to receive services such as video streaming. The MME supports NBIFOM, but SGSN does not support NBIFOM. This means that the SGSN cannot carry the NBIFOM request transmitted by the P-GW to the UE.
또한 WLAN은 SCM 모드로 동작하여 WLAN 쪽으로는 NBIFOM 요청을 보내지 못해 3GPP 액세스를 통해서 라우팅 규칙을 보내는 상황이다. 이때 UE를 서빙하는 모든 서빙 노드(즉, MME와 SGSN)가 NBIFOM을 지원하지 못함에도 불구하고 NBIFOM을 위한 서비스 요청을 수행하여 연결 모드(connected mode)로 전환하게 되며 불필요한 동작을 수행하여 전력을 낭비될 수 있다. 네트워크 또한 필요 없는 시그널링을 수행하여 네트워크에 부하를 줄 수 있다.In addition, the WLAN operates in SCM mode and cannot send an NBIFOM request to the WLAN, thus sending a routing rule through 3GPP access. At this time, even though all serving nodes serving the UE (i.e., MME and SGSN) do not support NBIFOM, it performs a service request for NBIFOM to switch to connected mode and wastes power by performing unnecessary operations. Can be. The network can also put unnecessary load on the network by performing unnecessary signaling.
도 14는 ISR이 활성화된 경우에 있어서 NBIFOM 요청에 의한 시그널링을 나타낸다.14 illustrates signaling by an NBIFOM request when ISR is activated.
도 14를 참조하면, P-GW(530)는 PCRF(550)로부터 라우팅 규칙을 변경하라는 요청을 받으면 NBIFOM 요청을 위해서 UE(100)에게 업데이트 베어러 요청(Update bearer request) 메시지를 보낸다. Referring to FIG. 14, when the P-GW 530 receives a request to change a routing rule from the PCRF 550, the P-GW 530 transmits an Update bearer request message to the UE 100 for an NBIFOM request.
이를 받은 S-GW(520)는 UE(100)가 ISR이 활성화된(activated) 상태에 있음을 알고 MME(510a)/SGSN(510b) 양쪽으로 DDN(Downlink Data Notification) 메시지를 전송하게 된다. Upon receiving this, the S-GW 520 knows that the UE 100 is in an activated ISR state and transmits a downlink data notification (DDN) message to both the MME 510a / SGSN 510b.
이를 받은 MME(510a)/SGSN(510b)은 UE(100)로 페이징을 수행한다. UE(100)는 UTRAN 망에 있다가 페이징을 듣고 SGSN(510b)으로 서비스 요청을 보낸다. 이를 받은 SGSN(510b)은 라디오(radio) 구간의 자원을 할당하고 UE(100)를 연결 모드 가 되도록 한 후 S-GW(520)로 베어러 변경 요청(Modify bearer request)를 보낸다.MME (510a) / SGSN (510b) receives the paging to the UE (100). The UE 100 is in the UTRAN network, listens to paging, and sends a service request to the SGSN 510b. The SGSN 510b receives the resource allocation in the radio section and sets the UE 100 to the connected mode, and then sends a bearer change request to the S-GW 520.
베어러 변경 요청을 SGSN(510b)으로 받은 S-GW(520)는 UE(100)가 UTRAN망에 접속해 있음을 알고 MME(510a)로 스탑 페이징 지시(stop paging indication)을 보내고 MME(510a)는 이를 받고 페이징을 멈추게 된다. The S-GW 520 that receives the bearer change request to the SGSN 510b knows that the UE 100 is connected to the UTRAN network and sends a stop paging indication to the MME 510a, and the MME 510a sends a stop paging indication. You will receive this and will stop paging.
S-GW(520)는 P-GW(530)와 베어러 변경 요청/응답(Modify bearer request/response) 절차를 수행한 후 버퍼링하고 있던 업데이트 베어러 요청(Update bearer request)를 SGSN(510b)로 전송하게 된다. The S-GW 520 performs a bearer change request / response procedure with the P-GW 530 and then transmits an update bearer request that has been buffered to the SGSN 510b. do.
업데이트 베어러 요청을 받은 SGSN(510b)은 이 메시지가 NBIFOM 요청이므로 이를 해석하지 못하고 업데이트 베어러 응답(Update bearer response)을 원인 정보인 Cause IE를 "서비스가 지원 안됨(Service not supported)"으로 보내 요청을 거절하게 된다. The SGSN 510b that received the update bearer request could not interpret the message as it was an NBIFOM request and sent an update bearer response, Cause IE, the cause information, as "Service not supported" to send the request. I will refuse.
이를 받은 S-GW(520)는 업데이트 베어러 응답(Update bearer response)을 원인 정보인 Cause IE를 "서비스가 지원 안됨(Service not supported)"으로 P-GW(530)까지 전달하게 된다.The S-GW 520 receives the update bearer response and transmits Cause IE, which is the cause information, to the P-GW 530 as "Service not supported".
<본 명세서의 개시들>Disclosures of the Invention
본 명세서의 개시들은 UE가 ISR 모드에 있을 경우 NBIFOM 요청에 의해서 발생되는 시그널링을 줄이기 위한 메커니즘을 제안한다. The disclosures herein propose a mechanism for reducing signaling caused by NBIFOM requests when the UE is in ISR mode.
특히, 본 명세서의 개시들은 UE가 NBIFOM 요청이 P-GW에서 발생하는 조건을 만족하는 경우 국부적 ISR 비활성화(local ISR deactivation)를 통해서 UTRAN/E-UTRAN 모두 페이징이 이루어 지지 않도록 하는 방안과 DDN 메시지에 S-GW(520)가 버퍼링하는 데이터가 NBIFOM 요청임을 알려서 MME/SGSN이 NBIFOM을 지원하지 않을 경우 서비스 요청을 수행하지 않도록 하는 방안을 제안한다. 각각의 동작은 독립적으로 수행될 수 있으며, 함께 수행될 수도 있다.In particular, the disclosures herein describe how to prevent paging of both UTRAN / E-UTRAN through local ISR deactivation when the UE satisfies the condition that the NBIFOM request occurs in the P-GW and the DDN message. The S-GW 520 informs that the data buffered is an NBIFOM request, and proposes a method of not performing a service request when the MME / SGSN does not support NBIFOM. Each operation may be performed independently or may be performed together.
구체적으로 본 명세서의 개시들 중 제1 개시는 국부적 ISR 비활성화(local ISR deactivation)를 통한 시그널링 감소 방안을 제안하고, 본 명세서의 개시들 중 제2 개시는 DDN을 통한 시그널링 감소 방안을 제안한다.Specifically, the first of the disclosures proposes a signaling reduction scheme through local ISR deactivation, and the second of the disclosures of the disclosure proposes a signaling reduction scheme through DDN.
이하 본 명세서의 개시들에 대해 구체적으로 설명한다.Hereinafter, the disclosures of the present specification will be described in detail.
I. 본 명세서의 제1 개시I. First disclosure herein
본 명세서의 제1 개시는 국부적 ISR 비활성화을 통한 시그널링 감소 방안을 아래와 같이 제공한다.The first disclosure of the present specification provides a method for reducing signaling through local ISR deactivation as follows.
