WO2016104765A1 - Coating material and method for manufacturing same - Google Patents

Coating material and method for manufacturing same Download PDF

Info

Publication number
WO2016104765A1
WO2016104765A1 PCT/JP2015/086365 JP2015086365W WO2016104765A1 WO 2016104765 A1 WO2016104765 A1 WO 2016104765A1 JP 2015086365 W JP2015086365 W JP 2015086365W WO 2016104765 A1 WO2016104765 A1 WO 2016104765A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon compound
gel
coating
silicone
paint
Prior art date
Application number
PCT/JP2015/086365
Other languages
French (fr)
Japanese (ja)
Inventor
裕宗 春田
武本 博之
大輔 服部
恒三 中村
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015176207A external-priority patent/JP6563750B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201580071004.1A priority Critical patent/CN107109125B/en
Priority to EP15873333.7A priority patent/EP3239257A4/en
Priority to US15/539,927 priority patent/US10494546B2/en
Priority to KR1020177018507A priority patent/KR102549648B1/en
Priority to CN202010325596.8A priority patent/CN111363472B/en
Publication of WO2016104765A1 publication Critical patent/WO2016104765A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels

Definitions

  • the present invention relates to a paint and a method for producing the same.
  • silanol porous body sol solutions that can form void structures using silica compound materials (silicon compound materials) as raw materials.
  • silica compound materials silicon compound materials
  • a pulverized sol solution prepared by pulverizing the gelled silica compound is prepared and coated to form a void structure.
  • the film strength of the silanol porous body is remarkably lowered, and it is difficult to easily obtain the silanol porous body industrially.
  • a lens antireflection layer see, for example, Patent Documents 1 to 4).
  • a high temperature of 150 ° C. or higher is baked for a long time.
  • a gel using tetraethoxysilane (TEOS) as a raw material is inferior in flexibility, There was a problem that a porous body could not be formed on a soft substrate.
  • TEOS tetraethoxysilane
  • there is an application example of a void layer in which no firing treatment is performed for example, see Non-Patent Document 1).
  • the silanol pulverized sol still contains a large amount of residual silanol groups, and no firing treatment is performed after the formation of the void layer, so that the resulting porous body has poor film strength and cannot impart impact resistance. There was a problem.
  • an object of the present invention is to provide a silanol sol paint that can easily form a film of a void layer having a high porosity (porosity), film strength, and flexibility by continuous treatment.
  • the silicone sol paint of the present invention comprises a pulverized product of a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group and a dispersion medium, and the pulverized product.
  • the pulverized product is characterized in that it contains 1 mol% or more of residual silanol groups and is a paint for chemically bonding the pulverized products.
  • the method for producing a silicone sol paint according to the present invention includes a step of mixing a pulverized product of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and a dispersion medium. .
  • the first paint raw material of the present invention is a raw material for producing the silicone sol paint of the present invention, including a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group. It is characterized by.
  • the manufacturing method of the 1st coating material raw material of this invention includes the gelatinization process of gelatinizing the silicon compound containing a saturated bond functional group of at least 3 or less functionality in a solvent, and producing
  • the second coating material of the present invention is a gel-like product obtained from a silicon compound containing a saturated bond functional group having at least three functional groups, and includes a gel-like silicon compound that has been subjected to an aging treatment. It is a raw material for producing a sol paint.
  • the second method for producing a coating material according to the present invention is characterized by including an aging step of aging in a solvent a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group.
  • the silicone sol paint of the present invention includes a pulverized product of the gel-like silicon compound, and the pulverized product can be chemically bonded to each other. For this reason, for example, in the coating film using the coating material, a porous silicone body having voids can be produced by chemically bonding the pulverized products.
  • the present inventors have clarified that the crushed material can be chemically bonded to each other by leaving silanol groups in the gel silanol compound.
  • a coating film is formed, and the pulverized material in the coating film is chemically bonded to each other, so that strength and flexibility can be easily and easily obtained.
  • the present inventors have found that a porous silicone body can be formed as a void layer compatible with the above.
  • the silanol porous body can be applied to various objects.
  • the silicone porous body obtained by using the silicone sol paint of the present invention is used, for example, as a heat insulating material, a sound absorbing material, a regenerative medical scaffolding material, a dew condensation prevention material, an optical member, etc., instead of an air layer. it can. Therefore, the silicone sol coating material and the method for producing the same of the present invention are useful, for example, in the production of the silicone porous body as described above.
  • FIG. 1 is a process cross-sectional view schematically showing an example of a method for forming a silicone porous body 20 on a substrate 10 using the paint of the present invention.
  • FIG. 2 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and an example of an apparatus used therefor.
  • FIG. 3 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and another example of an apparatus used therefor.
  • FIG. 4 is a process cross-sectional view schematically showing another example of a method for forming a porous silicone body on a substrate in the present invention.
  • FIG. 1 is a process cross-sectional view schematically showing an example of a method for forming a silicone porous body 20 on a substrate 10 using the paint of the present invention.
  • FIG. 2 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the
  • FIG. 5 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and still another example of an apparatus used therefor.
  • FIG. 6 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and still another example of an apparatus used therefor.
  • FIG. 7 is a process cross-sectional view schematically showing still another example of a method for forming a porous silicone body on a substrate in the present invention.
  • FIG. 8 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and still another example of an apparatus used therefor.
  • FIG. 9 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and still another example of an apparatus used therefor.
  • the pulverized product has a volume average particle diameter of 0.05 to 2.00 ⁇ m.
  • the shape of the “particles” is not particularly limited, and may be, for example, spherical or non-spherical.
  • the particles of the pulverized product may be, for example, sol-gel bead-like particles, nanoparticles (hollow nanosilica / nanoballoon particles), nanofibers, or the like.
  • the silicon compound is a compound represented by the following formula (2).
  • the paint of the present invention includes, for example, a catalyst for chemically bonding the pulverized products.
  • the method for producing a paint of the present invention further includes, for example, a pulverization step of pulverizing the gel silicon compound in a solvent, and the pulverized material obtained by the pulverization step is used in the mixing step.
  • the method for producing a paint according to the present invention further includes, for example, a gelation step of gelling the silicon compound in a solvent to produce a gel silicon compound, and the gel obtained by the production step in the pulverization step A silicon compound is used.
  • the method for producing a paint of the present invention further includes, for example, an aging step of aging the gel silicon compound in a solvent, and the gel silicon compound after the aging step is used in the gelation step.
  • the gel silicon compound is aged by incubating in the solvent at 30 ° C. or higher.
  • the silicone sol paint of the present invention comprises a pulverized product of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and a solvent, and the pulverized product is a residual silanol group. And a paint for chemically bonding the pulverized materials to each other.
  • “Containing a saturated bond functional group of 3 or less functional groups” means that the silicon compound has 3 or less functional groups and these functional groups are saturated bonded to silicon (Si). means.
  • the method for producing a coating material of the present invention is a method for producing the silicone sol coating material of the present invention, in which a gel silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups is pulverized. And a step of mixing the product and the dispersion medium.
  • the coating material of the present invention can be used for the production of a porous silicone material having the same function as an air layer (for example, low refractive index).
  • the paint obtained by the production method of the present invention includes a pulverized product of the gel-like silicon compound, and the pulverized product has a three-dimensional structure of the non-pulverized gel-like silicon compound destroyed, A new three-dimensional structure different from the unmilled gel silicon compound can be formed.
  • the coating film (silicone porous body precursor) formed using the coating material has a new pore structure (newly formed) that cannot be obtained by the layer formed using the unground gelatinous silicon compound. A layer in which a void structure is formed.
  • the layer can exhibit the same function as the air layer (for example, the same low refractive index).
  • the pulverized product contains residual silanol groups
  • the pulverized product is chemically treated after a new three-dimensional structure is formed as the coating film (precursor of silicone porous body).
  • the coating film precursor of silicone porous body.
  • the formed porous silicon body has a structure having voids, sufficient strength and flexibility can be maintained.
  • a silicone porous body can be easily and simply provided to various objects.
  • the paint obtained by the production method of the present invention is very useful, for example, in the production of the porous structure that can be used as a substitute for the air layer.
  • the silicone porous body formed using the coating material of the present invention can exhibit the same function as the air layer only by disposing it at the target site. Therefore, as described above, functions similar to the air layer can be imparted to various objects more easily and simply than forming the air layer.
  • the porous structure can be used as, for example, a heat insulating material, a sound absorbing material, a regenerative medical scaffolding material, a dew condensation preventing material, etc., instead of an air layer.
  • the paint of the present invention can also be referred to as, for example, a paint for forming a porous silicone material or a paint for forming a low refractive layer.
  • the gel-like silicon compound is a pulverized product thereof.
  • the volume average particle diameter of the pulverized product is not particularly limited, and the lower limit thereof is, for example, 0.05 ⁇ m or more, 0.10 ⁇ m or more, 0.20 ⁇ m or more, 0.40 ⁇ m or more,
  • the upper limit is, for example, 2.00 ⁇ m or less, 1.50 ⁇ m or less, 1.00 ⁇ m or less, and the ranges thereof are, for example, 0.05 ⁇ m to 2.00 ⁇ m, 0.20 ⁇ m to 1.50 ⁇ m, 0.40 ⁇ m to 1. 00 ⁇ m.
  • the volume average particle diameter indicates a particle size variation of the pulverized product in the paint of the present invention.
  • the particle size distribution can be measured by, for example, a particle size distribution evaluation apparatus such as a dynamic light scattering method or a laser diffraction method, and an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). .
  • a particle size distribution evaluation apparatus such as a dynamic light scattering method or a laser diffraction method
  • an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • the particle size distribution of the pulverized product is not particularly limited.
  • particles having a particle size of 0.4 ⁇ m to 1 ⁇ m are 50 to 99.9 wt%, 80 to 99.8 wt%, It is 90 to 99.7% by weight, or particles having a particle size of 1 ⁇ m to 2 ⁇ m are 0.1 to 50% by weight, 0.2 to 20% by weight, and 0.3 to 10% by weight.
  • the said particle size distribution shows the particle size variation of the said ground material in the coating material of this invention.
  • the particle size distribution can be measured by, for example, a particle size distribution evaluation apparatus or an electron microscope.
  • the silicon compound is, for example, a compound represented by the following formula (2).
  • R 1 and R 2 are each a linear or branched alkyl group, R 1 and R 2 may be the same or different, R 1 s may be the same as or different from each other when X is 2. R 2 may be the same as or different from each other.
  • X and R 1 are, for example, the same as X and R 1 in the formula (1).
  • R 2 is, for example, can be exemplified for R 1 is incorporated in the formula (1) described later.
  • the silicon compound represented by the formula (2) include a compound represented by the following formula (2 ′) in which X is 3.
  • R 1 and R 2 are the same as those in the formula (2), respectively.
  • the silicon compound is trimethoxy (methyl) silane (hereinafter also referred to as “MTMS”).
  • the concentration of the pulverized product of the gel-like silicon compound in the dispersion medium is not particularly limited, and is, for example, 0.3 to 50% (v / v), 0.5 to 30% (v / v) 1.0 to 10% (v / v).
  • concentration of the pulverized product is too high, for example, the fluidity of the sol solution is remarkably lowered, and there is a possibility of generating aggregates and coating streaks during coating.
  • the concentration of the pulverized product is too low, for example, not only does it take a considerable time to dry the solvent, but also the residual solvent immediately after drying increases, so the porosity may decrease. .
  • the silicon atoms contained are preferably siloxane bonded.
  • the proportion of unbonded silicon atoms (that is, residual silanol) in the total silicon atoms contained in the paint is, for example, less than 50%, 30% or less, or 15% or less.
  • the physical properties of the paint of the present invention are not particularly limited.
  • the shear viscosity of the paint is, for example, a viscosity of 100 cPa ⁇ s or less, a viscosity of 10 cPa ⁇ s or less, and a viscosity of 1 cPa ⁇ s or less at a shear rate of 10001 / s. If the shear viscosity is too high, for example, coating streaks may occur, and problems such as a decrease in the transfer rate of gravure coating may be observed. On the other hand, when the shear viscosity is too low, for example, the wet coating thickness at the time of coating cannot be increased, and a desired thickness may not be obtained after drying.
  • the dispersion medium (hereinafter also referred to as “coating solvent”) is not particularly limited, and examples thereof include a gelling solvent and a grinding solvent described later, and preferably the grinding solvent. It is.
  • the coating solvent include organic solvents having a boiling point of 130 ° C. or lower. Specific examples include IPA, ethanol, methanol, butanol and the like.
  • the paint of the present invention may contain, for example, a catalyst for chemically bonding the pulverized products of the gel silicon compound.
  • the content of the catalyst is not particularly limited, but is, for example, 0.01 to 20% by weight, 0.05 to 10% by weight, or 0.1 to 5% by weight with respect to the weight of the pulverized product of the gel silicon compound. %.
  • the coating material of the present invention may further contain, for example, a crosslinking aid for indirectly bonding the pulverized products of the gel silicon compound.
  • a crosslinking aid for indirectly bonding the pulverized products of the gel silicon compound.
  • the content of the crosslinking aid is not particularly limited.
  • the content is 0.01 to 20% by weight, 0.05 to 15% by weight, or 0.1 to 0.1% by weight with respect to the weight of the pulverized product of the gel silicon compound. 10% by weight.
  • the paint of the present invention is, for example, the sol-like pulverized material dispersed in the solvent, it is also referred to as “sol particle liquid”, for example.
  • the coating material of the present invention can continuously form a void layer having a film strength of a certain level or more by performing chemical crosslinking by a bonding step after coating and drying on a substrate, for example.
  • “sol” means that the three-dimensional structure of the gel is pulverized so that the pulverized product (that is, silica sol particles having a nano three-dimensional structure retaining a part of the void structure) is dispersed in the solvent. The state which shows fluidity.
  • the mixing step is a step of mixing a pulverized product of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and a dispersion medium. is there.
  • the pulverized product of the gel-like silicon compound can be obtained from the gel-like silicon compound by, for example, a pulverization step described later.
  • the said gel-like silicon compound can also be called the 1st coating material raw material of the coating material of this invention, for example.
  • the pulverized product of the gel-like silicon compound can be obtained, for example, from the gel-like silicon compound after the aging treatment in which the aging step described later is performed by a pulverizing step described later.
  • the said gel-like silicon compound after the said aging treatment can also be called the 2nd coating material raw material of the coating material of this invention, for example.
  • the gelation step is a step of producing a gel-like silicon compound (first coating material raw material) by gelling the silicon compound containing at least a trifunctional or lower saturated bond functional group in a solvent. is there.
  • the gelation step is, for example, a step of gelling the monomer silicon compound by a dehydration condensation reaction in the presence of a dehydration condensation catalyst, whereby a gel-like silicon compound is obtained.
  • the gel-like silicon compound has a residual silanol group, and the residual silanol group is appropriately adjusted according to a chemical bond between pulverized products of the gel-like silicon compound described later. Is preferred.
  • the silicon compound is not particularly limited as long as it is gelled by a dehydration condensation reaction.
  • the silicon compounds are bonded.
  • the bond between the silicon compounds is, for example, a hydrogen bond or an intermolecular force bond.
  • Examples of the silicon compound include a silicon compound represented by the following formula (1). Since the silicon compound of the formula (1) has a hydroxyl group, the silicon compound of the formula (1) can be hydrogen bonded or intermolecularly bonded through, for example, each hydroxyl group.
  • X is 2, 3 or 4
  • R 1 is a linear or branched alkyl group.
  • the carbon number of R 1 is, for example, 1-6, 1-4, 1-2.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • Examples of the branched alkyl group include an isopropyl group and an isobutyl group.
  • X is, for example, 3 or 4.
  • the silicon compound represented by the formula (1) include a compound represented by the following formula (1 ′) in which X is 3.
  • R 1 is the same as in the above formula (1), and is, for example, a methyl group.
  • the silicon compound is tris (hydroxy) methylsilane.
  • X is 3, the silicon compound is, for example, a trifunctional silane having three functional groups.
  • silicon compound represented by the formula (1) examples include a compound in which X is 4.
  • the silicon compound is, for example, a tetrafunctional silane having four functional groups.
  • the silicon compound may be, for example, a precursor that forms the silicon compound of the formula (1) by hydrolysis.
  • the precursor is not particularly limited as long as it can generate the silicon compound by hydrolysis, and specific examples thereof include a compound represented by the formula (2).
  • the production method of the present invention may include, for example, a step of hydrolyzing the precursor prior to the gelation step.
  • the hydrolysis method is not particularly limited, and can be performed, for example, by a chemical reaction in the presence of a catalyst.
  • the catalyst include acids such as oxalic acid and acetic acid.
  • the hydrolysis reaction can be performed, for example, by slowly dropping an aqueous solution of oxalic acid into the dimethyl sulfoxide solution of the silicon compound precursor in a room temperature environment and then stirring the mixture for about 30 minutes.
  • hydrolyzing the silicon compound precursor for example, by completely hydrolyzing the alkoxy group of the silicon compound precursor, further heating and immobilization after gelation / aging / void structure formation, It can be expressed efficiently.
  • examples of the silicon compound include a hydrolyzate of trimethoxy (methyl) silane.
  • the silicon compound of the monomer is not particularly limited, and can be appropriately selected according to, for example, the use of the silicone porous body to be produced.
  • the silicon compound is preferably the trifunctional silane from the viewpoint of excellent low refractive index, and also has strength (for example, scratch resistance).
  • the tetrafunctional silane is preferred from the viewpoint of excellent scratch resistance.
  • the said silicon compound used as the raw material of the said gel-like silicon compound may use only 1 type, for example, and may use 2 or more types together.
  • the silicon compound may include, for example, only the trifunctional silane, may include only the tetrafunctional silane, may include both the trifunctional silane and the tetrafunctional silane, Furthermore, other silicon compounds may be included.
  • the ratio is not particularly limited and can be set as appropriate.
  • the gelation of the silicon compound can be performed, for example, by a dehydration condensation reaction between the silicon compounds.
  • the dehydration condensation reaction is preferably performed, for example, in the presence of a catalyst.
  • the catalyst include acid catalysts such as hydrochloric acid, oxalic acid, and sulfuric acid, and ammonia, potassium hydroxide, sodium hydroxide, ammonium hydroxide, and the like.
  • a dehydration condensation catalyst such as a base catalyst.
  • the dehydration condensation catalyst may be an acid catalyst or a base catalyst, but a base catalyst is preferred.
  • the amount of the catalyst added to the silicon compound is not particularly limited, and the catalyst is, for example, 0.1 to 10 mol, 0.05 to 7 mol, relative to 1 mol of the silicon compound, 0.1 to 5 moles.
  • the gelation of the silicon compound is preferably performed in a solvent, for example.
  • the ratio of the silicon compound in the solvent is not particularly limited.
  • the solvent include dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), N, N-dimethylacetamide (DMAc), dimethylformamide (DMF), ⁇ -butyllactone (GBL), acetonitrile (MeCN), ethylene Examples thereof include glycol ethyl ether (EGEE).
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • DMAc N, N-dimethylacetamide
  • DMF dimethylformamide
  • GBL ⁇ -butyllactone
  • MeCN acetonitrile
  • EGEE glycol ethyl ether
  • one type of solvent may be used, or two or more types may be used in combination.
  • the solvent used for the gelation is also referred to as “gelling solvent”.
  • the gelation conditions are not particularly limited.
  • the treatment temperature for the solvent containing the silicon compound is, for example, 20-30 ° C., 22-28 ° C., 24-26 ° C., and the treatment time is, for example, 1-60 minutes, 5-40 minutes, 10-30. Minutes.
  • the process conditions in particular are not restrict
  • the gel form of the gel silicon compound obtained in the gelation step is not particularly limited.
  • “Gel” generally refers to a solidified state in which a solute has a structure in which it loses independent motility due to interaction and aggregates.
  • a wet gel includes a dispersion medium and a solute has a uniform structure in the dispersion medium.
  • a xerogel is a network structure in which the solvent is removed and the solute has voids.
  • wet gel is preferably used as the gel silicon compound.
  • the remaining silanol group of the gel-like silicon compound is not particularly limited, and for example, the ranges described later can be exemplified similarly.
  • the gel-like silicon compound obtained by the gelation may be subjected to the pulverization step as it is, for example, but may be subjected to an aging treatment in the aging step before the pulverization step.
  • the conditions for the aging treatment are not particularly limited.
  • the gel-like silicon compound may be incubated in a solvent at a predetermined temperature.
  • the gel-like silicon compound having a three-dimensional structure obtained by gelation can further grow the primary particles, thereby increasing the size of the particles themselves. It is. As a result, the contact state of the neck portion where the particles are in contact can be increased from point contact to surface contact, for example.
  • the gel silicon compound subjected to the aging treatment as described above increases the strength of the gel itself, and as a result, can further improve the strength of the three-dimensional basic structure of the pulverized product after pulverization. .
  • a coating film is formed using the coating material of the present invention, for example, even in the drying step after coating, the pore size of the void structure in which the three-dimensional basic structure is deposited is in the drying step. Shrinkage can be suppressed as the solvent in the resulting coating film volatilizes.
  • the lower limit of the temperature of the aging treatment is, for example, 30 ° C. or more, 35 ° C. or more, 40 ° C. or more, and the upper limit thereof is, for example, 80 ° C. or less, 75 ° C. or less, 70 ° C. or less.
  • the predetermined time is not particularly limited, and the lower limit thereof is, for example, 5 hours or more, 10 hours or more, 15 hours or more, and the upper limit thereof is, for example, 50 hours or less, 40 hours or less, 30 hours or less.
  • the range is, for example, 5 to 50 hours, 10 to 40 hours, 15 to 30 hours.
  • the optimum conditions for aging can be set, for example, as described above, such that the gel-like silicon compound can increase the size of the primary particles and increase the contact area of the neck portion.
  • the temperature of the aging treatment preferably takes into account, for example, the boiling point of the solvent used.
  • the aging treatment for example, if the aging temperature is too high, the solvent is excessively volatilized, and there is a possibility that problems such as closing of the pores of the three-dimensional void structure occur due to the concentration of the coating solution. is there.
  • the aging treatment for example, if the aging temperature is too low, the effect due to the aging is not sufficiently obtained, temperature variation with time of the mass production process increases, and a product with poor quality may be produced. There is.
  • the same solvent as in the gelation step can be used, and specifically, the reaction product after the gel treatment (that is, the solvent containing the gel silicon compound) is applied as it is.
  • the reaction product after the gel treatment that is, the solvent containing the gel silicon compound
  • the number of moles of residual silanol groups contained in the gelled silicon compound that has been subjected to aging treatment after gelation is, for example, the number of moles of alkoxy groups in the raw material used for gelation (for example, the silicon compound or its precursor).
  • the lower limit is, for example, 1% or more, 3% or more, 5% or more
  • the upper limit is, for example, 50% or less, 40% or less, 30%
  • the range is, for example, 1 to 50%, 3 to 40%, and 5 to 30%.
  • the number of residual silanol groups is too high, for example, in the formation of the silicone porous body, there is a possibility that the void structure cannot be retained before the precursor of the silicone porous body is crosslinked.
  • the precursor of the silicone porous body cannot be crosslinked, and sufficient film strength may not be imparted.
  • the above is an example of residual silanol groups.
  • the silicon compound modified with various reactive functional groups is used as the raw material of the gel silicon compound, However, the same phenomenon can be applied.
  • the pulverizing step is a step of pulverizing the gel-like silica compound as described above.
  • the pulverization may be performed, for example, on the gel-like silicon compound (first paint raw material) after the gelation step, and further after the aging treatment the gel-like silicon compound (second Of the coating material).
  • the gel-like silicon compound in the gelation solvent may be pulverized as it is, or after the gelation solvent is replaced with another solvent, the other solvent is used. You may grind
  • the other solvent is also referred to as a “grinding solvent”.
  • the same solvent as in the gelation step and the aging step may be used, or a solvent different from that in the gelation step and the aging step may be used.
  • the aging step and the pulverization treatment can be performed as they are on the reaction product after the gelation step (for example, the gelation solvent containing the gel silicon compound).
  • the reaction product after the gelation step for example, the gelation solvent containing the gelled silicon compound
  • the gelation solvent is added. After substituting with the solvent, the gelled silicon compound in the other solvent may be pulverized.
  • the solvent for grinding is not particularly limited, and for example, an organic solvent can be used.
  • the organic solvent include solvents having a boiling point of 130 ° C. or lower, a boiling point of 100 ° C. or lower, and a boiling point of 85 ° C. or lower. Specific examples include isopropyl alcohol (IPA), ethanol, methanol, butanol, propylene glycol monomethyl ether (PGME), methyl cellosolve, acetone, dimethylformamide (DMF) and the like.
  • the pulverizing solvent may be, for example, one type or a combination of two or more types.
  • the combination of the gelling solvent and the grinding solvent is not particularly limited.
  • a more uniform coating film can be formed, for example, in coating film formation described below.
  • the method for pulverizing the gel silicon compound is not particularly limited, and may be performed by, for example, an ultrasonic homogenizer, a high-speed rotation homogenizer, a pulverizer using other cavitation phenomenon, or a pulverizer that obliquely collides liquids with each other at high pressure. it can.
  • a device for performing media grinding such as a ball mill physically destroys the void structure of the gel at the time of grinding
  • a cavitation type grinding device preferable for the present invention such as a homogenizer is, for example, a gel-less system.
  • the relatively weakly bonded silica particle bonding surface already contained in the three-dimensional structure is peeled off with a high shear force.
  • the three-dimensional structure has, for example, a void structure having a certain range of particle size distribution in the formation of a coating film. It can be retained, and the void structure can be re-formed by deposition during coating and drying.
  • the conditions for the pulverization are not particularly limited.
  • the gel can be pulverized without volatilizing the solvent by instantaneously applying a high-speed flow.
  • the amount of work such as pulverization time and strength is insufficient, for example, coarse particles remain, and fine pores cannot be formed, appearance defects increase, and high quality may not be obtained. is there.
  • the work amount is excessive, for example, the sol particles are finer than the desired particle size distribution, and the void size deposited after coating / drying may become fine and may not satisfy the desired porosity. .
  • the ratio of residual silanol groups contained in the pulverized product after the pulverization step is not particularly limited, and is, for example, the same as the range exemplified for the gel silicon compound after the aging treatment.
  • the ratio of the pulverized product in the solvent containing the pulverized product is not particularly limited, and examples thereof include the conditions for the paint of the present invention described above.
  • the ratio may be, for example, a condition of the solvent itself containing the pulverized product after the pulverization step, or may be a condition adjusted after the pulverization step and before being used as the paint.
  • the coating material of the present invention can be produced, for example, using the first coating material or the second coating material as described above.
  • the first coating material raw material contains a gel silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups.
  • the method for producing the first coating material raw material includes, for example, a gelation step in which the silicon compound is gelled in a solvent to produce a gel silicon compound. For example, the gel state after the gelation step described above The description of silicon compounds can be incorporated.
  • the second coating material raw material includes a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group and subjected to aging treatment.
  • the method for producing the second coating material raw material includes, for example, an aging step of aging a gel-like silicon compound obtained from the silicon compound in a solvent. For example, the gel-like silicon compound after the aging step described above The description can be incorporated.
  • the paint of the present invention containing a pulverized product of a gel-like silicon compound and a dispersion medium can be produced.
  • a catalyst for chemically bonding the pulverized products may be added to the paint of the present invention during or after each of the production steps.
  • the amount of the catalyst to be added is not particularly limited, but is, for example, 0.01 to 20% by weight, 0.05 to 10% by weight, or 0.1 to 5% by weight with respect to the weight of the pulverized product of the gel silicon compound. %.
  • the pulverized products can be chemically bonded in a bonding step described later.
  • the catalyst may be, for example, a catalyst that promotes cross-linking between the pulverized products.
  • the pulverized materials As a chemical reaction for chemically bonding the pulverized materials, it is preferable to use a dehydration condensation reaction of residual silanol groups contained in silica sol molecules. By promoting the reaction between the hydroxyl groups of the silanol group with the catalyst, it is possible to form a continuous film that cures the void structure in a short time.
  • the catalyst include a photoactive catalyst and a thermally active catalyst.
  • the photoactive catalyst for example, the pulverized products can be chemically bonded (for example, crosslinked) without being heated. According to this, for example, since shrinkage due to heating hardly occurs, a higher porosity can be maintained.
  • a substance that generates a catalyst may be used.
  • the catalyst may be a crosslinking reaction accelerator
  • the catalyst generator may be a substance that generates the crosslinking reaction accelerator.
  • a substance that generates a catalyst by light photocatalyst generator
  • a substance that generates water thermally active catalyst
  • the photocatalyst generator is not particularly limited, and examples thereof include a photobase generator (a catalyst that generates a basic catalyst by light irradiation), a photoacid generator (a substance that generates an acidic catalyst by light irradiation), and the like.
  • a photobase agent is preferred.
  • Examples of the photobase generator include 9-anthrylmethyl N, N-diethylcarbamate (trade name WPBG-018), (E) -1- [3- (2- Hydroxyphenyl) -2-propenoyl] piperidine ((E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine, trade name WPBG-027), 1- (anthraquinone-2-yl) ethyl imidazolecarboxy Rate (1- (anthraquinon-2-yl) ethyl imidazolecarboxylate, trade name WPBG-140), 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate (trade name WPBG-165), 1,2-diisopropyl- 3- [bis (dimethylamino) methylene] guanidium 2- (3-benzoylphenyl) propionate (trade name WPBG-266), 1 , 2-dicy
  • the trade names including “WPBG” are trade names of Wako Pure Chemical Industries, Ltd.
  • Examples of the photoacid generator include aromatic sulfonium salts (trade name SP-170: ADEKA), triarylsulfonium salts (trade name CPI101A: San Apro), and aromatic iodonium salts (trade name Irgacure 250: Ciba Japan). Company).
  • the catalyst for chemically bonding the pulverized materials is not limited to the photoactive catalyst and the photocatalyst generator, and may be a thermal catalyst or a thermal catalyst generator such as urea.
  • the catalyst for chemically bonding the pulverized materials examples include basic catalysts such as potassium hydroxide, sodium hydroxide and ammonium hydroxide, and acid catalysts such as hydrochloric acid, acetic acid and oxalic acid. Of these, base catalysts are preferred.
  • the catalyst for chemically bonding the pulverized materials is used, for example, by adding to the sol particle liquid (for example, suspension) containing the pulverized material immediately before coating, or mixing the catalyst in a solvent. It can be used as a liquid.
  • the mixed liquid may be, for example, a coating liquid that is directly added and dissolved in the sol particle liquid, a solution in which the catalyst is dissolved in a solvent, or a dispersion liquid in which the catalyst is dispersed in a solvent.
  • the solvent is not particularly limited, and examples thereof include various organic solvents, water, and a buffer solution.
  • a crosslinking aid for indirectly bonding the pulverized products of the gel silicon compound may be added to the paint of the present invention.
  • This crosslinking aid enters between the particles (the pulverized product), and the particles and the crosslinking aid interact or bond with each other, so that it is possible to bind particles that are slightly apart in distance. The strength can be increased efficiently.
  • a polycrosslinked silane monomer is preferable.
  • the multi-crosslinked silane monomer has, for example, an alkoxysilyl group having 2 or more and 3 or less, the chain length between alkoxysilyl groups may be 1 to 10 carbon atoms, and an element other than carbon May also be included.
  • crosslinking aid examples include bis (trimethoxysilyl) ethane, bis (triethoxysilyl) ethane, bis (trimethoxysilyl) methane, bis (triethoxysilyl) methane, bis (triethoxysilyl) propane, bis (Trimethoxysilyl) propane, bis (triethoxysilyl) butane, bis (trimethoxysilyl) butane, bis (triethoxysilyl) pentane, bis (trimethoxysilyl) pentane, bis (triethoxysilyl) hexane, bis (tri Methoxysilyl) hexane, bis (trimethoxysilyl) hexane, bis (trimethoxysilyl) hexane, bis (trimethoxysilyl) hexane, bis (trimethoxysilyl) -N-butyl-N-propyl-ethane-1
  • the method for producing the silicone porous body includes, for example, a precursor forming step of forming a precursor of the silicone porous body using the paint of the present invention, and the pulverized products of the paint contained in the precursor It is characterized by including a bonding step for chemically bonding.
  • the precursor can also be referred to as a coating film, for example.
  • a porous structure having the same function as an air layer is formed.
  • the reason is estimated as follows, for example, but the present invention is not limited to this estimation.
  • the coating material of the present invention used in the method for producing a porous silicone material includes a pulverized product of the gel-like silicon compound
  • the three-dimensional structure of the gel-like silica compound is dispersed in a three-dimensional basic structure. It has become.
  • the precursor for example, a coating film
  • the three-dimensional basic structure is deposited, and voids based on the three-dimensional basic structure are formed.
  • a structure is formed. That is, according to the manufacturing method of the said porous silicone body, the new three-dimensional structure formed from the said ground material of the said three-dimensional basic structure different from the three-dimensional structure of the said gel-like silicon compound is formed.
  • the said silicone porous body obtained by the manufacturing method of the said silicone porous body is a structure which has a space
  • the silicone porous body obtained by the present invention can be used for products in a wide range of fields such as a heat insulating material, a sound absorbing material, an optical member, an ink image-receiving layer, etc. A laminated film can be produced.
  • the description of the paint of the present invention can be used in the method for producing the silicone porous body unless otherwise specified.
  • the paint of the present invention is applied onto the substrate.
  • the coating material of the present invention is, for example, coated on a base material, dried the coated film, and then chemically bonded (for example, cross-linked) between the pulverized products by the bonding step, thereby achieving a certain level or more. It is possible to continuously form a void layer having a film strength of 10 nm.
  • the coating amount of the coating material on the substrate is not particularly limited, and can be appropriately set according to, for example, the desired thickness of the silicone porous body.
  • the coating amount of the coating material relative to the substrate, the area 1 m 2 per of the substrate for example, the ground product 0.01 60000 ⁇ g, 0.1-5000 ⁇ g, 1-50 ⁇ g.
  • the preferable coating amount of the paint is, for example, related to the concentration of the liquid, the coating method, etc., and thus it is difficult to define it uniquely. However, in consideration of productivity, it is preferable to apply as thin a layer as possible. .
  • the porous body precursor (coating film) may be dried.
  • the drying treatment for example, not only the solvent (the solvent contained in the paint) in the precursor of the porous body is removed, but also the sol particles are settled and deposited to form a void structure during the drying treatment.
  • the drying treatment temperature is, for example, 50 to 250 ° C., 60 to 150 ° C., 70 to 130 ° C.
  • the drying treatment time is, for example, 0.1 to 30 minutes, 0.2 to 10 minutes, 0 .3-3 minutes.
  • the drying process temperature and time are preferably lower and shorter in relation to, for example, continuous productivity and high porosity.
  • the substrate is a resin film
  • the substrate is extended in a drying furnace by being close to the glass transition temperature of the substrate, and formed immediately after coating. Defects such as cracks may occur in the void structure.
  • the conditions are too loose, for example, since the residual solvent is included at the time of leaving the drying furnace, there is a possibility that defects in appearance such as scratches will occur when rubbing with the roll in the next process. is there.
  • the drying treatment may be, for example, natural drying, heat drying, or vacuum drying.
  • the drying method is not particularly limited, and for example, a general heating means can be used.
  • the heating means include a hot air fan, a heating roll, and a far infrared heater.
  • heat drying when it is premised on industrial continuous production, it is preferable to use heat drying.
  • a solvent having a low surface tension is preferable for the purpose of suppressing the generation of shrinkage stress accompanying the solvent volatilization during drying and the cracking phenomenon of the void layer (the silicone porous body).
  • the solvent examples include, but are not limited to, lower alcohols typified by isopropyl alcohol (IPA), hexane, perfluorohexane, and the like. Further, for example, a small amount of perfluoro-based surfactant or silicon-based surfactant may be added to the IPA or the like to reduce the surface tension.
  • IPA isopropyl alcohol
  • hexane hexane
  • perfluorohexane perfluorohexane
  • silicon-based surfactant silicon-based surfactant
  • the substrate is not particularly limited, for example, a thermoplastic resin substrate, a glass substrate, an inorganic substrate typified by silicon, a plastic molded with a thermosetting resin, an element such as a semiconductor, A carbon fiber-based material typified by carbon nanotube can be preferably used, but is not limited thereto.
  • the form of the substrate include a film and a plate.
  • the thermoplastic resin include polyethylene terephthalate (PET), acrylic, cellulose acetate propionate (CAP), cycloolefin polymer (COP), triacetate (TAC), polyethylene naphthalate (PEN), polyethylene (PE), and polypropylene. (PP) etc. are mentioned.
  • the bonding step is a step of chemically bonding the pulverized materials contained in the porous body precursor (coating film).
  • the bonding step for example, the three-dimensional structure of the pulverized material in the precursor of the porous body is fixed.
  • high temperature treatment at 200 ° C. or higher induces dehydration condensation of silanol groups and formation of siloxane bonds.
  • the bonding step of the present invention by reacting various additives that catalyze the above dehydration condensation reaction, for example, when the substrate is a resin film, the substrate is not damaged, and the temperature is around 100 ° C.
  • the void structure can be continuously formed and fixed at a relatively low drying temperature and a short processing time of less than a few minutes.
  • the method of chemically bonding is not particularly limited, and can be appropriately determined according to, for example, the type of the gel silicon compound.
  • the chemical bonding can be performed by, for example, chemical cross-linking between the pulverized products, and, for example, inorganic particles such as titanium oxide are added to the pulverized product. In this case, it is conceivable to chemically cross-link the inorganic particles and the pulverized product.
  • a biocatalyst such as an enzyme is supported, a site other than the catalytic active site and the pulverized product may be chemically crosslinked.
  • the present invention can be applied to, for example, not only a void layer (silicone porous body) formed by the sol particles but also an organic-inorganic hybrid void layer, a host guest void layer, and the like, but is not limited thereto.
  • the bonding step can be performed, for example, by a chemical reaction in the presence of a catalyst depending on the kind of the pulverized product of the gel silicon compound.
  • a catalyst depending on the kind of the pulverized product of the gel silicon compound.
  • the chemical reaction in the present invention it is preferable to use a dehydration condensation reaction of residual silanol groups contained in the pulverized product of the gel silicon compound.
  • the catalyst include base catalysts such as potassium hydroxide, sodium hydroxide and ammonium hydroxide, and acid catalysts such as hydrochloric acid, acetic acid and oxalic acid, but are not limited thereto.
  • the catalyst for the dehydration condensation reaction is particularly preferably a base catalyst.
  • a photoacid generator catalyst, a photobase generator catalyst, a photoacid generator, a photobase generator, or the like that exhibits catalytic activity when irradiated with light can also be preferably used.
  • the photoacid generator catalyst, photobase generator catalyst, photoacid generator, and photobase generator are not particularly limited, and are, for example, as described above.
  • the catalyst is preferably added to the sol particle liquid containing the pulverized product immediately before coating, or used as a mixed liquid in which the catalyst is mixed with a solvent.
  • the mixed liquid may be, for example, a coating liquid that is directly added and dissolved in the sol particle liquid, a solution in which the catalyst is dissolved in a solvent, or a dispersion liquid in which the catalyst is dispersed in a solvent.
  • the solvent is not particularly limited, and examples thereof include water and a buffer solution as described above.
  • the chemical reaction in the presence of the catalyst is performed, for example, by irradiating or heating the coating film containing the catalyst previously added to the paint, or by spraying the catalyst on the coating film and then applying light. It can be carried out by irradiation or heating, or by light irradiation or heating while spraying the catalyst.
  • the catalyst is a photoactive catalyst
  • the pulverized material can be chemically bonded to each other by light irradiation to form the porous silicone body.
  • the said catalyst is a heat active catalyst
  • the said pulverized material can be combined chemically by heating and the said silicone porous body can be formed.
  • Light irradiation amount in the irradiation (energy) is not particularly limited, @ in 360nm terms, for example, 200 ⁇ 800mJ / cm 2, 250 ⁇ 600mJ / cm 2 or 300 ⁇ 400mJ / cm 2,. From the viewpoint of preventing the irradiation amount from being insufficient and the decomposition due to light absorption of the catalyst generator from proceeding and preventing the effect from becoming insufficient, an integrated light amount of 200 mJ / cm 2 or more is good. Further, from the viewpoint of preventing the base material under the void layer from being damaged and generating thermal wrinkles, an integrated light amount of 800 mJ / cm 2 or less is good.
  • the conditions for the heat treatment are not particularly limited, and the heating temperature is, for example, 50 to 250 ° C., 60 to 150 ° C., 70 to 130 ° C., and the heating time is, for example, 0.1 to 30 minutes, 0.2 to 10 minutes and 0.3 to 3 minutes.
  • the solvent used for example, a solvent having a low surface tension is preferable for the purpose of suppressing the generation of shrinkage stress accompanying the solvent volatilization during drying and the cracking phenomenon of the void layer. Examples thereof include, but are not limited to, lower alcohols typified by isopropyl alcohol (IPA), hexane, perfluorohexane, and the like.
  • the porous silicon body of the present invention can be manufactured, but the manufacturing method of the present invention is not limited to this.
  • the obtained porous silicone body of the present invention may be subjected to a strength improving step (hereinafter also referred to as “aging step”) in which the strength is improved by, for example, heat aging.
  • aging step a strength improving step
  • the temperature in the aging step is, for example, 40 to 80 ° C., 50 to 70 ° C., 55 to 65 ° C.
  • the reaction time is, for example, 5 to 30 hours, 7 to 25 hours, or 10 to 20 hours.
  • the adhesive peel strength can be improved while suppressing the shrinkage of the silicone porous body, and both high porosity and strength can be achieved.
  • the catalyst contained in the silicone porous body of the present invention further causes chemical bonding (for example, cross-linking reaction) between the pulverized products. It is considered that the strength is improved by proceeding.
  • chemical bonding for example, cross-linking reaction
  • the catalyst contained in the porous silicone material of the present invention is not particularly limited.
  • the catalyst used in the bonding step may be used, or the photobase generation catalyst used in the bonding step may be a base generated by light irradiation.
  • the photoacid generating catalyst used in the binding step may be an acidic substance generated by light irradiation or the like. However, this description is illustrative and does not limit the present invention.
  • an adhesive layer may be further formed on the silicone porous body of the present invention (adhesive layer forming step).
  • the adhesive layer may be formed by applying (coating) a pressure-sensitive adhesive or an adhesive onto the silicone porous body of the present invention.
  • the adhesive layer side such as an adhesive tape in which the adhesive layer is laminated on a base material is bonded onto the silicone porous body of the present invention, whereby the above-mentioned silicone porous body of the present invention is An adhesive layer may be formed.
  • the base material such as the adhesive tape may be left as it is or may be peeled off from the adhesive layer.
  • adheresive and “adhesive layer” refer to, for example, an agent or layer premised on re-peeling of the adherend.
  • adheresive and “adhesive layer” refer to, for example, an agent or a layer that does not assume re-peeling of the adherend.
  • pressure-sensitive adhesive and “adhesive” are not necessarily clearly distinguished, and “pressure-sensitive adhesive layer” and “adhesive layer” are not necessarily clearly distinguished.
  • the adhesive or adhesive which forms the said adhesive layer is not specifically limited, For example, a general adhesive or adhesive etc. can be used.
  • the pressure-sensitive adhesive or adhesive examples include acrylic-based, vinyl alcohol-based, silicone-based, polyester-based, polyurethane-based, and polyether-based adhesives, rubber-based adhesives, and the like.
  • the adhesive agent comprised from the water-soluble crosslinking agent of vinyl alcohol polymers, such as glutaraldehyde, melamine, and oxalic acid, etc. are mentioned. These pressure-sensitive adhesives and adhesives may be used alone or in combination (for example, mixing, lamination, etc.).
  • the thickness of the adhesive layer is not particularly limited, and is, for example, 0.1 to 100 ⁇ m, 5 to 50 ⁇ m, 10 to 30 ⁇ m, or 12 to 25 ⁇ m.
  • the silicone porous body of the present invention may be reacted with the adhesive layer to form an intermediate layer disposed between the silicone porous body of the present invention and the adhesive layer (intermediate layer). Forming step).
  • the intermediate layer for example, the silicone porous body of the present invention and the adhesive layer are difficult to peel off.
  • the reason (mechanism) is unknown, but is presumed to be due to, for example, the throwing property (throwing effect) of the intermediate layer.
  • the anchoring property (an anchoring effect) is that the interface is firmly fixed in the vicinity of the interface between the void layer and the intermediate layer because the intermediate layer is embedded in the void layer. A phenomenon (effect).
  • the reaction between the silicone porous body of the present invention and the adhesive layer is not particularly limited, but may be a reaction by catalytic action, for example.
  • the catalyst may be, for example, a catalyst contained in the porous silicone body of the present invention.
  • the catalyst used in the coupling step may be used
  • the photobase generation catalyst used in the coupling step is a basic substance generated by light irradiation
  • the photoacid generation catalyst used in the coupling step is light.
  • An acidic substance generated by irradiation may be used.
  • the reaction between the porous silicone body of the present invention and the adhesive layer may be, for example, a reaction in which a new chemical bond is generated (for example, a crosslinking reaction).
  • the reaction temperature is, for example, 40 to 80 ° C., 50 to 70 ° C., 55 to 65 ° C.
  • the reaction time is, for example, 5 to 30 hours, 7 to 25 hours, or 10 to 20 hours.
  • middle layer formation process may serve as the said intensity
  • porous silicone body of the present invention may be further laminated with another film (layer) to form a laminated structure including the porous structure.
  • each component may be laminated via, for example, a pressure-sensitive adhesive or an adhesive.
  • the lamination may be performed by continuous processing using a long film (so-called Roll to Roll, etc.). May be laminated with batch processing.
  • FIG. 1 is a cross-sectional view schematically showing an example of steps in the method for forming the silicone porous body on the substrate.
  • the method for forming the silicone porous body includes a coating step (1) of applying the coating material 20 ′′ of the present invention on the substrate 10, and drying the coating material 20 ′′ to form the silicone porous material.
  • the coating film forming process (drying process) (2) for forming the coating film 20 ′, which is a precursor layer of the body, and the coating film 20 ′ are subjected to chemical treatment (for example, crosslinking treatment) to form a porous silicone body 20 includes a chemical treatment step (for example, a crosslinking treatment step) (3).
  • the method for forming a porous silicone body may or may not include steps other than the steps (1) to (3) as appropriate.
  • the coating method of the paint 20 ′′ is not particularly limited, and a general coating method can be adopted.
  • the coating method include a slot die method, a reverse gravure coating method, a micro gravure method (micro gravure coating method), a dip method (dip coating method), a spin coating method, a brush coating method, a roll coating method, and flexographic printing.
  • the extrusion coating method, the curtain coating method, the roll coating method, the micro gravure coating method and the like are preferable from the viewpoints of productivity, coating film smoothness, and the like.
  • the coating amount of the coating material 20 ′′ is not particularly limited, and can be appropriately set so that, for example, the thickness of the porous structure (silicone porous body) 20 is appropriate.
  • the thickness of the porous structure (silicone porous body) 20 is not particularly limited, and is as described above, for example.
  • the coating material 20 ′′ is dried (that is, the dispersion medium contained in the coating material 20 ′′ is removed) to form a coating film (precursor layer) 20 ′.
  • the conditions for the drying treatment are not particularly limited and are as described above.
  • the coating film 20 ′ containing the catalyst for example, a photoactive catalyst or a thermally active catalyst such as KOH
  • the catalyst for example, a photoactive catalyst or a thermally active catalyst such as KOH
  • the pulverized product in the film (precursor) 20 ′ is chemically bonded (for example, crosslinked) to form the porous silicone body 20.
  • the light irradiation or heating conditions in the chemical treatment step (3) are not particularly limited and are as described above.
  • FIG. 2 schematically shows an example of a coating apparatus using the slot die method and a method for forming the porous silicone material using the same.
  • FIG. 2 is a cross-sectional view, hatching is omitted for easy viewing.
  • each step in the method using this apparatus is performed while the substrate 10 is conveyed in one direction by a roller.
  • the conveyance speed is not particularly limited, and is, for example, 1 to 100 m / min, 3 to 50 m / min, or 5 to 30 m / min.
  • a coating process (1) is performed in which the coating roll 102 is coated with the coating material 20 ′′ of the present invention on the coating roll 102 while the substrate 10 is fed out and conveyed from the feed roller 101, and then the oven zone.
  • the process proceeds to the drying step (2).
  • a preliminary drying process is performed after a coating process (1) and prior to a drying process (2).
  • the preliminary drying step can be performed at room temperature without heating.
  • the heating means 111 is used.
  • the heating means 111 as described above, a hot air fan, a heating roll, a far infrared heater, or the like can be used as appropriate.
  • the drying step (2) may be divided into a plurality of steps, and the drying temperature may be increased as the subsequent drying step is performed.
  • the chemical treatment step (3) is performed in the chemical treatment zone 120.
  • the chemical treatment step (3) for example, when the dried coating film 20 ′ includes a photoactive catalyst, light irradiation is performed by lamps (light irradiation means) 121 disposed above and below the base material 10.
  • lamps (light irradiation means) 121 disposed above and below the base material 10.
  • a hot air fan 121 disposed above and below the substrate 10 using a hot air fan (heating means) instead of the lamp (light irradiation device) 121.
  • the pulverized material in the coating film 20 ′ is chemically bonded to each other, and the porous silicone body 20 is cured and strengthened.
  • the laminated body in which the porous silicone body 20 is formed on the substrate 10 is wound up by the winding roll 105.
  • the porous structure 20 of the laminate is covered and protected with a protective sheet fed from a roll 106.
  • the protective sheet instead of the protective sheet, another layer formed of a long film may be laminated on the porous structure 20.
  • FIG. 3 schematically shows an example of a micro gravure method (micro gravure coating method) coating apparatus and a method for forming the porous structure using the same.
  • the hatch is abbreviate
  • each step in the method using this apparatus is performed while the substrate 10 is conveyed in one direction by a roller, as in FIG.
  • the conveyance speed is not particularly limited, and is, for example, 1 to 100 m / min, 3 to 50 m / min, or 5 to 30 m / min.
  • a coating process (1) for coating the base material 10 with the coating material 20 ′′ of the present invention is performed while the base material 10 is fed out and conveyed from the feed roller 201.
  • the coating material 20 ′′ is applied using a liquid reservoir 202, a doctor (doctor knife) 203, and a micro gravure 204 as shown in the figure.
  • the coating material 20 ′′ stored in the liquid reservoir 202 is attached to the surface of the microgravure 204, and further controlled to a predetermined thickness by the doctor 203 while being applied to the surface of the substrate 10 by the microgravure 204.
  • the microgravure 204 is merely an example, and the present invention is not limited to this, and any other coating means may be used.
  • a drying step (2) is performed. Specifically, as shown in the drawing, the base material 10 coated with the coating material 20 ′′ is transported into the oven zone 210, heated by the heating means 211 in the oven zone 210, and dried.
  • the heating means 211 may be the same as that shown in FIG. Further, for example, by dividing the oven zone 210 into a plurality of sections, the drying step (2) may be divided into a plurality of steps, and the drying temperature may be increased as the subsequent drying step is performed.
  • the chemical treatment step (3) is performed in the chemical treatment zone 220.
  • the chemical treatment step (3) for example, when the dried coating film 20 ′ includes a photoactive catalyst, light irradiation is performed by lamps (light irradiation means) 221 disposed above and below the substrate 10.
  • lamps (light irradiation means) 221 disposed above and below the substrate 10.
  • a hot air fan (heating means) is used instead of the lamp (light irradiation device) 221 and is arranged below the base material 10 ( The substrate 10 is heated by the heating means 221.
  • the pulverized material in the coating film 20 ′ is chemically bonded to each other, and the porous silicone body 20 is formed.
  • the laminated body in which the silicone porous body 20 is formed on the substrate 10 is wound up by the winding roll 251. Thereafter, for example, another layer may be laminated on the laminate. Further, before the laminate is taken up by the take-up roll 251, for example, another layer may be laminated on the laminate.
  • FIGS. 4 to 6 show another example of the continuous treatment process in the method for forming a porous silicone body of the present invention.
  • this method is performed except that a chemical treatment step (for example, a crosslinking treatment step) (3) for forming the silicone porous body 20 is followed by a strength improving step (aging step) (4).
  • a chemical treatment step for example, a crosslinking treatment step (3) for forming the silicone porous body 20
  • a strength improving step (aging step) (4) Is the same as the method shown in FIGS.
  • the strength improving step (aging step) (4) the strength of the silicone porous body 20 is improved to obtain a silicone porous body 21 with improved strength.
  • the strength improving step (aging step) (4) is not particularly limited, and is as described above, for example.
  • FIG. 5 is a schematic view showing another example of the coating apparatus of the slot die method and the method of forming the silicone porous body using the slot die method.
  • this coating apparatus has a strength improving zone (aging zone) 130 for performing a strength improving step (aging step) (4) immediately after the chemical processing zone 120 for performing the chemical processing step (3).
  • the strength improvement step (aging step) (4) is performed in the strength improvement zone (aging zone) 130 to improve the adhesive peel strength of the silicone porous body 20 to the resin film 10.
  • the porous silicone body 21 with improved adhesive peel strength is formed.
  • the strength improving step (aging step) (4) may be performed, for example, by heating the porous silicone body 20 as described above using the hot air fans (heating means) 131 disposed above and below the base material 10. .
  • heating temperature, time, etc. are not specifically limited, For example, it is as above-mentioned.
  • the laminated film in which the porous silicon body 21 is formed on the substrate 10 is wound up by the winding roll 105.
  • FIG. 6 is a schematic view showing another example of the coating apparatus of the micro gravure method (micro gravure coating method) and the method for forming the porous structure using the same, as shown in FIG.
  • this coating apparatus has a strength improving zone (aging zone) 230 for performing a strength improving step (aging step) (4) immediately after the chemical processing zone 220 for performing chemical processing step (3).
  • the strength improvement step (aging step) (4) is performed in the strength improvement zone (aging zone) 230 to improve the adhesive peel strength of the porous silicone body 20 to the resin film 10.
  • the porous silicone body 21 with improved adhesive peel strength is formed.
  • the strength improving step (aging step) (4) may be performed, for example, by heating the porous silicone body 20 as described above using the hot air blowers (heating means) 231 disposed above and below the base material 10. . Although heating temperature, time, etc. are not specifically limited, For example, it is as above-mentioned. Thereafter, similarly to FIG. 3, the laminated film in which the silicone porous body 21 is formed on the substrate 10 is wound up by the winding roll 251.
  • FIGS. 7 to 9 show another example of the continuous treatment process in the method of forming the porous silicone body of the present invention.
  • this method applies the adhesive layer 30 on the silicone porous body 20 after the chemical treatment step (for example, the crosslinking treatment step) (3) for forming the silicone porous body 20.
  • An adhesive layer coating step adheresive layer forming step
  • an intermediate layer forming step (5) in which the porous silicone body 20 is reacted with the adhesive layer 30 to form the intermediate layer 22.
  • FIGS. 7 to 9 is the same as the method shown in FIGS. In FIG.
  • the intermediate layer forming step (5) also serves as a step of improving the strength of the silicone porous body 20 (strength improving step).
  • the silicone porous body 20 The porous silicon body 21 is improved in strength.
  • this invention is not limited to this,
  • the silicone porous body 20 does not need to change after an intermediate
  • the adhesive layer coating step (adhesive layer forming step) (4) and the intermediate layer forming step (5) are not particularly limited, and are as described above, for example.
  • FIG. 8 is a schematic view showing still another example of the coating apparatus of the slot die method and the method of forming the silicone porous body using the same.
  • this coating apparatus has an adhesive layer coating zone 130a for performing the adhesive layer coating step (4) immediately after the chemical processing zone 120 for performing the chemical processing step (3).
  • the intermediate layer forming zone (aging zone) 130 disposed immediately after the adhesive layer coating zone 130a is obtained by the hot air blower (heating means) 131 disposed above and below the base material 10, and the strength of FIG.
  • the same heat treatment as in the improvement zone (aging zone) 130 can be performed. That is, in the apparatus of FIG.
  • the adhesive or adhesive is applied on the silicone porous body 20 by the adhesive layer coating means 131a in the adhesive layer coating zone 130a.
  • An adhesive layer coating process (adhesive layer forming process) (4) for applying (coating) and forming the adhesive layer 30 is performed. Further, as described above, instead of application (coating) of the pressure-sensitive adhesive or adhesive, bonding (sticking) such as a pressure-sensitive adhesive tape having the adhesive layer 30 may be used. Further, an intermediate layer forming step (aging step) (5) is performed in the intermediate layer forming zone (aging zone) 130 to react the silicone porous body 20 and the adhesive layer 30 to form the intermediate layer 22.
  • the silicone porous body 20 becomes the silicone porous body 21 with improved strength.
  • the heating temperature, time, etc. by the hot air fan (heating means) 131 are not specifically limited, For example, it is as above-mentioned.
  • FIG. 9 is a schematic diagram showing still another example of a micro gravure method (micro gravure coating method) coating apparatus and a method for forming the porous structure using the same.
  • this coating apparatus has an adhesive layer coating zone 230a for performing the adhesive layer coating step (4) immediately after the chemical processing zone 220 for performing the chemical processing step (3).
  • the intermediate layer forming zone (aging zone) 230 disposed immediately after the adhesive layer coating zone 230a is obtained from the strength shown in FIG.
  • the same heat treatment as that of the improvement zone (aging zone) 230 can be performed. That is, in the apparatus of FIG.
  • the adhesive or adhesive is applied on the silicone porous body 20 by the adhesive layer coating means 231a in the adhesive layer coating zone 230a.
  • An adhesive layer coating process (adhesive layer forming process) (4) for applying (coating) and forming the adhesive layer 30 is performed. Further, as described above, instead of application (coating) of the pressure-sensitive adhesive or adhesive, bonding (sticking) such as a pressure-sensitive adhesive tape having the adhesive layer 30 may be used.
  • an intermediate layer forming step (aging step) (5) is performed in the intermediate layer forming zone (aging zone) 230, and the silicone porous body 20 and the adhesive layer 30 are reacted to form the intermediate layer 22. Further, as described above, in this step, the silicone porous body 20 becomes the silicone porous body 21 with improved strength.
  • the heating temperature, time, and the like by the hot air fan (heating means) 231 are not particularly limited, and are as described above, for example.
  • the porous silicon body of the present invention has, for example, scratch resistance by Bencot (registered trademark) indicating film strength of 60 to 100%, and the number of foldings by the MIT test indicating flexibility is as follows. Although it is characterized by being 100 times or more, it is not limited to this.
  • the porous silicone of the present invention uses the pulverized product of the gel silicon compound, the three-dimensional structure of the gel silicon compound is destroyed, and a new three-dimensional structure different from the gel silicon compound is obtained. Is formed.
  • the silicone porous body of the present invention is a layer in which a new pore structure (new void structure) that cannot be obtained by the layer formed from the gel-like silicon compound is formed, so that the porosity is reduced. High nanoscale silicone porous bodies can be formed.
  • the silicone porous body of the present invention chemically bonds the pulverized products to each other while adjusting the number of siloxane bond functional groups of the gel silicon compound, for example.
  • the silicone porous body of the present invention since a new three-dimensional structure is formed as a precursor of the silicone porous body and then chemically bonded (for example, crosslinked) in the bonding step, the silicone porous body of the present invention has a structure having voids. Sufficient strength and flexibility can be maintained. Therefore, according to this invention, a silicone porous body can be provided to various objects easily and simply. Specifically, the silicone porous body of the present invention can be used as, for example, a heat insulating material, a sound absorbing material, a scaffold for regenerative medicine, a dew condensation preventing material, an optical member, etc., instead of an air layer.
  • the porous silicone material of the present invention includes, for example, a pulverized product of a gel-like silicon compound as described above, and the pulverized product is chemically bonded to each other.
  • the form of chemical bonding (chemical bonding) between the pulverized products is not particularly limited, and specific examples of the chemical bonding include, for example, cross-linking.
  • the method of chemically bonding the pulverized products is as described in detail in the above-described method for manufacturing a silicone porous body, for example.
  • the cross-linking is, for example, a siloxane bond.
  • the siloxane bond include T2 bond, T3 bond, and T4 bond shown below.
  • T2 bond T2 bond
  • T3 bond T4 bond
  • the silicone porous body of the present invention may have any one kind of bond, any two kinds of bonds, or all three kinds of bonds. Also good.
  • the siloxane bonds the greater the ratio of T2 and T3, the more flexible and the expected properties of the gel can be expected, but the film strength becomes weaker.
  • the T4 ratio in the siloxane bond is large, the film strength is easily developed, but the void size becomes small and the flexibility becomes brittle. For this reason, for example, it is preferable to change the ratio of T2, T3, and T4 according to the application.
  • the silicon atoms contained are preferably bonded with siloxane bonds.
  • the proportion of unbonded silicon atoms (that is, residual silanol) in the total silicon atoms contained in the porous silicone material is, for example, less than 50%, 30% or less, or 15% or less.
  • the silicone porous body of the present invention has a pore structure, and the pore size refers to the diameter of the major axis among the major axis diameter and minor axis diameter of the void (hole).
  • a preferable pore size is, for example, 5 nm to 200 nm.
  • the lower limit of the void size is, for example, 5 nm or more, 10 nm or more, 20 nm or more, and the upper limit thereof is, for example, 1000 ⁇ m or less, 500 ⁇ m or less, 100 ⁇ m or less, and the range thereof is, for example, 5 nm to 1000 ⁇ m, 10 nm. ⁇ 500 ⁇ m, 20 nm ⁇ 100 ⁇ m. Since a preferable void size is determined depending on the use of the void structure, it is necessary to adjust the void size to a desired void size according to the purpose, for example.
  • the void size can be evaluated by the following method, for example.
  • the void size can be quantified by a BET test method. Specifically, 0.1 g of a sample (silicone porous body of the present invention) was put into a capillary of a specific surface area measuring device (Micromeritic: ASAP2020), and then vacuum drying was performed for 24 hours at room temperature. The gas in the void structure is degassed. The adsorption isotherm is drawn by adsorbing nitrogen gas to the sample, and the pore distribution is obtained. Thereby, the gap size can be evaluated.
  • a BET test method Specifically, 0.1 g of a sample (silicone porous body of the present invention) was put into a capillary of a specific surface area measuring device (Micromeritic: ASAP2020), and then vacuum drying was performed for 24 hours at room temperature. The gas in the void structure is degassed. The adsorption isotherm is drawn by adsorbing nitrogen gas to the sample, and the pore distribution is obtained. Thereby, the gap size can be evaluated.
  • the silicone porous body of the present invention has a scratch resistance of 60 to 100% by Bencot (registered trademark) indicating film strength. Since the present invention has such a film strength, for example, it is excellent in scratch resistance in various processes.
  • the present invention has, for example, scratch resistance in the production process when winding the product after forming the porous silicone material and handling the product film.
  • the silicone porous body of the present invention uses, for example, a catalytic reaction in the heating step described later, instead of reducing the porosity, and the particle size of the pulverized product of the gel silicon compound, and the pulverized product. It is possible to increase the bonding strength of the neck portions that are bonded to each other. Thereby, the silicone porous body of the present invention can give a certain level of strength to, for example, a void structure that is inherently brittle.
  • the lower limit of the scratch resistance is, for example, 60% or more, 80% or more, 90% or more, and the upper limit thereof is, for example, 100% or less, 99% or less, 98% or less, and the range is For example, they are 60 to 100%, 80 to 99%, 90 to 98%.
  • the scratch resistance can be measured by, for example, the following method.
  • a void layer (silicone porous body of the present invention) coated and formed on an acrylic film is sampled in a circular shape having a diameter of about 15 mm.
  • silicon is identified with fluorescent X-rays (manufactured by Shimadzu Corporation: ZSX Primus II), and the Si coating amount (Si 0 ) is measured.
  • the gap layer on the acrylic film is cut to 50 mm ⁇ 100 mm from the vicinity sampled, and fixed to a glass plate (thickness 3 mm). Perform dynamic tests.
  • the sliding condition is a weight of 100 g and 10 reciprocations.
  • the residual amount of Si (Si 1 ) after the scratch test is measured by sampling and fluorescent X measurement in the same manner as in (1) above from the gap layer after sliding.
  • the silicone porous body of the present invention has, for example, a folding resistance of 100 times or more according to the MIT test showing flexibility. Since the present invention has such flexibility, for example, it is excellent in handleability during winding or use during production.
  • the lower limit of the folding endurance number is, for example, 100 times or more, 500 times or more, 1000 times or more, and the upper limit is not particularly limited, for example, 10,000 times or less, and the range is, for example, 100 10000 times, 500 times to 10000 times, 1000 times to 10000 times.
  • the flexibility means, for example, ease of deformation of the substance.
  • the folding endurance by the MIT test can be measured by the following method, for example.
  • the void layer (silicone porous body of the present invention) is cut into a 20 mm ⁇ 80 mm strip and then attached to an MIT folding tester (manufactured by Tester Sangyo Co., Ltd .: BE-202), and a load of 1.0 N is applied.
  • the chuck part that embeds the gap layer uses R 2.0 mm, performs the folding endurance up to 10,000 times, and sets the number of times when the gap layer is broken as the number of folding endurances.
  • the film density showing the porosity is not particularly limited, and the lower limit is, for example, 1 g / cm 3 or more, 10 g / cm 3 or more, 15 g / cm 3 or more, and the upper limit is For example, 50 g / cm 3 or less, 40 g / cm 3 or less, 30 g / cm 3 or less, 2.1 g / cm 3 or less, and the range is, for example, 5 to 50 g / cm 3 or 10 to 40 g / cm 3. 15 to 30 g / cm 3 and 1 to 2.1 g / cm 3 .
  • the film density can be measured by the following method, for example.
  • the silicone porous body of the present invention only needs to have a pore structure (porous structure) as described above, and may be, for example, an open cell structure in which the pore structure is continuous.
  • the open cell structure means, for example, that the porous structure of the silicone is three-dimensionally connected with the pore structure, and the internal voids of the pore structure can be said to be continuous.
  • the porous body has an open cell structure, it is possible to increase the porosity occupied in the bulk.
  • closed cells such as hollow silica are used, the open cell structure cannot be formed.
  • the silicone porous body of the present invention has a three-dimensional dendritic structure because the silica sol particles (the pulverized product of the gel-like silicon compound forming the sol) have a coating film (of the gel-like silicon compound).
  • the silicone porous body of the present invention more preferably forms a monolith structure in which the open cell structure has a plurality of pore distributions.
  • the monolith structure refers to, for example, a structure in which nano-sized fine voids exist and a hierarchical structure in which the nano-voids are gathered as an open cell structure.
  • the monolith structure for example, while providing film strength with fine voids, high porosity can be imparted with coarse open-cell voids, and both film strength and high porosity can be achieved.
  • the monolith structure can be formed by controlling the particle size distribution of the pulverized product to a desired size.
  • the tear crack generation elongation showing flexibility is not particularly limited, and the lower limit thereof is, for example, 0.1% or more, 0.5% or more, 1% or more, and the upper limit thereof Is, for example, 3% or less.
  • the range of the tear crack occurrence elongation is, for example, 0.1 to 3%, 0.5 to 3%, and 1 to 3%.
  • the tear crack elongation rate can be measured, for example, by the following method.
  • the haze showing transparency is not particularly limited, and the lower limit thereof is, for example, 0.1% or more, 0.2% or more, 0.3% or more, and the upper limit is For example, it is 10% or less, 5% or less, 3% or less, and the range is, for example, 0.1 to 10%, 0.2 to 5%, or 0.3 to 3%.
  • the haze can be measured by, for example, the following method.
  • a void layer (silicone porous body of the present invention) is cut into a size of 50 mm ⁇ 50 mm, and set in a haze meter (manufactured by Murakami Color Research Laboratory Co., Ltd .: HM-150) to measure haze.
  • the refractive index is generally the ratio of the transmission speed of the wavefront of light in a vacuum to the propagation speed in the medium is called the refractive index of the medium.
  • the refractive index of the porous silicone material of the present invention is not particularly limited, and the upper limit thereof is, for example, 1.3 or less, less than 1.3, 1.25 or less, 1.2 or less, 1.15 or less,
  • the lower limit is, for example, 1.05 or more, 1.06 or more, 1.07 or more, and the range thereof is, for example, 1.05 or more and 1.3 or less, 1.05 or more and less than 1.3, 1.05 or more 1.25 or less, 1.06 or more to less than 1.2, 1.07 or more to 1.15 or less.
  • the refractive index means a refractive index measured at a wavelength of 550 nm unless otherwise specified.
  • the measuring method of a refractive index is not specifically limited, For example, it can measure with the following method.
  • the thickness of the silicone porous body of the present invention is not particularly limited, and the lower limit thereof is, for example, 0.05 ⁇ m or more and 0.1 ⁇ m or more, and the upper limit thereof is, for example, 1000 ⁇ m or less, 100 ⁇ m or less, and the range thereof is For example, they are 0.05 to 1000 ⁇ m and 0.1 to 100 ⁇ m.
  • the form of the silicone porous body of the present invention is not particularly limited, and may be, for example, a film shape or a block shape.
  • the method for producing the porous silicon body of the present invention is not particularly limited, and for example, it can be produced by the above-described method for producing a porous silicon body.
  • the member including the silicone porous body examples include a heat insulating material, a sound absorbing material, a dew condensation preventing material, and an optical member. These members can be used, for example, by placing them where an air layer is required. The form in particular of these members is not restrict
  • examples of the member including the silicone porous body include a scaffold for regenerative medicine.
  • the porous silicone body has a porous structure that exhibits the same function as the air layer.
  • the porous structure is useful as a scaffold for regenerative medicine because the voids of the porous silicone body are suitable for holding cells, nutrient sources, air, and the like.
  • examples of the member containing the silicone porous material include a total reflection member, an ink image receiving material, a single layer AR (decrease reflection), a single layer moth eye, a dielectric constant material, and the like.
  • Example 1 the paint and porous structure (silicone porous body) of the present invention were produced as follows.
  • a homogenizer (trade name UH-50, manufactured by SMT Co., Ltd.) was used, and 1.18 g of gel and 1.14 g of IPA were weighed into a 5 cc screw bottle, and then for 2 minutes under conditions of 50 W and 20 kHz. It was done by grinding.
  • the gelled silicon compound in the mixed solution was pulverized by the pulverization treatment, so that the mixed solution became a sol solution of the pulverized product.
  • the volume average particle diameter indicating the particle size variation of the pulverized product contained in the mixed liquid (paint) was confirmed with a dynamic light scattering nanotrack particle size analyzer (manufactured by Nikkiso Co., Ltd., UPA-EX150 type), 0 .50 to 0.70.
  • a 0.3 wt% KOH aqueous solution was prepared, and 0.02 g of catalyst KOH was added to 0.5 g of the sol solution to prepare a coating solution (coating containing catalyst).
  • the coating liquid was applied to the surface of a polyethylene terephthalate (PET) substrate by a bar coating method to form a coating film.
  • the application was 6 ⁇ L of the sol solution per 1 mm 2 of the surface of the substrate.
  • the coating film was treated at a temperature of 100 ° C. for 1 minute to complete the film formation of the precursor of the porous silicone material and the cross-linking reaction between the pulverized materials in the precursor. Thereby, a 1 ⁇ m thick silicone porous body in which the pulverized materials were chemically bonded to each other was formed on the base material.
  • Example 2 An IPA (isopropyl alcohol) solution of 1.5% by weight of a photobase generating catalyst (Wako Pure Chemical Industries, Ltd .: trade name WPBG266) of KOH of Example 1 was prepared, and 0% was added to 0.75 g of the sol particle solution. 0.031 g was added to prepare a coating solution, and after the coating film was formed, UV irradiation was performed at 350 mJ / cm 2 (@ 360 nm), and the same operation as in Example 1 was performed. Got. Further, the porous body was subjected to heat aging at 60 ° C. for 20 hours to further increase the film strength.
  • a photobase generating catalyst Wako Pure Chemical Industries, Ltd .: trade name WPBG266
  • Example 3 The same operation as in Example 2 was performed except that 0.018 g of 5% by weight of bis (trimethoxysilyl) ethane was further added to the coating liquid described in Example 2 with respect to 0.75 g of the sol liquid. A porous silicone material was obtained.
  • Example 1 A porous body was formed by the same method as in Example 1 except that the incubation in the aging step was changed to aging at 40 ° C. for 72 hours.
  • TEOS tetramethoxysilane
  • Example 1 Comparative Example 1 and Comparative Example 2 were measured for refractive index, residual silanol group ratio and scratch resistance. These results are shown in Table 1 below.
  • the silicone porous body (void layer) formed using the sol solution obtained in Example 1 has a thickness of 1 ⁇ m, a refractive index of less than 1.2, and a simple film strength. It was confirmed that Although not shown in Table 1, it was also confirmed in Examples 2 and 3 that the film strength was high with a low refractive index.
  • the sol solution of Comparative Example 1 when used, silanol groups hardly remained in the gel because of aging for a long time. Therefore, a crosslinked structure in the bonding step is not formed, and sufficient film strength cannot be obtained.
  • the sol solution of Comparative Example 2 used TEOS as the precursor of the silicon compound, high film strength was obtained while flexibility was remarkably lowered. Therefore, it was found that adjusting the precursor of the silicon compound and the residual silanol group is extremely useful in order to achieve both film strength and flexibility.
  • Example 4 the paint and porous structure (silicone porous body) of the present invention were produced as follows.
  • Example 2 the “(1) Gelation of silicon compound” and “(2) Aging treatment” were performed.
  • an IPA (isopropyl alcohol) solution of 1.5 wt% photobase generating catalyst (Wako Pure Chemical Industries, Ltd .: trade name WPBG266) is used as the sol particle liquid.
  • the same “(3) pulverization treatment” was carried out in the same manner as in Example 1 to prepare a coating liquid (coating containing a catalyst).
  • the addition amount of the IPA solution of the photobase generation catalyst was 0.031 g with respect to 0.75 g of the sol particle solution.
  • Example 2 Thereafter, in the same manner as in Example 1, the above-mentioned “(4) Formation of coating film and formation of silicone porous body” was performed.
  • the dried porous material thus obtained was irradiated with UV.
  • the UV irradiation was light having a wavelength of 360 nm, and the light irradiation amount (energy) was 500 mJ. Further, after UV irradiation, heat aging at 60 ° C. was performed for 22 hours to form the porous structure of this example.
  • Example 5 Except that heat aging was not performed after UV irradiation, the same operation as in Example 4 was performed to form a paint and a porous structure (silicone porous body).
  • Example 6 After adding the IPA solution of the photobase generation catalyst, the same as in Example 4 except that 0.018 g of bis (trimethoxy) silane of 5 wt% was added to 0.75 g of the sol solution to adjust the coating solution. Thus, a coating material and a porous structure (silicone porous body) were formed.
  • Example 7 The same procedure as in Example 4 was conducted except that the amount of the IPA solution of the photobase generation catalyst was 0.054 g with respect to 0.75 g of the sol solution, and the paint and porous structure (silicone porous body) Formed.
  • Example 8 In the same manner as in Example 4, after UV irradiation of the porous body after drying, before the heat aging, the pressure-sensitive adhesive side of the PET film coated with a pressure-sensitive adhesive (adhesive layer) on one side was changed to the porous surface. After affixing to the body at room temperature, it was heat-aged at 60 ° C. for 22 hours. Except this, the same operation as in Example 4 was performed to form a paint and a porous structure (silicone porous body).
  • Example 9 Except that heat aging was not performed after the PET film was pasted, the same operation as in Example 8 was performed to form a paint and a porous structure (silicone porous body).
  • Example 10 After addition of the IPA solution of the photobase generation catalyst, 0.018 g of 5% by weight of bis (trimethoxy) silane was added to 0.75 g of the sol solution to adjust the coating solution (coating containing the catalyst). The same operation as in Example 8 was performed to form a paint and a porous structure (silicone porous body).
  • Example 11 The same procedure as in Example 8 was performed except that the addition amount of the IPA solution of the photobase generation catalyst was 0.054 g with respect to 0.75 g of the sol solution, and the paint and porous structure (silicone porous body) Formed.
  • Tables 2 and 3 below show the results of measuring the refractive index, adhesive peel strength, and haze of the porous structures of Examples 4 to 11 by the methods described above. However, in the adhesive peel strength measurement of Examples 6 to 9, since these laminated film rolls were already in a state where the PET film and the adhesive layer were bonded, the application of the PET film and the acrylic adhesive was omitted. . Tables 2 and 3 also show the storage stability of the coating liquids (coating compositions containing catalysts) of Examples 4 to 11. This storage stability is the result of allowing the coating solution to stand for 1 week at room temperature and visually confirming whether the coating solution has changed.
  • the paint obtained by the production method of the present invention includes a pulverized product of the gel silicon compound, and the pulverized product contains residual silanol groups.
  • a porous structure having voids can be produced by forming a film and chemically bonding the pulverized material in the coating film.
  • the porous structure formed using the paint can exhibit the same function as the air layer described above, for example.
  • the obtained porous structure is a structure having voids, but has sufficient strength. Can be maintained. For this reason, the said porous structure can provide a silanol porous body to various objects easily and simply.
  • the porous structure of the present invention can be used as, for example, a heat insulating material, a sound absorbing material, a regenerative medical scaffolding material, a dew condensation preventing material, an optical member, etc., instead of an air layer. Therefore, the production method of the present invention and the paint obtained thereby are useful, for example, in the production of the porous structure as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)

