WO2016095814A1 - Bridged ring compounds as hepatitis c virus inhibitors and preparation thereof - Google Patents

Bridged ring compounds as hepatitis c virus inhibitors and preparation thereof Download PDF

Info

Publication number
WO2016095814A1
WO2016095814A1 PCT/CN2015/097489 CN2015097489W WO2016095814A1 WO 2016095814 A1 WO2016095814 A1 WO 2016095814A1 CN 2015097489 W CN2015097489 W CN 2015097489W WO 2016095814 A1 WO2016095814 A1 WO 2016095814A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
hcv
acid salt
inorganic acid
salt
Prior art date
Application number
PCT/CN2015/097489
Other languages
French (fr)
Inventor
Yingjun Zhang
Hongming XIE
Bailin HU
Zhiqiang Liu
Jiancun Zhang
Qinghong Fang
Original Assignee
Sunshine Lake Pharma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunshine Lake Pharma Co., Ltd. filed Critical Sunshine Lake Pharma Co., Ltd.
Publication of WO2016095814A1 publication Critical patent/WO2016095814A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings

Definitions

  • the present disclosure relates to the field of medicine, and more particularly to compounds for treating Hepatitis C virus (HCV) infection, compositions comprising the compounds, uses of the compounds or the compositions thereof, and using methods thereof.
  • HCV Hepatitis C virus
  • the invention relates to use of the compounds and the pharmaceutical compositions as NS5A protein inhibitors.
  • HCV is a major human pathogen, infecting an estimated 170 million persons worldwide—roughly five times the number infected by human immunodeficiency virus type 1. A substantial fraction of these HCV infected individuals develop serious progressive liver disease, including cirrhosis and hepatocellular carcinoma. Chronic HCV infection is thus a major worldwide cause of liver-related premature mortality.
  • HCV therapy employs a combination of alpha-interferon and ribavirin, leading to sustained efficacy in 40%of patients.
  • Recent clinical results demonstrate that pegylated alpha-interferon is superior to unmodified alpha-interferon as monotherapy.
  • a substantial fraction of patients do not have a sustained reduction in viral load.
  • Many patients do not durably respond to treatment due to side effects of the treatment.
  • new and effective methods of treating HCV infection are urgently needed.
  • HCV is a positive-stranded RNA virus. Based on a comparison of the deduced amino acid sequence and the extensive similarity in the 5’ untranslated region, HCV has been classified as a separate genus in the Flaviviridae family. All members of the Flaviviridae family have enveloped virions that contain a positive stranded RNA genome encoding all known virus-specific proteins via translation of a single, uninterrupted, open reading frame (ORF) .
  • ORF open reading frame
  • Considerable heterogeneity is found within nucleotide and encoded amino acid sequence throughout the HCV genome. At least seven major genotypes have been characterized, and more than 50 subtypes have been described.
  • RNA is translated into a polyprotein that is cleaved into ten individual proteins.
  • structural proteins followed by E1 and E2.
  • non-structural proteins namely, NS2, NS3, NS4A, NS4B, NS5A and NS5B, which play a function role in the HCV lifecycle (see, for example, Lindenbach et al., Nature, 2005, 436, 933-938) .
  • HCV NS5A protein is described, for example, in Tan et al., Virology, 2001, 284, 1-12; and in Park et al., J. Biol. Chem., 2003, 278, 30711-30718.
  • the above structure is a mixture of diastereoisomers.
  • the properties of a drug in a mixture form are uncertain to some extent, such as the physical property and the chemical property, they are different between diastereoisomers, so the radio of which cannot be control exactly usually in the preparing process, and the biological properties of which are difficult to reproduce, that is to say the quality of the diastereoisomers drug cannot be control easily in the preparing process.
  • any one single configuration of the diastereoisomers as a research object is better than the diastereoisomers mixture, the properties of which has repeatability; repeatability is a very important basis for drug research and development, any studies on properties such as pharmacodynamic properties and pharmacokinetic properties are based on repeatability.
  • the diastereoisomers were isolated, and the synthesis and pharmacokinetic properties of acid addition salts of the single isomer were studied, the acid addition salts have good water solubility and pharmacokinetics properties.
  • the present invention provides both single isomers of the bridge compound and pharmaceutically acceptable salts; their properties can be control easily in the preparing process and which have good repeatability, one of the most important conditions is satisfied as a drug research object; and also provides a composition of the single isomer or a pharmaceutically acceptable salt thereof, and a method of preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder.
  • the compound of the invention or the pharmaceutical composition thereof has a good inhibitory effect for HCV infection, especially for HCV NS5A protein.
  • a compound having structure (I) or (Ia) or a stereoisomer, a tautomer, an N-oxide, a hydrate, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof:
  • the pharmaceutically acceptable salt is an inorganic acid salt.
  • the inorganic acid salt is a haloid acid salt, halogen series containing oxygen inorganic acid salt, carbon series containing oxygen inorganic acid salt, nitrogen series containing oxygen inorganic acid salt, boron series containing oxygen inorganic acid salt, silicon series containing oxygen inorganic acid salt, phosphorus series containing oxygen inorganic acid salt or sulphur series inorganic acid salt.
  • the inorganic acid salt is hydrochloride, hydrosulfate, nitrate or dihydrogen phosphate.
  • the inorganic acid salt is hydrochloride, sulfate, hydrosulfate, nitrate, hydrobromide, hydriodate, carbonate, hydrocarbonate, sulfite, perchlorate, persulfate, hemisulfate, bisulfate, phosphate, hydrogen phosphate, dihydrogen phosphate or metaphosphate.
  • the pharmaceutically acceptable salt is an organic acid salt.
  • the organic acid salt is a carboxylate, sulfonate, sulfinate or carbothioate.
  • the organic acid salt is mesilate, citrate, benzene sulfonate, tosilate, tartrate, fumarate, maleate, 2-naphthalene sulfonate or oxalate.
  • the organic acid salt is formate, acetate, benzoate, malonate, succinate, mesilate, ethanesulfonate, citrate, benzene sulfonate, tosilate, malate, tartrate, fumarate, glycolate, hydroxyethyl sulphonate, maleate, lactate, lactobionate, pamoate, salicylate, galactarate, gluceptate, mandelate, gluconate, 1, 2-ethanedisulfonate, 2-naphthalene sulfonate, oxalate, trifluoroacetate, adipate, alginate, ascorbate, aspartate, benzene sulfonate, butyrate, camphorate, camphor sulfonate, cyclopentyl propionate, digluconate, lauryl sulfate, ethyl sulfonate, glycerophosphate,
  • the pharmaceutically acceptable salt is a monosalt.
  • the pharmaceutically acceptable salt is a disalt.
  • provided herein is an intermediate for preparing the compound of Formula (I) having Formula (III) or (V) , or a salt thereof; or provided herein is an intermediate for preparing the compound of Formula (Ia) having Formula (IIIa) or (Va) , or a salt thereof;
  • Pg is an amino protecting group selected from Boc, Cbz, Ac, Tfa, Bn, PMB, Dmb, Sem, Tos, Fmoc, Alloc, Teoc and Trt.
  • a pharmaceutical composition comprising the compound of structure (I) or (Ia) , or a stereoisomer, a tautomer, an N-oxide, a hydrate, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof, and a pharmaceutically acceptable carrier, excipient, diluent, adjuvant, vehicle or a combination thereof.
  • the pharmaceutical composition further comprises an anti-HCV agent, wherein the anti-HCV agent is different from the compound.
  • the anti-HCV agent is interferon ⁇ -2b, pegylated interferon ⁇ , interferon ⁇ -2a, pegylated interferon ⁇ -2a, consensus interferon- ⁇ , interferon ⁇ , ribavirin, IL-2, IL-6, IL-12, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, imiquimod, an inosine5’ -monophosphate dehydrogenase inhibitor, amantadine, rimantadine, bavituximab, hepatitis C immune globulin, a HCV neutralizing polyclonal antibody, boceprevir, telaprevir, erlotinib, daclatasvir, simeprevir, asunaprevir, vaniprevir, faldaprevir, paritaprevir, danoprevir, sovaprevir, grazoprevir,
  • the anti-HCV agent is used for inhibiting the HCV replication process and/or a function of a HCV viral protein; wherein the HCV replication process comprises HCV entry, HCV uncoating, HCV translation, HCV replication, HCV assembly and HCV egress; and wherein the HCV viral protein is a metalloproteinase, NS2, NS3, NS4A, NS4B, NS5A or NS5B, or an internal ribosome entry site (IRES) and inosine-5’ -monophosphate dehydrogenase (IMPDH) required in HCV viral replication.
  • the HCV replication process comprises HCV entry, HCV uncoating, HCV translation, HCV replication, HCV assembly and HCV egress
  • the HCV viral protein is a metalloproteinase, NS2, NS3, NS4A, NS4B, NS5A or NS5B, or an internal ribosome entry site (IRES) and inosine-5’
  • provided herein is use of the compound or the pharmaceutical composition thereof of the invention in the manufacture of a medicament for preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder in a patient.
  • provided herein is the compound or the pharmaceutical composition thereof of the invention for use in preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder in a patient.
  • provided herein is a method of preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder in a patient comprising administering to the patient a therapeutically effective amount of the compound or the pharmaceutical composition of the invention.
  • grammatical articles “a” , “an” and “the” are intended to include “at least one” or “one or more” unless otherwise indicated herein or clearly contradicted by the context.
  • the articles are used herein to refer to one or more than one (i.e. at least one) of the grammatical objects of the article.
  • a component means one or more components, and thus, possibly, more than one component is contemplated and may be employed or used in an implementation of the described embodiments.
  • subject refers to an animal. Typically the animal is a mammal. A subject also refers to for example, primates (e.g., humans, male or female) , cows, sheep, goats, horses, dogs, cats, rabbits, rats, mice, fish, birds and the like. In certain embodiments, the subject is a primate. In yet other embodiments, the subject is a human.
  • primates e.g., humans, male or female
  • the subject is a primate.
  • the subject is a human.
  • patient refers to a human (including adults and children) or other animal. In one embodiment, “patient” refers to a human.
  • Stereoisomers refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space. Stereoisomers include enantiomer, diastereomers, conformer (rotamer) , geometric (cis/trans) isomer, atropisomer, etc.
  • Chiral refers to molecules which have the property of non-superimposability of the mirror image partner, while the term “achiral” refers to molecules which are superimposable on their mirror image partner.
  • Enantiomers refer to two stereoisomers of a compound which are non-superimposable mirror images of one another.
  • Diastereomer refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g. melting points, boiling points, spectral properties or biological activities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography such as HPLC.
  • optically active compounds Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light.
  • the prefixes D and L, or R and S are used to denote the absolute configuration of the molecule about its chiral center (s) .
  • the prefixes d and l or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or l meaning that the compound is levorotatory.
  • a compound prefixed with (+) or d is dextrorotatory.
  • a specific stereoisomer may be referred to as an enantiomer, and a mixture of such stereoisomers is called an enantiomeric mixture.
  • a 50: 50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process.
  • any asymmetric atom (e.g., carbon or the like) of the compound (s) disclosed herein can be present in racemic or enantiomerically enriched, for example the (R) -, (S) -or (R, S) -configuration.
  • each asymmetric atom has at least 50 %enantiomeric excess, at least 60 %enantiomeric excess, at least 70 %enantiomeric excess, at least 80 %enantiomeric excess, at least 90 %enantiomeric excess, at least 95 %enantiomeric excess, or at least 99 %enantiomeric excess in the (R) -or (S) -configuration.
  • the compounds can be present in the form of one of the possible stereoisomers or as mixtures thereof, such as racemates and diastereoisomer mixtures, depending on the number of asymmetric carbon atoms.
  • Optically active (R) -and (S) -isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. If the compound contains a double bond, the substituent may be E or Z configuration. If the compound contains a disubstituted cycloalkyl, the cycloalkyl substituent may have a cis-or trans-configuration.
  • Any resulting mixtures of stereoisomers can be separated on the basis of the physicochemical differences of the constituents, into the pure or substantially pure geometric isomers, enantiomers, diastereomers, for example, by chromatography and/or fractional crystallization.
  • racemates of final products or intermediates can be resolved into the optical antipodes by methods known to those skilled in the art, e.g., by separation of the diastereomeric salts thereof.
  • Racemic products can also be resolved by chiral chromatography, e.g., high performance liquid chromatography (HPLC) using a chiral adsorbent.
  • HPLC high performance liquid chromatography
  • Preferred enantiomers can also be prepared by asymmetric syntheses. See, for example, Jacques, et al., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981) ; Principles of Asymmetric Synthesis (2 nd Ed.
  • tautomer or “tautomeric form” refers to structural isomers of different energies which are interconvertible via a low energy barrier. Where tautomerization is possible (e.g. in solution) , a chemical equilibrium of tautomers can be reached.
  • proton tautomers also known as prototropic tautomers
  • Valence tautomers include interconversions by reorganization of some of the bonding electrons.
  • keto-enol tautomerization is the interconversion of pentane-2, 4-dione and 4-hydroxypent-3-en-2-one tautomers.
  • tautomerization is phenol-keto tautomerization.
  • a specific example of phenol-keto tautomerization is the interconversion of pyridin-4-ol and pyridin-4 (lH) -one tautomers. Unless otherwise stated, all tautomeric forms of the compounds disclosed herein are within the scope of the invention.
  • Annular tautomerism is a type of prototropic tautomerism wherein a proton can occupy two or more positions of a heterocyclic system; both of the tautomers coexist and convert to each other rapidly.
  • 1H-and 3H-imidazole 1H, 2H-and 4H-1, 2, 4-triazole; 1H-and 2H-isobenzazole.
  • the pharmaceutically acceptable salts are well known in the art. For example, Berge et al., describe pharmaceutically acceptable salts in detail in J. Pharmacol Sci, 1977, 66: 1-19, which is incorporated herein by reference.
  • Some non-limiting examples of the pharmaceutically salt include salts of an amino group formed with inorganic acids, such as haloid acid salt, halogen series containing oxygen inorganic acid salt, carbon series containing oxygen inorganic acid salt, nitrogen series containing oxygen inorganic acid salt, boron series containing oxygen inorganic acid salt, silicon series containing oxygen inorganic acid salt, phosphorus series containing oxygen inorganic acid salt or sulphur series inorganic acid salt, specificly such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as carboxylic acid, sulfonic acid, sulfinic acid, carbothioic acid, specificly such as acetic acid, oxalic acid, maleic acid, tart
  • salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, laurylsulfate, malate, sodium malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionat
  • Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N + (C 1-4 alkyl) 4 salts.
  • This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil soluble or dispersible products may be obtained by such quaternization.
  • Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, etc.
  • Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, C 1-8 sulfonate or aryl sulfonate.
  • pharmaceutical composition refers to a mixture of one or more salts of the compounds described herein or a physiologically/pharmaceutically acceptable salt or prodrug thereof and other chemical components such as physiologically/pharmaceutically acceptable carriers and excipients.
  • the purpose of the pharmaceutical composition is to facilitate administration of the compound on living organisms
  • the term “treat” , “treating” or “treatment” of any disease or disorder refers in one embodiment, to ameliorating the disease or disorder (i.e., slowing or arresting or reducing the development of the disease or at least one of the clinical symptoms thereof) .
  • “treat” , “treating” or “treatment” refers to alleviating or ameliorating at least one physical parameter including those which may not be discernible by the patient.
  • “treat” , “treating” or “treatment” refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom) , physiologically, (e.g., stabilization of a physical parameter) , or both.
  • “treat” , “treating” or “treatment” refers to preventing or delaying the onset or development or progression of the disease or disorder.
  • Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids, e.g., acetate, aspartate, benzoate, besylate, bromide/hydrobromide, bicarbonate/carbonate, bisulfate/sulfate, camphorsulfonate, chloride/hydrochloride, chlortheophyllonate, citrate, ethandisulfonate, fumarate, gluceptate, gluconate, glucuronate, hippurate, hydroiodide/iodide, isethionate, lactate, lactobionate, laurylsulfate, malate, maleate, malonate, mandelate, mesylate, methylsulphate, naphthoate, napsylate, nicotinate, nitrate, octadecanoate, oleate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydrogen
  • Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, sulfosalicylic acid, and the like.
  • Haloid acid salt refers to a salt derived from a reaction of haloid acid and a base.
  • haloid acid salt refers to a salt derived from a reaction of haloid acid and a base.
  • haloid acid salt for example, hydrofluoride, hydrochloride, hydrobromide, hydriodate and the like.
  • Halogen series containing oxygen inorganic acid salt refers to a salt derived from a reaction of halogen series containing oxygen inorganic acid and a base.
  • halogen series containing oxygen inorganic acid and a base For example, pypocholoride, chlorate, perchlorate, hypobromite, bromated, hypoiodite, iodate, periodate and the like.
  • Carbon series containing oxygen inorganic acid salt refers to a salt derived from a reaction of carbon series containing oxygen inorganic acid and a base. For example, carbonate, bicarbonate and the like.
  • Nonrogen series containing oxygen inorganic acid salt refers to a salt derived from a reaction of nitrogen series containing oxygen inorganic acid and a base. For example, nitrite, subnitrate, nitrate and the like.
  • “Boron series containing oxygen inorganic acid salt” refers to a salt derived from a reaction of bonron series containing oxygen inorganic acid and a base. For example, metaborate, ortho-borate, perborate and the like.
  • Silicon series containing oxygen inorganic acid salt refers to a salt derived from a reaction of silicon series containing oxygen inorganic acid and a base. For example, metasilicate, silicate and the like.
  • Phosphorus series containing oxygen inorganic acid salt refers to a salt derived from a reaction of phosphorus series containing oxygen inorganic acid and a base.
  • phosphorus series containing oxygen inorganic acid salt refers to a salt derived from a reaction of phosphorus series containing oxygen inorganic acid and a base.
  • “Sulphur series inorganic acid salt” refers to a salt derived from a reaction of sulphur inorganic acid and a base. For example, hydrogensulfat, sulfite, hydrosulphite, sulfate, hydrosulfate, peroxy (mono) sulfate, thiosulfite, thiosulfate, dithionate, pyrosulfate, peroxydisulfate and the like.
  • “Monosalt” as presented herein means a salt wherein 1 eq of the corresponding free base of the compound of the invention is combined with 0.7 to 1.3 eq, preferably 0.9 to 1.1 eq, more preferably 1 eq of the acid as mentioned above.
  • “Disalt” as presented herein means a salt wherein 1 eq of the corresponding free base of the compound of the invention is combined with 1.7 to 2.3 eq, preferably 1.9 to 2.1 eq, more preferably 2 eq of the acid as mentioned above.
  • any formula given herein is also intended to represent isotopically unenriched forms as well as isotopically enriched forms of the compounds.
  • Isotopically enriched compounds have structures depicted by the formulas given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number.
  • isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, and chlorine, such as 2 H (deuterium, D) , 3 H, 11 C, 13 C, 14 C, 15 N, 17 O, 18 O, 18 F, 31 P, 32 P, 35 S, 36 Cl, 125 I, respectively.
  • the compounds of the invention include isotopically enriched compounds as defined herein, for example those into which radioactive isotopes, such as 3 H, 14 C and 18 F, or those into which non-radioactive isotopes, such as 2 H and 13 C are present.
  • isotopically enriched compounds are useful in metabolic studies (with 14 C) , reaction kinetic studies (with, for example 2 H or 3 H) , detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays, or in radioactive treatment of patients.
  • PET positron emission tomography
  • SPECT single-photon emission computed tomography
  • an 18F-enriched compound may be particularly desirable for PET or SPECT studies.
  • Isotopically-enriched compounds of Formula (I) or (Ia) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the accompanying Examples and Preparations using an appropriate isotopically-labeled reagent in place of the non-labeled reagent previously employed.
  • isotopic enrichment factor means the ratio between the isotopic abundance and the natural abundance of a specified isotope.
  • a substituent in a compound of this invention is denoted deuterium
  • such compound has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5%deuterium incorporation at each designated deuterium atom) , at least 4000 (60%deuterium incorporation) , at least 4500 (67.5%deuterium incorporation) , at least 5000 (75%deuterium incorporation) , at least 5500 (82.5%deuterium incorporation) , at least 6000 (90%deuterium incorporation) , at least 6333.3 (95%deuterium incorporation) , at least 6466.7 (97%deuterium incorporation) , at least 6600 (99%deuterium incorporation) , or at least 6633.3 (99.5%deuterium incorporation) .
  • Pharmaceutically acceptable solvates in accordance with the invention include those wherein the solvent of crystallization may be isotopically substituted, e.g. D 2 O, acetone-d 6 , DMSO-d
