WO2016104188A1 - Sheet for thermal bonding and sheet for thermal bonding with affixed dicing tape - Google Patents

Sheet for thermal bonding and sheet for thermal bonding with affixed dicing tape Download PDF

Info

Publication number
WO2016104188A1
WO2016104188A1 PCT/JP2015/084813 JP2015084813W WO2016104188A1 WO 2016104188 A1 WO2016104188 A1 WO 2016104188A1 JP 2015084813 W JP2015084813 W JP 2015084813W WO 2016104188 A1 WO2016104188 A1 WO 2016104188A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat bonding
sheet
dicing tape
heat
bonding sheet
Prior art date
Application number
PCT/JP2015/084813
Other languages
French (fr)
Japanese (ja)
Inventor
悠樹 菅生
菜穂 鎌倉
石坂 剛
光昭 襖田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015204211A external-priority patent/JP6682235B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/539,657 priority Critical patent/US10301509B2/en
Priority to CN201580070430.3A priority patent/CN107109146A/en
Priority to EP15872757.8A priority patent/EP3239258A4/en
Publication of WO2016104188A1 publication Critical patent/WO2016104188A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J169/00Adhesives based on polycarbonates; Adhesives based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives

Definitions

  • the present invention relates to a heat bonding sheet and a heat bonding sheet with a dicing tape.
  • the method of bonding a semiconductor element to an adherend such as a metal lead frame has started from the conventional gold-silicon eutectic, and has changed to a method using solder and resin paste. At present, a conductive resin paste is sometimes used.
  • Patent Document 2 describes a technique for improving flexibility and reducing thermal damage of a lead frame or the like by using an acrylic acid copolymer having a glass transition temperature of ⁇ 10 ° C. to 50 ° C. .
  • Si Insulated Gate Bipolar Transistors
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • a semiconductor using SiC or GaN has features such as a large band gap and a high dielectric breakdown electric field, and can operate at low loss, high speed, and high temperature.
  • High-temperature operation is advantageous in automobiles and small power conversion devices that have a severe thermal environment.
  • Semiconductor devices used in severe thermal environments are expected to operate at a high temperature of around 250 ° C., and solder and conductive adhesives, which are conventional bonding / adhesive materials, have problems in thermal characteristics and reliability.
  • paste materials containing sintered metal particles have been proposed (see, for example, Patent Document 3).
  • the sintered metal particle-containing paste material contains nano- and micro-sized metal particles, and these metal particles melt at a temperature lower than the normal melting point due to the nano-size effect, and sintering between the particles proceeds. Because of joining by sintering, high reliability is obtained even in an environment of 250 ° C., and high thermal characteristics are obtained.
  • Patent Document 4 discloses a heat-bonding sheet body. This heat-bonding sheet body is formed by pressing a high-viscosity heat-bonding material into a sheet shape. Concerns about overhang and creeping on the chip surface cannot be resolved.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to suppress the protrusion during die attachment and the creeping to the chip surface, and heating that provides high reliability and thermal characteristics even in a high temperature environment.
  • An object of the present invention is to provide a bonding sheet and a heating bonding sheet with a dicing tape having the heating bonding sheet.
  • the inventors of the present application examined a heat bonding sheet and a heat bonding sheet with a dicing tape having the heat bonding sheet. As a result, by adopting the following configuration, it has been found that protrusion and die-up on the chip surface during die attach are suppressed, and that high reliability and thermal characteristics can be obtained even in a high temperature environment. It came to complete.
  • the heat bonding sheet according to the present invention is:
  • the tensile modulus obtained by the following tensile test method is 10 to 3000 MPa, Containing metal fine particles in the range of 60 to 98% by weight,
  • the carbon concentration obtained by energy dispersive X-ray analysis after heating from 23 ° C. to 400 ° C. under the condition of a heating rate of 10 ° C./min in an air atmosphere is 15% by weight or less. To do.
  • Tensile test method (1) As a test sample, a heat bonding sheet having a thickness of 200 ⁇ m, a width of 10 mm, and a length of 40 mm is prepared, (2) A tensile test was performed under the conditions of a distance between chucks of 10 mm, a tensile speed of 50 mm / min, and 23 ° C. (3) The slope of the straight line portion of the obtained stress-strain diagram is the tensile modulus.
  • the tensile elasticity modulus obtained by the said tensile test method is 10 Mpa or more, it can suppress that the constituent material of the sheet
  • the organic substance for example, the resin component constituting the heat bonding sheet
  • the heat resistance after the heat bonding process is more excellent.
  • the sheet shape is more easily maintained before the heat bonding step. Moreover, it is easier to thermally decompose during the heat bonding process.
  • the metal fine particles are preferably at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide.
  • metal fine particles are at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide, heat bonding can be more suitably performed.
  • the thickness at 23 ° C. is preferably 5 to 100 ⁇ m.
  • the thickness at 23 ° C. is 5 ⁇ m or more, the protrusion can be further suppressed.
  • it is 100 ⁇ m or less, it is possible to further suppress the occurrence of inclination during heat bonding.
  • the sheet for heat bonding with a dicing tape according to the present invention Dicing tape, It has the said sheet
  • the step of bonding to the dicing tape can be omitted.
  • the sheet for heat bonding is provided, the protrusion at the time of heat bonding and the creeping to the chip surface are suppressed.
  • two objects for example, a semiconductor chip and a lead frame
  • the carbon concentration obtained by energy dispersive X-ray analysis after heating from 23 ° C. to 400 ° C. under the condition of a heating rate of 10 ° C./min in an air atmosphere is 15% by weight or less, After heating up to 400 ° C., there is almost no organic matter.
  • the heat resistance is excellent, and high reliability and thermal characteristics are obtained even in a high temperature environment.
  • FIG. 1 is a schematic cross-sectional view showing a heat bonding sheet with a dicing tape according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another heat bonding sheet with dicing tape according to another embodiment of the present invention.
  • a heat bonding sheet 10 with a dicing tape has a configuration in which a heat bonding sheet 3 is laminated on a dicing tape 11.
  • the dicing tape 11 is configured by laminating the pressure-sensitive adhesive layer 2 on the base material 1, and the heat bonding sheet 3 is provided on the pressure-sensitive adhesive layer 2.
  • work affixing part may be sufficient as this invention like the sheet
  • the heat bonding sheets 3, 3 ′ have a tensile modulus of 10 MPa to 3000 MPa, preferably 12 MPa to 2900 MPa, and more preferably 15 MPa to 2500 MPa, obtained by the following tensile test method.
  • Tensile test method (1) As a test sample, a heat bonding sheet (heat bonding sheet for tensile test) having a thickness of 200 ⁇ m, a width of 10 mm, and a length of 40 mm is prepared. (2) A tensile test was performed under the conditions of a distance between chucks of 10 mm, a tensile speed of 50 mm / min, and 23 ° C. (3) The slope of the straight line portion of the obtained stress-strain diagram is the tensile modulus.
  • the heat bonding sheets 3, 3 ′ have a tensile modulus of 10 MPa or more obtained by the above-described tensile test method, and therefore prevent the constituent material of the heat bonding sheet from protruding or rising to the chip surface during die attachment. it can. Further, since the tensile elastic modulus is 3000 MPa or less, for example, the semiconductor wafer can be fixed during dicing.
  • the content of the metal fine particles is preferably in the range of 65 to 97% by weight, and more preferably in the range of 70 to 95% by weight. Since the metal fine particles are contained in the range of 60 to 98% by weight, the metal fine particles can be sintered or melted to join two objects (for example, a semiconductor chip and a lead frame).
  • Examples of the metal fine particles include sinterable metal particles.
  • the sinterable metal particles aggregates of metal fine particles can be suitably used.
  • the metal fine particles include fine particles made of metal.
  • the metal include gold, silver, copper, silver oxide, and copper oxide.
  • it is preferable that it is at least 1 sort (s) chosen from the group which consists of silver, copper, silver oxide, and copper oxide.
  • the metal fine particles are at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide, heat bonding can be more suitably performed.
  • the average particle size of the sinterable metal particles is preferably 0.0005 ⁇ m or more, more preferably 0.001 ⁇ m or more. Moreover, 0.005 micrometer or more and 0.01 micrometer or more may be sufficient. Examples of the lower limit of the average particle diameter include 0.01 ⁇ m, 0.05 ⁇ m, and 0.1 ⁇ m. Furthermore, 0.5 micrometer and 1 micrometer can also be illustrated. On the other hand, the average particle size of the sinterable metal particles is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less. Examples of the upper limit of the average particle diameter include 20 ⁇ m, 15 ⁇ m, 10 ⁇ m, and 5 ⁇ m.
  • the average particle size of the sinterable metal particles is measured by the following method. That is, the sinterable metal particles are observed with an SEM (scanning electron microscope), and the average particle diameter is measured.
  • the SEM observation is, for example, observing at a magnification of 5000 when the sinterable metal particles are in a micro size, observing at a magnification of 50000 in the case of a submicron size, and observing at a magnification of 300000 in the case of a nano size. preferable.
  • the shape of the sinterable metal particles is not particularly limited, and is, for example, spherical, rod-like, scale-like, or indefinite.
  • the heat-bonding sheets 3 and 3 ′ have a carbon concentration obtained by energy dispersive X-ray analysis after heating from 23 ° C. to 400 ° C. in an air atmosphere under a temperature rising rate of 10 ° C./min. It is 15% by weight or less, preferably 12% by weight or less, and more preferably 10% by weight or less. Since the carbon concentration is 15% by weight or less, the heat-bonding sheets 3 and 3 ′ have almost no organic matter after the temperature is raised to 400 ° C. As a result, after the heat bonding step, the heat resistance is excellent, and high reliability and thermal characteristics are obtained even in a high temperature environment.
  • the heat bonding sheets 3 and 3 ′ may have a peak at 150 to 350 ° C. when differential thermal analysis is performed from 23 ° C. to 500 ° C. under an air atmosphere at a temperature rising rate of 10 ° C./min. Preferably, it exists at 170 to 320 ° C, more preferably at 180 to 310 ° C.
  • the peak is present at 150 to 350 ° C., it can be said that the organic substance (for example, the resin component constituting the heat bonding sheet) is thermally decomposed in this temperature region. As a result, the heat resistance after the heat bonding process is more excellent.
  • the heat bonding sheets 3 and 3 ′ contain a thermally decomposable binder.
  • a thermally decomposable binder is contained, the sheet shape is easily maintained before the heat bonding step. Moreover, it is easy to thermally decompose at the time of a heat joining process.
  • the “thermally decomposable binder” refers to a binder that can be thermally decomposed in the heat bonding step. It is preferable that the thermally decomposable binder hardly remains in the heat bonding sheet after the heat bonding step.
  • the thermally decomposable binder for example, energy after heating from 23 ° C. to 400 ° C. under the condition of a heating rate of 10 ° C./min in an air atmosphere even if it is contained in the heat bonding sheet.
  • Examples thereof include materials whose carbon concentration obtained by the dispersion X-ray analysis is 15% by weight or less. For example, if a material that is more easily thermally decomposed is used as the thermally decomposable binder, even if the content is relatively increased, it can be made to hardly remain in the heat bonding sheet after the heat bonding step.
  • the heat decomposable binder is preferably a solid material at normal temperature (23 ° C.).
  • the thermally decomposable binder is a solid material at room temperature (23 ° C.)
  • thermally decomposable binder examples include acrylic resin and polycarbonate resin.
  • the acrylic resin is an ester of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms, as long as it can be thermally decomposed in the heat bonding step.
  • Polymers (acrylic copolymers) containing seeds or two or more kinds as components are listed.
  • alkyl group examples include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2- Examples include ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, and dodecyl group.
  • the other monomer forming the polymer is not particularly limited, and for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid Or a carboxyl group-containing monomer such as crotonic acid, an acid anhydride monomer such as maleic anhydride or itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth ) 4-hydroxybutyl acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4 -Hydroxymethyl cycle Hexyl) -hydroxyl group-containing monomers such as methyl acrylate, styrene sulfonic
  • acrylic resins those having a weight average molecular weight of 10,000 to 1,000,000 are more preferable, and those having a weight average molecular weight of 30,000 to 700,000 are more preferable. It is because it is excellent in the adhesiveness before a heat joining process and the thermal decomposability in the heat joining process as it is in the said numerical range.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • acrylic resins acrylic resins that thermally decompose at 200 ° C. to 400 ° C. are preferable.
  • the polycarbonate resin is not particularly limited as long as it can be thermally decomposed in the heat bonding step, but an aromatic compound (for example, between the carbonate ester groups (—O—CO—O—) of the main chain)
  • An aliphatic polycarbonate containing an aliphatic chain without a benzene ring or the like, and an aromatic polycarbonate containing an aromatic compound between carbonic acid ester groups (—O—CO—O—) of the main chain can be mentioned.
  • aliphatic polycarbonate is preferable.
  • Examples of the aliphatic polycarbonate include polyethylene carbonate and polypropylene carbonate.
  • polypropylene carbonate is preferable from the viewpoint of solubility in an organic solvent in producing a varnish for forming a sheet.
  • aromatic polycarbonate include those containing a bisphenol A structure in the main chain.
  • the weight average molecular weight of the polycarbonate resin is preferably in the range of 10,000 to 1,000,000.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • heat bonding sheets 3 and 3 ′ may appropriately contain, for example, a plasticizer in addition to the above components.
  • the heat bonding sheets 3, 3 ' can be manufactured by a usual method. For example, a varnish containing each of the above components is prepared, and the varnish is applied on a base separator so as to have a predetermined thickness to form a coating film, and then the coating film is dried, whereby the heat bonding sheet 3 3 ′ can be manufactured.
  • the solvent used in the varnish is not particularly limited, but an organic solvent or an alcohol solvent that can uniformly dissolve, knead, or disperse the above components is preferable.
  • the organic solvent include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, and xylene.
  • alcohol solvent examples include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2- Examples include butene-1,4-diol, 1,2,6-hexanetriol, glycerin, octanediol, 2-methyl-2,4-pentanediol, and terpineol.
  • the application method is not particularly limited.
  • the solvent coating method include a die coater, a gravure coater, a roll coater, a reverse coater, a comma coater, a pipe doctor coater, and screen printing.
  • a die coater is preferable in terms of high uniformity of coating thickness.
  • the drying conditions for the coating film are not particularly limited, and for example, the drying can be performed at a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes. Even after the coating film is dried, depending on the type of solvent, the entire solvent may remain in the coating film without being vaporized.
  • polyethylene terephthalate (PET) polyethylene
  • polypropylene polypropylene
  • a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent
  • a method for producing the heat-bonding sheets 3 and 3 ′ for example, a method for producing the heat-bonding sheets 3 and 3 ′ by mixing the respective components with a mixer and press-molding the obtained mixture is also suitable. It is. A planetary mixer etc. are mentioned as a mixer.
  • the thickness of the heat-bonding sheets 3 and 3 'at 23 ° C. before heating is preferably 5 to 100 ⁇ m, and more preferably 10 to 80 ⁇ m.
  • the thickness at 23 ° C. is 5 ⁇ m or more, the protrusion can be further suppressed.
  • it is 100 ⁇ m or less, it is possible to further suppress the occurrence of inclination during heat bonding.
  • the dicing tape 11 is configured by laminating an adhesive layer 2 on a substrate 1.
  • the base material 1 is a strength base of the heat bonding sheets 10 and 12 with a dicing tape, and preferably has ultraviolet transparency.
  • the substrate 1 include low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, and the like.
  • Polyolefin ethylene-vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene -Hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyetherimide, polyamide, wholly aromatic polyamide, polyphenyls Fuido, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, metal (foil), paper, and the like.
  • Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyetherimide, polyamide, wholly aromatic polyamide,
  • examples of the material of the substrate 1 include polymers such as a crosslinked body of the resin.
  • the plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary.
  • the adhesive area between the pressure-sensitive adhesive layer 2 and the heat bonding sheets 3 and 3 ′ is reduced by thermally shrinking the base material 1 after dicing, The collection of the semiconductor chip can be facilitated.
  • the surface of the substrate 1 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers.
  • a physical treatment or a coating treatment with a primer for example, an adhesive substance described later can be performed.
  • the thickness of the substrate 1 is not particularly limited and can be appropriately determined, but is generally about 5 to 200 ⁇ m.
  • the pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 2 is not particularly limited, and for example, a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used.
  • a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive
  • an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer from the viewpoint of cleanability with an organic solvent such as ultrapure water or alcohol of an electronic component that is difficult to contaminate a semiconductor wafer or glass Is preferred.
  • acrylic polymer examples include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, especially 4 to 18 carbon atoms, such as
  • the acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. You may go out.
  • Such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Styrene Contains sulfonic acid groups such as phonic acid, allyl sulf
  • a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary.
  • examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably
  • the acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization.
  • the polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like.
  • the content of the low molecular weight substance is preferably small.
  • the number average molecular weight of the acrylic polymer is preferably 100,000 or more, more preferably about 200,000 to 3,000,000, and particularly preferably about 300,000 to 1,000,000.
  • an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. In general, it is preferable to add about 5 parts by weight or less, and further 0.1 to 5 parts by weight with respect to 100 parts by weight of the base polymer.
  • additives such as conventionally well-known various tackifiers and anti-aging agent, other than the said component as needed to an adhesive.
  • the pressure-sensitive adhesive layer 2 can be formed of a radiation curable pressure-sensitive adhesive.
  • the radiation curable pressure-sensitive adhesive can increase the degree of cross-linking by irradiation with radiation such as ultraviolet rays, and can easily reduce its adhesive strength, and a portion 2a corresponding to the work pasting portion of the pressure-sensitive adhesive layer 2 shown in FIG.
  • the difference in adhesive strength with the other part 2b can be provided by irradiating only with radiation.
  • the portion 2 a having a significantly reduced adhesive force can be easily formed. Since the heat bonding sheet 3 ′ is attached to the portion 2 a that has been cured and has reduced adhesive strength, the interface between the portion 2 a of the pressure-sensitive adhesive layer 2 and the heat bonding sheet 3 ′ is easily peeled off during pick-up. Have. On the other hand, the portion not irradiated with radiation has a sufficient adhesive force, and forms the portion 2b. In addition, you may perform irradiation of the radiation to an adhesive layer after dicing and before pick-up.
  • the portion 2b formed of the uncured radiation-curing pressure-sensitive adhesive adheres to the heat bonding sheet 3, and dicing is performed. It is possible to secure a holding force when performing. In this way, the radiation curable pressure-sensitive adhesive can support the heat bonding sheet 3 for fixing a chip-like work (semiconductor chip or the like) to an adherend such as a substrate with a good balance of adhesion and peeling.
  • the portion 2b can fix the wafer ring.
  • the radiation curable pressure-sensitive adhesive those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation.
  • the radiation curable pressure sensitive adhesive for example, an addition type radiation curable pressure sensitive adhesive in which a radiation curable monomer component or an oligomer component is blended with a general pressure sensitive pressure sensitive adhesive such as an acrylic pressure sensitive adhesive or a rubber pressure sensitive adhesive. An agent can be illustrated.
  • Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol.
  • Examples include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4-butanediol di (meth) acrylate.
  • the radiation curable oligomer component examples include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable.
  • the compounding amount of the radiation-curable monomer component or oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
  • the radiation-curable pressure-sensitive adhesive has a carbon-carbon double bond in the polymer side chain, main chain, or main chain terminal as a base polymer.
  • Intrinsic radiation curable pressure sensitive adhesives using Intrinsic radiation curable pressure-sensitive adhesive does not need to contain an oligomer component, which is a low-molecular component, or does not contain much, so that the oligomer component or the like does not move in the pressure-sensitive adhesive over time and is stable. Since the adhesive layer of a layer structure can be formed, it is preferable.
  • the base polymer having a carbon-carbon double bond those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation.
  • those having an acrylic polymer as a basic skeleton are preferable.
  • the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
  • the method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, it is easy in terms of molecular design to introduce the carbon-carbon double bond into the polymer side chain. It is. For example, after a monomer having a functional group is copolymerized in advance with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond. A method of performing condensation or addition reaction while maintaining the above.
  • combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups, and the like.
  • a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction.
  • the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond.
  • it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group.
  • examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and the like.
  • the acrylic polymer a copolymer obtained by copolymerizing the above-mentioned exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like is used.
  • the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the radiation curable monomer does not deteriorate the characteristics.
  • Components and oligomer components can also be blended.
  • the radiation-curable oligomer component or the like is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
  • the radiation curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like.
  • the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropio ⁇ -ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalene
  • the radiation curable pressure-sensitive adhesive examples include photopolymerizable compounds such as an addition polymerizable compound having two or more unsaturated bonds and an alkoxysilane having an epoxy group disclosed in JP-A-60-196956. And a rubber-based pressure-sensitive adhesive and an acrylic pressure-sensitive adhesive containing a photopolymerization initiator such as a carbonyl compound, an organic sulfur compound, a peroxide, an amine, and an onium salt-based compound.
  • photopolymerizable compounds such as an addition polymerizable compound having two or more unsaturated bonds and an alkoxysilane having an epoxy group disclosed in JP-A-60-196956.
  • a rubber-based pressure-sensitive adhesive and an acrylic pressure-sensitive adhesive containing a photopolymerization initiator such as a carbonyl compound, an organic sulfur compound, a peroxide, an amine, and an onium salt-based compound.
  • a compound that is colored by irradiation with radiation may be contained as necessary.
  • a compound to be colored in the pressure-sensitive adhesive layer 2 by irradiation with radiation only the irradiated portion can be colored. That is, the portion 2a corresponding to the workpiece pasting portion 3a shown in FIG. 1 can be colored. Accordingly, whether or not the pressure-sensitive adhesive layer 2 has been irradiated with radiation can be immediately determined by visual observation, the workpiece pasting portion 3a can be easily recognized, and workpieces can be easily pasted together.
  • the detection accuracy is increased, and no malfunction occurs when the semiconductor chip is picked up.
  • the compound that is colored by irradiation with radiation is a colorless or light color compound before irradiation with radiation, but becomes a color by irradiation with radiation, and examples thereof include leuco dyes.
  • the use ratio of the compound colored by radiation irradiation can be set as appropriate.
  • the thickness of the pressure-sensitive adhesive layer 2 is not particularly limited, but is preferably about 1 to 50 ⁇ m from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the heat bonding sheets 3 and 3 ′. .
  • the thickness is preferably 2 to 30 ⁇ m, more preferably 5 to 25 ⁇ m.
  • the base material 1 can be formed by a conventionally known film forming method.
  • the film forming method include a calendar film forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, and a dry lamination method.
  • the coating film is dried under predetermined conditions (heat-crosslinked as necessary), and the pressure-sensitive adhesive layer 2 is formed.
  • a coating method For example, roll coating, screen coating, gravure coating, etc. are mentioned.
  • drying conditions for example, a drying temperature of 80 to 150 ° C. and a drying time of 0.5 to 5 minutes are performed.
  • the coating film may be dried on the said drying conditions, and the adhesive layer 2 may be formed. Then, the adhesive layer 2 is bonded together with the separator on the base material 1. Thereby, the dicing tape 11 is produced.
  • the heat bonding sheet 10 with dicing tape can be manufactured by a usual method.
  • seat 10 for heat joining with a dicing tape can be manufactured by bonding the adhesive layer 2 of the dicing tape 11 and the sheet
  • the method of manufacturing a semiconductor device includes the step of preparing the heat bonding sheet; A heat bonding step of heat bonding the semiconductor chip onto the adherend via the heat bonding sheet (hereinafter also referred to as the first embodiment).
  • the method for manufacturing a semiconductor device includes the step of preparing the heat bonding sheet with dicing tape described above, A bonding step of bonding the heat bonding sheet of the heat bonding sheet with the dicing tape and the back surface of the semiconductor wafer; A dicing step of dicing the semiconductor wafer together with the heat bonding sheet to form a chip-like semiconductor chip; Picking up the semiconductor chip together with the heat bonding sheet from the heat bonding sheet with the dicing tape; A heat bonding step of heat bonding the semiconductor chip onto the adherend via the heat bonding sheet (hereinafter also referred to as a second embodiment).
  • the semiconductor device manufacturing method according to the first embodiment is different from the semiconductor device manufacturing method according to the second embodiment in that the semiconductor device according to the first embodiment uses a heat bonding sheet with dicing tape.
  • the manufacturing method of the apparatus is different in that the heat bonding sheet is used alone, and is common in other points.
  • the step of bonding the sheet to the dicing tape is performed.
  • the manufacturing method of the semiconductor device according to the second embodiment is performed. And can be similar. Therefore, hereinafter, a method for manufacturing a semiconductor device according to the second embodiment will be described.
  • the heat bonding sheets with dicing tape 10 and 12 are prepared (preparing step).
  • the dicing tape-attached heat bonding sheets 10 and 12 are used in the following manner by appropriately separating the separator arbitrarily provided on the heat bonding sheets 3 and 3 ′.
  • a case where the heat bonding sheet with dicing tape 10 is used will be described as an example with reference to FIG.
  • the semiconductor wafer 4 is pressure-bonded onto the semiconductor wafer bonding portion 3a of the heat bonding sheet 3 in the heat bonding sheet 10 with dicing tape, and this is bonded and held (fixing step). This step is performed while pressing with a pressing means such as a pressure roll.
  • the attaching temperature at the time of mounting is not particularly limited and is preferably in the range of 23 to 90 ° C., for example.
  • the semiconductor wafer 4 is diced (dicing process). Thereby, the semiconductor wafer 4 is cut into a predetermined size and separated into individual pieces, and the semiconductor chip 5 is manufactured.
  • the method of dicing is not particularly limited, for example, the dicing is performed from the circuit surface side of the semiconductor wafer 4 according to a conventional method. Further, in this step, for example, a cutting method called full cut in which cutting is performed up to the heat bonding sheet with dicing tape 10 can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used. Further, since the semiconductor wafer 4 is bonded and fixed by the heat bonding sheet 10 with a dicing tape, chip chipping and chip jumping can be suppressed, and damage to the semiconductor wafer 4 can also be suppressed.
  • the semiconductor chip 5 is picked up in order to peel the semiconductor chip 5 adhered and fixed to the heat bonding sheet 10 with dicing tape (pickup process).
  • the pickup method is not particularly limited, and various conventionally known methods can be employed. For example, there is a method in which each semiconductor chip 5 is pushed up by a needle from the heating bonding sheet 10 with dicing tape, and the pushed-up semiconductor chip 5 is picked up by a pickup device.
  • the needle push-up speed is preferably 5 to 100 mm / sec, more preferably 5 to 10 mm / sec from the viewpoint of preventing chipping.
  • the pickup is performed after the pressure-sensitive adhesive layer 2 is irradiated with ultraviolet rays.
  • seat 3 for heat bonding of the adhesive layer 2 falls, and peeling of the semiconductor chip 5 becomes easy.
  • the pickup can be performed without damaging the semiconductor chip 5.
  • Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary.
  • a well-known thing can be used as a light source used for ultraviolet irradiation.
  • the adhesive layer is preliminarily irradiated with ultraviolet rays and cured, and the cured adhesive layer and the heat bonding sheet are bonded together, the ultraviolet irradiation here is not necessary.
  • the picked-up semiconductor chip 5 is die-attached (heat bonded) to the adherend 6 via the heat bonding sheet 3 (heat bonding process).
  • the adherend 6 include a lead frame, a TAB film, a substrate, and a separately manufactured semiconductor chip.
  • the adherend 6 may be, for example, a deformable adherend that can be easily deformed or a non-deformable adherend (such as a semiconductor wafer) that is difficult to deform.
  • the lead frame examples include metal lead frames such as a Cu lead frame and a 42 Alloy lead frame.
  • a conventionally well-known thing can be used as said board
  • examples thereof include organic substrates made of glass epoxy, BT (bismaleimide-triazine), polyimide, and the like.
  • BT bismaleimide-triazine
  • polyimide polyimide
  • the substrate may be an insulating circuit substrate in which a copper circuit substrate is laminated on an insulating substrate such as a ceramic plate. If an insulated circuit board is used, for example, a power semiconductor device that controls and supplies power can be manufactured.
  • the metal fine particles are sintered by heating, and the thermally decomposable binder is thermally decomposed as necessary.
  • the heating temperature is preferably 180 to 400 ° C, more preferably 190 to 370 ° C, and further preferably 200 to 350 ° C.
  • the heating time is preferably 0.3 to 300 minutes, more preferably 0.5 to 240 minutes, and still more preferably 1 to 180 minutes.
  • the pressurizing condition is preferably in the range of 1 to 500 kg / cm 2 , more preferably in the range of 5 to 400 kg / cm 2 .
  • the heat bonding under pressure can be performed with an apparatus capable of simultaneously performing heating and pressure, such as a flip chip bonder. Moreover, a parallel plate press may be used.
  • the heat bonding sheet 3 has a tensile elastic modulus of 10 MPa or more obtained by the tensile test method, so that the constituent material of the heat bonding sheet 3 protrudes during die attachment (at the time of heat bonding) or the surface of the semiconductor chip 5. It is possible to suppress crawling up. Further, since the heat bonding sheet 3 contains metal fine particles in the range of 60 to 98% by weight, the semiconductor fine particles 5 and the adherend 6 (for example, a lead frame) are sintered or melted. Can be joined. In addition, the heat bonding sheet 3 has a carbon concentration of 15 obtained by energy dispersive X-ray analysis after heating from 23 ° C. to 400 ° C. in an air atmosphere under a temperature rising rate of 10 ° C./min. Since the content is less than or equal to the weight percent, there is almost no organic matter after the heat bonding step. As a result, after the heat bonding step, the heat resistance is excellent, and high reliability and thermal characteristics are obtained even in a high temperature environment.
  • the tip of the terminal portion (inner lead) of the adherend 6 and an electrode pad (not shown) on the semiconductor chip 5 are electrically connected by a bonding wire 7.
  • a bonding wire 7 for example, a gold wire, an aluminum wire, a copper wire or the like is used.
  • the temperature for wire bonding is 23 to 300 ° C., preferably 23 to 250 ° C. Further, it may be carried out in the range of 80 to 250 ° C. or in the range of 80 to 220 ° C.
  • the heating time is several seconds to several minutes.
  • the connection is performed by a combination of vibration energy by ultrasonic waves and crimping energy by applying pressure while being heated so as to be within the temperature range.
  • the semiconductor chip 5 is sealed with a sealing resin 8 as shown in FIG. 3 (sealing step).
  • This step is performed to protect the semiconductor chip 5 and the bonding wire 7 mounted on the adherend 6.
  • This step can be performed by molding a sealing resin with a mold.
  • the sealing resin 8 for example, an epoxy resin is used.
  • the heating temperature at the time of resin sealing is usually 175 ° C. for 60 to 90 seconds, but the present invention is not limited to this. For example, it can be cured at 165 to 185 ° C. for several minutes. Thereby, the sealing resin 8 is cured.
  • a method of embedding the semiconductor chip 5 in a sheet-like sealing sheet (for example, see JP2013-7028A) can also be employed.
  • a gel sealing type in which silicone gel is poured into a case type container may be used.
  • heating is performed as necessary to completely cure the insufficiently cured sealing resin 8 in the sealing process (post-curing process).
  • the heating temperature in this step varies depending on the type of the sealing resin, but is in the range of 165 to 185 ° C., for example, and the heating time is about 0.5 to 8 hours.
  • seat for heat joining with a dicing tape can be used suitably also when laminating
  • the heat bonding sheet and the spacer may be stacked between the semiconductor chips, or only the heat bonding sheet may be stacked between the semiconductor chips without stacking the spacer. It can be changed as appropriate.
  • the heat bonding sheet and the heat bonding sheet with dicing tape of the present invention are not limited to the applications exemplified above, and can be used for heat bonding two things.
  • Acrylic resin A SPB-TE1 (molecular weight 40000) manufactured by Soken Chemical Co., Ltd.
  • Acrylic resin B IB-27 (molecular weight 370000) manufactured by Soken Chemical Co., Ltd.
  • Polypropylene carbonate resin QPAC40 (Molecular weight 200000) manufactured by Empower Ethylcellulose A: Etcelle STD100 manufactured by Nisshin Kasei Metal fine particle A: SPH02J manufactured by Mitsui Mining & Smelting Co., Ltd.
  • Metal fine particle mixed paste A ANP-1 manufactured by Applied Nanoparticles Laboratory (paste in which nano-sized silver fine particles are dispersed)
  • Organic solvent A Methyl ethyl ketone (MEK)
  • Alcohol solvent A Terpineol