Abstract

The purpose of the present invention is to provide a coating material capable of forming a void structure having strength and flexibility. This coating material is characterized by including a dispersion medium and a crushed product of a gelled silicon compound obtained from a silicon compound including at least a trifunctional or lower saturated-bonded functional group, the crushed product containing a residual silanol group. This method for manufacturing a coating material is characterized by including, for example, a step for mixing a dispersion medium and a gelled silicon compound obtained by gelling a silicon compound including at least a trifunctional or lower saturated-bonded functional group. Through use of this coating material, a porous structure can be formed by applying the coating material on a substrate, forming a coating film, and chemically bonding together the crushed product included in the coating film.

Description

塗料およびその製造方法Paint and production method thereof
 本発明は、塗料およびその製造方法に関する。 The present invention relates to a paint and a method for producing the same.
 シリカ化合物材料(ケイ素化合物材料)を原料に用いた空隙構造を形成可能なシラノール多孔体用ゾル液については、これまで様々な検討がされている。それらに共通している点としては、シリカ化合物を一度ゲル化した後に、前記ゲル化シリカ化合物を粉砕した粉砕ゾル液を調製し、これをコーティングすることで空隙構造を形成させる、という点である。しかし、より高い空孔率を得ようとすると、シラノール多孔体の膜強度が著しく低下するという問題があり、工業的にシラノール多孔体を簡便に得ることは困難であった。高い空孔率と強度とを両立させた例として、レンズ反射防止層への適用事例がある(例えば、特許文献1~4参照)。この方法では、レンズ上に空隙層を形成した後に、150℃以上の高い温度を長時間かけて焼成させるが、テトラエトキシシラン(TEOS)を原料に用いたゲルは、可撓性に劣るため、柔らかい基材上に多孔体を形成できないという課題があった。一方で、焼成処理を行わない空隙層の適用事例がある(例えば、非特許文献1参照)。しかし、この方法では、シラノール粉砕ゾルに残留シラノール基が多く含まれたままであり、空隙層形成後の焼成処理を行わないため、得られる多孔体は、膜強度が劣り、耐衝撃性を付与できないという課題があった。 Various studies have been conducted on silanol porous body sol solutions that can form void structures using silica compound materials (silicon compound materials) as raw materials. The point common to them is that after the silica compound is once gelled, a pulverized sol solution prepared by pulverizing the gelled silica compound is prepared and coated to form a void structure. . However, when trying to obtain a higher porosity, there is a problem that the film strength of the silanol porous body is remarkably lowered, and it is difficult to easily obtain the silanol porous body industrially. As an example of achieving both high porosity and strength, there is an application example to a lens antireflection layer (see, for example, Patent Documents 1 to 4). In this method, after a void layer is formed on the lens, a high temperature of 150 ° C. or higher is baked for a long time. However, since a gel using tetraethoxysilane (TEOS) as a raw material is inferior in flexibility, There was a problem that a porous body could not be formed on a soft substrate. On the other hand, there is an application example of a void layer in which no firing treatment is performed (for example, see Non-Patent Document 1). However, in this method, the silanol pulverized sol still contains a large amount of residual silanol groups, and no firing treatment is performed after the formation of the void layer, so that the resulting porous body has poor film strength and cannot impart impact resistance. There was a problem.
 このような問題を解消するために、部材間の空隙により形成される空気層に代わるフィルムの開発が試みられている。 In order to solve such problems, an attempt has been made to develop a film that replaces the air layer formed by the gaps between the members.
特開2006-297329号公報JP 2006-297329 A 特開2006-221144号公報JP 2006-221144 A 特開2006-011175号公報JP 2006-011175 A 特開2008-040171号公報JP 2008-040171 A
 従来、膜強度と可撓性とを簡便に両立できる空隙層が得られるゾル塗料については、報告されていない。そこで、本発明は、例えば、高い空孔率(空隙率)、膜強度、および可撓性のある空隙層を、連続処理で簡便にフィルム製膜できるシラノールゾル塗料の提供を目的とする。 Conventionally, there has been no report on a sol coating that can provide a void layer that can easily achieve both film strength and flexibility. Therefore, an object of the present invention is to provide a silanol sol paint that can easily form a film of a void layer having a high porosity (porosity), film strength, and flexibility by continuous treatment.
 前記目的を達成するために、本発明のシリコーンゾル塗料は、3官能以下の飽和結合官能基を少なくとも含むケイ素化合物から得られたゲル状ケイ素化合物の粉砕物と分散媒とを含み、前記粉砕物が、残留シラノール基を1モル%以上含有し、前記粉砕物同士を化学的に結合させるための塗料であることを特徴とする。 In order to achieve the above object, the silicone sol paint of the present invention comprises a pulverized product of a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group and a dispersion medium, and the pulverized product. However, it is characterized in that it contains 1 mol% or more of residual silanol groups and is a paint for chemically bonding the pulverized products.
 本発明のシリコーンゾル塗料の製造方法は、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物の粉砕物と分散媒とを混合する工程を含むことを特徴とする。 The method for producing a silicone sol paint according to the present invention includes a step of mixing a pulverized product of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and a dispersion medium. .
 本発明の第1の塗料原料は、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物を含み、前記本発明のシリコーンゾル塗料を製造するための原料であることを特徴とする。 The first paint raw material of the present invention is a raw material for producing the silicone sol paint of the present invention, including a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group. It is characterized by.
 本発明の第1の塗料原料の製造方法は、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物を溶媒中でゲル化して、ゲル状ケイ素化合物を生成するゲル化工程を含むことを特徴とする。 The manufacturing method of the 1st coating material raw material of this invention includes the gelatinization process of gelatinizing the silicon compound containing a saturated bond functional group of at least 3 or less functionality in a solvent, and producing | generating a gel-like silicon compound, To do.
 本発明の第2の塗料原料は、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状物であり且つ熟成処理を施したゲル状ケイ素化合物を含み、前記本発明のシリコーンゾル塗料を製造するための原料であることを特徴とする。 The second coating material of the present invention is a gel-like product obtained from a silicon compound containing a saturated bond functional group having at least three functional groups, and includes a gel-like silicon compound that has been subjected to an aging treatment. It is a raw material for producing a sol paint.
 本発明の第2の塗料原料の製造方法は、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物を溶媒中で熟成する熟成工程を含むことを特徴とする。 The second method for producing a coating material according to the present invention is characterized by including an aging step of aging in a solvent a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group.
 本発明のシリコーンゾル塗料は、前記ゲル状ケイ素化合物の粉砕物を含み、前記粉砕物同士を化学的に結合させることが可能である。このため、例えば、前記塗料を用いた塗工膜において、前記粉砕物同士を化学的に結合させることによって、空隙を有するシリコーン多孔体を製造できる。 The silicone sol paint of the present invention includes a pulverized product of the gel-like silicon compound, and the pulverized product can be chemically bonded to each other. For this reason, for example, in the coating film using the coating material, a porous silicone body having voids can be produced by chemically bonding the pulverized products.
 本発明者らは、鋭意研究の結果、ゲル状シラノール化合物について、シラノール基を残存させることによって、その粉砕物同士を化学的に結合できることを明らかにした。そして、本発明のシリコーンゾル塗料によれば、例えば、塗工膜を形成し、前記塗工膜中の前記粉砕物同士を化学的に結合することで、容易且つ簡便に、強度と可撓性とを両立可能な空隙層として、シリコーン多孔体を形成できる点を見出した。本発明のシリコーンゾル塗料によれば、例えば、前記シラノール多孔体を、様々な対象物に付与することができる。具体的には、本発明のシリコーンゾル塗料を用いて得られるシリコーン多孔体は、例えば、空気層に代えて、断熱材、吸音材、再生医療用足場材、結露防止材、光学部材等として使用できる。したがって、本発明のシリコーンゾル塗料およびその製造方法は、例えば、前述のようなシリコーン多孔体の製造において有用である。 As a result of intensive studies, the present inventors have clarified that the crushed material can be chemically bonded to each other by leaving silanol groups in the gel silanol compound. According to the silicone sol paint of the present invention, for example, a coating film is formed, and the pulverized material in the coating film is chemically bonded to each other, so that strength and flexibility can be easily and easily obtained. The present inventors have found that a porous silicone body can be formed as a void layer compatible with the above. According to the silicone sol paint of the present invention, for example, the silanol porous body can be applied to various objects. Specifically, the silicone porous body obtained by using the silicone sol paint of the present invention is used, for example, as a heat insulating material, a sound absorbing material, a regenerative medical scaffolding material, a dew condensation prevention material, an optical member, etc., instead of an air layer. it can. Therefore, the silicone sol coating material and the method for producing the same of the present invention are useful, for example, in the production of the silicone porous body as described above.
図1は、本発明の塗料を用いて、基材10上にシリコーン多孔体20を形成する方法の一例を模式的に示す工程断面図である。FIG. 1 is a process cross-sectional view schematically showing an example of a method for forming a silicone porous body 20 on a substrate 10 using the paint of the present invention. 図2は、本発明の塗料を用いて、シリコーン多孔体を製造する工程の一部と、それに用いる装置の一例とを模式的に示す図である。FIG. 2 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and an example of an apparatus used therefor. 図3は、本発明の塗料を用いて、シリコーン多孔体を製造する工程の一部と、それに用いる装置の別の一例とを模式的に示す図である。FIG. 3 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and another example of an apparatus used therefor. 図4は、本発明において、基材上にシリコーン多孔体を形成する方法の別の一例を模式的に示す工程断面図である。FIG. 4 is a process cross-sectional view schematically showing another example of a method for forming a porous silicone body on a substrate in the present invention. 図5は、本発明の塗料を用いて、シリコーン多孔体を製造する工程の一部と、それに用いる装置のさらに別の一例とを模式的に示す図である。FIG. 5 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and still another example of an apparatus used therefor. 図6は、本発明の塗料を用いて、シリコーン多孔体を製造する工程の一部と、それに用いる装置のさらに別の一例とを模式的に示す図である。FIG. 6 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and still another example of an apparatus used therefor. 図7は、本発明において、基材上にシリコーン多孔体を形成する方法のさらに別の一例を模式的に示す工程断面図である。FIG. 7 is a process cross-sectional view schematically showing still another example of a method for forming a porous silicone body on a substrate in the present invention. 図8は、本発明の塗料を用いて、シリコーン多孔体を製造する工程の一部と、それに用いる装置のさらに別の一例とを模式的に示す図である。FIG. 8 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and still another example of an apparatus used therefor. 図9は、本発明の塗料を用いて、シリコーン多孔体を製造する工程の一部と、それに用いる装置のさらに別の一例とを模式的に示す図である。FIG. 9 is a diagram schematically showing a part of a process for producing a porous silicone body using the coating material of the present invention and still another example of an apparatus used therefor.
 本発明の塗料は、例えば、前記粉砕物の体積平均粒子径が、0.05~2.00μmである。なお、本発明において、「粒子」(例えば、前記粉砕物の粒子等)の形状は、特に限定されず、例えば、球状でも良いが、非球状系等でも良い。また、本発明において、前記粉砕物の粒子は、例えば、ゾルゲル数珠状粒子、ナノ粒子(中空ナノシリカ・ナノバルーン粒子)、ナノ繊維等であっても良い。 In the paint of the present invention, for example, the pulverized product has a volume average particle diameter of 0.05 to 2.00 μm. In the present invention, the shape of the “particles” (for example, particles of the pulverized product) is not particularly limited, and may be, for example, spherical or non-spherical. In the present invention, the particles of the pulverized product may be, for example, sol-gel bead-like particles, nanoparticles (hollow nanosilica / nanoballoon particles), nanofibers, or the like.
 本発明の塗料は、例えば、前記ケイ素化合物が、後述する式(2)で表される化合物である。 In the coating material of the present invention, for example, the silicon compound is a compound represented by the following formula (2).
 本発明の塗料は、例えば、前記粉砕物同士を化学的に結合させるための触媒を含む。 The paint of the present invention includes, for example, a catalyst for chemically bonding the pulverized products.
 本発明の塗料の製造方法は、例えば、さらに、前記ゲル状ケイ素化合物を溶媒中で粉砕する粉砕工程を含み、前記混合工程において、前記粉砕工程により得られた粉砕物を使用する。 The method for producing a paint of the present invention further includes, for example, a pulverization step of pulverizing the gel silicon compound in a solvent, and the pulverized material obtained by the pulverization step is used in the mixing step.
 本発明の塗料の製造方法は、例えば、さらに、前記ケイ素化合物を溶媒中でゲル化して、ゲル状ケイ素化合物を生成するゲル化工程を含み、前記粉砕工程において、前記生成工程により得られたゲル状ケイ素化合物を使用する。 The method for producing a paint according to the present invention further includes, for example, a gelation step of gelling the silicon compound in a solvent to produce a gel silicon compound, and the gel obtained by the production step in the pulverization step A silicon compound is used.
 本発明の塗料の製造方法は、例えば、さらに、前記ゲル状ケイ素化合物を溶媒中で熟成する熟成工程を含み、前記ゲル化工程において、前記熟成工程後の前記ゲル状ケイ素化合物を使用する。 The method for producing a paint of the present invention further includes, for example, an aging step of aging the gel silicon compound in a solvent, and the gel silicon compound after the aging step is used in the gelation step.
 本発明の塗料の製造方法は、例えば、前記熟成工程において、前記ゲル状ケイ素化合物を、前記溶媒中、30℃以上でインキュベートすることにより熟成する。 In the method for producing a paint of the present invention, for example, in the aging step, the gel silicon compound is aged by incubating in the solvent at 30 ° C. or higher.
 以下、本発明について、例を挙げてさらに具体的に説明する。ただし、本発明は、以下の説明により限定および制限されない。 Hereinafter, the present invention will be described more specifically with examples. However, the present invention is not limited or restricted by the following description.
[1.塗料およびその製造方法]
 本発明のシリコーンゾル塗料は、前述のように、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物の粉砕物と溶媒とを含み、前記粉砕物が残留シラノール基を含有し、前記粉砕物同士を化学的に結合させるための塗料であることを特徴とする。「3官能基以下の飽和結合官能基を含む」とは、ケイ素化合物が、3つ以下の官能基を有し、且つ、これらの官能基が、ケイ素(Si)と飽和結合していることを意味する。
[1. Paint and production method thereof]
As described above, the silicone sol paint of the present invention comprises a pulverized product of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and a solvent, and the pulverized product is a residual silanol group. And a paint for chemically bonding the pulverized materials to each other. “Containing a saturated bond functional group of 3 or less functional groups” means that the silicon compound has 3 or less functional groups and these functional groups are saturated bonded to silicon (Si). means.
 本発明の塗料の製造方法は、前述のように、前記本発明のシリコーンゾル塗料の製造方法であり、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物の粉砕物と分散媒とを混合する工程を含むことを特徴とする。 As described above, the method for producing a coating material of the present invention is a method for producing the silicone sol coating material of the present invention, in which a gel silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups is pulverized. And a step of mixing the product and the dispersion medium.
 本発明の塗料は、後述するように、空気層と同様の機能(例えば、低屈折性)を奏するシリコーン多孔体の製造に使用できる。具体的に、本発明の製造方法により得られる塗料は、前記ゲル状ケイ素化合物の粉砕物を含んでおり、前記粉砕物は、未粉砕の前記ゲル状ケイ素化合物の三次元構造が破壊され、前記未粉砕のゲル状ケイ素化合物とは異なる新たな三次元構造を形成できる。このため、例えば、前記塗料を用いて形成した塗工膜(シリコーン多孔体の前駆体)は、前記未粉砕のゲル状ケイ素化合物を用いて形成される層では得られない新たな孔構造(新たな空隙構造)が形成された層となる。これによって、前記層は、空気層と同様の機能(例えば、同様の低屈折性)を奏することができる。また、本発明の塗料は、前記粉砕物が残留シラノール基を含むことから、前記塗工膜(シリコーン多孔体の前駆体)として新たな三次元構造が形成された後に、前記粉砕物同士を化学的に結合させることができる。これにより、形成されたシリコーン多孔体は、空隙を有する構造であるが、十分な強度と可撓性とを維持できる。このため、本発明によれば、容易且つ簡便に、シリコーン多孔体を様々な対象物に付与できる。本発明の製造方法により得られる塗料は、例えば、空気層の代替品となり得る前記多孔質構造の製造において、非常に有用である。また、前記空気層の場合、例えば、部材と部材とを、両者の間にスペーサー等を介することで間隙を設けて積層することにより、前記部材間に空気層を形成する必要があった。しかし、本発明の塗料を用いて形成される前記シリコーン多孔体は、これを目的の部位に配置するのみで、前記空気層と同様の機能を発揮させることができる。したがって、前述のように、前記空気層を形成するよりも、容易且つ簡便に、前記空気層と同様の機能を、様々な対象物に付与することができる。具体的には、前記多孔質構造は、例えば、空気層に代えて、断熱材、吸音材、再生医療用足場材、結露防止材等として使用できる。 As will be described later, the coating material of the present invention can be used for the production of a porous silicone material having the same function as an air layer (for example, low refractive index). Specifically, the paint obtained by the production method of the present invention includes a pulverized product of the gel-like silicon compound, and the pulverized product has a three-dimensional structure of the non-pulverized gel-like silicon compound destroyed, A new three-dimensional structure different from the unmilled gel silicon compound can be formed. For this reason, for example, the coating film (silicone porous body precursor) formed using the coating material has a new pore structure (newly formed) that cannot be obtained by the layer formed using the unground gelatinous silicon compound. A layer in which a void structure is formed. Thereby, the layer can exhibit the same function as the air layer (for example, the same low refractive index). In the paint of the present invention, since the pulverized product contains residual silanol groups, the pulverized product is chemically treated after a new three-dimensional structure is formed as the coating film (precursor of silicone porous body). Can be combined. Thereby, although the formed porous silicon body has a structure having voids, sufficient strength and flexibility can be maintained. For this reason, according to this invention, a silicone porous body can be easily and simply provided to various objects. The paint obtained by the production method of the present invention is very useful, for example, in the production of the porous structure that can be used as a substitute for the air layer. Further, in the case of the air layer, for example, it is necessary to form an air layer between the members by stacking the members with a gap provided therebetween via a spacer or the like. However, the silicone porous body formed using the coating material of the present invention can exhibit the same function as the air layer only by disposing it at the target site. Therefore, as described above, functions similar to the air layer can be imparted to various objects more easily and simply than forming the air layer. Specifically, the porous structure can be used as, for example, a heat insulating material, a sound absorbing material, a regenerative medical scaffolding material, a dew condensation preventing material, etc., instead of an air layer.
 本発明の塗料は、例えば、シリコーン多孔体の形成用塗料、または、低屈折層の形成用塗料ということもできる。本発明の塗料において、前記ゲル状ケイ素化合物は、その粉砕物である。 The paint of the present invention can also be referred to as, for example, a paint for forming a porous silicone material or a paint for forming a low refractive layer. In the paint of the present invention, the gel-like silicon compound is a pulverized product thereof.
 本発明の塗料において、前記粉砕物の体積平均粒子径は、特に制限されず、その下限が、例えば、0.05μm以上、0.10μm以上、0.20μm以上、0.40μm以上であり、その上限が、例えば、2.00μm以下、1.50μm以下、1.00μm以下であり、その範囲が、例えば、0.05μm~2.00μm、0.20μm~1.50μm、0.40μm~1.00μmである。前記体積平均粒子径は、本発明の塗料における前記粉砕物の粒度バラツキを示す。前記粒度分布は、例えば、動的光散乱法、レーザー回折法等の粒度分布評価装置、および走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等の電子顕微鏡等により測定することができる。 In the paint of the present invention, the volume average particle diameter of the pulverized product is not particularly limited, and the lower limit thereof is, for example, 0.05 μm or more, 0.10 μm or more, 0.20 μm or more, 0.40 μm or more, The upper limit is, for example, 2.00 μm or less, 1.50 μm or less, 1.00 μm or less, and the ranges thereof are, for example, 0.05 μm to 2.00 μm, 0.20 μm to 1.50 μm, 0.40 μm to 1. 00 μm. The volume average particle diameter indicates a particle size variation of the pulverized product in the paint of the present invention. The particle size distribution can be measured by, for example, a particle size distribution evaluation apparatus such as a dynamic light scattering method or a laser diffraction method, and an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). .
 また、本発明の塗料において、前記粉砕物の粒度分布は、特に制限されず、例えば、粒径0.4μm~1μmの粒子が、50~99.9重量%、80~99.8重量%、90~99.7重量%であり、または、粒径1μm~2μmの粒子が、0.1~50重量%、0.2~20重量%、0.3~10重量%である。前記粒度分布は、本発明の塗料における前記粉砕物の粒度バラツキを示す。前記粒度分布は、例えば、粒度分布評価装置または電子顕微鏡により測定することができる。 In the paint of the present invention, the particle size distribution of the pulverized product is not particularly limited. For example, particles having a particle size of 0.4 μm to 1 μm are 50 to 99.9 wt%, 80 to 99.8 wt%, It is 90 to 99.7% by weight, or particles having a particle size of 1 μm to 2 μm are 0.1 to 50% by weight, 0.2 to 20% by weight, and 0.3 to 10% by weight. The said particle size distribution shows the particle size variation of the said ground material in the coating material of this invention. The particle size distribution can be measured by, for example, a particle size distribution evaluation apparatus or an electron microscope.
 本発明の塗料において、前記ケイ素化合物は、例えば、下記式(2)で表される化合物である。 In the paint of the present invention, the silicon compound is, for example, a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記式(2)中、例えば、Xは、2、3または4であり、
 RおよびRは、それぞれ、直鎖もしくは分枝アルキル基であり、
 RおよびRは、同一でも異なっていても良く、
 Rは、Xが2の場合、互いに同一でも異なっていても良く、
 Rは、互いに同一でも異なっていても良い。
In the formula (2), for example, X is 2, 3 or 4,
R 1 and R 2 are each a linear or branched alkyl group,
R 1 and R 2 may be the same or different,
R 1 s may be the same as or different from each other when X is 2.
R 2 may be the same as or different from each other.
 前記XおよびRは、例えば、前記式(1)におけるXおよびRと同じである。また、前記Rは、例えば、後述する式(1)におけるRの例示が援用できる。 Wherein X and R 1 are, for example, the same as X and R 1 in the formula (1). In addition, the R 2 is, for example, can be exemplified for R 1 is incorporated in the formula (1) described later.
 前記式(2)で表されるケイ素化合物の具体例としては、例えば、Xが3である下記式(2’)に示す化合物が挙げられる。下記式(2’)において、RおよびRは、それぞれ、前記式(2)と同様である。RおよびRがメチル基の場合、前記ケイ素化合物は、トリメトキシ(メチル)シラン(以下、「MTMS」ともいう。)である。 Specific examples of the silicon compound represented by the formula (2) include a compound represented by the following formula (2 ′) in which X is 3. In the following formula (2 ′), R 1 and R 2 are the same as those in the formula (2), respectively. When R 1 and R 2 are methyl groups, the silicon compound is trimethoxy (methyl) silane (hereinafter also referred to as “MTMS”).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明の塗料において、前記分散媒における前記ゲル状ケイ素化合物の粉砕物の濃度は、特に制限されず、例えば、0.3~50%(v/v)、0.5~30%(v/v)、1.0~10%(v/v)である。前記粉砕物の濃度が高すぎると、例えば、ゾル溶液の流動性が著しく低下し、塗工時の凝集物・塗工スジを発生させる可能性がある。一方で、前記粉砕物の濃度が低すぎると、例えば、溶媒の乾燥に相当の時間がかかるだけでなく、乾燥直後の残留溶媒も高くなるために、空隙率が低下してしまう可能性がある。また、本発明の塗料は、例えば、含まれるケイ素原子がシロキサン結合していることが好ましい。具体例として、前記塗料に含まれる全ケイ素原子のうち、未結合のケイ素原子(つまり、残留シラノール)の割合は、例えば、50%未満、30%以下、15%以下である。 In the paint of the present invention, the concentration of the pulverized product of the gel-like silicon compound in the dispersion medium is not particularly limited, and is, for example, 0.3 to 50% (v / v), 0.5 to 30% (v / v) 1.0 to 10% (v / v). When the concentration of the pulverized product is too high, for example, the fluidity of the sol solution is remarkably lowered, and there is a possibility of generating aggregates and coating streaks during coating. On the other hand, if the concentration of the pulverized product is too low, for example, not only does it take a considerable time to dry the solvent, but also the residual solvent immediately after drying increases, so the porosity may decrease. . In the coating material of the present invention, for example, the silicon atoms contained are preferably siloxane bonded. As a specific example, the proportion of unbonded silicon atoms (that is, residual silanol) in the total silicon atoms contained in the paint is, for example, less than 50%, 30% or less, or 15% or less.
 本発明の塗料の物性は、特に制限されない。前記塗料のせん断粘度は、例えば、10001/sのせん断速度において、例えば、粘度100cPa・s以下、粘度10cPa・s以下、粘度1cPa・s以下である。せん断粘度が高すぎると、例えば、塗工スジが発生し、グラビア塗工の転写率の低下等の不具合が見られる可能性がある。逆に、せん断粘度が低すぎる場合は、例えば、塗工時のウェット塗布厚みを厚くすることができず、乾燥後に所望の厚みが得られない可能性がある。 The physical properties of the paint of the present invention are not particularly limited. The shear viscosity of the paint is, for example, a viscosity of 100 cPa · s or less, a viscosity of 10 cPa · s or less, and a viscosity of 1 cPa · s or less at a shear rate of 10001 / s. If the shear viscosity is too high, for example, coating streaks may occur, and problems such as a decrease in the transfer rate of gravure coating may be observed. On the other hand, when the shear viscosity is too low, for example, the wet coating thickness at the time of coating cannot be increased, and a desired thickness may not be obtained after drying.
 本発明の塗料において、前記分散媒(以下、「塗工用溶媒」ともいう。)は、特に制限されず、例えば、後述するゲル化溶媒および粉砕用溶媒が挙げられ、好ましくは前記粉砕用溶媒である。前記塗工用溶媒としては、例えば、沸点130℃以下の有機溶媒が挙げられる。具体例としては、例えば、IPA、エタノール、メタノール、ブタノール等が挙げられる。 In the coating material of the present invention, the dispersion medium (hereinafter also referred to as “coating solvent”) is not particularly limited, and examples thereof include a gelling solvent and a grinding solvent described later, and preferably the grinding solvent. It is. Examples of the coating solvent include organic solvents having a boiling point of 130 ° C. or lower. Specific examples include IPA, ethanol, methanol, butanol and the like.
 本発明の塗料は、例えば、前記ゲル状ケイ素化合物の粉砕物同士を化学的に結合させるための触媒を含んでいても良い。前記触媒の含有率は、特に限定されないが、前記ゲル状ケイ素化合物の粉砕物の重量に対し、例えば、0.01~20重量%、0.05~10重量%、または0.1~5重量%である。 The paint of the present invention may contain, for example, a catalyst for chemically bonding the pulverized products of the gel silicon compound. The content of the catalyst is not particularly limited, but is, for example, 0.01 to 20% by weight, 0.05 to 10% by weight, or 0.1 to 5% by weight with respect to the weight of the pulverized product of the gel silicon compound. %.
 また、本発明の塗料は、例えば、さらに、前記ゲル状ケイ素化合物の粉砕物同士を間接的に結合させるための架橋補助剤を含んでいても良い。前記架橋補助剤の含有率は、特に限定されないが、例えば、前記ゲル状ケイ素化合物の粉砕物の重量に対して0.01~20重量%、0.05~15重量%、または0.1~10重量%である。 Further, the coating material of the present invention may further contain, for example, a crosslinking aid for indirectly bonding the pulverized products of the gel silicon compound. The content of the crosslinking aid is not particularly limited. For example, the content is 0.01 to 20% by weight, 0.05 to 15% by weight, or 0.1 to 0.1% by weight with respect to the weight of the pulverized product of the gel silicon compound. 10% by weight.
 本発明の塗料は、例えば、前記溶媒に分散させたゾル状の前記粉砕物であることから、例えば、「ゾル粒子液」ともいう。本発明の塗料は、例えば、基材上に塗工・乾燥した後に、結合工程により化学架橋を行うことで、一定レベル以上の膜強度を有する空隙層を、連続成膜することが可能である。なお、本発明における「ゾル」とは、ゲルの三次元構造を粉砕することで、前記粉砕物(つまり、空隙構造の一部を保持したナノ三次元構造のシリカゾル粒子)が、溶媒中に分散して流動性を示す状態をいう。 Since the paint of the present invention is, for example, the sol-like pulverized material dispersed in the solvent, it is also referred to as “sol particle liquid”, for example. The coating material of the present invention can continuously form a void layer having a film strength of a certain level or more by performing chemical crosslinking by a bonding step after coating and drying on a substrate, for example. . In the present invention, “sol” means that the three-dimensional structure of the gel is pulverized so that the pulverized product (that is, silica sol particles having a nano three-dimensional structure retaining a part of the void structure) is dispersed in the solvent. The state which shows fluidity.
 以下に、本発明の製造方法を説明するが、本発明の塗料は、以下の説明を援用できる。 Hereinafter, the production method of the present invention will be described, but the following description can be used for the paint of the present invention.
 本発明の製造方法において、前記混合工程は、前述のように、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物の粉砕物と分散媒とを混合する工程である。本発明において、前記ゲル状ケイ素化合物の粉砕物は、例えば、後述する粉砕工程により、前記ゲル状ケイ素化合物から得ることができる。このため、前記ゲル状ケイ素化合物は、例えば、本発明の塗料の第1の塗料原料ということもできる。また、前記ゲル状ケイ素化合物の粉砕物は、例えば、後述する粉砕工程により、後述する熟成工程を施した熟成処理後の前記ゲル状ケイ素化合物から得ることができる。このため、前記熟成処理後の前記ゲル状ケイ素化合物は、例えば、本発明の塗料の第2の塗料原料ということもできる。 In the production method of the present invention, as described above, the mixing step is a step of mixing a pulverized product of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and a dispersion medium. is there. In the present invention, the pulverized product of the gel-like silicon compound can be obtained from the gel-like silicon compound by, for example, a pulverization step described later. For this reason, the said gel-like silicon compound can also be called the 1st coating material raw material of the coating material of this invention, for example. Moreover, the pulverized product of the gel-like silicon compound can be obtained, for example, from the gel-like silicon compound after the aging treatment in which the aging step described later is performed by a pulverizing step described later. For this reason, the said gel-like silicon compound after the said aging treatment can also be called the 2nd coating material raw material of the coating material of this invention, for example.
 本発明の製造方法において、ゲル化工程は、前記少なくとも3官能以下の飽和結合官能基を含むケイ素化合物を溶媒中でゲル化して、ゲル状ケイ素化合物(第1の塗料原料)を生成する工程である。前記ゲル化工程は、例えば、モノマーの前記ケイ素化合物を、脱水縮合触媒の存在下、脱水縮合反応によりゲル化する工程であり、これによって、ゲル状ケイ素化合物が得られる。前記ゲル状ケイ素化合物は、前述のように、残留シラノール基を有し、前記残留シラノール基は、後述する前記ゲル状ケイ素化合物の粉砕物同士の化学的な結合に応じて、適宜、調整することが好ましい。 In the production method of the present invention, the gelation step is a step of producing a gel-like silicon compound (first coating material raw material) by gelling the silicon compound containing at least a trifunctional or lower saturated bond functional group in a solvent. is there. The gelation step is, for example, a step of gelling the monomer silicon compound by a dehydration condensation reaction in the presence of a dehydration condensation catalyst, whereby a gel-like silicon compound is obtained. As described above, the gel-like silicon compound has a residual silanol group, and the residual silanol group is appropriately adjusted according to a chemical bond between pulverized products of the gel-like silicon compound described later. Is preferred.
 前記ゲル化工程において、前記ケイ素化合物は、特に制限されず、脱水縮合反応によりゲル化するものであればよい。前記脱水縮合により、例えば、前記ケイ素化合物間が結合される。前記ケイ素化合物間の結合は、例えば、水素結合または分子間力結合である。 In the gelation step, the silicon compound is not particularly limited as long as it is gelled by a dehydration condensation reaction. By the dehydration condensation, for example, the silicon compounds are bonded. The bond between the silicon compounds is, for example, a hydrogen bond or an intermolecular force bond.
 前記ケイ素化合物は、例えば、下記式(1)で表されるケイ素化合物が挙げられる。前記式(1)のケイ素化合物は、水酸基を有するため、前記式(1)のケイ素化合物間は、例えば、それぞれの水酸基を介して、水素結合または分子間力結合が可能である。 Examples of the silicon compound include a silicon compound represented by the following formula (1). Since the silicon compound of the formula (1) has a hydroxyl group, the silicon compound of the formula (1) can be hydrogen bonded or intermolecularly bonded through, for example, each hydroxyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記式(1)中、例えば、Xは、2、3または4であり、Rは、直鎖もしくは分枝アルキル基、である。前記Rの炭素数は、例えば、1~6、1~4、1~2である。前記直鎖アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、前記分枝アルキル基は、例えば、イソプロピル基、イソブチル基等が挙げられる。前記Xは、例えば、3または4である。 In the formula (1), for example, X is 2, 3 or 4, and R 1 is a linear or branched alkyl group. The carbon number of R 1 is, for example, 1-6, 1-4, 1-2. Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Examples of the branched alkyl group include an isopropyl group and an isobutyl group. X is, for example, 3 or 4.
 前記式(1)で表されるケイ素化合物の具体例としては、例えば、Xが3である下記式(1’)に示す化合物が挙げられる。下記式(1’)において、Rは、前記式(1)と同様であり、例えば、メチル基である。Rがメチル基の場合、前記ケイ素化合物は、トリス(ヒドロキシ)メチルシランである。前記Xが3の場合、前記ケイ素化合物は、例えば、3つの官能基を有する3官能シランである。 Specific examples of the silicon compound represented by the formula (1) include a compound represented by the following formula (1 ′) in which X is 3. In the following formula (1 ′), R 1 is the same as in the above formula (1), and is, for example, a methyl group. When R 1 is a methyl group, the silicon compound is tris (hydroxy) methylsilane. When X is 3, the silicon compound is, for example, a trifunctional silane having three functional groups.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、前記式(1)で表されるケイ素化合物の具体例としては、例えば、Xが4である化合物が挙げられる。この場合、前記ケイ素化合物は、例えば、4つの官能基を有する4官能シランである。 Further, specific examples of the silicon compound represented by the formula (1) include a compound in which X is 4. In this case, the silicon compound is, for example, a tetrafunctional silane having four functional groups.
