WO2016104609A1 - Led element substrate, led-mounted module and led display device using these - Google Patents

Led element substrate, led-mounted module and led display device using these Download PDF

Info

Publication number
WO2016104609A1
WO2016104609A1 PCT/JP2015/086038 JP2015086038W WO2016104609A1 WO 2016104609 A1 WO2016104609 A1 WO 2016104609A1 JP 2015086038 W JP2015086038 W JP 2015086038W WO 2016104609 A1 WO2016104609 A1 WO 2016104609A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
metal wiring
led element
substrate
resin
Prior art date
Application number
PCT/JP2015/086038
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 駒井
拓也 大橋
柴崎 聡
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014263664A external-priority patent/JP2016122816A/en
Priority claimed from JP2014263661A external-priority patent/JP2016122815A/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2016104609A1 publication Critical patent/WO2016104609A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to an LED element substrate, an LED mounting module, and an LED display device using them. More specifically, by mounting a large number of light emitting diode (LED) elements, it can be used for the construction of a large LED display device, and can contribute to the improvement of productivity and heat dissipation of the LED display device.
  • the present invention relates to an LED element substrate, an LED mounting module using the same, and an LED display device.
  • LED displays such as liquid crystal televisions and liquid crystal displays that use LED elements as backlight sources can be used to meet demands for lower power consumption and larger and thinner devices instead of conventional CRT monitors.
  • the spread of equipment is rapidly progressing.
  • LED mounting module In order to mount an LED element as a light source in these display devices, various types of LED element substrates each including a support substrate and a wiring portion are usually used.
  • a laminate in which LED elements are mounted on these substrates (hereinafter referred to as “LED mounting module” in this specification) is a light source of various display devices such as the above-mentioned liquid crystal televisions, that is, an LED backlight. Is widely used.
  • any of the above LED element substrates in particular, when a large display device having a screen size of 65 inches or more that requires mounting of 1000 or more LED elements is configured, a plurality of LED element substrates is used.
  • the backlight is configured by connecting the connectors with each other, and it is difficult to arrange the plurality of substrates with high positional accuracy inside the backlight. This was a factor that hindered further improvement in productivity.
  • the present invention has been made in view of the above situation, and can be preferably used as a backlight of an LED display device, and can improve heat dissipation and productivity of the LED display device and the like. It is an object to provide an LED mounting module and an LED display device using them.
  • the present inventors have found that the above problem can be solved by configuring the LED element substrate as follows. That is, it is assumed that a metal wiring part on which a large number of LED elements can be mounted is formed on a resin film, and moreover, on the surface of the above-mentioned resin film, most of a predetermined ratio or more is the metal wiring part. It has been found that the heat dissipation and productivity of the LED display device and the like can be remarkably enhanced as compared with the conventional method, and the present invention has been completed. Specifically, the present invention provides the following.
  • the metal wire constituting the metal wiring part has a thermal conductivity ⁇ of 300 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less, and the metal resistivity R constituting the metal wiring part is 2.
  • a substrate for an LED element that is 50 ⁇ 10 ⁇ 8 ⁇ m or less, and wherein the metal wiring portion covers a range of 95% or more of one surface of the resin substrate.
  • the length of the diagonal line is at least 65 inches or more and a resin substrate made of a single flexible resin film is laminated on the resin substrate, and conducts between both electrodes of the LED element.
  • the front metal wiring portion is an electrolytic copper foil, and the surface roughness Rz on the side of the laminated surface with the resin substrate is 1.0 or more and 10.0 or less, according to any one of (1) to (5) LED element substrate.
  • An LED mounting module in which at least 100 LED elements are mounted on the LED element substrate according to any one of (1) to (7).
  • An LED display device comprising the LED mounting module according to (8) or (9) as a backlight.
  • LED device substrate, LED mounting module, and LED device substrate and LED mounting which can be preferably used as a backlight for providing an LED display device using the same, and have excellent heat dissipation and productivity Modules can be provided.
  • FIG. 5 is a partially enlarged view of FIG. 4 and is a diagram for explaining a mounting mode of LED elements in the LED mounting module of the present invention. It is a perspective view which shows typically the outline of the layer structure of the LED display apparatus which uses the LED mounting module of this invention.
  • the LED element substrate 1 has a conductive metal wiring portion 13 made of metal foil on the surface of a resin substrate 11 made of a flexible resin film. (See FIG. 3).
  • the metal wiring part 13 is formed on the resin substrate 11 in such a manner that the LED elements 2 arranged in a matrix can be conducted.
  • the resin substrate is not a single resin film bonded to the plurality of flexible resin films, and the resin film is used as a base material. This is possible in the present invention.
  • the LED element substrate 1 has an insulating protective film 15 made of thermosetting ink or the like formed on the resin substrate 11 and the metal wiring portion 13 as shown in FIGS.
  • the insulating protective film 15 is formed on the entire surface of the metal wiring portion 13 except for the connection portion for mounting the LED element 2 and on the resin substrate 11. It is formed so as to cover almost the entire surface of the surface where the metal wiring portion 13 is not formed.
  • the LED element substrate 1 is obtained by further laminating a reflective layer 16 made of a white resin or the like on the resin substrate 11 and the metal wiring portion 13 on the insulating protective film 15. It is preferable that In particular, when the LED mounting module 10 in which the LED element 2 is mounted on the LED element substrate 1 is used as a backlight of the LED display device 100 as shown in FIG. 6, the reflective layer 16 is used as the outermost surface of the LED mounting module. In general, it is essential to arrange them. However, it is also possible to provide the insulating protective film 15 with a reflective function, thereby ensuring the necessary reflective function with the insulating protective film without installing a reflective layer.
  • the LED element substrate 1 is an LED mounting module 10 in which the LED element 2 is mounted on the metal wiring portion 13 in a conductive manner via the solder layer 14. And this LED mounting module 10 can be preferably used for a large-sized LED display device and other various large-sized LED element mounting electronic devices.
  • the length of the diagonal line d shown in FIG. 4 is at least 32 inches or more, more preferably 65 inches or more. Moreover, 100 or more, preferably 1000 or more LED elements 2 can be mounted in a matrix.
  • FIG. 4 is an example of a mounting mode of the LED elements 2 on the LED element substrate 1.
  • FIG. 4 shows an example in which 40 LED elements 2 in the X direction and 30 in the Y direction are mounted in total. Show.
  • the planar shape of the LED element substrate of the present invention is not necessarily limited to a rectangular shape.
  • “the length of the diagonal is 32 inches or more” means, for example, the length of the major axis when the LED element substrate is elliptical.
  • any ellipse-shaped LED element substrate having a major axis length of 32 inches or more that satisfies the other constituent requirements of the present application is within the scope of the present invention.
  • the resin substrate 11 not only has a length of the diagonal line d of at least 32 inches or more, more preferably 65 inches or more in accordance with the size of the LED element substrate 1 described above, but a resin film having such a size is not limited.
  • a resin film having such a size is not limited.
  • One resin film is preferable.
  • the term “single resin film” means that the resin film is not an assembly of a plurality of resin films or a joined body in which they are physically joined, but a resin comprising a single sheet film. Means film. Such a single large film can be produced by a special extrusion apparatus capable of producing a film outside the conventional standard range.
  • the material of the resin substrate 11 As the material of the resin substrate 11, a flexible resin film obtained by molding a thermoplastic resin into a sheet shape can be used.
  • the sheet form is a concept including a film form, and there is no difference between them in the present invention.
  • thermoplastic resin used as the material for the resin substrate 11 is required to have high heat resistance and insulation.
  • a resin a polyimide resin (PI) excellent in heat resistance, dimensional stability during heating, mechanical strength, and durability can be used.
  • various other thermoplastic resins whose heat resistance and dimensional stability are improved by performing a heat resistance improving process such as an annealing process can also be used.
  • PEN polyethylene naphthalate
  • PET etc. which improved the flame retardance by addition of a flame retardant inorganic filler etc. can also be selected as material resin of a resin substrate.
  • the heat resistance of the thermoplastic resin forming the resin substrate 11 has been improved by the annealing treatment so that the thermal shrinkage starting temperature is equal to or higher than the thermosetting temperature of the thermosetting ink forming the insulating protective film 15. It is preferable to use one.
  • the insulating protective film 15 is formed of a thermosetting ink having a thermosetting temperature of about 80 ° C.
  • the heat shrinkage starting temperature of PEN which is usually about 80 ° C., is about 100 ° C. by annealing. Can be improved. Thereby, it is possible to form the insulating protective film 15 having sufficient heat resistance, strength, and insulation while avoiding minute heat damage of the resin substrate 11.
  • thermal shrinkage start temperature means that a sample sheet made of a thermoplastic resin to be measured is set in a TMA apparatus, a load of 1 g is applied, and the temperature is increased to 120 ° C. at a temperature rising rate of 2 ° C./min. Measure the amount of shrinkage (in%) at that time, output this data and record the temperature and amount of shrinkage, read the temperature that deviates from the 0% baseline due to shrinkage, and heat shrink the temperature This is the starting temperature.
  • the “thermosetting temperature” in the present specification is the measurement and calculation of the temperature at the rising position of the thermosetting reaction when the thermosetting resin to be measured is heated, and that temperature is the thermosetting temperature. .
  • the insulating property of the resin substrate 11 may be a resin having a volume resistivity that can provide the insulating property required for the LED element substrate 1 when, for example, the LED display device is integrated as a backlight or the like. Desired.
  • the volume resistivity of the resin substrate 11 is preferably 10 14 ⁇ ⁇ cm or more, and more preferably 10 18 ⁇ ⁇ cm or more.
  • the thickness of the resin substrate 11 is not particularly limited, but is preferably about 10 ⁇ m or more and 100 ⁇ m or less from the viewpoint of heat resistance and insulation, and a balance between manufacturing costs. Also, the thickness is preferably within the above-mentioned thickness range from the viewpoint of maintaining good productivity when manufacturing by the roll-to-roll method.
  • the metal wiring part 13 is preferably joined to the surface of the LED element substrate 1 by a dry laminating method with the adhesive layer 12 interposed therebetween.
  • a known resin adhesive can be appropriately used as long as it has heat resistance at the thermosetting temperature of the thermosetting ink forming the insulating protective film 15.
  • these resin adhesives urethane-based, polycarbonate-based, or epoxy-based adhesives can be particularly preferably used.
  • the metal wiring portion 13 is a wiring pattern formed by a conductive base material on the surface of the LED element substrate 1.
  • the metal wiring portion 13 has a function of supplying electricity by conducting a necessary current by passing between 1000 or more LED elements 2.
  • the metal wiring portion 13 also serves as a heat radiating portion serving as a discharge path for the heat generated from the LED element 2 to the outside of the LED display device or the like.
  • the arrangement of the metal wiring part 13 is not limited to a specific arrangement as long as the LED element can be mounted in a conductive manner.
  • the LED element substrate 1 it is essential that at least 95% or more, preferably 98% or more of one surface of the resin substrate 11 is covered with the metal wiring portion 13. Thereby, preferable heat dissipation can be imparted to the LED display device using the LED element substrate 1.
  • the metal wiring portion 13 is a matrix unit as shown in FIG. 1 where the basic unit of mounting, which is a joint portion of the LED element 2 to the metal wiring portion 13, is a matrix. It is preferable that the arrangement is repeated in both the X and Y directions.
  • the basic unit of mounting is a basic configuration of mounting composed of a plurality of adjacent rectangular conductive plate portions 131 and insulating slit portions 132 that are gap portions between the conductive plate portions 131.
  • the metal wiring part 13 has a connector wiring 133 that connects between the conductive plate parts 131 arranged mainly in different rows.
  • the metal wiring part 13 has the terminal 134 for making the electrical connection with the LED mounting module 10 and an external power supply etc. in the terminal part. Since the LED element substrate 1 can be formed by using a single resin film as a substrate, the arrangement and combination of the conductive plate portion 131, the connector wiring 133, and the terminal 134 constituting the metal wiring portion 13 are flexible in design. However, it is possible to use any connection such as series, parallel, or a complicated combination of the conductive forms of the large number of LED elements 2. Thus, by providing at least two electrical outlets, electrical connection with an external power source or the like is possible, and flexible wiring is possible according to the demand of the LED display device as the final product.
  • the width of the insulating slit portion (corresponding to the “insulating portion” of the present invention) 132 in the metal wiring portion 13 is preferably a slit shape of 0.1 mm or more and 1.0 mm or less, and is 0.2 mm or more and 0.5 mm or less. More preferably.
  • the slit shape means a slit shape as a whole, and is not necessarily a simple linear shape (including a curved line, of course). For example, an uneven portion is arranged in a part in plan view as a solder connection portion of an LED. It is meant to include things.
  • the width of the insulating slit portion 132 is preferably 0.1 mm or more. Further, when the width of the insulating slit portion 132 is 1.0 mm or less, preferable heat transfer between the conductive plate portions 131 can be achieved.
  • the metal thermal conductivity ⁇ constituting the metal wiring part 13 is preferably 200 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less, and preferably 300 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less. More preferred.
  • the electric resistivity R of the metal constituting the metal wiring part 13 is preferably 3.00 ⁇ 10 ⁇ 8 ⁇ m or less, and more preferably 2.50 ⁇ 10 ⁇ 8 ⁇ m or less.
  • the measurement of the thermal conductivity ⁇ can use, for example, a thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd., and the measurement of the electrical resistivity R can be performed, for example, a 6517B type electrometer manufactured by Keithley. Can be used.
  • the thermal conductivity ⁇ is 403 W / (m ⁇ K)
  • the electrical resistivity R is 1.55 ⁇ 10 ⁇ 8 ⁇ m.
  • the heat dissipation from the LED element is stabilized and an increase in electrical resistance can be prevented, the variation in light emission between the LEDs is reduced, and the LED can stably emit light, and the LED life is also extended.
  • the product life of the display device itself in which the LED element substrate is incorporated as a backlight can be extended.
  • the surface resistance value of the metal wiring part 13 is preferably 500 ⁇ / ⁇ or less, more preferably 300 ⁇ / ⁇ or less, further preferably 100 ⁇ / ⁇ or less, and particularly preferably 50 ⁇ / ⁇ or less.
  • the lower limit is about 0.005 ⁇ / ⁇ .
  • a 6517B type electrometer manufactured by Keithley can be used for measuring the surface resistance value.
  • the thickness of the metal wiring portion 13 may be appropriately set according to the magnitude of the withstand current required for the LED element substrate 1 and is not particularly limited, and examples thereof include a thickness of 10 ⁇ m to 50 ⁇ m. From the viewpoint of improving heat dissipation, the thickness of the metal wiring portion 13 is preferably 10 ⁇ m or more. If the thickness of the metal layer is less than the lower limit, the influence of the heat shrinkage of the resin substrate 11 is large, and the warp after the processing is likely to increase during the solder reflow process. Is preferably 10 ⁇ m or more. On the other hand, when the thickness is 50 ⁇ m or less, sufficient flexibility of the LED element substrate can be maintained, and a decrease in handling property due to an increase in weight can be prevented.
  • the metal wiring part 13 is an electrolytic copper foil
  • the surface roughness Rz on the side of the laminated surface with the resin substrate 11 is preferably 1.0 or more and 10.0 or less.
  • Rz is a ten-point average roughness defined by JISB0601. From the viewpoint of heat dissipation, by setting the surface roughness within the above range, the surface area on the side of the laminated surface with the resin substrate 11 can be increased, and the heat dissipation can be further enhanced. Moreover, since the adhesiveness with the resin substrate 11 can be improved by the surface unevenness, the heat dissipation can also be improved by this.
  • the copper foil surface having such a surface roughness Rz the rough surface side (mat surface side) of the electrolytic copper foil can be effectively utilized.
  • solder layer In the LED element substrate 1, the metal wiring portion 13 and the LED element 2 are joined through the solder layer 14. Details of the soldering method will be described later, but can be roughly classified into either a reflow method or a laser method.
  • the insulating protective film 15 is mainly a substrate for an LED element except for a portion that requires electrical bonding on the surface of the metal wiring portion 13 and the resin substrate 11 with thermosetting ink. 1 to improve the migration resistance.
  • thermosetting ink a known ink can be suitably used as long as the thermosetting temperature is about 100 ° C. or less.
  • an ink that can preferably use an insulating ink having a polyester resin, an epoxy resin, an epoxy resin and a phenol resin, an epoxy acrylate resin, a silicone resin, or the like as a base resin, respectively.
  • polyester-based thermosetting insulating ink is particularly preferable as a material for forming the insulating protective film 15 of the LED element substrate 1 because of its excellent flexibility.
  • thermosetting ink for forming the insulating protective film 15 may be a white ink further containing an inorganic white pigment such as titanium dioxide, for example.
  • formation of the insulating protective film 15 with the above insulating thermosetting ink can be performed by well-known methods, such as screen printing.
  • the reflective layer 16 is provided on the outermost surface on the light emitting surface side of the LED element substrate except for the mounting portion of the LED element 2 for the purpose of improving the light emitting capability in the LED mounting module 10 described above. Laminated. It is not particularly limited as long as it is a member having a reflective surface for reflecting the light emitted from the LED element and guiding it in a predetermined direction, but white polyester foam type white polyester, white polyethylene resin, silver vapor-deposited polyester, etc. And can be used as appropriate according to the required specifications.
  • the LED element substrate 1 can be manufactured by an etching process which is one of conventionally known methods for manufacturing an electronic substrate. Further, it is preferable to subject the resin in advance to a heat resistance improving process by annealing according to the material resin to be selected.
  • the annealing treatment temperature when the thermoplastic resin forming the resin substrate 11 is PEN, the glass transition temperature to the melting point range, more specifically 160 ° C. to 260 ° C., more preferably 180 ° C. to 230 ° C. Range.
  • An example of the annealing time is about 10 seconds to 5 minutes. According to such heat treatment conditions, the thermal contraction start temperature of PEN, which is generally about 80 ° C., can be improved to about 100 ° C.
  • a metal wiring part 13 such as a copper foil used as a material for the metal wiring part 13 is laminated on the surface of the resin substrate 11 that has been annealed to obtain a laminate that uses the LED element substrate 1 as a material.
  • a metal foil is adhered to the surface of the resin substrate 11 with an adhesive, or a plating method or a vapor deposition method (sputtering, ion plating, electron beam evaporation, Examples thereof include a method of depositing the metal wiring portion 13 by vacuum deposition, chemical vapor deposition, or the like. From the viewpoint of cost and productivity, a method of bonding a metal foil to the surface of the resin substrate 11 with a urethane-based adhesive is advantageous.
  • an etching mask patterned in the shape of the metal wiring portion 13 is formed on the surface of the metal foil of the above laminate.
  • the etching mask is provided so that the wiring pattern forming portion of the metal foil that will become the metal wiring portion 13 is free from corrosion by the etching solution.
  • the method for forming the etching mask is not particularly limited.
  • the etching mask may be formed on the surface of the laminated sheet by exposing the photoresist or dry film through the photomask and then developing the ink mask.
  • An etching mask may be formed on the surface of the laminated sheet by this printing technique.
  • the metal foil in a portion not covered with the etching mask is removed with an immersion liquid. Thereby, parts other than the location used as the metal wiring part 13 are removed among metal foil.
  • the etching mask is removed using an alkaline stripping solution. As a result, the etching mask is removed from the surface of the metal wiring portion 13.
  • an insulating protective film 15 and a reflective layer 16 are further laminated as necessary. These laminations can be performed by a known method. Depending on the material to be employed, various laminating methods such as screen printing, dry lamination, thermal lamination, and the like can be used.
  • the LED mounting module 10 can be obtained by directly mounting the LED element 2 on the metal wiring portion 13 of the LED element substrate 1.
  • the LED element 2 is a light emitting element utilizing light emission at a PN junction where a P-type semiconductor and an N-type semiconductor are joined.
  • Any structure of the LED element 2 can be used for the LED mounting module 10 of the present invention, and among the above, the LED element having a structure in which both the P-type and N-type electrodes are provided on the element single side is particularly preferably used. Can do.
  • the LED mounting module 10 exhibits high heat dissipation by covering the base material with a metal having a predetermined thermal conductivity and electrical resistance value of 95% or more on the substrate as the LED element substrate 1.
  • the LED element 2 is directly mounted on the metal wiring portion 13 that can be used. Thereby, the heat
  • the LED mounting module 10 is preferably applied to 32 inches or more, preferably 65 inches or more in terms of screen size, on the assumption that 100 or more LED elements, preferably 1000 or more LED elements 2 are mounted. Since the LED element substrate of the present invention has a high degree of freedom in circuit design, it is possible to freely adjust the arrangement interval of the LED elements 2 to be mounted. It can respond at a lower cost.
  • substrate 1 for LED elements is demonstrated.
  • the joining of the LED element 2 to the metal wiring part 13 can be preferably performed by soldering.
  • This solder bonding can be performed by a reflow method or a laser method.
  • the LED element 2 is mounted on the metal wiring part 13 through solder, and then the LED element substrate 1 is transported into the reflow furnace, and hot air at a predetermined temperature is applied to the metal wiring part 13 in the reflow furnace.
  • the solder paste is melted by spraying, and the LED element 2 is soldered to the metal wiring portion 13.
  • the laser method is a method of soldering the LED element 2 to the metal wiring portion 13 by locally heating the solder with a laser.
  • soldering the LED element 2 to the metal wiring portion 13 it is preferable to perform a solder reflow method by laser irradiation from the back surface side of the resin substrate 11. Thereby, the ignition of the organic component of the solder by heating and the accompanying damage to the base material can be more reliably suppressed.
  • FIG. 6 is a perspective view schematically showing an outline of a layer configuration of the LED display device 100 using the LED mounting module 10.
  • the LED display device 100 displays information (images) such as characters and images on the monitor 3 by driving (emitting light) the plurality of LED elements 2 arranged in a matrix at predetermined intervals.
  • the LED element 2 is mounted on the metal wiring portion 13 of the LED element substrate 1.
  • the heat dissipation structure 4 for radiating the heat radiated from the LED mounting module 10 to the outside more efficiently is installed on the back surface side of the resin substrate 11.
  • the LED element substrate is coated with a metal wiring part over a predetermined ratio (95% or more) of the surface of the resin substrate, and the thermal conductivity of the metal constituting the metal wiring part
  • the electrical resistivity R was optimized within a predetermined range.
  • required in a large sized LED display apparatus improves notably.
  • copper having a size of 330 mm ⁇ 560 mm annealed PEN film having a thickness of 50 ⁇ m and a width of an insulating slit between adjacent conductive plate portions of 1.0 mm is used. What formed the metal wiring part which consists of foils so that said coverage may become 95% is mentioned.
  • the LED mounting module in which 160 LED elements in total, 8 in the X direction and 20 in the Y direction, are mounted on this LED element substrate has an insulating slit portion in the Y direction of 2.0 mm that is not related to ensuring conduction. A clear improvement in heat dissipation was recognized as compared with the case where the coating rate was 90% and the other specifications were made exactly the same as above.
  • the resin substrate of the LED element substrate was made of a large single resin film, and the surface of the surface was covered with a metal wiring part over a predetermined ratio.
  • productivity of the LED mounting module which comprises a large sized LED display apparatus improves notably, and the heat dissipation requested
  • a metal made of copper foil on a PEN film having a size of 330 mm ⁇ 560 mm and an insulating slit portion between adjacent conductive plate portions having a width of 1.0 mm What formed the wiring part so that said coverage may become 95% is mentioned.
  • the LED mounting module in which 160 LED elements in total, 8 in the X direction and 20 in the Y direction, are mounted on this LED element substrate has an insulating slit portion in the Y direction of 2.0 mm that is not related to ensuring conduction. A clear improvement in heat dissipation was recognized as compared with the case where the coating rate was 90% and the other specifications were made exactly the same as above.
  • the metal wiring part is made of copper.
  • the average thickness of the metal wiring part was set to 5 ⁇ m or more and 50 ⁇ m or less. Thereby, sufficient flexibility of the board
  • the insulating part formed on the metal wiring part is formed in a slit shape having a width of 0.1 mm or more and 1.0 mm or less.
  • preferable heat transfer between the conductive plate portions is also possible.
  • preferable heat transfer for example, when local heat generation occurs in a large-sized LED backlight of a local dimming method (area control with fine LED emission luminance), the conductivity of a portion at a relatively high temperature is detected. There is an effect of transferring heat from the plate portion 131 to the conductive plate portion 131 that remains at a relatively low temperature. Thereby, the local high temperature in LED backlight can be dissipated to the whole board
  • the metal wiring part was formed of an electrolytic copper foil having a surface roughness Rz of 1.0 to 10.0 on the side of the laminated surface with the resin substrate.
  • the resin film forming the resin substrate was made of polyethylene naphthalate having a heat shrinkage starting temperature of 100 ° C. or higher subjected to heat resistance improvement treatment.
  • An LED mounting module in which at least 100 LED elements are mounted on an LED element substrate.
  • An LED mounting module in which at least 1000 LED elements are mounted on an LED element substrate.
  • An LED display device provided with the LED mounting module of the present invention as a backlight Since the backlight type display device needs to arrange a larger number of LEDs on the substrate than the edge light type, the increase in the amount of heat generated from the LED element is caused by the decrease in the light emitting capacity of the LED element and the resulting This leads to an increase in power consumption. Further, by expanding the peripheral member such as the substrate by heat dissipation and further repeating ON / OFF, it becomes a factor of deteriorating the peripheral member such as warp and crack. By using the LED mounting module of the present invention as a backlight, power consumption of each LED element can be suppressed and variation in light emission luminance can be reduced due to its high heat dissipation and low electrical resistance. Further, deterioration of peripheral members such as a substrate due to heat can be prevented and the product life can be extended.
  • an LED element substrate As described above, according to the present invention, it is possible to provide an LED element substrate, an LED mounting module, and an LED display device excellent in heat dissipation and productivity under productivity and quality stability that are more advantageous than those in the past.