  • inhibiting HCV viral protein should be broadly understood, which comprises inhibiting the expression level of HCV viral protein, inhibiting activity level of HCV viral protein, viral assembly and egress level.
  • the expression level of HCV protein includes but not limited to translation level of the viral protein, posttranslational modification level of the viral protein, replication level of genetic material in offsprings and so on.
  • the pharmaceutical composition disclosed herein comprises any one of the compounds.
  • the pharmaceutical composition further comprises a pharmaceutically acceptable carrier, excipient, diluent, adjuvant, vehicle or a combination thereof.
  • the pharmaceutical composition can be used for treating HCV infection or a HCV disorder, especially, it is great for inhibiting HCV NS5A protein.
  • some non-limiting examples of materials which can serve as pharmaceutically acceptable carriers include ion exchanger; aluminum; alumina; aluminum stearate; lecithin; serum protein such as human serum albumin; buffer substance such as phosphate; glycine; sorbic acid; potassium sorbate; partial glyceride mixture of saturated vegetable fatty acid; water; electrolyte such as protamine sulfate, disodium hydrogen phosphate and potassium hydrogen phosphate; salt such as sodium chloride and zinc salt; colloidal silica; magnesium trisilicate; polyvinyl pyrrolidone; polyacrylate; waxe; polyethylene-polyoxypropylene-block polymer; wool fat; sugar such as lactose, glucose and sucrose; starch such as corn starch and potato starch; cellulose and its derivative such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such
  • the pharmaceutical composition disclosed herein further comprises an anti-HCV agent, wherein the anti-HCV agent is different from the compound.
  • the anti-HCV agent may be any other known anti-HCV agent except the compound described herein, such as interferon, ribavirin, IL-2, IL-6, IL-12, a compound that enhances the development of a type 1 helper T cell response, an interfering RNA, an anti-sense RNA, imiquimod, an inosine-5’ -monophosphate dehydrogenase inhibitor, amantadine, rimantadine, bavituximab, hepatitis C immune globulin ( ) , boceprevir, telaprevir, erlotinib, daclatasvir, simeprevir, asunaprevir, vaniprevir, faldaprevir, paritaprevir (ABT-450) , danoprevir, sovaprevir, grazopre
  • the interferon is interferon ⁇ -2b, pegylated interferon ⁇ , interferon ⁇ -2a, pegylated interferon ⁇ -2a, consensus interferon- ⁇ , interferon ⁇ or a combination thereof.
  • the anti-HCV agent inhibits HCV replication process, a function of HCV viral protein or a combination thereof.
  • the HCV replication process disclosed herein comprises of HCV entry, HCV uncoating, HCV translation, HCV replication, HCV assembly and HCV egress.
  • the HCV viral protein disclosed herein is or comprises a metalloproteinase, non-structural protein NS2, NS3, NS4A, NS4B, NS5A or NS5B, or an internal ribosome entry site (IRES) or inosine-5’ -monophosphate dehydrogenase (IMPDH) required in HCV viral replication.
  • a metalloproteinase non-structural protein NS2, NS3, NS4A, NS4B, NS5A or NS5B
  • IVS internal ribosome entry site
  • IMPDH inosine-5’ -monophosphate dehydrogenase
  • therapeutically effective amounts of a compound of the invention, as well as pharmaceutically acceptable salts thereof may be administered as the raw chemical, it is possible to present the active ingredient as a pharmaceutical compositions, which include therapeutically effective amounts of compounds of the invention or pharmaceutically acceptable salts thereof, and one or more pharmaceutically acceptable carriers, diluents, or excipients.
  • therapeutically effective amount refers to the total amount of each active component that is sufficient to show a meaningful patient benefit (e.g., a reduction in viral load) .
  • a meaningful patient benefit e.g., a reduction in viral load
  • the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially, or simultaneously.
  • the compounds of the invention and pharmaceutically acceptable salts thereof, are as described above.
  • the carrier (s) , diluents (s) , or excipient (s) must be acceptable in the sense of being compatible with the other ingredients of the formulation and not deleterious to recipient thereof.
  • a process for the preparation of a pharmaceutical formulation including admixing a compound of the invention, or a pharmaceutically acceptable salt thereof, with one or more pharmaceutically acceptable carriers, diluents, or excipients.
  • pharmaceutically acceptable refers to those compounds, materials, composition, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of patients without excessive toxicity, irritation, allergic response, or other problem complication commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
  • compositions may be presented in unit dose forms containing a predetermined amount of active ingredient per unit dose. Dosage levels of between about 0.01 and about 250 milligram per kilogram ( “mg/kg” ) body weight per day, preferably between about 0.05 and about 100 mg/kg body weight per day of the compounds of the present disclosure are typical in a monotherapy for the prevention and treatment of HCV mediated disease. Typically, the pharmaceutical compositions of this disclosure will be administered from about 1 to about 5 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy.
  • mg/kg milligram per kilogram
  • the amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending on the condition being treated, the severity of the condition, the time of administration, the route of administration, the rate of excretion of the compound employed, the duration of treatment, and the age, gender, weight, and condition of the patient.
  • Preferred unit dosage formulations are those containing a daily dose or sub-dose, as herein above recited, or an appropriate fraction thereof, of an active ingredient. Treatment may be initiated with small dosages substantially less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached.
  • the compound is most desirably administered at a concentration level that will generally afford antivirally effective results without causing any harmful or deleterious side effects.
  • compositions of this disclosure comprise a combination of a compound of the present disclosure and one or more additional therapeutic or prophylactic agent
  • both the compound and the additional agent are usually present at dosage levels of between about 10 to 150%, and more preferably between about 10 and 80%of the dosage normally administered in a monotherapy regimen.
  • Pharmaceutical formulations may be adapted for administration by any appropriate route, for example by the oral (including buccal or sublingual) , rectal, nasal, topical (including buccal, sublingual, or transdermal) , vaginal, or parenteral (including subcutaneous, intracutaneous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional, intravenous, or intradermal injections or infusions) route.
  • Such formulations may be prepared by any method known in the art of pharmacy, for example by bringing into association the active ingredient with the carrier (s) or excipient (s) . Oral administration of administration by injection is preferred.
  • compositions adapted for oral administration may be presented as discrete units such as capsules of tablets; powders or granules; solution or suspensions in aqueous or non-aqueous liquids; edible foams or whips; or oil-in-water liquid emulsions or water-in-oil emulsions.
  • the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, etc.
  • an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, etc.
  • Powders are prepared by comminuting the compound to a suitable fine size and mixing with a similarly comminuted pharmaceutical carrier such as an edible carbohydrate, as, for example, starch or mannitol. Flavoring, preservative, dispersing, and coloring agent can also be present.
  • Capsules are maded by preparing a powder mixture, as described above, and filling formed gelatin sheaths.
  • Glidants and lubricants such as colloidal silica, talc, magnesium stearate, calcium stearate, or solid polyethylene glycol can be added to the powder mixture before the filling operation.
  • a disintegrating or solubilizing agent such as agar-agar, calcium carbonate, or sodium carbonate can also be added to improve the availability of the medicament when the capsule is ingested.
  • suitable binders include starch, gelatin, natural sugars such as glucose or ⁇ -lactose, natural paraguttas such as acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, etc.
  • Lubricants used in these dosage forms include sodium oleate, sodium chloride, etc.
  • Disintegrators include, without limitation, starch, methyl cellulose, agar, betonite, xanthan gum, etc.
  • Tablets are formulated, for example, by preparing a powder mixture, granulating or slugging, adding a lubricant and disintegrant, and pressing into tablets.
  • a powder mixture is prepared by mixing the compound, suitable comminuted, with a diluents or base as described above, and optionally, with a binder such as carboxymethylcellulose, an aliginate, gelating, or polyvinyl pyrrolidone, a solution retardant such as paraffin, a resorption accelerator such as a quaternary salt and/or and absorption agent such as betonite, kaolin, or dicalcium phosphate.
  • a binder such as carboxymethylcellulose, an aliginate, gelating, or polyvinyl pyrrolidone
  • a solution retardant such as paraffin
  • a resorption accelerator such as a quaternary salt and/or
  • absorption agent such as betonite, kaolin, or dicalcium phosphate.
  • the powder mixture can be granulated by wetting with a binder such as syrup, starch paste, acadia mucilage, or solution of cellulosic or polymeric materials and forcing through a screen.
  • a binder such as syrup, starch paste, acadia mucilage, or solution of cellulosic or polymeric materials and forcing through a screen.
  • the powder mixture can be run through the tablet machine and the result is imperfectly formed slugs broken into granules.
  • the granules can be lubricated to prevent sticking to the tablet forming dies by means of the addition of stearic acid, a stearate salt, talc, or mineral oil.
  • the lubricated mixture is then compressed into tablets.
  • the compounds of the present disclosure can also be combined with a free flowing inert carrier and compressed into tablets directly without going through the granulating or slugging steps.
  • a clear or opaque protective coating consisting of a sealing coat of shellac,
  • Oral fluids such as solution, syrups, and elixirs can be prepared in dosage unit form so that a given quantity contains a predetermined amount of the compound.
  • Syrups can be prepared by dissolving the compound in a suitably flavored aqueous solution, while elixirs are prepared through the use of a non-toxic vehicle.
  • Solubilizers and emulsifiers such as ethoxylated isostearyl alcohols and polyoxyethylene sorbitol ethers, preservatives, flavor additive such as peppermint oil or natural sweeteners, or saccharin or other artificial sweeteners, etc can also be added.
  • dosage unit formulations for oral administration can be microencapsulated.
  • the formulation can also be prepared to prolong or sustain the release as for example by coating of embedding particulate material in polymers, wax, or the like.
  • the compounds of formula (I) or (Ia) , and pharmaceutically acceptable salts thereof, can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles.
  • liposomes can be formed from a variety of phopholipids, such as cholesterol, stearylamine, or phophatidylcholines.
  • the compounds of formula (I) or (Ia) and pharmaceutically acceptable salts thereof may also be delivered by the use of monoclonal antibodies as individual carrier to which the compound molecules are coupled.
  • the compounds may also be coupled with soluble polymers as targetable drug carriers.
  • Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamidephenol, polyhydroxyethylaspartamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues.
  • the compounds may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, poly ( ⁇ -caprolactone) , polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates, and cross-linked or amphipathic block copolymers of hydrogels.
  • a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, poly ( ⁇ -caprolactone) , polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates, and cross-linked or amphipathic block copolymers of hydrogels.
  • compositions adapted for transdermal administration may be presented as discrete patches intended to remain in intimate contact with the epidermis of the recipient for a prolonged period of time.
  • the active ingredient may be delivered from the patch by iontophoresis as generally described in Pharmacol. Res., 1986, 3 (6) , 318.
  • compositions adapted for topical administration may be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols, oils or transdermal patch.
  • compositions adapted for rectal administration may be presented as suppositories or as enemas.
  • compositions adapted for nasal administration wherein the carrier is a solid include a course powder having a particle size for example in the range 20 to 500 microns which is administered in the manner in which snuff is taken, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose.
  • suitable formulations wherein the carrier is a liquid, for administration as a nasal spray or nasal drops, include aqueous or oil solutions of the active ingredient.
  • Fine particle dusts or mists which may be generated by means of various types of metered, dose pressurized aerosols, nebulizers, or insufflators.
  • compositions adapted for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams, or spray formulations.
  • compositions adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain antioxidants, buffers, bacteriostats, and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
  • the formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
  • Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules, and tablets.
  • formulations may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
  • the HCV replication process comprises of HCV entry, HCV uncoating, HCV translation, HCV replication, HCV assembly and HCV egress.
  • the HCV viral protein is non-structural protein or an internal ribosome entry site (IRES) or inosine-5’ -monophosphate dehydrogenase (IMPDH) required in HCV viral replication.
  • IRS internal ribosome entry site
  • IMPDH inosine-5’ -monophosphate dehydrogenase
  • any one of the compounds or the pharmaceutical compositions disclosed herein can be used for treating HCV infection or a HCV disorder, especially it is effective as inhibitor of the non-structural 5A (NS5A) protein of HCV.
  • a method which comprises administering the compound or the pharmaceutical composition disclosed herein, further comprising administering to the patient additional anti-HCV agents (combination therapy) , wherein the anti-HCV agent is an interferon, ribavirin, IL-2, IL-6, IL-12, a compound that enhances the development of a type 1 helper T cell response, an interfering RNA, an anti-sense RNA, imiquimod, an inosine-5’ -monophosphate dehydrogenase inhibitor, amantadine, rimantadine, bavituximab, hepatitis C immune globulin ( ), boceprevir, telaprevir, erlotinib, daclatasvir, simeprevir, asunaprevir, vaniprevir, faldaprevir, paritaprevir (ABT-450) , danoprevir, sovaprevir, grazoprevir (MK-5172) , ve
  • interferon is interferon ⁇ -2b, pegylated interferon ⁇ , interferon ⁇ -2a, pegylated interferon ⁇ -2a, consensus interferon- ⁇ , interferon ⁇ or a combination thereof.
  • the treatment method that includes administering a compound or composition disclosed herein can further include administering to the patient an additional anti-HCV agent, wherein the additional anti-HCV drug is administered together with a compound or composition disclosed herein as a single dosage form or separately from the compound or composition as part of a multiple dosage form.
  • the additional anti-HCV agent may be administered at the same time as a compound disclosed herein or at a different time. In the latter case, administration may be staggered by, for example, 6 hours, 12 hours, 1 day, 2 days, 3 days, 1 week, 2 weeks, 3 weeks, 1 month, or 2 months.
  • an “effective amount” or “effective dose” of the compound or pharmaceutically acceptable composition is that amount effective for treating or lessening the severity of one or more of the aforementioned disorders.
  • the compounds and compositions, according to the method disclosed herein, may be administered using any amount and any route of administration effective for treating or lessening the severity of the disorder or disease. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the infection, the particular agent, its mode of administration, etc.
  • a compound or composition can also be administered with one or more other therapeutic agents, as discussed above.
  • the compounds disclosed herein may be prepared by methods described herein, wherein the substituents are as defined for Formula (I) or (Ia) , above, except where further noted.
  • the following non-limiting schemes and examples are presented to further exemplify the invention.
  • Anhydrous tetrahydrofuran, dioxane, toluene, and ether were obtained by refluxing the solvent with sodium.
  • Anhydrous dichloromethane and chloroform were obtained by refluxing the solvent with calcium hydride.
  • Ethyl acetate, petroleum ether, hexane, N, N-dimethylacetamide and N, N-dimethylformamide were treated with anhydrous sodium sulfate prior to use.
  • reaction flasks were typically fitted with rubber septa for the introduction of substrates and reagents via syringe. Glassware was oven dried and/or heat dried.
  • MS data were also determined on an Agilent 6320 series LC-MS spectrometer equipped with G1312A binary pumps, a G1316A TCC (Temperature Control of Column, maintained at 30 °C) , a G1329A autosampler and a G1315B DAD detector were used in the analysis.
  • An ESI source was used on the LC-MS spectrometer.
  • MS data were also determined on an Agilent 6120 series LC-MS spectrometer equipped with G1311A Quaternary pump, a G1316A TCC (Temperature Control of Column, maintained at 30 °C) , a G1329A autosampler and a G1315D DAD detector were used in the analysis.
  • An ESI source was used on the LC-MS spectrometer.
  • a silica-based coated with polysaccharide derivatives normal phase chiral chromatographic column was used in preparative HPLC in the invention; specifically, the column is AD-H (10*250 mm, 5 ⁇ m) or AD-H (20*250 mm, 5 ⁇ m) .
  • the mobile phase is a mixture of two or more of methanol, ethanol, isopropanol, acetonitrile, n-hexane, n-pentane, isohexane, n-heptane, diethylamine, triethylamine, trifluoroacetic acid or glacial acetic acid; more specifically, the volume ratio of n-hexane, n-pentane, isohexane or n-heptane in the mobile phase mixture is from 50%to 100%, the volume ratio of methanol, ethanol, isopropanol or acetonitrile in the mobile mixture phase is from 0%to 50%, the sum total of volume ratio of every component is 100%; more specifically, the volume ratio of n-hexane in the mobile phase mixture is from 80%to 100%, the volume ratio of ethanol in the mobile phase mixture is from 0%to 20%, the sum total of volume ratio of every component is 100%; the determine wavelength is from 280 nm
  • Ion chromatography was used in the present invention to detect the inorganic anions described herein.
  • the inorganic anion was detected on an ion chromatograph (850 Professional Ic Metrohm) , and AS23 anion exchange column (250 ⁇ 4.0 mm, Dionex) was used in the detection.
  • the column temperature was at 30 °C
  • the eluent was consisted of 4.5 mM Na 2 CO 3 and 0.8 mM NaHCO 3
  • the flow rate of eluent was 1.0 mL/min
  • the injection volume was 100 ⁇ L
  • the equipment was ran for 20 to 25 min, and the results were measured by an suppressed conductivity detector.
  • the data of a single crystal was collected on a single-crystal diffractometer (Agilent Technologies Gemini A Ultra) , using Cu K ⁇ radiation, the X-ray tube voltage was about 40 kv, the X-ray tube current was about 40 mA, a total of 12498 reflections was collected by ⁇ scans.
  • Figure 1 is the single crystal stereochemical structure projection of compound 0-1
  • Figure 2 is the cell accumulation projection of compound 0-1.
  • Step 1) preparation of compound 0-1 and compound 0-1a
  • Step 2) preparation of compound 1-2 and compound 1-2a
  • Compound 1-2 (0.03 g, yield: 30%) was prepared by using compound 0-1 and compound 0-2 and referring to the method described in CN 201310337556 and WO 2014019344;
  • Compound 1-2a (0.2 g, yield: 81%) was prepared by using the same method as above.
  • Compound 1-3a (170 mg, 92%) was prepared by using compound 1-2a and according the preparing method of compound 1-3.
  • the sample ground to a fine powder was weighed and placed in a certain amount of solvent at 25°C ⁇ 2°C; The mixture was shook strongly for 30 sec every 5 min; The mixture was observed in 30 min, which was deemed to be dissolved completely if the solute particles cannot be seen.
  • AUC area under curve
  • Cl clearance
  • C max the maximum concentration
  • MRT INF mean residence time
  • T 1/2 half life
  • T max time of maximum concentration
  • V ss steady-state volume of distribution
  • F bioavailability.
  • a solution having a concentration of 1 mg/mL was prepared by adding the compound of the present invention into a solvent of 5%DMSO + 5%Solutol + 90%Saline; the male SD rats were administered by intravenous injection (iv) at a dose of 2 mg/kg and by gavage (po) at a dose of 5 mg/kg respectively with the above solution after 12 hours of fasting.
  • Plasma samples were collected after administering at different time points; the plasma samples were treated by using liquid-liquid extraction method.
  • the drug concentrations were measured by using LC-MS/MS and the pharmacokinetic parameters were calculated by Winnonlin software. The results were shown in table 2:
  • N/A Not avaliable
  • Grouped male Beagle dogs were administered with capsules of compound 1 or salts thereof respectively by oral at a dose of 5 mg/kg.
  • Blood samples were collected at 8 or 9 time points within 24 hours, and the standard curve were established based on the concentrations of the samples in a suitable range; AB SCIEX API4000 was used to detect the concentration of the test compound in plasma samples in an MRM mode, and quantitative analysis was performed.
  • Pharmacokinetic parameters were calculated according to drug concentration-time curve using noncompartmental method by WinNonLin 6.3 software. The results were shown in table 3:
  • the compound of the present invention can inhibit HCV through inhibiting other than NS5A.
  • the compound of the present invention can inhibit HCV replicons; in other embodiment, the compound of the present invention can inhibit NS5A.
  • the compound of the present invention can inhibit various genotypes of HCV.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Provided herein is a compound of structure (I) or (Ia), or a stereoisomer, a tautomer, an N-oxide, a hydrate, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof. Furthermore provided herein are pharmaceutical compositions containing the compound of structure (I) or (Ia) and use of the compounds or pharmaceutical compositions thereof in the treatment of HCV infection.