 前記ケイ素化合物は、例えば、加水分解により前記式(1)のケイ素化合物を形成する前駆体でもよい。前記前駆体としては、例えば、加水分解により前記ケイ素化合物を生成できるものであればよく、具体例として、前記式(2)で表される化合物が挙げられる。 The silicon compound may be, for example, a precursor that forms the silicon compound of the formula (1) by hydrolysis. The precursor is not particularly limited as long as it can generate the silicon compound by hydrolysis, and specific examples thereof include a compound represented by the formula (2).
 前記ケイ素化合物が前記式(2)で表される前駆体の場合、本発明の製造方法は、例えば、前記ゲル化工程に先立って、前記前駆体を加水分解する工程を含んでもよい。 When the silicon compound is a precursor represented by the formula (2), the production method of the present invention may include, for example, a step of hydrolyzing the precursor prior to the gelation step.
 前記加水分解の方法は、特に制限されず、例えば、触媒存在下での化学反応により行うことができる。前記触媒としては、例えば、シュウ酸、酢酸等の酸等が挙げられる。前記加水分解反応は、例えば、シュウ酸の水溶液を、前記ケイ素化合物前駆体のジメチルスルホキシド溶液に、室温環境下でゆっくり滴下混合させた後に、そのまま30分程度撹拌することで行うことができる。前記ケイ素化合物前駆体を加水分解する際は、例えば、前記ケイ素化合物前駆体のアルコキシ基を完全に加水分解することで、その後のゲル化・熟成・空隙構造形成後の加熱・固定化を、さらに効率良く発現することができる。 The hydrolysis method is not particularly limited, and can be performed, for example, by a chemical reaction in the presence of a catalyst. Examples of the catalyst include acids such as oxalic acid and acetic acid. The hydrolysis reaction can be performed, for example, by slowly dropping an aqueous solution of oxalic acid into the dimethyl sulfoxide solution of the silicon compound precursor in a room temperature environment and then stirring the mixture for about 30 minutes. When hydrolyzing the silicon compound precursor, for example, by completely hydrolyzing the alkoxy group of the silicon compound precursor, further heating and immobilization after gelation / aging / void structure formation, It can be expressed efficiently.
 本発明において、前記ケイ素化合物は、例えば、トリメトキシ(メチル)シランの加水分解物が例示できる。 In the present invention, examples of the silicon compound include a hydrolyzate of trimethoxy (methyl) silane.
 前記モノマーのケイ素化合物は、特に制限されず、例えば、製造するシリコーン多孔体の用途に応じて、適宜選択できる。前記シリコーン多孔体の製造において、前記ケイ素化合物は、例えば、低屈折率性を重視する場合、低屈折率性に優れる点から、前記3官能シランが好ましく、また、強度(例えば、耐擦傷性)を重視する場合は、耐擦傷性に優れる点から、前記4官能シランが好ましい。また、前記ゲル状ケイ素化合物の原料となる前記ケイ素化合物は、例えば、一種類のみを使用してもよいし、二種類以上を併用してもよい。具体例として、前記ケイ素化合物として、例えば、前記3官能シランのみを含んでもよいし、前記4官能シランのみを含んでもよいし、前記3官能シランと前記4官能シランの両方を含んでもよいし、さらに、その他のケイ素化合物を含んでもよい。前記ケイ素化合物として、二種類以上のケイ素化合物を使用する場合、その比率は、特に制限されず、適宜設定できる。 The silicon compound of the monomer is not particularly limited, and can be appropriately selected according to, for example, the use of the silicone porous body to be produced. In the production of the silicone porous body, for example, when importance is attached to low refractive index, the silicon compound is preferably the trifunctional silane from the viewpoint of excellent low refractive index, and also has strength (for example, scratch resistance). When importance is attached to the above, the tetrafunctional silane is preferred from the viewpoint of excellent scratch resistance. Moreover, the said silicon compound used as the raw material of the said gel-like silicon compound may use only 1 type, for example, and may use 2 or more types together. As a specific example, the silicon compound may include, for example, only the trifunctional silane, may include only the tetrafunctional silane, may include both the trifunctional silane and the tetrafunctional silane, Furthermore, other silicon compounds may be included. When two or more types of silicon compounds are used as the silicon compound, the ratio is not particularly limited and can be set as appropriate.
 前記ケイ素化合物のゲル化は、例えば、前記ケイ素化合物間の脱水縮合反応により行うことができる。前記脱水縮合反応は、例えば、触媒存在下で行うことが好ましく、前記触媒としては、例えば、塩酸、シュウ酸、硫酸等の酸触媒、およびアンモニア、水酸化カリウム、水酸化ナトリウム、水酸化アンモニウム等の塩基触媒等の、脱水縮合触媒が挙げられる。前記脱水縮合触媒は、酸触媒でも塩基触媒でも良いが、塩基触媒が好ましい。前記脱水縮合反応において、前記ケイ素化合物に対する前記触媒の添加量は、特に制限されず、前記ケイ素化合物1モルに対して、触媒は、例えば、0.1~10モル、0.05~7モル、0.1~5モルである。 The gelation of the silicon compound can be performed, for example, by a dehydration condensation reaction between the silicon compounds. The dehydration condensation reaction is preferably performed, for example, in the presence of a catalyst. Examples of the catalyst include acid catalysts such as hydrochloric acid, oxalic acid, and sulfuric acid, and ammonia, potassium hydroxide, sodium hydroxide, ammonium hydroxide, and the like. And a dehydration condensation catalyst such as a base catalyst. The dehydration condensation catalyst may be an acid catalyst or a base catalyst, but a base catalyst is preferred. In the dehydration condensation reaction, the amount of the catalyst added to the silicon compound is not particularly limited, and the catalyst is, for example, 0.1 to 10 mol, 0.05 to 7 mol, relative to 1 mol of the silicon compound, 0.1 to 5 moles.
 前記ケイ素化合物のゲル化は、例えば、溶媒中で行うことが好ましい。前記溶媒における前記ケイ素化合物の割合は、特に制限されない。前記溶媒は、例えば、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)、γ-ブチルラクトン(GBL)、アセトニトリル(MeCN)、エチレングリコールエチルエーテル(EGEE)等が挙げられる。前記溶媒は、例えば、1種類でもよいし、2種類以上を併用してもよい。前記ゲル化に使用する溶媒を、以下、「ゲル化用溶媒」ともいう。 The gelation of the silicon compound is preferably performed in a solvent, for example. The ratio of the silicon compound in the solvent is not particularly limited. Examples of the solvent include dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), N, N-dimethylacetamide (DMAc), dimethylformamide (DMF), γ-butyllactone (GBL), acetonitrile (MeCN), ethylene Examples thereof include glycol ethyl ether (EGEE). For example, one type of solvent may be used, or two or more types may be used in combination. Hereinafter, the solvent used for the gelation is also referred to as “gelling solvent”.
 前記ゲル化の条件は、特に制限されない。前記ケイ素化合物を含む前記溶媒に対する処理温度は、例えば、20~30℃、22~28℃、24~26℃であり、処理時間は、例えば、1~60分、5~40分、10~30分である。前記脱水縮合反応を行う場合、その処理条件は、特に制限されず、これらの例示を援用できる。前記ゲル化を行うことで、例えば、シロキサン結合が成長し、前記ケイ素化合物の一次粒子が形成され、さらに反応が進行することで、前記一次粒子同士が、数珠状に連なり三次元構造のゲルが生成される。 The gelation conditions are not particularly limited. The treatment temperature for the solvent containing the silicon compound is, for example, 20-30 ° C., 22-28 ° C., 24-26 ° C., and the treatment time is, for example, 1-60 minutes, 5-40 minutes, 10-30. Minutes. When performing the said dehydration condensation reaction, the process conditions in particular are not restrict | limited, These illustrations can be used. By performing the gelation, for example, a siloxane bond grows, primary particles of the silicon compound are formed, and further the reaction proceeds, whereby the primary particles are linked in a bead shape to form a three-dimensional gel. Generated.
 前記ゲル化工程において得られる前記ゲル状ケイ素化合物のゲル形態は、特に制限されない。「ゲル」とは、一般に、溶質が、相互作用のために独立した運動性を失って集合した構造をもち、固化した状態をいう。また、ゲルの中でも、一般に、ウェットゲルは、分散媒を含み、分散媒中で溶質が一様な構造をとるものをいい、キセロゲルは、溶媒が除去されて、溶質が、空隙を持つ網目構造をとるものをいう。本発明において、前記ゲル状ケイ素化合物は、例えば、ウェットゲルを用いることが好ましい。前記ゲル状ケイ素化合物の残量シラノール基は、特に制限されず、例えば、後述する範囲が同様に例示できる。 The gel form of the gel silicon compound obtained in the gelation step is not particularly limited. “Gel” generally refers to a solidified state in which a solute has a structure in which it loses independent motility due to interaction and aggregates. In addition, among gels, generally, a wet gel includes a dispersion medium and a solute has a uniform structure in the dispersion medium. A xerogel is a network structure in which the solvent is removed and the solute has voids. The one that takes In the present invention, for example, wet gel is preferably used as the gel silicon compound. The remaining silanol group of the gel-like silicon compound is not particularly limited, and for example, the ranges described later can be exemplified similarly.
 前記ゲル化により得られた前記ゲル状ケイ素化合物は、例えば、このまま前記粉砕工程に供してもよいが、前記粉砕工程の前、前記熟成工程において熟成処理を施してもよい。前記熟成工程において、前記熟成処理の条件は、特に制限されず、例えば、前記ゲル状ケイ素化合物を、溶媒中、所定温度でインキュベートすればよい。前記熟成処理によれば、例えば、ゲル化で得られた三次元構造を有するゲル状ケイ素化合物について、前記一次粒子をさらに成長させることができ、これによって前記粒子自体のサイズを大きくすることが可能である。そして、結果的に、前記粒子同士が接触しているネック部分の接触状態を、例えば、点接触から面接触に増やすことができる。上記のような熟成処理を行ったゲル状ケイ素化合物は、例えば、ゲル自体の強度が増加し、結果的には、粉砕を行った後の前記粉砕物の三次元基本構造の強度をより向上できる。これにより、前記本発明の塗料を用いて塗工膜を形成した場合、例えば、塗工後の乾燥工程においても、前記三次元基本構造が堆積した空隙構造の細孔サイズが、前記乾燥工程において生じる前記塗工膜中の溶媒の揮発に伴って、収縮することを抑制できる。 The gel-like silicon compound obtained by the gelation may be subjected to the pulverization step as it is, for example, but may be subjected to an aging treatment in the aging step before the pulverization step. In the aging step, the conditions for the aging treatment are not particularly limited. For example, the gel-like silicon compound may be incubated in a solvent at a predetermined temperature. According to the aging treatment, for example, the gel-like silicon compound having a three-dimensional structure obtained by gelation can further grow the primary particles, thereby increasing the size of the particles themselves. It is. As a result, the contact state of the neck portion where the particles are in contact can be increased from point contact to surface contact, for example. The gel silicon compound subjected to the aging treatment as described above, for example, increases the strength of the gel itself, and as a result, can further improve the strength of the three-dimensional basic structure of the pulverized product after pulverization. . Thereby, when a coating film is formed using the coating material of the present invention, for example, even in the drying step after coating, the pore size of the void structure in which the three-dimensional basic structure is deposited is in the drying step. Shrinkage can be suppressed as the solvent in the resulting coating film volatilizes.
 前記熟成処理の温度は、その下限が、例えば、30℃以上、35℃以上、40℃以上であり、その上限が、例えば、80℃以下、75℃以下、70℃以下であり、その範囲が、例えば、30~80℃、35~75℃、40~70℃である。前記所定の時間は、特に制限されず、その下限が、例えば、5時間以上、10時間以上、15時間以上であり、その上限が、例えば、50時間以下、40時間以下、30時間以下であり、その範囲が、例えば、5~50時間、10~40時間、15~30時間である。なお、熟成の最適な条件については、例えば、前述したように、前記ゲル状ケイ素化合物における、前記一次粒子のサイズの増大、および前記ネック部分の接触面積の増大が得られる条件に設定することが好ましい。また、前記熟成工程において、前記熟成処理の温度は、例えば、使用する溶媒の沸点を考慮することが好ましい。前記熟成処理は、例えば、熟成温度が高すぎると、前記溶媒が過剰に揮発してしまい、前記塗工液の濃縮により、三次元空隙構造の細孔が閉口する等の不具合が生じる可能性がある。一方で、前記熟成処理は、例えば、熟成温度が低すぎると、前記熟成による効果が十分に得られず、量産プロセスの経時での温度バラツキが増大することとなり、品質に劣る製品ができる可能性がある。 The lower limit of the temperature of the aging treatment is, for example, 30 ° C. or more, 35 ° C. or more, 40 ° C. or more, and the upper limit thereof is, for example, 80 ° C. or less, 75 ° C. or less, 70 ° C. or less. For example, 30 to 80 ° C, 35 to 75 ° C, 40 to 70 ° C. The predetermined time is not particularly limited, and the lower limit thereof is, for example, 5 hours or more, 10 hours or more, 15 hours or more, and the upper limit thereof is, for example, 50 hours or less, 40 hours or less, 30 hours or less. The range is, for example, 5 to 50 hours, 10 to 40 hours, 15 to 30 hours. The optimum conditions for aging can be set, for example, as described above, such that the gel-like silicon compound can increase the size of the primary particles and increase the contact area of the neck portion. preferable. In the aging step, the temperature of the aging treatment preferably takes into account, for example, the boiling point of the solvent used. In the aging treatment, for example, if the aging temperature is too high, the solvent is excessively volatilized, and there is a possibility that problems such as closing of the pores of the three-dimensional void structure occur due to the concentration of the coating solution. is there. On the other hand, in the aging treatment, for example, if the aging temperature is too low, the effect due to the aging is not sufficiently obtained, temperature variation with time of the mass production process increases, and a product with poor quality may be produced. There is.
 前記熟成処理は、例えば、前記ゲル化工程と同じ溶媒を使用でき、具体的には、前記ゲル処理後の反応物(つまり、前記ゲル状ケイ素化合物を含む前記溶媒)に対して、そのまま施すことが好ましい。ゲル化後の熟成処理を終えた前記ゲル状ケイ素化合物に含まれる残留シラノール基のモル数は、例えば、ゲル化に使用した原材料(例えば、前記ケイ素化合物またはその前駆体)のアルコキシ基のモル数を100とした場合の残留シラノール基の割合であり、その下限が、例えば、1%以上、3%以上、5%以上であり、その上限が、例えば、50%以下、40%以下、30%以下であり、その範囲が、例えば、1~50%、3~40%、5~30%である。前記ゲル状ケイ素化合物の硬度を上げる目的では、例えば、残留シラノール基のモル数が低いほど好ましい。残留シラノール基のモル数が高すぎると、例えば、前記シリコーン多孔体の形成において、前記シリコーン多孔体の前駆体が架橋されるまでに、空隙構造を保持できなくなる可能性がある。一方で、残留シラノール基のモル数が低すぎると、例えば、前記結合工程において、前記シリコーン多孔体の前駆体を架橋できなくなり、十分な膜強度を付与できなくなる可能性がある。なお、上記は、残留シラノール基の例であるが、例えば、前記ゲル状ケイ素化合物の原材料として、前記ケイ素化合物を各種反応性官能基で修飾したものを使用する場合は、各々の官能基に対しても、同様の現象を適用できる。 In the aging treatment, for example, the same solvent as in the gelation step can be used, and specifically, the reaction product after the gel treatment (that is, the solvent containing the gel silicon compound) is applied as it is. Is preferred. The number of moles of residual silanol groups contained in the gelled silicon compound that has been subjected to aging treatment after gelation is, for example, the number of moles of alkoxy groups in the raw material used for gelation (for example, the silicon compound or its precursor). Is the ratio of residual silanol groups when the value is 100, the lower limit is, for example, 1% or more, 3% or more, 5% or more, and the upper limit is, for example, 50% or less, 40% or less, 30% The range is, for example, 1 to 50%, 3 to 40%, and 5 to 30%. For the purpose of increasing the hardness of the gel silicon compound, for example, the lower the number of moles of residual silanol groups, the better. If the number of residual silanol groups is too high, for example, in the formation of the silicone porous body, there is a possibility that the void structure cannot be retained before the precursor of the silicone porous body is crosslinked. On the other hand, if the number of moles of residual silanol groups is too low, for example, in the bonding step, the precursor of the silicone porous body cannot be crosslinked, and sufficient film strength may not be imparted. The above is an example of residual silanol groups. For example, when the silicon compound modified with various reactive functional groups is used as the raw material of the gel silicon compound, However, the same phenomenon can be applied.
 本発明において、前記粉砕工程は、前述のように、前記ゲル状シリカ化合物を粉砕する工程である。前記粉砕は、例えば、前記ゲル化工程後の前記ゲル状ケイ素化合物(第1の塗料原料)に施してもよいし、さらに、前記熟成処理を施した前記熟成後のゲル状ケイ素化合物(第2の塗料原料)に施してもよい。 In the present invention, the pulverizing step is a step of pulverizing the gel-like silica compound as described above. The pulverization may be performed, for example, on the gel-like silicon compound (first paint raw material) after the gelation step, and further after the aging treatment the gel-like silicon compound (second Of the coating material).
 前記粉砕は、例えば、前記ゲル化用溶媒中のゲル状ケイ素化合物に対して、そのまま粉砕処理を施してもよいし、前記ゲル化用溶媒を他の溶媒に置換してから、前記他の溶媒中のゲル状ケイ素化合物に対して、粉砕処理を施してもよい。また、前記ゲル状ケイ素化合物に前記熟成工程を施した場合、例えば、ゲル化工程で使用した触媒および溶媒が、前記熟成工程後も残存することで、さらに経時にゲル化が生じて最終的に得られる塗料のポットライフに影響する場合、前記塗料を用いて形成した塗工膜を乾燥した際の乾燥効率を低下する場合等は、他の溶媒に置換することが好ましい。前記他の溶媒を、以下、「粉砕用溶媒」ともいう。 In the pulverization, for example, the gel-like silicon compound in the gelation solvent may be pulverized as it is, or after the gelation solvent is replaced with another solvent, the other solvent is used. You may grind | pulverize with respect to the gelatinous silicon compound in it. Further, when the aging step is performed on the gelled silicon compound, for example, the catalyst and the solvent used in the gelation step remain after the aging step, and further gelation occurs over time. In the case where the pot life of the obtained paint is affected, it is preferable to substitute with another solvent when the drying efficiency when the coating film formed using the paint is dried is reduced. Hereinafter, the other solvent is also referred to as a “grinding solvent”.
 前記粉砕は、例えば、前記ゲル化工程および前記熟成工程と同じ溶媒を使用してもよいし、前記ゲル化工程および前記熟成工程と異なる溶媒を使用してもよい。前者の場合、例えば、前記ゲル化工程後の反応物(例えば、前記ゲル状ケイ素化合物を含む前記ゲル化用溶媒)に対して、そのまま前記熟成工程および前記粉砕処理を施すことができる。また、後者の場合、前記ゲル化工程後の反応物(例えば、前記ゲル状ケイ素化合物を含む前記ゲル化用溶媒)に対して、そのまま前記熟成工程を施した後、前記ゲル化用溶媒を他の溶媒に置換してから、前記他の溶媒中のゲル状ケイ素化合物に対して、粉砕処理を施してもよい。 For the pulverization, for example, the same solvent as in the gelation step and the aging step may be used, or a solvent different from that in the gelation step and the aging step may be used. In the former case, for example, the aging step and the pulverization treatment can be performed as they are on the reaction product after the gelation step (for example, the gelation solvent containing the gel silicon compound). In the latter case, after the gelling step, the reaction product after the gelation step (for example, the gelation solvent containing the gelled silicon compound) is subjected to the aging step as it is, and then the gelation solvent is added. After substituting with the solvent, the gelled silicon compound in the other solvent may be pulverized.
 前記粉砕用溶媒は、特に制限されず、例えば、有機溶媒が使用できる。前記有機溶媒は、例えば、沸点130℃以下、沸点100℃以下、沸点85℃以下の溶媒が挙げられる。具体例としては、例えば、イソプロピルアルコール(IPA)、エタノール、メタノール、ブタノール、プロピレングリコールモノメチルエーテル(PGME)、メチルセロソルブ、アセトン、ジメチルホルムアミド(DMF)等が挙げられる。前記粉砕用溶媒は、例えば、1種類でもよいし、2種類以上の併用でもよい。 The solvent for grinding is not particularly limited, and for example, an organic solvent can be used. Examples of the organic solvent include solvents having a boiling point of 130 ° C. or lower, a boiling point of 100 ° C. or lower, and a boiling point of 85 ° C. or lower. Specific examples include isopropyl alcohol (IPA), ethanol, methanol, butanol, propylene glycol monomethyl ether (PGME), methyl cellosolve, acetone, dimethylformamide (DMF) and the like. The pulverizing solvent may be, for example, one type or a combination of two or more types.
 前記ゲル化用溶媒と前記粉砕用溶媒との組合せは、特に制限されず、例えば、DMSOとIPAとの組合せ、DMSOとエタノールとの組合せ、DMSOとメタノールとの組合せ、DMSOとブタノールとの組合せ等が挙げられる。このように、前記ゲル化用溶媒を前記粉砕用溶媒に置換することで、例えば、後述する塗膜形成において、より均一な塗工膜を形成することができる。 The combination of the gelling solvent and the grinding solvent is not particularly limited. For example, a combination of DMSO and IPA, a combination of DMSO and ethanol, a combination of DMSO and methanol, a combination of DMSO and butanol, and the like. Is mentioned. Thus, by replacing the gelling solvent with the pulverizing solvent, a more uniform coating film can be formed, for example, in coating film formation described below.
 前記ゲル状ケイ素化合物の粉砕方法は、特に制限されず、例えば、超音波ホモジナイザー、高速回転ホモジナイザー、その他のキャビテーション現象を用いる粉砕装置もしくは高圧で液同士を斜向衝突させる粉砕装置等により行うことができる。ボールミル等のメディア粉砕を行う装置は、例えば、粉砕時にゲルの空隙構造を物理的に破壊するのに対し、ホモジナイザー等の本発明に好ましいキャビテーション方式粉砕装置は、例えば、メディアレス方式のため、ゲル三次元構造にすでに内包されている比較的弱い結合のシリカ粒子接合面を、高速のせん断力で剥離する。このように、前記ゲル状ケイ素化合物を粉砕することで、新たなゾル三次元構造が得られ、前記三次元構造は、例えば、塗工膜の形成において、一定範囲の粒度分布をもつ空隙構造を保持することができ、塗工・乾燥時の堆積による空隙構造を再形成できる。前記粉砕の条件は、特に制限されず、例えば、瞬間的に高速の流れを与えることで、溶媒を揮発させることなくゲルを粉砕することができることが好ましい。例えば、前述のような粒度バラツキ(例えば、体積平均粒子径または粒度分布)の粉砕物となるように粉砕することが好ましい。仮に、粉砕時間・強度等の仕事量が不足した場合は、例えば、粗粒が残ることとなり、緻密な細孔を形成できず、外観欠点も増加し、高い品質を得ることができない可能性がある。一方で、前記仕事量が過多な場合は、例えば、所望の粒度分布よりも微細なゾル粒子となり、塗工・乾燥後に堆積した空隙サイズが微細となり、所望の空隙率に満たない可能性がある。 The method for pulverizing the gel silicon compound is not particularly limited, and may be performed by, for example, an ultrasonic homogenizer, a high-speed rotation homogenizer, a pulverizer using other cavitation phenomenon, or a pulverizer that obliquely collides liquids with each other at high pressure. it can. A device for performing media grinding such as a ball mill physically destroys the void structure of the gel at the time of grinding, whereas a cavitation type grinding device preferable for the present invention such as a homogenizer is, for example, a gel-less system. The relatively weakly bonded silica particle bonding surface already contained in the three-dimensional structure is peeled off with a high shear force. Thus, by pulverizing the gel-like silicon compound, a new sol three-dimensional structure is obtained, and the three-dimensional structure has, for example, a void structure having a certain range of particle size distribution in the formation of a coating film. It can be retained, and the void structure can be re-formed by deposition during coating and drying. The conditions for the pulverization are not particularly limited. For example, it is preferable that the gel can be pulverized without volatilizing the solvent by instantaneously applying a high-speed flow. For example, it is preferable to grind so as to obtain a pulverized product having a particle size variation as described above (for example, a volume average particle size or a particle size distribution). If the amount of work such as pulverization time and strength is insufficient, for example, coarse particles remain, and fine pores cannot be formed, appearance defects increase, and high quality may not be obtained. is there. On the other hand, when the work amount is excessive, for example, the sol particles are finer than the desired particle size distribution, and the void size deposited after coating / drying may become fine and may not satisfy the desired porosity. .
 前記粉砕工程後、前記粉砕物に含まれる残留シラノール基の割合は、特に制限されず、例えば、前記熟成処理後のゲル状ケイ素化合物について例示した範囲と同様である。 The ratio of residual silanol groups contained in the pulverized product after the pulverization step is not particularly limited, and is, for example, the same as the range exemplified for the gel silicon compound after the aging treatment.
 前記粉砕工程後、前記粉砕物を含む前記溶媒における前記粉砕物の割合は、特に制限されず、例えば、前述した前記本発明の塗料における条件が例示できる。前記割合は、例えば、前記粉砕工程後における前記粉砕物を含む溶媒そのものの条件でもよいし、前記粉砕工程後であって、前記塗料として使用する前に、調整された条件であってもよい。 After the pulverization step, the ratio of the pulverized product in the solvent containing the pulverized product is not particularly limited, and examples thereof include the conditions for the paint of the present invention described above. The ratio may be, for example, a condition of the solvent itself containing the pulverized product after the pulverization step, or may be a condition adjusted after the pulverization step and before being used as the paint.
 本発明の塗料は、例えば、前述したように、前記第1の塗料原料または前記第2の塗料原料を用いて製造することができる。前記第1の塗料原料は、前述のように、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物を含む。前記第1の塗料原料の製造方法は、例えば、前記ケイ素化合物を溶媒中でゲル化して、ゲル状ケイ素化合物を生成するゲル化工程を含み、例えば、前述した前記ゲル化工程後の前記ゲル状ケイ素化合物の記載を援用できる。前記第2の塗料原料は、前述のように、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状物であり且つ熟成処理を施したゲル状ケイ素化合物を含む。前記第2の塗料原料の製造方法は、例えば、前記ケイ素化合物から得られたゲル状ケイ素化合物を溶媒中で熟成する熟成工程を含み、例えば、前述した前記熟成工程後の前記ゲル状ケイ素化合物の記載を援用できる。 The coating material of the present invention can be produced, for example, using the first coating material or the second coating material as described above. As described above, the first coating material raw material contains a gel silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups. The method for producing the first coating material raw material includes, for example, a gelation step in which the silicon compound is gelled in a solvent to produce a gel silicon compound. For example, the gel state after the gelation step described above The description of silicon compounds can be incorporated. As described above, the second coating material raw material includes a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group and subjected to aging treatment. The method for producing the second coating material raw material includes, for example, an aging step of aging a gel-like silicon compound obtained from the silicon compound in a solvent. For example, the gel-like silicon compound after the aging step described above The description can be incorporated.
 以上のようにして、ゲル状ケイ素化合物の粉砕物と分散媒とを含む本発明の塗料を作製することができる。さらに、本発明の塗料には、前記各作製工程中に、またはその後に、前記粉砕物同士を化学的に結合させる触媒を加えても良い。前記触媒の添加量は、特に限定されないが、前記ゲル状ケイ素化合物の粉砕物の重量に対し、例えば、0.01~20重量%、0.05~10重量%、または0.1~5重量%である。この触媒により、例えば、後述の結合工程において、前記粉砕物同士を化学的に結合させることができる。前記触媒は、例えば、前記粉砕物同士の架橋結合を促進する触媒であっても良い。前記粉砕物同士を化学的に結合させる化学反応としては、シリカゾル分子に含まれる残留シラノール基の脱水縮合反応を利用することが好ましい。シラノール基の水酸基同士の反応を前記触媒で促進することで、短時間で空隙構造を硬化させる連続成膜が可能である。前記触媒としては、例えば、光活性触媒および熱活性触媒が挙げられる。前記光活性触媒によれば、例えば、加熱によらずに前記粉砕物同士を化学的に結合(例えば架橋結合)させることができる。これによれば、例えば、加熱による収縮が起こりにくいため、より高い空隙率を維持できる。また、前記触媒に加え、またはこれに代えて、触媒を発生する物質(触媒発生剤)を用いても良い。例えば、前記触媒が架橋反応促進剤であり、前記触媒発生剤が、前記架橋反応促進剤を発生する物質でも良い。例えば、前記光活性触媒に加え、またはこれに代えて、光により触媒を発生する物質(光触媒発生剤)を用いても良いし、前記熱活性触媒に加え、またはこれに代えて、熱により触媒を発生する物質(熱触媒発生剤)を用いても良い。前記光触媒発生剤としては、特に限定されないが、例えば、光塩基発生剤(光照射により塩基性触媒を発生する触媒)、光酸発生剤(光照射により酸性触媒を発生する物質)等が挙げられ、光塩基剤が好ましい。前記光塩基発生剤としては、例えば、9-アントリルメチル N,N-ジエチルカルバメート(9-anthrylmethyl N,N-diethylcarbamate、商品名WPBG-018)、(E)-1-[3-(2-ヒドロキシフェニル)-2-プロペノイル]ピペリジン((E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine、商品名WPBG-027)、1-(アントラキノン-2-イル)エチル イミダゾールカルボキシレート(1-(anthraquinon-2-yl)ethyl imidazolecarboxylate、商品名WPBG-140)、2-ニトロフェニルメチル 4-メタクリロイルオキシピペリジン-1-カルボキシラート(商品名WPBG-165)、1,2-ジイソプロピル-3-〔ビス(ジメチルアミノ)メチレン〕グアニジウム 2-(3-ベンゾイルフェニル)プロピオナート(商品名WPBG-266)、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウム n-ブチルトリフェニルボラート(商品名WPBG-300)、および2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(東京化成工業株式会社)、4-ピペリジンメタノールを含む化合物(商品名HDPD-PB100:ヘレウス社製)等が挙げられる。なお、前記「WPBG」を含む商品名は、いずれも和光純薬工業株式会社の商品名である。前記光酸発生剤としては、例えば、芳香族スルホニウム塩(商品名SP-170:ADEKA社)、トリアリールスルホニウム塩(商品名CPI101A:サンアプロ社)、芳香族ヨードニウム塩(商品名Irgacure250:チバ・ジャパン社)等が挙げられる。また、前記粉砕物同士を化学的に結合させる触媒は、前記光活性触媒および前記光触媒発生剤に限定されず、例えば、熱活性触媒または尿素のような熱触媒発生剤でも良い。前記粉砕物同士を化学的に結合させる触媒は、例えば、水酸化カリウム、水酸化ナトリウム、水酸化アンモニウム等の塩基触媒、塩酸、酢酸、シュウ酸等の酸触媒等が挙げられる。これらの中で、塩基触媒が好ましい。前記粉砕物同士を化学的に結合させる触媒は、例えば、前記粉砕物を含むゾル粒子液(例えば懸濁液)に、塗工直前に添加して使用する、または前記触媒を溶媒に混合した混合液として使用することができる。前記混合液は、例えば、前記ゾル粒子液に直接添加して溶解した塗工液、前記触媒を溶媒に溶解した溶液、前記触媒を溶媒に分散した分散液でもよい。前記溶媒は、特に制限されず、例えば、各種有機溶剤、水、緩衝液等が挙げられる。 As described above, the paint of the present invention containing a pulverized product of a gel-like silicon compound and a dispersion medium can be produced. Furthermore, a catalyst for chemically bonding the pulverized products may be added to the paint of the present invention during or after each of the production steps. The amount of the catalyst to be added is not particularly limited, but is, for example, 0.01 to 20% by weight, 0.05 to 10% by weight, or 0.1 to 5% by weight with respect to the weight of the pulverized product of the gel silicon compound. %. With this catalyst, for example, the pulverized products can be chemically bonded in a bonding step described later. The catalyst may be, for example, a catalyst that promotes cross-linking between the pulverized products. As a chemical reaction for chemically bonding the pulverized materials, it is preferable to use a dehydration condensation reaction of residual silanol groups contained in silica sol molecules. By promoting the reaction between the hydroxyl groups of the silanol group with the catalyst, it is possible to form a continuous film that cures the void structure in a short time. Examples of the catalyst include a photoactive catalyst and a thermally active catalyst. According to the photoactive catalyst, for example, the pulverized products can be chemically bonded (for example, crosslinked) without being heated. According to this, for example, since shrinkage due to heating hardly occurs, a higher porosity can be maintained. In addition to or instead of the catalyst, a substance that generates a catalyst (catalyst generator) may be used. For example, the catalyst may be a crosslinking reaction accelerator, and the catalyst generator may be a substance that generates the crosslinking reaction accelerator. For example, in addition to or instead of the photoactive catalyst, a substance that generates a catalyst by light (photocatalyst generator) may be used, or in addition to or instead of the thermally active catalyst A substance that generates water (thermal catalyst generator) may be used. The photocatalyst generator is not particularly limited, and examples thereof include a photobase generator (a catalyst that generates a basic catalyst by light irradiation), a photoacid generator (a substance that generates an acidic catalyst by light irradiation), and the like. A photobase agent is preferred. Examples of the photobase generator include 9-anthrylmethyl N, N-diethylcarbamate (trade name WPBG-018), (E) -1- [3- (2- Hydroxyphenyl) -2-propenoyl] piperidine ((E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine, trade name WPBG-027), 1- (anthraquinone-2-yl) ethyl imidazolecarboxy Rate (1- (anthraquinon-2-yl) ethyl imidazolecarboxylate, trade name WPBG-140), 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate (trade name WPBG-165), 1,2-diisopropyl- 3- [bis (dimethylamino) methylene] guanidium 2- (3-benzoylphenyl) propionate (trade name WPBG-266), 1 , 2-dicyclohexyl-4,4,5,5-tetramethylbiguanidinium n-butyltriphenylborate (trade name WPBG-300) and 2- (9-oxoxanthen-2-yl) propionic acid 1, 5,7-triazabicyclo [4.4.0] dec-5-ene (Tokyo Chemical Industry Co., Ltd.), a compound containing 4-piperidinemethanol (trade name HDPD-PB100: manufactured by Heraeus), and the like. The trade names including “WPBG” are trade names of Wako Pure Chemical Industries, Ltd. Examples of the photoacid generator include aromatic sulfonium salts (trade name SP-170: ADEKA), triarylsulfonium salts (trade name CPI101A: San Apro), and aromatic iodonium salts (trade name Irgacure 250: Ciba Japan). Company). The catalyst for chemically bonding the pulverized materials is not limited to the photoactive catalyst and the photocatalyst generator, and may be a thermal catalyst or a thermal catalyst generator such as urea. Examples of the catalyst for chemically bonding the pulverized materials include basic catalysts such as potassium hydroxide, sodium hydroxide and ammonium hydroxide, and acid catalysts such as hydrochloric acid, acetic acid and oxalic acid. Of these, base catalysts are preferred. The catalyst for chemically bonding the pulverized materials is used, for example, by adding to the sol particle liquid (for example, suspension) containing the pulverized material immediately before coating, or mixing the catalyst in a solvent. It can be used as a liquid. The mixed liquid may be, for example, a coating liquid that is directly added and dissolved in the sol particle liquid, a solution in which the catalyst is dissolved in a solvent, or a dispersion liquid in which the catalyst is dispersed in a solvent. The solvent is not particularly limited, and examples thereof include various organic solvents, water, and a buffer solution.
 また、例えば、本発明の塗料には、さらに、前記ゲル状ケイ素化合物の粉砕物同士を間接的に結合させるための架橋補助剤を添加してもよい。この架橋補助剤が、粒子(前記粉砕物)同士の間に入り込み、粒子と架橋補助剤が各々相互作用もしくは結合することで、距離的に多少離れた粒子同士も結合させることが可能であり、効率よく強度を上げることが可能となる。前記架橋補助剤としては、多架橋シランモノマーが好ましい。前記多架橋シランモノマーは、具体的には、例えば、2以上3以下のアルコキシシリル基を有し、アルコキシシリル基間の鎖長が炭素数1以上10以下であっても良く、炭素以外の元素も含んでもよい。前記架橋補助剤としては、例えば、ビス(トリメトキシシリル)エタン、ビス(トリエトキシシリル)エタン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリエトキシシリル)プロパン、ビス(トリメトキシシリル)プロパン、ビス(トリエトキシシリル)ブタン、ビス(トリメトキシシリル)ブタン、ビス(トリエトキシシリル)ペンタン、ビス(トリメトキシシリル)ペンタン、ビス(トリエトキシシリル)ヘキサン、ビス(トリメトキシシリル)ヘキサン、ビス(トリメトキシシリル)-N-ブチル-N-プロピル-エタン-1,2-ジアミン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、トリス-(3-トリエトキシシリルプロピル)イソシアヌレート等が挙げられる。この架橋補助剤の添加量としては、特に限定されないが、例えば、前記ケイ素化合物の粉砕物の重量に対して0.01~20重量%、0.05~15重量%、または0.1~10重量%である。 Also, for example, a crosslinking aid for indirectly bonding the pulverized products of the gel silicon compound may be added to the paint of the present invention. This crosslinking aid enters between the particles (the pulverized product), and the particles and the crosslinking aid interact or bond with each other, so that it is possible to bind particles that are slightly apart in distance. The strength can be increased efficiently. As the crosslinking aid, a polycrosslinked silane monomer is preferable. Specifically, the multi-crosslinked silane monomer has, for example, an alkoxysilyl group having 2 or more and 3 or less, the chain length between alkoxysilyl groups may be 1 to 10 carbon atoms, and an element other than carbon May also be included. Examples of the crosslinking aid include bis (trimethoxysilyl) ethane, bis (triethoxysilyl) ethane, bis (trimethoxysilyl) methane, bis (triethoxysilyl) methane, bis (triethoxysilyl) propane, bis (Trimethoxysilyl) propane, bis (triethoxysilyl) butane, bis (trimethoxysilyl) butane, bis (triethoxysilyl) pentane, bis (trimethoxysilyl) pentane, bis (triethoxysilyl) hexane, bis (tri Methoxysilyl) hexane, bis (trimethoxysilyl) -N-butyl-N-propyl-ethane-1,2-diamine, tris- (3-trimethoxysilylpropyl) isocyanurate, tris- (3-triethoxysilylpropyl) ) Isocyanurate and the like. The addition amount of the crosslinking aid is not particularly limited, but for example, 0.01 to 20% by weight, 0.05 to 15% by weight, or 0.1 to 10% by weight with respect to the weight of the pulverized product of the silicon compound. % By weight.
