WO2016099163A1 - 굴삭기를 이용한 굴착 장치 - Google Patents

굴삭기를 이용한 굴착 장치 Download PDF

Info

Publication number
WO2016099163A1
WO2016099163A1 PCT/KR2015/013841 KR2015013841W WO2016099163A1 WO 2016099163 A1 WO2016099163 A1 WO 2016099163A1 KR 2015013841 W KR2015013841 W KR 2015013841W WO 2016099163 A1 WO2016099163 A1 WO 2016099163A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavator
excavation
arm
pair
coupled
Prior art date
Application number
PCT/KR2015/013841
Other languages
English (en)
French (fr)
Inventor
윤영덕
Original Assignee
윤영덕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140185037A external-priority patent/KR101635286B1/ko
Priority claimed from KR2020150001728U external-priority patent/KR200483502Y1/ko
Application filed by 윤영덕 filed Critical 윤영덕
Priority to US15/532,127 priority Critical patent/US10508542B2/en
Priority to CN201580066363.8A priority patent/CN107002379B/zh
Priority to JP2017551980A priority patent/JP6429098B2/ja
Priority to EP15870330.6A priority patent/EP3236001B1/en
Publication of WO2016099163A1 publication Critical patent/WO2016099163A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1006Making by using boring or cutting machines with rotary cutting tools
    • E21D9/1013Making by using boring or cutting machines with rotary cutting tools on a tool-carrier supported by a movable boom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/3636Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat using two or four movable transversal pins
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/78Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices with rotating digging elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/965Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements of metal-cutting or concrete-crushing implements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/966Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements of hammer-type tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/30Auxiliary apparatus, e.g. for thawing, cracking, blowing-up, or other preparatory treatment of the soil
    • E02F5/305Arrangements for breaking-up hard ground
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor

Definitions

  • the present invention relates to an excavation device using an excavator, and more particularly, in carrying out excavation work using an excavator, it is possible to increase the ease of movement to various working places and the resulting work efficiency, and narrow working space such as a tunnel Also relates to an excavation device using an excavator that can perform a smooth excavation work.
  • excavation work is a crushing (or crushing, boring) work that irradiates the underground thickness, minerals, etc. for a prospecting layer, a detective, a prospecting, or a construction work, and the ground. It refers to the work of mechanically cutting or crushing the ground, rock, and tunnel shear surface at the construction site that performs the foundation piling construction, tunnel construction, subway construction, etc.
  • a hydraulic drill device is a device that performs excavation work by rotating the drill blade while the drill blade rotated by hydraulic pressure is located on a rock or earth and sand, but a conventional hydraulic drill device is excavated only by the rotational force of the drill blade. As the work is made, when the strength of rock or soil is strong, excavation work was difficult.
  • the rock crushing device performs the operation of crushing the chisel by hitting the rock by hydraulic force while the crushing object called chisel strikes at the rock position by using the force of the hydraulic cylinder, but in the case of the rock crushing device, the hydraulic cylinder Due to the strong crushing force to crush the parts outside the excavation range is also crushed and the ground is softened, there was a problem that is difficult to use on the inner surface or soft ground of the tunnel.
  • the excavation device using an excavator that can increase the ease of movement to the various work places and the work efficiency accordingly, and can smoothly excavate even in a narrow working space such as a tunnel Required.
  • the present invention has been invented to improve the above problems, the problem to be solved by the present invention, in carrying out the excavation work using an excavator, the excavation tool of a simpler and more compact structure to the excavator with excellent mobility
  • By installing to be detachable it is possible to increase the ease of movement to the various work places and the resulting work efficiency, and to provide an excavation device using an excavator that can perform a smooth excavation work in a narrow working space, such as a tunnel.
  • the problem to be solved by the present invention is to provide an excavator that can be smoothly excavated even in a narrow working space such as a tunnel by placing the first arm cylinder of the excavator in the lower portion of the boom.
  • an excavation device using an excavator is installed on an excavator equipped with a pair of engaging connection to detachable bucket, and performs excavation work on the ground or rock
  • the body portion is detachably connected to the pair of engaging connectors through one end, and is installed inside or on one side of the body portion, and includes at least one of linear driving force, rotational driving force, and striking force.
  • a drilling tool connected to the driving unit for generating a driving force and driven by at least one driving force of a linear driving force, a rotation driving force, and a strike force transmitted from the driving unit to perform the excavation work.
  • the body portion is coupled to connect the pair of side brackets and a pair of side brackets provided to face each other on both sides of the housing and the housing is formed therein, the upper side of the housing and And at least three coupling parts disposed at intervals corresponding to the intervals of the pair of engaging connectors, wherein the body part selects two coupling parts adjacent to each other among the at least three coupling parts to connect the pair of coupling parts. It is characterized in that for determining the direction in which the drilling tool performs the excavation work by connecting to the engaging connection.
  • the driving unit is mounted to the housing in the accommodation space, the driving cylinder for generating the impact force, one end is connected to the drive shaft of the drive cylinder, the reciprocating force is received from the drive cylinder
  • a coupling member for moving the driving shaft and one end thereof to the other end of the driving shaft, the other end of the excavating tool to be detachably coupled, and a reciprocating driving member for reciprocating the drilling tool by the striking force transmitted from the driving shaft is characterized by including.
  • the housing, the upper and lower portions are opened along the reciprocating movement direction of the drive shaft, the base body is formed with the pair of side brackets on both sides, and the upper and lower portions are opened when coupled to the lower end of the base body And a body cover for sealing an open upper portion of the base body in a state in which the coupling body and the driving cylinder are coupled to the base body together with the base body.
  • the drive cylinder is characterized in that the hydraulic cylinder to drive using the oil supplied from the excavator.
  • the excavation tool one end is detachably coupled to one end of the drive cylinder through the other end of the housing, and the impact body reciprocating by the impact force and the surface of the impact body in contact with the ground or rock It characterized in that it comprises a plurality of radially boring bits.
  • the driving unit is mounted to the housing in the accommodation space, the driving motor for generating the rotation driving force, one end is connected to the rotation axis of the driving motor, and transfers the rotation driving force from the driving motor.
  • a driving shaft and one end that is received and rotated is coupled to the other end of the drive shaft, the other end is coupled to the excavation tool detachably, the coupling member for rotating the excavation tool by the rotation driving force transmitted from the drive shaft Characterized in that it comprises a.
  • the housing, the base body with the upper and lower portions are opened along the rotation axis direction of the drive motor, the pair of side brackets are formed on both sides, and the base when the upper and lower portions are opened and coupled to the lower end of the base body And a body cover for sealing an open upper portion of the base body in a state in which the coupling body and the driving motor are coupled to the base body together with the body.
  • the drive motor is characterized in that the hydraulic motor for driving by using the oil supplied from the excavator.
  • the excavation tool one end is detachably coupled to one end of the drive motor through the other end of the housing, the rotary body and one end rotated by the rotary driving force received from the drive motor of the rotary body It is rotatably coupled to the bottom, the surface abuts on the ground or rock, characterized in that it comprises a plurality of boring bits radially formed a plurality of teeth.
  • the excavator has a boom (Boom), one end of which is rotatably coupled to the upper pivot, a first arm (Arm) of which one end is rotatably coupled to the other end of the boom, and one end of the first arm
  • a second arm rotatably coupled to the other end and provided with the pair of engaging connectors at the other end, at least one boom cylinder connecting the upper pivot body and the boom and articulating the boom; At least one first arm cylinder connecting said boom and said first arm and jointly moving said first arm and at least connecting said first arm and said second arm and articulating said second arm;
  • a second arm cylinder wherein the at least one first arm cylinder is disposed below the boom.
  • the excavation device using an excavator by installing a simple and compact structure of the excavation tool to be detachable to the excavator having excellent mobility, the ease of movement to various work places and the work accordingly Efficiency can be increased and smooth excavation can be performed even in a narrow work space such as a tunnel.
  • the excavation device using an excavator by changing the working direction of the body portion coupled to the pair of engaging connection by using a plurality of coupling portions provided in the body portion, the position of the excavator, The excavation tool can be easily adjusted to a desired working direction without limitation by the working radius range of the arm provided in the excavator.
  • the excavation device using an excavator according to the embodiments of the present invention, by arranging the first arm cylinder of the excavator in the lower portion of the boom, it is possible to perform a smooth excavation even in a narrow working space such as a tunnel.
  • the excavation device using an excavator according to the embodiments of the present invention, by using a simple structure, compact size and low cost excavator in comparison with the tunnel excavator during the tunnel construction, the cost of having to provide a separate excavator for tunnel construction It can reduce costs and minimize vibration and noise generated when performing excavation work using tunnel excavators.
  • 1 is a view schematically showing the structure of a general excavator.
  • FIG. 2 is a view schematically showing a state in which an excavation device using an excavator according to embodiments of the present invention is installed in a general excavator.
  • FIG 3 is a perspective view showing the structure of an excavation device using an excavator according to a first embodiment of the present invention.
  • Figure 4 is a side view schematically showing the structure of an excavation device using an excavator according to a first embodiment of the present invention.
  • FIG 5 is an exploded perspective view showing the structure of the body portion and the rotation drive unit in the excavation device using an excavator according to the first embodiment of the present invention.
  • Figure 6 is a longitudinal cross-sectional view showing the structure of the body portion and the impact driving unit in the excavation device using an excavator according to the first embodiment of the present invention.
  • FIG. 7 is a perspective view showing the structure of a hammer boring tool in an excavation device using an excavator according to a first embodiment of the present invention.
  • FIG. 8 is a view showing an example of performing an excavation work by installing an excavation device using an excavator according to the first embodiment of the present invention to a general excavator.
  • FIG. 9 is a view illustrating another example in which an excavation device using an excavator according to the first embodiment of the present invention is installed in a general excavator to perform an excavation work.
  • FIG. 9 is a view illustrating another example in which an excavation device using an excavator according to the first embodiment of the present invention is installed in a general excavator to perform an excavation work.
  • FIG. 10 is a perspective view showing the structure of an excavation device using an excavator according to a second embodiment of the present invention.
  • FIG. 11 is a longitudinal cross-sectional view showing the structure of the body portion and the rotation drive unit in the excavation device using an excavator according to a second embodiment of the present invention.
  • FIG. 12 is a perspective view showing the structure of an excavation device using an excavator according to a third embodiment of the present invention.
  • FIG. 13 is a perspective view schematically showing the structure of an excavator equipped with an excavation device using an excavator according to embodiments of the present invention.
  • FIG. 14 is a side view schematically showing the structure of the excavator of FIG.
  • 15 is a bottom view schematically showing the structure of the excavator of FIG.
  • FIG. 16 is a bottom view schematically illustrating a structure when a plurality of first arm cylinders are provided in the excavator of FIG. 13.
  • FIG. 1 is a view schematically showing a structure of a general excavator
  • Figure 2 is a view schematically showing a state in which an excavation device using an excavator according to embodiments of the present invention installed in a general excavator.
  • the general excavator 10 is a ground excavation work in civil engineering, construction, construction site, loading work to carry the earth and sand, excavation work to dismantle the building, stop work to clean the ground or rock
  • a moving body that serves as a movement of equipment an upper swinging body mounted on the traveling body and rotating 360 degrees, an arm 11 mounted on the upper swinging body to perform a loading operation by link driving, etc. Can be configured.
  • Such an arm 11 may be provided with a bucket for general excavation and earth and sand transport, a breaker for crushing hard ground or rock, rock, and the like, a crusher for dismantling and crushing a building.
  • 1 shows an example in which the bucket 20 used for general excavation and earth and sand transportation is installed on the arm 11 of the excavator 10.
  • the bucket 20 is installed in a pair of engaging connectors 12 provided at one end of the arm 11 mounted on the upper swing structure of the excavator 10, and the bucket 20 is provided. Can be attached and detached to the pair of engaging connection 12 as necessary, such as replacement due to work changes.
  • the excavation device 1 using the excavator according to the embodiments of the present invention includes an arm 11 provided with a pair of engaging connectors 12 so that the bucket 20 is detachable. It is installed on the excavator 10 including, and can perform excavation work on the ground or rock. As described above, the excavation device 1 using the excavator according to the embodiments of the present invention is installed in the excavation work by attaching the excavation tool of a simpler and more compact structure to the excavator 10 having excellent mobility. It is possible to increase the ease of movement to various work places and thus the work efficiency.
  • FIG 3 is a perspective view showing the structure of an excavation device using an excavator according to a first embodiment of the present invention
  • Figure 4 is a side view schematically showing the structure of an excavating device using an excavator according to a first embodiment of the present invention.
  • the excavation device 1 using the excavator according to the first embodiment of the present invention comprises a body portion 100, the drive unit 200 and the excavation tool 300 Can be.
  • the drive unit 200 constituting the excavation device 1 using the excavator according to the first embodiment of the present invention is a blow drive unit 200 for generating a strike force in a linear direction
  • the excavation tool 300 is a blow drive unit 200
  • Hammer boring tool 300 to reciprocate by the impact force received from the) to perform the boring work on the ground or rock can be used.
  • the body part 100 may be connected to the pair of engaging connectors 12 in a detachable manner through one end.
  • the body part 100 may include a housing 110, a pair of side brackets 120, and a coupling part 130.
  • Body portion 100 may be detachably coupled to a pair of engaging connector 12 provided on the arm 11 of the excavator 10 through the coupling portion 130, such coupling portion 130 A plurality of coupling parts 130 (for example, the first coupling part 130A, the second coupling part 130B, and the first coupling part 130C) are provided to couple the engaging connector 12 to each other.
  • the specific structure of such a body portion 100 will be described in detail with reference to Figs.
  • the impact driving unit 200 is installed inside the body portion 100 and may generate a strike force along the longitudinal direction of the body portion 100.
  • the striking driving unit 200 may include a driving cylinder 210, a driving shaft 220, a coupling member 230, a power transmission member 240, and a support member 250. have.
  • the impact driving unit 200 may generate a impact force in a state installed inside the body portion 100 to reciprocate the hammer boring tool 300 to be described later to perform a boring operation.
  • a detailed structure of the hit driving unit 200 will be described later with reference to FIGS. 5 and 6.
  • the hammer boring tool 300 is connected to the impact driving unit 200 exposed through the other end of the body portion 100, and reciprocates by the impact force received from the impact driving unit 200 and performs boring work on the ground or rock. can do.
  • the hammer boring tool 300 may largely comprise a striking body 211 and a plurality of boring bits 320 (eg, three boring bits 320A, 320B, 320C). have.
  • the hammer boring tool 300 may be reciprocated by receiving the striking force of the driving cylinder 210 while being coupled to the coupling member 230 of the striking driving unit 200. Detailed structure of the hammer boring tool 300 will be described later with reference to FIG. 14.
  • the direction in which this is performed can be changed.
  • the body portion 100 is coupled to a pair of engaging connectors 12 provided on the arm 11 of the excavator 10 through a plurality of coupling portions 130, a pair of engaging connections Since the installation direction of the body part 100 is changed according to the position of the coupling part 130 to which the sieve 12 is coupled, the working direction of the hammer boring tool 300 may be changed.
  • An example in which the working direction of the hammer boring tool 300 is changed according to the installation direction of the body portion 100 coupled to the pair of engaging connectors 12 will be described in detail with reference to FIGS. 8 and 9.
  • FIG 5 is an exploded perspective view showing the structure of the body portion and the impact driving unit in the excavation device using an excavator according to the first embodiment of the present invention
  • Figure 6 is a body in an excavation device using an excavator according to the first embodiment of the present invention It is a longitudinal cross-sectional view which shows the structure of a part and a striking drive part.
  • the body portion 100 may include a housing 110, a pair of side brackets 120, and a coupling portion 130.
  • the housing 110 forms a basic frame of the body part 100, and an accommodation space 111a may be formed in the housing 110 so that the impact driving unit 200 may be accommodated therein. Both sides of the housing 110 may be provided with a pair of side brackets 120 to face each other. As shown in FIG. 5, the housing 110 may include a base body 111, a coupling body 112, and a body cover 113.
  • the base body 111 may be opened in the upper and lower portions in the reciprocating direction of the drive shaft 220, and a pair of side brackets 120 may be formed at both sides. As shown in FIG. 6, the base body 111 may have a substantially cylindrical shape to have a hollow portion penetrated up and down, and a coupling end may be formed so that the driving cylinder 210 to be described later may be mounted therein.
  • the pair of side brackets 120 may have a substantially thin plate shape and may be coupled to a position in contact with an outer circumferential surface of the base body 111 having a cylindrical shape.
  • the pair of side brackets 120 may have a polygonal cross section.
  • the cross-sectional shape of the pair of side brackets 120 may be determined according to the number and arrangement of the coupling parts 130 according to the working direction. .
  • the first coupling portion 130A, the second coupling portion 130B, and the first coupling portion 130C are about the second coupling portion 130B having three coupling portions 130 located at the center thereof.
  • the pair of side brackets 120 have a pentagonal cross section when the spacers are formed at 120 degree intervals, they are not limited thereto and may be changed by those skilled in the art.
  • the base body 111 and the pair of side brackets 120 are integrally formed, but is not limited thereto.
  • the base body 111 and the pair of side brackets 120 may be separately manufactured. It may be assembled by welding, screwing, or the like.