Abstract

The purpose of the present invention is to provide an LED-mounted module which can be optimally used as a backlight in large LED display devices and which can improve heat dissipation and productivity of LED display devices, etc. This LED element substrate 1 is provided with a resin substrate 11 comprising a flexible resin film and a metal wiring unit 13 which is laminated on the resin substrate 11 for conducting between electrodes of LEDs elements 2 and on which an insulation unit is formed. The thermal conductivity λ of the metal configuring the metal wiring unit 13 is 300-500 W/(m*K), the electrical resistivity R of the metal configuring the metal wiring unit 13 is 2.50×10-8 Ωm or less, and the metal wiring unit 13 covers 95% or more of one surface of the resin substrates 11.

Description

LED素子用基板、LED実装モジュール、及び、それらを用いたLED表示装置LED element substrate, LED mounting module, and LED display device using the same
 本発明は、LED素子用基板、LED実装モジュール、及び、それらを用いたLED表示装置に関する。より詳しくは、多数の発光ダイオード(LED)素子を実装することにより大型のLED表示装置の構成に用いることができて、且つ、LED表示装置の生産性と放熱性の向上に寄与することができるLED素子用基板と、それを用いたLED実装モジュール及びLED表示装置に関する。 The present invention relates to an LED element substrate, an LED mounting module, and an LED display device using them. More specifically, by mounting a large number of light emitting diode (LED) elements, it can be used for the construction of a large LED display device, and can contribute to the improvement of productivity and heat dissipation of the LED display device. The present invention relates to an LED element substrate, an LED mounting module using the same, and an LED display device.
 近年、従来のブラウン管型のモニターに代わって、低消費電力化、機器の大型化と薄型化の要請に応え得るものとして、LED素子をバックライト光源として用いた液晶テレビや液晶ディスプレー等のLED表示装置の普及が急速に進展している。 In recent years, LED displays such as liquid crystal televisions and liquid crystal displays that use LED elements as backlight sources can be used to meet demands for lower power consumption and larger and thinner devices instead of conventional CRT monitors. The spread of equipment is rapidly progressing.
 LED素子をこれらの表示装置において光源として実装するためには、通常、支持基板と配線部とからなる各種のLED素子用基板が用いられている。そして、これらの基板上にLED素子を実装した積層体(本明細書では、これを以下「LED実装モジュール」と言う)が、上記の液晶テレビ等の各種表示装置の光源、即ち、LEDバックライトとして広く用いられている。 In order to mount an LED element as a light source in these display devices, various types of LED element substrates each including a support substrate and a wiring portion are usually used. A laminate in which LED elements are mounted on these substrates (hereinafter referred to as “LED mounting module” in this specification) is a light source of various display devices such as the above-mentioned liquid crystal televisions, that is, an LED backlight. Is widely used.
 これらの表示装置においては、高画質化のために、光源の輝度の向上が要求される。しかし、輝度の向上に伴うLED素子からの発熱量の増加は、消費電力の増加やLED素子の発光能力の低下につながる。よってLED実装モジュールには、輝度向上と併せて、放熱性の向上が強く求められるようになる。この放熱性向上の要求は、近年大型化の進む液晶テレビ等のディスプレー等において特に喫緊の課題となっている。 These display devices are required to improve the luminance of the light source in order to improve the image quality. However, an increase in the amount of heat generated from the LED element due to the improvement in luminance leads to an increase in power consumption and a decrease in the light emission capability of the LED element. Therefore, the LED mounting module is strongly required to improve the heat dissipation as well as the luminance. This demand for improvement in heat dissipation is a particularly urgent issue in displays and the like for liquid crystal televisions and the like that have been increasing in size in recent years.
 放熱性を向上させるためのLED素子の実装の形態としては、例えば、金属ベース基板の金属面にLED素子を直接実装する方法が提案されている(特許文献1参照)。しかし、この方法は、金属ベースが板状であるために設計の自由度に乏しく、基板1枚ごとのバッチ生産となるため生産性も低い。 As a mounting form of the LED element for improving the heat dissipation, for example, a method of directly mounting the LED element on a metal surface of a metal base substrate has been proposed (see Patent Document 1). However, this method has a low degree of freedom in design because the metal base is plate-like, and the productivity is low because batch production is performed for each substrate.
 これに対し、樹脂基板に金属回路を形成したフレキシブル基板であって、放熱機能を発現させるためだけに導通回路とは別途に設けられる金属層(特許文献2)や、或いは、導通のための回路とは分割された部分である熱接続部を別途形成した回路基板も提案されている(特許文献3)。しかしながら、これらのフレキシブル基板においては、金属製の放熱構造部分の形成に伴う作業工程上の追加負担と回路間の短絡のリスクが増加するというデメリットが不可避であった。 On the other hand, it is a flexible substrate in which a metal circuit is formed on a resin substrate, and a metal layer (Patent Document 2) provided separately from the conduction circuit only to develop a heat dissipation function, or a circuit for conduction Has also been proposed (Patent Document 3), in which a thermal connection part, which is a divided part, is separately formed. However, these flexible substrates inevitably suffer from the disadvantage that an additional burden on the work process associated with the formation of the metal heat dissipation structure and the risk of a short circuit between the circuits increase.
 そして、上記いずれのLED素子用基板においても、特に、1000個以上のLED素子の実装を必須とする画面サイズが65インチ以上の大型の表示装置を構成する場合においては、複数のLED素子用基板をコネクターで接続することによってバックライトを構成しているのが現状であり、これらの複数の基板を、バックライトの内部に高い位置精度で配置する困難性もLED表示装置等の製造現場において、更なる生産性の向上を阻害する要因となっていた。 In any of the above LED element substrates, in particular, when a large display device having a screen size of 65 inches or more that requires mounting of 1000 or more LED elements is configured, a plurality of LED element substrates is used. At present, the backlight is configured by connecting the connectors with each other, and it is difficult to arrange the plurality of substrates with high positional accuracy inside the backlight. This was a factor that hindered further improvement in productivity.
特開2009-81194号公報JP 2009-81194 A 特開2012-59867号公報JP 2012-59867 A 特表2013-522893号公報Special table 2013-522893
 本発明は、以上のような状況に鑑みてなされたものであり、LED表示装置のバックライトとして好ましく用いることができ、LED表示装置等の放熱性及び生産性を高めることができるLED素子用基板、LED実装モジュール、及び、それらを用いたLED表示装置を提供することを目的とする。 The present invention has been made in view of the above situation, and can be preferably used as a backlight of an LED display device, and can improve heat dissipation and productivity of the LED display device and the like. It is an object to provide an LED mounting module and an LED display device using them.
 本発明者らは、鋭意研究を重ねた結果、LED素子用基板を以下のような構成とすることによって上記課題を解決可能であることを見出すに至った。即ち、樹脂フィルム上に、多数のLED素子を実装することができる金属配線部を形成したものとし、更には、上述の樹脂フィルムの表面において、所定の割合以上の大部分を、この金属配線部によって被覆する構成とすることにより、従来方法よりも、LED表示装置等の放熱性及び生産性を顕著に高めることができることを見出し、本発明を完成するに至った。具体的に本発明は以下のものを提供する。 As a result of intensive studies, the present inventors have found that the above problem can be solved by configuring the LED element substrate as follows. That is, it is assumed that a metal wiring part on which a large number of LED elements can be mounted is formed on a resin film, and moreover, on the surface of the above-mentioned resin film, most of a predetermined ratio or more is the metal wiring part. It has been found that the heat dissipation and productivity of the LED display device and the like can be remarkably enhanced as compared with the conventional method, and the present invention has been completed. Specifically, the present invention provides the following.
 (1) 可撓性を有する樹脂フィルムからなる樹脂基板と、前記樹脂基板上に積層されており、LED素子の両電極間を導通させるための、絶縁部が形成されている金属配線部と、を備え、前記金属配線部を構成する金属の熱伝導率λが300W/(m・K)以上500W/(m・K)以下であり、前記金属配線部を構成する金属の電気抵抗率Rが2.50×10-8Ωm以下であり、前記金属配線部は、前記樹脂基板の一方の表面の95%以上の範囲を被覆しているLED素子用基板。 (1) A resin substrate made of a resin film having flexibility, a metal wiring portion that is laminated on the resin substrate and has an insulating portion for conducting between both electrodes of the LED element, The metal wire constituting the metal wiring part has a thermal conductivity λ of 300 W / (m · K) or more and 500 W / (m · K) or less, and the metal resistivity R constituting the metal wiring part is 2. A substrate for an LED element that is 50 × 10 −8 Ωm or less, and wherein the metal wiring portion covers a range of 95% or more of one surface of the resin substrate.
 (2) 対角線の長さが少なくとも65インチ以上であって可撓性を有する単一の樹脂フィルムからなる樹脂基板と、前記樹脂基板上に積層されており、LED素子の両電極間を導通させるための、絶縁部が形成されている金属配線部と、を備え、前記金属配線部は、マトリックス状に配置される1000個以上のLED素子を導通可能に形成されていて、前記金属配線部は、前記樹脂基板の一方の表面の95%以上の範囲を被覆しているLED素子用基板。 (2) The length of the diagonal line is at least 65 inches or more and a resin substrate made of a single flexible resin film is laminated on the resin substrate, and conducts between both electrodes of the LED element. A metal wiring part formed with an insulating part, wherein the metal wiring part is formed to be able to conduct 1000 or more LED elements arranged in a matrix, and the metal wiring part is The LED element substrate covering 95% or more of one surface of the resin substrate.
 (3) 前記金属配線部が銅からなる(1)又は(2)に記載のLED素子用基板。 (3) The LED element substrate according to (1) or (2), wherein the metal wiring portion is made of copper.
 (4) 前記金属配線部の平均厚さが5μm以上50μm以下である(1)から(3)のいずれかに記載のLED素子用基板。 (4) The LED element substrate according to any one of (1) to (3), wherein an average thickness of the metal wiring portion is 5 μm or more and 50 μm or less.
 (5) 前記絶縁部が、幅0.1mm以上1.0mm以下のスリット状に形成されている(1)から(4)のいずれかに記載のLED素子用基板。 (5) The LED element substrate according to any one of (1) to (4), wherein the insulating portion is formed in a slit shape having a width of 0.1 mm to 1.0 mm.
 (6) 前金属配線部が電解銅箔であり、前記樹脂基板との積層面側の表面粗さRzが1.0以上10.0以下である(1)から(5)のいずれかに記載のLED素子用基板。 (6) The front metal wiring portion is an electrolytic copper foil, and the surface roughness Rz on the side of the laminated surface with the resin substrate is 1.0 or more and 10.0 or less, according to any one of (1) to (5) LED element substrate.
 (7) 前記樹脂基板を形成する樹脂フィルムがポリエチレンナフタレートであって、該ポリエチレンナフタレートの熱収縮開始温度が、100℃以上である(1)から(6)のいずれかに記載のLED素子用基板。 (7) The LED element according to any one of (1) to (6), wherein the resin film forming the resin substrate is polyethylene naphthalate, and the thermal shrinkage start temperature of the polyethylene naphthalate is 100 ° C. or higher. Substrate.
 (8) (1)から(7)のいずれかに記載のLED素子用基板に少なくとも100個以上のLED素子を実装してなるLED実装モジュール。 (8) An LED mounting module in which at least 100 LED elements are mounted on the LED element substrate according to any one of (1) to (7).
 (9) (1)から(7)のいずれかに記載のLED素子用基板に少なくとも1000個以上のLED素子を実装してなるLED実装モジュール。 (9) An LED mounting module in which at least 1000 LED elements are mounted on the LED element substrate according to any one of (1) to (7).
 (10) (8)又は(9)に記載のLED実装モジュールと、表示用画面と、を積層してなるLED表示装置。 (10) An LED display device in which the LED mounting module according to (8) or (9) and a display screen are stacked.
 (11) (8)又は(9)に記載のLED実装モジュールをバックライトとして備えるLED表示装置。 (11) An LED display device comprising the LED mounting module according to (8) or (9) as a backlight.
 本発明によれば、例えば画面サイズが65インチ以上である大型のLED表示装置等、大型のLED表示装置のバックライトとしても好ましく用いることができ、LED表示装置等の放熱性及び生産性を高めることができるLED素子用基板、LED実装モジュール、及び、それらを用いたLED表示装置を提供することのバックライトとしても好ましく用いることができ、放熱性及び生産性に優れるLED素子用基板及びLED実装モジュールを提供することができる。 According to the present invention, for example, it can be preferably used as a backlight of a large LED display device such as a large LED display device having a screen size of 65 inches or more, and the heat dissipation and productivity of the LED display device are improved. LED device substrate, LED mounting module, and LED device substrate and LED mounting which can be preferably used as a backlight for providing an LED display device using the same, and have excellent heat dissipation and productivity Modules can be provided.