[2.塗料の使用方法]
 本発明の塗料の使用方法として、以下に、シリコーン多孔体の製造方法を例示するが、本発明は、これには限定されない。なお、本発明の塗料を用いて製造されるシリコーン多孔体を、以下において「本発明のシリコーン多孔体」という場合がある。
[2. How to use paint]
As a method for using the paint of the present invention, a method for producing a silicone porous body will be exemplified below, but the present invention is not limited thereto. In addition, the silicone porous body manufactured using the coating material of this invention may be called "the silicone porous body of this invention" below.
 前記シリコーン多孔体の製造方法は、例えば、前記本発明の塗料を用いて、前記シリコーン多孔体の前駆体を形成する前駆体形成工程、および、前記前駆体に含まれる前記塗料の前記粉砕物同士を化学的に結合させる結合工程を含むことを特徴とする。前記前駆体は、例えば、塗工膜ということもできる。 The method for producing the silicone porous body includes, for example, a precursor forming step of forming a precursor of the silicone porous body using the paint of the present invention, and the pulverized products of the paint contained in the precursor It is characterized by including a bonding step for chemically bonding. The precursor can also be referred to as a coating film, for example.
 前記シリコーン多孔体の製造方法によれば、例えば、空気層と同様の機能を奏する多孔質構造が形成される。その理由は、例えば、以下のように推測されるが、本発明は、この推測には制限されない。 According to the method for producing a silicone porous body, for example, a porous structure having the same function as an air layer is formed. The reason is estimated as follows, for example, but the present invention is not limited to this estimation.
 前記シリコーン多孔体の製造方法で使用する前記本発明の塗料は、前記ゲル状ケイ素化合物の粉砕物を含むことから、前記ゲル状シリカ化合物の三次元構造が、三次元基本構造に分散された状態となっている。このため、前記シリコーン多孔体の製造方法では、例えば、前記塗料を用いて前記前駆体(例えば、塗工膜)を形成すると、前記三次元基本構造が堆積され、前記三次元基本構造に基づく空隙構造が形成される。つまり、前記シリコーン多孔体の製造方法によれば、前記ゲル状ケイ素化合物の三次元構造とは異なる、前記三次元基本構造の前記粉砕物から形成された新たな三次元構造が形成される。また、前記シリコーン多孔体の製造方法においては、さらに、前記粉砕物同士の化学的に結合させるため、前記新たな三次元構造が固定化される。このため、前記シリコーン多孔体の製造方法により得られる前記シリコーン多孔体は、空隙を有する構造であるが、十分な強度と可撓性とを維持できる。本発明により得られるシリコーン多孔体は、例えば、空隙を利用する部材として、断熱材、吸音材、光学部材、インク受像層等の幅広い分野の製品に使うことが可能で、さらに、各種機能を付与した積層フィルムを作製することができる。 Since the coating material of the present invention used in the method for producing a porous silicone material includes a pulverized product of the gel-like silicon compound, the three-dimensional structure of the gel-like silica compound is dispersed in a three-dimensional basic structure. It has become. For this reason, in the method for producing the porous silicone body, for example, when the precursor (for example, a coating film) is formed using the paint, the three-dimensional basic structure is deposited, and voids based on the three-dimensional basic structure are formed. A structure is formed. That is, according to the manufacturing method of the said porous silicone body, the new three-dimensional structure formed from the said ground material of the said three-dimensional basic structure different from the three-dimensional structure of the said gel-like silicon compound is formed. Moreover, in the manufacturing method of the said porous silicone body, in order to couple | bond the said pulverized material further chemically, the said new three-dimensional structure is fixed. For this reason, although the said silicone porous body obtained by the manufacturing method of the said silicone porous body is a structure which has a space | gap, it can maintain sufficient intensity | strength and flexibility. The silicone porous body obtained by the present invention can be used for products in a wide range of fields such as a heat insulating material, a sound absorbing material, an optical member, an ink image-receiving layer, etc. A laminated film can be produced.
 前記シリコーン多孔体の製造方法は、特に記載しない限り、前記本発明の塗料の説明を援用できる。 The description of the paint of the present invention can be used in the method for producing the silicone porous body unless otherwise specified.
 前記多孔体の前駆体の形成工程においては、例えば、前記本発明の塗料を、前記基材上に塗工する。本発明の塗料は、例えば、基材上に塗工し、前記塗工膜を乾燥した後に、前記結合工程により前記粉砕物同士を化学的に結合(例えば、架橋)することで、一定レベル以上の膜強度を有する空隙層を、連続成膜することが可能である。 In the step of forming the porous body precursor, for example, the paint of the present invention is applied onto the substrate. The coating material of the present invention is, for example, coated on a base material, dried the coated film, and then chemically bonded (for example, cross-linked) between the pulverized products by the bonding step, thereby achieving a certain level or more. It is possible to continuously form a void layer having a film strength of 10 nm.
 前記基材に対する前記塗料の塗工量は、特に制限されず、例えば、所望の前記シリコーン多孔体の厚み等に応じて、適宜設定できる。具体例として、厚み0.1~1000μmの前記シリコーン多孔体を形成する場合、前記基材に対する前記塗料の塗工量は、前記基材の面積1mあたり、例えば、前記粉砕物0.01~60000μg、0.1~5000μg、1~50μgである。前記塗料の好ましい塗工量は、例えば、液の濃度や塗工方式等と関係するため、一義的に定義することは難しいが、生産性を考慮すると、できるだけ薄層で塗工することが好ましい。塗布量が多すぎると、例えば、溶媒が揮発する前に乾燥炉で乾燥される可能性が高くなる。これにより、溶媒中でナノ粉砕ゾル粒子が沈降・堆積し、空隙構造を形成する前に、溶媒が乾燥することで、空隙の形成が阻害されて空隙率が大きく低下する可能性がある。一方で、塗布量が薄過ぎると、基材の凹凸・親疎水性のバラツキ等により塗工ハジキが発生するリスクが高くなる可能性がある。 The coating amount of the coating material on the substrate is not particularly limited, and can be appropriately set according to, for example, the desired thickness of the silicone porous body. As a specific example, the case of forming the silicone porous having a thickness of 0.1 ~ 1000 .mu.m, the coating amount of the coating material relative to the substrate, the area 1 m 2 per of the substrate, for example, the ground product 0.01 60000 μg, 0.1-5000 μg, 1-50 μg. The preferable coating amount of the paint is, for example, related to the concentration of the liquid, the coating method, etc., and thus it is difficult to define it uniquely. However, in consideration of productivity, it is preferable to apply as thin a layer as possible. . When there is too much application quantity, possibility that it will be dried with a drying furnace before a solvent volatilizes will become high, for example. As a result, the nano-ground sol particles settle and deposit in the solvent, and the solvent is dried before the void structure is formed, so that void formation may be hindered and the porosity may be greatly reduced. On the other hand, if the coating amount is too thin, there is a possibility that the risk of occurrence of coating repellency may increase due to unevenness of the base material, variation in hydrophilicity / hydrophobicity, or the like.
 前記基材に前記塗料を塗工した後、前記多孔体の前駆体(塗工膜)に乾燥処理を施してもよい。前記乾燥処理によって、例えば、前記多孔体の前駆体中の前記溶媒(前記塗料に含まれる溶媒)を除去するだけでなく、乾燥処理中に、ゾル粒子を沈降・堆積させ、空隙構造を形成させることを目的としている。前記乾燥処理の温度は、例えば、50~250℃、60~150℃、70~130℃であり、前記乾燥処理の時間は、例えば、0.1~30分、0.2~10分、0.3~3分である。乾燥処理温度、および時間については、例えば、連続生産性や高い空隙率の発現の関連では、より低く短いほうが好ましい。条件が厳しすぎると、例えば、基材が樹脂フィルムの場合、前記基材のガラス転移温度に近づくことで、前記基材が乾燥炉の中で伸展してしまい、塗工直後に、形成された空隙構造にクラック等の欠点が発生する可能性がある。一方で、条件が緩すぎる場合、例えば、乾燥炉を出たタイミングで残留溶媒を含むため、次工程でロールと擦れた際に、スクラッチ傷が入る等の外観上の不具合が発生する可能性がある。 After the coating material is applied to the substrate, the porous body precursor (coating film) may be dried. By the drying treatment, for example, not only the solvent (the solvent contained in the paint) in the precursor of the porous body is removed, but also the sol particles are settled and deposited to form a void structure during the drying treatment. The purpose is that. The drying treatment temperature is, for example, 50 to 250 ° C., 60 to 150 ° C., 70 to 130 ° C., and the drying treatment time is, for example, 0.1 to 30 minutes, 0.2 to 10 minutes, 0 .3-3 minutes. The drying process temperature and time are preferably lower and shorter in relation to, for example, continuous productivity and high porosity. If the conditions are too strict, for example, when the substrate is a resin film, the substrate is extended in a drying furnace by being close to the glass transition temperature of the substrate, and formed immediately after coating. Defects such as cracks may occur in the void structure. On the other hand, if the conditions are too loose, for example, since the residual solvent is included at the time of leaving the drying furnace, there is a possibility that defects in appearance such as scratches will occur when rubbing with the roll in the next process. is there.
 前記乾燥処理は、例えば、自然乾燥でもよいし、加熱乾燥でもよいし、減圧乾燥でもよい。前記乾燥方法は、特に制限されず、例えば、一般的な加熱手段が使用できる。前記加熱手段は例えば、熱風器、加熱ロール、遠赤外線ヒーター等が挙げられる。中でも、工業的に連続生産することを前提とした場合は、加熱乾燥を用いることが好ましい。また、使用される溶媒については、乾燥時の溶媒揮発に伴う収縮応力の発生、それによる空隙層(前記シリコーン多孔体)のクラック現象を抑える目的で、表面張力が低い溶媒が好ましい。前記溶媒としては、例えば、イソプロピルアルコール(IPA)に代表される低級アルコール、ヘキサン、ペルフルオロヘキサン等が挙げられるが、これらに限定されない。また、例えば、上記IPA等にペルフルオロ系界面活性剤もしくはシリコン系界面活性剤を少量添加し表面張力を低下させてもよい。 The drying treatment may be, for example, natural drying, heat drying, or vacuum drying. The drying method is not particularly limited, and for example, a general heating means can be used. Examples of the heating means include a hot air fan, a heating roll, and a far infrared heater. Above all, when it is premised on industrial continuous production, it is preferable to use heat drying. As the solvent used, a solvent having a low surface tension is preferable for the purpose of suppressing the generation of shrinkage stress accompanying the solvent volatilization during drying and the cracking phenomenon of the void layer (the silicone porous body). Examples of the solvent include, but are not limited to, lower alcohols typified by isopropyl alcohol (IPA), hexane, perfluorohexane, and the like. Further, for example, a small amount of perfluoro-based surfactant or silicon-based surfactant may be added to the IPA or the like to reduce the surface tension.
 前記基材は、特に制限されず、例えば、熱可塑性樹脂製の基材、ガラス製の基材、シリコンに代表される無機基板、熱硬化性樹脂等で成形されたプラスチック、半導体等の素子、カーボンナノチュープに代表される炭素繊維系材料等が好ましく使用できるが、これらに限定されない。前記基材の形態は、例えば、フィルム、プレート等が挙げられる。前記熱可塑性樹脂は、例えば、ポリエチレンテレフタレート(PET)、アクリル、セルロースアセテートプロピオネート(CAP)、シクロオレフィンポリマー(COP)、トリアセテート(TAC)、ポリエチレンナフタレート(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。 The substrate is not particularly limited, for example, a thermoplastic resin substrate, a glass substrate, an inorganic substrate typified by silicon, a plastic molded with a thermosetting resin, an element such as a semiconductor, A carbon fiber-based material typified by carbon nanotube can be preferably used, but is not limited thereto. Examples of the form of the substrate include a film and a plate. Examples of the thermoplastic resin include polyethylene terephthalate (PET), acrylic, cellulose acetate propionate (CAP), cycloolefin polymer (COP), triacetate (TAC), polyethylene naphthalate (PEN), polyethylene (PE), and polypropylene. (PP) etc. are mentioned.
 前記シリコーン多孔体の製造方法において、前記結合工程は、前記多孔体の前駆体(塗工膜)に含まれる前記粉砕物同士を化学的に結合させる工程である。前記結合工程によって、例えば、前記多孔体の前駆体における前記粉砕物の三次元構造が、固定化される。従来の焼結による固定化を行う場合は、例えば、200℃以上の高温処理を行うことで、シラノール基の脱水縮合、シロキサン結合の形成を誘発する。本発明における前記結合工程においては、上記の脱水縮合反応を触媒する各種添加剤を反応させることで、例えば、基材が樹脂フィルムの場合に、前記基材にダメージを起こすことなく、100℃前後の比較的低い乾燥温度、および数分未満の短い処理時間で、連続的に空隙構造を形成、固定化することができる。 In the method for producing a porous silicone body, the bonding step is a step of chemically bonding the pulverized materials contained in the porous body precursor (coating film). By the bonding step, for example, the three-dimensional structure of the pulverized material in the precursor of the porous body is fixed. When fixing by conventional sintering, for example, high temperature treatment at 200 ° C. or higher induces dehydration condensation of silanol groups and formation of siloxane bonds. In the bonding step of the present invention, by reacting various additives that catalyze the above dehydration condensation reaction, for example, when the substrate is a resin film, the substrate is not damaged, and the temperature is around 100 ° C. The void structure can be continuously formed and fixed at a relatively low drying temperature and a short processing time of less than a few minutes.
 前記化学的に結合させる方法は、特に制限されず、例えば、前記ゲル状ケイ素化合物の種類に応じて、適宜決定できる。具体例として、前記化学的な結合は、例えば、前記粉砕物同士の化学的な架橋結合により行うことができ、その他にも、例えば、酸化チタン等の無機粒子等を、前記粉砕物に添加した場合、前記無機粒子と前記粉砕物とを化学的に架橋結合させることも考えられる。また、酵素等の生体触媒を担持させる場合も、触媒活性点とは別の部位と前記粉砕物とを化学架橋結合させる場合もある。したがって、本発明は、例えば、前記ゾル粒子同士で形成する空隙層(シリコーン多孔体)だけでなく、有機無機ハイブリッド空隙層、ホストゲスト空隙層等の応用展開が考えられるが、これらに限定されない。 The method of chemically bonding is not particularly limited, and can be appropriately determined according to, for example, the type of the gel silicon compound. As a specific example, the chemical bonding can be performed by, for example, chemical cross-linking between the pulverized products, and, for example, inorganic particles such as titanium oxide are added to the pulverized product. In this case, it is conceivable to chemically cross-link the inorganic particles and the pulverized product. In addition, when a biocatalyst such as an enzyme is supported, a site other than the catalytic active site and the pulverized product may be chemically crosslinked. Therefore, the present invention can be applied to, for example, not only a void layer (silicone porous body) formed by the sol particles but also an organic-inorganic hybrid void layer, a host guest void layer, and the like, but is not limited thereto.
 前記結合工程は、例えば、前記ゲル状ケイ素化合物の粉砕物の種類に応じて、触媒存在下での化学反応により行うことができる。本発明における化学反応としては、前記ゲル状ケイ素化合物の粉砕物に含まれる残留シラノール基の脱水縮合反応を利用することが好ましい。シラノール基の水酸基同士の反応を前記触媒で促進することで、短時間で空隙構造を硬化させる連続成膜が可能である。前記触媒としては、例えば、水酸化カリウム、水酸化ナトリウム、水酸化アンモニウム等の塩基触媒、塩酸、酢酸、シュウ酸等の酸触媒等が挙げられるが、これらに限定されない。前記脱水縮合反応の触媒は、塩基触媒が特に好ましい。また、光(例えば紫外線)を照射することで触媒活性が発現する、光酸発生触媒、光塩基発生触媒、光酸発生剤、光塩基発生剤等も好ましく用いることができる。光酸発生触媒、光塩基発生触媒、光酸発生剤、および光塩基発生剤としては、特に限定されないが、例えば、前述のとおりである。前記触媒は、例えば、前述のとおり、前記粉砕物を含むゾル粒子液に、塗工直前に添加して使用する、または、前記触媒を溶媒に混合した混合液として使用することが好ましい。前記混合液は、例えば、前記ゾル粒子液に直接添加して溶解した塗工液、前記触媒を溶媒に溶解した溶液、前記触媒を溶媒に分散した分散液でもよい。前記溶媒は、特に制限されず、前述のとおり、例えば、水、緩衝液等が挙げられる。 The bonding step can be performed, for example, by a chemical reaction in the presence of a catalyst depending on the kind of the pulverized product of the gel silicon compound. As the chemical reaction in the present invention, it is preferable to use a dehydration condensation reaction of residual silanol groups contained in the pulverized product of the gel silicon compound. By promoting the reaction between the hydroxyl groups of the silanol group with the catalyst, it is possible to form a continuous film that cures the void structure in a short time. Examples of the catalyst include base catalysts such as potassium hydroxide, sodium hydroxide and ammonium hydroxide, and acid catalysts such as hydrochloric acid, acetic acid and oxalic acid, but are not limited thereto. The catalyst for the dehydration condensation reaction is particularly preferably a base catalyst. In addition, a photoacid generator catalyst, a photobase generator catalyst, a photoacid generator, a photobase generator, or the like that exhibits catalytic activity when irradiated with light (for example, ultraviolet rays) can also be preferably used. The photoacid generator catalyst, photobase generator catalyst, photoacid generator, and photobase generator are not particularly limited, and are, for example, as described above. For example, as described above, the catalyst is preferably added to the sol particle liquid containing the pulverized product immediately before coating, or used as a mixed liquid in which the catalyst is mixed with a solvent. The mixed liquid may be, for example, a coating liquid that is directly added and dissolved in the sol particle liquid, a solution in which the catalyst is dissolved in a solvent, or a dispersion liquid in which the catalyst is dispersed in a solvent. The solvent is not particularly limited, and examples thereof include water and a buffer solution as described above.
 前記触媒存在下での化学反応は、例えば、事前に前記塗料に添加された前記触媒を含む前記塗工膜に対し光照射もしくは加熱、または、前記塗工膜に、前記触媒を吹き付けてから光照射もしくは加熱、または、前記触媒を吹き付けながら光照射もしくは加熱することによって、行うことができる。例えば、前記触媒が光活性触媒である場合は、光照射により、前記粉砕物同士を化学的に結合させて前記シリコーン多孔体を形成することができる。また、前記触媒が、熱活性触媒である場合は、加熱により、前記粉砕物同士を化学的に結合させて前記シリコーン多孔体を形成することができる。前記光照射における光照射量(エネルギー)は、特に限定されないが、@360nm換算で、例えば、200~800mJ/cm、250~600mJ/cm、または300~400mJ/cmである。照射量が十分でなく触媒発生剤の光吸収による分解が進まず効果が不十分となることを防止する観点からは、200mJ/cm以上の積算光量が良い。また、空隙層下の基材にダメージがかかり熱ジワが発生することを防止する観点からは、800mJ/cm以下の積算光量が良い。前記加熱処理の条件は、特に制限されず、前記加熱温度は、例えば、50~250℃、60~150℃、70~130℃であり、前記加熱時間は、例えば、0.1~30分、0.2~10分、0.3~3分である。また、使用される溶媒については、例えば、乾燥時の溶媒揮発に伴う収縮応力の発生、それによる空隙層のクラック現象を抑える目的で、表面張力が低い溶媒が好ましい。例えば、イソプロピルアルコール(IPA)に代表される低級アルコール、ヘキサン、ペルフルオロヘキサン等が挙げられるが、これらに限定されない。 The chemical reaction in the presence of the catalyst is performed, for example, by irradiating or heating the coating film containing the catalyst previously added to the paint, or by spraying the catalyst on the coating film and then applying light. It can be carried out by irradiation or heating, or by light irradiation or heating while spraying the catalyst. For example, when the catalyst is a photoactive catalyst, the pulverized material can be chemically bonded to each other by light irradiation to form the porous silicone body. Moreover, when the said catalyst is a heat active catalyst, the said pulverized material can be combined chemically by heating and the said silicone porous body can be formed. Light irradiation amount in the irradiation (energy) is not particularly limited, @ in 360nm terms, for example, 200 ~ 800mJ / cm 2, 250 ~ 600mJ / cm 2 or 300 ~ 400mJ / cm 2,. From the viewpoint of preventing the irradiation amount from being insufficient and the decomposition due to light absorption of the catalyst generator from proceeding and preventing the effect from becoming insufficient, an integrated light amount of 200 mJ / cm 2 or more is good. Further, from the viewpoint of preventing the base material under the void layer from being damaged and generating thermal wrinkles, an integrated light amount of 800 mJ / cm 2 or less is good. The conditions for the heat treatment are not particularly limited, and the heating temperature is, for example, 50 to 250 ° C., 60 to 150 ° C., 70 to 130 ° C., and the heating time is, for example, 0.1 to 30 minutes, 0.2 to 10 minutes and 0.3 to 3 minutes. As the solvent used, for example, a solvent having a low surface tension is preferable for the purpose of suppressing the generation of shrinkage stress accompanying the solvent volatilization during drying and the cracking phenomenon of the void layer. Examples thereof include, but are not limited to, lower alcohols typified by isopropyl alcohol (IPA), hexane, perfluorohexane, and the like.
 以上のようにして、本発明のシリコーン多孔体を製造することができるが、本発明の製造方法は、これに限定されない。 As described above, the porous silicon body of the present invention can be manufactured, but the manufacturing method of the present invention is not limited to this.
 また、得られた本発明のシリコーン多孔体に対し、例えば、加熱エージング等の処理をして強度を向上させる強度向上工程(以下「エージング工程」ともいう場合がある。)を行っても良い。例えば、本発明のシリコーン多孔体が樹脂フィルム上に積層されている場合、前記強度向上工程(エージング工程)により、前記樹脂フィルムに対する粘着ピール強度を向上させることができる。前記強度向上工程(エージング工程)においては、例えば、本発明のシリコーン多孔体を加熱しても良い。前記エージング工程における温度は、例えば40~80℃、50~70℃、55~65℃である。前記反応の時間は、例えば5~30hr、7~25hr、または10~20hrである。前記エージング工程においては、例えば、加熱温度を低温にすることで、前記シリコーン多孔体の収縮を抑制しながら粘着ピール強度を向上させ、高空隙率と強度の両立を達成できる。 In addition, the obtained porous silicone body of the present invention may be subjected to a strength improving step (hereinafter also referred to as “aging step”) in which the strength is improved by, for example, heat aging. For example, when the silicone porous body of the present invention is laminated on a resin film, the adhesive peel strength to the resin film can be improved by the strength improving step (aging step). In the said strength improvement process (aging process), you may heat the silicone porous body of this invention, for example. The temperature in the aging step is, for example, 40 to 80 ° C., 50 to 70 ° C., 55 to 65 ° C. The reaction time is, for example, 5 to 30 hours, 7 to 25 hours, or 10 to 20 hours. In the aging step, for example, by lowering the heating temperature, the adhesive peel strength can be improved while suppressing the shrinkage of the silicone porous body, and both high porosity and strength can be achieved.
 前記強度向上工程(エージング工程)において起こる現象およびメカニズムは不明であるが、例えば、本発明のシリコーン多孔体中に含まれる触媒により、前記粉砕物同士の化学的な結合(例えば架橋反応)がさらに進むことにより、強度が向上すると考えられる。具体例として、前記シリコーン多孔体中に残留シラノール基(OH基)が存在する場合、前記残留シラノール基同士が架橋反応により化学的に結合すると考えられる。なお、本発明のシリコーン多孔体中に含まれる触媒は、特に限定されないが、例えば、前記結合工程で用いた触媒でも良いし、前記結合工程で用いた光塩基発生触媒が光照射により発生した塩基性物質、前記結合工程で用いた光酸発生触媒が光照射により発生した酸性物質等でも良い。ただし、この説明は例示であり、本発明を限定しない。 Although the phenomenon and mechanism that occur in the strength improvement step (aging step) are unknown, for example, the catalyst contained in the silicone porous body of the present invention further causes chemical bonding (for example, cross-linking reaction) between the pulverized products. It is considered that the strength is improved by proceeding. As a specific example, when residual silanol groups (OH groups) are present in the silicone porous body, it is considered that the residual silanol groups are chemically bonded to each other by a crosslinking reaction. The catalyst contained in the porous silicone material of the present invention is not particularly limited. For example, the catalyst used in the bonding step may be used, or the photobase generation catalyst used in the bonding step may be a base generated by light irradiation. The photoacid generating catalyst used in the binding step may be an acidic substance generated by light irradiation or the like. However, this description is illustrative and does not limit the present invention.
 また、本発明のシリコーン多孔体上に、さらに粘接着層を形成しても良い(粘接着層形成工程)。具体的には、例えば、本発明のシリコーン多孔体上に、粘着剤または接着剤を塗布(塗工)することにより、前記粘接着層を形成しても良い。また、基材上に前記粘接着層が積層された粘着テープ等の、前記粘接着層側を、本発明のシリコーン多孔体上に貼り合せることにより、本発明のシリコーン多孔体上に前記粘接着層を形成しても良い。この場合、前記粘着テープ等の基材は、そのまま貼り合せたままにしても良いし、前記粘接着層から剥離しても良い。本発明において、「粘着剤」および「粘着層」は、例えば、被着体の再剥離を前提とした剤または層をいう。本発明において、「接着剤」および「接着層」は、例えば、被着体の再剥離を前提としない剤または層をいう。ただし、本発明において、「粘着剤」と「接着剤」は、必ずしも明確に区別できるものではなく、「粘着層」と「接着層」は、必ずしも明確に区別できるものではない。本発明において、前記粘接着層を形成する粘着剤または接着剤は特に限定されず、例えば、一般的な粘着剤または接着剤等が使用できる。前記粘着剤または接着剤としては、例えば、アクリル系、ビニルアルコール系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系等のポリマー製接着剤、ゴム系接着剤等が挙げられる。また、グルタルアルデヒド、メラミン、シュウ酸等のビニルアルコール系ポリマーの水溶性架橋剤等から構成される接着剤等も挙げられる。これら粘着剤および接着剤は、1種類のみ用いても、複数種類を併用(例えば、混合、積層等)しても良い。前記粘接着層の厚みは、特に制限されないが、例えば、0.1~100μm、5~50μm、10~30μm、または12~25μmである。 Further, an adhesive layer may be further formed on the silicone porous body of the present invention (adhesive layer forming step). Specifically, for example, the adhesive layer may be formed by applying (coating) a pressure-sensitive adhesive or an adhesive onto the silicone porous body of the present invention. In addition, the adhesive layer side such as an adhesive tape in which the adhesive layer is laminated on a base material is bonded onto the silicone porous body of the present invention, whereby the above-mentioned silicone porous body of the present invention is An adhesive layer may be formed. In this case, the base material such as the adhesive tape may be left as it is or may be peeled off from the adhesive layer. In the present invention, “adhesive” and “adhesive layer” refer to, for example, an agent or layer premised on re-peeling of the adherend. In the present invention, “adhesive” and “adhesive layer” refer to, for example, an agent or a layer that does not assume re-peeling of the adherend. However, in the present invention, “pressure-sensitive adhesive” and “adhesive” are not necessarily clearly distinguished, and “pressure-sensitive adhesive layer” and “adhesive layer” are not necessarily clearly distinguished. In this invention, the adhesive or adhesive which forms the said adhesive layer is not specifically limited, For example, a general adhesive or adhesive etc. can be used. Examples of the pressure-sensitive adhesive or adhesive include acrylic-based, vinyl alcohol-based, silicone-based, polyester-based, polyurethane-based, and polyether-based adhesives, rubber-based adhesives, and the like. Moreover, the adhesive agent comprised from the water-soluble crosslinking agent of vinyl alcohol polymers, such as glutaraldehyde, melamine, and oxalic acid, etc. are mentioned. These pressure-sensitive adhesives and adhesives may be used alone or in combination (for example, mixing, lamination, etc.). The thickness of the adhesive layer is not particularly limited, and is, for example, 0.1 to 100 μm, 5 to 50 μm, 10 to 30 μm, or 12 to 25 μm.
 さらに、本発明のシリコーン多孔体を、前記粘接着層と反応させて、本発明のシリコーン多孔体と前記粘接着層との中間に配置された中間層を形成しても良い(中間層形成工程)。前記中間層により、例えば、本発明のシリコーン多孔体と前記粘接着層とが剥離しにくくなる。この理由(メカニズム)は不明であるが、例えば、前記中間層の投錨性(投錨効果)によると推測される。前記投錨性(投錨効果)とは、前記空隙層と前記中間層との界面付近において、前記中間層が前記空隙層内部に入り組んだ構造をしていることにより、前記界面が強固に固定される現象(効果)をいう。ただし、この理由(メカニズム)は、推測される理由(メカニズム)の一例であり、本発明を限定しない。本発明のシリコーン多孔体と前記粘接着層との反応も、特に限定されないが、例えば、触媒作用による反応でも良い。前記触媒は、例えば、本発明のシリコーン多孔体中に含まれる触媒でも良い。具体的には、例えば、前記結合工程で用いた触媒でも良いし、前記結合工程で用いた光塩基発生触媒が光照射により発生した塩基性物質、前記結合工程で用いた光酸発生触媒が光照射により発生した酸性物質等でも良い。また、本発明のシリコーン多孔体と前記粘接着層との反応は、例えば、新たな化学結合が生成される反応(例えば架橋反応)でも良い。前記反応の温度は、例えば40~80℃、50~70℃、55~65℃である。前記反応の時間は、例えば5~30hr、7~25hr、または10~20hrである。また、この中間層形成工程が、本発明のシリコーン多孔体の強度を向上させる前記強度向上工程(エージング工程)を兼ねていても良い。 Furthermore, the silicone porous body of the present invention may be reacted with the adhesive layer to form an intermediate layer disposed between the silicone porous body of the present invention and the adhesive layer (intermediate layer). Forming step). By the intermediate layer, for example, the silicone porous body of the present invention and the adhesive layer are difficult to peel off. The reason (mechanism) is unknown, but is presumed to be due to, for example, the throwing property (throwing effect) of the intermediate layer. The anchoring property (an anchoring effect) is that the interface is firmly fixed in the vicinity of the interface between the void layer and the intermediate layer because the intermediate layer is embedded in the void layer. A phenomenon (effect). However, this reason (mechanism) is an example of a presumed reason (mechanism), and does not limit the present invention. The reaction between the silicone porous body of the present invention and the adhesive layer is not particularly limited, but may be a reaction by catalytic action, for example. The catalyst may be, for example, a catalyst contained in the porous silicone body of the present invention. Specifically, for example, the catalyst used in the coupling step may be used, the photobase generation catalyst used in the coupling step is a basic substance generated by light irradiation, and the photoacid generation catalyst used in the coupling step is light. An acidic substance generated by irradiation may be used. The reaction between the porous silicone body of the present invention and the adhesive layer may be, for example, a reaction in which a new chemical bond is generated (for example, a crosslinking reaction). The reaction temperature is, for example, 40 to 80 ° C., 50 to 70 ° C., 55 to 65 ° C. The reaction time is, for example, 5 to 30 hours, 7 to 25 hours, or 10 to 20 hours. Moreover, this intermediate | middle layer formation process may serve as the said intensity | strength improvement process (aging process) which improves the intensity | strength of the silicone porous body of this invention.
 このようにして得られる本発明のシリコーン多孔体は、例えば、さらに、他のフィルム(層)と積層して、前記多孔質構造を含む積層構造体としてもよい。この場合、前記積層構造体において、各構成要素は、例えば、粘着剤または接着剤を介して積層させてもよい。 The thus obtained porous silicone body of the present invention may be further laminated with another film (layer) to form a laminated structure including the porous structure. In this case, in the laminated structure, each component may be laminated via, for example, a pressure-sensitive adhesive or an adhesive.
 前記各構成要素の積層は、例えば、効率的であることから、長尺フィルムを用いた連続処理(いわゆるRoll to Roll等)により積層を行ってもよく、基材が成形物・素子等の場合はバッチ処理を行ったものを積層してもよい。 For example, since the lamination of each component is efficient, the lamination may be performed by continuous processing using a long film (so-called Roll to Roll, etc.). May be laminated with batch processing.
 以下に、前記本発明の塗料を用いて、基材上に前記シリコーン多孔体を形成する方法について、図1~3を用いて例をあげて説明する。図2については、前記シリコーン多孔体を製膜した後に、保護フィルムを貼合して巻き取る工程を示しているが、別の機能性フィルムに積層を行う場合は、上記の手法を用いてもよいし、別の機能性フィルムを塗工、乾燥した後に、上記成膜を行った前記シリコーン多孔体を、巻き取り直前に貼り合せることも可能である。なお、図示した製膜方式は、あくまで一例であり、これらに限定されない。 Hereinafter, a method for forming the silicone porous body on a substrate using the paint of the present invention will be described with reference to FIGS. About FIG. 2, although forming the said silicone porous body and showing the process of bonding and winding up a protective film, when laminating | stacking on another functional film, even if it uses said method Alternatively, after coating and drying another functional film, the silicone porous body on which the film has been formed can be bonded immediately before winding. The illustrated film forming method is merely an example, and the present invention is not limited thereto.
 図1の断面図に、前記基材上に前記シリコーン多孔体を形成する方法における工程の一例を、模式的に示す。図1において、前記シリコーン多孔体の形成方法は、基材10上に、前記本発明の塗料20’’を塗工する塗工工程(1)、塗料20’’を乾燥させて、前記シリコーン多孔体の前駆層である塗工膜20’を形成する塗工膜形成工程(乾燥工程)(2)、および、塗工膜20’に化学処理(例えば、架橋処理)をして、シリコーン多孔体20を形成する化学処理工程(例えば、架橋処理工程)(3)を含む。このようにして、図示のとおり、基材10上にシリコーン多孔体20を形成できる。なお、前記シリコーン多孔体の形成方法は、前記工程(1)~(3)以外の工程を、適宜含んでいても良いし、含んでいなくても良い。 FIG. 1 is a cross-sectional view schematically showing an example of steps in the method for forming the silicone porous body on the substrate. In FIG. 1, the method for forming the silicone porous body includes a coating step (1) of applying the coating material 20 ″ of the present invention on the substrate 10, and drying the coating material 20 ″ to form the silicone porous material. The coating film forming process (drying process) (2) for forming the coating film 20 ′, which is a precursor layer of the body, and the coating film 20 ′ are subjected to chemical treatment (for example, crosslinking treatment) to form a porous silicone body 20 includes a chemical treatment step (for example, a crosslinking treatment step) (3). In this way, the porous silicone body 20 can be formed on the substrate 10 as shown. The method for forming a porous silicone body may or may not include steps other than the steps (1) to (3) as appropriate.
 前記塗工工程(1)において、塗料20’’の塗工方法は特に限定されず、一般的な塗工方法を採用できる。前記塗工方法としては、例えば、スロットダイ法、リバースグラビアコート法、マイクログラビア法(マイクログラビアコート法)、ディップ法(ディップコート法)、スピンコート法、刷毛塗り法、ロールコート法、フレキソ印刷法、ワイヤーバーコート法、スプレーコート法、エクストルージョンコート法、カーテンコート法、リバースコート法等が挙げられる。これらの中で、生産性、塗膜の平滑性等の観点から、エクストルージョンコート法、カーテンコート法、ロールコート法、マイクログラビアコート法等が好ましい。塗料20’’の塗工量は、特に限定されず、例えば、多孔質構造(シリコーン多孔体)20の厚みが適切になるように、適宜設定可能である。多孔質構造(シリコーン多孔体)20の厚みは、特に限定されず、例えば、前述の通りである。 In the coating step (1), the coating method of the paint 20 ″ is not particularly limited, and a general coating method can be adopted. Examples of the coating method include a slot die method, a reverse gravure coating method, a micro gravure method (micro gravure coating method), a dip method (dip coating method), a spin coating method, a brush coating method, a roll coating method, and flexographic printing. Method, wire bar coating method, spray coating method, extrusion coating method, curtain coating method, reverse coating method and the like. Among these, the extrusion coating method, the curtain coating method, the roll coating method, the micro gravure coating method and the like are preferable from the viewpoints of productivity, coating film smoothness, and the like. The coating amount of the coating material 20 ″ is not particularly limited, and can be appropriately set so that, for example, the thickness of the porous structure (silicone porous body) 20 is appropriate. The thickness of the porous structure (silicone porous body) 20 is not particularly limited, and is as described above, for example.