1. 국부적 ISR 비활성화을 통한 시그널링 감소 방안(UE 측면)1. Reduction of Signaling by Local ISR Deactivation (UE Side)
ISR은 인터-RAT 셀 재선택(inter-RAT cell reselection)을 할 때 시그널링을 줄이기 위한 방법이다. ISR 활성화는 네트워크에서 결정하며 RAU(Routing Area Update)/TAU(Tracking Area Update) 승인(accept) 메시지에 ISR 활성화 여부를 알려주게 된다. ISR is a method for reducing signaling when inter-RAT cell reselection is performed. The ISR activation is determined by the network and the RAU / Tracking Area Update (RAU) acknowledgment (ACK) message indicates whether to activate the ISR.
ISR이 활성화되어 있을 경우 UE(100)는 RAT이 바뀌더라도 이미 위치 등록을 수행한 트래킹 지역(tracking area)과 라우팅 지역(routing area)에 있다면 RAU/TAU를 하지 않아도 된다. When the ISR is activated, the UE 100 does not need to perform the RAU / TAU if it is in the tracking area and the routing area where the location registration has already been performed even if the RAT is changed.
따라서 네트워크에서는 UE(100)가 어떤 액세스(Access)에 있는지는(즉, E-UTRAN에 있는지 아니면 UTRAN/GERAN에 있는지) 알 수 없으며 착신(MT) 데이터가 있을 경우 S-GW(520)가 MME(510a)/SGSN(510b) 양쪽으로 모두 페이징을 요청하여 UE의 응답을 받는다. Therefore, in the network, the UE 100 does not know which access (ie, whether it is in E-UTRAN or in UTRAN / GERAN), and if there is incoming (MT) data, the S-GW 520 may determine the MME ( 510a) / SGSN 510b both request paging to receive a response from the UE.
UE(100)는 특정한 조건하에서 TAU/RAU에 있는 TIN(Temporary Identity used in Next update) 값을 변경하여 네트워크와의 시그널링 없이 국부적으로(locally) ISR을 비활성화(deactivation)할 수 있다. 상기 특정한 조건은 3GPP TS 23.401의 4.3.5.6절(Idle mode signalling reduction function)에 개시된 내용을 참고하기로 한다.The UE 100 may deactivate the ISR locally without signaling with the network by changing the Temporary Identity used in Next update (TIN) value in the TAU / RAU under certain conditions. For the specific conditions, refer to the contents disclosed in Section 4.3.5.6 (Idle mode signaling reduction function) of 3GPP TS 23.401.
본 명세서의 제1 개시는 UE(100)가 P-GW(530)로부터 NBIFOM 요청이 발생할 수 있는 환경이 되는 경우를 다음과 같은 절차로 확인하고 TAU/RAU의 TIN 값을 변경하여 ISR을 비활성화할 것을 제안한다.그러나 수행하는 절차는 아래와 순서를 달리 하여도 무방하다.According to the first disclosure of the present specification, when the UE 100 enters an environment where an NBIFOM request may be generated from the P-GW 530, the UE 100 may deactivate the ISR by changing the TIN value of the TAU / RAU in the following procedure. However, the procedure to be performed may be performed in the following order.
- UE(100)가 PDN 커넥션 수립(PDN connection establish) 과정에서 NBIFOM 능력 협상(capability negotiation)을 수행해 UE(100)/P-GW(530) 모두 NBIFOM을 지원함을 확인한다. The UE 100 performs NBIFOM capability negotiation during a PDN connection establishment to confirm that both the UE 100 and the P-GW 530 support NBIFOM.
- UE(100)가 WLAN에 SCM로 어테치 했는지 확인한다. 또는 WLAN 연결 여부는 관계없이 WLAN 커버리지(coverage) 안에 들어가 있는지 확인한다.Check if UE 100 attaches to WLAN by SCM. Or check whether you are in WLAN coverage, regardless of whether or not you have a WLAN connection.
- UE(100)가 PDN 커넥션 수립을 한 TA(Tracking Area)/RA(Routing Area)를 벗어나 다른 TA/RA로 이동했는지 확인한다.The UE 100 checks whether the UE 100 moves out of a tracking area (TA) / routing area (RA) where a PDN connection is established and moves to another TA / RA.
- UE(100)가 현재 ISR 활성화 상태인지 확인한다.Check whether the UE 100 is currently in an ISR activation state.
위의 조건을 모두 만족하면 UE(100)는 국부적 ISR 비활성화(local ISR deactivation)를 수행한다. If all of the above conditions are met, the UE 100 performs local ISR deactivation.
즉, 본 명세서의 제1 개시에 따르면, 단말(UE, 100)은 ISR 비활성화 조건이 만족되었는지 확인하고, 상기 ISR 비활성화 조건이 만족된 경우, ISR을 국부적으로(Locally) 비활성화할 수 있다.That is, according to the first disclosure of the present specification, the terminal UE 100 may check whether the ISR deactivation condition is satisfied and, if the ISR deactivation condition is satisfied, locally deactivate the ISR.
여기서, 상기 ISR 비활성화 조건은, 상기 단말 및 PDN(Packet Data Network) 게이트 웨이(P-GW, 530)가 모두 NBIFOM(Network Based IP Flow Mobility)을 지원하는 경우, 상기 단말이 WLAN에 SCM으로 어태치(Attach)되어 있거나 WLAN 커버리지에 위치하는 경우, 상기 단말에 대한 PDN 커넉션이 수립된 후 상기 단말이 기존 TA(Tracking Area) 또는 RA(Routing Area)를 벗어나 다른 TA 또는 RA로 이동한 경우 및 상기 단말이 현재 ISR 활성화 상태인 경우를 의미할 수 있다.Here, the ISR deactivation condition, if the terminal and the PDN (Packet Data Network) gateway (P-GW, 530) both support NBIFOM (Network Based IP Flow Mobility), the terminal is attached to the WLAN to the SCM (Attach) or located in WLAN coverage, when the terminal moves out of the existing tracking area (TA) or routing area (TA) to another TA or RA after the PDN is established for the terminal and This may mean a case where the UE is currently in an ISR activation state.
여기서, 상기 국부적 ISR의 비활성화는, TAU 및 RAU 중 적어도 하나의 TIN을 변경함에 의해 이루어질 수 있다.In this case, the deactivation of the local ISR may be performed by changing the TIN of at least one of the TAU and the RAU.
또한, 상기 단말은, PDN 커넥션 수립 과정에서, 상기 단말이 상기 PDN 게이트 웨이와 서로의 NBIFOM 능력(Capability)을 확인하는 NBIFOM 능력 협상을 수행함에 의해 상기 단말 및 PDN 게이트 웨이가 모두 NBIFOM을 지원하는지 여부를 확인할 수 있다.In addition, the terminal, in the process of establishing a PDN connection, whether the terminal and the PDN gateway both support the NBIFOM by performing the NBIFOM capability negotiation to confirm the NBIFOM capability (Capability) with the PDN gateway. You can check.
여기서, ‘NBIFOM 능력 협상(capability negotiation)’은 UE와 P-GW는 서로의 NBIFOM 능력(capability)를 확인하는 과정을 의미할 수 있다.Here, 'NBIFOM capability negotiation' may mean a process in which the UE and the P-GW confirm each other's NBIFOM capability.