本発明のLED素子用基板の金属配線部の配置を模式的に示す平面図である。It is a top view which shows typically arrangement | positioning of the metal wiring part of the board | substrate for LED elements of this invention. 図1の部分拡大図であり、本発明のLED素子用基板の金属配線部の配置の説明に供する図面である。It is the elements on larger scale of Drawing 1, and is a drawing for explaining arrangement of a metal wiring part of a substrate for LED elements of the present invention. 本発明のLED実装モジュールの部分断面図であり、本発明のLED実装モジュールにおけるLED素子の実装態様の説明に供する図面である。It is a fragmentary sectional view of the LED mounting module of this invention, and is drawing used for description of the mounting aspect of the LED element in the LED mounting module of this invention. 本発明のLED素子用基板にLED素子を実装してなるLED実装モジュールの一例を模式的示す平面図である。It is a top view which shows typically an example of the LED mounting module formed by mounting an LED element on the board | substrate for LED elements of this invention. 図4の部分拡大図であり、本発明のLED実装モジュールにおけるLED素子の実装態様の説明に供する図面である。FIG. 5 is a partially enlarged view of FIG. 4 and is a diagram for explaining a mounting mode of LED elements in the LED mounting module of the present invention. 本発明のLED実装モジュールを用いてなるLED表示装置の層構成の概略を模式的に示す斜視図である。It is a perspective view which shows typically the outline of the layer structure of the LED display apparatus which uses the LED mounting module of this invention.
 以下、本発明のLED素子用基板、LED実装モジュール、及びLED表示装置の各実施形態について説明する。本発明は、以下の実施形態に何ら限定されず、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, embodiments of the LED element substrate, the LED mounting module, and the LED display device of the present invention will be described. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention.
 <LED素子用基板>
 LED素子用基板1は、図1、図2に示す通り、可撓性を有する樹脂フィルムからなる樹脂基板11の表面に、金属箔からなる導電性の金属配線部13が、接着剤層12(図3参照)を介して形成されている。金属配線部13は、樹脂基板11上において、マトリックス状に配置されるLED素子2を導通することができる態様で形成されている。尚、樹脂基板は、大型のものであっても、上記の可撓性を有する複数の樹脂フィルムを接合したものではなく、単一の樹脂フィルムであることが好ましく、樹脂フィルムを基材材料とする本発明においてはそれが可能である。
<LED element substrate>
As shown in FIG. 1 and FIG. 2, the LED element substrate 1 has a conductive metal wiring portion 13 made of metal foil on the surface of a resin substrate 11 made of a flexible resin film. (See FIG. 3). The metal wiring part 13 is formed on the resin substrate 11 in such a manner that the LED elements 2 arranged in a matrix can be conducted. In addition, even if the resin substrate is large-sized, it is preferable that the resin substrate is not a single resin film bonded to the plurality of flexible resin films, and the resin film is used as a base material. This is possible in the present invention.
 LED素子用基板1は、図3、図5に示す通り、樹脂基板11及び金属配線部13上に熱硬化型インキ等からなる絶縁性保護膜15が形成されている。この絶縁性保護膜15は、LED素子用基板1の耐マイグレーション特性向上のために、金属配線部13の表面のうちLED素子2を実装するための接続部分を除く全面、及び、樹脂基板11の表面のうち金属配線部13の非形成部分の概ね全面を覆う態様で形成される。 The LED element substrate 1 has an insulating protective film 15 made of thermosetting ink or the like formed on the resin substrate 11 and the metal wiring portion 13 as shown in FIGS. In order to improve the migration resistance of the LED element substrate 1, the insulating protective film 15 is formed on the entire surface of the metal wiring portion 13 except for the connection portion for mounting the LED element 2 and on the resin substrate 11. It is formed so as to cover almost the entire surface of the surface where the metal wiring portion 13 is not formed.
 LED素子用基板1は、図3に示す通り、樹脂基板11及び金属配線部13上に、更に、白色樹脂等からなる反射層16が、絶縁性保護膜15の上に更に積層されているものであることが好ましい。特に、LED素子用基板1にLED素子2を実装したLED実装モジュール10を、図6に示すようなLED表示装置100のバックライトとして用いる場合には、この反射層16をLED実装モジュールの最表面に配置することが一般的には必須である。ただし、絶縁性保護膜15に反射機能を備えさせて、これにより、反射層を設置せずに必要な反射機能を絶縁性保護膜によって担保することもできる。 As shown in FIG. 3, the LED element substrate 1 is obtained by further laminating a reflective layer 16 made of a white resin or the like on the resin substrate 11 and the metal wiring portion 13 on the insulating protective film 15. It is preferable that In particular, when the LED mounting module 10 in which the LED element 2 is mounted on the LED element substrate 1 is used as a backlight of the LED display device 100 as shown in FIG. 6, the reflective layer 16 is used as the outermost surface of the LED mounting module. In general, it is essential to arrange them. However, it is also possible to provide the insulating protective film 15 with a reflective function, thereby ensuring the necessary reflective function with the insulating protective film without installing a reflective layer.
 図3に示すように、LED素子用基板1は、LED素子2が、ハンダ層14を介して、金属配線部13の上に導電可能な態様で実装されたLED実装モジュール10となる。そして、このLED実装モジュール10は、大型のLED表示装置やその他の様々な大型のLED素子搭載電子機器に好ましく用いることができる。 As shown in FIG. 3, the LED element substrate 1 is an LED mounting module 10 in which the LED element 2 is mounted on the metal wiring portion 13 in a conductive manner via the solder layer 14. And this LED mounting module 10 can be preferably used for a large-sized LED display device and other various large-sized LED element mounting electronic devices.
 LED素子用基板1のサイズについては、図4に示す対角線dの長さが、少なくとも32インチ以上、より好ましくは65インチ以上である。又、100個以上、好ましくは1000個以上のLED素子2を、マトリックス状に実装することができるものである。図4は、LED素子用基板1へのLED素子2の実装態様の一例であるが、X方向に40個、Y方向に30個、計1200個のLED素子2が実装されている一例を図示している。尚、本発明のLED素子用基板の平面形状は、必ずしも矩形状に限定されない。本明細書において、「対角線の長さが32インチ以上である」とは、例えば、LED素子用基板が楕円形である場合にはその長径の長さをいう。例えば、長径の長さが32インチ以上である楕円形状のLED素子用基板であって、本願のその他の構成要件を充足するものは、いずれも本発明の範囲内である。 Regarding the size of the LED element substrate 1, the length of the diagonal line d shown in FIG. 4 is at least 32 inches or more, more preferably 65 inches or more. Moreover, 100 or more, preferably 1000 or more LED elements 2 can be mounted in a matrix. FIG. 4 is an example of a mounting mode of the LED elements 2 on the LED element substrate 1. FIG. 4 shows an example in which 40 LED elements 2 in the X direction and 30 in the Y direction are mounted in total. Show. The planar shape of the LED element substrate of the present invention is not necessarily limited to a rectangular shape. In this specification, “the length of the diagonal is 32 inches or more” means, for example, the length of the major axis when the LED element substrate is elliptical. For example, any ellipse-shaped LED element substrate having a major axis length of 32 inches or more that satisfies the other constituent requirements of the present application is within the scope of the present invention.
 [樹脂基板]
 樹脂基板11は、対角線dの長さが、上記のLED素子用基板1のサイズに合わせて少なくとも32インチ以上、より好ましくは65インチ以上であるのみならず、そのようなサイズの樹脂フィルムが単一の樹脂フィルムであることが好ましい。本明細書において、「単一の樹脂フィルム」とは、当該樹脂フィルムが、複数の樹脂フィルムの集合体或いはそれらが物理的に接合されてなる接合体ではなく、単体の枚葉フィルムからなる樹脂フィルムであることを意味する。このような単一の大型のフィルムは、従来の規格範囲外のフィルムを製造可能な特殊な押出し成形装置によって製造することができる。
[Resin substrate]
The resin substrate 11 not only has a length of the diagonal line d of at least 32 inches or more, more preferably 65 inches or more in accordance with the size of the LED element substrate 1 described above, but a resin film having such a size is not limited. One resin film is preferable. In the present specification, the term “single resin film” means that the resin film is not an assembly of a plurality of resin films or a joined body in which they are physically joined, but a resin comprising a single sheet film. Means film. Such a single large film can be produced by a special extrusion apparatus capable of producing a film outside the conventional standard range.
 樹脂基板11の材料として、熱可塑性樹脂をシート状に成形した可撓性を有する樹脂フィルムを用いることができる。ここで、シート状とはフィルム状を含む概念であり本発明において両者に差はない。 As the material of the resin substrate 11, a flexible resin film obtained by molding a thermoplastic resin into a sheet shape can be used. Here, the sheet form is a concept including a film form, and there is no difference between them in the present invention.
 又、樹脂基板11の材料として用いる熱可塑性樹脂には耐熱性及び絶縁性が高いものであることが求められる。このような樹脂として、耐熱性と加熱時の寸法安定性、機械的強度、及び耐久性に優れるポリイミド樹脂(PI)を用いることができる。又、アニール処理等の耐熱性向上処理を施すことによって耐熱性と寸法安定性を向上させたその他の各種の熱可塑性樹脂を用いることもできる。例えば、アニール処理によって必要十分な耐熱性と寸法安定性を付与したポリエチレンナフタレート(PEN)等である。又、難燃性の無機フィラー等の添加によって難燃性を向上させたPET等も樹脂基板の材料樹脂として選択することができる。 Also, the thermoplastic resin used as the material for the resin substrate 11 is required to have high heat resistance and insulation. As such a resin, a polyimide resin (PI) excellent in heat resistance, dimensional stability during heating, mechanical strength, and durability can be used. In addition, various other thermoplastic resins whose heat resistance and dimensional stability are improved by performing a heat resistance improving process such as an annealing process can also be used. For example, polyethylene naphthalate (PEN) that has been provided with necessary and sufficient heat resistance and dimensional stability by annealing treatment. Moreover, PET etc. which improved the flame retardance by addition of a flame retardant inorganic filler etc. can also be selected as material resin of a resin substrate.
 樹脂基板11を形成する熱可塑性樹脂は上記のアニール処理によって、その熱収縮開始温度が、絶縁性保護膜15を形成する熱硬化型インキの熱硬化温度以上となるように耐熱性が向上させたものを用いることが好ましい。例えば、絶縁性保護膜15が、熱硬化温度が80℃程度の熱硬化型インキで形成されるものである場合、通常80℃程度であるPENの熱収縮開始温度を、アニール処理によって100℃程度まで向上させればよい。これにより、樹脂基板11の微細な熱損傷をも回避しながら、同時に十分な耐熱性、強度、絶縁性を有する絶縁性保護膜15を形成することができる。 The heat resistance of the thermoplastic resin forming the resin substrate 11 has been improved by the annealing treatment so that the thermal shrinkage starting temperature is equal to or higher than the thermosetting temperature of the thermosetting ink forming the insulating protective film 15. It is preferable to use one. For example, when the insulating protective film 15 is formed of a thermosetting ink having a thermosetting temperature of about 80 ° C., the heat shrinkage starting temperature of PEN, which is usually about 80 ° C., is about 100 ° C. by annealing. Can be improved. Thereby, it is possible to form the insulating protective film 15 having sufficient heat resistance, strength, and insulation while avoiding minute heat damage of the resin substrate 11.
 尚、本明細書における「熱収縮開始温度」とは、TMA装置に測定対象の熱可塑性樹脂からなるサンプルシートをセットし、荷重1gをかけて、昇温速度2℃/分で120℃まで昇温し、その時の収縮量(%表示)を測定し、このデータを出力して温度と収縮量を記録したグラフから、収縮によって、0%のベースラインから離れる温度を読みとり、その温度を熱収縮開始温度としたものである。又、本明細書における「熱硬化温度」とは、測定対象の熱硬化型樹脂を加熱した際の熱硬化反応の立ち上がり位置の温度を測定算出し、その温度を熱硬化温度としたものである。 In this specification, “thermal shrinkage start temperature” means that a sample sheet made of a thermoplastic resin to be measured is set in a TMA apparatus, a load of 1 g is applied, and the temperature is increased to 120 ° C. at a temperature rising rate of 2 ° C./min. Measure the amount of shrinkage (in%) at that time, output this data and record the temperature and amount of shrinkage, read the temperature that deviates from the 0% baseline due to shrinkage, and heat shrink the temperature This is the starting temperature. In addition, the “thermosetting temperature” in the present specification is the measurement and calculation of the temperature at the rising position of the thermosetting reaction when the thermosetting resin to be measured is heated, and that temperature is the thermosetting temperature. .
 樹脂基板11の絶縁性については、例えばLED表示装置のバックライト等としての一体化時に、LED素子用基板1に必要とされる絶縁性を付与し得る体積固有抵抗率を有する樹脂であることが求められる。一般的には、樹脂基板11の体積固有抵抗率が1014Ω・cm以上であることが好ましく、1018Ω・cm以上であることがより好ましい。 The insulating property of the resin substrate 11 may be a resin having a volume resistivity that can provide the insulating property required for the LED element substrate 1 when, for example, the LED display device is integrated as a backlight or the like. Desired. In general, the volume resistivity of the resin substrate 11 is preferably 10 14 Ω · cm or more, and more preferably 10 18 Ω · cm or more.