 前記乾燥工程(2)において、塗料20’’を乾燥し(すなわち、塗料20’’に含まれる分散媒を除去し)、塗工膜(前駆層)20’を形成する。乾燥処理の条件は、特に限定されず、前述の通りである。 In the drying step (2), the coating material 20 ″ is dried (that is, the dispersion medium contained in the coating material 20 ″ is removed) to form a coating film (precursor layer) 20 ′. The conditions for the drying treatment are not particularly limited and are as described above.
 さらに、前記化学処理工程(3)において、塗工前に添加した前記触媒(例えば、光活性触媒またはKOH等の熱活性触媒)を含む塗工膜20’に対し、光照射または加熱し、塗工膜(前駆体)20’中の前記粉砕物同士を化学的に結合させて(例えば、架橋させて)、シリコーン多孔体20を形成する。前記化学処理工程(3)における光照射または加熱条件は、特に限定されず、前述の通りである。 Further, in the chemical treatment step (3), the coating film 20 ′ containing the catalyst (for example, a photoactive catalyst or a thermally active catalyst such as KOH) added before coating is irradiated with light or heated to be applied. The pulverized product in the film (precursor) 20 ′ is chemically bonded (for example, crosslinked) to form the porous silicone body 20. The light irradiation or heating conditions in the chemical treatment step (3) are not particularly limited and are as described above.
 つぎに、図2に、スロットダイ法の塗工装置およびそれを用いた前記シリコーン多孔体の形成方法の一例を模式的に示す。なお、図2は、断面図であるが、見易さのため、ハッチを省略している。 Next, FIG. 2 schematically shows an example of a coating apparatus using the slot die method and a method for forming the porous silicone material using the same. Although FIG. 2 is a cross-sectional view, hatching is omitted for easy viewing.
 図示のとおり、この装置を用いた方法における各工程は、基材10を、ローラによって一方向に搬送しながら行う。搬送速度は、特に限定されず、例えば、1~100m/分、3~50m/分、5~30m/分である。 As shown in the figure, each step in the method using this apparatus is performed while the substrate 10 is conveyed in one direction by a roller. The conveyance speed is not particularly limited, and is, for example, 1 to 100 m / min, 3 to 50 m / min, or 5 to 30 m / min.
 まず、送り出しローラ101から基材10を繰り出して搬送しながら、塗工ロール102において、基材に本発明の塗料20’’を塗工する塗工工程(1)を行い、続いて、オーブンゾーン110内で乾燥工程(2)に移行する。図2の塗工装置では、塗工工程(1)の後、乾燥工程(2)に先立ち、予備乾燥工程を行う。予備乾燥工程は、加熱をせずに、室温で行うことができる。乾燥工程(2)においては、加熱手段111を用いる。加熱手段111としては、前述のとおり、熱風器、加熱ロール、遠赤外線ヒーター等を適宜用いることができる。また、例えば、乾燥工程(2)を複数の工程に分け、後の乾燥工程になるほど乾燥温度を高くしても良い。 First, a coating process (1) is performed in which the coating roll 102 is coated with the coating material 20 ″ of the present invention on the coating roll 102 while the substrate 10 is fed out and conveyed from the feed roller 101, and then the oven zone. In 110, the process proceeds to the drying step (2). In the coating apparatus of FIG. 2, a preliminary drying process is performed after a coating process (1) and prior to a drying process (2). The preliminary drying step can be performed at room temperature without heating. In the drying step (2), the heating means 111 is used. As the heating means 111, as described above, a hot air fan, a heating roll, a far infrared heater, or the like can be used as appropriate. Further, for example, the drying step (2) may be divided into a plurality of steps, and the drying temperature may be increased as the subsequent drying step is performed.
 乾燥工程(2)の後に、化学処理ゾーン120内で化学処理工程(3)を行う。化学処理工程(3)においては、例えば、乾燥後の塗工膜20’が光活性触媒を含む場合、基材10の上下に配置したランプ(光照射手段)121で光照射する。または、例えば、乾燥後の塗工膜20’が熱活性触媒を含む場合、ランプ(光照射装置)121に代えて熱風器(加熱手段)を用い、基材10の上下に配置した熱風器121で基材10を加熱する。この架橋処理により、塗工膜20’中の前記粉砕物同士の化学的結合が起こり、シリコーン多孔体20が硬化・強化される。そして、化学処理工程(3)の後、基材10上にシリコーン多孔体20が形成された積層体を、巻き取りロール105により巻き取る。なお、図2では、前記積層体の多孔質構造20を、ロール106から繰り出される保護シートで被覆して保護している。ここで、前記保護シートに代えて、長尺フィルムから形成された他の層を多孔質構造20上に積層させても良い。 After the drying step (2), the chemical treatment step (3) is performed in the chemical treatment zone 120. In the chemical treatment step (3), for example, when the dried coating film 20 ′ includes a photoactive catalyst, light irradiation is performed by lamps (light irradiation means) 121 disposed above and below the base material 10. Alternatively, for example, when the coating film 20 ′ after drying contains a thermally active catalyst, a hot air fan 121 disposed above and below the substrate 10 using a hot air fan (heating means) instead of the lamp (light irradiation device) 121. To heat the substrate 10. By this crosslinking treatment, the pulverized material in the coating film 20 ′ is chemically bonded to each other, and the porous silicone body 20 is cured and strengthened. Then, after the chemical treatment step (3), the laminated body in which the porous silicone body 20 is formed on the substrate 10 is wound up by the winding roll 105. In FIG. 2, the porous structure 20 of the laminate is covered and protected with a protective sheet fed from a roll 106. Here, instead of the protective sheet, another layer formed of a long film may be laminated on the porous structure 20.
 図3に、マイクログラビア法(マイクログラビアコート法)の塗工装置およびそれを用いた前記多孔質構造の形成方法の一例を模式的に示す。なお、同図は、断面図であるが、見易さのため、ハッチを省略している。 FIG. 3 schematically shows an example of a micro gravure method (micro gravure coating method) coating apparatus and a method for forming the porous structure using the same. In addition, although the figure is sectional drawing, the hatch is abbreviate | omitted for legibility.
 図示のとおり、この装置を用いた方法における各工程は、図2と同様、基材10を、ローラによって一方向に搬送しながら行う。搬送速度は、特に限定されず、例えば、1~100m/分、3~50m/分、5~30m/分である。 As shown in the figure, each step in the method using this apparatus is performed while the substrate 10 is conveyed in one direction by a roller, as in FIG. The conveyance speed is not particularly limited, and is, for example, 1 to 100 m / min, 3 to 50 m / min, or 5 to 30 m / min.
 まず、送り出しローラ201から基材10を繰り出して搬送しながら、基材10に本発明の塗料20’’を塗工する塗工工程(1)を行う。塗料20’’の塗工は、図示のとおり、液溜め202、ドクター(ドクターナイフ)203およびマイクログラビア204を用いて行う。具体的には、液溜め202に貯留されている塗料20’’を、マイクログラビア204表面に付着させ、さらに、ドクター203で所定の厚さに制御しながら、マイクログラビア204で基材10表面に塗工する。なお、マイクログラビア204は、例示であり、これに限定されるものではなく、他の任意の塗工手段を用いても良い。 First, a coating process (1) for coating the base material 10 with the coating material 20 ″ of the present invention is performed while the base material 10 is fed out and conveyed from the feed roller 201. The coating material 20 ″ is applied using a liquid reservoir 202, a doctor (doctor knife) 203, and a micro gravure 204 as shown in the figure. Specifically, the coating material 20 ″ stored in the liquid reservoir 202 is attached to the surface of the microgravure 204, and further controlled to a predetermined thickness by the doctor 203 while being applied to the surface of the substrate 10 by the microgravure 204. Apply. The microgravure 204 is merely an example, and the present invention is not limited to this, and any other coating means may be used.
 つぎに、乾燥工程(2)を行う。具体的には、図示のとおり、オーブンゾーン210中に、塗料20’’が塗工された基材10を搬送し、オーブンゾーン210内の加熱手段211により加熱して乾燥する。加熱手段211は、例えば、図2と同様でも良い。また、例えば、オーブンゾーン210を複数の区分に分けることにより、乾燥工程(2)を複数の工程に分け、後の乾燥工程になるほど乾燥温度を高くしても良い。乾燥工程(2)の後に、化学処理ゾーン220内で、化学処理工程(3)を行う。化学処理工程(3)においては、例えば、乾燥後の塗工膜20’が光活性触媒を含む場合、基材10の上下に配置したランプ(光照射手段)221で光照射する。または、例えば、乾燥後の塗工膜20’が熱活性触媒を含む場合、ランプ(光照射装置)221に代えて熱風器(加熱手段)を用い、基材10の下方に配置した熱風器(加熱手段)221で、基材10を加熱する。この架橋処理により、塗工膜20’中の前記粉砕物同士の化学的結合が起こり、シリコーン多孔体20が形成される。 Next, a drying step (2) is performed. Specifically, as shown in the drawing, the base material 10 coated with the coating material 20 ″ is transported into the oven zone 210, heated by the heating means 211 in the oven zone 210, and dried. The heating means 211 may be the same as that shown in FIG. Further, for example, by dividing the oven zone 210 into a plurality of sections, the drying step (2) may be divided into a plurality of steps, and the drying temperature may be increased as the subsequent drying step is performed. After the drying step (2), the chemical treatment step (3) is performed in the chemical treatment zone 220. In the chemical treatment step (3), for example, when the dried coating film 20 ′ includes a photoactive catalyst, light irradiation is performed by lamps (light irradiation means) 221 disposed above and below the substrate 10. Alternatively, for example, when the coating film 20 ′ after drying contains a thermally active catalyst, a hot air fan (heating means) is used instead of the lamp (light irradiation device) 221 and is arranged below the base material 10 ( The substrate 10 is heated by the heating means 221. By this crosslinking treatment, the pulverized material in the coating film 20 ′ is chemically bonded to each other, and the porous silicone body 20 is formed.
 そして、化学処理工程(3)の後、基材10上にシリコーン多孔体20が形成された積層体を、巻き取りロール251により巻き取る。その後に、前記積層体上に、例えば、他の層を積層させてもよい。また、前記積層体を巻き取りロール251により巻き取る前に、前記積層体に、例えば、他の層を積層させてもよい。 Then, after the chemical treatment step (3), the laminated body in which the silicone porous body 20 is formed on the substrate 10 is wound up by the winding roll 251. Thereafter, for example, another layer may be laminated on the laminate. Further, before the laminate is taken up by the take-up roll 251, for example, another layer may be laminated on the laminate.
 なお、図4~6に、本発明のシリコーン多孔体を形成する方法における連続処理工程の別の一例を示す。図4の断面図に示すとおり、この方法は、シリコーン多孔体20を形成する化学処理工程(例えば、架橋処理工程)(3)の後に、強度向上工程(エージング工程)(4)を行うこと以外は、図1~3に示す方法と同じである。図4に示すとおり、強度向上工程(エージング工程)(4)においては、シリコーン多孔体20の強度を向上させ、強度が向上したシリコーン多孔体21とする。強度向上工程(エージング工程)(4)は、特に限定されないが、例えば前述のとおりである。 4 to 6 show another example of the continuous treatment process in the method for forming a porous silicone body of the present invention. As shown in the cross-sectional view of FIG. 4, this method is performed except that a chemical treatment step (for example, a crosslinking treatment step) (3) for forming the silicone porous body 20 is followed by a strength improving step (aging step) (4). Is the same as the method shown in FIGS. As shown in FIG. 4, in the strength improving step (aging step) (4), the strength of the silicone porous body 20 is improved to obtain a silicone porous body 21 with improved strength. The strength improving step (aging step) (4) is not particularly limited, and is as described above, for example.
 図5は、スロットダイ法の塗工装置およびそれを用いた前記シリコーン多孔体の形成方法の、図2と別の一例を示す模式図である。図示のとおり、この塗工装置は、化学処理工程(3)を行う化学処理ゾーン120の直後に、強度向上工程(エージング工程)(4)を行う強度向上ゾーン(エージングゾーン)130を有すること以外は、図2の装置と同じである。すなわち、化学処理工程(3)の後に、強度向上ゾーン(エージングゾーン)130内で強度向上工程(エージング工程)(4)を行い、シリコーン多孔体20の樹脂フィルム10に対する粘着ピール強度を向上させて、粘着ピール強度が向上したシリコーン多孔体21を形成する。強度向上工程(エージング工程)(4)は、例えば、基材10の上下に配置した熱風器(加熱手段)131を用いて、前述のようにシリコーン多孔体20を加熱することにより行っても良い。加熱温度、時間等は、特に限定されないが、例えば、前述のとおりである。その後、図3と同様に、基材10上にシリコーン多孔体21が形成された積層フィルムを、巻き取りロール105により巻き取る。 FIG. 5 is a schematic view showing another example of the coating apparatus of the slot die method and the method of forming the silicone porous body using the slot die method. As shown in the drawing, this coating apparatus has a strength improving zone (aging zone) 130 for performing a strength improving step (aging step) (4) immediately after the chemical processing zone 120 for performing the chemical processing step (3). Is the same as the apparatus of FIG. That is, after the chemical treatment step (3), the strength improvement step (aging step) (4) is performed in the strength improvement zone (aging zone) 130 to improve the adhesive peel strength of the silicone porous body 20 to the resin film 10. The porous silicone body 21 with improved adhesive peel strength is formed. The strength improving step (aging step) (4) may be performed, for example, by heating the porous silicone body 20 as described above using the hot air fans (heating means) 131 disposed above and below the base material 10. . Although heating temperature, time, etc. are not specifically limited, For example, it is as above-mentioned. Thereafter, similarly to FIG. 3, the laminated film in which the porous silicon body 21 is formed on the substrate 10 is wound up by the winding roll 105.
 図6は、マイクログラビア法(マイクログラビアコート法)の塗工装置およびそれを用いた前記多孔質構造の形成方法の、図3と別の一例を示す模式図である。図示のとおり、この塗工装置は、化学処理工程(3)を行う化学処理ゾーン220の直後に、強度向上工程(エージング工程)(4)を行う強度向上ゾーン(エージングゾーン)230を有すること以外は、図3の装置と同じである。すなわち、化学処理工程(3)の後に、強度向上ゾーン(エージングゾーン)230内で強度向上工程(エージング工程)(4)を行い、シリコーン多孔体20の樹脂フィルム10に対する粘着ピール強度を向上させて、粘着ピール強度が向上したシリコーン多孔体21を形成する。強度向上工程(エージング工程)(4)は、例えば、基材10の上下に配置した熱風器(加熱手段)231を用いて、前述のようにシリコーン多孔体20を加熱することにより行っても良い。加熱温度、時間等は、特に限定されないが、例えば、前述のとおりである。その後、図3と同様に、基材10上にシリコーン多孔体21が形成された積層フィルムを、巻き取りロール251により巻き取る。 FIG. 6 is a schematic view showing another example of the coating apparatus of the micro gravure method (micro gravure coating method) and the method for forming the porous structure using the same, as shown in FIG. As shown in the drawing, this coating apparatus has a strength improving zone (aging zone) 230 for performing a strength improving step (aging step) (4) immediately after the chemical processing zone 220 for performing chemical processing step (3). Is the same as the apparatus of FIG. That is, after the chemical treatment step (3), the strength improvement step (aging step) (4) is performed in the strength improvement zone (aging zone) 230 to improve the adhesive peel strength of the porous silicone body 20 to the resin film 10. The porous silicone body 21 with improved adhesive peel strength is formed. The strength improving step (aging step) (4) may be performed, for example, by heating the porous silicone body 20 as described above using the hot air blowers (heating means) 231 disposed above and below the base material 10. . Although heating temperature, time, etc. are not specifically limited, For example, it is as above-mentioned. Thereafter, similarly to FIG. 3, the laminated film in which the silicone porous body 21 is formed on the substrate 10 is wound up by the winding roll 251.
 また、図7~9に、本発明のシリコーン多孔体を形成する方法における連続処理工程の別の一例を示す。図7の断面図に示すとおり、この方法は、シリコーン多孔体20を形成する化学処理工程(例えば、架橋処理工程)(3)の後に、シリコーン多孔体20上に粘接着層30を塗工する粘接着層塗工工程(粘接着層形成工程)(4)、および、シリコーン多孔体20を粘接着層30と反応させて中間層22を形成する中間層形成工程(5)を含む。これら以外は、図7~9の方法は、図4~6に示す方法と同じである。また、図7では、中間層形成工程(5)が、シリコーン多孔体20の強度を向上させる工程(強度向上工程)を兼ねており、中間層形成工程(5)の後に、シリコーン多孔体20が、強度の向上したシリコーン多孔体21に変化している。ただし、本発明はこれに限定されず、例えば、中間層形成工程(5)の後にシリコーン多孔体20が変化していなくても良い。粘接着層塗工工程(粘接着層形成工程)(4)および中間層形成工程(5)は、特に限定されないが、例えば前述のとおりである。 7 to 9 show another example of the continuous treatment process in the method of forming the porous silicone body of the present invention. As shown in the sectional view of FIG. 7, this method applies the adhesive layer 30 on the silicone porous body 20 after the chemical treatment step (for example, the crosslinking treatment step) (3) for forming the silicone porous body 20. An adhesive layer coating step (adhesive layer forming step) (4), and an intermediate layer forming step (5) in which the porous silicone body 20 is reacted with the adhesive layer 30 to form the intermediate layer 22. Including. Except for these, the method of FIGS. 7 to 9 is the same as the method shown in FIGS. In FIG. 7, the intermediate layer forming step (5) also serves as a step of improving the strength of the silicone porous body 20 (strength improving step). After the intermediate layer forming step (5), the silicone porous body 20 The porous silicon body 21 is improved in strength. However, this invention is not limited to this, For example, the silicone porous body 20 does not need to change after an intermediate | middle layer formation process (5). The adhesive layer coating step (adhesive layer forming step) (4) and the intermediate layer forming step (5) are not particularly limited, and are as described above, for example.
 図8は、スロットダイ法の塗工装置およびそれを用いた前記シリコーン多孔体の形成方法の、さらに別の一例を示す模式図である。図示のとおり、この塗工装置は、化学処理工程(3)を行う化学処理ゾーン120の直後に、粘接着層塗工工程(4)を行う粘接着層塗工ゾーン130aを有すること以外は、図5の装置と同じである。同図において、粘接着層塗工ゾーン130aの直後に配置された中間層形成ゾーン(エージングゾーン)130は、基材10の上下に配置した熱風器(加熱手段)131により、図5の強度向上ゾーン(エージングゾーン)130と同様の加熱処理を行うことができる。すなわち、図8の装置では、化学処理工程(3)の後に、粘接着層塗工ゾーン130a内で、粘接着層塗工手段131aにより、シリコーン多孔体20上に粘着剤または接着剤を塗布(塗工)し、粘接着層30を形成する粘接着層塗工工程(粘接着層形成工程)(4)を行う。また、前述のとおり、粘着剤または接着剤の塗布(塗工)に代えて、粘接着層30を有する粘着テープ等の貼合(貼付)でも良い。さらに、中間層形成ゾーン(エージングゾーン)130内で中間層形成工程(エージング工程)(5)を行い、シリコーン多孔体20と粘接着層30を反応させて中間層22を形成する。また、前述のとおり、この工程で、シリコーン多孔体20は、強度が向上したシリコーン多孔体21となる。熱風器(加熱手段)131による加熱温度、時間等は、特に限定されないが、例えば、前述のとおりである。 FIG. 8 is a schematic view showing still another example of the coating apparatus of the slot die method and the method of forming the silicone porous body using the same. As shown in the figure, this coating apparatus has an adhesive layer coating zone 130a for performing the adhesive layer coating step (4) immediately after the chemical processing zone 120 for performing the chemical processing step (3). Is the same as the apparatus of FIG. In the same figure, the intermediate layer forming zone (aging zone) 130 disposed immediately after the adhesive layer coating zone 130a is obtained by the hot air blower (heating means) 131 disposed above and below the base material 10, and the strength of FIG. The same heat treatment as in the improvement zone (aging zone) 130 can be performed. That is, in the apparatus of FIG. 8, after the chemical treatment step (3), the adhesive or adhesive is applied on the silicone porous body 20 by the adhesive layer coating means 131a in the adhesive layer coating zone 130a. An adhesive layer coating process (adhesive layer forming process) (4) for applying (coating) and forming the adhesive layer 30 is performed. Further, as described above, instead of application (coating) of the pressure-sensitive adhesive or adhesive, bonding (sticking) such as a pressure-sensitive adhesive tape having the adhesive layer 30 may be used. Further, an intermediate layer forming step (aging step) (5) is performed in the intermediate layer forming zone (aging zone) 130 to react the silicone porous body 20 and the adhesive layer 30 to form the intermediate layer 22. Further, as described above, in this step, the silicone porous body 20 becomes the silicone porous body 21 with improved strength. Although the heating temperature, time, etc. by the hot air fan (heating means) 131 are not specifically limited, For example, it is as above-mentioned.
 図9は、マイクログラビア法(マイクログラビアコート法)の塗工装置およびそれを用いた前記多孔質構造の形成方法の、さらに別の一例を示す模式図である。図示のとおり、この塗工装置は、化学処理工程(3)を行う化学処理ゾーン220の直後に、粘接着層塗工工程(4)を行う粘接着層塗工ゾーン230aを有すること以外は、図6の装置と同じである。同図において、粘接着層塗工ゾーン230aの直後に配置された中間層形成ゾーン(エージングゾーン)230は、基材10の上下に配置した熱風器(加熱手段)231により、図6の強度向上ゾーン(エージングゾーン)230と同様の加熱処理を行うことができる。すなわち、図9の装置では、化学処理工程(3)の後に、粘接着層塗工ゾーン230a内で、粘接着層塗工手段231aにより、シリコーン多孔体20上に粘着剤または接着剤を塗布(塗工)し、粘接着層30を形成する粘接着層塗工工程(粘接着層形成工程)(4)を行う。また、前述のとおり、粘着剤または接着剤の塗布(塗工)に代えて、粘接着層30を有する粘着テープ等の貼合(貼付)でも良い。さらに、中間層形成ゾーン(エージングゾーン)230内で中間層形成工程(エージング工程)(5)を行い、シリコーン多孔体20と粘接着層30を反応させて中間層22を形成する。また、前述のとおり、この工程で、シリコーン多孔体20は、強度が向上したシリコーン多孔体21となる。熱風器(加熱手段)231による加熱温度、時間等は、特に限定されないが、例えば、前述のとおりである。 FIG. 9 is a schematic diagram showing still another example of a micro gravure method (micro gravure coating method) coating apparatus and a method for forming the porous structure using the same. As shown in the figure, this coating apparatus has an adhesive layer coating zone 230a for performing the adhesive layer coating step (4) immediately after the chemical processing zone 220 for performing the chemical processing step (3). Is the same as the apparatus of FIG. In the same figure, the intermediate layer forming zone (aging zone) 230 disposed immediately after the adhesive layer coating zone 230a is obtained from the strength shown in FIG. The same heat treatment as that of the improvement zone (aging zone) 230 can be performed. That is, in the apparatus of FIG. 9, after the chemical treatment step (3), the adhesive or adhesive is applied on the silicone porous body 20 by the adhesive layer coating means 231a in the adhesive layer coating zone 230a. An adhesive layer coating process (adhesive layer forming process) (4) for applying (coating) and forming the adhesive layer 30 is performed. Further, as described above, instead of application (coating) of the pressure-sensitive adhesive or adhesive, bonding (sticking) such as a pressure-sensitive adhesive tape having the adhesive layer 30 may be used. Further, an intermediate layer forming step (aging step) (5) is performed in the intermediate layer forming zone (aging zone) 230, and the silicone porous body 20 and the adhesive layer 30 are reacted to form the intermediate layer 22. Further, as described above, in this step, the silicone porous body 20 becomes the silicone porous body 21 with improved strength. The heating temperature, time, and the like by the hot air fan (heating means) 231 are not particularly limited, and are as described above, for example.
[3.シリコーン多孔体]
 本発明のシリコーン多孔体は、後述のように、例えば、膜強度を示すベンコット(登録商標)による耐擦傷性が、60~100%であり、可撓性を示すMIT試験による耐折回数が、100回以上であることを特徴とするが、これには限定されない。
[3. Silicone porous body]
As will be described later, the porous silicon body of the present invention has, for example, scratch resistance by Bencot (registered trademark) indicating film strength of 60 to 100%, and the number of foldings by the MIT test indicating flexibility is as follows. Although it is characterized by being 100 times or more, it is not limited to this.
 本発明のシリコーン多孔体は、前記ゲル状ケイ素化合物の粉砕物を使用していることから、前記ゲル状ケイ素化合物の三次元構造が破壊され、前記ゲル状ケイ素化合物とは異なる新たな三次元構造が形成されている。このように、本発明のシリコーン多孔体は、前記ゲル状ケイ素化合物から形成される層では得られない新たな孔構造(新たな空隙構造)が形成された層となったことで、空隙率が高いナノスケールのシリコーン多孔体を形成することができる。また、本発明のシリコーン多孔体は、例えば、ゲル状ケイ素化合物のシロキサン結合官能基数を調整しつつ、前記粉砕物同士を化学的に結合する。また、前記シリコーン多孔体の前駆体として新たな三次元構造が形成された後に、結合工程で化学結合(例えば、架橋)されるため、本発明のシリコーン多孔体は、空隙を有する構造であるが、十分な強度と可撓性とを維持できる。したがって、本発明によれば、容易且つ簡便に、シリコーン多孔体を、様々な対象物に付与することができる。具体的には、本発明のシリコーン多孔体は、例えば、空気層に代えて、断熱材、吸音材、再生医療用足場材、結露防止材、光学部材等として使用できる。 Since the porous silicone of the present invention uses the pulverized product of the gel silicon compound, the three-dimensional structure of the gel silicon compound is destroyed, and a new three-dimensional structure different from the gel silicon compound is obtained. Is formed. Thus, the silicone porous body of the present invention is a layer in which a new pore structure (new void structure) that cannot be obtained by the layer formed from the gel-like silicon compound is formed, so that the porosity is reduced. High nanoscale silicone porous bodies can be formed. Moreover, the silicone porous body of the present invention chemically bonds the pulverized products to each other while adjusting the number of siloxane bond functional groups of the gel silicon compound, for example. In addition, since a new three-dimensional structure is formed as a precursor of the silicone porous body and then chemically bonded (for example, crosslinked) in the bonding step, the silicone porous body of the present invention has a structure having voids. Sufficient strength and flexibility can be maintained. Therefore, according to this invention, a silicone porous body can be provided to various objects easily and simply. Specifically, the silicone porous body of the present invention can be used as, for example, a heat insulating material, a sound absorbing material, a scaffold for regenerative medicine, a dew condensation preventing material, an optical member, etc., instead of an air layer.
 本発明のシリコーン多孔体は、例えば、前述のようにゲル状ケイ素化合物の粉砕物を含み、前記粉砕物同士が化学的に結合している。本発明のシリコーン多孔体において、前記粉砕物同士の化学的な結合(化学結合)の形態は、特に制限されず、前記化学結合の具体例は、例えば、架橋結合等が挙げられる。なお、前記粉砕物同士を化学的に結合させる方法は、例えば、前述した前記シリコーン多孔体の製造方法において、詳細を述べたとおりである。 The porous silicone material of the present invention includes, for example, a pulverized product of a gel-like silicon compound as described above, and the pulverized product is chemically bonded to each other. In the silicone porous body of the present invention, the form of chemical bonding (chemical bonding) between the pulverized products is not particularly limited, and specific examples of the chemical bonding include, for example, cross-linking. In addition, the method of chemically bonding the pulverized products is as described in detail in the above-described method for manufacturing a silicone porous body, for example.
 前記架橋結合は、例えば、シロキサン結合である。シロキサン結合は、例えば、以下に示す、T2の結合、T3の結合、T4の結合が例示できる。本発明のシリコーン多孔体がシロキサン結合を有する場合、例えば、いずれか一種の結合を有してもよいし、いずれか二種の結合を有してもよいし、三種全ての結合を有してもよい。前記シロキサン結合のうち、T2およびT3の比率が多いほど、可撓性に富み、ゲル本来の特性を期待できるが、膜強度が脆弱になる。一方で、前記シロキサン結合のうちT4比率が多いと、膜強度を発現しやすいが、空隙サイズが小さくなり、可撓性が脆くなる。このため、例えば、用途に応じて、T2、T3、T4比率を変えることが好ましい。 The cross-linking is, for example, a siloxane bond. Examples of the siloxane bond include T2 bond, T3 bond, and T4 bond shown below. When the silicone porous body of the present invention has a siloxane bond, for example, it may have any one kind of bond, any two kinds of bonds, or all three kinds of bonds. Also good. Among the siloxane bonds, the greater the ratio of T2 and T3, the more flexible and the expected properties of the gel can be expected, but the film strength becomes weaker. On the other hand, when the T4 ratio in the siloxane bond is large, the film strength is easily developed, but the void size becomes small and the flexibility becomes brittle. For this reason, for example, it is preferable to change the ratio of T2, T3, and T4 according to the application.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 本発明のシリコーン多孔体が前記シロキサン結合を有する場合、T2、T3およびT4の割合は、例えば、T2を「1」として相対的に表した場合、T2:T3:T4=1:[1~100]:[0~50]、1:[1~80]:[1~40]、1:[5~60]:[1~30]である。 When the silicone porous body of the present invention has the siloxane bond, the ratio of T2, T3, and T4 is, for example, when T2 is expressed as “1”, and T2: T3: T4 = 1: [1 to 100 ]: [0-50], 1: [1-80]: [1-40], 1: [5-60]: [1-30].
 また、本発明のシリコーン多孔体は、例えば、含まれるケイ素原子がシロキサン結合していることが好ましい。具体例として、前記シリコーン多孔体に含まれる全ケイ素原子のうち、未結合のケイ素原子(つまり、残留シラノール)の割合は、例えば、50%未満、30%以下、15%以下、である。 Moreover, in the silicone porous body of the present invention, for example, the silicon atoms contained are preferably bonded with siloxane bonds. As a specific example, the proportion of unbonded silicon atoms (that is, residual silanol) in the total silicon atoms contained in the porous silicone material is, for example, less than 50%, 30% or less, or 15% or less.
 本発明のシリコーン多孔体は、孔構造を有しており、孔の空隙サイズは、空隙(孔)の長軸の直径および短軸の直径のうち、前記長軸の直径を指すものとする。好ましい空孔サイズは、例えば、5nm~200nmである。前記空隙サイズは、その下限が、例えば、5nm以上、10nm以上、20nm以上であり、その上限が、例えば、1000μm以下、500μm以下、100μm以下であり、その範囲が、例えば、5nm~1000μm、10nm~500μm、20nm~100μmである。空隙サイズは、空隙構造を用いる用途に応じて好ましい空隙サイズが決まるため、例えば、目的に応じて、所望の空隙サイズに調整する必要がある。空隙サイズは、例えば、以下の方法により評価できる。 The silicone porous body of the present invention has a pore structure, and the pore size refers to the diameter of the major axis among the major axis diameter and minor axis diameter of the void (hole). A preferable pore size is, for example, 5 nm to 200 nm. The lower limit of the void size is, for example, 5 nm or more, 10 nm or more, 20 nm or more, and the upper limit thereof is, for example, 1000 μm or less, 500 μm or less, 100 μm or less, and the range thereof is, for example, 5 nm to 1000 μm, 10 nm. ˜500 μm, 20 nm˜100 μm. Since a preferable void size is determined depending on the use of the void structure, it is necessary to adjust the void size to a desired void size according to the purpose, for example. The void size can be evaluated by the following method, for example.
(空隙サイズの評価)
 本発明において、前記空隙サイズは、BET試験法により定量化できる。具体的には、比表面積測定装置(マイクロメリティック社製:ASAP2020)のキャピラリに、サンプル(本発明のシリコーン多孔体)を0.1g投入した後、室温で24時間、減圧乾燥を行って、空隙構造内の気体を脱気する。そして、前記サンプルに窒素ガスを吸着させることで吸着等温線を描き、細孔分布を求める。これによって、空隙サイズが評価できる。
(Evaluation of gap size)
In the present invention, the void size can be quantified by a BET test method. Specifically, 0.1 g of a sample (silicone porous body of the present invention) was put into a capillary of a specific surface area measuring device (Micromeritic: ASAP2020), and then vacuum drying was performed for 24 hours at room temperature. The gas in the void structure is degassed. The adsorption isotherm is drawn by adsorbing nitrogen gas to the sample, and the pore distribution is obtained. Thereby, the gap size can be evaluated.
 本発明のシリコーン多孔体は、例えば、膜強度を示すベンコット(登録商標)による耐擦傷性が、60~100%である。本発明は、例えば、このような膜強度を有することから、各種プロセスでの耐擦傷性に優れる。本発明は、例えば、前記シリコーン多孔体を製膜した後の巻き取りおよび製品フィルムを取り扱う際の生産プロセス内での、耐キズ付き性を有する。また一方で、本発明のシリコーン多孔体は、例えば、空隙率を減らす代わりに、後述する加熱工程での触媒反応を利用して、前記ゲル状ケイ素化合物の粉砕物の粒子サイズ、および前記粉砕物同士が結合したネック部の結合力を上げることができる。これにより、本発明のシリコーン多孔体は、例えば、本来脆弱である空隙構造に、一定レベルの強度を付与することができる。 For example, the silicone porous body of the present invention has a scratch resistance of 60 to 100% by Bencot (registered trademark) indicating film strength. Since the present invention has such a film strength, for example, it is excellent in scratch resistance in various processes. The present invention has, for example, scratch resistance in the production process when winding the product after forming the porous silicone material and handling the product film. On the other hand, the silicone porous body of the present invention uses, for example, a catalytic reaction in the heating step described later, instead of reducing the porosity, and the particle size of the pulverized product of the gel silicon compound, and the pulverized product. It is possible to increase the bonding strength of the neck portions that are bonded to each other. Thereby, the silicone porous body of the present invention can give a certain level of strength to, for example, a void structure that is inherently brittle.
 前記耐擦傷性は、その下限が、例えば、60%以上、80%以上、90%以上であり、その上限が、例えば、100%以下、99%以下、98%以下であり、その範囲が、例えば、60~100%、80~99%、90~98%である。 The lower limit of the scratch resistance is, for example, 60% or more, 80% or more, 90% or more, and the upper limit thereof is, for example, 100% or less, 99% or less, 98% or less, and the range is For example, they are 60 to 100%, 80 to 99%, 90 to 98%.
 前記耐擦傷性は、例えば、以下のような方法により測定できる。 The scratch resistance can be measured by, for example, the following method.
(耐擦傷性の評価)
(1) アクリルフィルムに塗工・成膜をした空隙層(本発明のシリコーン多孔体)を、直径15mm程度の円状にサンプリングする。
(2) 次に、前記サンプルについて、蛍光X線(島津製作所社製:ZSX PrimusII)でケイ素を同定して、Si塗布量(Si)を測定する。つぎに、前記アクリルフィルム上の前記空隙層について、前述のサンプリングした近傍から、50mm×100mmに前記空隙層をカットし、これをガラス板(厚み3mm)に固定した後、ベンコット(登録商標)摺動試験を行う。摺動条件は、重り100g、10往復とする。
(3) 摺動を終えた前記空隙層から、前記(1)と同様にサンプリングおよび蛍光X測定を行うことで、擦傷試験後のSi残存量(Si)を測定する。耐擦傷性は、ベンコット(登録商標)試験前後のSi残存率(%)で定義し、以下の式で表される。
耐擦傷性(%)=[残存したSi量(Si)/Si塗布量(Si)]×100(%)
(Evaluation of scratch resistance)
(1) A void layer (silicone porous body of the present invention) coated and formed on an acrylic film is sampled in a circular shape having a diameter of about 15 mm.
(2) Next, with respect to the sample, silicon is identified with fluorescent X-rays (manufactured by Shimadzu Corporation: ZSX Primus II), and the Si coating amount (Si 0 ) is measured. Next, with respect to the gap layer on the acrylic film, the gap layer is cut to 50 mm × 100 mm from the vicinity sampled, and fixed to a glass plate (thickness 3 mm). Perform dynamic tests. The sliding condition is a weight of 100 g and 10 reciprocations.
(3) The residual amount of Si (Si 1 ) after the scratch test is measured by sampling and fluorescent X measurement in the same manner as in (1) above from the gap layer after sliding. The scratch resistance is defined by the Si residual ratio (%) before and after the Bencot (registered trademark) test, and is represented by the following formula.
Scratch resistance (%) = [remaining Si amount (Si 1 ) / Si coating amount (Si 0 )] × 100 (%)
