WO2016098257A1 - Rubber composition for forming shoes, member for forming shoes, and shoe - Google Patents

Rubber composition for forming shoes, member for forming shoes, and shoe Download PDF

Info

Publication number
WO2016098257A1
WO2016098257A1 PCT/JP2014/083754 JP2014083754W WO2016098257A1 WO 2016098257 A1 WO2016098257 A1 WO 2016098257A1 JP 2014083754 W JP2014083754 W JP 2014083754W WO 2016098257 A1 WO2016098257 A1 WO 2016098257A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
shoe
rubber
mass
parts
Prior art date
Application number
PCT/JP2014/083754
Other languages
French (fr)
Japanese (ja)
Inventor
裕教 北山
健一 原野
Original Assignee
株式会社アシックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アシックス filed Critical 株式会社アシックス
Priority to JP2016564557A priority Critical patent/JP6427596B2/en
Priority to PCT/JP2014/083754 priority patent/WO2016098257A1/en
Publication of WO2016098257A1 publication Critical patent/WO2016098257A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a rubber composition for forming shoes, a member for forming shoes, and shoes, and more specifically, a rubber composition for forming shoes including butadiene rubber and silica, and for forming shoes formed by the rubber composition.
  • the present invention relates to a member and a shoe having a shoe sole formed of the rubber composition.
  • members made of a rubber composition are frequently used as members for forming shoes.
  • the outer sole and the like are strongly required to have excellent wear resistance.
  • butadiene rubber is superior in wear resistance compared to other general rubbers.
  • butadiene rubber has a higher viscosity than other general rubbers in mastication and the like, and it is difficult to exhibit good processability when used for manufacturing rubber products.
  • a rubber composition containing silica together with butadiene rubber exhibits a higher viscosity during kneading, conventionally, it has been difficult to obtain a shoe forming member that has excellent mechanical strength and wear resistance and is easy to manufacture. It has become.
  • the present invention provides a rubber composition containing butadiene rubber and silica that has a low value of Mooney viscosity and the like, and has excellent processability compared to conventional rubber compositions. It is an object to provide a shoe forming member and shoes that are excellent in wear resistance and easy to manufacture.
  • the present invention relating to a rubber composition for shoe formation for solving the above-mentioned problems is a rubber composition for shoe formation containing butadiene rubber and silica, further comprising oil, and the mass average molecular weight of the oil is 400. And less than 1800.
  • the present invention related to a shoe forming member for solving the above-mentioned problem is formed by using the shoe forming rubber composition as described above, and the present invention relating to a shoe for solving the above-described problem is described above.
  • a shoe sole is formed of the rubber composition for shoe formation as described above.
  • the rubber composition for shoe formation of the present invention contains an oil having a predetermined mass average molecular weight, it exhibits good processability during kneading and the like and is a member for shoe formation obtained using the rubber composition. Excellent mechanical strength and wear resistance can be exhibited.
  • FIG. 1 shows a shoe provided with a shoe-forming member formed by the rubber composition of the present embodiment.
  • the shoe 1 includes an upper material 2 and shoe sole members 3 and 4.
  • the shoe 1 includes a midsole 3 and an outer sole 4 as the sole member.
  • the shoe forming member of the present embodiment preferably constitutes the entire outer sole or a part thereof.
  • the shoe of the present embodiment preferably includes a member made of the rubber composition in a state where the surface is exposed at a portion where friction is easily generated between the side surface and the ground such as a shoe sole.
  • Part or all of the shoe forming member is formed of vulcanized rubber, and the vulcanized rubber includes the base rubber, inorganic filler, oil, and other various compounding agents. It is formed by things.
  • each component such as the base rubber, the inorganic filler, and the oil does not need to be constituted by only one kind of substance, and each ingredient may be constituted by a plurality of kinds of substances.
  • the rubber composition if the proportion of the butadiene rubber in the base rubber is excessively reduced, it may be difficult to exhibit excellent wear resistance in the shoe forming member.
  • a butadiene rubber is preferred.
  • the rubber composition usually contains the butadiene rubber in a proportion of 50 parts by mass or more when the amount of all the rubber contained is 100 parts by mass.
  • the rubber composition preferably contains the butadiene rubber in a proportion exceeding 85 parts by mass when the amount of all the rubbers contained is 100 parts by mass.
  • the main component of the molecular structure is trans-1,4 units, the remainder is 1,2 units (vinyl units), and cis-1,4 units.
  • Even a low cis type may be a so-called high cis type in which 80% or more of the molecular structure is cis-1,4 units.
  • the said butadiene rubber in this embodiment does not need to contain only 1 type in the said rubber composition, and may use 2 or more types together.
  • the butadiene rubber is preferably a high cis type, preferably having 95% or more of cis-1,4 units.
  • the rubber composition further contains a polar polymer having one or more polar groups selected from the group consisting of a carbonyl group, an amino group, a hydroxyl group, a nitro group, a chloro group, a bromo group, a fluoro group, and an epoxy group. Is preferred.
  • a polar polymer having one or more polar groups selected from the group consisting of a carbonyl group, an amino group, a hydroxyl group, a nitro group, a chloro group, a bromo group, a fluoro group, and an epoxy group.
  • examples of the carbonyl group include a ketone group and a carboxyl group.
  • the amino group is a monovalent functional group (—NH 2 ) obtained by removing a hydrogen atom from ammonia, or a monovalent functional group obtained by removing a hydrogen atom from a primary amine.
  • Either a functional group (—NHR) or a monovalent functional group (—NRR ′) obtained by removing a hydrogen atom from a secondary amine may be used.
  • the polar polymer can exert a binding force to the silica by the polar group as described above.
  • the rubber composition of the present embodiment can cause silica to flow along with the flow of the polar polymer during kneading. Therefore, the rubber composition of this embodiment can reduce the viscosity at the time of kneading
  • the polar polymer include epoxidized natural rubber and chloroprene rubber.
  • the silica in this embodiment is preferably produced by a wet method rather than that produced by a dry method, and among the wet methods, one produced by a sedimentation method is more preferred than that produced by a gel method. . More specifically, the silica contained in the rubber composition of the present embodiment is 20 m in which primary particles having a size of 10 nm to 50 nm are aggregated to form secondary particles having an average particle diameter of 1 ⁇ m to 40 ⁇ m. Silica having a BET specific surface area of 2 / g to 400 m 2 / g is preferred.
  • the good processability of the rubber composition may be impaired.
  • the blending amount is too small, the silica is formed on the shoe forming member formed by the rubber composition. Therefore, it becomes difficult to exhibit sufficiently good wear resistance. Accordingly, the rubber composition is excellent in processability, and in order to more effectively exert the effect of making the shoe forming member formed by the rubber composition excellent in wear resistance, the rubber The composition preferably has a ratio of the silica to more than 35 parts by mass and less than 50 parts by mass with respect to 100 parts by mass of all the rubbers contained.
  • the silica has been surface-treated in advance with a silane coupling agent or a fatty acid metal salt for the purpose of further improving the dispersibility of the butadiene rubber during kneading and further improving the wear resistance of the shoe forming member. Also good.
  • silane coupling agent for applying a coupling treatment to the silica a silane coupling agent containing sulfur is preferable, and a polysulfide silane coupling agent is preferable.
  • a silane-based silane coupling agent a polysulfide-based silane coupling agent such as bis (3-triethoxysilylpropyl) tetrasulfide is particularly preferable.