 樹脂基板11の厚さは、特に限定されないが、耐熱性及び絶縁性と、製造コストのバランスとの観点から、概ね10μm以上100μm以下程度であることが好ましい。又、ロール・トゥ・ロール方式による製造を行う場合の生産性を良好に維持する観点からも上記厚さ範囲であることが好ましい。 The thickness of the resin substrate 11 is not particularly limited, but is preferably about 10 μm or more and 100 μm or less from the viewpoint of heat resistance and insulation, and a balance between manufacturing costs. Also, the thickness is preferably within the above-mentioned thickness range from the viewpoint of maintaining good productivity when manufacturing by the roll-to-roll method.
 [接着剤層]
 LED素子用基板1の表面上への金属配線部13の接合は、接着剤層12を介したドライラミネート法によって行われることが好ましい。この接着剤層12を形成する接着剤は、絶縁性保護膜15を形成する熱硬化型インキの熱硬化温度における耐熱性を有するものであれば公知の樹脂系接着剤を適宜用いることができる。それらの樹脂接着剤のうち、ウレタン系、ポリカーボネート系、又はエポキシ系の接着剤等を特に好ましく用いることができる。
[Adhesive layer]
The metal wiring part 13 is preferably joined to the surface of the LED element substrate 1 by a dry laminating method with the adhesive layer 12 interposed therebetween. As the adhesive forming the adhesive layer 12, a known resin adhesive can be appropriately used as long as it has heat resistance at the thermosetting temperature of the thermosetting ink forming the insulating protective film 15. Of these resin adhesives, urethane-based, polycarbonate-based, or epoxy-based adhesives can be particularly preferably used.
 [金属配線部]
 図1、図2に示す通り、金属配線部13は、LED素子用基板1の表面上に導電性基材によって形成される配線パターンである。金属配線部13は、例えば、1000個以上のLED素子2の間を導通して必要な電流を流して電気を供給する機能を有する。又、金属配線部13は、併せて、LED素子2から発せられる熱を、LED表示装置等の外部への放出経路となる放熱部を兼ねているものである。
[Metal wiring section]
As shown in FIGS. 1 and 2, the metal wiring portion 13 is a wiring pattern formed by a conductive base material on the surface of the LED element substrate 1. For example, the metal wiring portion 13 has a function of supplying electricity by conducting a necessary current by passing between 1000 or more LED elements 2. In addition, the metal wiring portion 13 also serves as a heat radiating portion serving as a discharge path for the heat generated from the LED element 2 to the outside of the LED display device or the like.
 金属配線部13の配置は、LED素子を導通可能に実装することができる配置であれば特定の配置等に限定されない。但し、LED素子用基板1においては、樹脂基板11の一方の表面の少なくとも95%以上、好ましくは98%以上の範囲が、この金属配線部13によって被覆されていることが必須である。これにより、LED素子用基板1を用いてなるLED表示装置に好ましい放熱性を付与することができる。 The arrangement of the metal wiring part 13 is not limited to a specific arrangement as long as the LED element can be mounted in a conductive manner. However, in the LED element substrate 1, it is essential that at least 95% or more, preferably 98% or more of one surface of the resin substrate 11 is covered with the metal wiring portion 13. Thereby, preferable heat dissipation can be imparted to the LED display device using the LED element substrate 1.
 又、上記の導通と被覆率との要件を満たすために、金属配線部13は、図1に示すように、LED素子2の金属配線部13への接合部分である実装の基本単位が、マトリックス上にXY両方向に繰り返されている配置であることが好ましい。実装の基本単位とは、図2に示す通り、隣接する複数の矩形状の導電プレート部131と、導電プレート部131の間の隙間部分である絶縁スリット部132とからなる実装の基本となる構成単位のことを言う。又、金属配線部13は、主には異なる行に配置される導電プレート部131の間を接続するコネクター配線133を有する。又、金属配線部13は、その末端部分において、LED実装モジュール10と外部電源等との電気的接続を行うための端子134を有する。LED素子用基板1は単一の樹脂フィルムを基板として形成することができるため、金属配線部13を構成する導電プレート部131、コネクター配線133、端子134の配置とそれらの組合せは設計の自由度が極めて高く、多数のLED素子2の導通の形態について直列、並列、又は、それらの複雑な組合せ等、いずれの接続によることも可能である。これにより、最小2カ所の電気取り出し口を設けることにより、外部電源等との導通が可能であり、又、最終製品たるLED表示装置の要求に応じて自在な配線が可能である。 Further, in order to satisfy the requirements of the above-described conduction and coverage, the metal wiring portion 13 is a matrix unit as shown in FIG. 1 where the basic unit of mounting, which is a joint portion of the LED element 2 to the metal wiring portion 13, is a matrix. It is preferable that the arrangement is repeated in both the X and Y directions. As shown in FIG. 2, the basic unit of mounting is a basic configuration of mounting composed of a plurality of adjacent rectangular conductive plate portions 131 and insulating slit portions 132 that are gap portions between the conductive plate portions 131. Say the unit. The metal wiring part 13 has a connector wiring 133 that connects between the conductive plate parts 131 arranged mainly in different rows. Moreover, the metal wiring part 13 has the terminal 134 for making the electrical connection with the LED mounting module 10 and an external power supply etc. in the terminal part. Since the LED element substrate 1 can be formed by using a single resin film as a substrate, the arrangement and combination of the conductive plate portion 131, the connector wiring 133, and the terminal 134 constituting the metal wiring portion 13 are flexible in design. However, it is possible to use any connection such as series, parallel, or a complicated combination of the conductive forms of the large number of LED elements 2. Thus, by providing at least two electrical outlets, electrical connection with an external power source or the like is possible, and flexible wiring is possible according to the demand of the LED display device as the final product.
 金属配線部13における絶縁スリット部(本発明の「絶縁部」に相当)132の幅は、0.1mm以上1.0mm以下のスリット状であることが好ましく、0.2mm以上0.5mm以下であることがより好ましい。ここでスリット状とは全体としてスリット状の意味であり、必ずしも単純な線状(もちろん曲線も含む)に限らず、例えばLEDのハンダ接続部として平面視で一部に凹凸部が配置されているものも含む意味である。導電プレート部131間の短絡を防止するためには、絶縁スリット部132の幅は、0.1mm以上であることが好ましい。又、絶縁スリット部132の幅が1.0mm以下であることによって、導電プレート部131間における好ましい熱の伝達が可能となる。 The width of the insulating slit portion (corresponding to the “insulating portion” of the present invention) 132 in the metal wiring portion 13 is preferably a slit shape of 0.1 mm or more and 1.0 mm or less, and is 0.2 mm or more and 0.5 mm or less. More preferably. Here, the slit shape means a slit shape as a whole, and is not necessarily a simple linear shape (including a curved line, of course). For example, an uneven portion is arranged in a part in plan view as a solder connection portion of an LED. It is meant to include things. In order to prevent a short circuit between the conductive plate portions 131, the width of the insulating slit portion 132 is preferably 0.1 mm or more. Further, when the width of the insulating slit portion 132 is 1.0 mm or less, preferable heat transfer between the conductive plate portions 131 can be achieved.
 金属配線部13を構成する金属の熱伝導率λは200W/(m・K)以上500W/(m・K)以下が好ましく、300W/(m・K)以上500W/(m・K)以下がより好ましい。金属配線部13を構成する金属の電気抵抗率Rは3.00×10-8Ωm以下が好ましく、2.50×10-8Ωm以下がより好ましい。ここで、熱伝導率λの測定は、例えば、京都電子工業社製の熱伝導率計QTM-500を用いることができ、電気抵抗率Rの測定は、例えば、ケースレー社製の6517B型エレクトロメータを用いることができる。これによれば、例えば、銅の場合、熱伝導率λは403W/(m・K)であり、電気抵抗率Rは1.55×10-8Ωmとなる。これにより、放熱性と電気伝導性の両立を図ることができる。より具体的には、LED素子からの放熱性が安定し、電気抵抗の増加を防げるので、LED間の発光バラツキが小さくなってLEDの安定した発光が可能となり、又、LED寿命も延長される。更に、熱による基板等の周辺部材の劣化も防止できるので、LED素子用基板をバックライトとして組み込んだ表示装置自体の製品寿命も延長できる。 The metal thermal conductivity λ constituting the metal wiring part 13 is preferably 200 W / (m · K) or more and 500 W / (m · K) or less, and preferably 300 W / (m · K) or more and 500 W / (m · K) or less. More preferred. The electric resistivity R of the metal constituting the metal wiring part 13 is preferably 3.00 × 10 −8 Ωm or less, and more preferably 2.50 × 10 −8 Ωm or less. Here, the measurement of the thermal conductivity λ can use, for example, a thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd., and the measurement of the electrical resistivity R can be performed, for example, a 6517B type electrometer manufactured by Keithley. Can be used. According to this, for example, in the case of copper, the thermal conductivity λ is 403 W / (m · K), and the electrical resistivity R is 1.55 × 10 −8 Ωm. Thereby, both heat dissipation and electrical conductivity can be achieved. More specifically, since the heat dissipation from the LED element is stabilized and an increase in electrical resistance can be prevented, the variation in light emission between the LEDs is reduced, and the LED can stably emit light, and the LED life is also extended. . Further, since deterioration of peripheral members such as a substrate due to heat can be prevented, the product life of the display device itself in which the LED element substrate is incorporated as a backlight can be extended.
 尚、金属配線部13の表面抵抗値は、500Ω/□以下が好ましく、300Ω/□以下がより好ましく、更に100Ω/□以下が好ましく、特に50Ω/□以下が好ましい。下限は0.005Ω/□程度である。表面抵抗値の測定は、例えば、ケースレー社製の6517B型エレクトロメータを用いることができる。 In addition, the surface resistance value of the metal wiring part 13 is preferably 500Ω / □ or less, more preferably 300Ω / □ or less, further preferably 100Ω / □ or less, and particularly preferably 50Ω / □ or less. The lower limit is about 0.005Ω / □. For example, a 6517B type electrometer manufactured by Keithley can be used for measuring the surface resistance value.
 上記範囲を満たす金属としては、金、銀、銅等の金属箔が例示できる。一方、例えばアルミニウムは上記範囲外の金属である。金属配線部13の厚さは、LED素子用基板1に要求される耐電流の大きさ等に応じて適宜設定すればよく、特に限定されないが、一例として厚さ10μm~50μmが挙げられる。放熱性向上の観点からは、金属配線部13の厚さは、10μm以上であることが好ましい。又、金属層厚みが上記下限値に満たないと、樹脂基板11の熱収縮の影響が大きく、はんだリフロー処理時に処理後の反りが大きくなりやすいため、この観点からも金属配線部13の厚さは10μm以上であることが好ましい。一方、同厚さが、50μm以下であることによって、LED素子用基板の十分なフレキシブル性を保持することができ、重量増大によるハンドリング性の低下等も防止できる。 Examples of the metal satisfying the above range include gold, silver, copper and other metal foils. On the other hand, for example, aluminum is a metal outside the above range. The thickness of the metal wiring portion 13 may be appropriately set according to the magnitude of the withstand current required for the LED element substrate 1 and is not particularly limited, and examples thereof include a thickness of 10 μm to 50 μm. From the viewpoint of improving heat dissipation, the thickness of the metal wiring portion 13 is preferably 10 μm or more. If the thickness of the metal layer is less than the lower limit, the influence of the heat shrinkage of the resin substrate 11 is large, and the warp after the processing is likely to increase during the solder reflow process. Is preferably 10 μm or more. On the other hand, when the thickness is 50 μm or less, sufficient flexibility of the LED element substrate can be maintained, and a decrease in handling property due to an increase in weight can be prevented.
 又、金属配線部13は電解銅箔であり、樹脂基板11との積層面側の表面粗さRzが1.0以上10.0以下であることが好ましい。ここで、RzはJISB0601で規定される十点平均粗さである。放熱性の観点から、表面粗さを上記範囲内とすることで、特に樹脂基板11との積層面側の表面積を増大でき、放熱性を更に高めることができる。又、表面凹凸によって樹脂基板11との密着性を向上できるので、これによっても放熱性を向上できる。このような表面粗さRzを有する銅箔面として、電解銅箔の粗面側(マット面側)を有効に活用することができる。 Further, the metal wiring part 13 is an electrolytic copper foil, and the surface roughness Rz on the side of the laminated surface with the resin substrate 11 is preferably 1.0 or more and 10.0 or less. Here, Rz is a ten-point average roughness defined by JISB0601. From the viewpoint of heat dissipation, by setting the surface roughness within the above range, the surface area on the side of the laminated surface with the resin substrate 11 can be increased, and the heat dissipation can be further enhanced. Moreover, since the adhesiveness with the resin substrate 11 can be improved by the surface unevenness, the heat dissipation can also be improved by this. As the copper foil surface having such a surface roughness Rz, the rough surface side (mat surface side) of the electrolytic copper foil can be effectively utilized.
 [ハンダ層]
 LED素子用基板1においては、金属配線部13とLED素子2との接合については、ハンダ層14を介した接合を行う。このハンダによる接合方法の詳細は後述するが、大きく分けて、リフロー方式、或いは、レーザー方式の2方式のいずれかによって行うことができる。
[Solder layer]
In the LED element substrate 1, the metal wiring portion 13 and the LED element 2 are joined through the solder layer 14. Details of the soldering method will be described later, but can be roughly classified into either a reflow method or a laser method.
 [絶縁保護膜]
 絶縁性保護膜15は、上述の通り、熱硬化型インキによって、金属配線部13と樹脂基板11の表面上の電気的接合が必要となる一部分を除いた他の部分に、主としてLED素子用基板1の耐マイグレーション特性を向上させるために形成される。
[Insulation protective film]