 本発明のシリコーン多孔体は、例えば、可撓性を示すMIT試験による耐折回数が、100回以上である。本発明は、例えば、このような可撓性を有することから、例えば、製造時における巻き取りや使用時等における取扱い性に優れる。 The silicone porous body of the present invention has, for example, a folding resistance of 100 times or more according to the MIT test showing flexibility. Since the present invention has such flexibility, for example, it is excellent in handleability during winding or use during production.
 前記耐折回数は、その下限が、例えば、100回以上、500回以上、1000回以上であり、その上限が、特に制限されず、例えば、10000回以下であり、その範囲が、例えば、100~10000回、500~10000回、1000~10000回である。 The lower limit of the folding endurance number is, for example, 100 times or more, 500 times or more, 1000 times or more, and the upper limit is not particularly limited, for example, 10,000 times or less, and the range is, for example, 100 10000 times, 500 times to 10000 times, 1000 times to 10000 times.
 前記可撓性は、例えば、物質の変形のし易さを意味する。前記MIT試験による耐折回数は、例えば、以下のような方法により測定できる。 The flexibility means, for example, ease of deformation of the substance. The folding endurance by the MIT test can be measured by the following method, for example.
(耐折試験の評価)
 前記空隙層(本発明のシリコーン多孔体)を、20mm×80mmの短冊状にカットした後、MIT耐折試験機(テスター産業社製:BE-202)に取り付け、1.0Nの荷重をかける。前記空隙層を抱き込むチャック部は、R2.0mmを使用し、耐折回数を最大10000回行い、前記空隙層が破断した時点の回数を耐折回数とする。
(Evaluation of folding test)
The void layer (silicone porous body of the present invention) is cut into a 20 mm × 80 mm strip and then attached to an MIT folding tester (manufactured by Tester Sangyo Co., Ltd .: BE-202), and a load of 1.0 N is applied. The chuck part that embeds the gap layer uses R 2.0 mm, performs the folding endurance up to 10,000 times, and sets the number of times when the gap layer is broken as the number of folding endurances.
 本発明のシリコーン多孔体において、空隙率を示す膜密度は、特に制限されず、その下限が、例えば、1g/cm以上、10g/cm以上、15g/cm以上であり、その上限が、例えば、50g/cm以下、40g/cm以下、30g/cm以下、2.1g/cm以下であり、その範囲が、例えば、5~50g/cm、10~40g/cm、15~30g/cm、1~2.1g/cmである。 In the porous silicone body of the present invention, the film density showing the porosity is not particularly limited, and the lower limit is, for example, 1 g / cm 3 or more, 10 g / cm 3 or more, 15 g / cm 3 or more, and the upper limit is For example, 50 g / cm 3 or less, 40 g / cm 3 or less, 30 g / cm 3 or less, 2.1 g / cm 3 or less, and the range is, for example, 5 to 50 g / cm 3 or 10 to 40 g / cm 3. 15 to 30 g / cm 3 and 1 to 2.1 g / cm 3 .
 前記膜密度は、例えば、以下のような方法により測定できる。 The film density can be measured by the following method, for example.
(膜密度の評価)
 アクリルフィルムに空隙層(本発明のシリコーン多孔体)を形成した後、X線回折装置(RIGAKU社製:RINT-2000)を用いて全反射領域のX線反射率を測定した。Intensityと2θのフィッティグを行った後に、空隙層・基材の全反射臨界角から空孔率(P%)を算出した。膜密度は以下の式で表すことができる。
    膜密度(%)=100(%)-空孔率(P%)
(Evaluation of film density)
After forming a void layer (silicone porous body of the present invention) on the acrylic film, the X-ray reflectivity of the total reflection region was measured using an X-ray diffractometer (RIGAKU: RINT-2000). After performing Intensity and 2θ fitting, the porosity (P%) was calculated from the total reflection critical angle of the void layer / base material. The film density can be expressed by the following formula.
Film density (%) = 100 (%)-Porosity (P%)
 本発明のシリコーン多孔体は、前述のように孔構造(多孔質構造)を有していればよく、例えば、前記孔構造が連続した連泡構造体であってもよい。前記連泡構造体とは、例えば、前記シリコーン多孔体において、三次元的に、孔構造が連なっていることを意味し、前記孔構造の内部空隙が連続している状態ともいえる。多孔質体が連泡構造を有する場合、これにより、バルク中に占める空隙率を高めることが可能であるが、中空シリカのような独泡粒子を使用する場合は、連泡構造を形成できない。これに対して、本発明のシリコーン多孔体は、シリカゾル粒子(ゾルを形成するゲル状ケイ素化合物の粉砕物)が三次元の樹状構造を有するために、塗工膜(前記ゲル状ケイ素化合物の粉砕物を含むゾルの塗工膜)中で、前記樹状粒子が沈降・堆積することで、容易に連泡構造を形成することが可能である。また、本発明のシリコーン多孔体は、より好ましくは、連泡構造が複数の細孔分布を有するモノリス構造を形成することが好ましい。前記モノリス構造は、例えば、ナノサイズの微細な空隙が存在する構造と、同ナノ空隙が集合した連泡構造として存在する階層構造を指すものとする。前記モノリス構造を形成する場合、例えば、微細な空隙で膜強度を付与しつつ、粗大な連泡空隙で高空隙率を付与し、膜強度と高空隙率とを両立することができる。それらのモノリス構造を形成するには、例えば、まず、前記粉砕物に粉砕する前段階の前記ゲル状ケイ素化合物において、生成する空隙構造の細孔分布を制御することが重要である。また、例えば、前記ゲル状ケイ素化合物を粉砕する際、前記粉砕物の粒度分布を、所望のサイズに制御することで、前記モノリス構造を形成させることができる。 The silicone porous body of the present invention only needs to have a pore structure (porous structure) as described above, and may be, for example, an open cell structure in which the pore structure is continuous. The open cell structure means, for example, that the porous structure of the silicone is three-dimensionally connected with the pore structure, and the internal voids of the pore structure can be said to be continuous. When the porous body has an open cell structure, it is possible to increase the porosity occupied in the bulk. However, when closed cells such as hollow silica are used, the open cell structure cannot be formed. In contrast, the silicone porous body of the present invention has a three-dimensional dendritic structure because the silica sol particles (the pulverized product of the gel-like silicon compound forming the sol) have a coating film (of the gel-like silicon compound). By forming and depositing the dendritic particles in a sol coating film containing a pulverized product, it is possible to easily form an open cell structure. The silicone porous body of the present invention more preferably forms a monolith structure in which the open cell structure has a plurality of pore distributions. The monolith structure refers to, for example, a structure in which nano-sized fine voids exist and a hierarchical structure in which the nano-voids are gathered as an open cell structure. In the case of forming the monolith structure, for example, while providing film strength with fine voids, high porosity can be imparted with coarse open-cell voids, and both film strength and high porosity can be achieved. In order to form these monolithic structures, for example, it is important to first control the pore distribution of the generated void structure in the gel-like silicon compound before pulverization into the pulverized product. For example, when the gel-like silicon compound is pulverized, the monolith structure can be formed by controlling the particle size distribution of the pulverized product to a desired size.
 本発明のシリコーン多孔体において、柔軟性を示す引き裂きクラック発生伸び率は、特に制限されず、その下限が、例えば、0.1%以上、0.5%以上、1%以上であり、その上限が、例えば、3%以下である。前記引き裂きクラック発生伸び率の範囲は、例えば、0.1~3%、0.5~3%、1~3%である。 In the silicone porous body of the present invention, the tear crack generation elongation showing flexibility is not particularly limited, and the lower limit thereof is, for example, 0.1% or more, 0.5% or more, 1% or more, and the upper limit thereof Is, for example, 3% or less. The range of the tear crack occurrence elongation is, for example, 0.1 to 3%, 0.5 to 3%, and 1 to 3%.
 前記引き裂きクラック発生伸び率は、例えば、以下のような方法により測定できる。 The tear crack elongation rate can be measured, for example, by the following method.
(引き裂きクラック発生伸び率の評価)
 アクリルフィルムに空隙層(本発明のシリコーン多孔体)を形成した後に、5mm×140mmの短冊状にサンプリングを行う。次に、前記サンプルを引っ張り試験機(島津製作所社製:AG-Xplus)に、チャック間距離が100mmになるようにチャッキングした後に、0.1mm/sの引張速度で引っ張り試験を行う。試験中の前記サンプルを、注意深く観察し、前記サンプルの一部にクラックが入った時点で試験を終了し、クラックが入った時点の伸び率(%)を、引き裂きクラック発生伸び率とする。
(Evaluation of tear crack growth rate)
After forming a void layer (silicone porous body of the present invention) on an acrylic film, sampling is performed in a strip shape of 5 mm × 140 mm. Next, the sample is chucked on a tensile tester (manufactured by Shimadzu Corporation: AG-Xplus) so that the distance between chucks is 100 mm, and then a tensile test is performed at a tensile speed of 0.1 mm / s. The sample under test is carefully observed, the test is terminated when a part of the sample has cracks, and the elongation (%) at the point of time when the cracks are taken is the tear crack generation elongation.
 本発明のシリコーン多孔体において、透明性を示すヘイズは、特に制限されず、その下限が、例えば、0.1%以上、0.2%以上、0.3%以上であり、その上限が、例えば、10%以下、5%以下、3%以下であり、その範囲が、例えば、0.1~10%、0.2~5%、0.3~3%である。 In the silicone porous body of the present invention, the haze showing transparency is not particularly limited, and the lower limit thereof is, for example, 0.1% or more, 0.2% or more, 0.3% or more, and the upper limit is For example, it is 10% or less, 5% or less, 3% or less, and the range is, for example, 0.1 to 10%, 0.2 to 5%, or 0.3 to 3%.
 前記ヘイズは、例えば、以下のような方法により測定できる。 The haze can be measured by, for example, the following method.
(ヘイズの評価)
 空隙層(本発明のシリコーン多孔体)を50mm×50mmのサイズにカットし、ヘイズメーター(村上色彩技術研究所社製:HM-150)にセットしてヘイズを測定する。ヘイズ値については、以下の式より算出を行う。
    ヘイズ(%)=[拡散透過率(%)/全光線透過率(%)]×100(%)
(Evaluation of haze)
A void layer (silicone porous body of the present invention) is cut into a size of 50 mm × 50 mm, and set in a haze meter (manufactured by Murakami Color Research Laboratory Co., Ltd .: HM-150) to measure haze. The haze value is calculated from the following formula.
Haze (%) = [diffuse transmittance (%) / total light transmittance (%)] × 100 (%)
 前記屈折率は、一般に、真空中の光の波面の伝達速度と、媒質内の伝播速度との比を、その媒質の屈折率という。本発明のシリコーン多孔体の屈折率は、特に制限されず、その上限が、例えば、1.3以下、1.3未満、1.25以下、1.2以下、1.15以下であり、その下限が、例えば、1.05以上、1.06以上、1.07以上であり、その範囲が、例えば、1.05以上1.3以下、1.05以上1.3未満、1.05以上1.25以下、1.06以上~1.2未満、1.07以上~1.15以下である。 The refractive index is generally the ratio of the transmission speed of the wavefront of light in a vacuum to the propagation speed in the medium is called the refractive index of the medium. The refractive index of the porous silicone material of the present invention is not particularly limited, and the upper limit thereof is, for example, 1.3 or less, less than 1.3, 1.25 or less, 1.2 or less, 1.15 or less, The lower limit is, for example, 1.05 or more, 1.06 or more, 1.07 or more, and the range thereof is, for example, 1.05 or more and 1.3 or less, 1.05 or more and less than 1.3, 1.05 or more 1.25 or less, 1.06 or more to less than 1.2, 1.07 or more to 1.15 or less.
 本発明において、前記屈折率は、特に断らない限り、波長550nmにおいて測定した屈折率をいう。また、屈折率の測定方法は、特に限定されず、例えば、下記の方法により測定できる。 In the present invention, the refractive index means a refractive index measured at a wavelength of 550 nm unless otherwise specified. Moreover, the measuring method of a refractive index is not specifically limited, For example, it can measure with the following method.
(屈折率の評価)
 アクリルフィルムに空隙層(本発明のシリコーン多孔体)を形成した後に、50mm×50mmのサイズにカットし、これを粘接着層でガラス板(厚み:3mm)の表面に貼合する。前記ガラス板の裏面中央部(直径20mm程度)を黒マジックで塗りつぶして、前記ガラス板の裏面で反射しないサンプルを調製する。エリプソメーター(J.A.Woollam Japan社製:VASE)に前記サンプルをセットし、500nmの波長、入射角50~80度の条件で、屈折率を測定し、その平均値を屈折率とする。
(Evaluation of refractive index)
After forming a void layer (silicone porous body of the present invention) on an acrylic film, it is cut into a size of 50 mm × 50 mm, and this is bonded to the surface of a glass plate (thickness: 3 mm) with an adhesive layer. The back surface central part (diameter of about 20 mm) of the glass plate is painted with black magic to prepare a sample that does not reflect on the back surface of the glass plate. The sample is set in an ellipsometer (manufactured by JA Woollam Japan: VASE), the refractive index is measured under the conditions of a wavelength of 500 nm and an incident angle of 50 to 80 degrees, and the average value is taken as the refractive index.
 本発明のシリコーン多孔体の厚みは、特に制限されず、その下限が、例えば、0.05μm以上、0.1μm以上であり、その上限が、例えば、1000μm以下、100μm以下であり、その範囲が、例えば、0.05~1000μm、0.1~100μmである。 The thickness of the silicone porous body of the present invention is not particularly limited, and the lower limit thereof is, for example, 0.05 μm or more and 0.1 μm or more, and the upper limit thereof is, for example, 1000 μm or less, 100 μm or less, and the range thereof is For example, they are 0.05 to 1000 μm and 0.1 to 100 μm.
 本発明のシリコーン多孔体の形態は、特に制限されず、例えば、フィルム形状でもよいし、ブロック形状等でもよい。 The form of the silicone porous body of the present invention is not particularly limited, and may be, for example, a film shape or a block shape.
 本発明のシリコーン多孔体の製造方法は、特に制限されないが、例えば、前述したシリコーン多孔体の製造方法により製造することができる。 The method for producing the porous silicon body of the present invention is not particularly limited, and for example, it can be produced by the above-described method for producing a porous silicon body.
[4.シリコーン多孔体の用途]
 前記本発明の塗料を用いて製造される前記シリコーン多孔体は、前述のように、空気層と同様の機能を奏することから、前記空気層を有する対象物に対して、前記空気層に代えて利用することができる。
[4. Use of porous silicone]
Since the silicone porous body produced using the paint of the present invention has the same function as the air layer as described above, the object having the air layer is replaced with the air layer. Can be used.
 前記シリコーン多孔体を含む部材としては、例えば、断熱材、吸音材、結露防止材、光学部材等が挙げられる。これらの部材は、例えば、空気層が必要な個所に配置することで使用できる。これらの部材の形態は、特に制限されず、例えば、フィルムでもよい。 Examples of the member including the silicone porous body include a heat insulating material, a sound absorbing material, a dew condensation preventing material, and an optical member. These members can be used, for example, by placing them where an air layer is required. The form in particular of these members is not restrict | limited, For example, a film may be sufficient.
 また、前記シリコーン多孔体を含む部材としては、例えば、再生医療用足場材が挙げられる。前述のように前記シリコーン多孔体は、空気層と同様の機能を発揮する多孔構造を有している。前記シリコーン多孔体の空隙は、例えば、細胞、栄養源、空気等の保持に適していることから、前記多孔質構造は、例えば、再生医療用の足場として有用である。 In addition, examples of the member including the silicone porous body include a scaffold for regenerative medicine. As described above, the porous silicone body has a porous structure that exhibits the same function as the air layer. For example, the porous structure is useful as a scaffold for regenerative medicine because the voids of the porous silicone body are suitable for holding cells, nutrient sources, air, and the like.
 前記シリコーン多孔体を含む部材としては、これらの他に、例えば、全反射部材、インク受像材、単層AR(減反射)、単層モスアイ(moth eye)、誘電率材等が挙げられる。 In addition to these, examples of the member containing the silicone porous material include a total reflection member, an ink image receiving material, a single layer AR (decrease reflection), a single layer moth eye, a dielectric constant material, and the like.
 つぎに、本発明の実施例について説明する。ただし、本発明は、以下の実施例に限定されない。 Next, examples of the present invention will be described. However, the present invention is not limited to the following examples.
(実施例1)
 本実施例では、以下のようにして本発明の塗料および多孔質構造(シリコーン多孔体)を製造した。
(Example 1)
In this example, the paint and porous structure (silicone porous body) of the present invention were produced as follows.
(1)ケイ素化合物のゲル化
 DMSO 2.2gに、ケイ素化合物の前駆体であるMTMSを0.95g溶解させた。前記混合液に、0.01mol/Lのシュウ酸水溶液を0.5g添加し、室温で30分、撹拌を行うことでMTMSを加水分解して、トリス(ヒドロキシ)メチルシランを生成した。
(1) Gelation of silicon compound 0.95 g of MTMS which is a precursor of a silicon compound was dissolved in 2.2 g of DMSO. To the mixed solution, 0.5 g of 0.01 mol / L oxalic acid aqueous solution was added and stirred at room temperature for 30 minutes to hydrolyze MTMS to produce tris (hydroxy) methylsilane.
 DMSO 5.5gに、28%濃度のアンモニア水0.38g、および純水0.2gを添加した後、さらに、前記加水分解処理した前記混合液を追添し、室温で15分撹拌することで、トリストリス(ヒドロキシ)メチルシランのゲル化を行い、ゲル状ケイ素化合物を得た。 After adding 0.38 g of 28% ammonia water and 0.2 g of pure water to 5.5 g of DMSO, the hydrolyzed mixed solution is further added and stirred at room temperature for 15 minutes. Then, tristris (hydroxy) methylsilane was gelated to obtain a gel silicon compound.
(2)熟成処理
 前記ゲル化処理を行った混合液を、そのまま、40℃で20時間インキュベートして、熟成処理を行った。
(2) Aging treatment The mixture solution that had been subjected to the gelation treatment was incubated at 40 ° C. for 20 hours as it was to be aged.
(3)粉砕処理
 つぎに、前記熟成処理したゲル状ケイ素化合物を、スパチュラを用いて、数mm~数cmサイズの顆粒状に砕いた。そこに、IPA 40gを添加し、軽く撹拌した後、室温で6時間静置して、ゲル中の溶媒および触媒をデカンテーションした。同様のデカンテーション処理を3回繰り返し、溶媒置換を完了した。そして、前記混合液中の前記ゲル状ケイ素化合物に対して、高圧メディアレス粉砕を行った。この粉砕処理は、ホモジナイザー(商品名 UH-50、エスエムテー社製)を使用し、5ccのスクリュー瓶に、ゲル1.18g、IPA 1.14gを秤量した後、50W、20kHzの条件で2分間の粉砕で行った。
(3) Grinding treatment Next, the aging-treated gel silicon compound was crushed into granules of several mm to several cm using a spatula. Thereto, 40 g of IPA was added, stirred gently, and then allowed to stand at room temperature for 6 hours to decant the solvent and catalyst in the gel. The same decantation treatment was repeated three times to complete the solvent replacement. And the high pressure medialess grinding | pulverization was performed with respect to the said gel-like silicon compound in the said liquid mixture. For this pulverization treatment, a homogenizer (trade name UH-50, manufactured by SMT Co., Ltd.) was used, and 1.18 g of gel and 1.14 g of IPA were weighed into a 5 cc screw bottle, and then for 2 minutes under conditions of 50 W and 20 kHz. It was done by grinding.
 前記粉砕処理によって、前記混合液中の前記ゲル状ケイ素化合物が粉砕したことにより、前記混合液は、前記粉砕物のゾル液となった。前記混合液(塗料)に含まれる前記粉砕物の粒度バラツキを示す体積平均粒子径を、動的光散乱式ナノトラック粒度分析計(日機装社製、UPA-EX150型)にて確認したところ、0.50~0.70であった。さらに、0.3重量%のKOH水溶液を用意し、前記ゾル液0.5gに対して0.02gの触媒KOHを添加して、塗工液(触媒を含む塗料)を調製した。 The gelled silicon compound in the mixed solution was pulverized by the pulverization treatment, so that the mixed solution became a sol solution of the pulverized product. When the volume average particle diameter indicating the particle size variation of the pulverized product contained in the mixed liquid (paint) was confirmed with a dynamic light scattering nanotrack particle size analyzer (manufactured by Nikkiso Co., Ltd., UPA-EX150 type), 0 .50 to 0.70. Further, a 0.3 wt% KOH aqueous solution was prepared, and 0.02 g of catalyst KOH was added to 0.5 g of the sol solution to prepare a coating solution (coating containing catalyst).
(4)塗工膜の形成およびシリコーン多孔体の形成
 そして、バーコート法により、前記塗工液を、ポリエチレンテレフタレート(PET)製基材の表面に塗布して、塗工膜を形成した。前記塗布は、前記基材の表面1mmあたり前記ゾル液6μLとした。前記塗工膜を、温度100℃で1分処理し、シリコーン多孔体の前駆体の成膜、および前駆体における前記粉砕物同士の架橋反応を完了させた。これにより、前記基材上に、前記粉砕物同士が化学的に結合した厚み1μmのシリコーン多孔体が形成された。
(4) Formation of coating film and formation of silicone porous body Then, the coating liquid was applied to the surface of a polyethylene terephthalate (PET) substrate by a bar coating method to form a coating film. The application was 6 μL of the sol solution per 1 mm 2 of the surface of the substrate. The coating film was treated at a temperature of 100 ° C. for 1 minute to complete the film formation of the precursor of the porous silicone material and the cross-linking reaction between the pulverized materials in the precursor. Thereby, a 1 μm thick silicone porous body in which the pulverized materials were chemically bonded to each other was formed on the base material.
(実施例2)
 実施例1のKOHを1.5重量%の光塩基発生触媒(和光純薬工業株式会社:商品名WPBG266)のIPA(イソプロピルアルコール)溶液を用意し、前記ゾル粒子液0.75gに対して0.031g添加し塗工液を調製し、さらに塗工膜形成後にUV照射を350mJ/cm(@360nm)行なった以外は、実施例1と同様の操作を行ない、基材上にシリコーン多孔体を得た。さらに前記多孔体を60℃での加熱エージングを20hr行なって膜強度をさらに上げた。
(Example 2)
An IPA (isopropyl alcohol) solution of 1.5% by weight of a photobase generating catalyst (Wako Pure Chemical Industries, Ltd .: trade name WPBG266) of KOH of Example 1 was prepared, and 0% was added to 0.75 g of the sol particle solution. 0.031 g was added to prepare a coating solution, and after the coating film was formed, UV irradiation was performed at 350 mJ / cm 2 (@ 360 nm), and the same operation as in Example 1 was performed. Got. Further, the porous body was subjected to heat aging at 60 ° C. for 20 hours to further increase the film strength.
(実施例3)
 実施例2に記載の塗工液にさらに、5重量%のビス(トリメトキシシリル)エタンを前記ゾル液0.75gに対して0.018g加えた以外は、実施例2と同様の操作を行ない、シリコーン多孔体を得た。
(Example 3)
The same operation as in Example 2 was performed except that 0.018 g of 5% by weight of bis (trimethoxysilyl) ethane was further added to the coating liquid described in Example 2 with respect to 0.75 g of the sol liquid. A porous silicone material was obtained.
(比較例1)
 熟成工程のインキュベートを、40℃72時間の長時間熟成に変更した以外は、実施例1と同様の方法により、多孔体を形成した。
(Comparative Example 1)
A porous body was formed by the same method as in Example 1 except that the incubation in the aging step was changed to aging at 40 ° C. for 72 hours.
(比較例2)
 ケイ素化合物の前駆体としてTEOS(テトラメトキシシラン)を用い、熟成工程におけるインキュベートを、熟成工程のインキュベートを、40℃72時間の長時間熟成に変更した点以外は、実施例1と同様の方法により、多孔体を形成した。なお、本比較例では、多孔体(膜)を1μm厚で作製した場合、膜に部分的な割れが発生したため、厚みは200nmで膜を作製した。
(Comparative Example 2)
TEOS (tetramethoxysilane) was used as a silicon compound precursor, and the incubation in the aging step was changed to a long-term aging at 40 ° C. for 72 hours, except that the incubation in the aging step was the same as in Example 1. A porous body was formed. In this comparative example, when the porous body (film) was produced with a thickness of 1 μm, partial cracking occurred in the film, and thus the film was produced with a thickness of 200 nm.
 実施例1、比較例1および比較例2について、屈折率、残留シラノール基の割合および耐擦傷性を測定した。これらの結果を、下記表1に示す。 Example 1, Comparative Example 1 and Comparative Example 2 were measured for refractive index, residual silanol group ratio and scratch resistance. These results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 前記表1に示すように、実施例1で得られたゾル溶液を用いて形成したシリコーン多孔体(空隙層)は、厚み1μmで、屈折率が1.2未満であり、かつ膜強度も簡便に得られることが確認できた。また、表1には示していないが、実施例2および3でも、同様に、低屈折率で膜強度が高いことが確認された。一方で、比較例1のゾル溶液を用いた場合、長時間熟成を行ったために、シラノール基がゲル中にほとんど残存しなかった。そのため、結合工程における架橋構造が形成されずに、十分な膜強度が得られなかった。また、比較例2のゾル溶液は、ケイ素化合物の前駆体としてTEOSを用いたために、高い膜強度が得られる一方で可撓性が著しく低下した。したがって、膜強度と可撓性を両立させるためには、ケイ素化合物の前駆体および残留シラノール基を調整することが極めて有用であることがわかった。 As shown in Table 1, the silicone porous body (void layer) formed using the sol solution obtained in Example 1 has a thickness of 1 μm, a refractive index of less than 1.2, and a simple film strength. It was confirmed that Although not shown in Table 1, it was also confirmed in Examples 2 and 3 that the film strength was high with a low refractive index. On the other hand, when the sol solution of Comparative Example 1 was used, silanol groups hardly remained in the gel because of aging for a long time. Therefore, a crosslinked structure in the bonding step is not formed, and sufficient film strength cannot be obtained. Moreover, since the sol solution of Comparative Example 2 used TEOS as the precursor of the silicon compound, high film strength was obtained while flexibility was remarkably lowered. Therefore, it was found that adjusting the precursor of the silicon compound and the residual silanol group is extremely useful in order to achieve both film strength and flexibility.
(実施例4)
 本実施例では、以下のようにして本発明の塗料および多孔質構造(シリコーン多孔体)を製造した。
Example 4
In this example, the paint and porous structure (silicone porous body) of the present invention were produced as follows.
 まず、実施例1と同様にして、前記「(1)ケイ素化合物のゲル化」および「(2)熟成処理」を行った。つぎに、0.3重量%のKOH水溶液に代えて、1.5重量%の光塩基発生触媒(和光純薬工業株式会社:商品名WPBG266)のIPA(イソプロピルアルコール)溶液を前記ゾル粒子液に添加したこと以外は、実施例1と同様にして前記「(3)粉砕処理」を行い、塗工液(触媒を含む塗料)を調製した。前記光塩基発生触媒のIPA溶液の添加量は、前記ゾル粒子液0.75gに対して0.031gとした。その後、実施例1と同様にして前記「(4)塗工膜の形成およびシリコーン多孔体の形成」を行った。このようにして得た乾燥後の多孔体にUV照射した。前記UV照射は、波長360nmの光で光照射量(エネルギー)は500mJとした。さらに、UV照射後、60℃での加熱エージングを22hr行なって本実施例の多孔質構造を形成した。 First, in the same manner as in Example 1, the “(1) Gelation of silicon compound” and “(2) Aging treatment” were performed. Next, instead of the 0.3 wt% KOH aqueous solution, an IPA (isopropyl alcohol) solution of 1.5 wt% photobase generating catalyst (Wako Pure Chemical Industries, Ltd .: trade name WPBG266) is used as the sol particle liquid. Except for the addition, the same “(3) pulverization treatment” was carried out in the same manner as in Example 1 to prepare a coating liquid (coating containing a catalyst). The addition amount of the IPA solution of the photobase generation catalyst was 0.031 g with respect to 0.75 g of the sol particle solution. Thereafter, in the same manner as in Example 1, the above-mentioned “(4) Formation of coating film and formation of silicone porous body” was performed. The dried porous material thus obtained was irradiated with UV. The UV irradiation was light having a wavelength of 360 nm, and the light irradiation amount (energy) was 500 mJ. Further, after UV irradiation, heat aging at 60 ° C. was performed for 22 hours to form the porous structure of this example.
(実施例5)
 UV照射後に加熱エージングを行わなかったこと以外は、実施例4と同様の操作を行ない、塗料および多孔質構造(シリコーン多孔体)を形成した。
(Example 5)
Except that heat aging was not performed after UV irradiation, the same operation as in Example 4 was performed to form a paint and a porous structure (silicone porous body).
(実施例6)
 光塩基発生触媒のIPA溶液添加後、さらに、5重量%のビス(トリメトキシ)シランを前記ゾル液0.75gに対して0.018g加えて塗工液を調整した以外は、実施例4と同様の操作を行ない、塗料および多孔質構造(シリコーン多孔体)を形成した。
(Example 6)
After adding the IPA solution of the photobase generation catalyst, the same as in Example 4 except that 0.018 g of bis (trimethoxy) silane of 5 wt% was added to 0.75 g of the sol solution to adjust the coating solution. Thus, a coating material and a porous structure (silicone porous body) were formed.
(実施例7)
 光塩基発生触媒のIPA溶液の添加量を、前記ゾル液0.75gに対して、0.054gとした以外は、実施例4と同様の操作を行ない、塗料および多孔質構造(シリコーン多孔体)を形成した。
(Example 7)
The same procedure as in Example 4 was conducted except that the amount of the IPA solution of the photobase generation catalyst was 0.054 g with respect to 0.75 g of the sol solution, and the paint and porous structure (silicone porous body) Formed.
(実施例8)
 実施例4と同様にして乾燥後の多孔体にUV照射した後、加熱エージングする前に、粘着剤(粘接着層)が片面に塗布されたPETフィルムの、前記粘着剤側を、前記多孔体に室温で貼付してから60℃で22hr加熱エージングした。これ以外は実施例4と同様の操作を行ない、塗料および多孔質構造(シリコーン多孔体)を形成した。
(Example 8)
In the same manner as in Example 4, after UV irradiation of the porous body after drying, before the heat aging, the pressure-sensitive adhesive side of the PET film coated with a pressure-sensitive adhesive (adhesive layer) on one side was changed to the porous surface. After affixing to the body at room temperature, it was heat-aged at 60 ° C. for 22 hours. Except this, the same operation as in Example 4 was performed to form a paint and a porous structure (silicone porous body).
(実施例9)
 PETフィルム貼付後に加熱エージングを行わなかったこと以外は、実施例8と同様の操作を行ない、塗料および多孔質構造(シリコーン多孔体)を形成した。
Example 9
Except that heat aging was not performed after the PET film was pasted, the same operation as in Example 8 was performed to form a paint and a porous structure (silicone porous body).
(実施例10)
 光塩基発生触媒のIPA溶液添加後、さらに、5重量%のビス(トリメトキシ)シランを前記ゾル液0.75gに対して0.018g加えて塗工液(触媒を含む塗料)を調整した以外は、実施例8と同様の操作を行ない、塗料および多孔質構造(シリコーン多孔体)を形成した。
(Example 10)
After addition of the IPA solution of the photobase generation catalyst, 0.018 g of 5% by weight of bis (trimethoxy) silane was added to 0.75 g of the sol solution to adjust the coating solution (coating containing the catalyst). The same operation as in Example 8 was performed to form a paint and a porous structure (silicone porous body).
(実施例11)
 光塩基発生触媒のIPA溶液の添加量を、前記ゾル液0.75gに対して、0.054gとした以外は、実施例8と同様の操作を行ない、塗料および多孔質構造(シリコーン多孔体)を形成した。
(Example 11)
The same procedure as in Example 8 was performed except that the addition amount of the IPA solution of the photobase generation catalyst was 0.054 g with respect to 0.75 g of the sol solution, and the paint and porous structure (silicone porous body) Formed.
 実施例4~11の多孔質構造について、前述の方法により屈折率、粘着ピール強度およびヘイズを測定した結果を、下記表2および3に示す。ただし、実施例6~9の粘着ピール強度測定においては、これらの積層フィルムロールは、すでにPETフィルムおよび粘着層が貼合された状態であることから、PETフィルムおよびアクリル粘着剤の貼付を省略した。また、実施例4~11の塗工液(触媒を含む塗料)の保存安定性についても、併せて表2および3に示す。この保存安定性は、室温で前記塗工液を1週間放置し、前記塗工液の変化の有無を目視で確認した結果である。 Tables 2 and 3 below show the results of measuring the refractive index, adhesive peel strength, and haze of the porous structures of Examples 4 to 11 by the methods described above. However, in the adhesive peel strength measurement of Examples 6 to 9, since these laminated film rolls were already in a state where the PET film and the adhesive layer were bonded, the application of the PET film and the acrylic adhesive was omitted. . Tables 2 and 3 also show the storage stability of the coating liquids (coating compositions containing catalysts) of Examples 4 to 11. This storage stability is the result of allowing the coating solution to stand for 1 week at room temperature and visually confirming whether the coating solution has changed.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 前記表2および3に示すとおり、得られた厚み1μmの実施例4~11のシリコーン多孔体は、いずれも、屈折率が1.14~1.16と極めて低かった。また、これらの超低屈折率層は、ヘイズ値も0.4という極めて低い数値を示すことから、透明性も極めて高いことが確認された。さらに、実施例4~11の超低屈折率層は、粘着ピール強度が高いことから、巻き取ってロール体にしても積層フィルムロールの他の層から剥がれにくい高強度を有していることが確認された。さらに、実施例4~11のシリコーン多孔体は、耐擦傷性もきわめて高いことが確認された。さらに、実施例4~11の塗工液(触媒を含む塗料)は、1週間保存した後に目視観察しても変化が確認されなかったことから、保存安定性に優れ、安定した品質のシリコーン多孔体を効率よく製造できることも確認された。 As shown in Tables 2 and 3, all of the obtained porous silicone materials of Examples 4 to 11 having a thickness of 1 μm had an extremely low refractive index of 1.14 to 1.16. Moreover, since these ultra-low refractive index layers showed a very low numerical value of 0.4, the haze value was confirmed to be extremely high in transparency. Furthermore, since the ultra-low refractive index layers of Examples 4 to 11 have high adhesive peel strength, they may have high strength that is difficult to peel off from other layers of the laminated film roll even when wound up and rolled. confirmed. Furthermore, it was confirmed that the silicone porous bodies of Examples 4 to 11 had extremely high scratch resistance. Furthermore, since the coating liquids (coating compositions containing a catalyst) of Examples 4 to 11 were not observed even after visual observation after storage for 1 week, the silicone porous material with excellent storage stability and stable quality was obtained. It was also confirmed that the body can be manufactured efficiently.
 以上、説明したとおり、本発明の製造方法により得られる塗料は、前記ゲル状ケイ素化合物の粉砕物を含み、且つ、前記粉砕物が残留シラノール基を含有するため、例えば、前記塗料を用いて塗工膜を形成し、さらに、前記塗工膜における前記粉砕物を化学的に結合させることによって、空隙を有する多孔構造を製造できる。このように、前記塗料を用いてが形成された前記多孔質構造は、例えば、前述した空気層と同様の機能を奏することができる。さらに、前述のように、前記粉砕物同士を化学的に結合させることで、前記多孔構造が固定化されるため、得られる前記多孔質構造は、空隙を有する構造であるが、十分な強度を維持できる。このため、前記多孔質構造は、容易且つ簡便に、シラノール多孔体を、様々な対象物に付与することができる。具体的には、本発明の多孔質構造は、例えば、空気層に代えて、断熱材、吸音材、再生医療用足場材、結露防止材、光学部材等として使用できる。したがって、本発明の製造方法およびそれにより得られる塗料は、例えば、前述のような多孔質構造の製造において有用である。 As described above, the paint obtained by the production method of the present invention includes a pulverized product of the gel silicon compound, and the pulverized product contains residual silanol groups. A porous structure having voids can be produced by forming a film and chemically bonding the pulverized material in the coating film. Thus, the porous structure formed using the paint can exhibit the same function as the air layer described above, for example. Furthermore, as described above, since the porous structure is fixed by chemically bonding the pulverized materials to each other, the obtained porous structure is a structure having voids, but has sufficient strength. Can be maintained. For this reason, the said porous structure can provide a silanol porous body to various objects easily and simply. Specifically, the porous structure of the present invention can be used as, for example, a heat insulating material, a sound absorbing material, a regenerative medical scaffolding material, a dew condensation preventing material, an optical member, etc., instead of an air layer. Therefore, the production method of the present invention and the paint obtained thereby are useful, for example, in the production of the porous structure as described above.
10 基材
20 多孔質構造
20’ 塗工膜(前駆層)
20’’ 塗料
21 強度が向上した多孔質構造
101 送り出しローラ
102 塗工ロール
110 オーブンゾーン
111 熱風器(加熱手段)
120 化学処理ゾーン
121 ランプ(光照射手段)または熱風器(加熱手段) 
130a 粘接着層塗工ゾーン
130 中間体形成ゾーン
131a 粘接着層塗工手段
131 熱風器(加熱手段)
105 巻き取りロール
106 ロール
201 送り出しローラ
202 液溜め
203 ドクター(ドクターナイフ)
204 マイクログラビア
210 オーブンゾーン
211 加熱手段
220 化学処理ゾーン
221 ランプ(光照射手段)または熱風器(加熱手段)
230a 粘接着層塗工ゾーン
230 中間体形成ゾーン
231a 粘接着層塗工手段
231 熱風器(加熱手段)
251 巻き取りロール
10 Substrate 20 Porous structure 20 ′ Coating film (precursor layer)
20 '' paint 21 porous structure with improved strength 101 delivery roller 102 coating roll 110 oven zone 111 hot air (heating means)
120 Chemical treatment zone 121 Lamp (light irradiation means) or hot air device (heating means)
130a Adhesive layer coating zone 130 Intermediate formation zone 131a Adhesive layer coating means 131 Hot air blower (heating means)
105 Winding Roll 106 Roll 201 Feeding Roller 202 Liquid Reservoir 203 Doctor (Doctor Knife)
204 Microgravure 210 Oven zone 211 Heating means 220 Chemical treatment zone 221 Lamp (light irradiation means) or hot air blower (heating means)
230a Adhesive layer coating zone 230 Intermediate formation zone 231a Adhesive layer application unit 231 Hot air (heating unit)
251 Winding roll