  • the coupling body 112 may form an accommodation space 111a together with the base body 111 when the upper and lower portions are opened and coupled to the lower end of the base body 111, and the body cover 113 may include a driving cylinder ( The open upper portion of the base body 111 may be sealed while the 210 is coupled to the base body 111.
  • the body portion 100 may include a coupling portion 130 coupled to connect the pair of side brackets 120 at the top of the housing 110.
  • the coupling part 130 is provided with a plurality of coupling parts (for example, the first coupling part 130A, the second coupling part 130B, and the first coupling part 130C) to couple the engaging connector 12 to each other.
  • the working direction of the hammer boring tool 300 may be changed according to the position of the engaging portion 130.
  • each engaging portion 130 is an interval corresponding to the interval of the pair of engaging connectors 12. , Preferably, it may be arranged at the same interval as the interval of the pair of engaging connection 12.
  • the plurality of coupling parts 130 provided in the body part 100 are formed such as cylindrical shafts 131A, 131B, and 131C that are elongated to be coupled to the pair of engaging connectors 12. It has a shape.
  • the plurality of coupling parts 130 may be fixed to the fixing members 132A, 132B, such as nuts at one end or both ends of the cylindrical shafts 131A, 131B, and 131C to be assembled and disassembled to the pair of side brackets 120, respectively. 132C).
  • each of the coupling parts 130 are inserted through the through-holes formed in the pair of side brackets 120, and then one or both ends of the fixing members 132A and 132B. , 132C) can be fixedly coupled.
  • At least three coupling parts 130 may be provided, and the body part 100 may be formed by selecting two coupling parts 130 adjacent to each other among at least three coupling parts 130. By connecting to the engaging connector 12 of the pair it is possible to determine the direction in which the hammer boring tool 300 performs the boring operation.
  • n + 1 coupling parts 130 may be sequentially arranged at intervals corresponding to the intervals of the pair of engaging connectors 12. At this time, it is preferable that the n + 1 coupling parts 130 do not form three adjacent coupling parts 130 in a straight line with each other. That is, the n + 1 coupling parts 130 may be disposed to have an angle of 180 degrees or less with respect to the coupling parts 130 in which three adjacent coupling parts 130 are located at the center.
  • the first coupling portion 130A, the second coupling portion 130B, and the first coupling portion 130C are about the second coupling portion 130B having three coupling portions 130 at the center thereof.
  • the case formed at intervals of 120 degrees is taken as an example, this is merely exemplary, and is not limited thereto.
  • FIGS. 3 to 6 illustrate an example in which three coupling units 130 are provided.
  • the first coupling unit 130A and the adjacent first coupling unit 130A may be formed according to a desired working direction. 2 to engage the pair of engaging connectors 12 by selecting the engaging portion (130B), or the pair of engaging connectors (12) by selecting the adjacent second engaging portion (130B) and the first engaging portion (130C). ),
  • the working direction of the hammer boring tool 300 can be determined.
  • FIG. 3 to 6 illustrate an example in which three coupling parts 130, a first coupling part 130A, a second coupling part 130B, and a first coupling part 130C, are provided.
  • the present invention is not limited thereto, and the number and arrangement of the coupling parts 130 may be changed by those skilled in the art according to a desired working direction.
  • the excavation device 1 using the excavator according to the first embodiment of the present invention is coupled to a pair of engaging connectors 12 by using a plurality of coupling portions 130 provided in the body portion 100.
  • the working direction of the body portion 100 to be, the hammer boring tool 300 in the desired working direction without limitation by the position of the excavator 10, the working radius range of the arm 11 provided in the excavator 10, etc.
  • the striking driving unit 200 may include a driving cylinder 210, a driving shaft 220, a coupling member 230, a power transmission member 240, and a support member 250. It can be configured to include.
  • the driving cylinder 210 is mounted to the housing 110 in the accommodation space 111a provided in the body portion 100 and may generate a striking force. As shown in FIG. 6, the driving cylinder 210 may be fixed to a coupling end formed on the base body 111 of the housing 110 by using a fastening member such as a bolt.
  • the driving cylinder 210 may use a hydraulic cylinder for driving by using the oil supplied from the excavator.
  • a hydraulic cylinder for driving by using the oil supplied from the excavator.
  • the structure of the blow drive unit 200 is reduced in size.
  • an example of using a hydraulic cylinder as the driving cylinder 210 is illustrated, but it is apparent to those skilled in the art that various types of actuators such as a pneumatic cylinder may be used.
  • One end of the driving shaft 220 is connected to the driving shaft of the driving cylinder 210, and may receive a driving force from the driving cylinder 210 to reciprocate.
  • the coupling member 230 has one end 231 coupled to the other end of the drive shaft 220, the hammer boring tool 300 is detachably coupled to the other end 232, and received from the drive shaft 220.
  • the hammer boring tool 300 can be reciprocally driven by the striking force.
  • one end 231 and the other end 232 of the coupling member 230 may be threaded to allow the drive shaft 220 and the hammer boring tool 300 to be coupled, respectively.
  • a coupling groove 233 may be formed on the outer circumferential surface of the coupling member 230 to facilitate tightening or loosening of the thread when the driving shaft 220 and the hammer boring tool 300 are coupled to each other.
  • the drive shaft 220 may be arranged such that the drive shaft of the drive cylinder 210 and the drive shaft of the drive shaft 220 are aligned. However, if necessary, the drive of the drive cylinder 210 is performed.
  • the shaft and the driving shaft of the driving shaft 220 may be arranged to have a constant angle.
  • the striking drive unit 200 further includes a power transmission member 240 connecting the drive shaft and the drive shaft 220 of the drive cylinder 210 to transfer the striking force from the drive cylinder 210 to the drive shaft 220.
  • a power transmission member 240 connecting the drive shaft and the drive shaft 220 of the drive cylinder 210 to transfer the striking force from the drive cylinder 210 to the drive shaft 220.
  • It may include. 6 illustrates an example in which a flange coupling is used as the power transmission member 240 for connecting the driving shaft and the driving shaft 220 of the driving cylinder 210, but is not limited thereto. You can change as much as you like.
  • the striking drive unit 200 may further include a support member 250 for supporting the reciprocating movement of the drive shaft 220.
  • a support member 250 for supporting the reciprocating movement of the drive shaft 220 may be used as the support member 250 for supporting the reciprocating movement of the drive shaft 220, but the present invention is not limited thereto and may be changed by those skilled in the art. Do.
  • FIG. 7 is a perspective view showing the structure of a hammer boring tool in an excavation device using an excavator according to a first embodiment of the present invention.
  • the hammer boring tool 300 may largely include a striking body 211 and a plurality of boring bits 320.
  • the striking body 211 may be detachably coupled to one end of the striking driving unit 200.
  • the plurality of boring bits 320 may be radially formed on the surface of the striking body 211 in contact with the ground or rock.
  • the plurality of boring bits 320 is preferably made of tungsten or alloy steel.
  • the plurality of boring bits 320 is preferably formed in a circular array of equal angular intervals on the same plane on one side facing the working direction. 7 illustrates an example in which the plurality of boring bits 320 are formed in a substantially spherical shape, but as an example, they may be formed in various shapes such as a conical shape, a rectangular parallelepiped, and a square pyramid.
  • the hammer boring tool 300 of the excavation device 1 using the excavator according to the first embodiment of the present invention is in a position where the body portion 100 is connected to the pair of engaging connectors 12 Accordingly, the direction in which the boring operation is performed may be changed.
  • FIG 8 is a view showing an example of performing a boring operation by installing an excavation device using an excavator according to the first embodiment of the present invention in a general excavator
  • Figure 9 is used with an excavator according to the first embodiment of the present invention The figure which shows the other example which performs a boring operation by installing an excavation apparatus in a general excavator.
  • FIG. 8 in the example of the excavation device 1 using the excavator illustrated in FIG. 3, the adjacent first coupling part 130A and the second coupling part (of the three coupling parts 130 provided in the body part 100) ( 130B) is selected and coupled to the pair of engaging connectors 12.
  • FIG. 9 the second coupling part 130B and the third coupling adjacent to each other in the three coupling parts 130 are shown in FIG. The example which selected the part 130C and couple
  • the first coupling part 130A and the second coupling part 130B are selected from the three coupling parts 130 provided in the body part 100, and a pair of locking connectors 12 are selected. ),
  • the hammer boring tool 300 is directed downward (ground or rock) at the initial position of the arm 11 provided in the excavator 10, boring work on a horizontal surface such as ground or rock Can be easily performed.
  • a pair of engaging connections are selected by selecting the second coupling part 130B and the third coupling part 130C among the three coupling parts 130 provided in the body part 100.
  • the hammer boring tool 300 is directed forward (side) at the initial position of the arm 11 provided in the excavator 10, so that boring operations for vertical surfaces such as tunnel sidewalls are performed. It can be done easily.
  • FIG. 10 is a perspective view showing the structure of an excavation device using an excavator according to a second embodiment of the present invention
  • Figure 11 is a structure of a body portion and a rotation drive unit in an excavation device using an excavator according to a second embodiment of the present invention. It is a longitudinal cross-sectional view which shows.
  • the excavation device 1 using an excavator according to the second embodiment of the present invention comprises a body portion 100, a drive unit 200 and the excavation tool 300 Can be.
  • the drive unit 200 constituting the excavation device 1 using the excavator according to the second embodiment of the present invention Rotation drive unit for generating a rotational drive force
  • the excavation tool 300 is rotated by the rotational drive force received from the rotational drive unit 200 to use a boring tool 300 to perform the boring work on the ground or rock Can be.
  • the body part 100 may be connected to the pair of engaging connectors 12 in a detachable manner through one end.
  • Body portion constituting the excavation device 1 using an excavator according to the second embodiment of the present invention constitutes an excavation device 1 using an excavator according to the second embodiment of the present invention shown in FIG. Since it is substantially the same structure as the body portion 100, a detailed description thereof will be omitted.
  • the rotation driver 200 is installed inside the body part 100 and may generate a rotation driving force. As shown in FIG. 11, the rotation driver 200 may include a drive motor 210, a drive shaft 220, a coupling member 230, a power transmission member 240, and a support member 250. have.
  • the rotation drive unit 200 may generate a rotational driving force in a state installed inside the body part 100 to rotate the boring tool 300 to perform a boring operation.
  • the boring tool 300 is connected to the rotary drive unit 200 exposed through the other end of the body portion 100, rotates by the rotary drive force received from the rotary drive unit 200 to perform the boring work on the ground or rock Can be.
  • the boring tool 300 may largely include a rotating body 310 and a plurality of boring bits 320 (eg, three boring bits 320A, 320B, and 320C).
  • the boring tool 300 may rotate by receiving the rotational driving force of the driving motor 210 in a state of being coupled to the coupling member 230 of the rotational drive 200.
  • the boring tool 300 of the excavation device 1 using the excavator according to the second embodiment of the present invention depending on the position where the body portion 100 is connected to the pair of engaging connectors 12 The direction in which the boring operation is performed may be changed.
  • FIG. 12 is a perspective view showing the structure of an excavation device using an excavator according to a third embodiment of the present invention.
  • the excavation apparatus 1 using the excavator according to the third exemplary embodiment of the present invention may include a body 100, a driving unit 200, and an excavation tool 300. .
  • the excavation tool 300 constituting the excavation device 1 using the excavator according to the third embodiment of the present invention is rotatably installed in the body part 100,
  • a plurality of drill blades (or chisels) 310 disposed along the longitudinal direction of the body part 100 and exposed to the outside through the other end of the body part 100 to perform excavation work on the ground or rock mass 310 ) May be implemented as a rotary drill unit 300 is provided.
  • the driving unit 200 is installed in the body portion 100, the impact driving unit 210 for hitting one side of the rotary drill unit 300 to provide a force to the plurality of drill blades 310, It is installed on the inside or one side of the body portion 100, it may include a rotary drive unit 220 for providing a rotary driving force to the rotary drill unit (300).
  • FIGS. 13 to 16 a structure of an excavator 2 for mounting an excavation device using an excavator according to embodiments of the present invention will be described in detail.
  • FIG. 13 is a perspective view schematically showing the structure of an excavator equipped with an excavation device using an excavator according to embodiments of the present invention
  • FIG. 14 is a side view schematically showing the structure of the excavator of FIG. 13
  • FIG. 15 is FIG. 13.
  • Fig. 16 is a bottom view schematically showing the structure of an excavator
  • Fig. 16 is a bottom view schematically showing the structure when a plurality of first arm cylinders are provided in the excavator of Fig. 13.
  • the excavator (2) equipped with an excavation device using an excavator according to the embodiments of the present invention is provided with a track or wheel, etc. traveling body 100 to perform the role of moving the equipment ),
  • the boom cylinder 40, the first arm cylinder 50, and the second arm cylinder 60 can be configured.
  • One end of the boom 10 may be rotatably coupled to the upper pivot 200.
  • the boom 10 may be rotated in the vertical direction by the boom cylinder 40 to be described later.
  • One end of the first arm 20 may be rotatably coupled to the other end of the boom 10.
  • One end of the first arm 20 may be inserted into the cutout 11 formed at the other end of the boom 10 to a predetermined depth, and then may be freely coupled to the boom 10 by the rotation shaft 12.
  • the first arm 20 may be rotated in the front-rear direction with respect to the upper pivot 200 by the first arm cylinder 50 to be described later.
  • One end of the second arm 30 may be rotatably coupled to the other end of the first arm 20.
  • the second arm 30 is provided as a pair of links connected to the second arm cylinder 60 to be described later, but is not limited to this, the shape, number of the second arm 30 Can be changed by the person skilled in the art.
  • the other end of the first arm 20 and the other end of the second arm 30 is provided with a pair of engaging connection 70 is coupled to the excavating device (FIG. 3, 10, 12) detachably.
  • the excavation device (FIGS. 3, 10, 12) is connected to the second arm cylinder 60 through the second arm 30 coupled to the pair of engaging connectors 70, so that the second arm cylinder 60 is connected.
  • the excavation device (FIG. 3, 10, 12) is detachably coupled to the pair of engaging connectors 70, the body portion 100, the drive unit 200, the excavation tool 300 It is configured to include, such a drilling device (FIG. 3, 10, 12) is to be detachably connected to a pair of engaging connector 70 through the coupling portion 130 provided in the body portion 100. Can be.
  • the excavation tool 300 may use any one of a boring tool, a hammer tool, and a chisel, and the driving unit 200. ) May generate at least one driving force of a linear driving force, a rotation driving force, and a strike force for driving the excavation tool 300.
  • the boom cylinder 40 may connect the upper pivot 200 and the boom 10 and jointly move the boom 10.
  • the first arm cylinder 50 may connect the boom 10 and the first arm 20 and articulate the first arm 20.
  • the second arm cylinder 60 may connect the first arm 20 and the second arm 30 to articulate the second arm 30.
  • the first arm cylinder 50 may be disposed below the boom 10.
  • the first arm cylinder 50 of the excavator 2 is disposed at the lower portion of the boom 10 rather than the upper portion of the boom 10 as in the conventional excavator, the excavation work can be smoothly performed even in the workplace of a narrow space such as in a tunnel. Can be done.
  • the boom cylinder 40, the first arm cylinder 50, and the second arm cylinder 60 may use a hydraulic cylinder driven by using a working fluid.
  • a hydraulic cylinder driven by using a working fluid.
  • actuators such as a pneumatic cylinder may be used.
  • At least one first arm cylinder 50 may be provided at a lower portion of the boom 10. As shown in FIG. 16, when a plurality of first arm cylinders 50 are used, driving force required for driving the first arm 20 is added, thereby reducing work time and increasing work efficiency.
  • one end of the boom cylinder 40 is coupled to the upper pivot 200, the other end is coupled to the boom 10, so when the boom cylinder 40 expands, the boom 10 rotates clockwise. Can be. In addition, when the boom cylinder 40 is contracted, the boom 10 may be rotated counterclockwise.
  • first arm cylinder 50 is coupled to the boom 10, and the other end is coupled to the first arm 20, so that when the first arm cylinder 50 expands, the first arm 20 is clockwise. Can be rotated to. In addition, when the first arm cylinder 50 contracts, the first arm 20 may be rotated counterclockwise.
  • the second arm cylinder 60 has one end coupled to the first arm 20 and the other end coupled to the second arm 30, the second arm cylinder 60 expands to the second arm 30 when the second arm cylinder 60 expands.
  • the combined drilling rig (FIGS. 3, 10, 12) can be rotated counterclockwise.
  • the drilling device (FIGS. 3, 10, 12) coupled to the second arm 30 may be rotated in a clockwise direction.
  • the first arm cylinder 50 since the first arm cylinder 50 is disposed below the boom 10, the first arm cylinder 50 may be smoothly performed even in a workplace of a narrow space such as in a tunnel.
  • the present invention relates to an excavation device using an excavator, and more particularly, in carrying out excavation work using an excavator, it is possible to increase the ease of movement to various working places and the resulting work efficiency, and narrow working space such as a tunnel It is applicable to the excavation device using an excavator that can perform a smooth excavation work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Earth Drilling (AREA)