Abstract

A sheet for thermal bonding which has a tensile modulus of 10-3,000 MPa and contains fine metal particles in an amount in the range of 60-98 wt% and which, when heated from 23ºC to 400ºC in the air at a heating rate of 10 ºC/min and then examined by energy dispersive X-ray spectrometry, has a carbon concentration of 15 wt% or less.

Description

加熱接合用シート、及び、ダイシングテープ付き加熱接合用シートHeat bonding sheet and heat bonding sheet with dicing tape
 本発明は、加熱接合用シート、及び、ダイシングテープ付き加熱接合用シートに関する。 The present invention relates to a heat bonding sheet and a heat bonding sheet with a dicing tape.
 半導体装置の製造において半導体素子を金属リードフレームなどの被着体に接着する方法(いわゆるダイボンディング法)は、従来の金-シリコン共晶に始まり、半田、樹脂ペーストによる方法に推移してきた。現在では、導電性の樹脂ペーストを使用することがある。 In the manufacture of semiconductor devices, the method of bonding a semiconductor element to an adherend such as a metal lead frame (so-called die bonding method) has started from the conventional gold-silicon eutectic, and has changed to a method using solder and resin paste. At present, a conductive resin paste is sometimes used.
 しかしながら、樹脂ペーストを用いる方法では、ボイドにより導電性が低下したり、樹脂ペーストの厚さが不均一であったり、樹脂ペーストのはみ出しによりパッドが汚染されるという問題があった。これらの問題を解決するために、樹脂ペーストに代えて、ポリイミド樹脂を含有するフィルム状接着剤を用いる場合がある(例えば、特許文献1参照)。 However, in the method using a resin paste, there is a problem that the conductivity is reduced by voids, the thickness of the resin paste is not uniform, or the pad is contaminated by the protrusion of the resin paste. In order to solve these problems, a film adhesive containing a polyimide resin may be used instead of the resin paste (see, for example, Patent Document 1).
 アクリル樹脂を含むフィルム状接着剤も知られている。例えば、特許文献2には、ガラス転移温度-10℃~50℃のアクリル酸共重合体を使用することにより、可とう性を高め、リードフレーム等の熱損傷を低減する技術が記載されている。 A film adhesive containing an acrylic resin is also known. For example, Patent Document 2 describes a technique for improving flexibility and reducing thermal damage of a lead frame or the like by using an acrylic acid copolymer having a glass transition temperature of −10 ° C. to 50 ° C. .
 一方、近年、電力の制御や供給を行うパワー半導体装置の普及が顕著となっている。パワー半導体装置には常に電流が流れるため、発熱量が大きい。それゆえ、パワー半導体装置に使用される導電性の接着剤は、高い放熱性と低い電気抵抗率を持つことが望ましい。 On the other hand, in recent years, the spread of power semiconductor devices that control and supply electric power has become remarkable. Since current always flows through the power semiconductor device, the amount of heat generated is large. Therefore, it is desirable that the conductive adhesive used for the power semiconductor device has high heat dissipation and low electrical resistivity.
 パワー半導体装置には、低損失で高速動作が求められる。従来、パワー半導体装置にはIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などのSiを用いた半導体が用いられていた。近年では、SiCやGaNなどの半導体を用いたものが開発され、今後拡大するものと予想されている。 Power semiconductor devices are required to operate at high speed with low loss. Conventionally, semiconductors using Si such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) have been used for power semiconductor devices. In recent years, those using semiconductors such as SiC and GaN have been developed and are expected to expand in the future.
 SiCやGaNを用いた半導体は、バンドギャップが大きい、絶縁破壊電界が高いなどの特徴があり、低損失、高速動作、高温動作が可能となる。高温動作は、熱環境が厳しい自動車や小型電力変換機器等においてメリットなる。熱環境が厳しい用途の半導体装置は、250℃前後の高温動作が想定されており、従来の接合・接着材料であるはんだや導電性接着剤では、熱特性、信頼性に問題が生じる。そこで、従来、焼結金属粒子含有のペースト材が提案されている(例えば、特許文献3参照)。焼結金属粒子含有ペースト材には、ナノ・マイクロサイズの金属粒子を含み、これら金属粒子がナノサイズ効果で通常の融点よりも低い温度で融解し、粒子間の焼結が進行する。焼結による接合のため、250℃環境においても高い信頼性が得られ、かつ高い熱特性が得られる。 A semiconductor using SiC or GaN has features such as a large band gap and a high dielectric breakdown electric field, and can operate at low loss, high speed, and high temperature. High-temperature operation is advantageous in automobiles and small power conversion devices that have a severe thermal environment. Semiconductor devices used in severe thermal environments are expected to operate at a high temperature of around 250 ° C., and solder and conductive adhesives, which are conventional bonding / adhesive materials, have problems in thermal characteristics and reliability. Thus, conventionally, paste materials containing sintered metal particles have been proposed (see, for example, Patent Document 3). The sintered metal particle-containing paste material contains nano- and micro-sized metal particles, and these metal particles melt at a temperature lower than the normal melting point due to the nano-size effect, and sintering between the particles proceeds. Because of joining by sintering, high reliability is obtained even in an environment of 250 ° C., and high thermal characteristics are obtained.
特開平6-145639号公報Japanese Patent Application Laid-Open No. 6-145639 特許4137827号公報Japanese Patent No. 4137827 特開2014-111800号公報JP 2014-111800 A 特開2013-39580号公報JP 2013-39580 A
 しかしながら、焼結金属粒子含有のペースト材は、ペースト状態であるため、半導体チップのダイアタッチ時にはみ出しや、チップ表面への這い上がりが発生することがある。そのため、傾きが発生し、半導体装置製造の歩留り低下や性能のバラツキを引き起こす場合がある。特に、高い電圧がかかる場合には、チップが傾くと接合の距離が不均一になりデバイスの特性が悪くなる。なお、特許文献4には、加熱接合用シート体が開示されているが、この加熱接合用シート体は高粘度の加熱接合用材料をプレスしてシート形状としたものであり、加熱接合時のはみ出しやチップ表面への這い上がりの懸念は解消されない。 However, since the paste material containing the sintered metal particles is in a paste state, the paste material may protrude or crawl up to the chip surface when the semiconductor chip is die-attached. Therefore, an inclination occurs, which may cause a decrease in yield of semiconductor device manufacture and a variation in performance. In particular, when a high voltage is applied, if the chip is tilted, the bonding distance becomes non-uniform and the device characteristics deteriorate. Patent Document 4 discloses a heat-bonding sheet body. This heat-bonding sheet body is formed by pressing a high-viscosity heat-bonding material into a sheet shape. Concerns about overhang and creeping on the chip surface cannot be resolved.
 本発明は前記問題点に鑑みなされたものであり、その目的は、ダイアタッチ時のはみ出しやチップ表面への這い上がりが抑制され、且つ、高温環境においても高い信頼性、熱特性が得られる加熱接合用シート、及び、当該加熱接合用シートを有するダイシングテープ付き加熱接合用シートを提供することにある。 The present invention has been made in view of the above-mentioned problems, and its purpose is to suppress the protrusion during die attachment and the creeping to the chip surface, and heating that provides high reliability and thermal characteristics even in a high temperature environment. An object of the present invention is to provide a bonding sheet and a heating bonding sheet with a dicing tape having the heating bonding sheet.
 本願発明者等は、前記従来の問題点を解決すべく、加熱接合用シート、及び、当該加熱接合用シートを有するダイシングテープ付き加熱接合用シートについて検討した。その結果、下記の構成を採用することにより、ダイアタッチ時のはみ出しやチップ表面への這い上がりが抑制され、且つ、高温環境においても高い信頼性、熱特性が得られることを見出し、本発明を完成させるに至った。 In order to solve the above-mentioned conventional problems, the inventors of the present application examined a heat bonding sheet and a heat bonding sheet with a dicing tape having the heat bonding sheet. As a result, by adopting the following configuration, it has been found that protrusion and die-up on the chip surface during die attach are suppressed, and that high reliability and thermal characteristics can be obtained even in a high temperature environment. It came to complete.
 すなわち、本発明に係る加熱接合用シートは、
 下記引張試験方法により得られる引張弾性率が10~3000MPaであり、
 金属微粒子を60~98重量%の範囲内で含み、
 大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで昇温を行った後のエネルギー分散型X線分析により得られる炭素濃度が15重量%以下であることを特徴とする。
 引張試験方法:
(1)試験試料として、厚さ200μm、幅10mm、長さ40mmの加熱接合用シートを準備し、
(2)チャック間距離10mm、引張速度50mm/分、23℃の条件で引張試験を行い、
(3)得られた応力-ひずみ線図の直線部分の傾きを引張弾性率とする。
That is, the heat bonding sheet according to the present invention is:
The tensile modulus obtained by the following tensile test method is 10 to 3000 MPa,
Containing metal fine particles in the range of 60 to 98% by weight,
The carbon concentration obtained by energy dispersive X-ray analysis after heating from 23 ° C. to 400 ° C. under the condition of a heating rate of 10 ° C./min in an air atmosphere is 15% by weight or less. To do.
Tensile test method:
(1) As a test sample, a heat bonding sheet having a thickness of 200 μm, a width of 10 mm, and a length of 40 mm is prepared,
(2) A tensile test was performed under the conditions of a distance between chucks of 10 mm, a tensile speed of 50 mm / min, and 23 ° C.
(3) The slope of the straight line portion of the obtained stress-strain diagram is the tensile modulus.
 前記構成によれば、上記引張試験方法により得られる引張弾性率が10MPa以上であるため、ダイアタッチ時に加熱接合用シートの構成材料がはみ出したり、チップ表面へ這い上がったりすることを抑制できる。また、前記引張弾性率が3000MPa以下であるため、例えば、ダイシング時に半導体ウエハを固定することができる。
 また、金属微粒子を60~98重量%の範囲内で含むため、金属微粒子を焼結、又は、溶融させて2つの物(例えば、半導体チップとリードフレーム)を接合させることができる。
 また、大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで昇温を行った後のエネルギー分散型X線分析により得られる炭素濃度が15重量%以下であるため、400℃まで昇温を行った後は、有機物がほとんど存在しない。その結果、加熱接合工程後は、耐熱性に優れ、高温環境においても高い信頼性、熱特性が得られる。
According to the said structure, since the tensile elasticity modulus obtained by the said tensile test method is 10 Mpa or more, it can suppress that the constituent material of the sheet | seat for heat joining protrudes or crawls up to the chip | tip surface at the time of die attachment. Further, since the tensile elastic modulus is 3000 MPa or less, for example, the semiconductor wafer can be fixed during dicing.
In addition, since the metal fine particles are contained in the range of 60 to 98% by weight, the metal fine particles can be sintered or melted to join two objects (for example, a semiconductor chip and a lead frame).
In addition, since the carbon concentration obtained by energy dispersive X-ray analysis after heating from 23 ° C. to 400 ° C. under the condition of a heating rate of 10 ° C./min in an air atmosphere is 15% by weight or less, After heating up to 400 ° C., there is almost no organic matter. As a result, after the heat bonding step, the heat resistance is excellent, and high reliability and thermal characteristics are obtained even in a high temperature environment.
 前記構成においては、大気雰囲気下、昇温速度10℃/分の条件で、23℃から500℃まで示差熱分析を行った際のピークが150~350℃に存在することが好ましい。 In the above-described configuration, it is preferable that a peak when differential thermal analysis is performed from 23 ° C. to 500 ° C. in an air atmosphere at a temperature rising rate of 10 ° C./min exists at 150 to 350 ° C.
 前記ピークが150~350℃に存在すると、有機物(例えば、加熱接合用シートを構成する樹脂成分)がこの温度領域で熱分解しているといえる。その結果、加熱接合工程後の耐熱性により優れる。 When the peak is present at 150 to 350 ° C., it can be said that the organic substance (for example, the resin component constituting the heat bonding sheet) is thermally decomposed in this temperature region. As a result, the heat resistance after the heat bonding process is more excellent.
 前記構成においては、アクリル樹脂、及び、ポリカーボネート樹脂のうち少なくとも一種を含むことが好ましい。 In the above configuration, it is preferable that at least one of acrylic resin and polycarbonate resin is included.
 アクリル樹脂、及び、ポリカーボネート樹脂のうち少なくとも一種を含むと、加熱接合工程前は、よりシート形状を維持し易い。また、加熱接合工程時にはより熱分解させ易い。 When at least one of acrylic resin and polycarbonate resin is included, the sheet shape is more easily maintained before the heat bonding step. Moreover, it is easier to thermally decompose during the heat bonding process.
 前記構成においては、前記金属微粒子が、銀、銅、酸化銀、酸化銅からなる群より選ばれる少なくとも1種であることが好ましい。 In the above configuration, the metal fine particles are preferably at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide.
 前記金属微粒子が、銀、銅、酸化銀、酸化銅からなる群より選ばれる少なくとも1種であると、より好適に加熱接合することができる。 When the metal fine particles are at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide, heat bonding can be more suitably performed.
 前記構成において、23℃での厚さが、5~100μmであることが好ましい。 In the above structure, the thickness at 23 ° C. is preferably 5 to 100 μm.
 23℃での厚さが、5μm以上であると、はみ出しをより抑制できる。一方、100μm以下であると、加熱接合時の傾き発生をより抑制できる。 When the thickness at 23 ° C. is 5 μm or more, the protrusion can be further suppressed. On the other hand, when it is 100 μm or less, it is possible to further suppress the occurrence of inclination during heat bonding.
 また、本発明に係るダイシングテープ付き加熱接合用シートは、
 ダイシングテープと、
 前記ダイシングテープ上に積層された前記加熱接合用シートとを有することを特徴とする。
Moreover, the sheet for heat bonding with a dicing tape according to the present invention,
Dicing tape,
It has the said sheet | seat for heat joining laminated | stacked on the said dicing tape, It is characterized by the above-mentioned.
 前記ダイシングテープ付き加熱接合用シートによれば、ダイシングテープと一体型であるため、ダイシングテープと貼り合わせる工程を省略することができる。また、前記加熱接合用シートを備えるため、加熱接合時のはみ出しやチップ表面への這い上がりが抑制される。
 また、金属微粒子を焼結、又は、溶融させて2つの物(例えば、半導体チップとリードフレーム)を接合させることができる。
 また、大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで昇温を行った後のエネルギー分散型X線分析により得られる炭素濃度が15重量%以下であるため、400℃まで昇温を行った後は、有機物がほとんど存在しない。その結果、加熱接合工程後は、耐熱性に優れ、高温環境においても高い信頼性、熱特性が得られる。
According to the heat bonding sheet with dicing tape, since it is integrated with the dicing tape, the step of bonding to the dicing tape can be omitted. Moreover, since the sheet for heat bonding is provided, the protrusion at the time of heat bonding and the creeping to the chip surface are suppressed.
Moreover, two objects (for example, a semiconductor chip and a lead frame) can be joined by sintering or melting metal fine particles.
In addition, since the carbon concentration obtained by energy dispersive X-ray analysis after heating from 23 ° C. to 400 ° C. under the condition of a heating rate of 10 ° C./min in an air atmosphere is 15% by weight or less, After heating up to 400 ° C., there is almost no organic matter. As a result, after the heat bonding step, the heat resistance is excellent, and high reliability and thermal characteristics are obtained even in a high temperature environment.
本発明の一実施形態に係るダイシングテープ付き加熱接合用シートを示す断面模式図である。It is a cross-sectional schematic diagram which shows the sheet | seat for heat joining with a dicing tape which concerns on one Embodiment of this invention. 本発明の他の実施形態に係るダイシングテープ付き加熱接合用シートを示す断面模式図である。It is a cross-sectional schematic diagram which shows the sheet | seat for heat joining with a dicing tape which concerns on other embodiment of this invention. 本実施形態に係る半導体装置の一製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating one manufacturing method of the semiconductor device which concerns on this embodiment.
 (ダイシングテープ付き加熱接合用シート)
 本発明の一実施形態に係る加熱接合用シート(以下、「加熱接合用シート」ともいう)、及び、ダイシングテープ付き加熱接合用シートについて、以下に説明する。本実施形態に係る加熱接合用シートは、以下に説明するダイシングテープ付き加熱接合用シートにおいて、ダイシングテープが貼り合わせられていない状態のものを挙げることができる。従って、以下では、ダイシングテープ付き加熱接合用シートについて説明し、加熱接合用シートについては、その中で説明することとする。図1は、本発明の一実施形態に係るダイシングテープ付き加熱接合用シートを示す断面模式図である。図2は、本発明の他の実施形態に係る他のダイシングテープ付き加熱接合用シートを示す断面模式図である。
(Sheet bonding sheet with dicing tape)