Claims (17)

  1. 3官能以下の飽和結合官能基を少なくとも含むケイ素化合物から得られたゲル状ケイ素化合物の粉砕物と分散媒とを含み、
    前記粉砕物が、残留シラノール基を1モル%以上含有し、
    前記粉砕物同士を化学的に結合させるための塗料であることを特徴とするシリコーンゾル塗料。
    A pulverized product of a gel silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group and a dispersion medium;
    The pulverized product contains 1 mol% or more of residual silanol groups,
    A silicone sol paint characterized in that it is a paint for chemically bonding the pulverized products.
  2. 前記粉砕物の体積平均粒子径が、0.05~2.00μmである、請求項1記載の塗料。 The paint according to claim 1, wherein the pulverized product has a volume average particle diameter of 0.05 to 2.00 µm.
  3. 前記ケイ素化合物が、下記式(2)で表される化合物である、請求項1または2記載の塗料。
    式(2)中、
     Xは、2または3であり、
     RおよびRは、それぞれ、直鎖もしくは分枝アルキル基であり、
     RおよびRは、同一でも異なっていても良く、
     Rは、Xが2の場合、互いに同一でも異なっていても良く、
     Rは、互いに同一でも異なっていても良い。
    Figure JPOXMLDOC01-appb-C000001
    The paint according to claim 1 or 2, wherein the silicon compound is a compound represented by the following formula (2).
    In formula (2),
    X is 2 or 3,
    R 1 and R 2 are each a linear or branched alkyl group,
    R 1 and R 2 may be the same or different,
    R 1 s may be the same as or different from each other when X is 2.
    R 2 may be the same as or different from each other.
    Figure JPOXMLDOC01-appb-C000001
  4. 前記粉砕物同士を化学的に結合させるための触媒を含む、請求項1から3のいずれかに記載の塗料。 The paint according to any one of claims 1 to 3, comprising a catalyst for chemically bonding the pulverized products.
  5. さらに、前記粉砕物同士を間接的に結合させるための架橋補助剤を含む、請求項1から4のいずれか一項に記載の塗料。 Furthermore, the coating material as described in any one of Claim 1 to 4 containing the crosslinking adjuvant for bonding the said pulverized material indirectly.
  6. 前記架橋補助剤の含有率が、前記粉砕物の重量に対して0.01~20重量%である請求項5記載の塗料。 The paint according to claim 5, wherein the content of the crosslinking aid is 0.01 to 20% by weight with respect to the weight of the pulverized product.
  7. 少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物を含み、請求項1から6のいずれか一項に記載のシリコーンゾル塗料を製造するための原料であることを特徴とする塗料原料。 It is a raw material for producing the silicone sol paint according to any one of claims 1 to 6, comprising a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or less saturated bond functional group. Characteristic paint material.
  8. 少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状物であり且つ熟成処理を施したゲル状ケイ素化合物を含み、請求項1から6のいずれか一項に記載のシリコーンゾル塗料を製造するための原料であることを特徴とする塗料原料。 The silicone sol according to any one of claims 1 to 6, which is a gel-like product obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and is subjected to an aging treatment. A coating material characterized by being a raw material for manufacturing a coating material.
  9. 少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物の粉砕物と分散媒とを混合する工程を含むことを特徴とする、請求項1から6のいずれか一項に記載のシリコーンゾル塗料の製造方法。 7. The method according to claim 1, comprising a step of mixing a pulverized product of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and a dispersion medium. A method for producing a silicone sol paint as described in 1. above.
  10. 前記混合する工程において、さらに、前記ゲル状ケイ素化合物の粉砕物同士を間接的に結合させるための架橋補助剤を添加する工程を含む、請求項9記載の製造方法。 The manufacturing method according to claim 9, wherein the mixing step further includes a step of adding a crosslinking aid for indirectly bonding the pulverized products of the gel silicon compound.
  11. 前記架橋補助剤の添加量が、前記ゲル状ケイ素化合物の粉砕物の重量に対して0.01~20重量%である請求項10記載の製造方法。 The production method according to claim 10, wherein the addition amount of the crosslinking auxiliary agent is 0.01 to 20% by weight with respect to the weight of the ground product of the gel silicon compound.
  12. さらに、前記ゲル状ケイ素化合物を溶媒中で粉砕する粉砕工程を含み、
    前記混合工程において、前記粉砕工程により得られた粉砕物を使用する、請求項9から11のいずれか一項に記載の製造方法。
    Furthermore, it includes a pulverizing step of pulverizing the gel silicon compound in a solvent,
    The manufacturing method according to any one of claims 9 to 11, wherein in the mixing step, the pulverized product obtained in the pulverizing step is used.
  13. さらに、前記ケイ素化合物を溶媒中でゲル化して、前記ゲル状ケイ素化合物を生成するゲル化工程を含み、
    前記粉砕工程において、前記ゲル化工程により得られた前記ゲル状ケイ素化合物を使用する、請求項12記載の製造方法。
    Further, the method includes gelling the silicon compound in a solvent to produce the gel silicon compound,
    The manufacturing method of Claim 12 which uses the said gel-like silicon compound obtained by the said gelatinization process in the said grinding | pulverization process.
  14. さらに、前記ゲル状ケイ素化合物を溶媒中で熟成する熟成工程を含み、
    前記ゲル化工程において、前記熟成工程後の前記ゲル状ケイ素化合物を使用する、請求項13記載の製造方法。
    Further, the method includes an aging step of aging the gelled silicon compound in a solvent,
    The manufacturing method according to claim 13, wherein the gelled silicon compound after the aging step is used in the gelation step.
  15. 前記熟成工程において、前記ゲル状ケイ素化合物を、前記溶媒中、30℃以上でインキュベートすることにより熟成する、請求項14記載の製造方法。 The production method according to claim 14, wherein in the aging step, the gel-like silicon compound is aged by incubating in the solvent at 30 ° C or higher.
  16. 少なくとも3官能以下の飽和結合官能基を含むケイ素化合物を溶媒中でゲル化して、ゲル状ケイ素化合物を生成するゲル化工程を含むことを特徴とする、請求項7記載の塗料原料の製造方法。 The method for producing a coating material according to claim 7, further comprising a gelation step of gelling a silicon compound containing at least a trifunctional or lower saturated bond functional group in a solvent to produce a gelled silicon compound.
  17. 少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物を溶媒中で熟成する熟成工程を含むことを特徴とする、請求項8記載の塗料原料の製造方法。 The method for producing a coating material according to claim 8, further comprising an aging step of aging a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or less saturated bond functional group in a solvent.
PCT/JP2015/086365 2014-12-26 2015-12-25 Coating material and method for manufacturing same WO2016104765A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580071004.1A CN107109125B (en) 2014-12-26 2015-12-25 Coating and method for producing same
EP15873333.7A EP3239257A4 (en) 2014-12-26 2015-12-25 Coating material and method for manufacturing same
US15/539,927 US10494546B2 (en) 2014-12-26 2015-12-25 Coating material and method of producing the same
KR1020177018507A KR102549648B1 (en) 2014-12-26 2015-12-25 Coating material and method for manufacturing same
CN202010325596.8A CN111363472B (en) 2014-12-26 2015-12-25 Paint and its production process