상기 NBIFOM 능력 협상과정은 PDN 수립(establishment) 과정이 수행되는 동안 진행되며, UE가 자신의 NBIFOM 능력을 상대에게 보내면, PGW가 NBIFOM을 지원하면 이를 확인하고 응답하는 방식으로 진행된다. 현재 TR 23.861에 제시된 해결 방안 중 제어 시그널링을 이용한 방식에서는 NBIFOM 능력을 PCO(Protocol Configuration Option)에 통해서 전달한다.The NBIFOM capability negotiation process is performed while the PDN establishment process is performed. When the UE sends its NBIFOM capability to the counterpart, the PGW supports NBIFOM and checks and responds to the NBIFOM capability. Currently, the solution proposed in TR 23.861 transfers NBIFOM capability through Protocol Configuration Option (PCO).
한편, NBIFOM을 지원하기 위해서 중간 노드들(intermediate nodes, 예를 들어, MME, SGW, SGSN, TWAG 등)들이 NBIFOM을 지원할 수 있도록 개선(enhanced)되어야 한다. 또한, 라우팅 규칙/필터(Routing rule/filter)를 전달하기 위해서 기존 과정의 변경이 필요하며 이를 중간 노드들이 지원해야 한다. Meanwhile, in order to support NBIFOM, intermediate nodes (eg, MME, SGW, SGSN, TWAG, etc.) must be enhanced to support NBIFOM. In addition, in order to deliver routing rules / filters, an existing process needs to be changed and intermediate nodes must support them.
중간 노드들은 자신의 NBIFOM 능력을 P-GW에 지시(indicate)해 주어야 한다. 이러한 내용은 TR 23.861의 9.2절 및 7.3.2 절의 내용을 원용하도록 한다.Intermediate nodes must indicate their NBIFOM capabilities to the P-GW. This information shall be taken from the provisions of sections 9.2 and 7.3.2 of TR 23.861.
도 15는 본 명세서의 제1 개시에 따른 시그널링 감소 이득을 나타낸다.15 illustrates a signaling reduction gain according to the first disclosure of the present specification.
도 15를 참조하면, UE(100)가 국부적 ISR 비활성화를 통해서 ISR이 비활성화된 경우 S-GW(520)는 UTRAN 망으로만 DDN을 요청하므로 E-UTRAN 망으로의 페이징 절차가 생략하므로 그와 관련된 시그널링이 줄어들게 된다. Referring to FIG. 15, when the UE 100 deactivates ISR through local ISR deactivation, since the S-GW 520 requests a DDN only to the UTRAN network, a paging procedure to the E-UTRAN network is omitted. Signaling is reduced.
즉, 본 명세서의 제1 개시에 따르면, 도 15의 단계 3a, 4a 및 6a가 실제적으로 줄어들게 되는 시그널링이 될 수 있다.That is, according to the first disclosure of the present specification, steps 3a, 4a, and 6a of FIG. 15 may be signaling, which is substantially reduced.
2. 국부적 ISR 비활성화을 통한 시그널링 감소 방안(네트워크 측면)2. Reduction of Signaling by Local ISR Deactivation (Network Side)
네트워크에서 ISR을 활성화하기 위해서는 MME(510a)/SGSN(510b) 사이에 시그널링을 통해서 ISR을 지원하는지 확인하는 과정을 거치게 된다. 이때 MME(510a)/SGSN(510b)은 각각 자신이 NBIFOM을 지원하는지 여부를 알고 있으므로 MME(510a)/SGSN(510b) 사이의 시그널링을 통해서 서로의 NBIFOM 능력(capability)을 확인하고 NBIFOM 능력에 따라서 UE의 ISR 활성화를 허용할지를 결정할 수 있다.In order to activate ISR in the network, a process of checking whether ISR is supported through signaling between MME 510a / SGSN 510b is performed. At this time, since the MME 510a / SGSN 510b knows whether they support NBIFOM, the MME 510a / SGSN 510b checks each other's NBIFOM capabilities through signaling between the MME 510a / SGSN 510b and according to the NBIFOM capability. It may be determined whether to allow ISR activation of the UE.
이를 위해 MME(510a)/SGSN(510b)은 컨텍스트 요청(Context request) 메시지에 NBIFOM 지원하는지를 알려주고, 컨텍스트 요청을 받은 노드는 다음과 같이 ISR 지원 지시(ISR supported indication)를 설정한다.To this end, the MME 510a / SGSN 510b indicates whether NBIFOM is supported in the context request message, and the node receiving the context request sets an ISR supported indication as follows.
- ISR이 지원되는 경우-If ISR is supported
(1) MME(510a)/SGSN(510b) 모두 NBIFOM을 지원하면 ISR supported indication = true(1) If both MME (510a) / SGSN (510b) support NBIFOM, then ISR supported indication = true
(2) MME(510a)/SGSN(510b) 둘 중 하나라도 NBIFOM을 지원하지 않으면 ISR supported indication = false(2) If either MME (510a) / SGSN (510b) does not support NBIFOM, then ISR supported indication = false
- ISR을 지원하지 않는 경우-Does not support ISR
: ISR supported indication = falseISR supported indication = false
II. 본 명세서의 제2 개시II. Second disclosure of the present specification
본 명세서의 제2 개시는 DDN을 통한 시그널링 감소 방안을 아래와 같이 제공한다.The second disclosure of the present specification provides a method for reducing signaling through DDN as follows.
S-GW(520)는 P-GW(530)로부터 NBIFOM 요청을 받는 경우, UE가 ISR 활성화된 경우이면 DDN 메시지를 MME(510a)/SGSN(510b)로 보낸다. 이때 DDN 메시지가 P-GW(530)의 NBIFOM 요청 때문에 발생했다는 정보를 함께 보낸다. 이는 일례로 DDN의 'private extension field'를 이용하여 'NBIFOM triggered'라고 마킹(Marking) 또는 표시함으로써 구현이 가능하다.When the S-GW 520 receives the NBIFOM request from the P-GW 530, and sends the DDN message to the MME 510a / SGSN 510b when the UE is ISR activated. At this time, the DDN message is sent with the information that occurred due to the NBIFOM request of the P-GW (530). This can be implemented, for example, by marking or marking 'NBIFOM triggered' using the 'private extension field' of the DDN.
본 명세서의 제2 개시에 따른 DDN을 통한 시그널링 방안은 아래와 같이 제1 방안과 제2 방안으로 나뉠 수 있다.The signaling scheme via DDN according to the second disclosure of the present specification may be divided into a first scheme and a second scheme as follows.