  • the silane coupling agent is preferably blended in the rubber composition so that the ratio thereof is 0.5 parts by mass or more and 10 parts by mass or less when the total amount of the silane coupling agent is 100 parts by mass.
  • the oil has a mass average molecular weight of more than 400 and less than 1800 and is contained in the rubber composition.
  • the oil is preferably a paraffinic oil rather than a naphthenic oil or an aroma oil.
  • the said rubber composition does not need to contain the said oil individually by 1 type, and may contain the 2 or more types of thing.
  • the oil is effective not only for improving the processability of the rubber composition but also for exhibiting excellent wear resistance for the shoe forming member.
  • the oil may not exhibit its effect sufficiently if the content in the rubber composition is too small, and if the content in the rubber composition is excessive, the rubber composition will exhibit excellent mechanical properties. Becomes difficult. From this, it is preferable that the ratio of the said oil with respect to 100 mass parts of all the rubber
  • the mass average molecular weight of the oil in this invention can be calculated
  • TKgel, SuperHM-H (6.0 mm ID ⁇ 15 cm, manufactured by Tosoh Corporation)” is used, and THF (tetrahydrofuran) is used as an eluent.
  • the measurement conditions were a sample concentration of 0.02% by mass and a flow rate of 0.6 ml / min.
  • the sample injection volume is 100 ⁇ L, the measurement temperature is 40 ° C., and an IR detector is used.
  • the mass average molecular weight of oil is calculated
  • Examples of the compounding agent other than the above contained in the rubber composition of the present embodiment include a vulcanizing agent for crosslinking the butadiene rubber, a vulcanization accelerator, a vulcanization acceleration aid, a vulcanization activator, an antiaging agent, and the like. Is mentioned.
  • the compounding agents other than the above are usually contained in the rubber composition at a ratio of about 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber.
  • compounding agents other than the above are usually contained in the rubber composition so that the total amount thereof is about 5 to 25 parts by mass with respect to 100 parts by mass of the rubber.
  • Examples of the vulcanizing agent include sulfur.
  • vulcanization accelerator examples include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole and di-2-benzothiazolyl disulfide, and thiuram vulcanization accelerators such as tetramethylthiuram monosulfide. Is mentioned.
  • vulcanization activator examples include activated zinc white.
  • anti-aging agent examples include amino ketone type anti-aging agents such as 2,2,4-trimethyl-1,2-dihydroquinoline polymer and special wax type anti-aging agents.
  • stearic acid, polyethylene glycol, and the like effective for improving the dispersibility of silica during kneading are also included as other compounding agents.
  • the rubber composition may further contain a tackifier such as a terpene resin, a colorant such as a pigment, an antibacterial agent, and a fragrance.
  • a method similar to a conventional method for manufacturing a rubber product can be employed as a manufacturing method for manufacturing a shoe forming member using such a rubber composition.
  • An example of a method for producing this shoe forming member is as follows: (A) A raw material such as butadiene rubber, silica, and oil is kneaded by using a kneading apparatus such as a Banbury mixer, a pressure kneader, or an open roll to prepare a mixture in which silica and oil are uniformly dispersed in the rubber.
  • a kneading apparatus such as a Banbury mixer, a pressure kneader, or an open roll to prepare a mixture in which silica and oil are uniformly dispersed in the rubber.
  • the rubber composition of the present embodiment exhibits an appropriate Mooney viscosity in kneading and is excellent in processability, so that a shoe forming member can be easily manufactured. Furthermore, the rubber composition of this embodiment can make the shoe-forming member excellent in mechanical strength and wear resistance by containing oil having a specific molecular weight. In the present embodiment, the amount of silica in the rubber composition can be reduced by blending the oil into the rubber composition. That is, the weight loss of silica becomes a factor that decreases the mechanical strength and wear resistance of the shoe forming member, but in this embodiment, the addition of oil suppresses the deterioration of these characteristics.
  • the rubber composition used for forming the shoe forming member is more excellent in processability. State.
  • the shoe forming member formed of such a rubber composition is excellent in mechanical strength and wear resistance, and is preferably used for forming, for example, a shoe sole.
  • a shoe having a shoe sole formed of the rubber composition exhibits a high grip force and can be used for a long period of time because the shoe sole is difficult to wear.
  • a rubber composition was prepared with the composition shown in Table 2 below, and was determined according to JIS K6300-1: 2013 “Unvulcanized rubber—Physical characteristics—Part 1: Determination of viscosity and scorch time using Mooney viscometer”. The Mooney viscosity at 0 ° C. was measured.
  • a vulcanized rubber sheet was prepared from the rubber composition, and an improved lambourne abrasion test based on JIS K6264-2: 2005 “vulcanized rubber and thermoplastic rubber—how to obtain wear resistance—part 2: test method”. To determine the wear resistance index.
  • the test conditions for the improved Lambourne abrasion test were as follows.
  • Test temperature 23 ⁇ 2 ° C 2
  • Test piece surface speed 200 m / min 3
  • Grinding wheel surface speed 140 m / min 4
  • Slip rate 30% 5) Additional force of test piece: 2kgf 6) Dust fall amount: 15 g / min 7)
  • Type of reference blend Rubber having an abrasion resistance index of about 170% with respect to BAM-E001 was used as a standard sample.
  • the vulcanized rubber sheet was produced with the rubber composition, and the tensile strength was determined based on JIS K6301: 1975. The test was conducted using a dumbbell test piece No. 2 at a tensile speed of 500 mm / min. The evaluation results are shown in Table 2 below.
  • the rubber compositions of Examples 1 and 2 blended with an oil having a specific mass average molecular weight exhibit a Mooney viscosity of about the same or lower than those of Comparative Examples 1 and 2, but the vulcanized rubber It can be seen that excellent mechanical strength and wear resistance can be exhibited.
  • the detail of the compounding agent described in Table 2 is as shown in Table 3 below.
  • the compounding amount of silica exceeds 35 parts by mass, the abrasion resistance of the vulcanized rubber is remarkably improved, and when the compounding amount of silica becomes 50 parts by mass or more, the value of Mooney viscosity is obtained.
  • the compounding amount of silica with respect to 100 parts by mass of rubber is 35 masses. It is understood that the amount exceeding 50 parts and less than 50 parts by weight is preferable.
  • the rubber composition greatly reduces the Mooney viscosity by adding even a small amount of ENR as a polar polymer. From the above results, it can be seen that the wear resistance of the vulcanized rubber starts to decrease when the blending amount of ENR becomes 15 parts by mass or more. That is, from the above results, it can be seen that it is preferable to add a polar polymer to the rubber composition in order to impart excellent workability to the rubber composition and to provide excellent wear resistance to the shoe forming member. In addition, from the above results, when the amount of all rubbers is 100 parts by mass, adding butadiene rubber in a proportion exceeding 85 parts by mass gives excellent processability to the rubber composition and provides a shoe forming member. It can be seen that it is preferable for imparting excellent wear resistance.
  • the oil exhibits a sufficient addition effect even when the blending amount is 5 parts by mass. Also, from the above results, it can be seen that the wear resistance of the vulcanized rubber begins to decrease when the amount of oil exceeds 15 parts by mass. That is, from the above results, the ratio of the oil to 100 parts by mass of rubber is 5 parts by mass in order to ensure the excellent processability of the rubber composition and the excellent wear resistance of the shoe forming member. It can be seen that the content is preferably less than 15 parts by mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