Description

BRIDGED RING COMPOUNDS AS HEPATITIS C VIRUS INHIBITORS AND PREPARATION THEREOF
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to Chinese Patent Serial No. 201410783855.6, filed with the State Intellectual Property Office of China on Dec 16, 2014, which is hereby incorporated by reference in its entirety.
FIELD
The present disclosure relates to the field of medicine, and more particularly to compounds for treating Hepatitis C virus (HCV) infection, compositions comprising the compounds, uses of the compounds or the compositions thereof, and using methods thereof. In particular, the invention relates to use of the compounds and the pharmaceutical compositions as NS5A protein inhibitors.
BACKGROUND
HCV is a major human pathogen, infecting an estimated 170 million persons worldwide—roughly five times the number infected by human immunodeficiency virus type 1. A substantial fraction of these HCV infected individuals develop serious progressive liver disease, including cirrhosis and hepatocellular carcinoma. Chronic HCV infection is thus a major worldwide cause of liver-related premature mortality.
Presently, the most effective HCV therapy employs a combination of alpha-interferon and ribavirin, leading to sustained efficacy in 40%of patients. Recent clinical results demonstrate that pegylated alpha-interferon is superior to unmodified alpha-interferon as monotherapy. However, even with experimental therapeutic regimens involving combinations of pegylated alpha-interferon and ribavirin, a substantial fraction of patients do not have a sustained reduction in viral load. Many patients do not durably respond to treatment due to side effects of the treatment. Thus, new and effective methods of treating HCV infection are urgently needed.
HCV is a positive-stranded RNA virus. Based on a comparison of the deduced amino acid sequence and the extensive similarity in the 5’ untranslated region, HCV has been classified as a separate genus in the Flaviviridae family. All members of the Flaviviridae family have enveloped virions that contain a positive stranded RNA genome encoding all known virus-specific proteins via translation of a single, uninterrupted, open reading frame (ORF) .  Considerable heterogeneity is found within nucleotide and encoded amino acid sequence throughout the HCV genome. At least seven major genotypes have been characterized, and more than 50 subtypes have been described. In HCV infected cells, viral RNA is translated into a polyprotein that is cleaved into ten individual proteins. At the amino terminus are structural proteins, followed by E1 and E2. Additionally, there are six non-structural proteins, namely, NS2, NS3, NS4A, NS4B, NS5A and NS5B, which play a function role in the HCV lifecycle (see, for example, Lindenbach et al., Nature, 2005, 436, 933-938) .
SUMMARY
Compounds which are used for treating HCV-infected patients are desired which selectively inhibit HCV viral replication. In particular, compounds which are effective to inhibit the function of the NS5A protein are desired. The HCV NS5A protein is described, for example, in Tan et al., Virology, 2001, 284, 1-12; and in Park et al., J. Biol. Chem., 2003, 278, 30711-30718.
The following structure was disclosed in patent applications WO2014019344 and CN201310337556.5
Figure PCTCN2015097489-appb-000001
Because the terminal carbon atoms on the bridge ring are chiral, the above structure is a mixture of diastereoisomers. In the medicine field, the properties of a drug in a mixture form are uncertain to some extent, such as the physical property and the chemical property, they are different between diastereoisomers, so the radio of which cannot be control exactly usually in the preparing process, and the biological properties of which are difficult to reproduce, that is to say the quality of the diastereoisomers drug cannot be control easily in the preparing process. Any one single configuration of the diastereoisomers as a research object is better than the diastereoisomers mixture, the properties of which has repeatability; repeatability is a very important basis for drug research and development, any studies on properties such as pharmacodynamic properties and pharmacokinetic properties are based on repeatability.
In the present invention, the diastereoisomers were isolated, and the synthesis and pharmacokinetic properties of acid addition salts of the single isomer were studied, the acid addition salts have good water solubility and pharmacokinetics properties.
The present invention provides both single isomers of the bridge compound and pharmaceutically acceptable salts; their properties can be control easily in the preparing process and which have good repeatability, one of the most important conditions is satisfied as a drug research object; and also provides a composition of the single isomer or a pharmaceutically acceptable salt thereof, and a method of preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder. The compound of the invention or the pharmaceutical composition thereof has a good inhibitory effect for HCV infection, especially for HCV NS5A protein.
In one aspect, provided herein is a compound having structure (I) or (Ia) , or a stereoisomer, a tautomer, an N-oxide, a hydrate, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof:
Figure PCTCN2015097489-appb-000002
In some embodiments, the pharmaceutically acceptable salt is an inorganic acid salt.
In other embodiments, the inorganic acid salt is a haloid acid salt, halogen series containing oxygen inorganic acid salt, carbon series containing oxygen inorganic acid salt, nitrogen series containing oxygen inorganic acid salt, boron series containing oxygen inorganic acid salt, silicon series containing oxygen inorganic acid salt, phosphorus series containing oxygen inorganic acid salt or sulphur series inorganic acid salt.
In other embodiments, the inorganic acid salt is hydrochloride, hydrosulfate, nitrate or dihydrogen phosphate.
In other embodiments, the inorganic acid salt is hydrochloride, sulfate, hydrosulfate, nitrate, hydrobromide, hydriodate, carbonate, hydrocarbonate, sulfite, perchlorate, persulfate, hemisulfate, bisulfate, phosphate, hydrogen phosphate, dihydrogen phosphate or metaphosphate. 
In some embodiments, the pharmaceutically acceptable salt is an organic acid salt.
In other embodiments, the organic acid salt is a carboxylate, sulfonate, sulfinate or carbothioate.
In other embodiments, the organic acid salt is mesilate, citrate, benzene sulfonate, tosilate, tartrate, fumarate, maleate, 2-naphthalene sulfonate or oxalate.
In other embodiments, the organic acid salt is formate, acetate, benzoate, malonate, succinate, mesilate, ethanesulfonate, citrate, benzene sulfonate, tosilate, malate, tartrate, fumarate, glycolate, hydroxyethyl sulphonate, maleate, lactate, lactobionate, pamoate, salicylate, galactarate, gluceptate, mandelate, gluconate, 1, 2-ethanedisulfonate, 2-naphthalene sulfonate, oxalate, trifluoroacetate, adipate, alginate, ascorbate, aspartate, benzene sulfonate, butyrate, camphorate, camphor sulfonate, cyclopentyl propionate, digluconate, lauryl sulfate, ethyl sulfonate, glycerophosphate, enanthate, caproate, 2-hydroxy-ethanesulfonate, laurate, lauryl sulfate, nicotinate, oleate, palmitate, pamoate, pectate, 3-phenyl propionate, picrate, pivalerate, propionate, stearate, thiocyanate, undecanoate or valerate.
In some embodiments, the pharmaceutically acceptable salt is a monosalt.
In some embodiments, the pharmaceutically acceptable salt is a disalt.
In another aspect, provided herein is an intermediate for preparing the compound of Formula (I) having Formula (III) or (V) , or a salt thereof; or provided herein is an intermediate for preparing the compound of Formula (Ia) having Formula (IIIa) or (Va) , or a salt thereof;
Figure PCTCN2015097489-appb-000003
wherein the Pg is an amino protecting group selected from Boc, Cbz, Ac, Tfa, Bn, PMB, Dmb, Sem, Tos, Fmoc, Alloc, Teoc and Trt.
In another aspect, provided herein is a pharmaceutical composition comprising the compound of structure (I) or (Ia) , or a stereoisomer, a tautomer, an N-oxide, a hydrate, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof, and a pharmaceutically acceptable carrier, excipient, diluent, adjuvant, vehicle or a combination thereof.
In some embodiments, the pharmaceutical composition further comprises an anti-HCV agent, wherein the anti-HCV agent is different from the compound.
In other embodiments, wherein the anti-HCV agent is interferon α-2b, pegylated interferon α, interferon α-2a, pegylated interferon α-2a, consensus interferon-α, interferon γ, ribavirin, IL-2, IL-6, IL-12, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, imiquimod, an inosine5’ -monophosphate dehydrogenase inhibitor, amantadine, rimantadine, bavituximab, hepatitis C immune globulin, a HCV neutralizing polyclonal antibody, boceprevir, telaprevir, erlotinib, daclatasvir, simeprevir, asunaprevir, vaniprevir, faldaprevir, paritaprevir, danoprevir, sovaprevir, grazoprevir, vedroprevir, BZF-961, GS-9256, narlaprevir, ANA975, ombitasvir, EDP239, ravidasvir, velpatasvir, samatasvir, elbasvir, MK-8325, GSK-2336805, PPI-461, ciluprevir, sovaprevir, ACH-1095, VX-985, IDX-375, VX-500, VX-813, PHX-1766, PHX-2054, IDX-136, IDX-316, modithromycin, VBY-376, TMC-649128, mericitabine, sofosbuvir, INX-189, IDX-184, IDX102, R1479, UNX-08189, PSI-6130, PSI-938, PSI-879, nesbuvir, HCV-371, VCH-916, lomibuvir, setrobuvir, MK-3281, dasabuvir, ABT-072, filibuvir, deleobuvir, tegobuvir, A-837093, JKT-109, Gl-59728, GL-60667, AZD-2795, TMC647055, ledipasvir, odalasvir, ritonavir, alloferon, nivolumab, WF-10, nitazoxanide, multiferon, nevirapine, ACH-3422, alisporivir, MK-3682, MK-8408, GS-9857, CD-AdNS3, pibrentasvir, RG-101, glecaprevir, BZF-961, INO-8000, MBL-HCV1, CIGB-230, TG-2349, procvax, CB-5300, miravirsen, chronvac-C, MK-1075, ACH-0143422, WS-007, MK-7680, MK-2248, MK-8408, IDX-21459, AV-4025, MK-8876, GSK-2878175, MBX-700, AL-335, JNJ-47910382, AL-704, ABP-560, TD-6450, EDP-239, SB-9200, ITX-5061, ID-12 or a combination thereof.
In other embodiments, the anti-HCV agent is used for inhibiting the HCV replication process and/or a function of a HCV viral protein; wherein the HCV replication process comprises HCV entry, HCV uncoating, HCV translation, HCV replication, HCV assembly and HCV egress; and wherein the HCV viral protein is a metalloproteinase, NS2, NS3, NS4A, NS4B, NS5A or NS5B, or an internal ribosome entry site (IRES) and inosine-5’ -monophosphate dehydrogenase (IMPDH) required in HCV viral replication.
In another aspect, provided herein is use of the compound or the pharmaceutical composition thereof of the invention in the manufacture of a medicament for preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder in a patient.
In another aspect, provided herein is the compound or the pharmaceutical composition thereof of the invention for use in preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder in a patient.
In another aspect, provided herein is a method of preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder in a patient comprising administering to the patient a therapeutically effective amount of the compound or the pharmaceutical composition of the invention.
The foregoing merely summarizes certain aspects disclosed herein and is not intended to be limiting in nature. These aspects and other aspects and embodiments are described more fully below.
DETAILED DESCRIPTION
DEFINITIONS AND GENERAL TERMINOLOGY
Unless otherwise stated, the terms of the invention used in specification and claims have the definitions blow.
Reference will now be made in detail to certain embodiments disclosed herein, examples of which are illustrated in the accompanying structures and formulas. The invention is intended to cover all alternatives, modifications, and equivalents that may be included within the scope disclosed herein as defined by the claims. One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice disclosed herein. Described herein is in no way limited to the methods and materials. In the event that one or more of the incorporated literature, patents, and similar materials differ from or contradict this application, including but not limited to defined terms, term usage, described techniques, or the like, this application controls.
It is further appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, can also be provide in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, can also be provided separately or in any suitable subcombination.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one skilled in the art to which this invention belongs. All patents and publications referred to herein are incorporated by reference in their entirety.
As used herein, the following definitions shall be applied unless otherwise indicated. For purposes disclosed herein, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, and the Handbook of Chemistry and Physics, 75th Ed. 1994. Additionally, general principles of organic chemistry are described in Sorrell et al., “Organic Chemistry” , University Science Books, Sausalito: 1999, and Smith et al., “March's Advanced Organic Chemistry” , John Wiley &Sons, New York: 2007, all of which are incorporated herein by reference in their entireties.
The grammatical articles “a” , “an” and “the” , as used herein, are intended to include “at least one” or “one or more” unless otherwise indicated herein or clearly contradicted by the context. Thus, the articles are used herein to refer to one or more than one (i.e. at least one) of the grammatical objects of the article. By way of example, “a component” means one or more components, and thus, possibly, more than one component is contemplated and may be employed or used in an implementation of the described embodiments.
The term “subject” refers to an animal. Typically the animal is a mammal. A subject also refers to for example, primates (e.g., humans, male or female) , cows, sheep, goats, horses, dogs, cats, rabbits, rats, mice, fish, birds and the like. In certain embodiments, the subject is a primate. In yet other embodiments, the subject is a human.
As used herein, “patient” refers to a human (including adults and children) or other animal. In one embodiment, “patient” refers to a human.
The term “comprising” is meant to be open ended, including the indicated component but not excluding other elements.
“Stereoisomers” refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space. Stereoisomers include enantiomer, diastereomers, conformer (rotamer) , geometric (cis/trans) isomer, atropisomer, etc.
“Chiral” refers to molecules which have the property of non-superimposability of the mirror image partner, while the term “achiral” refers to molecules which are superimposable on their mirror image partner.
“Enantiomers” refer to two stereoisomers of a compound which are non-superimposable mirror images of one another.
“Diastereomer” refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties,  e.g. melting points, boiling points, spectral properties or biological activities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography such as HPLC.
Stereochemical definitions and conventions used herein generally follow Parker et al., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York and Eliel et al., “Stereochemistry of Organic Compounds” , John Wiley &Sons, Inc., New York, 1994.
Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes D and L, or R and S, are used to denote the absolute configuration of the molecule about its chiral center (s) . The prefixes d and l or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or l meaning that the compound is levorotatory. A compound prefixed with (+) or d is dextrorotatory. A specific stereoisomer may be referred to as an enantiomer, and a mixture of such stereoisomers is called an enantiomeric mixture. A 50: 50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process.
Any asymmetric atom (e.g., carbon or the like) of the compound (s) disclosed herein can be present in racemic or enantiomerically enriched, for example the (R) -, (S) -or (R, S) -configuration. In certain embodiments, each asymmetric atom has at least 50 %enantiomeric excess, at least 60 %enantiomeric excess, at least 70 %enantiomeric excess, at least 80 %enantiomeric excess, at least 90 %enantiomeric excess, at least 95 %enantiomeric excess, or at least 99 %enantiomeric excess in the (R) -or (S) -configuration.
Depending on the choice of the starting materials and procedures, the compounds can be present in the form of one of the possible stereoisomers or as mixtures thereof, such as racemates and diastereoisomer mixtures, depending on the number of asymmetric carbon atoms. Optically active (R) -and (S) -isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. If the compound contains a double bond, the substituent may be E or Z configuration. If the compound contains a disubstituted cycloalkyl, the cycloalkyl substituent may have a cis-or trans-configuration.
Any resulting mixtures of stereoisomers can be separated on the basis of the  physicochemical differences of the constituents, into the pure or substantially pure geometric isomers, enantiomers, diastereomers, for example, by chromatography and/or fractional crystallization.
Any resulting racemates of final products or intermediates can be resolved into the optical antipodes by methods known to those skilled in the art, e.g., by separation of the diastereomeric salts thereof. Racemic products can also be resolved by chiral chromatography, e.g., high performance liquid chromatography (HPLC) using a chiral adsorbent. Preferred enantiomers can also be prepared by asymmetric syntheses. See, for example, Jacques, et al., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981) ; Principles of Asymmetric Synthesis (2nd Ed. Robert et al., Elsevier, Oxford, UK, 2012) ; Eliel et al., Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962) ; and Wilen et al., Tables of Resolving Agents and Optical Resolutions p. 268 (E.L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, IN, 1972) . Chiral Separation Techniques: A Practical Approach (Subramanian, G. Ed., Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim, Germany, 2007) .
The term “tautomer” or “tautomeric form” refers to structural isomers of different energies which are interconvertible via a low energy barrier. Where tautomerization is possible (e.g. in solution) , a chemical equilibrium of tautomers can be reached. For example, proton tautomers (also known as prototropic tautomers) include interconversions via migration of a proton, such as keto-enol and imine-enamine isomerizations. Valence tautomers include interconversions by reorganization of some of the bonding electrons. A specific example of keto-enol tautomerization is the interconversion of pentane-2, 4-dione and 4-hydroxypent-3-en-2-one tautomers. Another example of tautomerization is phenol-keto tautomerization. A specific example of phenol-keto tautomerization is the interconversion of pyridin-4-ol and pyridin-4 (lH) -one tautomers. Unless otherwise stated, all tautomeric forms of the compounds disclosed herein are within the scope of the invention.
Annular tautomerism is a type of prototropic tautomerism wherein a proton can occupy two or more positions of a heterocyclic system; both of the tautomers coexist and convert to each other rapidly. For instance, 1H-and 3H-imidazole; 1H, 2H-and 4H-1, 2, 4-triazole; 1H-and 2H-isobenzazole. The fragment structures disclosed herein, such as Aa and Ab, or Ba and Bb, which are annular tautomers. Due to the coexistence of both tautomers, the present invention only discloses one of tautomers for simple, i.e. the one annular tautomer is described herein  indicates that the other annular tautomer also be described at the same time. For example, although only the compound containing fragment Aa is disclosed herein, a tautomer thereof, i.e. the compound containing fragment Ab substantially is provided herein at the same time; although only the compound containing fragment Ba is provided herein, a tautomer thereof, i.e. the compound containing fragment Bb substantially is provided herein at the same time.
Figure PCTCN2015097489-appb-000004
Specifically, although only the structure (I) is disclosed herein, the structures (I-1) , (I-2) and (I-3) are also disclosed herein at same time as mentioned above; the structures (I-1) , (I-2) , (I-3) and (I) coexist, they are equivalent.
Figure PCTCN2015097489-appb-000005