1. 제1 방안1. First Plan
제1 방안에 따르면, DDN을 받은 MME(510a)/SGSN(510b)은 페이징을 통해 UE(100)를 찾고, UE(100)로부터 서비스 요청을 받은 MME(510a)/SGSN(510b)은 자신이 NBIFOM을 지원하면 서비스 요청 절차를 수행하고, 만일 NBIFOM을 지원하지 않는다면 서비스 거절(service reject)(원인 정보(Cause #97): Message type non-existent or not implemented)을 통해서 UE(100)가 아이들(Idle) 모드를 유지하도록 한다.According to the first scheme, the MME 510a / SGSN 510b that has received the DDN finds the UE 100 through paging, and the MME 510a / SGSN 510b that has received the service request from the UE 100 has its own. If the NBIFOM is supported, the service request procedure is performed. If the NBIFOM is not supported, the UE 100 transmits a child through a service reject (Cause # 97: Message type non-existent or not implemented). Maintain Idle) mode.
그리고 MME(510a)/SGSN(510b)은 원인 정보(Cause IE(Information Element))를‘서비스가 지원 안됨(Service not supported)’으로 하여 DDN 실패 메시지(DDN Failure message)를 S-GW(520)로 전달하고, S-GW(520)는 P-GW(530)의 NBIFOM 요청에 대한 응답으로 원인 정보(Cause IE)를 서비스가 지원 안됨(Service not supported)’으로 하여 업데이트 베어러 응답(Update bearer response)을 보낸다. 이 경우, P-GW(530)는 MME(510a)/SGSN(510b)이 NBIFOM을 지원하지 않는다는 것을 알고 더 이상 NBIFOM 요청을 보내지 않는다.In addition, the MME 510a / SGSN 510b sets the cause information (Cause Information Element (IE)) as 'Service not supported' and sends a DDN Failure message to the S-GW 520. S-GW 520 updates the bearer response with the cause information (Cause IE) as 'Service not supported' in response to the NBIFOM request of the P-GW 530. Send) In this case, the P-GW 530 knows that the MME 510a / SGSN 510b does not support NBIFOM and no longer sends an NBIFOM request.
도 16은 본 명세서의 제2 개시 중 제1 방안에 따른 시그널링 감소 이득을 나타낸다.16 illustrates a signaling reduction gain according to the first method during the second disclosure of the present specification.
도 16을 참조하면, S-GW(520)는 NBIFOM 요청을 위한 업데이트 베어러 요청(Update bearer request)을 받으면 DDN 메시지의 'private extension field'에 'NBIFOM triggered'라고 마킹(marking) 또는 표시하여 DDN 메시지를 MME(510a)/SGSN(510b)으로 전달한다.Referring to FIG. 16, when the S-GW 520 receives an update bearer request for an NBIFOM request, the S-GW 520 marks or marks 'NBIFOM triggered' in a 'private extension field' of the DDN message to display a DDN message. To MME 510a / SGSN 510b.
즉, 상기 DDN 메시지는 상기 DDN 메시지가 상기 NBIFOM 요청에 의한 것임을 나타내는 정보(예를 들어, 상기 'private extension field'에 마킹된 'NBIFOM triggered' 정보)를 포함할 수 있다.That is, the DDN message may include information indicating that the DDN message is due to the NBIFOM request (eg, 'NBIFOM triggered' information marked in the 'private extension field').
이를 받은 MME(510a)/SGSN(510b)은 각각 페이징을 수행한다. 페이징 메시지에도 'NBIFOM triggered'가 마킹되어 보내어 지게 된다.The MME 510a / SGSN 510b receiving the paging performs paging. 'NBIFOM triggered' is also marked and sent to the paging message.
즉, 상기 페이징 메시지도 상기 페이징 메시지가 상기 NBIFOM 요청에 의한 것임을 나타내는 정보(예를 들어, 상기 'NBIFOM triggered')를 포함할 수 있다.That is, the paging message may also include information indicating that the paging message is due to the NBIFOM request (eg, 'NBIFOM triggered').
UE(100)는 UTRAN 망에 있다가 페이징을 듣고 서비스 요청을 보낸다.The UE 100 is in the UTRAN network, listens to paging, and sends a service request.
UE(100)는 페이징 메시지에 있는 마킹된 'NBIFOM triggered'를 보고 서비스 요청을 할 때 서비스 요청이 NBIFOM에 의해 요청 또는 트리거된 페이징(NBIFOM triggered paging)에 대한 응답임을 알 수 있도록 서비스 요청 메시지에 'NBIFOM triggered'로 마킹하여 전송한다. When the UE 100 sees the marked 'NBIFOM triggered' in the paging message and makes a service request, the UE 100 may indicate that the service request is a response to the request or triggered paging (NBIFOM triggered paging) by the NBIFOM. Mark and send NBIFOM triggered '.
서비스 요청을 받은 SGSN(510b)은 서비스 요청이 NBIFOM 요청에 의해서 트리거되었음을 알기 때문에 자신이 NBIFOM을 지원하지 않으므로 UE(100)의 서비스 요청을 원인 정보(예를 들어, cause value #97)를 '메시지 유형이 존재하지 않거나 구현되지 않음(Message type non-existent or not implemented)'로 하여 거절(도 16의 단계 5a)하고 S-GW(520)에게 원인 정보(Cause IE)를‘서비스가 지원 안됨(Service not supported)’으로 하여 DDN 거절 지시(DDN Failure indication) 또는 DDN 거절 메시지를 보내게 된다. Since the SGSN 510b receiving the service request knows that the service request is triggered by the NBIFOM request, the SGSN 510b does not support the NBIFOM and thus receives the service information of the UE 100 as the cause information (for example, cause value # 97). Reject (Step 5a of FIG. 16) as 'Message type non-existent or not implemented' and cause information (Cause IE) to the S-GW 520. Service not supported 'will send either a DDN failure indication or a DDN rejection message.
이를 받은 S-GW(520)는 UE(100)가 SGSN(510b)의 페이징에 응답하였으나 SGSN(510b)이 NBIFOM을 지원하지 않았다고 판단할 수 있으므로 MME(510a)로 스탑 페이징 지시(stop paging indication)를 보내 페이징을 멈추게 한다.The S-GW 520 receives the stop paging indication to the MME 510a since the UE 100 responds to the paging of the SGSN 510b but may determine that the SGSN 510b does not support NBIFOM. To stop paging.
S-GW(520)는 P-GW(530)의 업데이트 베어러 요청(Update bearer request)에 대한 응답으로 원인 정보(Cause IE)를‘서비스가 지원 안됨(Service not supported)’으로 하여 업데이트 베어러 응답(Update bearer response)을 보내면 P-GW(530)는 MME(510a)/SGSN(510b)에서 NBIFOM을 지원하지 않아서 거절되었다고 판단하게 된다.  In response to the update bearer request of the P-GW 530, the S-GW 520 sets the cause information (Cause IE) as 'Service not supported', thereby updating the update bearer response ( If the P-GW 530 sends an update bearer response, the P-GW 530 does not support the NBIFOM in the MME 510a / SGSN 510b.
따라서 P-GW(530)는 더 이상 NBIFOM 요청을 보내지 않는다. Therefore, the P-GW 530 no longer sends an NBIFOM request.