Provided are the following: a rubber composition for forming shoes that includes a butadiene rubber and silica and that further contains a specific oil; and a member for forming shoes that has excellent mechanical strength and wear resistance.

Description

靴形成用ゴム組成物、靴形成用部材、及び、靴Shoe forming rubber composition, shoe forming member, and shoe
 本発明は、靴形成用ゴム組成物、靴形成用部材、及び、靴に関し、より詳しくはブタジエンゴムとシリカとを含む靴形成用ゴム組成物、該ゴム組成物によって形成されてなる靴形成用部材、前記ゴム組成物で靴底が形成されている靴に関する。 The present invention relates to a rubber composition for forming shoes, a member for forming shoes, and shoes, and more specifically, a rubber composition for forming shoes including butadiene rubber and silica, and for forming shoes formed by the rubber composition. The present invention relates to a member and a shoe having a shoe sole formed of the rubber composition.
 従来、スポーツシューズなどにおいては、ゴム組成物からなる部材が靴形成用の部材として多用されている。
 この種の靴形成用部材のなかでもアウターソールなどに対しては、耐摩耗性に優れていることが強く要求されている。
Conventionally, in sports shoes and the like, members made of a rubber composition are frequently used as members for forming shoes.
Among these types of shoe forming members, the outer sole and the like are strongly required to have excellent wear resistance.
 ところで、車両のタイヤにおいては、グリップ性や耐摩耗性などの観点からブタジエンゴムを主成分としたゴム組成物の利用が広く検討されている(下記特許文献1参照)。
 そして、近年においては、ブタジエンゴムとともにシリカを含有させたゴム組成物が靴形成用部材の原材料に利用されている。
By the way, in the tire of a vehicle, utilization of the rubber composition which has butadiene rubber as a main component from viewpoints, such as grip property and abrasion resistance, is examined widely (refer the following patent document 1).
In recent years, a rubber composition containing silica together with butadiene rubber has been used as a raw material for a shoe forming member.
日本国特開2013-023568号公報Japanese Unexamined Patent Publication No. 2013-023568
 ブタジエンゴムは、他の一般的なゴムに比べて耐摩耗性に優れている。
 その一方で、ブタジエンゴムは、素練加工などにおいて他の一般的なゴムに比べると高い粘度を示し、ゴム製品の製造に利用する際に良好な加工性を発揮させ難い。
 しかも、ブタジエンゴムとともにシリカを含有させたゴム組成物は、混練に際してより一層高い粘度を示すことから、従来、機械強度や耐摩耗性に優れるとともに製造容易な靴形成用部材を得ることが困難になっている。
Butadiene rubber is superior in wear resistance compared to other general rubbers.
On the other hand, butadiene rubber has a higher viscosity than other general rubbers in mastication and the like, and it is difficult to exhibit good processability when used for manufacturing rubber products.
Moreover, since a rubber composition containing silica together with butadiene rubber exhibits a higher viscosity during kneading, conventionally, it has been difficult to obtain a shoe forming member that has excellent mechanical strength and wear resistance and is easy to manufacture. It has become.
 このことに対し、シリカの含有量を減じてゴム組成物の加工性向上を図ることも考え得るが、単にシリカを減らしてしまうと当該ゴム組成物を用いて得られる靴形成用部材の耐摩耗性が不十分なものになるおそれがある。
 本発明は、このような点に鑑み、ブタジエンゴムとシリカとを含有するゴム組成物として従来のものに比べてムーニー粘度などの値が低く加工性に優れるものを提供し、ひいては、機械強度や耐摩耗性に優れるとともに製造容易な靴形成用部材や靴を提供することを課題としている。
On the other hand, it can be considered to improve the processability of the rubber composition by reducing the silica content, but if the silica is simply reduced, the wear resistance of the shoe forming member obtained using the rubber composition is reduced. May be insufficient.
In view of such points, the present invention provides a rubber composition containing butadiene rubber and silica that has a low value of Mooney viscosity and the like, and has excellent processability compared to conventional rubber compositions. It is an object to provide a shoe forming member and shoes that are excellent in wear resistance and easy to manufacture.
 上記課題を解決するための靴形成用ゴム組成物に係る本発明は、ブタジエンゴムとシリカとを含む靴形成用ゴム組成物であって、オイルをさらに含有し、該オイルの質量平均分子量が400を超え1800未満である。 The present invention relating to a rubber composition for shoe formation for solving the above-mentioned problems is a rubber composition for shoe formation containing butadiene rubber and silica, further comprising oil, and the mass average molecular weight of the oil is 400. And less than 1800.
 上記課題を解決するための靴形成用部材に係る本発明は、上記のような靴形成用ゴム組成物が用いられてなるもので、上記課題を解決するための靴に係る本発明は、前記のような靴形成用ゴム組成物で靴底が形成されたものである。 The present invention related to a shoe forming member for solving the above-mentioned problem is formed by using the shoe forming rubber composition as described above, and the present invention relating to a shoe for solving the above-described problem is described above. A shoe sole is formed of the rubber composition for shoe formation as described above.
 本発明の靴形成用ゴム組成物は、所定の質量平均分子量を有するオイルが含まれているため、混練などに際して良好な加工性を示すとともに当該ゴム組成物を用いて得られる靴形成用部材に優れた機械強度や耐摩耗性を発揮させ得る。 Since the rubber composition for shoe formation of the present invention contains an oil having a predetermined mass average molecular weight, it exhibits good processability during kneading and the like and is a member for shoe formation obtained using the rubber composition. Excellent mechanical strength and wear resistance can be exhibited.
一実施形態の靴形成用部材が用いられてなる靴を示した概略図。Schematic which showed the shoes by which the member for shoe formation of one Embodiment is used.
 靴形成用ゴム組成物(以下、単に「ゴム組成物」ともいう)に係る本発明の実施の形態について以下に説明する。
 まずは、靴について説明する。
 図1は、本実施形態のゴム組成物によって形成された靴形成用部材を備えた靴を示したものである。
 該靴1は、アッパー材2と靴底用部材3,4とを有している。
 該靴1は、前記靴底用部材として、ミッドソール3、及び、アウターソール4を有している。
 本実施形態の靴形成用部材は、具体的には、前記アウターソール全体、又は、その一部を構成するものであることが好ましい。
 言い換えれば、本実施形態の靴は、側面部や靴底などの地面などとの間に摩擦を生じ易い部位において表面露出させた状態で前記ゴム組成物からなる部材を備えていることが好ましい。
An embodiment of the present invention relating to a rubber composition for shoe formation (hereinafter also simply referred to as “rubber composition”) will be described below.
First, shoes are explained.
FIG. 1 shows a shoe provided with a shoe-forming member formed by the rubber composition of the present embodiment.
The shoe 1 includes an upper material 2 and shoe sole members 3 and 4.
The shoe 1 includes a midsole 3 and an outer sole 4 as the sole member.