The pharmaceutically acceptable salts are well known in the art. For example, Berge et al., describe pharmaceutically acceptable salts in detail in J. Pharmacol Sci, 1977, 66: 1-19, which is incorporated herein by reference. Some non-limiting examples of the pharmaceutically salt include salts of an amino group formed with inorganic acids, such as haloid acid salt, halogen series containing oxygen inorganic acid salt, carbon series containing oxygen inorganic  acid salt, nitrogen series containing oxygen inorganic acid salt, boron series containing oxygen inorganic acid salt, silicon series containing oxygen inorganic acid salt, phosphorus series containing oxygen inorganic acid salt or sulphur series inorganic acid salt, specificly such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as carboxylic acid, sulfonic acid, sulfinic acid, carbothioic acid, specificly such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, laurylsulfate, malate, sodium malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, stearate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, etc. Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N+ (C1-4 alkyl) 4 salts. This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil soluble or dispersible products may be obtained by such quaternization. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, etc. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, C1-8 sulfonate or aryl sulfonate.
The term “pharmaceutical composition” refers to a mixture of one or more salts of the compounds described herein or a physiologically/pharmaceutically acceptable salt or prodrug thereof and other chemical components such as physiologically/pharmaceutically acceptable carriers and excipients. The purpose of the pharmaceutical composition is to facilitate administration of the compound on living organisms
As used herein, the term “treat” , “treating” or “treatment” of any disease or disorder refers in one embodiment, to ameliorating the disease or disorder (i.e., slowing or arresting or reducing the development of the disease or at least one of the clinical symptoms thereof) . In another embodiment “treat” , “treating” or “treatment” refers to alleviating or ameliorating at  least one physical parameter including those which may not be discernible by the patient. In yet another embodiment, “treat” , “treating” or “treatment” refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom) , physiologically, (e.g., stabilization of a physical parameter) , or both. In yet another embodiment, “treat” , “treating” or “treatment” refers to preventing or delaying the onset or development or progression of the disease or disorder.
Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids, e.g., acetate, aspartate, benzoate, besylate, bromide/hydrobromide, bicarbonate/carbonate, bisulfate/sulfate, camphorsulfonate, chloride/hydrochloride, chlortheophyllonate, citrate, ethandisulfonate, fumarate, gluceptate, gluconate, glucuronate, hippurate, hydroiodide/iodide, isethionate, lactate, lactobionate, laurylsulfate, malate, maleate, malonate, mandelate, mesylate, methylsulphate, naphthoate, napsylate, nicotinate, nitrate, octadecanoate, oleate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydrogen phosphate, polygalacturonate, propionate, stearate, succinate, subsalicylate, tartrate, tosylate and trifluoroacetate salts.
Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, sulfosalicylic acid, and the like.
“Haloid acid salt” refers to a salt derived from a reaction of haloid acid and a base. For example, hydrofluoride, hydrochloride, hydrobromide, hydriodate and the like.
“Halogen series containing oxygen inorganic acid salt” refers to a salt derived from a reaction of halogen series containing oxygen inorganic acid and a base. For example, pypocholoride, chlorate, perchlorate, hypobromite, bromated, hypoiodite, iodate, periodate and the like.
“Carbon series containing oxygen inorganic acid salt” refers to a salt derived from a reaction of carbon series containing oxygen inorganic acid and a base. For example, carbonate, bicarbonate and the like.
“Nitrogen series containing oxygen inorganic acid salt” refers to a salt derived from a  reaction of nitrogen series containing oxygen inorganic acid and a base. For example, nitrite, subnitrate, nitrate and the like.
“Boron series containing oxygen inorganic acid salt” refers to a salt derived from a reaction of bonron series containing oxygen inorganic acid and a base. For example, metaborate, ortho-borate, perborate and the like.
“Silicon series containing oxygen inorganic acid salt” refers to a salt derived from a reaction of silicon series containing oxygen inorganic acid and a base. For example, metasilicate, silicate and the like.
“Phosphorus series containing oxygen inorganic acid salt” refers to a salt derived from a reaction of phosphorus series containing oxygen inorganic acid and a base. For example, metaphosphite, metaphosphate, phosphate, hydrophosphate, dihydric phosphate, phosphate, pyrophosphate, pyrophosphite, hypophosphite, peroxy (mono) phosphate, peroxydiphosphate, hypophosphate and the like.
“Sulphur series inorganic acid salt” refers to a salt derived from a reaction of sulphur inorganic acid and a base. For example, hydrogensulfat, sulfite, hydrosulphite, sulfate, hydrosulfate, peroxy (mono) sulfate, thiosulfite, thiosulfate, dithionate, pyrosulfate, peroxydisulfate and the like.
“Monosalt” as presented herein means a salt wherein 1 eq of the corresponding free base of the compound of the invention is combined with 0.7 to 1.3 eq, preferably 0.9 to 1.1 eq, more preferably 1 eq of the acid as mentioned above.
“Disalt” as presented herein means a salt wherein 1 eq of the corresponding free base of the compound of the invention is combined with 1.7 to 2.3 eq, preferably 1.9 to 2.1 eq, more preferably 2 eq of the acid as mentioned above.
Any formula given herein is also intended to represent isotopically unenriched forms as well as isotopically enriched forms of the compounds. Isotopically enriched compounds have structures depicted by the formulas given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, and chlorine, such as 2H (deuterium, D) , 3H, 11C, 13C, 14C, 15N, 17O, 18O, 18F, 31P, 32P, 35S, 36Cl, 125I, respectively.
In another aspect, the compounds of the invention include isotopically enriched  compounds as defined herein, for example those into which radioactive isotopes, such as 3H, 14C and 18F, or those into which non-radioactive isotopes, such as 2H and 13C are present. Such isotopically enriched compounds are useful in metabolic studies (with 14C) , reaction kinetic studies (with, for example 2H or 3H) , detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays, or in radioactive treatment of patients. In particular, an 18F-enriched compound may be particularly desirable for PET or SPECT studies. Isotopically-enriched compounds of Formula (I) or (Ia) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the accompanying Examples and Preparations using an appropriate isotopically-labeled reagent in place of the non-labeled reagent previously employed.
Further, substitution with heavier isotopes, particularly deuterium (i.e., 2H or D) may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements or an improvement in therapeutic index. It is understood that deuterium in this context is regarded as a substituent of a compound of Formula (I) or (Ia) . The concentration of such a heavier isotope, specifically deuterium, may be defined by the isotopic enrichment factor. The term “isotopic enrichment factor” as used herein means the ratio between the isotopic abundance and the natural abundance of a specified isotope. If a substituent in a compound of this invention is denoted deuterium, such compound has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5%deuterium incorporation at each designated deuterium atom) , at least 4000 (60%deuterium incorporation) , at least 4500 (67.5%deuterium incorporation) , at least 5000 (75%deuterium incorporation) , at least 5500 (82.5%deuterium incorporation) , at least 6000 (90%deuterium incorporation) , at least 6333.3 (95%deuterium incorporation) , at least 6466.7 (97%deuterium incorporation) , at least 6600 (99%deuterium incorporation) , or at least 6633.3 (99.5%deuterium incorporation) . Pharmaceutically acceptable solvates in accordance with the invention include those wherein the solvent of crystallization may be isotopically substituted, e.g. D2O, acetone-d6, DMSO-d6.
It should be noted that the term of “inhibiting HCV viral protein” should be broadly understood, which comprises inhibiting the expression level of HCV viral protein, inhibiting activity level of HCV viral protein, viral assembly and egress level. The expression level of HCV  protein includes but not limited to translation level of the viral protein, posttranslational modification level of the viral protein, replication level of genetic material in offsprings and so on.
COMPOSITION, FORMULATIONS AND ADMINISTRATION OF COMPOUNDS OF THE INVENTION
The pharmaceutical composition disclosed herein comprises any one of the compounds. In some embodiments, the pharmaceutical composition further comprises a pharmaceutically acceptable carrier, excipient, diluent, adjuvant, vehicle or a combination thereof. The pharmaceutical composition can be used for treating HCV infection or a HCV disorder, especially, it is great for inhibiting HCV NS5A protein.
In some embodiments, some non-limiting examples of materials which can serve as pharmaceutically acceptable carriers include ion exchanger; aluminum; alumina; aluminum stearate; lecithin; serum protein such as human serum albumin; buffer substance such as phosphate; glycine; sorbic acid; potassium sorbate; partial glyceride mixture of saturated vegetable fatty acid; water; electrolyte such as protamine sulfate, disodium hydrogen phosphate and potassium hydrogen phosphate; salt such as sodium chloride and zinc salt; colloidal silica; magnesium trisilicate; polyvinyl pyrrolidone; polyacrylate; waxe; polyethylene-polyoxypropylene-block polymer; wool fat; sugar such as lactose, glucose and sucrose; starch such as corn starch and potato starch; cellulose and its derivative such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oil such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycol such as propylene glycol and polyethylene glycol; ester such as ethyl oleate and ethyl laurate; agar; buffering agent such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer’s solution; ethyl alcohol and phosphate buffer solution, as well as other non-toxic compatible lubricant such as sodium lauryl sulfate and magnesium stearate, coloring agent, releasing agent, coating agent, sweetening, flavoring and perfuming agent, preservative and antioxidant.
In some embodiments, the pharmaceutical composition disclosed herein further comprises an anti-HCV agent, wherein the anti-HCV agent is different from the compound. In some embodiments, the anti-HCV agent may be any other known anti-HCV agent except the  compound described herein, such as interferon, ribavirin, IL-2, IL-6, IL-12, a compound that enhances the development of a type 1 helper T cell response, an interfering RNA, an anti-sense RNA, imiquimod, an inosine-5’ -monophosphate dehydrogenase inhibitor, amantadine, rimantadine, bavituximab, hepatitis C immune globulin (
Figure PCTCN2015097489-appb-000006
) , boceprevir, telaprevir, erlotinib, daclatasvir, simeprevir, asunaprevir, vaniprevir, faldaprevir, paritaprevir (ABT-450) , danoprevir, sovaprevir, grazoprevir (MK-5172) , vedroprevir, BZF-961, GS-9256, narlaprevir, ANA-975, ombitasvir (ABT-267) , EDP-239, ravidasvir (PPI-668) , velpatasvir (GS-5816) , samatasvir (IDX-719) , elbasvir (MK-8742) , MK-8325, GSK-2336805, PPI-461, BI-2013335, ciluprevir, sovaprevir (ACH-1625) , ACH-1095, VX-985, IDX-375, VX-500, VX-813, PHX-1766, PHX-2054, IDX-136, IDX-316, modithromycin (EP-013420) , VBY-376, TMC-649128, mericitabine (R-7128) , sofosbuvir (PSI-7977) , INX-189, IDX-184, IDX102, R-1479, UNX-08189, PSI-6130, PSI-938, PSI-879, nesbuvir (HCV-796) , HCV-371, VCH-916, lomibuvir (VCH-222) , setrobuvir (ANA-598) , MK-3281, dasabuvir (ABT-333) , ABT-072, filibuvir (PF-00868554) , deleobuvir (BI-207127) , tegobuvir (GS-9190) , A-837093, JKT-109, Gl-59728, GL-60667, AZD-2795, TMC647055, ledipasvir, odalasvir, ritonavir、 alloferon、 nivolumab、 WF-10、 nitazoxanide、 multiferon、 nevirapine、 ACH-3422、 MK-3682、 MK-8408、 GS-9857、 CD-AdNS3、 pibrentasvir、 RG-101、 glecaprevir、 BZF-961、 INO-8000、 MBL-HCV1、 CIGB-230、 TG-2349、 procvax、 CB-5300、 miravirsen、 chronvac-C、 MK-1075、 ACH-0143422、 WS-007、 MK-7680、 MK-2248、 MK-8408、 IDX-21459、 AV-4025、 MK-8876、 GSK-2878175、 MBX-700、 AL-335、 JNJ-47910382、 AL-704、 ABP-560、 TD-6450、 EDP-239、 SB-9200、 ITX-5061、 ID-12、 GS-9669, furaprevir, setrobuvir, alisporivir, BIT-225, AV-4025, ACH-3422, MK-2748, MK-8325, ABP-560, TD-6450, TVB-2640, ID-12, PPI-383, A-848837, RG-7795, BC-2125 or a combination thereof. In some embodiments, the interferon is interferon α-2b, pegylated interferon α, interferon α-2a, pegylated interferon α-2a, consensus interferon-α, interferon γ or a combination thereof. In some embodiments, the anti-HCV agent inhibits HCV replication process, a function of HCV viral protein or a combination thereof. In some embodiments, the HCV replication process disclosed herein comprises of HCV entry, HCV uncoating, HCV translation, HCV replication, HCV assembly and HCV egress. In some embodiments, the HCV viral protein disclosed herein is or comprises a metalloproteinase, non-structural protein NS2, NS3, NS4A, NS4B, NS5A or NS5B, or an internal ribosome entry site (IRES) or inosine-5’ -monophosphate dehydrogenase (IMPDH) required in HCV viral replication.
When it is possible that, for use in therapy, therapeutically effective amounts of a compound of the invention, as well as pharmaceutically acceptable salts thereof, may be administered as the raw chemical, it is possible to present the active ingredient as a pharmaceutical compositions, which include therapeutically effective amounts of compounds of the invention or pharmaceutically acceptable salts thereof, and one or more pharmaceutically acceptable carriers, diluents, or excipients. The term “therapeutically effective amount, ” as used herein, refers to the total amount of each active component that is sufficient to show a meaningful patient benefit (e.g., a reduction in viral load) . When applied to individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially, or simultaneously. The compounds of the invention and pharmaceutically acceptable salts thereof, are as described above. The carrier (s) , diluents (s) , or excipient (s) must be acceptable in the sense of being compatible with the other ingredients of the formulation and not deleterious to recipient thereof. In accordance with another aspect of the present disclosure there is also provided a process for the preparation of a pharmaceutical formulation including admixing a compound of the invention, or a pharmaceutically acceptable salt thereof, with one or more pharmaceutically acceptable carriers, diluents, or excipients. The term “pharmaceutically acceptable, ” as used herein, refers to those compounds, materials, composition, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of patients without excessive toxicity, irritation, allergic response, or other problem complication commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
Pharmaceutical formulations may be presented in unit dose forms containing a predetermined amount of active ingredient per unit dose. Dosage levels of between about 0.01 and about 250 milligram per kilogram ( “mg/kg” ) body weight per day, preferably between about 0.05 and about 100 mg/kg body weight per day of the compounds of the present disclosure are typical in a monotherapy for the prevention and treatment of HCV mediated disease. Typically, the pharmaceutical compositions of this disclosure will be administered from about 1 to about 5 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending on the condition being treated, the  severity of the condition, the time of administration, the route of administration, the rate of excretion of the compound employed, the duration of treatment, and the age, gender, weight, and condition of the patient. Preferred unit dosage formulations are those containing a daily dose or sub-dose, as herein above recited, or an appropriate fraction thereof, of an active ingredient. Treatment may be initiated with small dosages substantially less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. In general, the compound is most desirably administered at a concentration level that will generally afford antivirally effective results without causing any harmful or deleterious side effects.
When the compositions of this disclosure comprise a combination of a compound of the present disclosure and one or more additional therapeutic or prophylactic agent, both the compound and the additional agent are usually present at dosage levels of between about 10 to 150%, and more preferably between about 10 and 80%of the dosage normally administered in a monotherapy regimen. Pharmaceutical formulations may be adapted for administration by any appropriate route, for example by the oral (including buccal or sublingual) , rectal, nasal, topical (including buccal, sublingual, or transdermal) , vaginal, or parenteral (including subcutaneous, intracutaneous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional, intravenous, or intradermal injections or infusions) route. Such formulations may be prepared by any method known in the art of pharmacy, for example by bringing into association the active ingredient with the carrier (s) or excipient (s) . Oral administration of administration by injection is preferred.
Pharmaceutical formulations adapted for oral administration may be presented as discrete units such as capsules of tablets; powders or granules; solution or suspensions in aqueous or non-aqueous liquids; edible foams or whips; or oil-in-water liquid emulsions or water-in-oil emulsions.
For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, etc. Powders are prepared by comminuting the compound to a suitable fine size and mixing with a similarly comminuted pharmaceutical carrier such as an edible carbohydrate, as, for example, starch or mannitol. Flavoring, preservative, dispersing, and coloring agent can also be present.
Capsules are maded by preparing a powder mixture, as described above, and filling formed gelatin sheaths. Glidants and lubricants such as colloidal silica, talc, magnesium stearate, calcium stearate, or solid polyethylene glycol can be added to the powder mixture before the filling operation. A disintegrating or solubilizing agent such as agar-agar, calcium carbonate, or sodium carbonate can also be added to improve the availability of the medicament when the capsule is ingested.
Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture. Suitable binders include starch, gelatin, natural sugars such as glucose or β-lactose, natural paraguttas such as acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, etc. Lubricants used in these dosage forms include sodium oleate, sodium chloride, etc. Disintegrators include, without limitation, starch, methyl cellulose, agar, betonite, xanthan gum, etc. Tablets are formulated, for example, by preparing a powder mixture, granulating or slugging, adding a lubricant and disintegrant, and pressing into tablets. A powder mixture is prepared by mixing the compound, suitable comminuted, with a diluents or base as described above, and optionally, with a binder such as carboxymethylcellulose, an aliginate, gelating, or polyvinyl pyrrolidone, a solution retardant such as paraffin, a resorption accelerator such as a quaternary salt and/or and absorption agent such as betonite, kaolin, or dicalcium phosphate. The powder mixture can be granulated by wetting with a binder such as syrup, starch paste, acadia mucilage, or solution of cellulosic or polymeric materials and forcing through a screen. As an alternative to granulation, the powder mixture can be run through the tablet machine and the result is imperfectly formed slugs broken into granules. The granules can be lubricated to prevent sticking to the tablet forming dies by means of the addition of stearic acid, a stearate salt, talc, or mineral oil. The lubricated mixture is then compressed into tablets. The compounds of the present disclosure can also be combined with a free flowing inert carrier and compressed into tablets directly without going through the granulating or slugging steps. A clear or opaque protective coating consisting of a sealing coat of shellac, a coating of sugar or polymeric material, and a polish coating of wax can be provided. Dyestuffs can be added to these coatings to distinguish different unit dosages.