As described above, the insulating protective film 15 is mainly a substrate for an LED element except for a portion that requires electrical bonding on the surface of the metal wiring portion 13 and the resin substrate 11 with thermosetting ink. 1 to improve the migration resistance.
 熱硬化型インキとしては、熱硬化温度が100℃以下程度のものであれば、公知のインキを適宜好ましく用いることができる。具体的には、ポリエステル系樹脂、エポキシ系樹脂、エポキシ系及びフェノール系樹脂、エポキシアクリレート樹脂、シリコーン系樹脂等、を其々ベース樹脂とする絶縁性インキを好ましく用いることができるインキの代表例として挙げることができる。又、これらのうちでも、ポリエステル系の熱硬化型の絶縁インキは、可撓性に優れる点から、LED素子用基板1の絶縁性保護膜15を形成するための材料として特に好ましい。 As the thermosetting ink, a known ink can be suitably used as long as the thermosetting temperature is about 100 ° C. or less. Specifically, as a representative example of an ink that can preferably use an insulating ink having a polyester resin, an epoxy resin, an epoxy resin and a phenol resin, an epoxy acrylate resin, a silicone resin, or the like as a base resin, respectively. Can be mentioned. Of these, polyester-based thermosetting insulating ink is particularly preferable as a material for forming the insulating protective film 15 of the LED element substrate 1 because of its excellent flexibility.
 又、絶縁性保護膜15を形成する熱硬化型インキは、例えば、二酸化チタン等の無機白色顔料を更に含有する白色のインキであってもよい。絶縁性保護膜15を白色化することで、意匠性の向上を図ることができる。 Further, the thermosetting ink for forming the insulating protective film 15 may be a white ink further containing an inorganic white pigment such as titanium dioxide, for example. By improving the whiteness of the insulating protective film 15, it is possible to improve the design.
 尚、以上の絶縁性の熱硬化型インキによる絶縁性保護膜15の形成は、スクリーン印刷等公知の方法によって行うことができる。 In addition, formation of the insulating protective film 15 with the above insulating thermosetting ink can be performed by well-known methods, such as screen printing.
 [反射層]
 反射層16は、上記のLED実装モジュール10において、発光能力を向上させることを目的として、本実施形態では、LED素子用基板の発光面側の最表面に、LED素子2の実装部分を除いて積層される。LED素子の発光を反射し、所定の方向へ導くための反射面を持つ部材であれば特に限定されないが、白色ポリエステル発泡タイプの白色ポリエステル、白色ポリエチレン樹脂、銀蒸着ポリエステル等を、最終製品の用途とその要求スペック等に応じて適宜用いることができる。
[Reflective layer]
In the present embodiment, the reflective layer 16 is provided on the outermost surface on the light emitting surface side of the LED element substrate except for the mounting portion of the LED element 2 for the purpose of improving the light emitting capability in the LED mounting module 10 described above. Laminated. It is not particularly limited as long as it is a member having a reflective surface for reflecting the light emitted from the LED element and guiding it in a predetermined direction, but white polyester foam type white polyester, white polyethylene resin, silver vapor-deposited polyester, etc. And can be used as appropriate according to the required specifications.
 <LED素子用基板の製造方法>
 LED素子用基板1は、従来公知の電子基板の製造方法の一つであるエッチング工程と、によって製造することができる。又、選択する材料樹脂に応じて、予め当該樹脂にアニール処理による耐熱性向上処理を施すことが好ましい。
<Method for producing LED element substrate>
The LED element substrate 1 can be manufactured by an etching process which is one of conventionally known methods for manufacturing an electronic substrate. Further, it is preferable to subject the resin in advance to a heat resistance improving process by annealing according to the material resin to be selected.
 [アニール処理]
 本発明においては必須ではないが、アニール処理は、従来公知の熱処理手段を用いることができる。アニール処理温度の一例としては、樹脂基板11を形成する熱可塑性樹脂がPENである場合、ガラス転移温度から融点の範囲、更に具体的には160℃から260℃、より好ましくは180℃から230℃の範囲である。アニール処理時間としては、10秒から5分程度が例示できる。このような熱処理条件によれば、一般的に80℃程度であるPENの熱収縮開始温度を、100℃程度に向上させることができる。
[Annealing treatment]
Although not essential in the present invention, conventionally known heat treatment means can be used for the annealing treatment. As an example of the annealing treatment temperature, when the thermoplastic resin forming the resin substrate 11 is PEN, the glass transition temperature to the melting point range, more specifically 160 ° C. to 260 ° C., more preferably 180 ° C. to 230 ° C. Range. An example of the annealing time is about 10 seconds to 5 minutes. According to such heat treatment conditions, the thermal contraction start temperature of PEN, which is generally about 80 ° C., can be improved to about 100 ° C.
 [エッチング工程]
 必要に応じてアニール処理を経た樹脂基板11の表面に、金属配線部13の材料とする銅箔等の金属配線部13を積層してLED素子用基板1の材料とする積層体を得る。積層方法としては、金属箔を接着剤によって樹脂基板11の表面に接着する方法、或いは、樹脂基板11の表面に直接にメッキ方法や気相製膜法(スパッタリング、イオンプレーティング、電子ビーム蒸着、真空蒸着、化学蒸着等)により金属配線部13を蒸着させる方法を挙げることができる。コストや生産性の面からは、金属箔をウレタン系の接着剤によって樹脂基板11の表面に接着する方法が有利である。
[Etching process]
If necessary, a metal wiring part 13 such as a copper foil used as a material for the metal wiring part 13 is laminated on the surface of the resin substrate 11 that has been annealed to obtain a laminate that uses the LED element substrate 1 as a material. As a lamination method, a metal foil is adhered to the surface of the resin substrate 11 with an adhesive, or a plating method or a vapor deposition method (sputtering, ion plating, electron beam evaporation, Examples thereof include a method of depositing the metal wiring portion 13 by vacuum deposition, chemical vapor deposition, or the like. From the viewpoint of cost and productivity, a method of bonding a metal foil to the surface of the resin substrate 11 with a urethane-based adhesive is advantageous.
 次に、上記の積層体の金属箔の表面に、金属配線部13の形状にパターニングされたエッチングマスクを形成する。エッチングマスクは、将来、金属配線部13となる金属箔の配線パターン形成部分がエッチング液による腐食を免れるために設けられる。エッチングマスクを形成する方法は特に限定されず、例えば、フォトレジスト又はドライフィルムをフォトマスクを通して感光させた後で現像することにより積層シートの表面にエッチングマスクを形成してもよいし、インクジェットプリンター等の印刷技術により積層シートの表面にエッチングマスクを形成してもよい。 Next, an etching mask patterned in the shape of the metal wiring portion 13 is formed on the surface of the metal foil of the above laminate. In the future, the etching mask is provided so that the wiring pattern forming portion of the metal foil that will become the metal wiring portion 13 is free from corrosion by the etching solution. The method for forming the etching mask is not particularly limited. For example, the etching mask may be formed on the surface of the laminated sheet by exposing the photoresist or dry film through the photomask and then developing the ink mask. An etching mask may be formed on the surface of the laminated sheet by this printing technique.
 次に、エッチングマスクに覆われていない箇所における金属箔を浸漬液により除去する。これにより、金属箔のうち、金属配線部13となる箇所以外の部分が除去される。 Next, the metal foil in a portion not covered with the etching mask is removed with an immersion liquid. Thereby, parts other than the location used as the metal wiring part 13 are removed among metal foil.
 最後に、アルカリ性の剥離液を使用して、エッチングマスクを除去する。これにより、エッチングマスクが金属配線部13の表面から除去される。 Finally, the etching mask is removed using an alkaline stripping solution. As a result, the etching mask is removed from the surface of the metal wiring portion 13.
 [絶縁性保護膜及び反射層形成工程]
 金属配線部形成後、必要に応じて絶縁性保護膜15及び反射層16を更に積層する。これらの積層は公知の方法によって行うことができる。採用する材料によりスクリーン印刷等の印刷法或いは、ドライラミネーション、熱ラミネーション法等、各種のラミネート処理方法によることができる。
[Insulating protective film and reflective layer forming step]
After forming the metal wiring portion, an insulating protective film 15 and a reflective layer 16 are further laminated as necessary. These laminations can be performed by a known method. Depending on the material to be employed, various laminating methods such as screen printing, dry lamination, thermal lamination, and the like can be used.
 <LED実装モジュール>
 LED素子用基板1の金属配線部13に、LED素子2を直接実装することにより、LED実装モジュール10を得ることができる。
<LED mounting module>
The LED mounting module 10 can be obtained by directly mounting the LED element 2 on the metal wiring portion 13 of the LED element substrate 1.
 LED素子2は、P型半導体とN型半導体が接合されたPN接合部での発光を利用した発光素子である。P型電極、N型電極を素子上面、下面に設けた構造と、素子片面にP型、N型電極の双方が設けられた構造が提案されている。いずれの構造のLED素子2も、本発明のLED実装モジュール10に用いることができるが、上記のうち素子片面にP型、N型電極の双方が設けられた構造のLED素子を特に好ましく用いることができる。 The LED element 2 is a light emitting element utilizing light emission at a PN junction where a P-type semiconductor and an N-type semiconductor are joined. There are proposed a structure in which a P-type electrode and an N-type electrode are provided on the upper and lower surfaces of the element and a structure in which both the P-type and N-type electrodes are provided on one side of the element. Any structure of the LED element 2 can be used for the LED mounting module 10 of the present invention, and among the above, the LED element having a structure in which both the P-type and N-type electrodes are provided on the element single side is particularly preferably used. Can do.
 LED実装モジュール10は、上述の通り、LED素子用基板1として、所定の熱伝導率及び電気抵抗値を有する金属を面積で95%以上基材上に被覆することで高い放熱性を発揮することができる金属配線部13に、LED素子2を直接実装するものである。これにより、LED素子2の点灯時に発生する熱が金属配線部13の全体に速やかに拡散し、大型のLED実装モジュール10の放熱性が大きく向上する。 As described above, the LED mounting module 10 exhibits high heat dissipation by covering the base material with a metal having a predetermined thermal conductivity and electrical resistance value of 95% or more on the substrate as the LED element substrate 1. The LED element 2 is directly mounted on the metal wiring portion 13 that can be used. Thereby, the heat | fever generate | occur | produced at the time of lighting of the LED element 2 spread | diffuses rapidly to the whole metal wiring part 13, and the heat dissipation of the large sized LED mounting module 10 improves greatly.
 LED実装モジュール10は、LED素子100個以上、好ましくは1000個以上のLED素子2の実装を前提とする、画面サイズ換算で32インチ以上、好ましくは65インチ以上に適用されることが好ましい。本発明のLED素子用基板は回路設計の自由度が高いため、実装されるLED素子2の配置間隔等は自在に調整することが可能であり、大型の画像表示装置における様々な要求物性に従来よりも低コストで対応することができる。 The LED mounting module 10 is preferably applied to 32 inches or more, preferably 65 inches or more in terms of screen size, on the assumption that 100 or more LED elements, preferably 1000 or more LED elements 2 are mounted. Since the LED element substrate of the present invention has a high degree of freedom in circuit design, it is possible to freely adjust the arrangement interval of the LED elements 2 to be mounted. It can respond at a lower cost.
 <LED実装モジュールの製造方法>
 LED素子用基板1を用いたLED実装モジュール10の製造方法について説明する。金属配線部13へのLED素子2の接合は、ハンダ加工により好ましく行うことができる。このハンダによる接合は、リフロー方式、或いは、レーザー方式によることができる。リフロー方式は、金属配線部13にハンダを介してLED素子2を搭載し、その後、LED素子用基板1をリフロー炉内に搬送して、リフロー炉内で金属配線部13に所定温度の熱風を吹きつけることで、ハンダペーストを融解させ、LED素子2を金属配線部13にハンダ付けする方法である。又、レーザー方式とは、レーザーによってハンダを局所的に加熱して、LED素子2を金属配線部13にハンダ付けする手法である。
<Method for manufacturing LED mounting module>
The manufacturing method of the LED mounting module 10 using the board | substrate 1 for LED elements is demonstrated. The joining of the LED element 2 to the metal wiring part 13 can be preferably performed by soldering. This solder bonding can be performed by a reflow method or a laser method. In the reflow method, the LED element 2 is mounted on the metal wiring part 13 through solder, and then the LED element substrate 1 is transported into the reflow furnace, and hot air at a predetermined temperature is applied to the metal wiring part 13 in the reflow furnace. In this method, the solder paste is melted by spraying, and the LED element 2 is soldered to the metal wiring portion 13. The laser method is a method of soldering the LED element 2 to the metal wiring portion 13 by locally heating the solder with a laser.
 金属配線部13へのLED素子2のハンダ接合を行う際は、樹脂基板11における裏面側からのレーザー照射によって、ハンダのリフローを行う方法とすることが好ましい。これにより、加熱によるハンダの有機成分の発火とそれに伴う基材の損傷をより確実に抑制することができる。 When soldering the LED element 2 to the metal wiring portion 13, it is preferable to perform a solder reflow method by laser irradiation from the back surface side of the resin substrate 11. Thereby, the ignition of the organic component of the solder by heating and the accompanying damage to the base material can be more reliably suppressed.
 <LED表示装置>
 図6は、LED実装モジュール10を用いたLED表示装置100の層構成の概略を模式的に示す斜視図である。LED表示装置100は、所定の間隔でマトリクス状に配列された複数のLED素子2を駆動(発光)することによって、文字や映像等の情報(画像)をモニター3に表示する。LED素子2は、LED素子用基板1の金属配線部13に実装されている。又、LED実装モジュール10から放熱される熱を更に効率よく外部に放射するための放熱構造4が樹脂基板11の裏面側に設置されていることが更に好ましい。本発明のLED実装モジュール10を用いることにより画面サイズ(対角線の長さ)が65インチ以上の大型LED表示装置を従来よりも低コストで且つ品質の安定性を向上させて製造することができる。
<LED display device>
FIG. 6 is a perspective view schematically showing an outline of a layer configuration of the LED display device 100 using the LED mounting module 10. The LED display device 100 displays information (images) such as characters and images on the monitor 3 by driving (emitting light) the plurality of LED elements 2 arranged in a matrix at predetermined intervals. The LED element 2 is mounted on the metal wiring portion 13 of the LED element substrate 1. Further, it is more preferable that the heat dissipation structure 4 for radiating the heat radiated from the LED mounting module 10 to the outside more efficiently is installed on the back surface side of the resin substrate 11. By using the LED mounting module 10 of the present invention, a large LED display device having a screen size (diagonal length) of 65 inches or more can be manufactured at a lower cost and with improved quality stability.
 以上説明した本発明のLED素子用基板、LED実装モジュール等及びそれを用いたLED表示装置によれば、以下のような効果を奏する。 According to the LED element substrate, the LED mounting module, and the like of the present invention described above and the LED display device using the same, the following effects can be obtained.
 (1) LED素子用基板を、その樹脂基板の表面の所定割合以上の大部分(95%以上)を金属配線部で被覆したものとし、更に当該金属配線部を構成する金属の熱伝導率と、電気抵抗率Rを所定の範囲内に最適化した。これにより、大型のLED表示装置において求められる放熱性が顕著に向上する。このようなLED素子用基板の具体例として、サイズが330mm×560mmのアニール処理済の厚さ50μmのPENフィルム上に、隣接する導電プレート部の間の絶縁スリット部の幅を1.0mmとして銅箔からなる金属配線部を、上記の被覆率が95%となるように形成したものが挙げられる。このLED素子用基板に、X方向に8個、Y方向に20個、計160個のLED素子を実装したLED実装モジュールは、導通の確保に関係しないY方向の絶縁スリット部を2.0mmに広げて上記被覆率を90%とし、それ以外のスペックを上記と全く同じとして形成した場合と比較して、明らかな放熱性の向上が認められた。 (1) The LED element substrate is coated with a metal wiring part over a predetermined ratio (95% or more) of the surface of the resin substrate, and the thermal conductivity of the metal constituting the metal wiring part The electrical resistivity R was optimized within a predetermined range. Thereby, the heat dissipation requested | required in a large sized LED display apparatus improves notably. As a specific example of such a substrate for an LED element, copper having a size of 330 mm × 560 mm annealed PEN film having a thickness of 50 μm and a width of an insulating slit between adjacent conductive plate portions of 1.0 mm is used. What formed the metal wiring part which consists of foils so that said coverage may become 95% is mentioned. The LED mounting module in which 160 LED elements in total, 8 in the X direction and 20 in the Y direction, are mounted on this LED element substrate has an insulating slit portion in the Y direction of 2.0 mm that is not related to ensuring conduction. A clear improvement in heat dissipation was recognized as compared with the case where the coating rate was 90% and the other specifications were made exactly the same as above.
 (2) LED素子用基板の樹脂基板を、大型の単一の樹脂フィルムからなるものとし、更に、その表面の所定割合以上の大部分を金属配線部で被覆したものとした。これにより、大型のLED表示装置を構成するLED実装モジュールの生産性が顕著に向上し、又、大型のLED表示装置において求められる放熱性も顕著に向上する。
 このようなLED素子用基板の具体例として、サイズが330mm×560mmのアニール処理済のPENフィルム上に、隣接する導電プレート部の間の絶縁スリット部の幅を1.0mmとして銅箔からなる金属配線部を、上記の被覆率が95%となるように形成したものが挙げられる。このLED素子用基板に、X方向に8個、Y方向に20個、計160個のLED素子を実装したLED実装モジュールは、導通の確保に関係しないY方向の絶縁スリット部を2.0mmに広げて上記被覆率を90%とし、それ以外のスペックを上記と全く同じとして形成した場合と比較して、明らかな放熱性の向上が認められた。
(2) The resin substrate of the LED element substrate was made of a large single resin film, and the surface of the surface was covered with a metal wiring part over a predetermined ratio. Thereby, productivity of the LED mounting module which comprises a large sized LED display apparatus improves notably, and the heat dissipation requested | required in a large sized LED display apparatus also improves notably.
As a specific example of such a substrate for LED elements, a metal made of copper foil on a PEN film having a size of 330 mm × 560 mm and an insulating slit portion between adjacent conductive plate portions having a width of 1.0 mm What formed the wiring part so that said coverage may become 95% is mentioned. The LED mounting module in which 160 LED elements in total, 8 in the X direction and 20 in the Y direction, are mounted on this LED element substrate has an insulating slit portion in the Y direction of 2.0 mm that is not related to ensuring conduction. A clear improvement in heat dissipation was recognized as compared with the case where the coating rate was 90% and the other specifications were made exactly the same as above.
 (3) 前記金属配線部を銅からなるものとした。これにより、(1)又は(2)の発明における上記の放熱性向上効果を更に安定的に発現させることができる。 (3) The metal wiring part is made of copper. Thereby, said heat dissipation improvement effect in invention of (1) or (2) can be expressed more stably.
 (4) 前記金属配線部の平均厚さを5μm以上50μm以下とした。これにより、放熱性向上の効果を享受しながら、LED素子用基板の十分なフレキシブル性を保持することができる。 (4) The average thickness of the metal wiring part was set to 5 μm or more and 50 μm or less. Thereby, sufficient flexibility of the board | substrate for LED elements can be hold | maintained, enjoying the effect of heat dissipation improvement.
 (5) 金属配線部に形成される絶縁部を、幅0.1mm以上1.0mm以下のスリット状に形成されているものとした。これにより、導電プレート部の間の短絡を防止することができる一方で、導電プレート部の間における好ましい熱の伝達も可能となる。好ましい熱の伝達の具体例として、例えば、ローカルディミング方式(LED発光輝度の細かいエリアコントロール)の大型のLEDバックライトにおいて局所的な発熱が発生した場合、相対的に高温度となった部分の導電プレート部131から相対的に低い温度のままである導電プレート部131への熱の移動させる作用が挙げられる。これにより、LEDバックライトにおける局所的な高温度をLED素子用基板全体に放散して局所的な温度上昇による各LED素子の機能低下や故障を防止することができる。 (5) The insulating part formed on the metal wiring part is formed in a slit shape having a width of 0.1 mm or more and 1.0 mm or less. Thereby, short circuit between the conductive plate portions can be prevented, and preferable heat transfer between the conductive plate portions is also possible. As a specific example of preferable heat transfer, for example, when local heat generation occurs in a large-sized LED backlight of a local dimming method (area control with fine LED emission luminance), the conductivity of a portion at a relatively high temperature is detected. There is an effect of transferring heat from the plate portion 131 to the conductive plate portion 131 that remains at a relatively low temperature. Thereby, the local high temperature in LED backlight can be dissipated to the whole board | substrate for LED elements, and the function fall and failure of each LED element by a local temperature rise can be prevented.
 (6) 金属配線部を樹脂基板との積層面側の表面粗さRzが1.0以上10.0以下である電解銅箔で形成した。これにより、樹脂基板との積層面側の表面積を増大でき、放熱性を更に高めることができる。又、表面凹凸によって樹脂基板との密着性を向上できるので、これによっても放熱性を向上できる。 (6) The metal wiring part was formed of an electrolytic copper foil having a surface roughness Rz of 1.0 to 10.0 on the side of the laminated surface with the resin substrate. Thereby, the surface area of the laminated surface side with a resin substrate can be increased, and heat dissipation can be further improved. Moreover, since the adhesiveness with the resin substrate can be improved by the surface unevenness, the heat dissipation can also be improved by this.
 (7) 前記樹脂基板を形成する樹脂フィルムを、耐熱性向上処理を施した熱収縮開始温度が100℃以上のポリエチレンナフタレートとした。これにより、例えば耐熱性と加熱時の寸法安定性、機械的強度、及び耐久性に優れるポリイミド樹脂(PI)を用いる一般的な場合と比較して、LED素子用基板の性能を保持したまま、コストの低減が可能となる。 (7) The resin film forming the resin substrate was made of polyethylene naphthalate having a heat shrinkage starting temperature of 100 ° C. or higher subjected to heat resistance improvement treatment. Thereby, for example, while maintaining the performance of the LED element substrate as compared with a general case using a polyimide resin (PI) excellent in heat resistance and dimensional stability during heating, mechanical strength, and durability, Cost can be reduced.
 (8) LED素子用基板に少なくとも100個以上のLED素子を実装してなるLED実装モジュールとした。これにより、LED表示装置を単一のLED素子用基板により構成することができるため、LED表示装置の生産性と品質安定性を顕著に向上させることができる。 (8) An LED mounting module in which at least 100 LED elements are mounted on an LED element substrate. Thereby, since an LED display device can be comprised by the board | substrate for a single LED element, the productivity and quality stability of an LED display device can be improved notably.
 (9) LED素子用基板に少なくとも1000個以上のLED素子を実装してなるLED実装モジュールとした。これにより、従来複数のLED実装モジュールの接合によってのみ形成していた大型のLED表示装置を単一のLED素子用基板により構成することができるため、LED表示装置の生産性と品質安定性を顕著に向上させることができる。 (9) An LED mounting module in which at least 1000 LED elements are mounted on an LED element substrate. As a result, a large LED display device that has been conventionally formed only by joining a plurality of LED mounting modules can be configured with a single LED element substrate, so that the productivity and quality stability of the LED display device are remarkable. Can be improved.
 (10) 画面サイズが65インチ以上である本発明のLED実装モジュールと、表示用画面とを積層してなるLED表示装置とした。これにより、画面サイズが65インチ以上である大型のLED表示装置であって優れた品質安定性を有するものを高い生産性で提供することができる。 (10) An LED display device in which the LED mounting module of the present invention having a screen size of 65 inches or more and a display screen are stacked. Thus, a large LED display device having a screen size of 65 inches or more and having excellent quality stability can be provided with high productivity.
 (11) 本発明のLED実装モジュールをバックライトとして備えるLED表示装置とした。バックライト方式の表示装置は、エッジライト式に比べて多数のLEDを基板上に配置することが必要なため、LED素子からの発熱量の増加は、LED素子の発光能力の低下や、それによる消費電力の増加につながる。又、放熱によって基板等の周辺部材を膨張させ、更にはON/OFFを繰り返すことで、反りや亀裂等、周辺部材を劣化させる要因にもなる。本発明のLED実装モジュールをバックライトとして用いることにより、その高い放熱性と低電気抵抗性により、それぞれのLED素子の消費電力を抑え、発光輝度のバラツキも低減することができる。又、熱による基板等の周辺部材の劣化も防止して製品寿命を延長することができる。 (11) An LED display device provided with the LED mounting module of the present invention as a backlight. Since the backlight type display device needs to arrange a larger number of LEDs on the substrate than the edge light type, the increase in the amount of heat generated from the LED element is caused by the decrease in the light emitting capacity of the LED element and the resulting This leads to an increase in power consumption. Further, by expanding the peripheral member such as the substrate by heat dissipation and further repeating ON / OFF, it becomes a factor of deteriorating the peripheral member such as warp and crack. By using the LED mounting module of the present invention as a backlight, power consumption of each LED element can be suppressed and variation in light emission luminance can be reduced due to its high heat dissipation and low electrical resistance. Further, deterioration of peripheral members such as a substrate due to heat can be prevented and the product life can be extended.
 以上、本発明によれば、放熱性及び生産性に優れるLED素子用基板及びLED実装モジュール、LED表示装置を従来よりも有利な生産性と品質安定性の下で提供することができる。 As described above, according to the present invention, it is possible to provide an LED element substrate, an LED mounting module, and an LED display device excellent in heat dissipation and productivity under productivity and quality stability that are more advantageous than those in the past.
 1       LED素子用基板
 11      樹脂基板
 12      接着剤層
 13      金属配線部
 131     導電プレート部
 132     絶縁スリット部
 133     コネクター配線
 134     端子
 14      ハンダ層
 15      絶縁性保護膜
 16      反射層
 2       LED素子
 3       モニター
 4       放熱構造
 10      LED実装モジュール
 100     LED表示装置
DESCRIPTION OF SYMBOLS 1 LED element substrate 11 Resin substrate 12 Adhesive layer 13 Metal wiring part 131 Conductive plate part 132 Insulation slit part 133 Connector wiring 134 Terminal 14 Solder layer 15 Insulating protective film 16 Reflective layer 2 LED element 3 Monitor 4 Heat dissipation structure 10 LED Mounting module 100 LED display device

Claims (11)

  1.  可撓性を有する樹脂フィルムからなる樹脂基板と、
     前記樹脂基板上に積層されており、LED素子の両電極間を導通させるための、絶縁部が形成されている金属配線部と、を備え、
     前記金属配線部を構成する金属の熱伝導率λが300W/(m・K)以上500W/(m・K)以下であり、
     前記金属配線部を構成する金属の電気抵抗率Rが2.50×10-8Ωm以下であり、
     前記金属配線部は、前記樹脂基板の一方の表面の95%以上の範囲を被覆しているLED素子用基板。
    A resin substrate made of a flexible resin film;
    A metal wiring part that is laminated on the resin substrate and has an insulating part formed between the two electrodes of the LED element; and
    The metal constituting the metal wiring portion has a thermal conductivity λ of 300 W / (m · K) to 500 W / (m · K),
    An electrical resistivity R of the metal constituting the metal wiring portion is 2.50 × 10 −8 Ωm or less,
    The said metal wiring part is a board | substrate for LED elements which has coat | covered the 95% or more range of one surface of the said resin substrate.
  2.  対角線の長さが少なくとも65インチ以上であって可撓性を有する単一の樹脂フィルムからなる樹脂基板と、
     前記樹脂基板上に積層されており、LED素子の両電極間を導通させるための、絶縁部が形成されている金属配線部と、を備え、
     前記金属配線部は、マトリックス状に配置される1000個以上のLED素子を導通可能に形成されていて、
     前記金属配線部は、前記樹脂基板の一方の表面の95%以上の範囲を被覆しているLED素子用基板。
    A resin substrate made of a single resin film having a diagonal length of at least 65 inches and having flexibility;
    A metal wiring part that is laminated on the resin substrate and has an insulating part formed between the two electrodes of the LED element; and
    The metal wiring part is formed to be able to conduct 1000 or more LED elements arranged in a matrix,
    The said metal wiring part is a board | substrate for LED elements which has coat | covered the 95% or more range of one surface of the said resin substrate.
  3.  前記金属配線部が銅からなる請求項1又は2に記載のLED素子用基板。 The LED element substrate according to claim 1, wherein the metal wiring portion is made of copper.
  4.  前記金属配線部の平均厚さが5μm以上50μm以下である請求項1から3のいずれかに記載のLED素子用基板。 The LED element substrate according to any one of claims 1 to 3, wherein an average thickness of the metal wiring portion is 5 µm or more and 50 µm or less.
  5.  前記絶縁部が、幅0.1mm以上1.0mm以下のスリット状に形成されている請求項1から4のいずれかに記載のLED素子用基板。 The LED element substrate according to any one of claims 1 to 4, wherein the insulating portion is formed in a slit shape having a width of 0.1 mm to 1.0 mm.
  6.  前金属配線部が電解銅箔であり、前記樹脂基板との積層面側の表面粗さRzが1.0以上10.0以下である請求項1から5のいずれかに記載のLED素子用基板。 The LED element substrate according to any one of claims 1 to 5, wherein the front metal wiring portion is an electrolytic copper foil, and the surface roughness Rz on the side of the laminated surface with the resin substrate is 1.0 or more and 10.0 or less. .
  7.  前記樹脂基板を形成する樹脂フィルムがポリエチレンナフタレートであって、該ポリエチレンナフタレートの熱収縮開始温度が、100℃以上である請求項1から6のいずれかに記載のLED素子用基板。 The LED element substrate according to claim 1, wherein the resin film forming the resin substrate is polyethylene naphthalate, and the thermal contraction start temperature of the polyethylene naphthalate is 100 ° C. or higher.
  8.  請求項1から7のいずれかに記載のLED素子用基板に少なくとも100個以上のLED素子を実装してなるLED実装モジュール。 An LED mounting module comprising at least 100 LED elements mounted on the LED element substrate according to any one of claims 1 to 7.
  9.  請求項1から7のいずれかに記載のLED素子用基板に少なくとも1000個以上のLED素子を実装してなるLED実装モジュール。 8. An LED mounting module formed by mounting at least 1000 LED elements on the LED element substrate according to claim 1.
  10.  請求項8又は9に記載のLED実装モジュールと、表示用画面と、を積層してなるLED表示装置。 An LED display device comprising the LED mounting module according to claim 8 and a display screen laminated.
  11.  請求項8又は9に記載のLED実装モジュールをバックライトとして備えるLED表示装置。 An LED display device comprising the LED mounting module according to claim 8 as a backlight.
PCT/JP2015/086038 2014-12-25 2015-12-24 Led element substrate, led-mounted module and led display device using these WO2016104609A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014263664A JP2016122816A (en) 2014-12-25 2014-12-25 Substrate for led element and led mounting module
JP2014263661A JP2016122815A (en) 2014-12-25 2014-12-25 Substrate for LED element
JP2014-263664 2014-12-25
JP2014-263661 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016104609A1 true WO2016104609A1 (en) 2016-06-30

Family

ID=56150622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086038 WO2016104609A1 (en) 2014-12-25 2015-12-24 Led element substrate, led-mounted module and led display device using these

Country Status (2)

Country Link
TW (1) TWI711193B (en)
WO (1) WO2016104609A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220389A1 (en) * 2019-04-28 2020-11-05 深圳市晶泓科技有限公司 Transparent led display screen and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10852583B2 (en) * 2018-09-17 2020-12-01 Sharp Kabushiki Kaisha Lighting device, display device, and method of producing lighting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086847A (en) * 2001-07-06 2003-03-20 Hitachi Aic Inc Laminated board for light emitting element and indicating body using it
JP2007513520A (en) * 2003-12-02 2007-05-24 スリーエム イノベイティブ プロパティズ カンパニー Lighting assembly based on light emitting diode
JP2008258296A (en) * 2007-04-03 2008-10-23 Sony Corp Light-emitting device and light source device
JP2009290167A (en) * 2008-06-02 2009-12-10 Mitsui Mining & Smelting Co Ltd Light emitting module
JP2013254877A (en) * 2012-06-08 2013-12-19 Koito Mfg Co Ltd Light source unit
JP2014130967A (en) * 2012-12-28 2014-07-10 Nichia Chem Ind Ltd Light emitting device
JP2014179520A (en) * 2013-03-15 2014-09-25 Nichia Chem Ind Ltd Method for removing seal member of light-emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7284894B2 (en) * 2005-05-31 2007-10-23 Avago Technologies Eceliip (Singapore) Pte Ltd Light source utilizing a flexible circuit carrier
TWI362774B (en) * 2011-01-21 2012-04-21 Atek Technology Corp Lighting device and method for forming the same
TWM461880U (en) * 2013-04-12 2013-09-11 Ritedia Corp Flip chip type light emitting diode (LED)

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086847A (en) * 2001-07-06 2003-03-20 Hitachi Aic Inc Laminated board for light emitting element and indicating body using it
JP2007513520A (en) * 2003-12-02 2007-05-24 スリーエム イノベイティブ プロパティズ カンパニー Lighting assembly based on light emitting diode
JP2008258296A (en) * 2007-04-03 2008-10-23 Sony Corp Light-emitting device and light source device
JP2009290167A (en) * 2008-06-02 2009-12-10 Mitsui Mining & Smelting Co Ltd Light emitting module
JP2013254877A (en) * 2012-06-08 2013-12-19 Koito Mfg Co Ltd Light source unit
JP2014130967A (en) * 2012-12-28 2014-07-10 Nichia Chem Ind Ltd Light emitting device
JP2014179520A (en) * 2013-03-15 2014-09-25 Nichia Chem Ind Ltd Method for removing seal member of light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220389A1 (en) * 2019-04-28 2020-11-05 深圳市晶泓科技有限公司 Transparent led display screen and manufacturing method thereof

Also Published As

Publication number Publication date
TWI711193B (en) 2020-11-21
TW201635600A (en) 2016-10-01

Similar Documents

Publication Publication Date Title
JP2017116885A (en) LED display device
JP2017044868A (en) See-through type LED display device
JP2016197669A (en) Flexible multilayer circuit board for LED element and LED dot matrix display device using the same
WO2016104616A1 (en) Led-mounted module and led display device
JP2018010169A (en) LED display device
WO2016104609A1 (en) Led element substrate, led-mounted module and led display device using these
JP2017152108A (en) Substrate for LED element and LED display device
JP2012191114A (en) Led mounting substrate and manufacturing method of led module
JP6447116B2 (en) LED element substrate and LED display device
JP6659993B2 (en) Flexible substrate for LED elements
JP6922229B2 (en) LED backlight
JP6528503B2 (en) LED BACKLIGHT AND LED DISPLAY USING THE SAME
JP6458492B2 (en) LED element substrate and manufacturing method of LED mounting module using the same
JP2016122815A (en) Substrate for LED element
JP6511914B2 (en) LED mounting module and LED display device
TWI688082B (en) Substrate for LED element and LED display device
JP2016122816A (en) Substrate for led element and led mounting module
JP2017152450A (en) LED display device
JP6458493B2 (en) LED element substrate and manufacturing method of LED mounting module using the same
WO2017199394A1 (en) Led element substrate and led display device
JP2016197675A (en) Flexible multilayer circuit board for LED element
JP2016122821A (en) Substrate for LED element and LED display device
JP6610327B2 (en) LED element substrate and LED display device
JP2017130563A (en) Substrate for led elements
JP2017130562A (en) Substrate for led elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873177

Country of ref document: EP

Kind code of ref document: A1