Specifically, the shoe forming member of the present embodiment preferably constitutes the entire outer sole or a part thereof.
In other words, the shoe of the present embodiment preferably includes a member made of the rubber composition in a state where the surface is exposed at a portion where friction is easily generated between the side surface and the ground such as a shoe sole.
 前記靴形成用部材は、その一部、又は、全部が加硫ゴムによって形成されており、該加硫ゴムは、ベースゴム、無機フィラー、オイル、及び、その他の各種配合剤を含む前記ゴム組成物によって形成されている。 Part or all of the shoe forming member is formed of vulcanized rubber, and the vulcanized rubber includes the base rubber, inorganic filler, oil, and other various compounding agents. It is formed by things.
 前記ゴム組成物は、ベースゴム、無機フィラー、オイルなどの各成分を1種類のみの物質によって構成させる必要はなく、各成分を複数種類の物質によって構成させても良い。
 前記ゴム組成物は、前記ベースゴムに占めるブタジエンゴムの割合を過度に低下させると靴形成用部材に優れた耐摩耗性を発揮させることが困難になるおそれがあり、前記ベースゴムの主成分がブタジエンゴムであることが好ましい。
 具体的には、前記ゴム組成物は、通常、含有する全てのゴムの量を100質量部とした際に前記ブタジエンゴムが50質量部以上の割合で含まれている。
 該ゴム組成物は、含有する全てのゴムの量を100質量部とした際に前記ブタジエンゴムが85質量部を超える割合で含まれていることが好ましい。
In the rubber composition, each component such as the base rubber, the inorganic filler, and the oil does not need to be constituted by only one kind of substance, and each ingredient may be constituted by a plurality of kinds of substances.
In the rubber composition, if the proportion of the butadiene rubber in the base rubber is excessively reduced, it may be difficult to exhibit excellent wear resistance in the shoe forming member. A butadiene rubber is preferred.
Specifically, the rubber composition usually contains the butadiene rubber in a proportion of 50 parts by mass or more when the amount of all the rubber contained is 100 parts by mass.
The rubber composition preferably contains the butadiene rubber in a proportion exceeding 85 parts by mass when the amount of all the rubbers contained is 100 parts by mass.
 本実施形態における前記ブタジエンゴムは、例えば、分子構造の主成分がトランス-1,4単位となっており、残部が1,2単位(ビニル単位)、及び、シス-1,4単位となっているローシスタイプのもであっても分子構造の80%以上がシス-1,4単位となっている、いわゆるハイシスタイプのものであっても良い。
 また、本実施形態における前記ブタジエンゴムは、1種類のみを前記ゴム組成物に含有させる必要はなく、2種類以上を併用しても良い。
 前記ブタジエンゴムは、ハイシスタイプのものが好ましく、シス-1,4単位が95%以上のものが好ましい。
In the butadiene rubber in the present embodiment, for example, the main component of the molecular structure is trans-1,4 units, the remainder is 1,2 units (vinyl units), and cis-1,4 units. Even a low cis type may be a so-called high cis type in which 80% or more of the molecular structure is cis-1,4 units.
Moreover, the said butadiene rubber in this embodiment does not need to contain only 1 type in the said rubber composition, and may use 2 or more types together.
The butadiene rubber is preferably a high cis type, preferably having 95% or more of cis-1,4 units.
 前記ゴム組成物は、カルボニル基、アミノ基、水酸基、ニトロ基、クロロ基、ブロモ基、フルオロ基、及び、エポキシ基からなる群より選ばれる1以上の極性基を有する極性ポリマーをさらに含有させることが好ましい。
 なお、極性ポリマーがカルボニル基を有するものである場合、このカルボニル基としては、例えば、ケトン基やカルボキシル基などが挙げられる。
 また、極性ポリマーがアミノ基を有するものである場合、該アミノ基は、アンモニアから水素原子を除いた1価の官能基(-NH)、第一級アミンから水素原子を除いた1価の官能基(-NHR)、第二級アミンから水素原子を除いた1価の官能基(-NRR’)の何れでもよい。
 該極性ポリマーは、前記シリカに対する結合力を前記のような極性基によって発揮させることができる。
 このため本実施形態のゴム組成物は、混練に際して極性ポリマーの流動に伴ってシリカを流動させることができる。
 従って、本実施形態のゴム組成物は、極性ポリマーを含まないゴム組成物に比べて混練時における粘度を低下させ得る。
 該極性ポリマーとしては、例えば、エポキシ化天然ゴムやクロロプレンゴムなどが挙げられる。
The rubber composition further contains a polar polymer having one or more polar groups selected from the group consisting of a carbonyl group, an amino group, a hydroxyl group, a nitro group, a chloro group, a bromo group, a fluoro group, and an epoxy group. Is preferred.
In addition, when the polar polymer has a carbonyl group, examples of the carbonyl group include a ketone group and a carboxyl group.
When the polar polymer has an amino group, the amino group is a monovalent functional group (—NH 2 ) obtained by removing a hydrogen atom from ammonia, or a monovalent functional group obtained by removing a hydrogen atom from a primary amine. Either a functional group (—NHR) or a monovalent functional group (—NRR ′) obtained by removing a hydrogen atom from a secondary amine may be used.
The polar polymer can exert a binding force to the silica by the polar group as described above.
For this reason, the rubber composition of the present embodiment can cause silica to flow along with the flow of the polar polymer during kneading.
Therefore, the rubber composition of this embodiment can reduce the viscosity at the time of kneading | mixing compared with the rubber composition which does not contain a polar polymer.
Examples of the polar polymer include epoxidized natural rubber and chloroprene rubber.
 本実施形態における前記シリカは、乾式法によって製造されたものよりも湿式法によって製造されたものの方が好ましく、湿式法の中でもゲル法によって製造されたものよりも沈降法によって製造されたものが好ましい。
 より具体的には、本実施形態のゴム組成物に含有させるシリカは、10nm~50nmの大きさの1次粒子が集合して1μm~40μmの平均粒子径を有する2次粒子となった、20m/g~400m/gのBET比表面積を有するシリカが好ましい。
The silica in this embodiment is preferably produced by a wet method rather than that produced by a dry method, and among the wet methods, one produced by a sedimentation method is more preferred than that produced by a gel method. .
More specifically, the silica contained in the rubber composition of the present embodiment is 20 m in which primary particles having a size of 10 nm to 50 nm are aggregated to form secondary particles having an average particle diameter of 1 μm to 40 μm. Silica having a BET specific surface area of 2 / g to 400 m 2 / g is preferred.
 該シリカは、ゴム組成物に対して過度に多く配合するとゴム組成物の良好なる加工性が損なわれるおそれがある一方で配合量が過少では、ゴム組成物によって形成される靴形成用部材に対して十分良好な耐摩耗性を発揮させることが難しくなる。
 従って、ゴム組成物を加工性に優れたものとし、且つ、当該ゴム組成物によって形成される靴形成用部材を耐摩耗性に優れたものにする効果をより顕著に発揮させる上において、前記ゴム組成物は、含有する全てのゴム100質量部に対する前記シリカの割合が35質量部を超え50質量部未満であることが好ましい。
 なお、前記シリカは、混練におけるブタジエンゴムに対する分散性の向上や靴形成用部材の耐摩耗性をより一層向上させることを目的としてシランカップリング剤や脂肪酸金属塩などによって予め表面処理を施していてもよい。
If the silica is blended in an excessive amount with respect to the rubber composition, the good processability of the rubber composition may be impaired. On the other hand, if the blending amount is too small, the silica is formed on the shoe forming member formed by the rubber composition. Therefore, it becomes difficult to exhibit sufficiently good wear resistance.