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014266787 2014-12-26
JP2014-266787 2014-12-26
JP2015152969 2015-07-31
JP2015-152969 2015-07-31
JP2015176207A JP6563750B2 (en) 2014-12-26 2015-09-07 Paint and production method thereof
JP2015-176207 2015-09-07

Publications (1)

Publication Number Publication Date
WO2016104765A1 true WO2016104765A1 (en) 2016-06-30

Family

ID=56150777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086365 WO2016104765A1 (en) 2014-12-26 2015-12-25 Coating material and method for manufacturing same

Country Status (3)

Country Link
CN (1) CN111363472B (en)
TW (1) TWI691559B (en)
WO (1) WO2016104765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107088512A (en) * 2017-05-31 2017-08-25 佛山市东鹏陶瓷有限公司 A kind of spraying coating process of nano-silicon inorganic coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3323864A1 (en) * 2016-11-22 2018-05-23 BASF Coatings GmbH Optical coating having a low refractive index

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408009A (en) * 1982-02-17 1983-10-04 Union Carbide Corporation Co-condensates of alkyl silicates and alkoxy silanes
JPS61250032A (en) * 1985-04-30 1986-11-07 Hitachi Chem Co Ltd Preparation of silanol origomer liquid
JP2001163613A (en) * 1999-12-10 2001-06-19 Dokai Chemical Industries Co Ltd Flaky silica particle, curable composition, hardened body formed therefrom and manufacturing method thereof
JP2004010424A (en) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd Method of producing porous gel, and heat insulating material using the same
JP2006297329A (en) * 2005-04-22 2006-11-02 Pentax Corp Silica aerogel film and its manufacturing method
JP2013060309A (en) * 2011-09-12 2013-04-04 Achilles Corp Nanostructured porous body excellent in hydrophobicity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1014123B (en) * 1987-10-12 1991-10-02 国家机械工业委员会沈阳铸造研究所 Compound shell-producing technology using silica-sol wash
CN101007911A (en) * 2006-01-27 2007-08-01 章浩龙 Water paint and its preparation method
US8222352B2 (en) * 2008-12-24 2012-07-17 Nitto Denko Corporation Silicone resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408009A (en) * 1982-02-17 1983-10-04 Union Carbide Corporation Co-condensates of alkyl silicates and alkoxy silanes
JPS61250032A (en) * 1985-04-30 1986-11-07 Hitachi Chem Co Ltd Preparation of silanol origomer liquid
JP2001163613A (en) * 1999-12-10 2001-06-19 Dokai Chemical Industries Co Ltd Flaky silica particle, curable composition, hardened body formed therefrom and manufacturing method thereof
JP2004010424A (en) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd Method of producing porous gel, and heat insulating material using the same
JP2006297329A (en) * 2005-04-22 2006-11-02 Pentax Corp Silica aerogel film and its manufacturing method
JP2013060309A (en) * 2011-09-12 2013-04-04 Achilles Corp Nanostructured porous body excellent in hydrophobicity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107088512A (en) * 2017-05-31 2017-08-25 佛山市东鹏陶瓷有限公司 A kind of spraying coating process of nano-silicon inorganic coating
CN107088512B (en) * 2017-05-31 2020-11-10 佛山市东鹏陶瓷有限公司 Spraying process of nano silicon inorganic coating

Also Published As

Publication number Publication date
TW201631071A (en) 2016-09-01
TWI691559B (en) 2020-04-21
CN111363472B (en) 2023-07-04
CN111363472A (en) 2020-07-03

Similar Documents

Publication Publication Date Title
JP7309787B2 (en) Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical member, and image display device
JP6976299B2 (en) Silicone porous body and its manufacturing method
JP6563750B2 (en) Paint and production method thereof
JP6604781B2 (en) Laminated film roll and method for producing the same
JP6599699B2 (en) Void structure film bonded through catalytic action and method for producing the same
JP6713871B2 (en) Optical laminate, method for producing optical laminate, optical member, image display device, method for producing optical member, and method for producing image display device
WO2016104762A1 (en) Porous silicone object and process for producing same
WO2017022690A1 (en) Optical laminate, optical laminate manufacturing method, optical member, and image display device
WO2016104764A1 (en) Laminated film roll and method for producing same
JP2017047678A (en) Laminate film, method for manufacturing laminate film, optical member, image display device, method for manufacturing optical member and method for manufacturing image display device
WO2017043496A1 (en) Low-refractive-index layer, laminated film, method for producing low-refractive-index layer, method for producing laminated film, optical member, and image display device
WO2017057331A1 (en) Method for producing porous gel-containing liquid, porous gel-containing liquid, method for producing high-porosity layer, method for producing high-porosity porous body, and method for producing layered film roll
WO2016104765A1 (en) Coating material and method for manufacturing same
JP2017049577A (en) Laminated optical film, manufacturing method for laminated optical film, optical member, and image display device
JP2017057116A (en) Sol liquid and method for producing the same, method for producing laminate film, laminate film, optical member, and image display device
JP2017064954A (en) Method for producing laminated film and method for producing image display device
JP2017066209A (en) Coating liquid, method for producing coating liquid, method for producing laminated film and method for producing image display device
WO2017051831A1 (en) Gel for producing low-refractive-index film, production method for gel for producing low-refractive-index film, coating material for producing low-refractive-index film, production method for coating material for producing low-refractive-index film, production method for laminate film, and production method for image display device
WO2017033672A1 (en) Laminated optical film, method for producing laminated optical film, optical member, and image display device
WO2016104763A1 (en) Void structured film bonded through catalytic action and method for manufacturing same
WO2017022691A1 (en) Laminate film, optical member, and image display device
WO2017131220A1 (en) Method for producing liquid that contains pulverized gel
WO2017131219A1 (en) Pulverized-gel-containing liquid, and method for producing pulverized-gel-containing liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15539927

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177018507

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015873333

Country of ref document: EP