Oral fluids such as solution, syrups, and elixirs can be prepared in dosage unit form so that a given quantity contains a predetermined amount of the compound. Syrups can be prepared by dissolving the compound in a suitably flavored aqueous solution, while elixirs are prepared  through the use of a non-toxic vehicle. Solubilizers and emulsifiers such as ethoxylated isostearyl alcohols and polyoxyethylene sorbitol ethers, preservatives, flavor additive such as peppermint oil or natural sweeteners, or saccharin or other artificial sweeteners, etc can also be added.
Where appropriate, dosage unit formulations for oral administration can be microencapsulated. The formulation can also be prepared to prolong or sustain the release as for example by coating of embedding particulate material in polymers, wax, or the like.
The compounds of formula (I) or (Ia) , and pharmaceutically acceptable salts thereof, can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phopholipids, such as cholesterol, stearylamine, or phophatidylcholines.
The compounds of formula (I) or (Ia) and pharmaceutically acceptable salts thereof may also be delivered by the use of monoclonal antibodies as individual carrier to which the compound molecules are coupled. The compounds may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamidephenol, polyhydroxyethylaspartamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues. Furthermore, the compounds may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, poly (ε-caprolactone) , polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates, and cross-linked or amphipathic block copolymers of hydrogels.
Pharmaceutical formulations adapted for transdermal administration may be presented as discrete patches intended to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. For example, the active ingredient may be delivered from the patch by iontophoresis as generally described in Pharmacol. Res., 1986, 3 (6) , 318.
Pharmaceutical formulations adapted for topical administration may be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols, oils or transdermal patch.
Pharmaceutical formulations adapted for rectal administration may be presented as suppositories or as enemas.
Pharmaceutical formulations adapted for nasal administration wherein the carrier is a  solid include a course powder having a particle size for example in the range 20 to 500 microns which is administered in the manner in which snuff is taken, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose. Suitable formulations wherein the carrier is a liquid, for administration as a nasal spray or nasal drops, include aqueous or oil solutions of the active ingredient.
Pharmaceutical formulations adapted for administration by inhalation include fine particle dusts or mists, which may be generated by means of various types of metered, dose pressurized aerosols, nebulizers, or insufflators.
Pharmaceutical formulations adapted for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams, or spray formulations.
Pharmaceutical formulations adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain antioxidants, buffers, bacteriostats, and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules, and tablets.
It should be understood that in addition to ingredients particularly mentioned above, the formulations may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
USES OF THE COMPOUNDS AND COMPOSITIONS OF THE INVENTION
Provided herein is use of the compound or the pharmaceutical composition in the manufacture of a medicament for inhibiting HCV replication process, a function of a HCV viral protein function, or a combination thereof. In some embodiments, the HCV replication process comprises of HCV entry, HCV uncoating, HCV translation, HCV replication, HCV assembly and HCV egress. In some embodiments, the HCV viral protein is non-structural protein or an internal ribosome entry site (IRES) or inosine-5’ -monophosphate dehydrogenase (IMPDH) required in HCV viral replication. In some embodiments, any one of the compounds or the pharmaceutical  compositions disclosed herein can be used for treating HCV infection or a HCV disorder, especially it is effective as inhibitor of the non-structural 5A (NS5A) protein of HCV.
Also provided herein is a method, which comprises administering the compound or the pharmaceutical composition disclosed herein, further comprising administering to the patient additional anti-HCV agents (combination therapy) , wherein the anti-HCV agent is an interferon, ribavirin, IL-2, IL-6, IL-12, a compound that enhances the development of a type 1 helper T cell response, an interfering RNA, an anti-sense RNA, imiquimod, an inosine-5’ -monophosphate dehydrogenase inhibitor, amantadine, rimantadine, bavituximab, hepatitis C immune globulin (
Figure PCTCN2015097489-appb-000007
), boceprevir, telaprevir, erlotinib, daclatasvir, simeprevir, asunaprevir, vaniprevir, faldaprevir, paritaprevir (ABT-450) , danoprevir, sovaprevir, grazoprevir (MK-5172) , vedroprevir, BZF-961, GS-9256, narlaprevir, ANA-975, ombitasvir (ABT-267) , EDP-239, ravidasvir (PPI-668) , velpatasvir (GS-5816) , samatasvir (IDX-719) , elbasvir (MK-8742) , MK-8325, GSK-2336805, PPI-461, BI-2013335, ciluprevir, sovaprevir (ACH-1625) , ACH-1095, VX-985, IDX-375, VX-500, VX-813, PHX-1766, PHX-2054, IDX-136, IDX-316, modithromycin (EP-013420) , VBY-376, TMC-649128, mericitabine (R-7128) , sofosbuvir (PSI-7977) , INX-189, IDX-184, IDX102, R-1479, UNX-08189, PSI-6130, PSI-938, PSI-879, nesbuvir (HCV-796) , HCV-371, VCH-916, lomibuvir (VCH-222) , setrobuvir (ANA-598) , MK-3281, dasabuvir (ABT-333) , ABT-072, filibuvir (PF-00868554) , deleobuvir (BI-207127) , tegobuvir (GS-9190) , A-837093, JKT-109, Gl-59728, GL-60667, AZD-2795, TMC647055, ledipasvir, odalasvir, ritonavir、 alloferon、 nivolumab、 WF-10、 nitazoxanide、 multiferon、 nevirapine、 ACH-3422、 MK-3682、 MK-8408、 GS-9857、 CD-AdNS3、 pibrentasvir、 RG-101、 glecaprevir、 BZF-961、 INO-8000、 MBL-HCV1、 CIGB-230、 TG-2349、 procvax、 CB-5300、 miravirsen、 chronvac-C、 MK-1075、 ACH-0143422、 WS-007、 MK-7680、 MK-2248、 MK-8408、 IDX-21459、 AV-4025、 MK-8876、 GSK-2878175、 MBX-700、 AL-335、 JNJ-47910382、 AL-704、 ABP-560、 TD-6450、 EDP-239、 SB-9200、 ITX-5061、 ID-12、 GS-9669, furaprevir, setrobuvir, alisporivir, BIT-225, AV-4025, ACH-3422, MK-2748, MK-8325, ABP-560, TD-6450, TVB-2640, ID-12, PPI-383, A-848837, RG-7795, BC-2125 or a combination thereof. In some embodiments, wherein the interferon is interferon α-2b, pegylated interferon α, interferon α-2a, pegylated interferon α-2a, consensus interferon-α, interferon γ or a combination thereof.
The treatment method that includes administering a compound or composition disclosed herein can further include administering to the patient an additional anti-HCV agent, wherein the  additional anti-HCV drug is administered together with a compound or composition disclosed herein as a single dosage form or separately from the compound or composition as part of a multiple dosage form. The additional anti-HCV agent may be administered at the same time as a compound disclosed herein or at a different time. In the latter case, administration may be staggered by, for example, 6 hours, 12 hours, 1 day, 2 days, 3 days, 1 week, 2 weeks, 3 weeks, 1 month, or 2 months.
In certain embodiments disclosed herein, an “effective amount” or “effective dose” of the compound or pharmaceutically acceptable composition is that amount effective for treating or lessening the severity of one or more of the aforementioned disorders. The compounds and compositions, according to the method disclosed herein, may be administered using any amount and any route of administration effective for treating or lessening the severity of the disorder or disease. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the infection, the particular agent, its mode of administration, etc. A compound or composition can also be administered with one or more other therapeutic agents, as discussed above.
GENERAL SYNTHETIC PROCEDURES
Generally, the compounds disclosed herein may be prepared by methods described herein, wherein the substituents are as defined for Formula (I) or (Ia) , above, except where further noted. The following non-limiting schemes and examples are presented to further exemplify the invention.
Persons skilled in the art will recognize that the chemical reactions described may be readily adapted to prepare a number of other compounds disclosed herein, and alternative methods for preparing the compounds disclosed herein are deemed to be within the scope disclosed herein. For example, the synthesis of non-exemplified compounds according to the invention may be successfully performed by modifications apparent to those skilled in the art, e.g., by appropriately protecting interfering groups, by utilizing other suitable reagents known in the art other than those described, and/or by making routine modifications of reaction conditions. Alternatively, other reactions disclosed herein or known in the art will be recognized as having applicability for preparing other compounds disclosed herein.
In the examples described below, unless otherwise indicated all temperatures are set forth in degrees Celsius. Reagents were purchased from commercial suppliers such as Aldrich  Chemical Company, Arco Chemical Company and Alfa Chemical Company, and were used without further purification unless otherwise indicated. Common solvents were purchased from commercial suppliers such as Shantou XiLong Chemical Factory, Guangdong Guanghua Reagent Chemical Factory Co. Ltd., Guangzhou Reagent Chemical Factory, Tianjin YuYu Fine Chemical Ltd., Qingdao Tenglong Reagent Chemical Ltd., and Qingdao Ocean Chemical Factory.
Anhydrous tetrahydrofuran, dioxane, toluene, and ether were obtained by refluxing the solvent with sodium. Anhydrous dichloromethane and chloroform were obtained by refluxing the solvent with calcium hydride. Ethyl acetate, petroleum ether, hexane, N, N-dimethylacetamide and N, N-dimethylformamide were treated with anhydrous sodium sulfate prior to use.
The reactions set forth below were done generally under a positive pressure of nitrogen or argon or with a drying tube (unless otherwise stated) in anhydrous solvents, and the reaction flasks were typically fitted with rubber septa for the introduction of substrates and reagents via syringe. Glassware was oven dried and/or heat dried.
Column chromatography was conducted using a silica gel column. Silica gel (300 –400 mesh) was purchased from Qingdao Ocean Chemical Factory. 1H NMR spectra were recorded with a Bruker 400 MHz spectrometer at ambient temperature. 1H NMR spectra were obtained as CDCl3, d6-DMSO, CD3OD or d6-acetone solutions (reported in ppm) , using TMS (0 ppm) or chloroform (7.25 ppm) as the reference standard. When peak multiplicities are reported, the following abbreviations are used: s (singlet) , d (doublet) , t (triplet) , m (multiplet) , br (broadened) , dd (doublet of doublets) , dt (doublet of triplets) . Coupling constants, when given, are reported in Hertz (Hz) .
Low-resolution mass spectral (MS) data were also determined on an Agilent 6320 series LC-MS spectrometer equipped with G1312A binary pumps, a G1316A TCC (Temperature Control of Column, maintained at 30 ℃) , a G1329A autosampler and a G1315B DAD detector were used in the analysis. An ESI source was used on the LC-MS spectrometer.
Low-resolution mass spectral (MS) data were also determined on an Agilent 6120 series LC-MS spectrometer equipped with G1311A Quaternary pump, a G1316A TCC (Temperature Control of Column, maintained at 30 ℃) , a G1329A autosampler and a G1315D DAD detector were used in the analysis. An ESI source was used on the LC-MS spectrometer.
Both LC-MS spectrometers were equipped with an Agilent Zorbax SB-C18, 2.1 x 30  mm, 5 μm column. Injection volume was decided by the sample concentration. The flow rate was 0.6 mL/min. The HPLC peaks were recorded by UV-Vis wavelength at 210 nm and 254 nm. The mobile phase was 0.1%formic acid in acetonitrile (phase A) and 0.1%formic acid in ultrapure water (phase B) . The gradient condition is shown in Table 1:
Table 1: The gradient condition of LC-MS
Time (min) A (CH3CN, 0.1%HCOOH) B (H2O, 0.1%HCOOH)
0-3 5-100 95-0
3-6 100 0
6-6.1 100-5 0-95
6.1-8 5 95
A silica-based coated with polysaccharide derivatives normal phase chiral chromatographic column was used in preparative HPLC in the invention; specifically, the column is
Figure PCTCN2015097489-appb-000008
AD-H (10*250 mm, 5 μm) or
Figure PCTCN2015097489-appb-000009
AD-H (20*250 mm, 5 μm) . The mobile phase is a mixture of two or more of methanol, ethanol, isopropanol, acetonitrile, n-hexane, n-pentane, isohexane, n-heptane, diethylamine, triethylamine, trifluoroacetic acid or glacial acetic acid; more specifically, the volume ratio of n-hexane, n-pentane, isohexane or n-heptane in the mobile phase mixture is from 50%to 100%, the volume ratio of methanol, ethanol, isopropanol or acetonitrile in the mobile mixture phase is from 0%to 50%, the sum total of volume ratio of every component is 100%; more specifically, the volume ratio of n-hexane in the mobile phase mixture is from 80%to 100%, the volume ratio of ethanol in the mobile phase mixture is from 0%to 20%, the sum total of volume ratio of every component is 100%; the determine wavelength is from 280 nm to 320 nm; the flow rate is from 1 to 10 mL/min, more specifically, the flow rate is from 3 to 7 mL/min; the column temperature is from 10 to 35 ℃.
“Ion chromatography” was used in the present invention to detect the inorganic anions described herein. The inorganic anion was detected on an ion chromatograph (850 Professional Ic Metrohm) , and AS23 anion exchange column (250×4.0 mm, Dionex) was used in the detection. The column temperature was at 30 ℃, the eluent was consisted of 4.5 mM Na2CO3 and 0.8 mM NaHCO3, the flow rate of eluent was 1.0 mL/min, and the injection volume was 100 μL, the equipment was ran for 20 to 25 min, and the results were measured by an suppressed conductivity detector.
The data of a single crystal was collected on a single-crystal diffractometer (Agilent  Technologies Gemini A Ultra) , using Cu Kα radiation, the X-ray tube voltage was about 40 kv, the X-ray tube current was about 40 mA, a total of 12498 reflections was collected by ω scans.
The following abbreviations are used throughout the specification:
HOAc             acetic acid
MeCN, CH3CN      acetonitrile
CDC13            chloroform-d
EA (EtOAc)       ethyl acetate
HBr              hydrobromic acid
HCl              hydrochloric acid
MeOH, CH3OH      methanol
CH2Cl2, DCM      dichloromethane
mL, ml           milliliter
N2               nitrogen
PE               petroleum ether (60 -90 ℃)
RT, rt           room temperature
Rt               retention time
TFA              trifluoroacetic acid
H2O              water
HCl/EtOAc        a solution of hydrogen chloride in ethyl acetate
EDCI             1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride
DIPEA            ethyldiisopropylamine
HPLC             high performance liquid chromatography
Boc              t-butyloxycarboryl
Cbz              carbobenzoxy
Ac               acetyl
Tfa              trifluoroacetyl
Bn               benzyl
PMB              p-methoxybenzyl
Dmb              2, 4-dimethoxybenzyl
Sem              2- (trimethylsilyl) ethoxymethyl
Tos              tosyl
Fmoc             pivaloyl
Alloc            allyloxycarbonyl
Teoc             trimethylsilylethoxycarbonyl
Trt              triphenylmethyl
TsOH             p-toluenesulfonic acid
IPA              isopropanol
BRIEF DESCRIPTION OF THE DRAWINGS
Detailed descriptions are provided to the preferred examples of the present invention with reference to the following drawings for better understanding of the objects, characteristics and advantages of the present invention, wherein:
Figure 1 is the single crystal stereochemical structure projection of compound 0-1;
Figure 2 is the cell accumulation projection of compound 0-1.
EXAMPLE
Example 1
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutano  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate or methyl  ( (S) -1- ( (S) -2- (6- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutanoyl) pyrro  lidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1H-benzo  [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate (1) and Methyl ( (S) -1- ( (S) -2- (5- ( (1S, 4R) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutano  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate or Methyl  ( (S) -1- ( (S) -2- (6- ( (1S, 4R) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutanoyl) pyrro  lidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1H-benzo  [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate (1a)
Figure PCTCN2015097489-appb-000010
Figure PCTCN2015097489-appb-000011
Step 1) preparation of compound 0-1 and compound 0-1a
Compound 0-0 (1 g, 1.66 mmol, disclosed in patents CN 201310337556 and WO 2014019344 ) was isolated on a
Figure PCTCN2015097489-appb-000012
AD-H (10 × 250 mm, 5 μm) chromatographic column eluted with ethanol/n-hexane (V/V = 5/95) with a flow rate of 5 mL/min at a column temperature of 30 ℃ under a dectection wavelength of 292 nm to give compound 0-1 (480 mg, Rt:10.44 min) , optical purity was about 99.64%. The configuration of the compound 0-1 was verified by using a single crystal diffraction method: compound 0-1 (10 mg) was dissolved in acetone (1 mL) , the solution was stirred at rt for 20 min and filtered. The filtrate was left to grow up single crystals. The single crystals were picked out for structure determination via X-diffraction under a temperature of 150 K, space group: P1211, cell parameters:
Figure PCTCN2015097489-appb-000013
Figure PCTCN2015097489-appb-000014
;α=90°, β=96.7960 (10) °, γ=90°; cell volume
Figure PCTCN2015097489-appb-000015
Figure PCTCN2015097489-appb-000016
and the number of asymmetric units in the cell Z=2. Results are shown as figures 1 and 2.
Another product was obtained above to give compound 0-1a (460 mg, Rt: 11.93 min) .
Compound 0-1: 1H NMR (400 MHz, DMSO) δ 11.90 (d, J = 25.3 Hz, 1H) , 7.85 (d, J =6.5 Hz, 2H) , 7.55 (s, 1H) , 7.44 (d, J = 6.5 Hz, 2H) , 7.33 (d, J = 8.6 Hz, 1H) , 7.20 (d, J = 8.6 Hz, 1H) , 4.82 (m, 1H) , 3.59 (m, 3H) , 3.38 (m, 1H) , 2.29 (m, 1H) , 1.99 (m, 5H) , 1.75 (d, J = 8.7 Hz, 1H) , 1.60 (d, J = 8.8 Hz, 1H) , 1.30 (m, 11H, overlap) ppm;
Compound 0-1a: 1H NMR (400 MHz, DMSO) δ 11.90 (d, J = 25.3 Hz, 1H) , 7.85 (d, J =6.5 Hz, 2H) , 7.55 (s, 1H) , 7.44 (d, J = 6.5 Hz, 2H) , 7.33 (d, J = 8.6 Hz, 1H) , 7.20 (d, J = 8.6 Hz, 1H) , 4.82 (m, 1H) , 3.59 (m, 3H) , 3.40 (m, 1H) , 2.27 (m, 1H) , 2.01 (m, 5H) , 1.74 (d, J = 8.7 Hz, 1H) , 1.60 (d, J = 8.8 Hz, 1H) , 1.30 (m, 11H, overlap) ppm.
Step 2) preparation of compound 1-2 and compound 1-2a
Compound 1-2 (0.03 g, yield: 30%) was prepared by using compound 0-1 and compound 0-2 and referring to the method described in CN 201310337556 and WO 2014019344;
Compound 1-2a (0.2 g, yield: 81%) was prepared by using the same method as above.
Compound 1-2: 1H NMR (400 MHz, CDCl3) : δ 7.74 (m, 3H) , 7.53 (d, J = 7.7 Hz, 2H) , 7.41 (d, J = 8.0 Hz, 1H) , 7.25 (m, 4H, overlap) , 5.19 (m, 1H) , 5.03 (m, 1H) , 3.66 (m, 1H) , 3.46  (m, 1H) , 3.05 (m, 2H) , 2.22 (m, 4H) , 2.04 (m, 6H) , 1.75 (m, 3H) , 1.52 (s, 18H) , 1.49 (m, 3H, overlap) ppm;
Compound 1-2a: 1H NMR (400 MHz, DMSO) δ 12.32 (m, 1H) , 11.87 (m, 1H) , 7.85 (m, 2H) , 7.62 (m, 1H) , 7.50 (m, 4H) , 7.26 (m, 3H) , 5.00 (m, 1H) , 4.83 (m, 1H) , 3.64 (m, 1H) , 3.41 (m, 3H) , 2.23 (m, 2H) , 1.98 (m, 8H) , 1.65 (d, J = 8.0 Hz, 1H) , 1.49 (m, 3H) , 1.08 (s, 18H) ppm.
Step 3) preparation of compound 1-3 and compound 1-3a
To a solution of compound 1-2 (0.3 g, 0.4 mmol) in DCM (5 mL) was added a HCl solution in EtOAc (4 N, 1.2 mL) at 0 ℃ dropwise. After the addition, the mixture was stirred at rt for 3 h. The reaction was completed monitored by LC-MS. The reaction mixture was filtered, the filter cake was washed with ethyl acetate (2 mL) and dried to give compound 1-3 (272 mg, yield: 98%) .
MS-ESI: m/z 541.3 [M+H] +
Compound 1-3a (170 mg, 92%) was prepared by using compound 1-2a and according the preparing method of compound 1-3.
MS-ESI: m/z 541.3 [M+H] +.