Accordingly, the rubber composition is excellent in processability, and in order to more effectively exert the effect of making the shoe forming member formed by the rubber composition excellent in wear resistance, the rubber The composition preferably has a ratio of the silica to more than 35 parts by mass and less than 50 parts by mass with respect to 100 parts by mass of all the rubbers contained.
The silica has been surface-treated in advance with a silane coupling agent or a fatty acid metal salt for the purpose of further improving the dispersibility of the butadiene rubber during kneading and further improving the wear resistance of the shoe forming member. Also good.
 前記シリカにカップリング処理を施すためのシランカップリング剤としては、硫黄を含むシランカップリング剤が好ましく、ポリスルフィド系シランカップリング剤が好ましい。
 該スルフィド系シランカップリング剤としては、ビス(3-トリエトキシシリルプロピル)テトラスルフィドなどのポリスルフィド系シランカップリング剤が特に好ましい。
 該シランカップリング剤は、前記シリカとの合計量を100質量部とした際に、その割合が0.5質量部以上10質量部以下となるようにゴム組成物に配合されることが好ましい。
As a silane coupling agent for applying a coupling treatment to the silica, a silane coupling agent containing sulfur is preferable, and a polysulfide silane coupling agent is preferable.
As the sulfide-based silane coupling agent, a polysulfide-based silane coupling agent such as bis (3-triethoxysilylpropyl) tetrasulfide is particularly preferable.
The silane coupling agent is preferably blended in the rubber composition so that the ratio thereof is 0.5 parts by mass or more and 10 parts by mass or less when the total amount of the silane coupling agent is 100 parts by mass.
 前記オイルは、質量平均分子量が400を超え1800未満となって前記ゴム組成物に含まれていることが重要である。
 前記オイルは、ナフテン系オイルやアロマ系オイルよりもパラフィン系オイルを採用することが好ましい。
 なお、前記ゴム組成物は、前記オイルを1種単独で含有している必要はなく2種類以上のものを含有していても良い。
It is important that the oil has a mass average molecular weight of more than 400 and less than 1800 and is contained in the rubber composition.
The oil is preferably a paraffinic oil rather than a naphthenic oil or an aroma oil.
In addition, the said rubber composition does not need to contain the said oil individually by 1 type, and may contain the 2 or more types of thing.
 該オイルは、ゴム組成物の加工性を向上させるのに有効であるばかりでなく、靴形成用部材に優れた耐摩耗性を発揮させるのに有効なものである。
 なお、前記オイルは、ゴム組成物における含有量が過少ではその効果が十分に発揮されないおそれがあるとともにゴム組成物における含有量が過剰であるとゴム組成物に優れた機械的特性を発揮させることが難しくなる。
 このことから、ゴム組成物は、含有する全てのゴム100質量部に対する前記オイルの割合が5質量部以上15質量部未満であることが好ましい。
The oil is effective not only for improving the processability of the rubber composition but also for exhibiting excellent wear resistance for the shoe forming member.
The oil may not exhibit its effect sufficiently if the content in the rubber composition is too small, and if the content in the rubber composition is excessive, the rubber composition will exhibit excellent mechanical properties. Becomes difficult.
From this, it is preferable that the ratio of the said oil with respect to 100 mass parts of all the rubber | gum which a rubber composition contains is 5 mass parts or more and less than 15 mass parts.
 なお、本発明におけるオイルの質量平均分子量は、GPCを用いて以下のようにして求めることができる。
 カラムは「TSKgel、SuperHM-H(東ソー(株)社製6.0mmID×15cm)」を用い、溶離液としてTHF(テトラヒドロフラン)を用いる。
 測定条件としては、試料濃度0.02質量%、流速0.6ml/min.、サンプル注入量100μL、測定温度40℃とし、IR検出器を用いて行う。
 そして、オイルの質量平均分子量については、標準ポリスチレンによって得た検量線に基づいてポリスチレン換算値の形で求められる。
In addition, the mass average molecular weight of the oil in this invention can be calculated | required as follows using GPC.
As the column, “TSKgel, SuperHM-H (6.0 mm ID × 15 cm, manufactured by Tosoh Corporation)” is used, and THF (tetrahydrofuran) is used as an eluent.
The measurement conditions were a sample concentration of 0.02% by mass and a flow rate of 0.6 ml / min. The sample injection volume is 100 μL, the measurement temperature is 40 ° C., and an IR detector is used.
And the mass average molecular weight of oil is calculated | required in the form of a polystyrene conversion value based on the calibration curve obtained with the standard polystyrene.
 本実施形態のゴム組成物に含有させる上記以外の配合剤としては、前記ブタジエンゴムを架橋するための加硫剤、加硫促進剤、加硫促進助剤、加硫活性剤、老化防止剤などが挙げられる。
 上記以外の配合剤は、通常、各々ゴム100質量部に対して0.1~5質量部程度の割合でゴム組成物に含有される。
 また、上記以外の配合剤は、通常、その合計量がゴム100質量部に対して5~25質量部程度の割合となるようにゴム組成物に含有される。
 前記加硫剤としては、例えば、硫黄が挙げられる。
 前記加硫促進剤としては、例えば、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィドのようなチアゾール系加硫促進剤、テトラメチルチウラムモノスルフィドのようなチウラム系加硫促進剤などが挙げられる。
 前記加硫活性剤としては、例えば、活性亜鉛華などが挙げられる。
 前記老化防止剤としては、例えば、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体などのアミノケトン系老化防止剤や特殊ワックス系老化防止剤が挙げられる。
 また、混練時におけるシリカの分散性を向上させるのに有効なステアリン酸やポリエチレングリコールなども上記以外の配合剤として挙げられる。
 なお、前記ゴム組成物には、さらにテルペン樹脂などの粘着性付与剤、顔料などの着色剤、抗菌剤、香料などを含有させ得る。
Examples of the compounding agent other than the above contained in the rubber composition of the present embodiment include a vulcanizing agent for crosslinking the butadiene rubber, a vulcanization accelerator, a vulcanization acceleration aid, a vulcanization activator, an antiaging agent, and the like. Is mentioned.
The compounding agents other than the above are usually contained in the rubber composition at a ratio of about 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber.
In addition, compounding agents other than the above are usually contained in the rubber composition so that the total amount thereof is about 5 to 25 parts by mass with respect to 100 parts by mass of the rubber.
Examples of the vulcanizing agent include sulfur.
Examples of the vulcanization accelerator include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole and di-2-benzothiazolyl disulfide, and thiuram vulcanization accelerators such as tetramethylthiuram monosulfide. Is mentioned.
Examples of the vulcanization activator include activated zinc white.
Examples of the anti-aging agent include amino ketone type anti-aging agents such as 2,2,4-trimethyl-1,2-dihydroquinoline polymer and special wax type anti-aging agents.