Abstract

본 발명은 굴삭기를 이용한 굴착 장치에 관한 것이다. 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치는, 버켓이 탈부착 가능하도록 한 쌍의 걸림 연결체가 구비된 굴삭기에 설치되며, 지반 또는 암반에 대한 굴착 작업을 수행하는 굴삭기를 이용한 굴착 장치에 있어서, 일단을 통해 한 쌍의 걸림 연결체에 탈부착 가능하도록 연결되는 몸체부와, 몸체부의 내부 또는 일 측에 설치되며, 직선 구동력, 회전 구동력 및 타격력 중 적어도 하나의 구동력을 발생시키는 구동부 및 구동부에 연결되며, 구동부로부터 전달 받은 직선 구동력, 회전 구동력 및 타격력 중 적어도 하나의 구동력에 의해 구동되어 굴착 작업을 수행하는 굴착용 툴을 포함하며, 굴착용 툴은 몸체부가 한 쌍의 걸림 연결체에 연결되는 위치에 따라 굴착 작업이 수행되는 방향이 변경되는 것을 특징으로 한다.

Description

굴삭기를 이용한 굴착 장치
본 발명은 굴삭기를 이용한 굴착 장치에 관한 것으로, 보다 상세하게는 굴삭기를 이용한 굴착 작업을 수행함에 있어서 다양한 작업 장소로의 이동 용이성 및 그에 따른 작업 효율성을 증대시킬 수 있고, 터널 등과 같은 협소한 작업 공간에서도 원활한 굴착 작업을 할 수 있는 굴삭기를 이용한 굴착 장치에 관한 것이다.
지중에 구조물을 설치하기 위해서는 지반을 굴착 또는 천공한 후에 굴착 또는 천공된 지중에 구조물을 매설하여 설치하게 된다. 일반적으로 굴착 작업이란 탐층(探層), 탐정(探井), 탐광(探鍵) 등을 위해 지하의 지층 두께, 광물질 등을 조사하는 파쇄(또는, 파쇄, 보링) 작업이나, 건축 공사, 지반에 대한 기초 파일링 시공 공사, 터널 공사, 지하철 공사 등을 수행하는 건설 공사 현장에서 지반, 암반, 터널 전단면 등을 기계적으로 절삭하거나 파쇄하여 굴착하는 작업을 의미한다.
또한, 이러한 굴착 작업은 기존의 재래식 공법인 폭약에 의한 발파 공법이 소음 및 진동의 발생, 작업자의 안정성 문제 등을 야기시키기 때문에 터널 굴착기를 이용하는 시공 방법으로 대체되어 가는 추세이다.
그러나, 종래의 터널 굴착기는 장치의 구조가 복잡하고 비용이 비싸며, 대형 크기이므로 터널 등과 같은 협소한 작업 공간 등 작업 장소에 따라 장치의 설치 및 작업에 대한 제한이 커서 작업 효율성이 떨어진다는 문제점이 있었다. 또한, 터널 굴착기를 사용하여 굴착 작업을 수행하는 경우 진동과 소음 발생이 심해 작업 장소는 물론 주변 지역까지 피해가 발생한다는 문제점이 있었다.
예를 들어, 유압 드릴 장치는 유압 등으로 회전되는 드릴 날을 암반이나 토사에 위치한 상태에서 드릴 날의 회전에 의해 굴착 작업을 실시하는 장치이나, 종래의 유압 드릴 장치는 드릴 날의 회전력으로만 굴착 작업이 이루어짐에 따라 암반이나 토사의 강도가 강한 경우에는 굴착 작업이 어려운 문제점이 있었다.
또한, 암반 파쇄 장치는 유압 실린더의 타격력을 이용하여 치즐이라 불리우는 파쇄체가 암반 위치에서 타격을 실시하면서 유압력에 의해 치즐이 암반을 타격하면서 파쇄하는 작업을 실시하나, 암반 파쇄 장치의 경우에는 유압 실린더로 파쇄하는 파쇄력이 강력함에 따라 굴착하는 범위를 벗어난 부분도 파쇄되어 지반이 연약화 됨에 따라 터널의 내면이나 연약 지반에 사용하기 어려운 문제점이 있었다.
따라서, 굴삭기를 이용한 굴착 작업을 수행함에 있어서 다양한 작업 장소로의 이동 용이성 및 그에 따른 작업 효율성을 증대시킬 수 있고, 터널 등과 같은 협소한 작업 공간에서도 원활한 굴착 작업을 할 수 있는 굴삭기를 이용한 굴착 장치가 요구된다.
본 발명은 상기한 문제점을 개선하기 위해 발명된 것으로, 본 발명이 해결하고자 하는 과제는, 굴삭기를 이용한 굴착 작업을 수행함에 있어서, 보다 간단하고 소형화된 구조의 굴착용 툴을 이동 용이성이 뛰어난 굴삭기에 탈부착 가능하도록 설치함으로써, 다양한 작업 장소로의 이동 용이성 및 그에 따른 작업 효율성을 증대시킬 수 있고, 터널 등과 같은 협소한 작업 공간에서도 원활한 굴착 작업을 할 수 있는 굴삭기를 이용한 굴착 장치를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 과제는, 굴착기의 제1 아암 실린더를 붐의 하부에 배치함으로써, 터널 등과 같은 협소한 작업 공간에서도 원활한 굴착 작업이 가능한 굴삭기를 제공하는 것이다.
본 발명의 기술적 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제는 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위하여, 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치는, 버켓이 탈부착 가능하도록 한 쌍의 걸림 연결체가 구비된 굴삭기에 설치되며, 지반 또는 암반에 대한 굴착 작업을 수행하는 굴삭기를 이용한 굴착 장치에 있어서, 일단을 통해 상기 한 쌍의 걸림 연결체에 탈부착 가능하도록 연결되는 몸체부와, 상기 몸체부의 내부 또는 일 측에 설치되며, 직선 구동력, 회전 구동력 및 타격력 중 적어도 하나의 구동력을 발생시키는 구동부 및 상기 구동부에 연결되며, 상기 구동부로부터 전달 받은 직선 구동력, 회전 구동력 및 타격력 중 적어도 하나의 구동력에 의해 구동되어 상기 굴착 작업을 수행하는 굴착용 툴을 포함하며, 상기 굴착용 툴은 상기 몸체부가 상기 한 쌍의 걸림 연결체에 연결되는 위치에 따라 상기 굴착 작업이 수행되는 방향이 변경되는 것을 특징으로 한다.
이 때, 상기 몸체부는, 내부에 수용 공간이 형성되는 하우징과, 상기 하우징의 양 측면에 서로 마주 보도록 구비되는 한 쌍의 측면 브라켓 및 상기 하우징의 상부에서 상기 한 쌍의 측면 브라켓을 연결하도록 결합되고, 상기 한 쌍의 걸림 연결체의 간격에 대응하는 간격으로 배치되는 적어도 3 개 이상의 결합부를 포함하며, 상기 몸체부는 상기 적어도 3 개 이상의 결합부 중 서로 인접하는 2 개의 결합부를 선택하여 상기 한 쌍의 걸림 연결체에 연결함으로써 상기 굴착용 툴이 상기 굴착 작업을 수행하는 방향을 결정하는 것을 특징으로 한다.
일 예로, 상기 구동부는, 상기 수용 공간의 내부에서 상기 하우징에 장착되며, 상기 타격력을 발생시키는 구동 실린더와, 일단이 상기 구동 실린더의 구동 축에 연결되며, 상기 구동 실린더로부터 상기 타격력을 전달 받아 왕복 이동하는 구동 샤프트 및 일단이 상기 구동 샤프트의 타단에 결합되고, 타단에 상기 굴착용 툴이 탈부착 가능하도록 결합되며, 상기 구동 샤프트로부터 전달 받은 상기 타격력에 의해 상기 굴착용 툴을 왕복 구동시키는 결합 부재를 포함하는 것을 특징으로 한다.
이 때, 상기 하우징은, 상기 구동 샤프트의 왕복 이동 방향을 따라 상하부가 개방되고, 양 측면에 상기 한 쌍의 측면 브라켓이 형성된 베이스 몸체와, 상하부가 개방되어 상기 베이스 몸체의 하단에 결합될 때에 상기 베이스 몸체와 함께 상기 수용 공간을 형성하는 결합 몸체 및 상기 구동 실린더가 상기 베이스 몸체에 결합된 상태에서 상기 베이스 몸체의 개방된 상부를 밀폐하는 몸체 커버를 포함하는 것을 특징으로 한다.
바람직하게는, 상기 구동 실린더는 상기 굴삭기로부터 공급 받은 오일을 이용하여 구동하는 유압 실린더인 것을 특징으로 한다.
또한, 상기 굴착용 툴은, 일단은 상기 하우징의 타단을 통해 상기 구동 실린더의 일단에 탈부착 가능하게 결합되고, 상기 타격력에 의해 왕복 이동하는 타격 몸체 및 상기 지반 또는 암반에 맞닿는 상기 타격 몸체의 표면에 방사상으로 형성된 복수의 보링 비트를 포함하는 것을 특징으로 한다.
다른 예로, 상기 구동부는, 상기 수용 공간의 내부에서 상기 하우징에 장착되며, 상기 회전 구동력을 발생시키는 구동 모터와, 일단이 상기 구동 모터의 회전 축에 연결되며, 상기 구동 모터로부터 상기 회전 구동력을 전달 받아 회전하는 구동 샤프트 및 일단이 상기 구동 샤프트의 타단에 결합되고, 타단에 상기 굴착용 툴이 탈부착 가능하도록 결합되며, 상기 구동 샤프트로부터 전달 받은 상기 회전 구동력에 의해 상기 굴착용 툴을 회전시키는 결합 부재를 포함하는 것을 특징으로 한다.
이 때, 상기 하우징은, 상기 구동 모터의 회전축 방향을 따라 상하부가 개방되고, 양 측면에 상기 한 쌍의 측면 브라켓이 형성된 베이스 몸체와, 상하부가 개방되어 상기 베이스 몸체의 하단에 결합될 때에 상기 베이스 몸체와 함께 상기 수용 공간을 형성하는 결합 몸체 및 상기 구동 모터가 상기 베이스 몸체에 결합된 상태에서 상기 베이스 몸체의 개방된 상부를 밀폐하는 몸체 커버를 포함하는 것을 특징으로 한다.
바람직하게는, 상기 구동 모터는 상기 굴삭기로부터 공급 받은 오일을 이용하여 구동하는 유압 모터인 것을 특징으로 한다.
또한, 상기 굴착용 툴은, 일단은 상기 하우징의 타단을 통해 상기 구동 모터의 일단에 탈부착 가능하게 결합되고, 상기 구동 모터로부터 전달 받은 상기 회전 구동력에 의해 회전하는 회전 몸체 및 일단은 상기 회전 몸체의 하단에 회전 가능하게 결합되며, 상기 지반 또는 암반에 맞닿는 표면에는 복수의 잇날이 방사상으로 형성된 복수의 보링 비트를 포함하는 것을 특징으로 한다.
한편, 상기 굴삭기는, 일단이 상부 선회체에 회동 가능하게 결합되는 붐(Boom)과, 일단이 상기 붐의 타단에 회동 가능하게 결합되는 제1 아암(Arm)과, 일단이 상기 제1 아암의 타단에 회동 가능하게 결합되고, 타단에 상기 한 쌍의 걸림 연결체가 구비된 제2 아암(Arm)과, 상기 상부 선회체와 상기 붐을 연결하고, 상기 붐을 관절 운동 시키는 적어도 하나의 붐 실린더와, 상기 붐과 상기 제1 아암을 연결하고, 상기 제1 아암을 관절 운동시키는 적어도 하나의 제1 아암 실린더 및 상기 제1 아암과 상기 제2 아암을 연결하고, 상기 제2 아암을 관절 운동시키는 적어도 하나의 제2 아암 실린더를 포함하고, 상기 적어도 하나의 제1 아암 실린더는 상기 붐의 하부에 배치되는 것을 특징으로 한다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치에 따르면, 보다 간단하고 소형화된 구조의 굴착용 툴을 이동 용이성이 뛰어난 굴삭기에 탈부착 가능하도록 설치함으로써, 다양한 작업 장소로의 이동 용이성 및 그에 따른 작업 효율성을 증대시킬 수 있고, 터널 등과 같은 협소한 작업 공간에서도 원활한 굴착 작업을 할 수 있다.
또한, 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치에 따르면, 몸체부에 구비된 복수의 결합부를 이용하여 한 쌍의 걸림 연결체에 결합되는 몸체부의 작업 방향을 변경함으로써, 굴삭기의 위치, 굴삭기에 구비된 암의 작업 반경 범위 등에 의한 제한 없이 굴착용 툴를 원하는 작업 방향으로 쉽게 조절할 수 있다.
또한, 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치에 따르면, 굴착기의 제1 아암 실린더를 붐의 하부에 배치함으로써, 터널 등과 같은 협소한 작업 공간에서도 원활한 굴착 작업을 할 수 있다.
또한, 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치에 따르면, 제2 아암에 굴착 장치를 탈부착 가능하도록 결합함으로써, 작업 용도, 작업 환경 등에 따라 다양한 굴착 장치를 간편하게 교체하여 사용할 수 있으므로 작업 효율성을 증대시킬 수 있다.
또한, 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치에 따르면, 터널 공사시에 터널 굴착기에 비해 구조가 간단하고 소형 크기이며 비용이 저렴한 굴삭기를 이용함으로써, 터널 공사용 굴착기를 따로 마련해야 하는 비용을 절감할 수 있고, 터널 굴착기를 사용하여 굴착 작업을 수행할 때 발생하는 진동과 소음을 최소화할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 일반적인 굴삭기의 구조를 개략적으로 나타내는 도면이다.
도 2는 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치를 일반적인 굴삭기에 설치한 모습을 개략적으로 나타내는 도면이다.
도 3은 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치의 구조를 나타내는 사시도이다.
도 4는 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치의 구조를 개략적으로 나타내는 측면도이다.
도 5는 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치에서 몸체부와 회전 구동부의 구조를 나타내는 분해 사시도이다.
도 6은 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치에서 몸체부와 타격 구동부의 구조를 나타내는 종단면도이다.
도 7은 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치에서 해머 보링 툴의 구조를 나타내는 사시도이다.
도 8은 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치를 일반적인 굴삭기에 설치하여 굴착 작업을 수행하는 일 예를 나타내는 도면이다.
도 9는 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치를 일반적인 굴삭기에 설치하여 굴착 작업을 수행하는 다른 예를 나타내는 도면이다.
도 10은 본 발명의 제2 실시예에 따른 굴삭기를 이용한 굴착 장치의 구조를 나타내는 사시도이다.
도 11은 본 발명의 제2 실시예에 따른 굴삭기를 이용한 굴착 장치에서 몸체부와 회전 구동부의 구조를 나타내는 종단면도이다.
도 12는 본 발명의 제3 실시예에 따른 굴삭기를 이용한 굴착 장치의 구조를 나타내는 사시도이다.
도 13은 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치를 장착하는 굴삭기의 구조를 개략적으로 나타내는 사시도이다.
도 14는 도 13의 굴삭기의 구조를 개략적으로 나타내는 측면도이다.
도 15는 도 13의 굴삭기의 구조를 개략적으로 나타내는 저면도이다.
도 16은 도 13의 굴삭기에서 복수의 제1 아암 실린더가 구비되었을 때의 구조를 개략적으로 나타내는 저면도이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.
실시예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
이하, 본 발명의 실시예들에 의하여 굴삭기를 이용한 굴착 장치(1)를 설명하기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.
도 1은 일반적인 굴삭기의 구조를 개략적으로 나타내는 도면이고, 도 2는 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치를 일반적인 굴삭기에 설치한 모습을 개략적으로 나타내는 도면이다.
일반적인 굴삭기(excavator)(10)는 토목, 건축, 건설 현장에서 땅을 파는 굴삭 작업, 토사를 운반하는 적재 작업, 건물을 해체하는 굴착 작업, 지반 또는 암반을 정리하는 정지 작업 등의 작업을 수행하는 건설 기계로서, 장비의 이동 역할을 하는 주행체, 주행체에 탑재되어 360도 회전하는 상부 선회체, 상부 선회체에 장착되어 링크 구동에 의해 적재 작업 등을 수행하는 암(Arm)(11)으로 구성될 수 있다.