Step 4) preparation of compound 1 and compound 1a
To a mixture of compound 1-3 (100 mg, 0.18 mmol) , compound 1-4 (68 mg, 0.38 mmol) , EDCI (92 mg, 0.46 mmol) and ethyl cyanoglyoxylate-2-oxime (13 mg, 0.09 mmol) in DCM (5 mL) was added DIPEA (0.26 mL, 1.5 mmol) dropwise at 0 ℃. After the addition, the mixture was stirred at rt for 3 h. The reaction was completed monitored by TLC. The reaction mixture was concentrated in vacuo. The residue was purified by silica gel chromatography eluted with DCM-methanol (V/V = 50/1) to give compound 1 (142 mg, yield: 90%) .
1H NMR (400 MHz, CDCl3) : δ 7.86 (2H, m) , 7.76 (2H, d) , 7.69 (1H, m) , 7.67 (1H, m) , 7.66 (1H, m) , 7.64 (1H, m) , 7.19 (1H, m) , 7.17 (1H, m) , 5.38 (1H, m) , 5.36 (1H, t) , 4.28 (2H, t) , 4.06 (2H, m) , 3.96 (2H, m) , 3.56 (6H, s) , 3.53 (1H, m) , 3.53 (1H, m) , 2.31 (2H, m) , 2.49 (2H, m) , 2.25 (2H, m) , 2.12 (2H, m) , 2.09 (2H, m) , 2.03 (1H, m) , 2.03 (1H, m) , 1.73 (1H, d) , 1.49 (1H, d) , 1.42 (1H, m) , 1.42 (1H, m) , 0.94 (6H, t) , 0.90 (6H, dd) ppm.
Compound 1a (170 mg, 92%) was prepared by using compound 1-3a and according the preparing method of compound 1.
1H NMR (400 MHz, DMSO) δ 12.23 (d, J = 14.0 Hz, 1H) , 11.79 (s, 1H) , 7.82 (m, 2H) , 7.61 (m, 1H) , 7.54 (m, 2H) , 7.45 (d, J = 7.9 Hz, 2H) , 7.27 (m, 5H) , 5.22 (m, 1H) , 5.12 (m, 1H) ,  4.10 (m, 2H) , 3.81 (m, 3H) , 3.50 (m, 8H, overlap) , 3.29 (m, 1H, overlap) , 2.10 (m, 12H) , 1.65 (d, J = 7.4 Hz, 1H) , 1.48 (m, 3H) , 0.89 (m, 12H) ppm.
Example 2
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutane  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate bis (benzene  sulfonate) (2)
Figure PCTCN2015097489-appb-000017
To a solution of compound 1 (0.501 g, 0.586 mmol) in acetone (20 mL) was added a benzenesulfonic acid (0.190 g, 1.20 mmol) solution in acetone (5 mL) dropwise at rt. A solid precipitated out gradually during the addition. After the addition, the mixture was stirred for half an hour and filtered under vacuum. The filter cake was washed with acetone (25 mL) several times and dried to give compound 2 (0.64 g, yield: 93.3%) .
1H NMR (400 MHz, CD3OD) : δ 7.86 (4H, m) , 7.76 (2H, d) , 7.72 (4H, m) , 7.69 (1H, m) , 7.68 (1H, d) , 7.67 (1H, d) , 7.66 (1H, m) , 7.64 (1H, m) , 7.52 (2H, d) , 7, 39 (1H, d) , 7.19 (1H, m) , 7.17 (1H, m) , 5.38 (1H, m) , 5.36 (1H, t) , 4.28 (2H, t) , 4.06 (2H, m) , 3.96 (2H, m) , 3.56 (6H, s) , 3.53 (1H, m) , 3.53 (1H, m) , 2.31 (2H, m) , 2.49 (2H, m) , 2.25 (2H, m) , 2.12 (2H, m) , 2.09 (2H, m) , 2.03 (1H, m) , 2.03 (1H, m) , 1.73 (1H, d) , 1.49 (1H, d) , 1.42 (1H, m) , 1.42 (1H, m) , 0.94 (6H, t) , 0.90 (6H, dd) ppm.
Example 3
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutane  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate bis (maleate) (3)
Figure PCTCN2015097489-appb-000018
To a solution of compound 1 (0.500 g, 0.586 mmol) in acetone (20 mL) was added a maleic acid (0.143 g, 1.23 mmol) solution in acetone (5 mL) dropwise at rt. A solid precipitated out gradually during the addition. After the addition, the mixture was stirred for half an hour and filtered under vacuum. The filter cake was washed with acetone (25 mL) several times and dried to give compound 3 (0.58 g, yield: 91.0%) .
1H NMR (400 MHz, CD3OD) : δ 7.86 (2H, d) ; 7.77 (1H, m) , 7.66 (1H, m) ; 7.64 (1H, m) , 7.53 (2H, d) , 7, 39 (1H, m) , 7.27 (1H, m) , 7.2 (1H, m) , 6.36 (4H, s) , 5.35 (1H, m) , 5.30 (1H, t) , 4.28 (2H, t) , 4.06 (2H, m) , 3.96 (2H, m) , 3.66 (6H, s) , 3.53 (1H, m) , 3.53 (1H, m) , 2.41 (2H, m) , 2.39 (2H, m) , 2.25 (2H, m) , 2.12 (2H, m) , 2.10 (2H, m) , 2.05 (1H, m) , 2.03 (1H, m) , 1.63 (1H, d) , 1.47 (1H, d) , 1.43 (1H, m) , 1.42 (1H, m) , 0.94 (6H, t) , 0.88 (6H, dd) ppm.
Example 4
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutano  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate bis (mesylate) (4)
Figure PCTCN2015097489-appb-000019
To a solution of compound 1 (0.498 g, 0.582  mmol) in ethyl acetate (20 mL) was added a methanesulfonic acid (0.118 g, 1.22 mmol) solution in ethyl acetate (5 mL) dropwise at rt. A solid precipitated out gradually during the addition. After the addition, the mixture was stirred  for half an hour and filtered under vacuum. The filter cake was washed with ethyl acetate (25 mL) several times and dried to give compound 4 (0.54 g, yield: 88.6%) .
1H NMR (400 MHz, CD3OD) : δ 7.88 (2H, d) , 7.81 (1H, m) , 7.76 (1H, m) , 7.64 (1H, m) , 7.53 (2H, d) , 7.49 (1H, m) , 7.27 (1H, m) , 7.1 (1H, m) , 5.35 (1H, m) , 5.30 (1H, t) , 4.28 (2H, t) , 4.06 (2H, m) , 3.96 (2H, m) , 3.66 (6H, s) , 3.53 (1H, m) , 3.53 (1H, m) , 2.76 (6H, s) , 2.41 (2H, m) , 2.39 (2H, m) , 2.25 (2H, m) , 2.12 (2H, m) , 2.10 (2H, m) , 2.05 (1H, m) , 2.03 (1H, m) , 1.65 (1H, d) , 1.48 (1H, d) , 1.44 (1H, m) , 1.42 (1H, m) , 0.93 (6H, t) , 0.89 (6H, dd) ppm.
Example 5
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutano  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate bis (tosilate) (5)
Figure PCTCN2015097489-appb-000020
A mixture of p-toluene sulfonic acid (0.211 g, 1.22 mmol) , compound 1 (0.50 g, 0.585 mmol) and acetone (30 ml) in a one-neck flask was stirred at 40 ℃ until the solid was dissolved completely. After stirring for 0.5 hour, the mixture was cooled to rt naturally and continued to stir. A solid precipitated out gradually. The resulting mixture was filtered under vacuum. The filter cake was washed with acetone (30 ml) several times and dried to give compound 5 (0.60 g, yield: 85.6%) .
1H NMR (400 MHz, CD3OD) : δ 7.86 (4H, m) , 7.76 (2H, m) , 7.72 (4H, m) , 7.69 (1H, m) , 7.67 (1H, d) , 7.64 (1H, d) , 7.63 (1H, m) , 7.60 (1H, m) , 7.39 (1H, m) , 7.19 (1H, m) , 7.17 (1H, m) , 5.58 (1H, m) , 5.36 (1H, t) , 4.25 (2H, t) , 4.06 (2H, m) , 3.96 (2H, m) , 3.56 (6H, s) , 3.52 (1H, m) , 3.50 (1H, m) , 2.35 (6H, s) , 2.31 (2H, m) , 2.49 (2H, m) , 2.25 (2H, m) , 2.12 (2H, m) , 2.09 (2H, m) , 2.03 (1H, m) , 2.03 (1H, m) , 1.73 (1H, d) , 1.49 (1H, d) , 1.42 (1H, m) , 1.42 (1H, m) , 0.94 (6H, t) , 0.90 (6H, dd) ppm.
Example 6
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutano  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate bis (oxalate) (6)
Figure PCTCN2015097489-appb-000021
To a solution of compound 1 (0.500 g, 0.585 mmol) in acetone (20 mL) was added an oxalic acid (0.111 g, 1.23 mmol) solution in acetone (5 mL) dropwise at rt. A solid precipitated out gradually during the addition. After the addition, the mixture was stirred for half an hour and filtered under vacuum. The filter cake was washed with acetone (25 mL) several times and dried to give compound 6 (0.56 g, yield: 92.4%) .
1H NMR (400 MHz, CD3OD) : δ 7.88 (2H, d) , 7.84 (1H, m) , 7.79 (1H, m) , 7.68 (1H, m) , 7.63 (2H, d) , 7, 49 (1H, m) , 7.27 (1H, m) , 7.2 (1H, m) , 5.36 (1H, m) , 5.30 (1H, t) , 4.28 (2H, t) , 4.16 (2H, m) , 3.96 (2H, m) , 3.67 (6H, s) , 3.55 (1H, m) , 3.53 (1H, m) , 2.41 (2H, m) , 2.39 (2H, m) , 2.25 (2H, m) , 2.14 (2H, m) , 2.10 (2H, m) , 2.05 (1H, m) , 2.03 (1H, m) , 1.66 (1H, d) , 1.48 (1H, d) , 1.45 (1H, m) , 1.42 (1H, m) , 0.92 (6H, t) , 0.87 (6H, dd) ppm.
Example 7
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutano  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate bis (fumarate) (7)
Figure PCTCN2015097489-appb-000022
A mixture of fumaric acid (0.143 g, 1.23 mmol) , compound 1 (0.500 g, 0.586 mmol) and acetone (30 mL) in a one-neck flask was stirred at 40 ℃ until the solid was dissolved completely. After stirring for 0.5 hour, the mixture was cooled to rt naturally and continued to stir. A solid precipitated out gradually. The resulting mixture was filtered under vacuum. The filter cake was washed with acetone (35 mL) several times and dried to give compound 7 (0.52 g, yield: 82.1%) .
1H NMR (400 MHz, CD3OD) : δ 7.86 (2H, d) , 7.78 (1H, m) , 7.66 (1H, m) , 7.61 (1H, m) , 7.53 (2H, d) , 7, 39 (1H, m) , 7.27 (1H, m) , 7.2 (1H, m) , 6.76 (4H, s) , 5.35 (1H, m) , 5.30 (1H, t) , 4.28 (2H, t) , 4.06 (2H, m) , 3.96 (2H, m) , 3.67 (6H, s) , 3.53 (1H, m) , 3.52 (1H, m) , 2.41 (2H, m) , 2.39 (2H, m) , 2.25 (2H, m) , 2.13 (2H, m) , 2.12 (2H, m) , 2.05 (1H, m) , 2.03 (1H, m) , 1.63 (1H, d) , 1.47 (1H, d) , 1.43 (1H, m) , 1.42 (1H, m) , 0.94 (6H, t) , 0.88 (6H, dd) ppm.
Example 8
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutano  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate bis (citrate) (8)
Figure PCTCN2015097489-appb-000023
To a solution of compound 1 (0.500 g, 0.585 mmol) in acetone (20 mL) was added a citric acid (0.236 g, 1.23 mmol) solution in acetone (5 mL) dropwise at rt. A solid precipitated out gradually during the addition. After the addition, the mixture was stirred for half an hour and filtered under vacuum. The filter cake was washed with acetone (25 mL) several times and dried to give compound 8 (0.69 g, yield: 95.1%) .
1H NMR (400 MHz, CD3OD) : δ 7.81 (2H, d) , 7.73 (1H, m) , 7.66 (1H, m) , 7.61 (1H, m) , 7.54 (2H, d) , 7, 39 (1H, m) , 7.27 (1H, m) , 7.10 (1H, m) , 5.35 (1H, m) , 5.32 (1H, t) , 4.28 (2H, t) , 4.06 (2H, m) , 3.96 (2H, m) , 3.67 (6H, s) , 3.53 (1H, m) , 3.51 (1H, m) , 2.41 (2H, m) , 2.39 (2H, m) , 2.25 (2H, m) , 2.17 (8H, s) , 2.13 (2H, m) , 2.12 (2H, m) , 2.05 (1H, m) , 2.03 (1H, m) , 1.63 (1H, d) ,  1.47 (1H, d) , 1.43 (1H, m) , 1.42 (1H, m) , 0.96 (6H, t) , 0.84 (6H, dd) ppm.
Example 9
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutano  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate bis (tartrate) (9)
Figure PCTCN2015097489-appb-000024
A mixture of tartaric acid (0.184 g, 1.23 mmol) , compound 1 (0.500 g, 0.586 mmol) and acetone (30 mL) in a one-neck flask was stirred at 40℃ until the solid was dissolved completely. After stirring for 0.5 hour, the mixture was cooled to rt naturally and continued to stir. A solid precipitated out gradually. The resulting mixture was filtered under vacuum. The filter cake was washed with acetone (35 mL) several times and dried to give compound 9 (0.59 g, yield: 87.1%) .
1H NMR (400 MHz, CD3OD) : δ 7.84 (2H, d) , 7.79 (1H, m) , 7.76 (1H, m) , 7.69 (1H, m) , 7.54 (2H, d) , 7.39 (1H, m) , 7.37 (1H, m) , 7.14 (1H, m) , 5.35 (1H, m) , 5.32 (1H, t) , 4.54 (4H, s) , 4.28 (2H, t) , 4.06 (2H, m) , 3.96 (2H, m) , 3.67 (6H, s) , 3.53 (1H, m) , 3.51 (1H, m) , 2.41 (2H, m) , 2.39 (2H, m) , 2.25 (2H, m) , 2.16 (2H, m) , 2.12 (2H, m) , 2.08 (1H, m) , 2.05 (1H, m) , 1.63 (1H, d) , 1.47 (1H, d) , 1.43 (1H, m) , 1.42 (1H, m) , 0.96 (6H, t) , 0.82 (6H, dd) ppm.
Example 10
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutane  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate  bis (2-naphthalenesulfonate) (10)
Figure PCTCN2015097489-appb-000025
Figure PCTCN2015097489-appb-000026
To a solution of compound 1 (0.500 g, 0.585 mmol) in acetone (20 mL) was added a 2-naphthalenesulfonic acid (0.256 g, 1.23 mmol) solution in acetone (5 mL) dropwise at rt. A solid precipitated out gradually during the addition. After the addition, the mixture was stirred for half an hour and filtered under vacuum. The filter cake was washed with acetone (30 mL) several times and dried to give compound 10 (0.64 g, yield: 86.1%) .
1H NMR (400 MHz, CD3OD) : δ 8.4 (2H, s) , 7.90 (4H, m) , 7.76 (2H, d) ; 7.73 (2H, d) , 7.72 (4H, m) , 7.69 (1H, m) , 7.66 (1H, m) , 7.64 (1H, m) , 7.60 (2H, d) , 7.52 (2H, d) , 7, 39 (1H, d) , 7.19 (1H, m) , 7.17 (1H, m) , 5.39 (1H, m) , 5.36 (1H, t) , 4.28 (2H, t) , 4.16 (2H, m) , 3.96 (2H, m) , 3.56 (6H, s) , 3.53 (1H, m) , 3.48 (1H, m) , 2.31 (2H, m) , 2.49 (2H, m) , 2.35 (2H, m) , 2.12 (2H, m) , 2.09 (2H, m) , 2.05 (1H, m) , 2.01 (1H, m) , 1.73 (1H, d) , 1.49 (1H, d) , 1.44 (1H, m) , 1.42 (1H, m) , 0.96 (6H, t) , 0.83 (6H, dd) ppm.
Example 11
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutane  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate  bis(hydrochloride) (11)
Figure PCTCN2015097489-appb-000027
To a solution of compound 1 (0.500 g, 0.585 mmol) in ethyl acetate (20 mL) was added a HCl solution in ethyl acetate (0.43 mL, 3 M/mL) dropwise at rt. A solid precipitated out gradually during the addition. After the addition, the mixture was stirred for half an hour and filtered under vacuum. The filter cake was washed with ethyl acetate (25 mL) several times and dried to give compound 11 (0.51 g, yield: 93.9%) .
1H NMR (400 MHz, CD3OD) : δ 7.86 (2H, m) , 7.76 (2H, d) , 7.69 (1H, m) , 7.67 (1H, m) , 7.66 (1H, m) , 7.64 (1H, m) , 7.19 (1H, m) , 7.17 (1H, m) , 5.38 (1H, m) , 5.36 (1H, t) , 4.28 (2H, t) , 4.06 (2H, m) , 3.96 (2H, m) , 3.56 (6H, s) , 3.53 (1H, m) , 3.53 (1H, m) , 2.31 (2H, m) , 2.49 (2H, m) , 2.25 (2H, m) , 2.12 (2H, m) , 2.09 (2H, m) , 2.03 (1H, m) , 2.03 (1H, m) , 1.73 (1H, d) , 1.49 (1H, d) , 1.42 (1H, m) , 1.42 (1H, m) , 0.94 (6H, t) , 0.90 (6H, dd) ppm.
Example 12
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutane  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate bis (dihydrogen  phosphate) (12)
Figure PCTCN2015097489-appb-000028
To a solution of compound 1 (0.500 g, 0.585 mmol) in ethanol (20 mL) was added a phosphoric acid (0.126 g, 1.29 mmol) solution in ethanol (2 mL) dropwise at rt. A solid precipitated out gradually during the addition. After the addition, the mixture was stirred for half an hour and filtered under vacuum. The filter cake was washed with ethanol (25 mL) several times and dried to give compound 12 (0.58 g, yield: 94.3%) .
1H NMR (400 MHz, CD3OD) : δ 7.76 (2H, m) , 7.67 (1H, m) , 7.66 (1H, m) , 7.64 (1H, m) , 7.52 (2H, d) , 7.39 (1H, m) , 7.19 (1H, m) , 7.17 (1H, m) , 5.35 (1H, m) , 5.30 (1H, t) , 4.28 (2H, t) , 4.06 (2H, m) , 3.96 (2H, m) , 3.66 (6H, s) , 3.53 (1H, m) , 3.53 (1H, m) , 2.31 (2H, m) , 2.49 (2H, m) , 2.25 (2H, m) , 2.12 (2H, m) , 2.09 (2H, m) , 2.03 (1H, m) , 2.03 (1H, m) , 1.63 (1H, d) , 1.47 (1H, d) , 1.42 (1H, m) , 1.42 (1H, m) , 0.94 (6H, t) , 0.88 (6H, dd) ppm.
Example 13
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutane  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate bis (nitrate) (13)
Figure PCTCN2015097489-appb-000029
To a solution of compound 1 (0.500 g, 0.585 mmol) in ethyl acetate (20 mL) was added a nitric acid (0.081 g, 1.29 mmol) solution in ethyl acetate (2 mL) dropwise at rt. A solid precipitated out gradually during the addition. After the addition, the mixture was stirred for half an hour and filtered under vacuum. The filter cake was washed with ethyl acetate (25 mL) several times and dried to give compound 13 (0.52 g, yield: 90.5%) .
1H NMR (400 MHz, CD3OD) : δ 7.88 (2H, m) , 7.76 (2H, d) , 7.69 (1H, m) , 7.67 (1H, m) , 7.66 (1H, m) , 7.64 (1H, m) , 7.29 (1H, m) , 7.17 (1H, m) , 5.38 (1H, m) , 5.36 (1H, t) , 4.28 (2H, t) , 4.06 (2H, m) , 3.96 (2H, m) , 3.56 (6H, s) , 3.53 (1H, m) , 3.53 (1H, m) , 2.31 (2H, m) , 2.49 (2H, m) , 2.25 (2H, m) , 2.12 (2H, m) , 2.09 (2H, m) , 2.03 (1H, m) , 2.03 (1H, m) , 1.73 (1H, d) , 1.49 (1H, d) , 1.42 (1H, m) , 1.42 (1H, m) , 0.98 (6H, t) , 0.90 (6H, dd) ppm.
Example 14
Methyl ( (S) -1- ( (S) -2- (5- ( (1R, 4S) -8- (4- (2- ( (S) -1- ( (S) -2- (methoxycarbonyl) amino-3-methylbutano  yl) pyrrolidin-2-yl) -1H-imidazol-5-yl) phenyl) -1, 2, 3, 4-tetrahydro-1, 4-methanonaphthalen-5-yl) -1  H-benzo [d] imidazol-2-yl) pyrrolidin-1-yl) -3-methyl-1-oxobutan-2-yl) carbamate bis (hydrosulfate)  (14)
Figure PCTCN2015097489-appb-000030
To a solution of compound 1 (0.500 g, 0.585 mmol) in ethyl acetate (20 mL) was added a sulfuric acid (0.126 g, 1.29 mmol) solution in ethyl acetate (2 mL) dropwise at rt. A solid was precipitated out gradually during the addition. After the addition, the mixture was stirred for half  an hour and filtered under vacuum. The filter cake was washed with ethyl acetate (25 mL) several times and dried to give compound 14 (0.57 g, yield: 93.7%) .
1H NMR (400 MHz, CD3OD) : δ 7.98 (2H, m) ; 7.76 (2H, d) , 7.69 (1H, m) ; 7.67 (1H, m) ; 7.66 (1H, m) ; 7.64 (1H, m) ; 7.29 (1H, m) ; 7.27 (1H, m) ; 5.38 (1H, m) ; 5.36 (1H, t) ; 4.28 (2H, t) ; 4.06 (2H, m) , 3.96 (2H, m) ; 3.56 (6H, s) ; 3.53 (1H, m) ; 3.53 (1H, m) ; 2.31 (2H, m) ; 2.49 (2H, m) ; 2.25 (2H, m) ; 2.12 (2H, m) ; 2.09 (2H, m) ; 2.03 (1H, m) ; 2.03 (1H, m) ; 1.73 (1H, d) ; 1.49 (1H, d) ; 1.42 (1H, m) ; 1.42 (1H, m) ; 0.98 (6H, t) ; 0.86 (6H, dd) ppm.
SOLUBILITY TEST
The sample ground to a fine powder was weighed and placed in a certain amount of solvent at 25℃±2℃; The mixture was shook strongly for 30 sec every 5 min; The mixture was observed in 30 min, which was deemed to be dissolved completely if the solute particles cannot be seen.
Through solubility study of compound 1 and salts thereof, the inventors found that the salts of compound 1 have an advantage in solubility compared with compound 1, which is benefit for drug research.
BIOLOGICAL TEST
Pharmacokinetic test:
AUC: area under curve; Cl: clearance; Cmax: the maximum concentration; MRTINF: mean residence time; T1/2: half life; Tmax: time of maximum concentration; Vss: steady-state volume of distribution; F: bioavailability.
Example A
A solution having a concentration of 1 mg/mL was prepared by adding the compound of the present invention into a solvent of 5%DMSO + 5%Solutol + 90%Saline; the male SD rats were administered by intravenous injection (iv) at a dose of 2 mg/kg and by gavage (po) at a dose of 5 mg/kg respectively with the above solution after 12 hours of fasting. Plasma samples were collected after administering at different time points; the plasma samples were treated by using liquid-liquid extraction method. The drug concentrations were measured by using LC-MS/MS and the pharmacokinetic parameters were calculated by Winnonlin software. The results were shown in table 2:
Table 2 Pharmacokinetic parameters of compound 1a and compound 1 in SD rats
Figure PCTCN2015097489-appb-000031
Figure PCTCN2015097489-appb-000032
Note: N/A: Not avaliable
In conclusion, other than the single isomer compound 1a or compound 1 has an advantage in controllable quality in the preparing process compared with the diastereoisomers mixture, also it can be known from the table 2 that compound 1 has a better bioavailability and compound 1a has a longer effect time in vivo.
Example B
Grouped male Beagle dogs were administered with capsules of compound 1 or salts thereof respectively by oral at a dose of 5 mg/kg. Blood samples were collected at 8 or 9 time points within 24 hours, and the standard curve were established based on the concentrations of the samples in a suitable range; AB SCIEX API4000 was used to detect the concentration of the test compound in plasma samples in an MRM mode, and quantitative analysis was performed. Pharmacokinetic parameters were calculated according to drug concentration-time curve using noncompartmental method by WinNonLin 6.3 software. The results were shown in table 3:
Table 3 Pharmacokinetic parameters of compound 1 and salts thereof in Beagle dogs
Figure PCTCN2015097489-appb-000033
Figure PCTCN2015097489-appb-000034
Conclusion: Exposures of salts of compound 1 are increased at different degrees compared with that of compound 1, and meanwhile oral absorption of salts of compound 1 became better.
It will be evident to one skilled in the art that the present disclosure is not limited to the foregoing illustrative examples, and that it can be embodied in other specific forms without departing from the essential attributes thereof. It is therefore desired that the examples be considered in all respects as illustrative and not restrictive, reference being made to the appended claims, rather than to the foregoing examples, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
The compound of the present invention can inhibit HCV through inhibiting other than NS5A. In an embodiment, the compound of the present invention can inhibit HCV replicons; in other embodiment, the compound of the present invention can inhibit NS5A. The compound of the present invention can inhibit various genotypes of HCV.
Reference throughout this specification to “an embodiment, ” “some embodiments, ” “one embodiment” , “another example, ” “an example, ” “aspecific examples, ” or “some examples, ” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases such as “in some embodiments, ” “in one embodiment” , “in an embodiment” , “in another example, “in an example, ” “in a specific examples, ” or “in some examples, ” in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure.
Although explanatory embodiments have been shown and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present disclosure, and changes, alternatives, and modifications can be made in the embodiments without departing from spirit, principles and scope of the present disclosure. The scope of the invention is limited by the claims and equivalent thereof.