In addition, stearic acid, polyethylene glycol, and the like effective for improving the dispersibility of silica during kneading are also included as other compounding agents.
The rubber composition may further contain a tackifier such as a terpene resin, a colorant such as a pigment, an antibacterial agent, and a fragrance.
 このようなゴム組成物を用いて靴形成用部材を製造するための製造方法としては、従来のゴム製品の製造方法と同様の方法を採用することができる。
 この靴形成用部材の製造方法の一例を挙げると、
(a)ブタジエンゴム、シリカ、及び、オイルといった原材料をバンバリーミキサー、加圧ニーダー、オープンロールなどの混練装置を用いて混練し、シリカやオイルをゴム中に均一分散させた混和物を調製する第1の工程、
(b)前記第1の工程で得られた混和物、及び、加硫剤をカレンダーロールなどに供給し、該カレンダーロールで前記混和物のさらなる均一分散化を図るとともに均質化された混和物をシート化し、該シート化によって本実施形態のゴム組成物によって形成された未加硫状態の予備成形シートを作製する第2の工程、
(c)前記第2の工程で得られた予備成形シートを成形型に仕込み、熱プレス機により成形型を熱プレスすることで、予備成形シートを目的とする部材形状にするとともに該予備成形シートを加硫して加硫ゴムからなる靴形成用部材を作製する第3の工程、
 を実施する方法などが挙げられる。
As a manufacturing method for manufacturing a shoe forming member using such a rubber composition, a method similar to a conventional method for manufacturing a rubber product can be employed.
An example of a method for producing this shoe forming member is as follows:
(A) A raw material such as butadiene rubber, silica, and oil is kneaded by using a kneading apparatus such as a Banbury mixer, a pressure kneader, or an open roll to prepare a mixture in which silica and oil are uniformly dispersed in the rubber. 1 step,
(B) The mixture obtained in the first step and the vulcanizing agent are supplied to a calender roll or the like, and the calender roll is used to further uniformly disperse the admixture and to homogenize the admixture. A second step of preparing a pre-formed sheet in an unvulcanized state formed into a sheet and formed by the rubber composition of the present embodiment by the sheeting;
(C) The preformed sheet obtained in the second step is charged into a molding die, and the molding die is hot-pressed by a hot press machine, so that the preformed sheet has a desired member shape and the preformed sheet. A third step of producing a shoe forming member made of vulcanized rubber by vulcanizing
The method of performing is mentioned.
 本実施形態のゴム組成物は、混練において適度なムーニー粘度を示し、加工性に優れていることから靴形成用部材を製造容易なものとすることができる。
 さらに、本実施形態のゴム組成物は、特定の分子量を有するオイルを含有することによって靴形成用部材を機械強度と耐摩耗性に優れたものとすることができる。
 また、本実施形態においては、前記オイルがゴム組成物に配合されることによって当該ゴム組成物におけるシリカの減量が可能となる。
 即ち、シリカの減量は靴形成用部材の機械強度や耐摩耗性を低下させる要因となるが、本実施形態においては、オイルの添加によってこれらの特性低下が抑制される。
 このようにして本実施形態においては、ゴム組成物の混練時の粘度と正の相関を有するシリカの量を低減できることから、靴形成用部材の形成に用いるゴム組成物をより加工性に優れた状態とすることができる。
The rubber composition of the present embodiment exhibits an appropriate Mooney viscosity in kneading and is excellent in processability, so that a shoe forming member can be easily manufactured.
Furthermore, the rubber composition of this embodiment can make the shoe-forming member excellent in mechanical strength and wear resistance by containing oil having a specific molecular weight.
In the present embodiment, the amount of silica in the rubber composition can be reduced by blending the oil into the rubber composition.
That is, the weight loss of silica becomes a factor that decreases the mechanical strength and wear resistance of the shoe forming member, but in this embodiment, the addition of oil suppresses the deterioration of these characteristics.
Thus, in this embodiment, since the amount of silica having a positive correlation with the viscosity at the time of kneading of the rubber composition can be reduced, the rubber composition used for forming the shoe forming member is more excellent in processability. State.
 このようなゴム組成物によって形成される靴形成用部材は、機械強度と耐摩耗性に優れることから、例えば、靴底などの形成に利用されることが好ましい。
 前記ゴム組成物によって形成された靴底を備えた靴は、高いグリップ力を発揮するとともに靴底が摩滅し難いことから耐用期間を長期化させ得る。
The shoe forming member formed of such a rubber composition is excellent in mechanical strength and wear resistance, and is preferably used for forming, for example, a shoe sole.
A shoe having a shoe sole formed of the rubber composition exhibits a high grip force and can be used for a long period of time because the shoe sole is difficult to wear.
 なお、ここではこれ以上の詳細な説明を繰り返して行うことをしないが、上記に直接的に記載がされていない事項であっても、ゴム組成物や靴形成用部材などについて従来公知の技術事項については、本発明においても適宜採用可能である。 In addition, although detailed description beyond this is not repeated here, it is a conventionally well-known technical matter about a rubber composition, a member for shoe formation, etc., even if it is a matter not directly described above. Can be appropriately employed in the present invention.
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(評価A:オイル分子量)
 下記表1に示す4種類のオイルを用意し、これをブタジエンゴム(日本ゼオン社製、商品名「BE1220」、ハイシスタイプ:シス成分97%以上、以下「BR」ともいう)と、エポキシ化天然ゴム(MRB社製、商品名「ENR50」、エポキシ化率50%、以下「ENR」ともいう)とを90:10の質量比率(BR:ENR)でブレンドしたゴムとともにゴム組成物を形成させた。
(Evaluation A: Oil molecular weight)
Four types of oil shown in Table 1 below were prepared, and this was epoxidized with butadiene rubber (manufactured by Nippon Zeon Co., Ltd., trade name “BE1220”, high cis type: cis component 97% or more, hereinafter also referred to as “BR”). A rubber composition is formed with a rubber blended with a natural rubber (made by MRB, trade name “ENR50”, epoxidation rate 50%, hereinafter also referred to as “ENR”) at a mass ratio of 90:10 (BR: ENR). It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 下記表2に示す配合内容でゴム組成物を作製し、JIS K6300-1:2013「未加硫ゴム-物理特性-第1部:ムーニー粘度計による粘度及びスコーチタイムの求め方」に基づき、100℃でのムーニー粘度を測定した。 A rubber composition was prepared with the composition shown in Table 2 below, and was determined according to JIS K6300-1: 2013 “Unvulcanized rubber—Physical characteristics—Part 1: Determination of viscosity and scorch time using Mooney viscometer”. The Mooney viscosity at 0 ° C. was measured.
 また、ゴム組成物で加硫ゴムシートを作製し、JIS K6264-2:2005「加硫ゴム及び熱可塑性ゴム-耐摩耗性の求め方-第2部:試験方法」に基づき、改良ランボーン摩耗試験を実施して摩耗抵抗指数を求めた。
 なお、改良ランボーン摩耗試験の試験条件は、以下の通りとした。
 
(試験条件)
1)試験温度:23±2℃
2)試験片表面速度:200m/min
3)砥石表面速度:140m/min
4)スリップ率:30%
5)試験片の付加力:2kgf
6)打粉剤落下量:15g/min
7)試験時間:2min
8)基準配合の種類:BAM-E001に対して約170%の摩耗抵抗指数を有するゴムを標準試料として用いた。
 
Also, a vulcanized rubber sheet was prepared from the rubber composition, and an improved lambourne abrasion test based on JIS K6264-2: 2005 “vulcanized rubber and thermoplastic rubber—how to obtain wear resistance—part 2: test method”. To determine the wear resistance index.
The test conditions for the improved Lambourne abrasion test were as follows.

(Test conditions)
1) Test temperature: 23 ± 2 ° C
2) Test piece surface speed: 200 m / min
3) Grinding wheel surface speed: 140 m / min
4) Slip rate: 30%
5) Additional force of test piece: 2kgf
6) Dust fall amount: 15 g / min
7) Test time: 2 min
8) Type of reference blend: Rubber having an abrasion resistance index of about 170% with respect to BAM-E001 was used as a standard sample.
 また、ゴム組成物で加硫ゴムシートを作製し、JIS K6301:1975に基づき、引張強度を求めた。
 なお、試験は、ダンベル試験片2号を用い、引張速度500mm/minで実施した。
 これらの評価結果を下記表2に示す。
Moreover, the vulcanized rubber sheet was produced with the rubber composition, and the tensile strength was determined based on JIS K6301: 1975.
The test was conducted using a dumbbell test piece No. 2 at a tensile speed of 500 mm / min.
The evaluation results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記に示すように、特定の質量平均分子量のオイルを配合した実施例1、2のゴム組成物は、比較例1、2と同程度以下のムーニー粘度を示すものであるが、加硫ゴムに対して優れた機械強度や耐摩耗性を発揮させ得るものであることがわかる。
 なお、表2に記載の配合剤の詳細は、下記表3に示す通りである。
As shown above, the rubber compositions of Examples 1 and 2 blended with an oil having a specific mass average molecular weight exhibit a Mooney viscosity of about the same or lower than those of Comparative Examples 1 and 2, but the vulcanized rubber It can be seen that excellent mechanical strength and wear resistance can be exhibited.
In addition, the detail of the compounding agent described in Table 2 is as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(評価B:シリカの量)
 実施例1をベースにしてシリカの配合量を変更し、ゴム組成物のムーニー粘度、加硫ゴムの引張強度及び耐摩耗性(摩耗抵抗指数)についての評価を先の「評価A」と同様に実施した。
 このシリカの量を変更した配合、及び、それについての試験結果を下記表4に示す。
 なお、表4の配合剤の詳細は、先の表3に示した通りである。
(Evaluation B: amount of silica)
The silica compounding amount was changed based on Example 1, and the evaluation of the Mooney viscosity of the rubber composition, the tensile strength of the vulcanized rubber and the wear resistance (wear resistance index) was the same as in the previous “Evaluation A”. Carried out.
Table 4 below shows the composition in which the amount of silica was changed and the test results thereof.
Details of the compounding agents in Table 4 are as shown in Table 3 above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記の結果からは、シリカの配合量が35質量部を超えた時点で加硫ゴムの耐摩耗性が顕著に向上し、シリカの配合量が50質量部以上となった時点でムーニー粘度の値が大きくなることがわかった。
 即ち、上記の結果からは、ゴム組成物の優れた加工性と靴形成用部材の優れた耐摩耗性とを確実なものとする上において、ゴム100質量部に対するシリカの配合量は、35質量部を超え50質量部未満が好ましいことがわかる。
From the above results, when the compounding amount of silica exceeds 35 parts by mass, the abrasion resistance of the vulcanized rubber is remarkably improved, and when the compounding amount of silica becomes 50 parts by mass or more, the value of Mooney viscosity is obtained. Was found to be larger.
That is, from the above results, in order to ensure excellent processability of the rubber composition and excellent wear resistance of the shoe forming member, the compounding amount of silica with respect to 100 parts by mass of rubber is 35 masses. It is understood that the amount exceeding 50 parts and less than 50 parts by weight is preferable.
(評価C:ブタジエンゴムの割合)
 実施例1をベースにしてブタジエンゴムとエポキシ化天然ゴムとの配合割合を変更し、ゴム組成物のムーニー粘度、加硫ゴムの引張強度及び耐摩耗性(摩耗抵抗指数)についての評価を先の「評価A」と同様に実施した。
 このシリカの量を変更した配合、及び、それについての試験結果を下記表5に示す。
 なお、表5の配合剤の詳細も、先の表3に示した通りである。
(Evaluation C: Ratio of butadiene rubber)
Based on Example 1, the blending ratio of the butadiene rubber and the epoxidized natural rubber was changed, and the evaluation of the Mooney viscosity of the rubber composition, the tensile strength of the vulcanized rubber and the wear resistance (wear resistance index) was made earlier. It implemented similarly to "evaluation A".
Table 5 below shows the composition in which the amount of silica was changed and the test results thereof.
The details of the compounding agents in Table 5 are also as shown in Table 3 above.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記の結果からは、極性ポリマーたるENRが僅かでも加わることでゴム組成物がムーニー粘度を大きく低下させることがわかる。
 また、上記の結果からは、ENRの配合量が15質量部以上となった時点で加硫ゴムの耐摩耗性が低下し始めることがわかる。
 即ち、上記の結果から、ゴム組成物に極性ポリマーを含有させることが当該ゴム組成物に優れた加工性を付与し靴形成用部材に優れた耐摩耗性を付与する上において好ましいことがわかる。
 また、上記の結果から、全てのゴムの量を100質量部とした際に85質量部を超える割合でブタジエンゴムを含有させることがゴム組成物に優れた加工性を付与し靴形成用部材に優れた耐摩耗性を付与する上において好ましいことがわかる。
From the above results, it can be seen that the rubber composition greatly reduces the Mooney viscosity by adding even a small amount of ENR as a polar polymer.
From the above results, it can be seen that the wear resistance of the vulcanized rubber starts to decrease when the blending amount of ENR becomes 15 parts by mass or more.
That is, from the above results, it can be seen that it is preferable to add a polar polymer to the rubber composition in order to impart excellent workability to the rubber composition and to provide excellent wear resistance to the shoe forming member.
In addition, from the above results, when the amount of all rubbers is 100 parts by mass, adding butadiene rubber in a proportion exceeding 85 parts by mass gives excellent processability to the rubber composition and provides a shoe forming member. It can be seen that it is preferable for imparting excellent wear resistance.
(評価D:オイルの量)
 実施例1をベースにしてオイルの配合割合を変更し、ゴム組成物のムーニー粘度、加硫ゴムの引張強度及び耐摩耗性(摩耗抵抗指数)についての評価をこれまでと同様に実施した。
 このシリカの量を変更した配合、及び、それについての試験結果を下記表6に示す。
 なお、表6の配合剤の詳細も、先の表3に示した通りである。
(Evaluation D: amount of oil)
The blending ratio of the oil was changed based on Example 1, and the evaluation of the Mooney viscosity of the rubber composition, the tensile strength of the vulcanized rubber and the wear resistance (wear resistance index) was performed in the same manner as before.
Table 6 below shows the composition in which the amount of silica was changed and the test results thereof.
The details of the compounding agents in Table 6 are also as shown in Table 3 above.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記の結果からは、オイルは、配合量が5質量部でも十分な添加効果が発揮されることがわかる。
 また、上記の結果からは、オイルの配合量が15質量部を超えた時点で加硫ゴムの耐摩耗性が低下し始めることがわかる。
 即ち、上記の結果からは、ゴム組成物の優れた加工性と靴形成用部材の優れた耐摩耗性とを確実なものとする上において、ゴム100質量部に対する前記オイルの割合は5質量部以上15質量部未満であることが好ましいとわかる。
From the above results, it can be seen that the oil exhibits a sufficient addition effect even when the blending amount is 5 parts by mass.
Also, from the above results, it can be seen that the wear resistance of the vulcanized rubber begins to decrease when the amount of oil exceeds 15 parts by mass.
That is, from the above results, the ratio of the oil to 100 parts by mass of rubber is 5 parts by mass in order to ensure the excellent processability of the rubber composition and the excellent wear resistance of the shoe forming member. It can be seen that the content is preferably less than 15 parts by mass.
(評価E:極性ポリマーの種類)
 先の実施例9のENRに代えて、クロロプレンゴム(酸化マグネシウム0.4質量部含有品、以下「CR」ともいう)を用いてゴム組成物を作製し、実施例9と同様に評価を行った。
 結果を、下記表7に示す。
(Evaluation E: Type of polar polymer)
A rubber composition was prepared using chloroprene rubber (containing 0.4 parts by mass of magnesium oxide, hereinafter also referred to as “CR”) in place of the ENR of Example 9, and evaluated in the same manner as in Example 9. It was.
The results are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記の結果からは、極性ポリマーの添加効果は、ENR以外においても発揮されるものであることがわかる。 From the above results, it can be seen that the addition effect of the polar polymer is exhibited even in cases other than ENR.
 以上のように、本発明によれば、製造容易で機械強度や耐摩耗性に優れた靴形成用部材が得られることがわかる。 As described above, according to the present invention, it is understood that a shoe forming member that is easy to manufacture and excellent in mechanical strength and wear resistance can be obtained.
1:靴、2:アッパー材、3:ミッドソール、4:アウターソール 1: Shoes, 2: Upper material, 3: Midsole, 4: Outer sole

Claims (7)

  1.  ブタジエンゴムとシリカとを含む靴形成用ゴム組成物であって、
     オイルをさらに含有し、該オイルの質量平均分子量が400を超え1800未満である靴形成用ゴム組成物。
    A rubber composition for shoe formation comprising butadiene rubber and silica,
    A rubber composition for shoe formation, further comprising oil, wherein the oil has a mass average molecular weight of more than 400 and less than 1800.
  2.  カルボニル基、アミノ基、水酸基、ニトロ基、クロロ基、ブロモ基、フルオロ基、及び、エポキシ基からなる群より選ばれる1以上の極性基を有する極性ポリマーをさらに含有する請求項1記載の靴形成用ゴム組成物。 The shoe formation according to claim 1, further comprising a polar polymer having one or more polar groups selected from the group consisting of a carbonyl group, an amino group, a hydroxyl group, a nitro group, a chloro group, a bromo group, a fluoro group, and an epoxy group. Rubber composition.
  3.  含有する全てのゴムの量を100質量部とした際に前記ブタジエンゴムが85質量部を超える割合で含まれている請求項1又は2記載の靴形成用ゴム組成物。 The rubber composition for shoe formation according to claim 1 or 2, wherein the butadiene rubber is contained in a proportion exceeding 85 parts by mass when the amount of all the rubbers contained is 100 parts by mass.
  4.  含有する全てのゴム100質量部に対する前記シリカの割合が35質量部を超え50質量部未満である請求項1乃至3の何れか1項に記載の靴形成用ゴム組成物。 The rubber composition for shoe formation according to any one of claims 1 to 3, wherein a ratio of the silica with respect to 100 parts by mass of all the rubber contained is more than 35 parts by mass and less than 50 parts by mass.
  5.  含有する全てのゴム100質量部に対する前記オイルの割合が5質量部以上15質量部未満である請求項1乃至4の何れか1項に記載の靴形成用ゴム組成物。 The rubber composition for shoe formation according to any one of claims 1 to 4, wherein the ratio of the oil to 100 parts by mass of all the rubbers contained is 5 parts by mass or more and less than 15 parts by mass.
  6.  請求項1乃至5の何れか1項記載の靴形成用ゴム組成物によって形成されてなる靴形成用部材。 A member for shoe formation formed by the rubber composition for shoe formation according to any one of claims 1 to 5.
  7.  請求項1乃至5の何れか1項記載の靴形成用ゴム組成物によって形成された靴底を備えている靴。
     
    A shoe comprising a shoe sole formed by the rubber composition for shoe formation according to any one of claims 1 to 5.
PCT/JP2014/083754 2014-12-19 2014-12-19 Rubber composition for forming shoes, member for forming shoes, and shoe WO2016098257A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016564557A JP6427596B2 (en) 2014-12-19 2014-12-19 Shoe forming rubber composition, shoe forming member, and shoe
PCT/JP2014/083754 WO2016098257A1 (en) 2014-12-19 2014-12-19 Rubber composition for forming shoes, member for forming shoes, and shoe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083754 WO2016098257A1 (en) 2014-12-19 2014-12-19 Rubber composition for forming shoes, member for forming shoes, and shoe

Publications (1)

Publication Number Publication Date
WO2016098257A1 true WO2016098257A1 (en) 2016-06-23

Family

ID=56126174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083754 WO2016098257A1 (en) 2014-12-19 2014-12-19 Rubber composition for forming shoes, member for forming shoes, and shoe

Country Status (2)

Country Link
JP (1) JP6427596B2 (en)
WO (1) WO2016098257A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100414A (en) * 2019-12-18 2020-05-05 温州欧盛鞋业股份有限公司 Women's shoes with wear-resistant soles and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066652A1 (en) * 2005-12-09 2007-06-14 Jsr Corporation Ultraviolet-curable polymer composition, resin molded article and method for producing same
WO2007114203A1 (en) * 2006-03-31 2007-10-11 Zeon Corporation Conjugated diene rubber, method for producing the same, rubber composition for tire, and tire
JP2007284542A (en) * 2006-04-14 2007-11-01 Toyo Tire & Rubber Co Ltd Rubber composition and pneumatic tire
JP2011026368A (en) * 2009-07-21 2011-02-10 Sumitomo Rubber Ind Ltd Rubber composition and studless tire
JP2011080023A (en) * 2009-10-09 2011-04-21 Sumitomo Rubber Ind Ltd Rubber composition for tire and winter tire
JP2012184361A (en) * 2011-03-07 2012-09-27 Toyo Tire & Rubber Co Ltd Rubber composition and pneumatic tire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339430A (en) * 1992-06-11 1993-12-21 Toyo Tire & Rubber Co Ltd Rubber composition
JP5356116B2 (en) * 2009-06-02 2013-12-04 東洋ゴム工業株式会社 Rubber composition and pneumatic tire
JP5436953B2 (en) * 2009-06-30 2014-03-05 東洋ゴム工業株式会社 Rubber composition and pneumatic tire
WO2011045855A1 (en) * 2009-10-15 2011-04-21 株式会社アシックス Rubber member for laser bonding and shoe
JP5568699B1 (en) * 2013-05-22 2014-08-06 株式会社アシックス Sole for shoes and shoes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066652A1 (en) * 2005-12-09 2007-06-14 Jsr Corporation Ultraviolet-curable polymer composition, resin molded article and method for producing same
WO2007114203A1 (en) * 2006-03-31 2007-10-11 Zeon Corporation Conjugated diene rubber, method for producing the same, rubber composition for tire, and tire
JP2007284542A (en) * 2006-04-14 2007-11-01 Toyo Tire & Rubber Co Ltd Rubber composition and pneumatic tire
JP2011026368A (en) * 2009-07-21 2011-02-10 Sumitomo Rubber Ind Ltd Rubber composition and studless tire
JP2011080023A (en) * 2009-10-09 2011-04-21 Sumitomo Rubber Ind Ltd Rubber composition for tire and winter tire
JP2012184361A (en) * 2011-03-07 2012-09-27 Toyo Tire & Rubber Co Ltd Rubber composition and pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100414A (en) * 2019-12-18 2020-05-05 温州欧盛鞋业股份有限公司 Women's shoes with wear-resistant soles and preparation method thereof

Also Published As

Publication number Publication date
JPWO2016098257A1 (en) 2017-09-28
JP6427596B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP5900036B2 (en) Rubber composition for tire tread
JP6379558B2 (en) Method for producing rubber composition for tire
JP6481255B2 (en) Rubber composition for tire
JP6420203B2 (en) Method for producing rubber composition
JP2012158710A (en) Rubber composition and pneumatic tire using the same
JP2016210937A (en) Rubber composition and tire
JP2015209540A (en) Rubber composition for tire tread
JP2008169296A (en) Rubber composition and pneumatic tire produced by using the same
JP4573523B2 (en) Silica masterbatch, method for producing the same, and rubber composition using silica masterbatch
JP5265115B2 (en) Rubber composition and pneumatic tire using the same
JP2016006135A (en) Rubber composition and pneumatic tire using the same
JP6582596B2 (en) Rubber composition
JP6540263B2 (en) Rubber composition
JP2019137281A (en) Rubber composition for tire
JP6427596B2 (en) Shoe forming rubber composition, shoe forming member, and shoe
JP2005133017A (en) Rubber composition for sidewall
JP5700063B2 (en) Rubber composition for tire
JP2018070755A (en) Method for producing tire rubber composition
JP2009263584A (en) Rubber composition and pneumatic tire using the same
JP2006241297A (en) Rubber composition
JP6035453B2 (en) Shoe forming member, method for manufacturing shoe forming member, and shoe
JP6307977B2 (en) Modified polybutadiene and method for producing the same
JP7372524B2 (en) Rubber composition for tires and pneumatic tires using the same
JP4194825B2 (en) Rubber composition
JP2018131560A (en) Rubber composition for tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564557

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908467

Country of ref document: EP

Kind code of ref document: A1