따라서, 제1 방안에 따른 DDN을 통한 시그널링 감소는 도 16에 도시된 바와 같이, 단계 'S1-AP: 초기 컨텍스트 설정 요청(Initial Context setup request)', '라디오 베어러 수립(Radio Bearer Establishment)' 및 'S1-AP: 초기 컨텍스트 설정 완료(Initial Context setup Complete)'와 단계 7 내지 11(업데이트 베어러 응답)이 실제적으로 줄어들게 되는 시그널링이 될 수 있다.Accordingly, the signaling reduction through the DDN according to the first scheme is performed by the steps 'S1-AP: Initial Context setup request', 'Radio Bearer Establishment' and the like as shown in FIG. 'S1-AP: Initial Context setup Complete' and steps 7 to 11 (update bearer response) may be signaling to substantially reduce.
즉, 본 명세서의 제2 개시 중 제1 방안에 따르면, 네트워크 엔티티(예를 들어, MME(510a)/SGSN(510b))가 네트워크 노드(예를 들어, S-GW(520))로부터 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 DDN(Downlink Data Notification) 메시지를 수신하고, 단말(UE)로 상기 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 페이징을 송신하고, 상기 단말로부터 상기 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 서비스 요청을 수신하며, 상기 네트워크 엔티티가 상기 NBIFOM을 지원하지 않는 경우, 상기 단말로 서비스 거절을 송신함에 의해 시그널링이 감소될 수 있다.That is, according to the first method of the second disclosure of the present specification, a network entity (eg, MME 510a / SGSN 510b) requests NBIFOM from a network node (eg, S-GW 520). Receive a Downlink Data Notification (DDN) message including information indicating that the message is transmitted, and transmit a paging including information indicating that the NBIFOM request is due to the UE, and indicates that the NBIFOM request is received from the terminal. If a service request including information is received and the network entity does not support the NBIFOM, signaling may be reduced by transmitting a denial of service to the terminal.
또한, 상기 네트워크 엔티티는, 상기 네트워크 엔티티가 상기 NBIFOM을 지원하지 않는 경우, 서비스가 지원되지 않는다는 정보를 포함하는 DDN 거절 메시지를 상기 네트워크 노드로 송신할 수 있다.Also, when the network entity does not support the NBIFOM, the network entity may transmit a DDN rejection message to the network node that includes information indicating that a service is not supported.
이 경우, 상기 네트워크 노드는, 다른 네트워크 노드(예를 들어, P-GW(530))로부터 상기 NBIFOM 요청에 의해 발생한 업데이트 베어러 요청을 수신하고, 상기 DDN 거절 메시지가 수신된 경우, 서비스가 지원되지 않는다는 정보를 포함하는 업데이트 베어러 응답을 상기 다른 네트워크 노드에 송신할 수 있다.In this case, the network node receives an update bearer request generated by the NBIFOM request from another network node (for example, P-GW 530), and if the DDN rejection message is received, the service is not supported. And may send an update bearer response to the other network node that includes the information.
또한, 상기 네트워크 엔티티는, 다른 네트워크 엔티티로부터 컨텍스트 요청(Context Request) 메시지를 수신하고, 상기 네트워크 엔티티가 NBIFOM을 지원하지 않는 경우, 상기 컨텍스트 요청에 대한 응답으로 ISR 지원 여부를 나타내는 ISR capability’ 또는‘ISR Supported’ 파라미터를 상기 네트워크 엔티티의 ISR 지원 여부와 관계없이 지원하지 않음으로 셋팅하여 컨텍스트 응답을 송신할 수 있다.In addition, when the network entity receives a context request message from another network entity and the network entity does not support NBIFOM, the network entity indicates whether or not ISR is supported in response to the context request. The ISR Supported 'parameter may be set to not supported regardless of whether the network entity supports ISR, and the context response may be transmitted.
또한, 상기 네트워크 노드는, PDN(Packet Data Network) 게이트 웨이로부터 NBIFOM 요청 메시지를 받을 경우, NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 상기 DDN 메시지를 상기 네트워크 엔티티로 송신할 수 있다.In addition, when receiving a NBIFOM request message from a Packet Data Network (PDN) gateway, the network node may transmit the DDN message including information indicating that the request is due to an NBIFOM request to the network entity.
2. 제2 방안2. Second Plan
제2 방안에 따르면, DDN을 받은 MME(510a) 또는 SGSN(510b)이 NBIFOM을 지원하지 않는다면 DDN에 대한 응답으로 자신이 NBIFOM을 지원하지 않음을(추가적으로는 이로 인해 페이징을 수행하지 않을 것임을) 알리는 정보(원인 정보: cause IE)를 S-GW(520)로 전송한다. According to the second method, if the MME 510a or SGSN 510b receiving the DDN does not support NBIFOM, it notifies the NDN that it does not support NBIFOM in response to the DDN (additionally, it will not perform paging). Information (cause information: cause IE) is transmitted to the S-GW 520.
이를 위해 일례로, MME(510a) 또는 SGSN(510b)은 S-GW(520)에 DDN 확인(Downlink Data Notification Acknowledge) 메시지를 보내면서 상기 정보를 알리는 원인 정보(cause IE)를 설정하여 전송할 수 있다. To this end, as an example, the MME 510a or SGSN 510b may set and transmit cause information (cause IE) informing the information while sending a DDN acknowledgment message to the S-GW 520. .
상기 NBIFOM을 지원하지 않는 MME(510a) 또는 SGSN(510b)은 페이징을 수행하지 않는다. The MME 510a or SGSN 510b that does not support the NBIFOM does not perform paging.
S-GW(520)는 상기의 응답을 보내지 않은 서빙 노드(즉, NBIFOM을 지원하는 바 페이징을 수행한 서빙 노드)로부터 DDN 거절 지시(Downlink Data Notification Failure Indication) 메시지를 받은 경우 UE(100)가 현재 NBIFOM을 지원하지 않는 서빙 노드 쪽의 RAT에 위치해 있음을 유추할 수 있다. When the S-GW 520 receives a DDN Rejection Indication (DDN) Data Notification Failure Indication message from a serving node (that is, a serving node that supports NBIFOM) that did not send the response, the S-GW 520 receives the DDN. It can be inferred that it is located in the RAT of the serving node that does not currently support NBIFOM.
이 경우, S-GW(520)는 P-GW(530)의 NBIFOM 요청에 대한 응답으로 원인 정보(Cause IE)를‘서비스가 지원 안됨(Service not supported)’으로 하여 업데이트 베어러 응답(Update bearer response)을 보낸다. In this case, the S-GW 520 updates the bearer response with the cause information (Cause IE) as 'Service not supported' in response to the NBIFOM request of the P-GW 530. Send)
이 경우, P-GW(530)는 MME(510a)/SGSN(510b)이 NBIFOM을 지원하지 않는다는 것을 알고 더 이상 NBIFOM 요청을 보내지 않는다.In this case, the P-GW 530 knows that the MME 510a / SGSN 510b does not support NBIFOM and no longer sends an NBIFOM request.
도 17은 본 명세서의 제1 개시에 따른 국부적 ISR 비활성화 방안 및 제2 개시 에 따른 DDN을 통한 시그널링 감소 방안이 함께 적용되었을 때의 시그널링 이득을 나타낸다.FIG. 17 illustrates signaling gains when the local ISR deactivation scheme according to the first disclosure and the signaling reduction scheme through the DDN according to the second disclosure are applied together.