Claims (19)

  1. A compound having structure (I) or (Ia) , or a stereoisomer, a tautomer, an N-oxide, a hydrate, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof:
    Figure PCTCN2015097489-appb-100001
  2. The compound of claim 1, the pharmaceutically acceptable salt is an inorganic acid salt.
  3. The compound of claim 2, the inorganic acid salt is a haloid acid salt, halogen series containing oxygen inorganic acid salt, carbon series containing oxygen inorganic acid salt, nitrogen series containing oxygen inorganic acid salt, boron series containing oxygen inorganic acid salt, silicon series containing oxygen inorganic acid salt, phosphorus series containing oxygen inorganic acid salt or sulphur series inorganic acid salt.
  4. The compound of claim 3, the inorganic acid salt is hydrochloride, hydrosulfate, nitrate or dihydrogen phosphate.
  5. The compound of claim 2, the inorganic acid salt is hydrochloride, sulfate, hydrosulfate, nitrate, hydrobromide, hydriodate, carbonate, hydrocarbonate, sulfite, perchlorate, persulfate, hemisulfate, bisulfate, phosphate, hydrogen phosphate, dihydrogen phosphate or metaphosphate.
  6. The compound of claim 1, the pharmaceutically acceptable salt is an organic acid salt.
  7. The compound of claim 6, the organic acid salt is a carboxylate, sulfonate, sulfinate or carbothioate.
  8. The compound of claim 7, the organic acid salt is mesilate, citrate, tosilate, tartrate, fumarate, maleate, 2-naphthalene sulfonate or oxalate.
  9. The compound of claim 6, the organic acid salt is formate, acetate, benzoate, malonate, succinate, mesilate, ethanesulfonate, citrate, benzene sulfonate, tosilate, malate, tartrate, fumarate, glycolate, hydroxyethyl sulphonate, maleate, lactate, lactobionate, pamoate, salicylate, galactarate, gluceptate, mandelate, gluconate, 1, 2-ethanedisulfonate, 2-naphthalene sulfonate,  oxalate, trifluoroacetate, adipate, alginate, ascorbate, aspartate, benzene sulfonate, butyrate, camphorate, camphor sulfonate, cyclopentyl propionate, digluconate, lauryl sulfate, ethyl sulfonate, glycerophosphate, enanthate, caproate, 2-hydroxy-ethanesulfonate, laurate, lauryl sulfate, nicotinate, oleate, palmitate, pamoate, pectate, 3-phenyl propionate, picrate, pivalerate, propionate, stearate, thiocyanate, undecanoate or valerate.
  10. The compound of any one of claims 1 to 9, the pharmaceutically acceptable salt is a monosalt.
  11. The compound of any one of claims 1 to 9, the pharmaceutically acceptable salt is a disalt.
  12. An intermediate for preparing the compound of Formula (I) of claim 1 having Formula (III) or (V) , or a salt thereof; or an intermediate for preparing the compound of Formula (Ia) of claim 1 having Formula (IIIa) or (Va) , or a salt thereof;
    Figure PCTCN2015097489-appb-100002
    wherein the Pg is an amino protecting group selected from Boc, Cbz, Ac, Tfa, Bn, PMB, Dmb, Sem, Tos, Fmoc, Alloc, Teoc and Trt.
  13. A pharmaceutical composition comprising the compound of any one of claims 1 to 11, and a pharmaceutically acceptable carrier, excipient, diluent, adjuvant, vehicle or a combination thereof.
  14. The pharmaceutical composition of claim 13, further comprises an anti-HCV agent, wherein the anti-HCV agent is different from the compound.
  15. The pharmaceutical composition of claim 14, wherein the anti-HCV agent is interferon α-2b, pegylated interferon α, interferon α-2a, pegylated interferon α-2a, consensus interferon-α, interferon γ, ribavirin, IL-2, IL-6, IL-12, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, imiquimod, an inosine5’-monophosphate dehydrogenase inhibitor, amantadine, rimantadine, bavituximab, hepatitis C immune globulin, a HCV neutralizing polyclonal antibody, boceprevir, telaprevir,  erlotinib, daclatasvir, simeprevir, asunaprevir, vaniprevir, faldaprevir, paritaprevir, danoprevir, sovaprevir, grazoprevir, vedroprevir, BZF-961, GS-9256, narlaprevir, ANA975, ombitasvir, EDP239, ravidasvir, velpatasvir, samatasvir, elbasvir, MK-8325, GSK-2336805, PPI-461, ciluprevir, sovaprevir, ACH-1095, VX-985, IDX-375, VX-500, VX-813, PHX-1766, PHX-2054, IDX-136, IDX-316, modithromycin, VBY-376, TMC-649128, mericitabine, sofosbuvir, INX-189, IDX-184, IDX102, R1479, UNX-08189, PSI-6130, PSI-938, PSI-879, nesbuvir, HCV-371, VCH-916, lomibuvir, setrobuvir, MK-3281, dasabuvir, ABT-072, filibuvir, deleobuvir, tegobuvir, A-837093, JKT-109, Gl-59728, GL-60667, AZD-2795, TMC647055, ledipasvir, odalasvir, ritonavir, alloferon, nivolumab, WF-10, nitazoxanide, multiferon, nevirapine, ACH-3422, alisporivir, MK-3682, MK-8408, GS-9857, CD-AdNS3, pibrentasvir, RG-101, glecaprevir, BZF-961, INO-8000, MBL-HCV1, CIGB-230, TG-2349, procvax, CB-5300, miravirsen, chronvac-C, MK-1075, ACH-0143422, WS-007, MK-7680, MK-2248, MK-8408, IDX-21459, AV-4025, MK-8876, GSK-2878175, MBX-700, AL-335, JNJ-47910382, AL-704, ABP-560, TD-6450, EDP-239, SB-9200, ITX-5061, ID-12 or a combination thereof.
  16. The pharmaceutical composition of claim 14, the anti-HCV agent is used for inhibiting the HCV replication process and/or a function of a HCV viral protein; wherein the HCV replication process comprises HCV entry, HCV uncoating, HCV translation, HCV replication, HCV assembly and HCV egress; and wherein the HCV viral protein is a metalloproteinase, NS2, NS3, NS4A, NS4B, NS5A or NS5B, or an internal ribosome entry site (IRES) and inosine-5’ -monophosphate dehydrogenase (IMPDH) required in HCV viral replication.
  17. Use of the compound of any one of claims 1 to 11 or the pharmaceutical composition of any one of claims 13 to 16 in the manufacture of a medicament for preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder in a patient.
  18. The compound of any one of claims 1 to 11 or the pharmaceutical composition of any one of claims 13 to 16 for use in preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder in a patient.
  19. A method of preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder in a patient comprising administering to the patient a therapeutically effective amount of the compound of any one of claims 1 to 11 or the pharmaceutical composition of any one of claims 13 to 16.
PCT/CN2015/097489 2014-12-16 2015-12-15 Bridged ring compounds as hepatitis c virus inhibitors and preparation thereof WO2016095814A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410783855 2014-12-16
CN201410783855.6 2014-12-16