이러한 암(11)에는 일반 굴삭 및 토사 운반을 위한 버켓(Bucket), 단단한 지반 또는 암반, 암석 등의 파쇄를 위한 브레이커, 건물의 해체 및 파쇄에 사용하는 크라샤 등이 설치될 수 있다. 도 1에서는 굴삭기(10)의 암(11)에 일반 굴삭 및 토사 운반을 위해 사용하는 버켓(20)이 설치된 예를 도시하고 있다. 도 1에 도시된 바와 같이, 버켓(20)은 굴삭기(10)의 상부 선회체에 장착된 암(11)의 일단에 구비되는 한 쌍의 걸림 연결체(12)에 설치되는데, 버켓(20)은 작업 변경에 따른 교체 등 필요에 따라 한 쌍의 걸림 연결체(12)에 탈부착할 수 있다.
도 2에 도시된 바와 같이, 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치(1)는 버켓(20)이 탈부착 가능하도록 한 쌍의 걸림 연결체(12)가 구비된 암(11)을 포함하는 굴삭기(10)에 설치되며, 지반 또는 암반에 대한 굴착 작업을 수행할 수 있다. 이와 같이, 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치(1)는 보다 간단하고 소형화된 구조의 굴착용 툴을 이동 용이성이 뛰어난 굴삭기(10)에 탈부착 가능하도록 설치함으로써, 굴착 작업에 있어서 다양한 작업 장소로의 이동 용이성 및 그에 따른 작업 효율성을 증대시킬 수 있다.
이하, 도 3 내지 도 9를 참조하여, 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치를 설명하기로 한다.
도 3는 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치의 구조를 나타내는 사시도이고, 도 4은 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치의 구조를 개략적으로 나타내는 측면도이다.
도 3 및 도 4에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치(1)는 몸체부(100), 구동부(200) 및 굴착용 툴(300)을 포함하여 구성될 수 있다.
본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치(1)를 구성하는 구동부(200)는 직선 방향의 타격력을 발생시키는 타격 구동부(200)이고, 굴착용 툴(300)은 타격 구동부(200)로부터 전달 받은 타격력에 의해 왕복 이동하며 지반 또는 암반에 대한 보링 작업을 수행하는 해머 보링 툴(300)을 사용할 수 있다.
몸체부(100)는 일단을 통해 한 쌍의 걸림 연결체(12)에 탈부착 가능하도록 연결될 수 있다. 도 3에 도시된 바와 같이, 몸체부(100)는 하우징(110), 한 쌍의 측면 브라켓(120) 및 결합부(130)를 포함하여 구성될 수 있다. 몸체부(100)는 결합부(130)를 통해 굴삭기(10)의 암(11)에 구비된 한 쌍의 걸림 연결체(12)에 탈부착 가능하게 결합될 수 있는데, 이러한 결합부(130)는 복수개(예를 들어, 제1 결합부(130A), 제2 결합부(130B), 제1 결합부(130C)가 구비되어 한 쌍의 걸림 연결체(12)가 결합되는 결합부(130)의 위치에 따라 후술할 해머 보링 툴(300)의 작업 방향을 변경할 수 있다는 장점이 있다. 이러한 몸체부(100)의 구체적인 구조에 대해서는 도 5 및 도 6을 참조하여 자세히 후술하기로 한다.
타격 구동부(200)는 몸체부(100)의 내부에 설치되며, 몸체부(100)의 길이 방향을 따라 타격력을 발생시킬 수 있다. 도 4에 도시된 바와 같이, 타격 구동부(200)는 구동 실린더(210), 구동 샤프트(220), 결합 부재(230), 동력 전달 부재(240) 및 지지 부재(250)를 포함하여 구성될 수 있다. 이러한 타격 구동부(200)는 몸체부(100)의 내부에 설치된 상태로 타격력을 발생하여 후술할 해머 보링 툴(300)을 왕복 구동시켜 보링 작업을 수행할 수 있도록 할 수 있다. 이러한 타격 구동부(200)의 구체적인 구조에 대해서는 도 5 및 도 6을 참조하여 자세히 후술하기로 한다.
해머 보링 툴(300)은 몸체부(100)의 타단을 통해 노출된 타격 구동부(200)에 연결되며, 타격 구동부(200)로부터 전달 받은 타격력에 의해 왕복 이동하며 지반 또는 암반에 대한 보링 작업을 수행할 수 있다. 도 5에 도시된 바와 같이, 해머 보링 툴(300)은 크게 타격 몸체(211)와 복수의 보링 비트(320)(예를 들어, 3 개의 보링 비트 320A, 320B, 320C)를 포함하여 구성될 수 있다. 이러한 해머 보링 툴(300)은 타격 구동부(200)의 결합 부재(230)에 결합된 상태로 구동 실린더(210)의 타격력을 전달 받아 왕복 이동할 수 있다. 이러한 해머 보링 툴(300)의 구체적인 구조에 대해서는 도 14을 참조하여 자세히 후술하기로 한다.
한편, 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치(1)의 해머 보링 툴(300)은 몸체부(100)가 한 쌍의 걸림 연결체(12)에 연결되는 위치에 따라 보링 작업이 수행되는 방향이 변경될 수 있다. 상술한 바와 같이, 몸체부(100)는 복수의 결합부(130)를 통해 굴삭기(10)의 암(11)에 구비된 한 쌍의 걸림 연결체(12)에 결합되는데, 한 쌍의 걸림 연결체(12)가 결합되는 결합부(130)의 위치에 따라 몸체부(100)의 설치 방향이 바뀌므로 해머 보링 툴(300)의 작업 방향을 변경할 수 있다. 한 쌍의 걸림 연결체(12)에 결합되는 몸체부(100)의 설치 방향에 따라 해머 보링 툴(300)의 작업 방향이 변경되는 예는 도 8 및 도 9를 참조하여 자세히 설명하기로 한다.
이하, 도 5 및 도 6을 참조하여, 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치(1)의 몸체부(100)와 타격 구동부(200)의 구조에 대해 자세히 설명하기로 한다.
도 5은 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치에서 몸체부와 타격 구동부의 구조를 나타내는 분해 사시도이고, 도 6은 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치에서 몸체부와 타격 구동부의 구조를 나타내는 종단면도이다.
도 5 및 도 6에 도시된 바와 같이, 몸체부(100)는 하우징(110), 한 쌍의 측면 브라켓(120), 결합부(130)를 포함하여 구성될 수 있다.
하우징(110)은 몸체부(100)의 기본적인 프레임을 이루며, 내부에 타격 구동부(200)가 수용될 수 있도록 수용 공간(111a)이 형성될 수 있다. 하우징(110)의 양 측면에는 서로 마주 보도록 한 쌍의 측면 브라켓(120)이 구비될 수 있다. 도 5에 도시된 바와 같이, 하우징(110)은 크게 베이스 몸체(111), 결합 몸체(112) 및 몸체 커버(113)를 포함하여 구성될 수 있다.
베이스 몸체(111)는 구동 샤프트(220)의 왕복 이동 방향을 따라 상하부가 개방되고, 양 측면에 한 쌍의 측면 브라켓(120)이 형성될 수 있다. 도 6에 도시된 바와 같이, 베이스 몸체(111)는 상하로 관통된 중공부를 가지도록 대략 원통 형상을 가지고, 내부에 후술할 구동 실린더(210)가 장착될 수 있도록 결합단이 형성될 수 있다.
또한, 도 5에 도시된 바와 같이, 한 쌍의 측면 브라켓(120)은 대략 얇은 판상 형태를 가지고, 원통 형상을 가지는 베이스 몸체(111)의 외주면에 접하는 위치에 결합될 수 있다. 이 때, 한 쌍의 측면 브라켓(120)은 다각형 단면을 가질 수 있는데, 한 쌍의 측면 브라켓(120)의 단면 형상은 작업 방향에 따른 결합부(130)의 개수 및 배치 형태에 따라 결정될 수 있다.
도 5에서는 3 개의 결합부(130)가 중앙에 위치하는 제2 결합부(130B)를 중심으로 제1 결합부(130A), 제2 결합부(130B) 및 제1 결합부(130C)가 약 120도 간격으로 형성된 경우에 한 쌍의 측면 브라켓(120)이 5 각형 단면을 가지는 예를 도시하고 있으나, 이에 한정되지 않으며, 당업자에 의해 얼마든지 변경 가능하다.
도 5에서는 베이스 몸체(111)와 한 쌍의 측면 브라켓(120)이 일체로 형성된 예를 도시하고 있으나, 이에 한정되지 않으며, 베이스 몸체(111)와 한 쌍의 측면 브라켓(120)은 별도로 제작되어 용접, 나사 결합 등에 의해 조립될 수도 있다.
그리고, 결합 몸체(112)는 상하부가 개방되어 베이스 몸체(111)의 하단에 결합될 때에 베이스 몸체(111)와 함께 수용 공간(111a)을 형성할 수 있으며, 몸체 커버(113)는 구동 실린더(210)가 베이스 몸체(111)에 결합된 상태에서 베이스 몸체(111)의 개방된 상부를 밀폐할 수 있다.
한편, 도 5 및 도 6에 도시된 바와 같이, 몸체부(100)는 하우징(110)의 상부에서 한 쌍의 측면 브라켓(120)을 연결하도록 결합되는 결합부(130)를 포함할 수 있다. 이러한 결합부(130)는 복수개(예를 들어, 제1 결합부(130A), 제2 결합부(130B), 제1 결합부(130C)가 구비되어 한 쌍의 걸림 연결체(12)가 결합되는 결합부(130)의 위치에 따라 해머 보링 툴(300)의 작업 방향을 변경할 수 있다. 이 때, 각각의 결합부(130)는 한 쌍의 걸림 연결체(12)의 간격에 대응하는 간격, 바람직하게는, 한 쌍의 걸림 연결체(12)의 간격과 동일한 간격으로 배치될 수 있다.
도 5에 도시된 바와 같이, 몸체부(100)에 구비되는 복수의 결합부(130)는 한 쌍의 걸림 연결체(12)에 결합 가능하도록 길게 형성된 원통형 샤프트(131A, 131B, 131C)와 같은 형상을 가지고 있다. 또한, 복수의 결합부(130)는 각각 한 쌍의 측면 브라켓(120)에 조립 및 분해가 가능하도록 원통형 샤프트(131A, 131B, 131C)의 일단 또는 양단에 너트와 같은 고정 부재(132A, 132B, 132C)를 구비할 수도 있다. 이 경우, 복수의 결합부(130) 각각의 원통형 샤프트(131A, 131B, 131C)는 한 쌍의 측면 브라켓(120)에 형성된 관통홀을 통해 삽입된 후, 일단 또는 양단을 고정 부재(132A, 132B, 132C)에 의해 고정 결합될 수 있다.
바람직하게는, 결합부(130)는 적어도 3 개 이상이 구비될 수 있으며, 몸체부(100)는 적어도 3 개 이상의 결합부(130) 중 서로 인접하는 2 개의 결합부(130)를 선택하여 한 쌍의 걸림 연결체(12)에 연결함으로써 해머 보링 툴(300)이 보링 작업을 수행하는 방향을 결정할 수 있다.
예를 들어, 서로 다른 n 개의 작업 방향을 구현하고자 하는 경우, n+1 개의 결합부(130)를 한 쌍의 걸림 연결체(12)의 간격에 대응하는 간격으로 순차적으로 배치할 수 있다. 이 때, n+1 개의 결합부(130)는 인접하는 3 개의 결합부(130)가 서로 일직선으로 형성하지 않는 것이 바람직하다. 즉, n+1 개의 결합부(130)는 인접하는 3 개의 결합부(130)가 중앙에 위치하는 결합부(130)를 중심으로 180도 이하의 각도를 가지도록 배치되는 것이 바람직하다.
도 6에서는 3 개의 결합부(130)가 중앙에 위치하는 제2 결합부(130B)를 중심으로 제1 결합부(130A), 제2 결합부(130B) 및 제1 결합부(130C)가 약 120도 간격으로 형성된 경우를 예로 들고 있으나, 이는 예시적인 것으로서, 이에 한정되지 않으며, 당업자에 의해 얼마든지 변경 가능하다.
도 3 내지 도 6에서는 3 개의 결합부(130)가 구비된 예를 도시하고 있는데, 도 3 내지 도 6에 도시된 예의 경우, 원하는 작업 방향에 따라, 인접하는 제1 결합부(130A)와 제2 결합부(130B)를 선택하여 한 쌍의 걸림 연결체(12)에 결합하거나, 인접하는 제2 결합부(130B)와 제1 결합부(130C)를 선택하여 한 쌍의 걸림 연결체(12)에 결합함으로써 해머 보링 툴(300)의 작업 방향을 결정할 수 있다.
도 3 내지 도 6에서는 3 개의 결합부(130)인 제1 결합부(130A), 제2 결합부(130B), 제1 결합부(130C)가 구비된 예를 도시하고 있으나, 이는 예시적인 것으로서, 이에 한정되지 않으며, 결합부(130)의 개수 및 배치 형태는 원하는 작업 방향에 따라 당업자에 얼마든지 변경 가능하다.
이와 같이, 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치(1)는 몸체부(100)에 구비된 복수의 결합부(130)를 이용하여 한 쌍의 걸림 연결체(12)에 결합되는 몸체부(100)의 작업 방향을 변경함으로써, 굴삭기(10)의 위치, 굴삭기(10)에 구비된 암(11)의 작업 반경 범위 등에 의한 제한 없이 해머 보링 툴(300)을 원하는 작업 방향으로 쉽게 조절할 수 있다.
한편, 도 5 및 도 6에 도시된 바와 같이, 타격 구동부(200)는 구동 실린더(210), 구동 샤프트(220), 결합 부재(230), 동력 전달 부재(240) 및 지지 부재(250)를 포함하여 구성될 수 있다.
구동 실린더(210)는 몸체부(100)에 구비된 수용 공간(111a)의 내부에서 하우징(110)에 장착되며, 타격력을 발생시킬 수 있다. 도 6에 도시된 바와 같이, 구동 실린더(210)는 하우징(110)의 베이스 몸체(111)에 형성된 결합단에 볼트 등 체결 부재를 이용하여 고정될 수 있다.
바람직하게는, 구동 실린더(210)는 굴삭기로부터 공급 받은 오일을 이용하여 구동하는 유압 실린더를 사용할 수 있다. 이와 같이, 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치(1)는 타격 구동부(200)에 구비된 구동 실린더(210)를 유압 실린더를 사용함으로써, 타격 구동부(200)의 구조를 소형화하면서도 보링 작업에 필요한 동력을 충분히 얻을 수 있다. 본 발명에서는 구동 실린더(210)로 유압 실린더를 사용하는 예를 들고 있으나, 이와 달리, 공압 실린더 등 다양한 형태의 액츄에이터를 사용할 수도 있음은 당업자에게 자명하다.
구동 샤프트(220)는 일단이 구동 실린더(210)의 구동 축에 연결되며, 구동 실린더(210)로부터 타격력을 전달 받아 왕복 이동할 수 있다. 또한, 결합 부재(230)는 일단(231)이 구동 샤프트(220)의 타단에 결합되고, 타단(232)에 해머 보링 툴(300)이 탈부착 가능하도록 결합되며, 구동 샤프트(220)로부터 전달 받은 타격력에 의해 해머 보링 툴(300)을 왕복 구동시킬 수 있다. 비록 자세히 도시되지는 않았으나, 결합 부재(230)의 일단(231)과 타단(232)은 각각 구동 샤프트(220)와 해머 보링 툴(300)이 결합 가능하도록 나사산이 형성될 수 있다. 또한, 결합 부재(230)의 외주면에는 구동 샤프트(220)와 해머 보링 툴(300)의 결합할 때 나사산의 조임 또는 풀림 작업이 용이하도록 결합 홈(233)이 형성될 수도 있다.
도 6에 도시된 바와 같이, 구동 샤프트(220)는 구동 실린더(210)의 구동 축과 구동 샤프트(220)의 구동 축은 일직선이 되도록 배치될 수 있으나, 필요에 따라, 구동 실린더(210)의 구동 축과 구동 샤프트(220)의 구동 축이 일정한 각도를 이루도록 배치될 수도 있다.