도 17을 참조하면, 국부적 ISR 비활성화 및 DDN 마킹을 함께 사용하게 되면 NBIFOM을 지원하지 않는 SGSN(510b)에서는 UE(100)로 페이징이나 서비스 요청을 할 필요가 없이 바로 DDN 실패 지시(DDN Failure indication)를 S-GW(520)에 보내게 된다.Referring to FIG. 17, when using local ISR deactivation and DDN marking together, in the SGSN 510b that does not support NBIFOM, there is no need for paging or service request to the UE 100, but a DDN failure indication. Is sent to the S-GW 520.
이렇게 되면 서비스 요청 과정이 없이도 네트워크 단에서 판단하여 NBIFOM 요청을 UE(100)까지 내리지 않고 끝나게 된다.In this case, even without the service request process, the network end determines the NBIFOM request without ending up to the UE 100.
따라서, 도 17에 따르면, 단계 3a, 4a, 4b, 5, 6a, 7, 8, 9, 10 및 11가 실제적으로 줄어들게 되는 시그널링이 될 수 있다.Thus, according to FIG. 17, the steps 3a, 4a, 4b, 5, 6a, 7, 8, 9, 10 and 11 can be signaling which is actually reduced.
지금까지 설명한 내용들은 하드웨어로 구현될 수 있다. 이에 대해서 도 16를 참조하여 설명하기로 한다. The contents described so far can be implemented in hardware. This will be described with reference to FIG. 16.
도 18은 본 발명의 실시예에 따른 UE(100) 및 MME(510)의 구성 블록도이다.18 is a block diagram illustrating a configuration of a UE 100 and an MME 510 according to an embodiment of the present invention.
도 18에 도시된 바와 같이 상기 UE(100)은 저장 수단(102)와 프로세서(101)와 송수신부(103)를 포함한다. 그리고 상기 MME(510)는 저장 수단(512)와 프로세서(511)와 송수신부(513)를 포함한다.As shown in FIG. 18, the UE 100 includes a storage means 102, a processor 101, and a transceiver 103. The MME 510 includes a storage means 512, a processor 511, and a transceiver 513.
상기 저장 수단들(102, 512)은 전술한 방법을 저장한다.The storage means 102, 512 store the method described above.
상기 프로세서들(101, 511)은 상기 저장 수단들(102, 512) 및 상기 송수신부들(103, 513)을 제어한다. 구체적으로 상기 컨트롤러들(101, 511)은 상기 저장 수단들(102, 512)에 저장된 상기 방법들을 각기 실행한다. 그리고 상기 프로세서들(101, 511)은 상기 송수신부들(103, 513)을 통해 상기 전술한 신호들을 전송한다. The processors 101 and 511 control the storage means 102 and 512 and the transceivers 103 and 513. Specifically, the controllers 101 and 511 execute the methods stored in the storage means 102 and 512, respectively. The processors 101 and 511 transmit the aforementioned signals through the transceivers 103 and 513.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니므로, 본 발명은 본 발명의 사상 및 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있다.In the above description of the preferred embodiments of the present invention by way of example, the scope of the present invention is not limited only to these specific embodiments, the present invention is in various forms within the scope of the spirit and claims of the present invention Can be modified, changed, or improved.

Claims (16)

  1. 무선 통신 시스템에서 단말에 의한 ISR(Idle mode Signaling Reduction)의 처리 방법에 있어서,In the method of processing ISR (Idle mode Signaling Reduction) by the terminal in a wireless communication system,
    ISR 비활성화 조건이 만족되었는지 확인하는 단계와;Checking whether an ISR deactivation condition is satisfied;
    상기 ISR 비활성화 조건이 만족된 경우, ISR을 국부적으로(Locally) 비활성화하는 단계를 포함하되,Locally deactivating the ISR when the ISR deactivation condition is satisfied,
    상기 ISR 비활성화 조건은,The ISR deactivation condition is,
    상기 단말 및 PDN(Packet Data Network) 게이트 웨이가 모두 NBIFOM(Network Based IP Flow Mobility)을 지원하는 경우, 상기 단말이 WLAN(Wireless Local Area Network)에 SCM(Single-Connection Mode)으로 어태치(Attach)되어 있거나 WLAN 커버리지에 위치하는 경우, 상기 단말에 대한 PDN 커넉션이 수립된 후 상기 단말이 기존 TA(Tracking Area) 또는 RA(Routing Area)를 벗어나 다른 TA 또는 RA로 이동한 경우 및 상기 단말이 현재 ISR 활성화 상태인 경우인 것을 특징으로 하는 방법.When both the terminal and the PDN gateway support Network Based IP Flow Mobility (NBIFOM), the terminal attaches to a Wireless Local Area Network (WLAN) in Single-Connection Mode (SCM). Or when located in WLAN coverage, when the terminal moves out of the existing tracking area (TA) or routing area (TA) to another TA or RA after the PDN is established for the terminal and the terminal is currently When in ISR activation.
  2. 제1항에 있어서, 상기 ISR을 국부적으로 비활성화하는 단계는,The method of claim 1, wherein locally deactivating the ISR comprises:
    TAU(Tracking Area Update) 및 RAU(Routing Area Update) 중 적어도 하나의 TIN(Temporary Identity used in Next update)을 변경함에 의해 상기 ISR을 국부적으로 비활성화하는 단계를 포함하는 것을 특징으로 하는 방법.Locally deactivating the ISR by changing a Temporary Identity used in Next update (TIN) of at least one of a Tracking Area Update (TAU) and a Routing Area Update (RAU).
  3. 제1항에 있어서, ISR 비활성화 조건이 만족되었는지 확인하는 단계는,The method of claim 1, wherein the determining whether the ISR deactivation condition is satisfied includes:
    PDN 커넥션 수립 과정에서, 상기 단말이 상기 PDN 게이트 웨이와 서로의 NBIFOM 능력(Capability)을 확인하는 NBIFOM 능력 협상(NBIFOM Capability Negotiation)을 수행함에 의해 상기 단말 및 PDN 게이트 웨이가 모두 NBIFOM을 지원하는지 여부를 확인하는 단계를 포함하는 것인 방법.In the process of establishing a PDN connection, whether the UE and the PDN gateway support NBIFOM by performing NBIFOM Capability Negotiation (NBIFOM Capability Negotiation) confirming NBIFOM capability with the PDN gateway. Identifying the method.
  4. 이동통신 네트워크 내의 제어 평면을 담당하는 네트워크 엔티티에서 NBIFOM(Network Based IP Flow Mobility)을 처리하는 방법에 있어서,In the method for processing Network Based IP Flow Mobility (NBIFOM) in a network entity that is in charge of the control plane in a mobile communication network,
    네트워크 노드로부터 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 DDN(Downlink Data Notification) 메시지를 수신하는 단계와;Receiving a Downlink Data Notification (DDN) message from the network node that includes information indicating that the request is from an NBIFOM request;
    단말로 상기 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 페이징을 송신하는 단계와;Transmitting a paging including information indicating that the terminal is due to the NBIFOM request;
    상기 단말로부터 상기 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 서비스 요청을 수신하는 단계와;Receiving a service request including information indicating that the terminal is due to the NBIFOM request;
    상기 네트워크 엔티티가 상기 NBIFOM을 지원하지 않는 경우, 상기 단말로 서비스 거절을 송신하는 단계를 포함하는 단계를 포함하는 것을 특징으로 하는 방법.And if the network entity does not support the NBIFOM, sending a denial of service to the terminal.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 네트워크 엔티티가 상기 NBIFOM을 지원하지 않는 경우, 서비스가 지원되지 않는다는 정보를 포함하는 DDN 거절 메시지를 상기 네트워크 노드로 송신하는 단계를 더 포함하는 것을 특징으로 하는 방법.If the network entity does not support the NBIFOM, further comprising sending a DDN rejection message to the network node that includes information that the service is not supported.
  6. 제4항에 있어서, 상기 네트워크 노드는,The method of claim 4, wherein the network node,
    다른 네트워크 노드로부터 상기 NBIFOM 요청에 의해 발생한 업데이트 베어러 요청을 수신하고,Receive an update bearer request generated by the NBIFOM request from another network node,
    상기 DDN 거절 메시지가 수신된 경우, 서비스가 지원되지 않는다는 정보를 포함하는 업데이트 베어러 응답을 상기 다른 네트워크 노드에 송신하는 것인 방법.If the DDN reject message is received, sending an update bearer response to the other network node that includes information that service is not supported.
  7. 제4항에 있어서, 다른 네트워크 엔티티로부터 컨텍스트 요청(Context Request) 메시지를 수신하는 단계; 및The method of claim 4, further comprising: receiving a context request message from another network entity; And
    상기 네트워크 엔티티가 NBIFOM을 지원하지 않는 경우, 상기 컨텍스트 요청에 대한 응답으로 ISR 지원 여부를 나타내는 ISR capability’ 또는‘ISR Supported’ 파라미터를 상기 네트워크 엔티티의 ISR 지원 여부와 관계없이 지원하지 않음으로 셋팅하여 컨텍스트 응답을 송신하는 단계를 더 포함하는 것을 특징으로 하는 방법.If the network entity does not support NBIFOM, the context is set by not setting the ISR capability 'or' ISR Supported 'parameter indicating whether the network entity supports ISR in response to the context request regardless of whether the network entity supports ISR. Sending a response.
  8. 제4항에 있어서, 상기 네트워크 노드는,The method of claim 4, wherein the network node,
    PDN(Packet Data Network) 게이트 웨이로부터 NBIFOM 요청 메시지를 받을 경우, NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 상기 DDN 메시지를 상기 네트워크 엔티티로 송신하는 것인 방법.When receiving a NBIFOM request message from a Packet Data Network (PDN) gateway, sending the DDN message to the network entity including information indicating that the request is from an NBIFOM request.
  9. 무선 통신 시스템에서 ISR(Idle mode Signaling Reduction)을 처리하는 단말에 있어서,In the terminal processing ISR (Idle mode Signaling Reduction) in a wireless communication system,
    ISR 비활성화 조건을 저장하는 저장 수단과;Storage means for storing an ISR deactivation condition;
    상기 ISR 비활성화 조건이 만족되었는지 확인하고, 상기 ISR 비활성화 조건이 만족된 경우, ISR을 국부적으로(Locally) 비활성화하는 컨트롤러를 포함하되,A controller for checking whether the ISR deactivation condition is satisfied and deactivating the ISR locally when the ISR deactivation condition is satisfied,
    상기 ISR 비활성화 조건은,The ISR deactivation condition is,
    상기 단말 및 PDN(Packet Data Network) 게이트 웨이가 모두 NBIFOM(Network Based IP Flow Mobility)을 지원하는 경우, 상기 단말이 WLAN(Wireless Local Area Network)에 SCM(Single-Connection Mode)으로 어태치(Attach)되어 있거나 WLAN 커버리지에 위치하는 경우, 상기 단말에 대한 PDN 커넉션이 수립된 후 상기 단말이 기존 TA(Tracking Area) 또는 RA(Routing Area)를 벗어나 다른 TA 또는 RA로 이동한 경우 및 상기 단말이 현재 ISR 활성화 상태인 경우인 것을 특징으로 하는 단말.When both the terminal and the PDN gateway support Network Based IP Flow Mobility (NBIFOM), the terminal attaches to a Wireless Local Area Network (WLAN) in Single-Connection Mode (SCM). Or when located in WLAN coverage, when the terminal moves out of the existing tracking area (TA) or routing area (TA) to another TA or RA after the PDN is established for the terminal and the terminal is currently Terminal in the case of ISR activation state.
  10. 제9항에 있어서, 상기 컨트롤러는,The method of claim 9, wherein the controller,
    TAU(Tracking Area Update) 및 RAU(Routing Area Update) 중 적어도 하나의 TIN(Temporary Identity used in Next update)을 변경함에 의해 상기 ISR을 국부적으로 비활성화하는 것인 단말.And locally deactivating the ISR by changing a temporary identity used in next update (TIN) of at least one of a tracking area update (TAU) and a routing area update (RAU).
  11. 제9항에 있어서, 상기 컨트롤러는,The method of claim 9, wherein the controller,
    PDN 커넥션 수립 과정에서, 상기 PDN 게이트 웨이와 서로의 NBIFOM 능력(Capability)을 확인하는 NBIFOM 능력 협상(NBIFOM Capability Negotiation)을 수행함에 의해 상기 단말 및 PDN 게이트 웨이가 모두 NBIFOM을 지원하는지 여부를 확인하는 것인 단말.In the process of establishing a PDN connection, confirming whether both the UE and the PDN gateway support NBIFOM by performing an NBIFOM Capability Negotiation that confirms NBIFOM capability with the PDN gateway. Terminal.
  12. 이동통신 네트워크 내의 제어 평면을 담당하는 네트워크 엔티티로서,A network entity in charge of a control plane in a mobile communications network,
    네트워크 노드로부터 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 DDN(Downlink Data Notification) 메시지를 수신하는 송수신부와;A transmitting / receiving unit for receiving a downlink data notification (DDN) message including information indicating that the network node is due to an NBIFOM request;
    단말로 상기 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 페이징을 송신하고, 상기 단말로부터 상기 NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 서비스 요청을 수신하고, 상기 네트워크 엔티티가 상기 NBIFOM을 지원하지 않는 경우, 상기 단말로 서비스 거절을 송신하도록 상기 송수신부를 제어하는 컨트롤러를 포함하는 것을 특징으로 하는 네트워크 엔티티.If the terminal transmits a paging including information indicating that the request is due to the NBIFOM request, receives a service request including information indicating that the request is due to the NBIFOM request, and the network entity does not support the NBIFOM. And a controller for controlling the transceiver to transmit a denial of service to the terminal.
  13. 제12항에 있어서, 상기 컨트롤러는,The method of claim 12, wherein the controller,
    상기 네트워크 엔티티가 상기 NBIFOM을 지원하지 않는 경우, 서비스가 지원되지 않는다는 정보를 포함하는 DDN 거절 메시지를 상기 네트워크 노드로 송신하도록 상기 송수신부를 제어하는 것인 네트워크 엔티티.And if the network entity does not support the NBIFOM, controlling the transceiver to send a DDN rejection message to the network node that includes information that the service is not supported.