Publications (1)

Publication Number Publication Date
WO2016095814A1 true WO2016095814A1 (en) 2016-06-23

Family

ID=56125940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097489 WO2016095814A1 (en) 2014-12-16 2015-12-15 Bridged ring compounds as hepatitis c virus inhibitors and preparation thereof

Country Status (3)

Country Link
CN (1) CN105693700B (en)
TW (1) TWI675029B (en)
WO (1) WO2016095814A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110905454A (en) * 2019-11-29 2020-03-24 南通仁隆科研仪器有限公司 Hydrate reservoir interwell electricity dynamic monitoring simulation experiment device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512331A (en) * 2017-03-22 2020-04-23 正大天晴▲藥▼▲業▼集▲団▼股▲フン▼有限公司 Silicon-containing compounds for anti-hepatitis C virus infection
CN109270178B (en) * 2018-09-10 2021-06-29 重庆华邦制药有限公司 Method for separating and measuring dutasteride and related substances in dutasteride soft capsules by high performance liquid chromatography
CN112843053B (en) * 2019-11-28 2023-12-08 宜昌东阳光长江药业股份有限公司 NS5A inhibitor compositions
CN112843013A (en) * 2019-11-28 2021-05-28 宜昌东阳光长江药业股份有限公司 Composition for treating hepatitis C and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570693A (en) * 2012-08-03 2014-02-12 广东东阳光药业有限公司 Bridged compound serving as hepatitis C inhibitor and application of bridged compound in medicines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857394A1 (en) * 2009-05-13 2015-04-08 Gilead Pharmasset LLC Antiviral compounds
US20120195857A1 (en) * 2010-08-12 2012-08-02 Bristol-Myers Squibb Company Hepatitis C Virus Inhibitors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570693A (en) * 2012-08-03 2014-02-12 广东东阳光药业有限公司 Bridged compound serving as hepatitis C inhibitor and application of bridged compound in medicines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110905454A (en) * 2019-11-29 2020-03-24 南通仁隆科研仪器有限公司 Hydrate reservoir interwell electricity dynamic monitoring simulation experiment device
CN110905454B (en) * 2019-11-29 2022-01-04 南通仁隆科研仪器有限公司 Hydrate reservoir interwell electricity dynamic monitoring simulation experiment device

Also Published As

Publication number Publication date
CN105693700A (en) 2016-06-22
CN105693700B (en) 2019-01-04
TWI675029B (en) 2019-10-21
TW201623290A (en) 2016-07-01

Similar Documents

Publication Publication Date Title
CN108299532B (en) Antiviral nucleoside analogue prodrug and composition and application thereof
WO2015197028A1 (en) Compounds as hepatitis c virus (hcv) inhibitors and uses thereof in medicine
WO2016095814A1 (en) Bridged ring compounds as hepatitis c virus inhibitors and preparation thereof
EP2499115B1 (en) Process for preparing hepatitis c virus inhibitors
EP2499127B1 (en) Hepatitis c virus inhibitors
EP2598498B1 (en) Hetero-bicyclic derivatives as hcv inhibitors
IL274369B1 (en) Modulators of the integrated stress pathway
EP2753611B1 (en) Substituted benzofuran compounds and methods of use thereof for the treatment of viral diseases
US9738629B2 (en) Bridged ring compounds as Hepatitis C virus inhibitors, pharmaceutical compositions and uses thereof
EP2707365B1 (en) Hepatitis c virus inhibitors
CN103249731A (en) Hepatitis c virus inhibitors
WO2011150243A1 (en) Inhibitors of hcv ns5a
EP2797911B1 (en) Hetero-bicyclic derivatives as hcv inhibitors
WO2016127859A1 (en) Compounds as hepatitis c inhibitors and uses thereof in medicine
WO2016141890A1 (en) Compounds as hepatitis c virus inhibitors and pharmaceutical uses thereof
CN103880823A (en) Spiro compound serving as hepatitis c inhibitor and application thereof in medicine
AU2012360910B8 (en) Quinazolinone derivatives as HCV inhibitors
EP3471737A1 (en) Cyclic phosphate substituted nucleoside compounds and methods of use thereof for the treatment of viral diseases
WO2018028634A1 (en) Salts as hcv inhibitors
WO2015009744A1 (en) Combinations comprising biphenyl derivatives for use in the treatment of hcv
CN110117287B (en) Salts as hepatitis c virus inhibitors
CN107722109B (en) Crystalline forms as hepatitis c virus inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.11.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15869321

Country of ref document: EP

Kind code of ref document: A1