한편, 타격 구동부(200)는 구동 실린더(210)로부터 구동 샤프트(220)로 타격력을 전달하기 위해 구동 실린더(210)의 구동 축과 구동 샤프트(220)를 연결하는 동력 전달 부재(240)를 더 포함할 수 있다. 도 6에서는 구동 실린더(210)의 구동 축과 구동 샤프트(220)를 연결하기 위한 동력 전달 부재(240)로 플랜지 커플링(Flange coupling)을 사용한 예를 도시하고 있으나, 이에 한정되지 않으며, 당업자에 의해 얼마든지 변경 가능하다.
또한, 타격 구동부(200)는 구동 샤프트(220)의 왕복 이동을 지지하기 위한 지지 부재(250)를 더 포함할 수 있다. 도 6에서는 구동 샤프트(220)의 왕복 이동을 지지하기 위한 지지 부재(250)로 한 쌍의 스러스트 베어링(Thrust bearing)을 사용한 예를 도시하고 있으나, 이에 한정되지 않으며, 당업자에 의해 얼마든지 변경 가능하다.
이하, 도 7을 참조하여, 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치(1)의 해머 보링 툴(300)의 구조에 대해 자세히 설명하기로 한다.
도 7는 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치에서 해머 보링 툴의 구조를 나타내는 사시도이다.
도 7에 도시된 바와 같이, 해머 보링 툴(300)은 크게 타격 몸체(211)와 복수의 보링 비트(320)를 포함하여 구성될 수 있다.
타격 몸체(211)는, 일단은 타격 구동부(200)의 일단에 탈부착 가능하게 결합될 수 있다. 또한, 복수의 보링 비트(320)는 지반 또는 암반에 맞닿는 타격 몸체(211)의 표면에는 방사상으로 형성될 수 있다. 이러한 복수의 보링 비트(320)는 텅스텐 또는 합금강으로 이루어지는 것이 바람직하다. 또한, 복수의 보링 비트(320)는 각각 작업 방향을 향하는 일측의 동일 평면 상에서 동일 각도 간격의 원형 배열로 이루어지는 것이 바람직하다. 도 7에서는 복수의 보링 비트(320)가 대략 구 형태로 형성된 예를 도시하고 있으나, 이는 예시적인 것으로서, 원추형 형상, 직육면체, 사각뿔 등 다양한 형태로 형성될 수 있다.
상술한 바와 같이, 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치(1)의 해머 보링 툴(300)은 몸체부(100)가 한 쌍의 걸림 연결체(12)에 연결되는 위치에 따라 보링 작업이 수행되는 방향이 변경될 수 있다.
이하, 도 8 및 도 9를 참조하여, 상기와 같이 구성되는 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치(1)의 동작에 대해 자세히 설명하기로 한다.
도 8은 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치를 일반적인 굴삭기에 설치하여 보링 작업을 수행하는 일 예를 나타내는 도면이고, 도 9는 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치를 일반적인 굴삭기에 설치하여 보링 작업을 수행하는 다른 예를 나타내는 도면이다.
도 8에서는 도 3에 도시된 굴삭기를 이용한 굴착 장치(1)의 예에서 몸체부(100)에 구비된 3 개의 결합부(130) 중 인접하는 제1 결합부(130A)와 제2 결합부(130B)를 선택하여 한 쌍의 걸림 연결체(12)에 결합한 예를 나타내고 있고, 도 9에서는 도 3의 예에서 3 개의 결합부(130) 중 인접하는 제2 결합부(130B)와 제3 결합부(130C)를 선택하여 한 쌍의 걸림 연결체(12)에 결합한 예를 나타내고 있다.
도 8에 도시된 바와 같이, 몸체부(100)에 구비된 3 개의 결합부(130) 중 제1 결합부(130A)와 제2 결합부(130B)를 선택하여 한 쌍의 걸림 연결체(12)에 결합하는 경우에는, 굴삭기(10)에 구비된 암(11)의 초기 위치에서 해머 보링 툴(300)이 하부 방향(지반 또는 암반)을 향하게 되므로, 지반 또는 암반과 같은 수평면에 대한 보링 작업을 용이하게 수행할 수 있다.
이와 반대로, 도 9에 도시된 바와 같이, 몸체부(100)에 구비된 3 개의 결합부(130) 중 제2 결합부(130B)와 제3 결합부(130C)를 선택하여 한 쌍의 걸림 연결체(12)에 결합하는 경우에는, 굴삭기(10)에 구비된 암(11)의 초기 위치에서 해머 보링 툴(300)이 전방(측면)을 향하게 되므로, 터널 측벽과 같은 수직면에 대한 보링 작업을 용이하게 수행할 수 있다.
이하, 도 10 및 도 11을 참조하여, 본 발명의 제2 실시예에 따른 굴삭기를 이용한 굴착 장치를 설명하기로 한다.
도 10는 본 발명의 제2 실시예에 따른 굴삭기를 이용한 굴착 장치의 구조를 나타내는 사시도이고, 도 11은 본 발명의 제2 실시예에 따른 굴삭기를 이용한 굴착 장치에서 몸체부와 회전 구동부의 구조를 나타내는 종단면도이다.
도 10 및 도 11에 도시된 바와 같이, 본 발명의 제2 실시예에 따른 굴삭기를 이용한 굴착 장치(1)는 몸체부(100), 구동부(200) 및 굴착용 툴(300)을 포함하여 구성될 수 있다.
도 3에 도시된 본 발명의 제1 실시예에 따른 굴삭기를 이용한 굴착 장치(1)와는 달리, 본 발명의 제2 실시예에 따른 굴삭기를 이용한 굴착 장치(1)를 구성하는 구동부(200)는 회전 구동력을 발생시키는 회전 구동부(200)이고, 굴착용 툴(300)은 회전 구동부(200)로부터 전달 받은 회전 구동력에 의해 회전하며 지반 또는 암반에 대한 보링 작업을 수행하는 보링 툴(300)을 사용할 수 있다.
몸체부(100)는 일단을 통해 한 쌍의 걸림 연결체(12)에 탈부착 가능하도록 연결될 수 있다. 본 발명의 제2 실시예에 따른 굴삭기를 이용한 굴착 장치(1)를 구성하는 몸체부(100)는 도 5에 도시된 본 발명의 제2 실시예에 따른 굴삭기를 이용한 굴착 장치(1)를 구성하는 몸체부(100)와 실질적으로 동일한 구조이므로, 더 이상 자세한 설명은 생략하기로 한다.
회전 구동부(200)는 몸체부(100)의 내부에 설치되며, 회전 구동력을 발생시킬 수 있다. 도 11에 도시된 바와 같이, 회전 구동부(200)는 구동 모터(210), 구동 샤프트(220), 결합 부재(230), 동력 전달 부재(240) 및 지지 부재(250)를 포함하여 구성될 수 있다. 이러한 회전 구동부(200)는 몸체부(100)의 내부에 설치된 상태로 회전 구동력을 발생하여 보링 툴(300)을 회전시켜 보링 작업을 수행할 수 있도록 할 수 있다.
보링 툴(300)은 몸체부(100)의 타단을 통해 노출된 회전 구동부(200)에 연결되며, 회전 구동부(200)로부터 전달 받은 회전 구동력에 의해 회전하며 지반 또는 암반에 대한 보링 작업을 수행할 수 있다. 도 10에 도시된 바와 같이, 보링 툴(300)은 크게 회전 몸체(310)와 복수의 보링 비트(320)(예를 들어, 3 개의 보링 비트 320A, 320B, 320C)를 포함하여 구성될 수 있다. 이러한 보링 툴(300)은 회전 구동부(200)의 결합 부재(230)에 결합된 상태로 구동 모터(210)의 회전 구동력을 전달 받아 회전할 수 있다.
상술한 바와 같이, 본 발명의 제2 실시예에 따른 굴삭기를 이용한 굴착 장치(1)의 보링 툴(300)은 몸체부(100)가 한 쌍의 걸림 연결체(12)에 연결되는 위치에 따라 보링 작업이 수행되는 방향이 변경될 수 있다.
이하, 도 12를 참조하여, 본 발명의 제3 실시예에 따른 굴삭기를 이용한 굴착 장치를 설명하기로 한다.
도 12는 본 발명의 제3 실시예에 따른 굴삭기를 이용한 굴착 장치의 구조를 나타내는 사시도이다.
도 12에 도시된 바와 같이, 본 발명의 제3 실시예에 따른 굴삭기를 이용한 굴착 장치(1)는 몸체부(100), 구동부(200) 및 굴착용 툴(300)을 포함하여 구성될 수 있다.
도 12에 도시된 바와 같이, 본 발명의 제3 실시예에 따른 굴삭기를 이용한 굴착 장치(1)를 구성하는 굴착용 툴(300)은, 몸체부(100)의 내부에 회전 가능하게 설치되며, 몸체부(100)의 길이 방향을 따라 배치되고, 몸체부(100)의 타단을 통해 외부로 노출되어 지반 또는 암반에 대한 굴착 작업을 수행하는 복수의 드릴 날(또는, 치즐(Chisel))(310)이 구비된 회전 드릴부(300)로 구현될 수 있다. 또한, 구동부(200)는, 몸체부(100)의 내부에 설치되며, 회전 드릴부(300)의 일 측을 타격하여 복수의 드릴 날(310)에 타격력을 제공하는 타격 구동부(210)와, 몸체부(100)의 내부 또는 일 측에 설치되며, 회전 드릴부(300)에 회전 구동력을 제공하는 회전 구동부(220)를 포함할 수 있다.
이하, 도 13 내지 도 16을 참조하여, 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치를 장착하는 굴삭기(2)의 구조에 대해서 자세히 설명하기로 한다.
도 13는 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치를 장착하는 굴삭기의 구조를 개략적으로 나타내는 사시도이고, 도 14은 도 13의 굴삭기의 구조를 개략적으로 나타내는 측면도이며, 도 15는 도 13의 굴삭기의 구조를 개략적으로 나타내는 저면도이고, 도 16는 도 13의 굴삭기에서 복수의 제1 아암 실린더가 구비되었을 때의 구조를 개략적으로 나타내는 저면도이다.
도 13 내지 도 15에 도시된 바와 같이, 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치를 장착하는 굴삭기(2)는 궤도나 바퀴 등으로 구비되어 장비의 이동 역할을 수행하는 주행체(100), 주행체(100)에 탑재되어 360도 회전하고 운전실과 기계실을 구비한 상부 선회체(200), 상부 선회체(200)에 연결된 붐(10), 제1 아암(20), 제2 아암(30), 붐 실린더(40), 제1 아암 실린더(50) 및 제2 아암 실린더(60)를 포함하여 구성될 수 있다.
붐(10)은 일단이 상부 선회체(200)에 회동 가능하게 결합될 수 있다. 붐(10)은 후술할 붐 실린더(40)에 의해 상하 방향으로 회동될 수 있다.
제1 아암(Arm)(20)은 일단이 붐(10)의 타단에 회동 가능하게 결합될 수 있다. 제1 아암(20)의 일단은 붐(10)의 타단에 형성된 절취부(11) 내에 일정 깊이로 삽입된 후, 회동축(12)에 의해 붐(10)에 회동 자유롭게 결합될 수 있다. 제1 아암(20)은 후술할 제1 아암 실린더(50)에 의해 상부 선회체(200)에 대하여 전후 방향으로 회동될 수 있다.
제2 아암(Arm)(30)은 일단이 제1 아암(20)의 타단에 회동 가능하게 결합될 수 있다. 본 발명에서는 제2 아암(30)이 한 쌍의 링크로 구비되어 후술할 제2 아암 실린더(60)에 연결된 예를 도시하고 있으나, 이에 한정되지는 않으며, 제2 아암(30)의 형상, 개수, 배치 형태 등은 당업자에 의해 얼마든지 변경 가능하다.
한편, 제1 아암(20)의 타단과 제2 아암(30)의 타단에는 굴착 장치(도 3, 도 10, 도 12)가 탈부착 가능하도록 결합되는 한 쌍의 걸림 연결체(70)가 구비될 수 있다. 굴착 장치(도 3, 도 10, 도 12)는 한 쌍의 걸림 연결체(70)에 결합된 제2 아암(30)을 통하여 제2 아암 실린더(60)에 연결되므로 제2 아암 실린더(60)의 동작에 따라 회동 될 수 있다.
상술한 바와 같이, 한 쌍의 걸림 연결체(70)에 탈부착 가능하도록 결합되는 굴착 장치(도 3, 도 10, 도 12)는 는 몸체부(100), 구동부(200), 굴착용 툴(300)를 포함하여 구성되며, 이러한 굴착 장치(도 3, 도 10, 도 12)는 몸체부(100)에 구비된 결합부(130)를 통해 한 쌍의 걸림 연결체(70)에 탈부착 가능하도록 연결될 수 있다.
도 3, 도 10 및 도 12에 도시된 바와 같이, 굴착용 툴(300)은 보링 툴(Boring tool), 해머 툴(Hammer tool), 치즐(Chisel) 중 어느 하나를 사용할 수 있으며, 구동부(200)는 굴착용 툴(300)을 구동시키기 위한 직선 구동력, 회전 구동력 및 타격력 중 적어도 하나의 구동력을 발생시킬 수 있다.
붐 실린더(40)는 상부 선회체(200)와 붐(10)을 연결하고, 붐(10)을 관절 운동 시킬 수 있다. 제1 아암 실린더(50)는 붐(10)과 제1 아암(20)을 연결하고, 제1 아암(20)을 관절 운동시킬 수 있다. 제2 아암 실린더(60)는 제1 아암(20)과 제2 아암(30)을 연결하고, 제2 아암(30)을 관절 운동시킬 수 있다. 한편, 제1 아암 실린더(50)는 붐(10)의 하부에 배치될 수 있다. 본 발명에서는 굴삭기(2)의 제1 아암 실린더(50)가 종래의 굴삭기처럼 붐(10)의 상부에 배치되지 않고 하부에 배치되기 때문에, 터널에서와 같은 협소한 공간의 작업장에서도 원활히 굴착 작업을 수행할 수 있다.
바람직하게는, 붐 실린더(40), 제1 아암 실린더(50) 및 제2 아암 실린더(60)는 작동 유체를 이용하여 구동하는 유압 실린더가 사용될 수 있다. 본 발명에서는 유압 실린더를 사용하는 예를 들고 있으나, 이와 달리, 공압 실린더 등 다양한 형태의 액츄에이터를 사용할 수도 있음은 당업자에게 자명하다.
한편, 제1 아암 실린더(50)는 붐(10)의 하부에 적어도 하나가 구비될 수 있다. 도 16에 도시된 바와 같이, 복수의 제1 아암 실린더(50)가 사용될 경우 제1 아암(20)의 구동에 소요되는 구동력이 부가되므로 작업 시간을 단축시킬 수 있어서 작업 효율을 높일 수 있다.
이하, 본 발명의 실시예들에 따른 굴삭기를 이용한 굴착 장치(1)를 장착하는 굴삭기(2)의 동작을 간단히 설명하기로 한다.
먼저, 굴착 작업시, 붐 실린더(40)는 일단이 상부 선회체(200)에 결합되고, 타단이 붐(10)에 결합되므로 붐 실린더(40)가 팽창하면 붐(10)은 시계 방향으로 회동될 수 있다. 또한 붐 실린더(40)가 수축하면 붐(10)은 반시계 방향으로 회동될 수 있다.
또한, 제1 아암 실린더(50)는 일단이 붐(10)에 결합되고, 타단이 제1 아암(20)에 결합되므로 제1 아암 실린더(50)가 팽창하면 제1 아암(20)은 시계 방향으로 회동될 수 있다. 또한 제1 아암 실린더(50)가 수축하면 제1 아암(20)은 반시계 방향으로 회동될 수 있다.
또한, 제2 아암 실린더(60)는 일단이 제1 아암(20)에 결합되고, 타단이 제2 아암(30)에 결합되므로 제2 아암 실린더(60)가 팽창하면 제2 아암(30)에 결합된 굴착 장치(도 3, 도 10, 도 12)는 반시계 방향으로 회동될 수 있다. 또한 제2 아암 실린더(60)가 수축하면 제2 아암(30)에 결합된 굴착 장치(도 3, 도 10, 도 12)는 시계 방향으로 회동될 수 있다. 이와 같이, 제1 아암 실린더(50)는 붐(10)의 하부에 배치되므로 터널에서와 같은 협소한 공간의 작업장에서도 원활한 작업을 수행할 수 있다.
한편, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
본 발명은 굴삭기를 이용한 굴착 장치에 관한 것으로, 보다 상세하게는 굴삭기를 이용한 굴착 작업을 수행함에 있어서 다양한 작업 장소로의 이동 용이성 및 그에 따른 작업 효율성을 증대시킬 수 있고, 터널 등과 같은 협소한 작업 공간에서도 원활한 굴착 작업을 할 수 있는 굴삭기를 이용한 굴착 장치에 적용 가능하다.