  14. 제13항에 있어서, 상기 네트워크 노드는,The method of claim 13, wherein the network node,
    다른 네트워크 노드로부터 상기 NBIFO 요청에 의해 발생한 업데이트 베어러 요청을 수신하고,Receive an update bearer request generated by the NBIFO request from another network node,
    상기 DDN 거절 메시지가 수신된 경우, 서비스가 지원되지 않는다는 정보를 포함하는 업데이트 베어러 응답을 상기 다른 네트워크 노드에 송신하는 것인 네트워크 엔티티.If the DDN reject message is received, sending an update bearer response to the other network node that includes information that service is not supported.
  15. 제12항에 있어서, 상기 송수신부는,The method of claim 12, wherein the transceiver unit,
    다른 네트워크 엔티티로부터 컨텍스트 요청(Context Request) 메시지를 수신하고,Receive a Context Request message from another network entity,
    상기 컨트롤러는,The controller,
    상기 네트워크 엔티티가 NBIFOM을 지원하지 않는 경우, 상기 컨텍스트 요청에 대한 응답으로 ISR 지원 여부를 나타내는 ISR capability’ 또는‘ISR Supported’ 파라미터를 상기 네트워크 엔티티의 ISR 지원 여부와 관계없이 지원하지 않음으로 셋팅하여 컨텍스트 응답을 송신하도록 상기 송수신부를 제어하는 것인 네트워크 엔티티.If the network entity does not support NBIFOM, the context is set by not setting the ISR capability 'or' ISR Supported 'parameter indicating whether the network entity supports ISR in response to the context request regardless of whether the network entity supports ISR. Controlling the transceiver to send a response.
  16. 제12항에 있어서, 상기 네트워크 노드는,The method of claim 12, wherein the network node,
    PDN(Packet Data Network) 게이트 웨이로부터 NBIFOM 요청 메시지를 받을 경우, NBIFOM 요청에 의한 것임을 나타내는 정보를 포함하는 상기 DDN 메시지를 상기 네트워크 엔티티로 송신하는 것인 방법.When receiving a NBIFOM request message from a Packet Data Network (PDN) gateway, sending the DDN message to the network entity including information indicating that the request is from an NBIFOM request.
PCT/KR2015/006745 2014-12-24 2015-07-01 Method for efficiently processing signal in isr activated state in nbifom WO2016104897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462096550P 2014-12-24 2014-12-24
US62/096,550 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016104897A1 true WO2016104897A1 (en) 2016-06-30

Family

ID=56150887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006745 WO2016104897A1 (en) 2014-12-24 2015-07-01 Method for efficiently processing signal in isr activated state in nbifom

Country Status (1)

Country Link
WO (1) WO2016104897A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804703A (en) * 2016-09-29 2019-05-24 索尼公司 Telecommunication apparatus and method
CN110612744A (en) * 2018-02-13 2019-12-24 Oppo广东移动通信有限公司 Wireless communication method, terminal equipment and network equipment
CN112637906A (en) * 2019-08-16 2021-04-09 华为技术有限公司 Paging method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140106620A (en) * 2011-11-29 2014-09-03 인터디지탈 패튼 홀딩스, 인크 Methods for ip mobility management
WO2014182057A1 (en) * 2013-05-07 2014-11-13 엘지전자 주식회사 Method for deactivating isr capability for proximity service

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140106620A (en) * 2011-11-29 2014-09-03 인터디지탈 패튼 홀딩스, 인크 Methods for ip mobility management
WO2014182057A1 (en) * 2013-05-07 2014-11-13 엘지전자 주식회사 Method for deactivating isr capability for proximity service

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Network based IP Flow Mobility (Release 13)", 3GPP TSGSSA, 3GPP TR 23.861 V1.12.0, 17 December 2014 (2014-12-17) *
CATT: "Solution to the Open Issues Related to SCM", S2-143879, 3GPP TSG-SA WG2 #106 S2-143879, 11 November 2014 (2014-11-11), San Francisco, California, USA *
ERICSSON: "UE Indication to Network in Solution 7", 3GPP TSG-SA WG2 #106 S2-144097, 11 November 2014 (2014-11-11), San Francisco, California, USA, pages 2 - 144097 *
NOKIA NETWORKS: "Paging Priority Setting in the MME", 3GPP TSG-SA WG2 #106 S2-144249, 11 November 2014 (2014-11-11), San Francisco, California, USA, pages 2 - 144249 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804703A (en) * 2016-09-29 2019-05-24 索尼公司 Telecommunication apparatus and method
CN109804703B (en) * 2016-09-29 2023-06-16 索尼公司 Telecommunication apparatus and method
US11818776B2 (en) 2016-09-29 2023-11-14 Sony Group Corporation Telecommunications apparatus and methods
CN110612744A (en) * 2018-02-13 2019-12-24 Oppo广东移动通信有限公司 Wireless communication method, terminal equipment and network equipment
CN110612744B (en) * 2018-02-13 2024-03-08 Oppo广东移动通信有限公司 Wireless communication method, terminal equipment and network equipment
CN112637906A (en) * 2019-08-16 2021-04-09 华为技术有限公司 Paging method and device

Similar Documents

Publication Publication Date Title
WO2018128456A1 (en) Method and terminal for carrying out access control in 5th generation mobile communication system
WO2016159521A1 (en) Method and user equipment for performing network selection and traffic routing
WO2015160215A2 (en) Method for communicating routing rules
WO2016076606A1 (en) Method and user equipment for blocking network access by acdc
WO2018231007A1 (en) Method for responding to request and network device
WO2019198960A1 (en) Method and smf for supporting qos
WO2019216526A1 (en) Method and user equipment for performing access control in 5gs
WO2018088812A1 (en) Handover method and user equipment
WO2017142170A1 (en) Method and terminal for creating, modifying, releasing session in next-generation mobile communication
WO2016003140A1 (en) Method for barring network access for each application, and user equipment
WO2017171184A1 (en) Method for attempting network access from nb-iot rat
WO2017034352A1 (en) Base station connecting method and user equipment performing same
WO2014112826A1 (en) Method and terminal for determining handover for traffic offloaded onto wlan
WO2015142048A1 (en) Execution method and user equipment for service request procedure
WO2018066919A1 (en) Method for connecting to network and user equipment
WO2018128519A1 (en) Method by which relay ue having connection with remote ue connects network in wireless communication system and apparatus therefor
WO2016024832A1 (en) Method and user equipment for blocking network access according to application
WO2015170858A1 (en) Method for processing csfb or srvcc during sipto service
WO2014058242A1 (en) Method for processing paging and method for relaying downlink data
WO2015016546A1 (en) Paging method and apparatus for ims service
WO2016126109A1 (en) Method and user equipment for selecting network and routing traffic
WO2018079947A1 (en) Method for supporting ue mobility in wireless communication system and device therefor
WO2016105004A1 (en) Method for transmitting and receiving nbifom capability in wireless communication system, and device therefor
WO2015137631A1 (en) Method for performing proximity service, and user device
WO2018088630A1 (en) Method for transmitting rrc message and wireless device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873425

Country of ref document: EP

Kind code of ref document: A1