A heat bonding sheet (hereinafter also referred to as “heat bonding sheet”) and a heat bonding sheet with a dicing tape according to an embodiment of the present invention will be described below. Examples of the heat bonding sheet according to the present embodiment include a sheet in which the dicing tape is not bonded to the heat bonding sheet with dicing tape described below. Therefore, hereinafter, the heat bonding sheet with dicing tape will be described, and the heat bonding sheet will be described therein. FIG. 1 is a schematic cross-sectional view showing a heat bonding sheet with a dicing tape according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing another heat bonding sheet with dicing tape according to another embodiment of the present invention.
 図1に示すように、ダイシングテープ付き加熱接合用シート10は、ダイシングテープ11上に加熱接合用シート3が積層された構成を有する。ダイシングテープ11は基材1上に粘着剤層2を積層して構成されており、加熱接合用シート3はその粘着剤層2上に設けられている。また本発明は、図2に示すダイシングテープ付き加熱接合用シート12のように、ワーク貼り付け部分にのみ加熱接合用シート3’を形成した構成であってもよい。 As shown in FIG. 1, a heat bonding sheet 10 with a dicing tape has a configuration in which a heat bonding sheet 3 is laminated on a dicing tape 11. The dicing tape 11 is configured by laminating the pressure-sensitive adhesive layer 2 on the base material 1, and the heat bonding sheet 3 is provided on the pressure-sensitive adhesive layer 2. Moreover, the structure which formed the sheet | seat 3 'for heat joining only in the workpiece | work affixing part may be sufficient as this invention like the sheet | seat 12 for heat joining with a dicing tape shown in FIG.
 (加熱接合用シート)
 加熱接合用シート3、3’は、下記引張試験方法により得られる引張弾性率が10MPa~3000MPaであり、12MPa~2900MPaであることが好ましく、15MPa~2500MPaであることがより好ましい。
(Heat bonding sheet)
The heat bonding sheets 3, 3 ′ have a tensile modulus of 10 MPa to 3000 MPa, preferably 12 MPa to 2900 MPa, and more preferably 15 MPa to 2500 MPa, obtained by the following tensile test method.
 引張試験方法:
(1)試験試料として、厚さ200μm、幅10mm、長さ40mmの加熱接合用シート(引張試験用加熱接合用シート)を準備し、
(2)チャック間距離10mm、引張速度50mm/分、23℃の条件で引張試験を行い、
(3)得られた応力-ひずみ線図の直線部分の傾きを引張弾性率とする。
Tensile test method:
(1) As a test sample, a heat bonding sheet (heat bonding sheet for tensile test) having a thickness of 200 μm, a width of 10 mm, and a length of 40 mm is prepared.
(2) A tensile test was performed under the conditions of a distance between chucks of 10 mm, a tensile speed of 50 mm / min, and 23 ° C.
(3) The slope of the straight line portion of the obtained stress-strain diagram is the tensile modulus.
 加熱接合用シート3、3’は、上記引張試験方法により得られる引張弾性率が10MPa以上であるため、ダイアタッチ時に加熱接合用シートの構成材料がはみ出したり、チップ表面へ這い上がったりすることを抑制できる。また、前記引張弾性率が3000MPa以下であるため、例えば、ダイシング時に半導体ウエハを固定することができる。 The heat bonding sheets 3, 3 ′ have a tensile modulus of 10 MPa or more obtained by the above-described tensile test method, and therefore prevent the constituent material of the heat bonding sheet from protruding or rising to the chip surface during die attachment. it can. Further, since the tensile elastic modulus is 3000 MPa or less, for example, the semiconductor wafer can be fixed during dicing.
 加熱接合用シート3、3’は、加熱接合用シート全体に対して金属微粒子を60~98重量%の範囲内で含む。前記金属微粒子の含有量は、65~97重量%の範囲内であることが好ましく、70~95重量%の範囲内であることがより好ましい。前記金属微粒子を60~98重量%の範囲内で含むため、金属微粒子を焼結、又は、溶融させて2つの物(例えば、半導体チップとリードフレーム)を接合させることができる。 The heat-bonding sheets 3 and 3 'contain metal fine particles in the range of 60 to 98% by weight with respect to the entire heat-bonding sheet. The content of the metal fine particles is preferably in the range of 65 to 97% by weight, and more preferably in the range of 70 to 95% by weight. Since the metal fine particles are contained in the range of 60 to 98% by weight, the metal fine particles can be sintered or melted to join two objects (for example, a semiconductor chip and a lead frame).
 前記金属微粒子としては、焼結性金属粒子を挙げることができる。 Examples of the metal fine particles include sinterable metal particles.
 前記焼結性金属粒子としては、金属微粒子の凝集体を好適に使用できる。金属微粒子としては、金属からなる微粒子などが挙げられる。前記金属としては、金、銀、銅、酸化銀、酸化銅などが挙げられる。なかでも、銀、銅、酸化銀、酸化銅からなる群より選ばれる少なくとも1種であることが好ましい。前記金属微粒子が、銀、銅、酸化銀、酸化銅からなる群より選ばれる少なくとも1種であると、より好適に加熱接合することができる。 As the sinterable metal particles, aggregates of metal fine particles can be suitably used. Examples of the metal fine particles include fine particles made of metal. Examples of the metal include gold, silver, copper, silver oxide, and copper oxide. Especially, it is preferable that it is at least 1 sort (s) chosen from the group which consists of silver, copper, silver oxide, and copper oxide. When the metal fine particles are at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide, heat bonding can be more suitably performed.
 前記焼結性金属粒子の平均粒径は、好ましくは0.0005μm以上、より好ましくは0.001μm以上である。また、0.005μm以上、0.01μm以上であってもよい。平均粒径の下限として、0.01μm、0.05μm、0.1μmも例示できる。さらに、0.5μm、1μmも例示できる。一方、焼結性金属粒子の平均粒径は、好ましくは30μm以下、より好ましくは25μm以下である。平均粒径の上限として、20μm、15μm、10μm、5μmも例示できる。 The average particle size of the sinterable metal particles is preferably 0.0005 μm or more, more preferably 0.001 μm or more. Moreover, 0.005 micrometer or more and 0.01 micrometer or more may be sufficient. Examples of the lower limit of the average particle diameter include 0.01 μm, 0.05 μm, and 0.1 μm. Furthermore, 0.5 micrometer and 1 micrometer can also be illustrated. On the other hand, the average particle size of the sinterable metal particles is preferably 30 μm or less, more preferably 25 μm or less. Examples of the upper limit of the average particle diameter include 20 μm, 15 μm, 10 μm, and 5 μm.
 前記焼結性金属粒子の平均粒径は、次の方法で測定する。すなわち、前記焼結性金属粒子をSEM(走査型電子顕微鏡)にて観察し、平均粒子径を計測する。なお、SEM観察は、例えば、焼結性金属粒子がマイクロサイズの場合、5000倍で観察し、サブミクロンサイズの場合、50000倍観察で観察し、ナノサイズの場合、300000倍で観察するのが好ましい。 The average particle size of the sinterable metal particles is measured by the following method. That is, the sinterable metal particles are observed with an SEM (scanning electron microscope), and the average particle diameter is measured. The SEM observation is, for example, observing at a magnification of 5000 when the sinterable metal particles are in a micro size, observing at a magnification of 50000 in the case of a submicron size, and observing at a magnification of 300000 in the case of a nano size. preferable.
 前記焼結性金属粒子の形状は特に限定されず、例えば、球状、棒状、鱗片状、不定形である。 The shape of the sinterable metal particles is not particularly limited, and is, for example, spherical, rod-like, scale-like, or indefinite.
 加熱接合用シート3、3’は、大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで昇温を行った後のエネルギー分散型X線分析により得られる炭素濃度が15重量%以下であり、12重量%以下であることが好ましく、10重量%以下であることがより好ましい。前記炭素濃度が15重量%以下であるため、加熱接合用シート3、3’は、400℃まで昇温を行った後には有機物がほとんど存在しない。その結果、加熱接合工程後は、耐熱性に優れ、高温環境においても高い信頼性、熱特性が得られる。 The heat- bonding sheets 3 and 3 ′ have a carbon concentration obtained by energy dispersive X-ray analysis after heating from 23 ° C. to 400 ° C. in an air atmosphere under a temperature rising rate of 10 ° C./min. It is 15% by weight or less, preferably 12% by weight or less, and more preferably 10% by weight or less. Since the carbon concentration is 15% by weight or less, the heat- bonding sheets 3 and 3 ′ have almost no organic matter after the temperature is raised to 400 ° C. As a result, after the heat bonding step, the heat resistance is excellent, and high reliability and thermal characteristics are obtained even in a high temperature environment.
 加熱接合用シート3、3’は、大気雰囲気下、昇温速度10℃/分の条件で、23℃から500℃まで示差熱分析を行った際のピークが150~350℃に存在することが好ましく、170~320℃に存在することがより好ましく、180~310℃に存在することがさらに好ましい。前記ピークが150~350℃に存在すると、有機物(例えば、加熱接合用シートを構成する樹脂成分)がこの温度領域で熱分解しているといえる。その結果、加熱接合工程後の耐熱性により優れる。 The heat bonding sheets 3 and 3 ′ may have a peak at 150 to 350 ° C. when differential thermal analysis is performed from 23 ° C. to 500 ° C. under an air atmosphere at a temperature rising rate of 10 ° C./min. Preferably, it exists at 170 to 320 ° C, more preferably at 180 to 310 ° C. When the peak is present at 150 to 350 ° C., it can be said that the organic substance (for example, the resin component constituting the heat bonding sheet) is thermally decomposed in this temperature region. As a result, the heat resistance after the heat bonding process is more excellent.
 加熱接合用シート3、3’は、熱分解性バインダーを含有することが好ましい。熱分解性バインダーを含有すると、加熱接合工程前は、シート形状を維持し易い。また、加熱接合工程時に熱分解させ易い。 It is preferable that the heat bonding sheets 3 and 3 ′ contain a thermally decomposable binder. When a thermally decomposable binder is contained, the sheet shape is easily maintained before the heat bonding step. Moreover, it is easy to thermally decompose at the time of a heat joining process.
 本明細書において「熱分解性バインダー」とは、加熱接合工程において熱分解させることが可能なバインダーをいう。前記熱分解性バインダーは、加熱接合工程後には、加熱接合用シートにほとんど残存しないことが好ましい。前記熱分解性バインダーとしては、例えば、加熱接合用シートに含有させたとしても、大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで昇温を行った後のエネルギー分散型X線分析により得られる炭素濃度が15重量%以下となるような材料が挙げられる。例えば、熱分解性バインダーとして、より熱分解させ易い材料を採用すれば、比較的含有量を多くしても、加熱接合工程後に、加熱接合用シートにほとんど残存させないようにすることができる。 In the present specification, the “thermally decomposable binder” refers to a binder that can be thermally decomposed in the heat bonding step. It is preferable that the thermally decomposable binder hardly remains in the heat bonding sheet after the heat bonding step. As the thermally decomposable binder, for example, energy after heating from 23 ° C. to 400 ° C. under the condition of a heating rate of 10 ° C./min in an air atmosphere even if it is contained in the heat bonding sheet. Examples thereof include materials whose carbon concentration obtained by the dispersion X-ray analysis is 15% by weight or less. For example, if a material that is more easily thermally decomposed is used as the thermally decomposable binder, even if the content is relatively increased, it can be made to hardly remain in the heat bonding sheet after the heat bonding step.
 前記熱分解性バインダーとしては、常温(23℃)で固形の材料が好ましい。前記熱分解性バインダーが、常温(23℃)で固形の材料であると、常温にて加熱接合用シートをフィルム状に形成しやすくなり、ハンドリング性が向上する。 The heat decomposable binder is preferably a solid material at normal temperature (23 ° C.). When the thermally decomposable binder is a solid material at room temperature (23 ° C.), it becomes easy to form a heat-bonding sheet into a film at room temperature, and handling properties are improved.
 前記熱分解性バインダーとしては、アクリル樹脂、ポリカーボネート樹脂を挙げることができる。 Examples of the thermally decomposable binder include acrylic resin and polycarbonate resin.
 前記アクリル樹脂としては、加熱接合工程において熱分解させることが可能な範囲において、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体(アクリル共重合体)などが挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基などが挙げられる。 The acrylic resin is an ester of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms, as long as it can be thermally decomposed in the heat bonding step. Polymers (acrylic copolymers) containing seeds or two or more kinds as components are listed. Examples of the alkyl group include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2- Examples include ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, and dodecyl group.
 また、重合体(アクリル共重合体)を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸などの様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸などの様な酸無水物モノマー、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル若しくは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレートなどの様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸などの様なスルホン酸基含有モノマー、又は2-ヒドロキシエチルアクリロイルホスフェートなどの様な燐酸基含有モノマーが挙げられる。 In addition, the other monomer forming the polymer (acrylic copolymer) is not particularly limited, and for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid Or a carboxyl group-containing monomer such as crotonic acid, an acid anhydride monomer such as maleic anhydride or itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth ) 4-hydroxybutyl acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4 -Hydroxymethyl cycle Hexyl) -hydroxyl group-containing monomers such as methyl acrylate, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate Alternatively, a sulfonic acid group-containing monomer such as (meth) acryloyloxynaphthalene sulfonic acid, or a phosphoric acid group-containing monomer such as 2-hydroxyethylacryloyl phosphate can be used.
 アクリル樹脂のなかでも、重量平均分子量が1万~100万のものがより好ましく、3万~70万のものがさらに好ましい。上記数値範囲内であると、加熱接合工程前の接着性、及び、加熱接合工程時における熱分解性に優れるからである。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
 また、アクリル樹脂のなかでも、200℃~400℃で熱分解するアクリル樹脂が好ましい。
Among the acrylic resins, those having a weight average molecular weight of 10,000 to 1,000,000 are more preferable, and those having a weight average molecular weight of 30,000 to 700,000 are more preferable. It is because it is excellent in the adhesiveness before a heat joining process and the thermal decomposability in the heat joining process as it is in the said numerical range. The weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
Among acrylic resins, acrylic resins that thermally decompose at 200 ° C. to 400 ° C. are preferable.
 前記ポリカーボネート樹脂としては、加熱接合工程において熱分解させることが可能なものであれば、特に限定されないが、主鎖の炭酸エステル基(-O-CO-O-)間に芳香族化合物(例えば、ベンゼン環など)を含まず、脂肪族鎖からなる脂肪族ポリカーボネートや、主鎖の炭酸エステル基(-O-CO-O-)間に芳香族化合物を含む芳香族ポリカーボネートを挙げることができる。なかでも、脂肪族ポリカーボネートか好ましい。
 前記脂肪族ポリカーボネートとしては、ポリエチレンカーボネート、ポリプロピレンカーボネート等が挙げられる。なかでもシート形成のためのワニス作製における有機溶剤への溶解性の観点から、ポリプロピレンカーボネートが好ましい。
 前記芳香族ポリカーボネートとしては、主鎖にビスフェノールA構造を含むもの等が挙げられる。
 前記ポリカーボネート樹脂の重量平均分子量は、10,000~1,000,000の範囲内であることが好適である。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
The polycarbonate resin is not particularly limited as long as it can be thermally decomposed in the heat bonding step, but an aromatic compound (for example, between the carbonate ester groups (—O—CO—O—) of the main chain) An aliphatic polycarbonate containing an aliphatic chain without a benzene ring or the like, and an aromatic polycarbonate containing an aromatic compound between carbonic acid ester groups (—O—CO—O—) of the main chain can be mentioned. Of these, aliphatic polycarbonate is preferable.
Examples of the aliphatic polycarbonate include polyethylene carbonate and polypropylene carbonate. Among these, polypropylene carbonate is preferable from the viewpoint of solubility in an organic solvent in producing a varnish for forming a sheet.
Examples of the aromatic polycarbonate include those containing a bisphenol A structure in the main chain.
The weight average molecular weight of the polycarbonate resin is preferably in the range of 10,000 to 1,000,000. The weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
 なお、加熱接合用シート3、3’には、前記成分以外にも、例えば、可塑剤などを適宜含有してよい。 In addition, the heat bonding sheets 3 and 3 ′ may appropriately contain, for example, a plasticizer in addition to the above components.
 加熱接合用シート3、3’は、通常の方法で製造できる。例えば、前記各成分を含有するワニスを作製し、ワニスを基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を乾燥させることで、加熱接合用シート3、3’を製造できる。 The heat bonding sheets 3, 3 'can be manufactured by a usual method. For example, a varnish containing each of the above components is prepared, and the varnish is applied on a base separator so as to have a predetermined thickness to form a coating film, and then the coating film is dried, whereby the heat bonding sheet 3 3 ′ can be manufactured.
 ワニスに用いる溶媒としては特に限定されないが、前記各成分を均一に溶解、混練又は分散できる有機溶剤やアルコール溶剤が好ましい。前記有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、トルエン、キシレンなどが挙げられる。また、前記アルコール溶剤としては、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-ブテン-1,4-ジオール、1,2,6-ヘキサントリオール、グリセリン、オクタンジオール、2-メチル-2,4-ペンタンジオール、テルピネオールが挙げられる。 The solvent used in the varnish is not particularly limited, but an organic solvent or an alcohol solvent that can uniformly dissolve, knead, or disperse the above components is preferable. Examples of the organic solvent include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, and xylene. Examples of the alcohol solvent include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2- Examples include butene-1,4-diol, 1,2,6-hexanetriol, glycerin, octanediol, 2-methyl-2,4-pentanediol, and terpineol.
 塗布方法は特に限定されない。溶剤塗工の方法としては、例えば、ダイコーター、グラビアコーター、ロールコーター、リバースコーター、コンマコーター、パイプドクターコーター、スクリーン印刷などが挙げられる。なかでも、塗布厚みの均一性が高いという点から、ダイコーターが好ましい。また、塗布膜の乾燥条件は特に限定されず、例えば、乾燥温度70~160℃、乾燥時間1~5分間で行うことができる。なお、塗布膜を乾燥させた後であっても溶剤の種類によって、溶剤の全部が気化せずに塗膜中に残る場合がある。 The application method is not particularly limited. Examples of the solvent coating method include a die coater, a gravure coater, a roll coater, a reverse coater, a comma coater, a pipe doctor coater, and screen printing. Of these, a die coater is preferable in terms of high uniformity of coating thickness. The drying conditions for the coating film are not particularly limited, and for example, the drying can be performed at a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes. Even after the coating film is dried, depending on the type of solvent, the entire solvent may remain in the coating film without being vaporized.
 基材セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙などが使用可能である。 As the base material separator, polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper surface-coated with a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent can be used.
 加熱接合用シート3、3’の製造方法としては、例えば、前記各成分をミキサーにて混合し、得られた混合物をプレス成形して加熱接合用シート3、3’を製造する方法なども好適である。ミキサーとしてはプラネタリーミキサーなどが挙げられる。 As a method for producing the heat- bonding sheets 3 and 3 ′, for example, a method for producing the heat- bonding sheets 3 and 3 ′ by mixing the respective components with a mixer and press-molding the obtained mixture is also suitable. It is. A planetary mixer etc. are mentioned as a mixer.
 加熱接合用シート3、3’は、加熱前における23℃での厚さが、5~100μmであることが好ましく、10~80μmであることがよ好ましい。23℃での厚さが、5μm以上であると、はみだしをより抑制できる。一方、100μm以下であると、加熱接合時の傾き発生をより抑制できる。 The thickness of the heat-bonding sheets 3 and 3 'at 23 ° C. before heating is preferably 5 to 100 μm, and more preferably 10 to 80 μm. When the thickness at 23 ° C. is 5 μm or more, the protrusion can be further suppressed. On the other hand, when it is 100 μm or less, it is possible to further suppress the occurrence of inclination during heat bonding.
 (ダイシングテープ)
 ダイシングテープ11は基材1上に粘着剤層2を積層して構成されている。
(Dicing tape)
The dicing tape 11 is configured by laminating an adhesive layer 2 on a substrate 1.
 基材1は、ダイシングテープ付き加熱接合用シート10、12の強度母体となるものであり、紫外線透過性を有するものが好ましい。基材1としては、例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙等が挙げられる。 The base material 1 is a strength base of the heat bonding sheets 10 and 12 with a dicing tape, and preferably has ultraviolet transparency. Examples of the substrate 1 include low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, and the like. Polyolefin, ethylene-vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene -Hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyetherimide, polyamide, wholly aromatic polyamide, polyphenyls Fuido, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, metal (foil), paper, and the like.
 また基材1の材料としては、前記樹脂の架橋体等のポリマーが挙げられる。前記プラスチックフィルムは、無延伸で用いてもよく、必要に応じて一軸又は二軸の延伸処理を施したものを用いてもよい。延伸処理等により熱収縮性を付与した樹脂シートによれば、ダイシング後にその基材1を熱収縮させることにより粘着剤層2と加熱接合用シート3、3’との接着面積を低下させて、半導体チップの回収の容易化を図ることができる。 Further, examples of the material of the substrate 1 include polymers such as a crosslinked body of the resin. The plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary. According to the resin sheet to which heat shrinkability is imparted by stretching treatment or the like, the adhesive area between the pressure-sensitive adhesive layer 2 and the heat bonding sheets 3 and 3 ′ is reduced by thermally shrinking the base material 1 after dicing, The collection of the semiconductor chip can be facilitated.
 基材1の表面は、隣接する層との密着性、保持性等を高めるため、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等の化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。 The surface of the substrate 1 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers. Alternatively, a physical treatment or a coating treatment with a primer (for example, an adhesive substance described later) can be performed.
 基材1の厚さは、特に制限されず適宜に決定できるが、一般的には5~200μm程度である。 The thickness of the substrate 1 is not particularly limited and can be appropriately determined, but is generally about 5 to 200 μm.
 粘着剤層2の形成に用いる粘着剤としては特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性接着剤を用いることができる。前記感圧性接着剤としては、半導体ウェハやガラス等の汚染をきらう電子部品の超純水やアルコール等の有機溶剤による清浄洗浄性等の点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。 The pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 2 is not particularly limited, and for example, a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used. As the pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer from the viewpoint of cleanability with an organic solvent such as ultrapure water or alcohol of an electronic component that is difficult to contaminate a semiconductor wafer or glass Is preferred.
 前記アクリル系ポリマーとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)の1種又は2種以上を単量体成分として用いたアクリル系ポリマー等が挙げられる。なお、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。 Examples of the acrylic polymer include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, especially 4 to 18 carbon atoms, such as linear or branched alkyl esters) (Meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, cyclohexyl ester, etc.) acryl-based polymer such as one or more was used as a monomer component thereof. In addition, (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, and (meth) of the present invention has the same meaning.
 前記アクリル系ポリマーは、凝集力、耐熱性等の改質を目的として、必要に応じ、前記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。この様なモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレート等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェート等のリン酸基含有モノマー;アクリルアミド、アクリロニトリル等が挙げられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。 The acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. You may go out. Examples of such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Styrene Contains sulfonic acid groups such as phonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyloxynaphthalene sulfonic acid Monomers; Phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate; acrylamide, acrylonitrile and the like. One or more of these copolymerizable monomer components can be used. The amount of these copolymerizable monomers used is preferably 40% by weight or less based on the total monomer components.
 さらに、前記アクリル系ポリマーは、架橋させるため、多官能性モノマー等も、必要に応じて共重合用モノマー成分として含むことができる。この様な多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性等の点から、全モノマー成分の30重量%以下が好ましい。 Furthermore, since the acrylic polymer is crosslinked, a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary. Examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably 30% by weight or less of the total monomer components from the viewpoint of adhesive properties and the like.
 前記アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合等の何れの方式で行うこともできる。清浄な被着体への汚染防止等の点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは10万以上、さらに好ましくは20万~300万程度であり、特に好ましくは30万~100万程度である。 The acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization. The polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, the content of the low molecular weight substance is preferably small. In this respect, the number average molecular weight of the acrylic polymer is preferably 100,000 or more, more preferably about 200,000 to 3,000,000, and particularly preferably about 300,000 to 1,000,000.
 また、前記粘着剤には、ベースポリマーであるアクリル系ポリマー等の数平均分子量を高めるため、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。一般的には、前記ベースポリマー100重量部に対して、5重量部程度以下、さらには0.1~5重量部配合するのが好ましい。さらに、粘着剤には、必要により、前記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤等の添加剤を用いてもよい。 In addition, an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer. Specific examples of the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. In general, it is preferable to add about 5 parts by weight or less, and further 0.1 to 5 parts by weight with respect to 100 parts by weight of the base polymer. Furthermore, you may use additives, such as conventionally well-known various tackifiers and anti-aging agent, other than the said component as needed to an adhesive.
 粘着剤層2は放射線硬化型粘着剤により形成することができる。放射線硬化型粘着剤は、紫外線等の放射線の照射により架橋度を増大させてその粘着力を容易に低下させることができ、図2に示す粘着剤層2のワーク貼り付け部分に対応する部分2aのみを放射線照射することにより他の部分2bとの粘着力の差を設けることができる。 The pressure-sensitive adhesive layer 2 can be formed of a radiation curable pressure-sensitive adhesive. The radiation curable pressure-sensitive adhesive can increase the degree of cross-linking by irradiation with radiation such as ultraviolet rays, and can easily reduce its adhesive strength, and a portion 2a corresponding to the work pasting portion of the pressure-sensitive adhesive layer 2 shown in FIG. The difference in adhesive strength with the other part 2b can be provided by irradiating only with radiation.
 また、図2に示す加熱接合用シート3’に合わせて放射線硬化型の粘着剤層2を硬化させることにより、粘着力が著しく低下した前記部分2aを容易に形成できる。硬化し、粘着力の低下した前記部分2aに加熱接合用シート3’が貼付けられるため、粘着剤層2の前記部分2aと加熱接合用シート3’との界面は、ピックアップ時に容易に剥がれる性質を有する。一方、放射線を照射していない部分は十分な粘着力を有しており、前記部分2bを形成する。なお、粘着剤層への放射線の照射は、ダイシング後であってかつピックアップ前に行ってもよい。 Further, by curing the radiation-curing pressure-sensitive adhesive layer 2 in accordance with the heat-bonding sheet 3 ′ shown in FIG. 2, the portion 2 a having a significantly reduced adhesive force can be easily formed. Since the heat bonding sheet 3 ′ is attached to the portion 2 a that has been cured and has reduced adhesive strength, the interface between the portion 2 a of the pressure-sensitive adhesive layer 2 and the heat bonding sheet 3 ′ is easily peeled off during pick-up. Have. On the other hand, the portion not irradiated with radiation has a sufficient adhesive force, and forms the portion 2b. In addition, you may perform irradiation of the radiation to an adhesive layer after dicing and before pick-up.
 前述の通り、図1に示すダイシングテープ付き加熱接合用シート10の粘着剤層2において、未硬化の放射線硬化型粘着剤により形成されている前記部分2bは加熱接合用シート3と粘着し、ダイシングする際の保持力を確保できる。この様に放射線硬化型粘着剤は、チップ状ワーク(半導体チップ等)を基板等の被着体に固着するための加熱接合用シート3を、接着・剥離のバランスよく支持することができる。図2に示すダイシングテープ付き加熱接合用シート11の粘着剤層2においては、前記部分2bがウェハリングを固定することができる。 As described above, in the pressure-sensitive adhesive layer 2 of the heat bonding sheet with dicing tape 10 shown in FIG. 1, the portion 2b formed of the uncured radiation-curing pressure-sensitive adhesive adheres to the heat bonding sheet 3, and dicing is performed. It is possible to secure a holding force when performing. In this way, the radiation curable pressure-sensitive adhesive can support the heat bonding sheet 3 for fixing a chip-like work (semiconductor chip or the like) to an adherend such as a substrate with a good balance of adhesion and peeling. In the pressure-sensitive adhesive layer 2 of the heat bonding sheet 11 with a dicing tape shown in FIG. 2, the portion 2b can fix the wafer ring.
 放射線硬化型粘着剤は、炭素-炭素二重結合等の放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、前記アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化型粘着剤を例示できる。 As the radiation curable pressure-sensitive adhesive, those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation. As the radiation curable pressure sensitive adhesive, for example, an addition type radiation curable pressure sensitive adhesive in which a radiation curable monomer component or an oligomer component is blended with a general pressure sensitive pressure sensitive adhesive such as an acrylic pressure sensitive adhesive or a rubber pressure sensitive adhesive. An agent can be illustrated.
 配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等が挙げられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系等種々のオリゴマーがあげられ、その分子量が100~30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、前記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば5~500重量部、好ましくは40~150重量部程度である。 Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Examples include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4-butanediol di (meth) acrylate. Examples of the radiation curable oligomer component include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable. The compounding amount of the radiation-curable monomer component or oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 また、放射線硬化型粘着剤としては、前記説明した添加型の放射線硬化型粘着剤のほかに、ベースポリマーとして、炭素-炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化型粘着剤が挙げられる。内在型の放射線硬化型粘着剤は、低分子成分であるオリゴマー成分等を含有する必要がなく、又は多くは含まないため、経時的にオリゴマー成分等が粘着剤中を移動することなく、安定した層構造の粘着剤層を形成することができるため好ましい。 In addition to the additive-type radiation-curable pressure-sensitive adhesive described above, the radiation-curable pressure-sensitive adhesive has a carbon-carbon double bond in the polymer side chain, main chain, or main chain terminal as a base polymer. Intrinsic radiation curable pressure sensitive adhesives using Intrinsic radiation curable pressure-sensitive adhesive does not need to contain an oligomer component, which is a low-molecular component, or does not contain much, so that the oligomer component or the like does not move in the pressure-sensitive adhesive over time and is stable. Since the adhesive layer of a layer structure can be formed, it is preferable.
 前記炭素-炭素二重結合を有するベースポリマーは、炭素-炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。この様なベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、前記例示したアクリル系ポリマーが挙げられる。 As the base polymer having a carbon-carbon double bond, those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation. As such a base polymer, those having an acrylic polymer as a basic skeleton are preferable. Examples of the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
 前記アクリル系ポリマーへの炭素-炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素-炭素二重結合はポリマー側鎖に導入するのが分子設計の点で容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基及び炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の放射線硬化性を維持したまま縮合又は付加反応させる方法が挙げられる。 The method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, it is easy in terms of molecular design to introduce the carbon-carbon double bond into the polymer side chain. It is. For example, after a monomer having a functional group is copolymerized in advance with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond. A method of performing condensation or addition reaction while maintaining the above.
 これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基等が挙げられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、前記炭素-炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと前記化合物のいずれの側にあってもよいが、前記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、前記化合物がイソシアネート基を有する場合が好適である。この場合、炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等が挙げられる。また、アクリル系ポリマーとしては、前記例示のヒドロキシ基含有モノマーや2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテルのエーテル系化合物等を共重合したものが用いられる。 Examples of combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups, and the like. Among these combinations of functional groups, a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction. In addition, the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond. In the preferable combination, it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group. In this case, examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, and the like. As the acrylic polymer, a copolymer obtained by copolymerizing the above-mentioned exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like is used.
 前記内在型の放射線硬化型粘着剤は、前記炭素-炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に前記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分等は、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0~10重量部の範囲である。 As the intrinsic radiation curable pressure-sensitive adhesive, the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the radiation curable monomer does not deteriorate the characteristics. Components and oligomer components can also be blended. The radiation-curable oligomer component or the like is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
 前記放射線硬化型粘着剤には、紫外線等により硬化させる場合には光重合開始剤を含有させる。光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1等のアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテル等のベンゾインエーテル系化合物;ベンジルジメチルケタール等のケタール系化合物;2-ナフタレンスルホニルクロリド等の芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシム等の光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;チオキサントン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等のチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナート等が挙げられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば0.05~20重量部程度である。 The radiation curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like. Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α'-dimethylacetophenone, 2-methyl-2-hydroxypropio Α-ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalenesulfonyl Black Aromatic sulfonyl chloride compounds such as 1; phenone-1,1-propanedione-2- (o-ethoxycarbonyl) oxime and other photoactive oxime compounds; benzophenone, benzoylbenzoic acid, 3,3′-dimethyl Benzophenone compounds such as -4-methoxybenzophenone; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2 Thioxanthone compounds such as 1,4-diethylthioxanthone and 2,4-diisopropylthioxanthone; camphorquinone; halogenated ketone; acyl phosphinoxide; acyl phosphonate and the like. The blending amount of the photopolymerization initiator is, for example, about 0.05 to 20 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 また放射線硬化型粘着剤としては、例えば、特開昭60-196956号公報に開示されている、不飽和結合を2個以上有する付加重合性化合物、エポキシ基を有するアルコキシシラン等の光重合性化合物と、カルボニル化合物、有機硫黄化合物、過酸化物、アミン、オニウム塩系化合物等の光重合開始剤とを含有するゴム系粘着剤やアクリル系粘着剤等が挙げられる。 Examples of the radiation curable pressure-sensitive adhesive include photopolymerizable compounds such as an addition polymerizable compound having two or more unsaturated bonds and an alkoxysilane having an epoxy group disclosed in JP-A-60-196956. And a rubber-based pressure-sensitive adhesive and an acrylic pressure-sensitive adhesive containing a photopolymerization initiator such as a carbonyl compound, an organic sulfur compound, a peroxide, an amine, and an onium salt-based compound.
 前記放射線硬化型の粘着剤層2中には、必要に応じて、放射線照射により着色する化合物を含有させることもできる。放射線照射により、着色する化合物を粘着剤層2に含ませることによって、放射線照射された部分のみを着色することができる。すなわち、図1に示すワーク貼り付け部分3aに対応する部分2aを着色することができる。従って、粘着剤層2に放射線が照射されたか否かが目視により直ちに判明することができ、ワーク貼り付け部分3aを認識し易く、ワークの貼り合せが容易である。また光センサー等によって半導体チップを検出する際に、その検出精度が高まり、半導体チップのピックアップ時に誤動作が生ずることがない。放射線照射により着色する化合物は、放射線照射前には無色又は淡色であるが、放射線照射により有色となる化合物であり、例えば、ロイコ染料などが挙げられる。放射線照射により着色する化合物の使用割合は、適宜設定できる。 In the radiation-curable pressure-sensitive adhesive layer 2, a compound that is colored by irradiation with radiation may be contained as necessary. By including a compound to be colored in the pressure-sensitive adhesive layer 2 by irradiation with radiation, only the irradiated portion can be colored. That is, the portion 2a corresponding to the workpiece pasting portion 3a shown in FIG. 1 can be colored. Accordingly, whether or not the pressure-sensitive adhesive layer 2 has been irradiated with radiation can be immediately determined by visual observation, the workpiece pasting portion 3a can be easily recognized, and workpieces can be easily pasted together. In addition, when detecting a semiconductor chip by an optical sensor or the like, the detection accuracy is increased, and no malfunction occurs when the semiconductor chip is picked up. The compound that is colored by irradiation with radiation is a colorless or light color compound before irradiation with radiation, but becomes a color by irradiation with radiation, and examples thereof include leuco dyes. The use ratio of the compound colored by radiation irradiation can be set as appropriate.
 粘着剤層2の厚さは、特に限定されないが、チップ切断面の欠け防止や加熱接合用シート3、3’の固定保持の両立性等の点よりは、1~50μm程度であるのが好ましい。好ましくは2~30μm、さらには5~25μmが好ましい。 The thickness of the pressure-sensitive adhesive layer 2 is not particularly limited, but is preferably about 1 to 50 μm from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the heat bonding sheets 3 and 3 ′. . The thickness is preferably 2 to 30 μm, more preferably 5 to 25 μm.
 本実施の形態に係るダイシングテープ付き加熱接合用シート10、12は、例えば、次の通りにして作製される。
 まず、基材1は、従来公知の製膜方法により製膜することができる。当該製膜方法としては、例えばカレンダー製膜法、有機溶媒中でのキャスティング法、密閉系でのインフレーション押出法、Tダイ押出法、共押出し法、ドライラミネート法等が例示できる。
The heat bonding sheets with dicing tape 10 and 12 according to the present embodiment are produced, for example, as follows.
First, the base material 1 can be formed by a conventionally known film forming method. Examples of the film forming method include a calendar film forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, and a dry lamination method.
 次に、基材1上に粘着剤組成物溶液を塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ(必要に応じて加熱架橋させて)、粘着剤層2を形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度80~150℃、乾燥時間0.5~5分間の範囲内で行われる。また、セパレータ上に粘着剤組成物を塗布して塗布膜を形成した後、前記乾燥条件で塗布膜を乾燥させて粘着剤層2を形成してもよい。その後、基材1上に粘着剤層2をセパレータと共に貼り合わせる。これにより、ダイシングテープ11が作製される。 Next, after a pressure-sensitive adhesive composition solution is applied onto the substrate 1 to form a coating film, the coating film is dried under predetermined conditions (heat-crosslinked as necessary), and the pressure-sensitive adhesive layer 2 is formed. Form. It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. As drying conditions, for example, a drying temperature of 80 to 150 ° C. and a drying time of 0.5 to 5 minutes are performed. Moreover, after apply | coating an adhesive composition on a separator and forming a coating film, the coating film may be dried on the said drying conditions, and the adhesive layer 2 may be formed. Then, the adhesive layer 2 is bonded together with the separator on the base material 1. Thereby, the dicing tape 11 is produced.
 ダイシングテープ付き加熱接合用シート10は、通常の方法で製造できる。例えば、ダイシングテープ11の粘着剤層2と加熱接合用シート3とを貼り合わせることで、ダイシングテープ付き加熱接合用シート10を製造できる。 The heat bonding sheet 10 with dicing tape can be manufactured by a usual method. For example, the sheet | seat 10 for heat joining with a dicing tape can be manufactured by bonding the adhesive layer 2 of the dicing tape 11 and the sheet | seat 3 for heat joining.
 (半導体装置の製造方法)
 本実施形態に係る半導体装置の製造方法は、前記加熱接合用シートを準備する工程と、
 前記加熱接合用シートを介して、半導体チップを被着体上に加熱接合する加熱接合工程とを含む(以下、第1実施形態ともいう)。
 また、本実施形態に係る半導体装置の製造方法は、前記に記載のダイシングテープ付き加熱接合用シートを準備する工程と、
 前記ダイシングテープ付き加熱接合用シートの加熱接合用シートと、半導体ウェハの裏面とを貼り合わせる貼り合わせ工程と、
 前記半導体ウェハを前記加熱接合用シートと共にダイシングして、チップ状の半導体チップを形成するダイシング工程と、
 前記半導体チップを、前記ダイシングテープ付き加熱接合用シートから前記加熱接合用シートと共にピックアップするピックアップ工程と、
 前記加熱接合用シートを介して、前記半導体チップを被着体上に加熱接合する加熱接合工程とを含むものでもある(以下、第2実施形態ともいう)。
 第1実施形態に係る半導体装置の製造方法は、第2の実施形態に係る半導体装置の製造方法が、ダイシングテープ付き加熱接合用シートを用いているのに対して、第1実施形態に係る半導体装置の製造方法では、加熱接合用シートを単体で用いている点で異なりその他の点で共通する。第1の実施形態に係る半導体装置の製造方法においては、加熱接合用シートを準備した後、これをダイシングテープと貼り合わせる工程を行なえば、その後は、第2実施形態に係る半導体装置の製造方法と同様とすることができる。そこで、以下では、第2実施形態に係る半導体装置の製造方法について説明することとする。
(Method for manufacturing semiconductor device)
The method of manufacturing a semiconductor device according to the present embodiment includes the step of preparing the heat bonding sheet;
A heat bonding step of heat bonding the semiconductor chip onto the adherend via the heat bonding sheet (hereinafter also referred to as the first embodiment).
Moreover, the method for manufacturing a semiconductor device according to the present embodiment includes the step of preparing the heat bonding sheet with dicing tape described above,
A bonding step of bonding the heat bonding sheet of the heat bonding sheet with the dicing tape and the back surface of the semiconductor wafer;
A dicing step of dicing the semiconductor wafer together with the heat bonding sheet to form a chip-like semiconductor chip;
Picking up the semiconductor chip together with the heat bonding sheet from the heat bonding sheet with the dicing tape;
A heat bonding step of heat bonding the semiconductor chip onto the adherend via the heat bonding sheet (hereinafter also referred to as a second embodiment).
The semiconductor device manufacturing method according to the first embodiment is different from the semiconductor device manufacturing method according to the second embodiment in that the semiconductor device according to the first embodiment uses a heat bonding sheet with dicing tape. The manufacturing method of the apparatus is different in that the heat bonding sheet is used alone, and is common in other points. In the manufacturing method of the semiconductor device according to the first embodiment, after preparing the heat bonding sheet, the step of bonding the sheet to the dicing tape is performed. Thereafter, the manufacturing method of the semiconductor device according to the second embodiment is performed. And can be similar. Therefore, hereinafter, a method for manufacturing a semiconductor device according to the second embodiment will be described.
 本実施形態に係る半導体装置の製造方法においては、まず、ダイシングテープ付き加熱接合用シート10、12を準備する(準備する工程)。ダイシングテープ付き加熱接合用シート10、12は、加熱接合用シート3、3’上に任意に設けられたセパレータを適宜に剥離して、次の様に使用される。以下では、図3を参照しながらダイシングテープ付き加熱接合用シート10を用いた場合を例にして説明する。 In the method of manufacturing a semiconductor device according to the present embodiment, first, the heat bonding sheets with dicing tape 10 and 12 are prepared (preparing step). The dicing tape-attached heat bonding sheets 10 and 12 are used in the following manner by appropriately separating the separator arbitrarily provided on the heat bonding sheets 3 and 3 ′. Hereinafter, a case where the heat bonding sheet with dicing tape 10 is used will be described as an example with reference to FIG.
 まず、ダイシングテープ付き加熱接合用シート10における加熱接合用シート3の半導体ウェハ貼り付け部分3a上に半導体ウェハ4を圧着し、これを接着保持させて固定する(貼り合わせ工程)。本工程は、圧着ロール等の押圧手段により押圧しながら行う。マウントの際の貼り付け温度は特に限定されず、例えば23~90℃の範囲内であることが好ましい。 First, the semiconductor wafer 4 is pressure-bonded onto the semiconductor wafer bonding portion 3a of the heat bonding sheet 3 in the heat bonding sheet 10 with dicing tape, and this is bonded and held (fixing step). This step is performed while pressing with a pressing means such as a pressure roll. The attaching temperature at the time of mounting is not particularly limited and is preferably in the range of 23 to 90 ° C., for example.
 次に、半導体ウェハ4のダイシングを行う(ダイシング工程)。これにより、半導体ウェハ4を所定のサイズに切断して個片化し、半導体チップ5を製造する。ダイシングの方法は特に限定されないが、例えば半導体ウェハ4の回路面側から常法に従い行われる。また、本工程では、例えばダイシングテープ付き加熱接合用シート10まで切込みを行なうフルカットと呼ばれる切断方式等を採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。また、半導体ウェハ4は、ダイシングテープ付き加熱接合用シート10により接着固定されているので、チップ欠けやチップ飛びを抑制できると共に、半導体ウェハ4の破損も抑制できる。 Next, the semiconductor wafer 4 is diced (dicing process). Thereby, the semiconductor wafer 4 is cut into a predetermined size and separated into individual pieces, and the semiconductor chip 5 is manufactured. Although the method of dicing is not particularly limited, for example, the dicing is performed from the circuit surface side of the semiconductor wafer 4 according to a conventional method. Further, in this step, for example, a cutting method called full cut in which cutting is performed up to the heat bonding sheet with dicing tape 10 can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used. Further, since the semiconductor wafer 4 is bonded and fixed by the heat bonding sheet 10 with a dicing tape, chip chipping and chip jumping can be suppressed, and damage to the semiconductor wafer 4 can also be suppressed.
 次に、ダイシングテープ付き加熱接合用シート10に接着固定された半導体チップ5を剥離するために、半導体チップ5のピックアップを行う(ピックアップ工程)。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、個々の半導体チップ5をダイシングテープ付き加熱接合用シート10側からニードルによって突き上げ、突き上げられた半導体チップ5をピックアップ装置によってピックアップする方法等が挙げられる。 Next, the semiconductor chip 5 is picked up in order to peel the semiconductor chip 5 adhered and fixed to the heat bonding sheet 10 with dicing tape (pickup process). The pickup method is not particularly limited, and various conventionally known methods can be employed. For example, there is a method in which each semiconductor chip 5 is pushed up by a needle from the heating bonding sheet 10 with dicing tape, and the pushed-up semiconductor chip 5 is picked up by a pickup device.
 ピックアップ条件としては、チッピング防止の点で、ニードル突き上げ速度を5~100mm/秒とすることが好ましく、5~10mm/秒とすることがより好ましい。 As the pick-up conditions, the needle push-up speed is preferably 5 to 100 mm / sec, more preferably 5 to 10 mm / sec from the viewpoint of preventing chipping.
 ここでピックアップは、粘着剤層2が紫外線硬化型である場合、該粘着剤層2に紫外線を照射した後に行う。これにより、粘着剤層2の加熱接合用シート3に対する粘着力が低下し、半導体チップ5の剥離が容易になる。その結果、半導体チップ5を損傷させることなくピックアップが可能となる。紫外線照射の際の照射強度、照射時間等の条件は特に限定されず、適宜必要に応じて設定すればよい。また、紫外線照射に使用する光源としては、公知のものを使用することができる。なお、粘着剤層に予め紫外線照射し硬化させておき、この硬化した粘着剤層と加熱接合用シートとを貼り合わせている場合は、ここでの紫外線照射は不要である。 Here, when the pressure-sensitive adhesive layer 2 is an ultraviolet curable type, the pickup is performed after the pressure-sensitive adhesive layer 2 is irradiated with ultraviolet rays. Thereby, the adhesive force with respect to the sheet | seat 3 for heat bonding of the adhesive layer 2 falls, and peeling of the semiconductor chip 5 becomes easy. As a result, the pickup can be performed without damaging the semiconductor chip 5. Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary. Moreover, a well-known thing can be used as a light source used for ultraviolet irradiation. When the adhesive layer is preliminarily irradiated with ultraviolet rays and cured, and the cured adhesive layer and the heat bonding sheet are bonded together, the ultraviolet irradiation here is not necessary.
 次に、ピックアップした半導体チップ5を、加熱接合用シート3を介して被着体6にダイアタッチ(加熱接合)する(加熱接合工程)。被着体6としては、リードフレーム、TABフィルム、基板又は別途作製した半導体チップ等が挙げられる。被着体6は、例えば、容易に変形されるような変形型被着体であってもよく、変形することが困難である非変形型被着体(半導体ウェハ等)であってもよい。 Next, the picked-up semiconductor chip 5 is die-attached (heat bonded) to the adherend 6 via the heat bonding sheet 3 (heat bonding process). Examples of the adherend 6 include a lead frame, a TAB film, a substrate, and a separately manufactured semiconductor chip. The adherend 6 may be, for example, a deformable adherend that can be easily deformed or a non-deformable adherend (such as a semiconductor wafer) that is difficult to deform.
 前記リードフレームとしては、Cuリードフレーム、42Alloyリードフレーム等の金属リードフレームを挙げることができる。また、前記基板としては、従来公知のものを使用することができる。例えば、ガラスエポキシ、BT(ビスマレイミド-トリアジン)、ポリイミド等からなる有機基板を挙げることができる。なかでも、金属リームフレームを用いれば、加熱接合により金属微粒子と一体化することができる。また、前記基板としては、セラミックプレート等の絶縁基板に、銅回路基板が積層された絶縁回路基板を挙げることができる。絶縁回路基板を用いれば、例えば、電力の制御や供給を行うパワー半導体装置を製造することができる。 Examples of the lead frame include metal lead frames such as a Cu lead frame and a 42 Alloy lead frame. Moreover, a conventionally well-known thing can be used as said board | substrate. Examples thereof include organic substrates made of glass epoxy, BT (bismaleimide-triazine), polyimide, and the like. Especially, if a metal ream frame is used, it can be integrated with metal fine particles by heat bonding. The substrate may be an insulating circuit substrate in which a copper circuit substrate is laminated on an insulating substrate such as a ceramic plate. If an insulated circuit board is used, for example, a power semiconductor device that controls and supplies power can be manufactured.
 前記加熱接合工程では、加熱により金属微粒子を焼結するとともに、必要に応じて熱分解性バインダーを熱分解させる。加熱温度は、好ましくは180~400℃、より好ましくは190~370℃、さらに好ましくは200~350℃で行うことができる。また、加熱時間は、好ましくは0.3~300分、より好ましくは0.5~240分、さらに好ましくは1~180分で行うことができる。また、加熱接合は、加圧条件下で行なってもよい。加圧条件としては、1~500kg/cmの範囲内が好ましく、5~400kg/cmの範囲内がより好ましい。加圧下での加熱接合は、例えば、フリップチップボンダーのような加熱と加圧とを同時に行える装置で実施ができる。また、平行平板プレスでもよい。 In the heat bonding step, the metal fine particles are sintered by heating, and the thermally decomposable binder is thermally decomposed as necessary. The heating temperature is preferably 180 to 400 ° C, more preferably 190 to 370 ° C, and further preferably 200 to 350 ° C. The heating time is preferably 0.3 to 300 minutes, more preferably 0.5 to 240 minutes, and still more preferably 1 to 180 minutes. Moreover, you may perform heat joining on pressurization conditions. The pressurizing condition is preferably in the range of 1 to 500 kg / cm 2 , more preferably in the range of 5 to 400 kg / cm 2 . The heat bonding under pressure can be performed with an apparatus capable of simultaneously performing heating and pressure, such as a flip chip bonder. Moreover, a parallel plate press may be used.
 加熱接合用シート3は、前記引張試験方法により得られる引張弾性率が10MPa以上であるため、ダイアタッチ時(加熱接合時)に加熱接合用シート3の構成材料がはみ出したり、半導体チップ5の表面へ這い上がったりすることを抑制できる。
 また、加熱接合用シート3は、金属微粒子を60~98重量%の範囲内で含むため、金属微粒子を焼結、又は、溶融させて半導体チップ5と被着体6(例えば、リードフレーム))を接合させることができる。
 また、加熱接合用シート3は、大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで昇温を行った後のエネルギー分散型X線分析により得られる炭素濃度が15重量%以下であるため、加熱接合工程後は、有機物がほとんど存在しない。その結果、加熱接合工程後は、耐熱性に優れ、高温環境においても高い信頼性、熱特性が得られる。
The heat bonding sheet 3 has a tensile elastic modulus of 10 MPa or more obtained by the tensile test method, so that the constituent material of the heat bonding sheet 3 protrudes during die attachment (at the time of heat bonding) or the surface of the semiconductor chip 5. It is possible to suppress crawling up.
Further, since the heat bonding sheet 3 contains metal fine particles in the range of 60 to 98% by weight, the semiconductor fine particles 5 and the adherend 6 (for example, a lead frame) are sintered or melted. Can be joined.
In addition, the heat bonding sheet 3 has a carbon concentration of 15 obtained by energy dispersive X-ray analysis after heating from 23 ° C. to 400 ° C. in an air atmosphere under a temperature rising rate of 10 ° C./min. Since the content is less than or equal to the weight percent, there is almost no organic matter after the heat bonding step. As a result, after the heat bonding step, the heat resistance is excellent, and high reliability and thermal characteristics are obtained even in a high temperature environment.
 次に、必要に応じて、図3に示すように、被着体6の端子部(インナーリード)の先端と半導体チップ5上の電極パッド(図示しない)とをボンディングワイヤー7で電気的に接続する(ワイヤーボンディング工程)。前記ボンディングワイヤー7としては、例えば金線、アルミニウム線又は銅線等が用いられる。ワイヤーボンディングを行う際の温度は、23~300℃、好ましくは23~250℃の範囲内で行われる。また、80~250℃の範囲内、80~220℃の範囲内で行ってもよい。また、その加熱時間は数秒~数分間行われる。結線は、前記温度範囲内となる様に加熱された状態で、超音波による振動エネルギーと印加加圧による圧着工ネルギーの併用により行われる。 Next, if necessary, as shown in FIG. 3, the tip of the terminal portion (inner lead) of the adherend 6 and an electrode pad (not shown) on the semiconductor chip 5 are electrically connected by a bonding wire 7. (Wire bonding process). As the bonding wire 7, for example, a gold wire, an aluminum wire, a copper wire or the like is used. The temperature for wire bonding is 23 to 300 ° C., preferably 23 to 250 ° C. Further, it may be carried out in the range of 80 to 250 ° C. or in the range of 80 to 220 ° C. The heating time is several seconds to several minutes. The connection is performed by a combination of vibration energy by ultrasonic waves and crimping energy by applying pressure while being heated so as to be within the temperature range.
  次に、必要に応じて、図3に示すように、封止樹脂8により半導体チップ5を封止する(封止工程)。本工程は、被着体6に搭載された半導体チップ5やボンディングワイヤー7を保護するために行われる。本工程は、封止用の樹脂を金型で成型することにより行うことができる。封止樹脂8としては、例えばエポキシ系の樹脂を使用する。樹脂封止の際の加熱温度は、通常175℃で60~90秒間行われるが、本発明はこれに限定されず、例えば165~185℃で、数分間キュアすることができる。これにより、封止樹脂8を硬化させる。なお、本封止工程では、シート状の封止用シートに半導体チップ5を埋め込む方法(例えば、特開2013-7028号公報参照)を採用することもできる。また、金型による封止樹脂の成型以外にも、ケース型容器にシリコーンゲルを流し込むゲル封止型でも良い。 Next, as necessary, the semiconductor chip 5 is sealed with a sealing resin 8 as shown in FIG. 3 (sealing step). This step is performed to protect the semiconductor chip 5 and the bonding wire 7 mounted on the adherend 6. This step can be performed by molding a sealing resin with a mold. As the sealing resin 8, for example, an epoxy resin is used. The heating temperature at the time of resin sealing is usually 175 ° C. for 60 to 90 seconds, but the present invention is not limited to this. For example, it can be cured at 165 to 185 ° C. for several minutes. Thereby, the sealing resin 8 is cured. In this sealing step, a method of embedding the semiconductor chip 5 in a sheet-like sealing sheet (for example, see JP2013-7028A) can also be employed. In addition to molding the sealing resin with a mold, a gel sealing type in which silicone gel is poured into a case type container may be used.
 次に、必要に応じて加熱を行い、前記封止工程で硬化不足の封止樹脂8を完全に硬化させる(後硬化工程)。本工程における加熱温度は、封止樹脂の種類により異なるが、例えば165~185℃の範囲内であり、加熱時間は0.5~8時間程度である。 Next, heating is performed as necessary to completely cure the insufficiently cured sealing resin 8 in the sealing process (post-curing process). The heating temperature in this step varies depending on the type of the sealing resin, but is in the range of 165 to 185 ° C., for example, and the heating time is about 0.5 to 8 hours.
 なお、本発明の加熱接合用シート、及び、ダイシングテープ付き加熱接合用シートは、複数の半導体チップを積層して3次元実装をする場合にも好適に用いることができる。このとき、半導体チップ間に加熱接合用シートとスペーサとを積層させてもよく、スペーサを積層することなく、加熱接合用シートのみを半導体チップ間に積層させてもよく、製造条件や用途等に応じて適宜変更可能である。
 また、本発明の加熱接合用シート、及び、ダイシングテープ付き加熱接合用シートは、上記に例示した用途に限定されず、2つのものを加熱接合するのに利用することができる。
In addition, the sheet | seat for heat joining of this invention and the sheet | seat for heat joining with a dicing tape can be used suitably also when laminating | stacking a some semiconductor chip and carrying out three-dimensional mounting. At this time, the heat bonding sheet and the spacer may be stacked between the semiconductor chips, or only the heat bonding sheet may be stacked between the semiconductor chips without stacking the spacer. It can be changed as appropriate.
In addition, the heat bonding sheet and the heat bonding sheet with dicing tape of the present invention are not limited to the applications exemplified above, and can be used for heat bonding two things.
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
 実施例で使用した成分について説明する。
 アクリル樹脂A:綜研化学社製のSPB-TE1(分子量40000)
 アクリル樹脂B:綜研化学社製のIB-27(分子量370000)
 ポリプロピレンカーボネート樹脂:Empower社製のQPAC40(分子量200000)
 エチルセルロースA:日新化成社製のエトセルSTD100
 金属微粒子A:三井金属鉱業社製のSPH02J(銀微粒子の凝集体、凝集体の平均粒径1.8μm、不定形)
 金属微粒子混合ペーストA:応用ナノ粒子研究所製のANP-1(ナノサイズの銀微粒子が分散されたペースト)
 有機溶剤A:メチルエチルケトン(MEK)
 アルコール溶剤A:テルピネオール
The components used in the examples will be described.
Acrylic resin A: SPB-TE1 (molecular weight 40000) manufactured by Soken Chemical Co., Ltd.
Acrylic resin B: IB-27 (molecular weight 370000) manufactured by Soken Chemical Co., Ltd.
Polypropylene carbonate resin: QPAC40 (Molecular weight 200000) manufactured by Empower
Ethylcellulose A: Etcelle STD100 manufactured by Nisshin Kasei
Metal fine particle A: SPH02J manufactured by Mitsui Mining & Smelting Co., Ltd. (aggregates of silver fine particles, average particle diameter of aggregates 1.8 μm, irregular shape)
Metal fine particle mixed paste A: ANP-1 manufactured by Applied Nanoparticles Laboratory (paste in which nano-sized silver fine particles are dispersed)
Organic solvent A: Methyl ethyl ketone (MEK)
Alcohol solvent A: Terpineol
 [加熱接合用シートの作製]
 表1に記載の配合比に従い、表1に記載の各成分及び溶媒を、ハイブリッドミキサー(キーエンス製 HM-500)の攪拌釜に入れ、攪拌モード、3分で攪拌・混合した。得られたワニスを、離型処理フィルム(三菱樹脂(株)製のMRA50)に塗布・乾燥(110℃、2分間)させた。これにより実施例、及び、比較例に係る厚み50μmの加熱接合シートを得た。ただし、比較例1は、均一なシートとすることができなかった。
[Preparation of heat bonding sheet]
According to the mixing ratio shown in Table 1, each component and solvent shown in Table 1 were placed in a stirring vessel of a hybrid mixer (Keyence HM-500), and stirred and mixed in a stirring mode for 3 minutes. The obtained varnish was applied and dried (110 ° C., 2 minutes) on a release treatment film (MRA50 manufactured by Mitsubishi Resin Co., Ltd.). Thereby, the 50-micrometer-thick heat joining sheet | seat which concerns on an Example and a comparative example was obtained. However, Comparative Example 1 could not be a uniform sheet.
 [引張弾性率の測定]
 (1)まず、実施例、比較例で得られた加熱接合用シートを厚み200μmとなるように重ねた。次に、幅10mm、長さ30mmに切り出した。
 (2)次に、チャック間距離10mm、引張速度50mm/分、23℃の条件で引張試験を行った。この引張試験には、株式会社島津製作所のオートグラフAGS-Jを用いた。
 (3)次に、得られた応力-ひずみ線図の応力0.5Nと1Nでの接線の傾きを引張弾性率とした。
 結果を表1に示す。
[Measurement of tensile modulus]
(1) First, the heat bonding sheets obtained in the examples and comparative examples were stacked to a thickness of 200 μm. Next, it cut out to width 10mm and length 30mm.
(2) Next, a tensile test was performed under the conditions of a distance between chucks of 10 mm, a tensile speed of 50 mm / min, and 23 ° C. For this tensile test, Autograph AGS-J from Shimadzu Corporation was used.
(3) Next, the tangential slope at stress 0.5N and 1N in the obtained stress-strain diagram was taken as the tensile modulus.
The results are shown in Table 1.
 [加熱後の炭素濃度の測定]
 実施例、比較例で得られた加熱接合用シートを大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで加温し、400℃に達した後は、自然放冷により常温にした。加温には、オーブンを用いた。次に、加熱後のサンプル(常温)を、EDX(エネルギー分散型X線分析)で元素分析(定量分析)し、炭素濃度(重量%)を測定した。測定には、アメテック株式会社製の製品名:EDAX Model PV77-50780MEを用いた。結果を表1に示す。
[Measurement of carbon concentration after heating]
The sheet for heat bonding obtained in the examples and comparative examples was heated from 23 ° C. to 400 ° C. under the atmosphere at a temperature increase rate of 10 ° C./min. To room temperature. An oven was used for heating. Next, the sample (normal temperature) after heating was subjected to elemental analysis (quantitative analysis) by EDX (energy dispersive X-ray analysis), and the carbon concentration (% by weight) was measured. For measurement, product name: EDAX Model PV77-50780ME manufactured by Ametech Co., Ltd. was used. The results are shown in Table 1.
 [示差熱分析によるピーク温度]
 実施例、比較例で得られた加熱接合用シートに対して、大気雰囲気下、昇温速度10℃/分の条件で、23℃から500℃まで示差熱分析を行った。測定には、TG-DTA同時測定装置(示差熱-熱重量同時測定装置)、より具体的には、リガク社製の製品名:Thermo Plus TG8210を用いた。次に、得られたグラフからピーク値の温度を読み取った。結果を表1に示す。
[Peak temperature by differential thermal analysis]
The thermal bonding sheets obtained in the examples and comparative examples were subjected to differential thermal analysis from 23 ° C. to 500 ° C. under the atmosphere at a temperature rising rate of 10 ° C./min. For the measurement, a TG-DTA simultaneous measurement apparatus (differential thermal-thermogravimetric simultaneous measurement apparatus), more specifically, a product name: Thermo Plus TG8210 manufactured by Rigaku Corporation was used. Next, the temperature of the peak value was read from the obtained graph. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
    1  基材
    2  粘着剤層
    3、3’  加熱接合用シート
    4  半導体ウェハ
    5  半導体チップ
    6  被着体
    7  ボンディングワイヤー
    8  封止樹脂
   10、12  ダイシングテープ付き加熱接合用シート
   11  ダイシングテープ
DESCRIPTION OF SYMBOLS 1 Substrate 2 Adhesive layer 3, 3 'Heat bonding sheet 4 Semiconductor wafer 5 Semiconductor chip 6 Substrate 7 Bonding wire 8 Sealing resin 10, 12 Heat bonding sheet with dicing tape 11 Dicing tape

Claims (6)

  1.  下記引張試験方法により得られる引張弾性率が10~3000MPaであり、
     金属微粒子を60~98重量%の範囲内で含み、
     大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで昇温を行った後のエネルギー分散型X線分析により得られる炭素濃度が15重量%以下であることを特徴とする加熱接合用シート。
     引張試験方法:
    (1)試験試料として、厚さ200μm、幅10mm、長さ40mmの加熱接合用シートを準備し、
    (2)チャック間距離10mm、引張速度50mm/分、23℃の条件で引張試験を行い、
    (3)得られた応力-ひずみ線図の直線部分の傾きを引張弾性率とする。
    The tensile modulus obtained by the following tensile test method is 10 to 3000 MPa,
    Containing metal fine particles in the range of 60 to 98% by weight,
    The carbon concentration obtained by energy dispersive X-ray analysis after heating from 23 ° C. to 400 ° C. under the condition of a heating rate of 10 ° C./min in an air atmosphere is 15% by weight or less. Heat bonding sheet.
    Tensile test method:
    (1) As a test sample, a heat bonding sheet having a thickness of 200 μm, a width of 10 mm, and a length of 40 mm is prepared,
    (2) A tensile test was performed under the conditions of a distance between chucks of 10 mm, a tensile speed of 50 mm / min, and 23 ° C.
    (3) The slope of the straight line portion of the obtained stress-strain diagram is the tensile modulus.
  2.  大気雰囲気下、昇温速度10℃/分の条件で、23℃から500℃まで示差熱分析を行った際のピークが150~350℃に存在することを特徴とする請求項1に記載の加熱接合用シート。 2. The heating according to claim 1, wherein a peak in a differential thermal analysis from 23 ° C. to 500 ° C. is present at 150 to 350 ° C. in an air atmosphere at a temperature rising rate of 10 ° C./min. Sheet for bonding.
  3.  アクリル樹脂、及び、ポリカーボネート樹脂のうち少なくとも一種を含むことを特徴とする請求項1又は2に記載の加熱接合用シート。 The sheet for heat bonding according to claim 1 or 2, comprising at least one of acrylic resin and polycarbonate resin.
  4.  前記金属微粒子が、銀、銅、酸化銀、酸化銅からなる群より選ばれる少なくとも1種であることを特徴とする請求項1~3のいずれか1に記載の加熱接合用シート。 The heat bonding sheet according to any one of claims 1 to 3, wherein the metal fine particles are at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide.
  5.  23℃での厚さが、5~100μmであることを特徴とする請求項1~4のいずれか1に記載の加熱接合用シート。 The sheet for heat bonding according to any one of claims 1 to 4, wherein the sheet at 23 ° C has a thickness of 5 to 100 µm.
  6.  ダイシングテープと、
     前記ダイシングテープ上に積層された請求項1~5のいずれか1に記載の加熱接合用シートとを有することを特徴とするダイシングテープ付き加熱接合用シート。
    Dicing tape,
    A heat bonding sheet with a dicing tape comprising the heat bonding sheet according to any one of claims 1 to 5 laminated on the dicing tape.
PCT/JP2015/084813 2014-12-24 2015-12-11 Sheet for thermal bonding and sheet for thermal bonding with affixed dicing tape WO2016104188A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/539,657 US10301509B2 (en) 2014-12-24 2015-12-11 Sheet for thermal bonding and sheet for thermal bonding with affixed dicing tape
CN201580070430.3A CN107109146A (en) 2014-12-24 2015-12-11 Heat heating engagement sheet material of the engagement with sheet material and with cutting belt
EP15872757.8A EP3239258A4 (en) 2014-12-24 2015-12-11 Sheet for thermal bonding and sheet for thermal bonding with affixed dicing tape

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014260265 2014-12-24
JP2014-260265 2014-12-24
JP2015204211A JP6682235B2 (en) 2014-12-24 2015-10-16 Heat bonding sheet and heat bonding sheet with dicing tape
JP2015-204211 2015-10-16

Publications (1)

Publication Number Publication Date
WO2016104188A1 true WO2016104188A1 (en) 2016-06-30

Family

ID=56150218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084813 WO2016104188A1 (en) 2014-12-24 2015-12-11 Sheet for thermal bonding and sheet for thermal bonding with affixed dicing tape

Country Status (1)

Country Link
WO (1) WO2016104188A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065188A1 (en) * 2015-10-13 2017-04-20 リンテック株式会社 Pressure-sensitive adhesive sheet
CN109478519A (en) * 2016-08-31 2019-03-15 日东电工株式会社 Heat engagement sheet material and the heating engagement sheet material with cutting belt
EP3509092A4 (en) * 2016-08-31 2019-07-10 Nitto Denko Corporation Sheet for heat bonding, and sheet for heat bonding having dicing tape
EP3517586A4 (en) * 2016-09-21 2019-09-25 Nitto Denko Corporation Heat bonding sheet, and heat bonding sheet with dicing tape
US11352527B2 (en) * 2017-11-13 2022-06-07 Nitto Denko Corporation Sinter-bonding composition, sinter-bonding sheet and dicing tape with sinter-bonding sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814171B1 (en) * 1969-06-19 1973-05-04
JPS60230916A (en) * 1984-04-29 1985-11-16 Nitto Electric Ind Co Ltd Composition for fixing metallic powder molding during sintering
JPS61276873A (en) * 1985-05-31 1986-12-06 Sony Chem Kk Electrically conductive anisotropic adhesive
JPH06145639A (en) * 1992-09-16 1994-05-27 Hitachi Chem Co Ltd Conductive adhesive film, its production and adhesion method therefor
JP2005276925A (en) * 2004-03-23 2005-10-06 Sumitomo Bakelite Co Ltd Conductive adhesive film and semiconductor device employing it
JP2006298954A (en) * 2005-04-15 2006-11-02 Tatsuta System Electronics Kk Electroconductive adhesive sheet and circuit board
JP2012142370A (en) * 2010-12-28 2012-07-26 Nitto Denko Corp Dicing die bond film and semiconductor device
JP2012142368A (en) * 2010-12-28 2012-07-26 Nitto Denko Corp Dicing die bond film and semiconductor device
JP2013515113A (en) * 2009-12-21 2013-05-02 テーザ・ソシエタス・ヨーロピア Planar elements that can be bonded by thermal activation
JP2014529638A (en) * 2011-08-10 2014-11-13 テーザ・ソシエタス・ヨーロピア Conductive heat-activatable adhesive

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814171B1 (en) * 1969-06-19 1973-05-04
JPS60230916A (en) * 1984-04-29 1985-11-16 Nitto Electric Ind Co Ltd Composition for fixing metallic powder molding during sintering
JPS61276873A (en) * 1985-05-31 1986-12-06 Sony Chem Kk Electrically conductive anisotropic adhesive
JPH06145639A (en) * 1992-09-16 1994-05-27 Hitachi Chem Co Ltd Conductive adhesive film, its production and adhesion method therefor
JP2005276925A (en) * 2004-03-23 2005-10-06 Sumitomo Bakelite Co Ltd Conductive adhesive film and semiconductor device employing it
JP2006298954A (en) * 2005-04-15 2006-11-02 Tatsuta System Electronics Kk Electroconductive adhesive sheet and circuit board
JP2013515113A (en) * 2009-12-21 2013-05-02 テーザ・ソシエタス・ヨーロピア Planar elements that can be bonded by thermal activation
JP2012142370A (en) * 2010-12-28 2012-07-26 Nitto Denko Corp Dicing die bond film and semiconductor device
JP2012142368A (en) * 2010-12-28 2012-07-26 Nitto Denko Corp Dicing die bond film and semiconductor device
JP2014529638A (en) * 2011-08-10 2014-11-13 テーザ・ソシエタス・ヨーロピア Conductive heat-activatable adhesive

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239258A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065188A1 (en) * 2015-10-13 2017-04-20 リンテック株式会社 Pressure-sensitive adhesive sheet
JP6147458B1 (en) * 2015-10-13 2017-06-14 リンテック株式会社 Adhesive sheet
US10450485B2 (en) 2015-10-13 2019-10-22 Lintec Corporation Pressure sensitive adhesive sheet
CN109478519A (en) * 2016-08-31 2019-03-15 日东电工株式会社 Heat engagement sheet material and the heating engagement sheet material with cutting belt
EP3509092A4 (en) * 2016-08-31 2019-07-10 Nitto Denko Corporation Sheet for heat bonding, and sheet for heat bonding having dicing tape
EP3509093A4 (en) * 2016-08-31 2019-07-10 Nitto Denko Corporation Sheet for heat bonding, and sheet for heat bonding having dicing tape
US11786966B2 (en) * 2016-08-31 2023-10-17 Nitto Denko Corporation Sheet for heat bonding, and sheet for heat bonding having dicing tape
EP3517586A4 (en) * 2016-09-21 2019-09-25 Nitto Denko Corporation Heat bonding sheet, and heat bonding sheet with dicing tape
US11352527B2 (en) * 2017-11-13 2022-06-07 Nitto Denko Corporation Sinter-bonding composition, sinter-bonding sheet and dicing tape with sinter-bonding sheet

Similar Documents

Publication Publication Date Title
JP6682235B2 (en) Heat bonding sheet and heat bonding sheet with dicing tape
JP6870943B2 (en) Heat-bonding sheet and heat-bonding sheet with dicing tape
WO2017163503A1 (en) Thermal bonding sheet, thermal bonding sheet with dicing tape, bonded body production method, and power semiconductor device
JP6858520B2 (en) Sheet for heat bonding and sheet for heat bonding with dicing tape
WO2017057130A1 (en) Thermal bonding sheet, and thermal bonding sheet with dicing tape
WO2018055889A1 (en) Heat bonding sheet, and heat bonding sheet with dicing tape
WO2017057128A1 (en) Thermal bonding sheet, and thermal bonding sheet with dicing tape
WO2018042772A1 (en) Sheet for heat bonding, and sheet for heat bonding having dicing tape
TWI773672B (en) Sheet for heat bonding and sheet for heat bonding with dicing ribbon
TWI740984B (en) Sheets for heating and bonding, and sheets for heating and bonding with dicing tape
WO2016104188A1 (en) Sheet for thermal bonding and sheet for thermal bonding with affixed dicing tape
JP2018006735A (en) Sheet for heat bonding, and heat bonding sheet with dicing tape
JP6972216B2 (en) Heat bonding sheet, heat bonding sheet with dicing tape, manufacturing method of bonded body, power semiconductor device
WO2017057428A1 (en) Thermal bonding sheet, and thermal bonding sheet with dicing tape
WO2017221613A1 (en) Heat bonding sheet, and heat bonding sheet with dicing tape
WO2017057429A1 (en) Thermal bonding sheet, and thermal bonding sheet with dicing tape

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15539657

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015872757

Country of ref document: EP