Claims (11)

  1. 버켓이 탈부착 가능하도록 한 쌍의 걸림 연결체가 구비된 굴삭기에 설치되며, 지반 또는 암반에 대한 굴착 작업을 수행하는 굴삭기를 이용한 굴착 장치에 있어서,
    일단을 통해 상기 한 쌍의 걸림 연결체에 탈부착 가능하도록 연결되는 몸체부;
    상기 몸체부의 내부 또는 일 측에 설치되며, 직선 구동력, 회전 구동력 및 타격력 중 적어도 하나의 구동력을 발생시키는 구동부; 및
    상기 구동부에 연결되며, 상기 구동부로부터 전달 받은 직선 구동력, 회전 구동력 및 타격력 중 적어도 하나의 구동력에 의해 구동되어 상기 굴착 작업을 수행하는 굴착용 툴을 포함하며,
    상기 굴착용 툴은 상기 몸체부가 상기 한 쌍의 걸림 연결체에 연결되는 위치에 따라 상기 굴착 작업이 수행되는 방향이 변경되는 것을 특징으로 하는 굴삭기를 이용한 굴착 장치.
  2. 제 1 항에 있어서,
    상기 몸체부는,
    내부에 수용 공간이 형성되는 하우징;
    상기 하우징의 양 측면에 서로 마주 보도록 구비되는 한 쌍의 측면 브라켓; 및
    상기 하우징의 상부에서 상기 한 쌍의 측면 브라켓을 연결하도록 결합되고, 상기 한 쌍의 걸림 연결체의 간격에 대응하는 간격으로 배치되는 적어도 3 개 이상의 결합부를 포함하며,
    상기 몸체부는 상기 적어도 3 개 이상의 결합부 중 서로 인접하는 2 개의 결합부를 선택하여 상기 한 쌍의 걸림 연결체에 연결함으로써 상기 굴착용 툴이 상기 굴착 작업을 수행하는 방향을 결정하는 것을 특징으로 하는 굴삭기를 이용한 굴착 장치.
  3. 제 2 항에 있어서,
    상기 구동부는,
    상기 수용 공간의 내부에서 상기 하우징에 장착되며, 상기 타격력을 발생시키는 구동 실린더;
    일단이 상기 구동 실린더의 구동 축에 연결되며, 상기 구동 실린더로부터 상기 타격력을 전달 받아 왕복 이동하는 구동 샤프트; 및
    일단이 상기 구동 샤프트의 타단에 결합되고, 타단에 상기 굴착용 툴이 탈부착 가능하도록 결합되며, 상기 구동 샤프트로부터 전달 받은 상기 타격력에 의해 상기 굴착용 툴을 왕복 구동시키는 결합 부재를 포함하는 것을 특징으로 하는 굴삭기를 이용한 굴착 장치.
  4. 제 3 항에 있어서,
    상기 하우징은,
    상기 구동 샤프트의 왕복 이동 방향을 따라 상하부가 개방되고, 양 측면에 상기 한 쌍의 측면 브라켓이 형성된 베이스 몸체;
    상하부가 개방되어 상기 베이스 몸체의 하단에 결합될 때에 상기 베이스 몸체와 함께 상기 수용 공간을 형성하는 결합 몸체; 및
    상기 구동 실린더가 상기 베이스 몸체에 결합된 상태에서 상기 베이스 몸체의 개방된 상부를 밀폐하는 몸체 커버를 포함하는 것을 특징으로 하는 굴삭기를 이용한 굴착 장치.
  5. 제 3 항에 있어서,
    상기 구동 실린더는 상기 굴삭기로부터 공급 받은 오일을 이용하여 구동하는 유압 실린더인 것을 특징으로 하는 굴삭기를 이용한 굴착 장치.
  6. 제 3 항에 있어서,
    상기 굴착용 툴은,
    일단은 상기 하우징의 타단을 통해 상기 구동 실린더의 일단에 탈부착 가능하게 결합되고, 상기 타격력에 의해 왕복 이동하는 타격 몸체; 및
    상기 지반 또는 암반에 맞닿는 상기 타격 몸체의 표면에 방사상으로 형성된 복수의 보링 비트를 포함하는 것을 특징으로 하는 굴삭기를 이용한 굴착 장치.
  7. 제 2 항에 있어서,
    상기 구동부는,
    상기 수용 공간의 내부에서 상기 하우징에 장착되며, 상기 회전 구동력을 발생시키는 구동 모터;
    일단이 상기 구동 모터의 회전 축에 연결되며, 상기 구동 모터로부터 상기 회전 구동력을 전달 받아 회전하는 구동 샤프트; 및
    일단이 상기 구동 샤프트의 타단에 결합되고, 타단에 상기 굴착용 툴이 탈부착 가능하도록 결합되며, 상기 구동 샤프트로부터 전달 받은 상기 회전 구동력에 의해 상기 굴착용 툴을 회전시키는 결합 부재를 포함하는 것을 특징으로 하는 굴삭기를 이용한 굴착 장치.
  8. 제 7 항에 있어서,
    상기 하우징은,
    상기 구동 모터의 회전축 방향을 따라 상하부가 개방되고, 양 측면에 상기 한 쌍의 측면 브라켓이 형성된 베이스 몸체;
    상하부가 개방되어 상기 베이스 몸체의 하단에 결합될 때에 상기 베이스 몸체와 함께 상기 수용 공간을 형성하는 결합 몸체; 및
    상기 구동 모터가 상기 베이스 몸체에 결합된 상태에서 상기 베이스 몸체의 개방된 상부를 밀폐하는 몸체 커버를 포함하는 것을 특징으로 하는 굴삭기를 이용한 굴착 장치.
  9. 제 7 항에 있어서,
    상기 구동 모터는 상기 굴삭기로부터 공급 받은 오일을 이용하여 구동하는 유압 모터인 것을 특징으로 하는 굴삭기를 이용한 굴착 장치.
  10. 제 7 항에 있어서,
    상기 굴착용 툴은,
    일단은 상기 하우징의 타단을 통해 상기 구동 모터의 일단에 탈부착 가능하게 결합되고, 상기 구동 모터로부터 전달 받은 상기 회전 구동력에 의해 회전하는 회전 몸체; 및
    일단은 상기 회전 몸체의 하단에 회전 가능하게 결합되며, 상기 지반 또는 암반에 맞닿는 표면에는 복수의 잇날이 방사상으로 형성된 복수의 보링 비트를 포함하는 것을 특징으로 하는 굴삭기를 이용한 굴착 장치.
  11. 제 1 항에 있어서,
    상기 굴삭기는,
    일단이 상부 선회체에 회동 가능하게 결합되는 붐(Boom);
    일단이 상기 붐의 타단에 회동 가능하게 결합되는 제1 아암(Arm);
    일단이 상기 제1 아암의 타단에 회동 가능하게 결합되고, 타단에 상기 한 쌍의 걸림 연결체가 구비된 제2 아암(Arm);
    상기 상부 선회체와 상기 붐을 연결하고, 상기 붐을 관절 운동 시키는 적어도 하나의 붐 실린더;
    상기 붐과 상기 제1 아암을 연결하고, 상기 제1 아암을 관절 운동시키는 적어도 하나의 제1 아암 실린더; 및
    상기 제1 아암과 상기 제2 아암을 연결하고, 상기 제2 아암을 관절 운동시키는 적어도 하나의 제2 아암 실린더를 포함하고,
    상기 적어도 하나의 제1 아암 실린더는 상기 붐의 하부에 배치되는 것을 특징으로 하는 굴삭기를 이용한 굴착 장치.
PCT/KR2015/013841 2014-12-19 2015-12-17 굴삭기를 이용한 굴착 장치 WO2016099163A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/532,127 US10508542B2 (en) 2014-12-19 2015-12-17 Excavation assembly for use in excavator
CN201580066363.8A CN107002379B (zh) 2014-12-19 2015-12-17 利用挖掘机的挖掘装置
JP2017551980A JP6429098B2 (ja) 2014-12-19 2015-12-17 掘削機を用いた掘削装置
EP15870330.6A EP3236001B1 (en) 2014-12-19 2015-12-17 Excavation assembly for an excavator, in particular hammer boring tool

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020140185037A KR101635286B1 (ko) 2014-12-19 2014-12-19 굴삭기를 이용한 해머 보링 장치
KR10-2014-0185037 2014-12-19
KR20-2015-0001728 2015-03-19
KR2020150001728U KR200483502Y1 (ko) 2015-03-19 2015-03-19 굴삭기

Publications (1)

Publication Number Publication Date
WO2016099163A1 true WO2016099163A1 (ko) 2016-06-23

Family

ID=56126958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013841 WO2016099163A1 (ko) 2014-12-19 2015-12-17 굴삭기를 이용한 굴착 장치

Country Status (5)

Country Link
US (1) US10508542B2 (ko)
EP (1) EP3236001B1 (ko)
JP (1) JP6429098B2 (ko)
CN (1) CN107002379B (ko)
WO (1) WO2016099163A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104912568B (zh) * 2015-06-17 2017-07-04 唐忠盛 高频振动横向铣挖头及具有该铣挖头的铣挖机和掘进机
CN107191192A (zh) * 2017-07-26 2017-09-22 中国水利水电第十四工程局有限公司 一种挖机料斗和带有该挖机料斗的隧道挖机
WO2019228503A1 (en) * 2018-06-01 2019-12-05 Guangxi Liugong Machinery Co., Ltd. Multiple tool electric construction machine
CN108716229B (zh) * 2018-07-26 2023-09-05 江苏徐工工程机械研究院有限公司 工程车辆
CN109723455B (zh) * 2019-03-06 2024-03-08 中国铁建重工集团股份有限公司 隧道病害作业单元快换***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129681A (ja) * 1990-09-20 1992-04-30 Tomotake Shigemori 土木工事用のサーボ式油圧シリンダー装置
JPH057783U (ja) * 1991-07-17 1993-02-02 住友建機株式会社 基礎杭打設用の穿孔機
KR960002678Y1 (ko) * 1993-08-12 1996-03-30 신영철 지반굴착기의 해머드릴본체용 비트
KR20090105955A (ko) * 2007-03-20 2009-10-07 닛코 킨조쿠 가부시키가이샤 무접착제 플렉시블 라미네이트 및 그 제조 방법
KR20140077475A (ko) * 2012-12-14 2014-06-24 (주) 대동이엔지 충격흡수식 진동브레이커

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB944784A (en) * 1962-04-30 1963-12-18 George Stow & Co Ltd Strata boring machine for horizontal, vertical or inclined operation
US3464501A (en) * 1967-10-05 1969-09-02 Allied Steel Tractor Prod Inc Automatic pneumatic impact hammer
DE2018778A1 (ko) * 1970-04-18 1971-12-30
DE2542305C3 (de) * 1974-09-30 1981-12-17 Kabushiki Kaisha Komatsu Seisakusho, Tokyo Bodenaushubgerät
US4199033A (en) * 1978-05-02 1980-04-22 Gundy Joe F Jr Van Augering accessory for backhoe or the like
IT1144185B (it) * 1981-04-23 1986-10-29 Mario Musso Martello demolitore idraulico
US4719975A (en) * 1986-02-28 1988-01-19 Labounty Kenneth R Rotating hammer-shear
JPS6452901A (en) * 1987-08-21 1989-03-01 Hitachi Construction Machinery Rotary type bucket
US4877091A (en) * 1988-06-27 1989-10-31 Howell Jr Richard L Augering apparatus and drilling rig
JP2727267B2 (ja) * 1991-10-29 1998-03-11 日立建機株式会社 アースオーガ装置
JPH07223173A (ja) * 1994-02-08 1995-08-22 Matsuda Astec Kk 破砕具及び破砕方法
DE19511739A1 (de) * 1995-03-31 1996-10-02 Lewin Heinz Ulrich Kombinierter Abbruch- und Grabbagger (Baumaschine)
US5722496A (en) * 1996-03-19 1998-03-03 Ingersoll-Rand Company Removable guide member for guiding drill string components in a drill hole
US6047475A (en) * 1998-02-26 2000-04-11 Nippon Pneumatic Mfg. Co. Ltd. Mounting for a construction shear
JP3659393B2 (ja) * 1999-02-15 2005-06-15 コベルコ建機株式会社 土木作業機の作業アタッチメント
KR200271162Y1 (ko) * 1999-05-11 2002-04-10 이원해 굴삭기의 굴착장비 착탈용 커플러
JP2001271498A (ja) * 2000-03-27 2001-10-05 Nippon Pneumatic Mfg Co Ltd 建設機械に取り付け可能なシャー
JP4531303B2 (ja) * 2001-07-17 2010-08-25 古河機械金属株式会社 油圧ブレーカ
JP2003074287A (ja) * 2001-08-31 2003-03-12 Yamamoto Rock Machine Co Ltd 回転・振動切削装置
JP4551927B2 (ja) * 2004-10-28 2010-09-29 ジサン ヘビー インダストリー カンパニー,リミテッド 掘削機用油圧式ブレーカのピストン及びロッド装置
JP4382692B2 (ja) * 2005-03-29 2009-12-16 敏昭 岩井 破砕機のブラケット構造
US7832130B2 (en) * 2006-10-06 2010-11-16 The Stanley Works Multiple mounting bracket for a mobile processor attachment mounted on a hydraulic excavator
JP2009062700A (ja) * 2007-09-05 2009-03-26 Kazuma Tanaka 油圧駆動式破砕機における打撃騒音と振動音の低減装置。
KR100974055B1 (ko) 2008-04-07 2010-08-04 코막중공업 주식회사 유압브레이커
JP5233840B2 (ja) * 2009-05-20 2013-07-10 コベルコ建機株式会社 作業機械の把持装置及びこれを備えた作業機械
KR20100024467A (ko) 2010-02-05 2010-03-05 김준모 2단 붐 굴착기와 자체회전운반기를 적용한 터널의 시공법
JP5353818B2 (ja) * 2010-05-26 2013-11-27 コベルコ建機株式会社 作業機械
JP5959153B2 (ja) * 2011-03-07 2016-08-02 鹿島建設株式会社 トンネル施工方法
CN102213074B (zh) * 2011-05-16 2014-05-14 唐忠盛 一种回转冲击式凿岩钻机及双层钻杆机构
CA2787790A1 (en) * 2011-08-26 2013-02-26 Gilbert Bernier Inverting of attachments for working machines having front end loader configurations
CN202338201U (zh) * 2011-11-30 2012-07-18 唐忠盛 振动挤压式钻孔机
CN203034502U (zh) * 2012-12-06 2013-07-03 广西玉柴重工有限公司 一种新型挖掘机工作装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129681A (ja) * 1990-09-20 1992-04-30 Tomotake Shigemori 土木工事用のサーボ式油圧シリンダー装置
JPH057783U (ja) * 1991-07-17 1993-02-02 住友建機株式会社 基礎杭打設用の穿孔機
KR960002678Y1 (ko) * 1993-08-12 1996-03-30 신영철 지반굴착기의 해머드릴본체용 비트
KR20090105955A (ko) * 2007-03-20 2009-10-07 닛코 킨조쿠 가부시키가이샤 무접착제 플렉시블 라미네이트 및 그 제조 방법
KR20140077475A (ko) * 2012-12-14 2014-06-24 (주) 대동이엔지 충격흡수식 진동브레이커

Also Published As

Publication number Publication date
US10508542B2 (en) 2019-12-17
JP6429098B2 (ja) 2018-11-28
CN107002379B (zh) 2019-06-14
EP3236001A1 (en) 2017-10-25
US20170268336A1 (en) 2017-09-21
CN107002379A (zh) 2017-08-01
EP3236001A4 (en) 2018-04-18
EP3236001B1 (en) 2020-01-29
JP2018503012A (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
WO2016099163A1 (ko) 굴삭기를 이용한 굴착 장치
KR100755017B1 (ko) 중장비용 바이브레이터 니퍼
KR20120010385A (ko) 틸팅 및 회전가능한 굴삭기용 락 드릴 장치
WO2018052246A1 (ko) 직진운동 가능한 진동리퍼
KR200390761Y1 (ko) 지반을 굴착하는 오거로드용 오거굴착기에 조립식으로탈부착되는 해머드릴용 감속장치
KR200429625Y1 (ko) 360도 회전 가능한 드리프터가 장착된 굴착용 천공기
KR100978532B1 (ko) 굴삭기 장착용 락드릴
WO2016159437A1 (ko) 역순환 굴반 기능을 구비한 케이싱 로테이터
KR101630089B1 (ko) 굴삭기를 이용한 타격 드릴 장치
KR101640311B1 (ko) 굴삭기를 이용한 소형 보링 장치
KR20190114377A (ko) 굴삭기 장착용 다관절 트윈 락 드릴
KR200483502Y1 (ko) 굴삭기
WO2022164144A1 (ko) 굴삭기용 코어 드릴 시스템
US4641716A (en) Method and equipment for rock drilling
KR100582693B1 (ko) 다중 굴착장치
KR101635286B1 (ko) 굴삭기를 이용한 해머 보링 장치
CN114109254A (zh) 模块化旋挖钻机的转运方法
WO2020189981A1 (ko) 회수형 천공비트
KR101743679B1 (ko) 보링 장치 및 이를 포함하는 굴삭기
KR100506151B1 (ko) 드릴비트의 회전장치
KR0137695B1 (ko) 두 종류의 유체를 각기 다른 통로로 공급하는 지반굴착기의 더블스위벨
KR100797582B1 (ko) 암반 굴착 장치
KR200366401Y1 (ko) 진동을 이용한 암반 굴착장치
CN213391964U (zh) 一种煤矿开采旋转凿岩结构
CN213478201U (zh) 一种建筑工程用桩基钻掘套管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870330

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15532127

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017551980

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015870330

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE