WO2016095588A1 - 热端换热装置及半导体制冷冰箱 - Google Patents

热端换热装置及半导体制冷冰箱 Download PDF

Info

Publication number
WO2016095588A1
WO2016095588A1 PCT/CN2015/090986 CN2015090986W WO2016095588A1 WO 2016095588 A1 WO2016095588 A1 WO 2016095588A1 CN 2015090986 W CN2015090986 W CN 2015090986W WO 2016095588 A1 WO2016095588 A1 WO 2016095588A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
plane
hot end
heat
condensation section
Prior art date
Application number
PCT/CN2015/090986
Other languages
English (en)
French (fr)
Inventor
陶海波
于冬
李鹏
刘建如
王定远
李春阳
戚斐斐
姬立胜
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2016095588A1 publication Critical patent/WO2016095588A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/003Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with respect to movable containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/041Details of condensers of evaporative condensers

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a hot end heat exchange device and a semiconductor refrigeration refrigerator having the same.
  • thermoelectric refrigerators also known as thermoelectric refrigerators.
  • the utility model utilizes the semiconductor refrigeration sheet to realize the refrigeration through the high-efficiency annular double-layer heat pipe heat dissipation and conduction technology and the automatic variable pressure variable flow control technology, and eliminates the need of the refrigerant working medium and the mechanical moving parts, and solves the application problems of the traditional mechanical refrigeration refrigerator such as the medium pollution and the mechanical vibration. .
  • the cold end of the semiconductor refrigerating sheet generates a large amount of heat at the hot end of the semiconductor refrigerating sheet.
  • the prior art is directed to semiconductor cooling.
  • the hot end of the sheet is generally heat exchanged with the surrounding environment using fins.
  • the heat dissipation device of the existing finned heat exchanger has low heat dissipation efficiency, can not meet the heat dissipation requirements of the semiconductor refrigeration refrigerator, and greatly restricts the development of the semiconductor refrigeration refrigerator.
  • An object of the first aspect of the present invention is to provide a hot end heat exchange device having high heat exchange efficiency and small space occupation.
  • a further object of the first aspect of the invention is to maximize the effective heat dissipation area of the hot end heat exchange device.
  • Another further object of the first aspect of the present invention is to make the hot end heat exchange device simple in production and assembly process and reliable and stable in cooperation with the refrigerator body.
  • An object of the second aspect of the present invention is to provide a semiconductor refrigeration refrigerator having the above-described hot end heat exchange device.
  • a hot end heat exchange device for a semiconductor refrigeration refrigerator comprises:
  • a hot-end heat exchange portion defining a lumen or a conduit for containing a refrigerant in which gas-liquid two phases coexist, and configured to allow a refrigerant to flow therein and undergo phase change heat;
  • each of the heat dissipating conduits having: a condensation section extending upwardly in a vertical plane and having a closed end, and The starting end of the condensation section extends downwardly and communicates to the connecting section of the inner cavity or conduit;
  • the condensation section of at least a portion of the plurality of heat dissipation conduits is disposed in two vertical planes that are perpendicular to each other.
  • the hot end heat exchange portion has a flat rectangular parallelepiped shape, and an area of the front surface and the rear surface opposite to each other is larger than an area of the other surface, and a front surface or a rear surface of the hot end heat exchange portion is used as The heat exchange surface of the heat source is thermally connected.
  • the two vertical planes comprise a first plane perpendicular to a rear surface of the hot end heat exchange portion and a second plane parallel to a rear surface of the hot end heat exchange portion.
  • a condensation section of a portion of the plurality of heat dissipation lines is disposed in a third plane parallel to the first plane.
  • a condensation section of each of the heat dissipation pipes whose condensation section is disposed in the second plane is located between the first plane and the third plane;
  • a condensation section of each of the heat dissipation lines in which the condensation section is disposed in the first plane, and a condensation section of each of the heat dissipation lines in which the condensation section is disposed in the third plane is located in the second plane side.
  • the number of heat dissipation pipes whose condensation sections are arranged in the second plane is two, symmetrically arranged about a vertical geometric plane.
  • the number of the heat dissipating conduits in which the condensation section is disposed in the first plane and the heat dissipating section in which the condensation section is disposed in the third plane is one, and is symmetric about the vertical geometry Symmetrical settings.
  • the projection length of the condensation section of each of the heat dissipation conduits whose condensation section is disposed in the second plane is less than 1/2 of the width of the back of the casing of the semiconductor refrigeration refrigerator and is larger than the enclosure 1/4 of the width of the back;
  • a condensation length of a heat dissipating section of the heat dissipating section disposed in the first plane and a condensation section of the heat dissipating section of the condensation section disposed in the third plane on a horizontal plane are smaller than the semiconductor refrigerating refrigerator
  • the side wall width of the outer casing is greater than 1/2 of the width of the side wall of the outer casing.
  • the condensation section of each of the heat dissipation pipes includes: a plurality of straight pipe sections disposed at intervals in a vertical direction, each of the straight pipe sections being inclined at an angle of 10° to 70° with respect to a horizontal plane And a bending section connecting each of the two adjacent straight pipe sections.
  • the hot-end heat exchange device further includes: a plurality of retaining wires disposed in a vertical direction; and the pipe walls of the outer vertices of the respective bent sections on the same side of each of the heat-dissipating pipes are welded In one of the retaining wires.
  • a semiconductor refrigeration refrigerator includes: a liner defining a storage compartment therein; an outer casing including a U shell and a back disposed on an outer side of the inner casing; and a semiconductor refrigeration sheet disposed on a back of the outer casing Between the rear walls of the inner casing; and any of the above-mentioned hot end heat exchange devices disposed between the back of the outer casing and the rear wall of the inner casing, and being installed to change the hot end thereof a rear surface of the heat portion is thermally connected to the hot end of the semiconductor refrigerating sheet, and a condensation portion of each of the heat dissipating tubes is abutted against an inner surface of the outer casing to dissipate heat radiated from the hot end to surroundings.
  • At least part of the condensation section of the heat-dissipating pipe is arranged in two vertical planes perpendicular to each other, which significantly improves the effective heat-dissipating area of the hot-end heat exchange device, and can make the outer casing
  • At least one of the side walls and the back is heat exchanged with the condensation section of the heat dissipation pipe, which significantly improves the heat dissipation efficiency of the heat exchange device and improves the energy efficiency of the semiconductor refrigeration refrigerator; and fully utilizes the structure of the refrigerator to occupy a small space.
  • the hot end heat exchange device of the present invention and the heat dissipating pipe of the semiconductor refrigerating refrigerator are connected to the hot end heat exchange portion at one end, and are bent and extended upwardly, and the heat exchange portion and the plurality of heat dissipating pipes are used at the hot end.
  • the medium phase change cyclic heat exchange effectively conducts a large amount of heat at the hot end of the semiconductor refrigerating sheet, and utilizes a plurality of independent heat dissipating tubes to make the processing process simpler and contributes to the cooperation with the refrigerator structure.
  • FIG. 1 is a schematic front view of a hot end heat exchange device in accordance with one embodiment of the present invention
  • FIG. 2 is a schematic left side view of a hot end heat exchange device in accordance with one embodiment of the present invention.
  • Figure 3 is a schematic partial enlarged view of A in Figure 1;
  • FIG. 4 is a schematic front view showing a partial structure of a semiconductor refrigerating refrigerator according to an embodiment of the present invention
  • Figure 5 is a schematic cross-sectional view showing a partial structure of a semiconductor refrigeration refrigerator according to an embodiment of the present invention
  • FIG. 6 is a schematic rear view of a partial structure of a semiconductor refrigeration refrigerator according to an embodiment of the present invention.
  • Figure 7 is a schematic right side view showing a partial structure of a semiconductor refrigerating refrigerator in accordance with one embodiment of the present invention.
  • FIG. 1 is a schematic front view of a hot end heat exchange device 400 in accordance with one embodiment of the present invention.
  • an embodiment of the present invention provides a hot-end heat exchange device 400 for a semiconductor refrigeration refrigerator, which may include a hot-end heat exchange portion 410 and a plurality of heat-dissipating pipes. 420.
  • the hot end heat exchange portion 410 defines a lumen or a duct for accommodating a refrigerant in which gas and liquid phases coexist, and is configured to allow a refrigerant to flow therein and undergo phase change heat.
  • a plurality of heat dissipation lines 420 are configured to allow the refrigerant to flow therein and undergo phase change heat.
  • Each of the heat dissipating conduits 420 has a condensation section 421 extending upwardly in a vertical plane and having an end closed, and a connecting section 422 extending downwardly from the starting end of the condensation section 421 and communicating to the inner cavity or conduit. . That is, each of the heat dissipation pipes 420 is formed such that the first end of the open end communicates with the upper portion of the inner cavity or the pipe, and each of the heat dissipation pipes 420 is bent and extended obliquely upward from the first end thereof, and is terminated by The second end of the closed end.
  • the condensation section 421 of at least a portion of the plurality of heat dissipation conduits 420 is disposed in two vertical planes that are perpendicular to each other, such that at least one sidewall 320 and the back 310 of the outer casing and the heat dissipation conduit 420
  • the heat exchange of the condensation section 421 significantly improves the heat dissipation efficiency of the heat exchange device 400 and improves the energy efficiency of the semiconductor refrigeration refrigerator; and fully utilizes the structure of the refrigerator to occupy a small space.
  • the hot end heat exchange portion 410 and the heat sinking line 420 are filled in.
  • the refrigerant can be water or other refrigerant, and the amount of refrigerant can be determined by passing the test.
  • the structure in which each of the heat dissipating ducts 420 is bent upwardly needs to ensure that the liquid refrigerant can flow freely in the pipeline by gravity.
  • the hot end heat exchange portion 410 of the hot end heat exchange device 400 may have a flat rectangular parallelepiped shape, and the opposite front and rear surfaces of the hot end heat exchange portion 410 have an area larger than that of the other surfaces, and the hot end heat exchange portion 410
  • the front surface or the rear surface serves as a heat exchange surface that is thermally coupled to a heat source (eg, the hot end of the semiconductor refrigerating sheet), and the manner of thermally connecting may include the outer surface directly contacting the cold source or contacting through the heat conducting layer, wherein
  • the heat conductive layer may be a thermally conductive silica gel or graphite or the like applied between the outer surface and the cold source.
  • the "thermal connection” or “thermal contact” in this embodiment may be a direct heat transfer by means of heat conduction. If a thermal grease (graphite or other medium) is applied against the contact surface, it can be considered to be a part of the contact surface as a thermally conductive layer that improves the thermal connection (or thermal contact).
  • the condensation section 421 of at least a portion of the plurality of heat dissipation conduits 420 is disposed in two vertical planes that are perpendicular to each other, wherein the two vertical planes are perpendicular to the rear surface of the hot end heat exchange portion 410
  • the first plane and the second plane parallel to the rear surface of the hot end heat exchange portion 410 are such that at least one of the side walls 320 and the back 310 of the outer casing exchange heat with the condensation section 421 of the heat dissipation line 420.
  • the hot-end heat exchange portion 410 of the hot-end heat exchange device 400 may be disposed between the outer casing back 310 and the rear wall of the inner liner 100, and the semiconductor The hot end of the cooling fin is thermally connected.
  • the condensation section 421 of each heat dissipation line 420 abuts the inner surface of the outer casing.
  • the working process of the semiconductor refrigerating refrigerator is: when the semiconductor refrigerating sheet is energized, the hot end dissipates heat, and the temperature of the hot end heat exchange portion 410 thermally connected thereto increases correspondingly, and the liquid refrigerant in the hot end heat exchange portion 410 meets When heat occurs, the phase change evaporates and changes to a gaseous state.
  • the gaseous refrigerant rises along the heat dissipation pipe 420 under the heat source pressure, and the heat is transferred to the surrounding environment through the outer casing, and the refrigerant condenses and releases heat and then re-phases into a liquid state, relying on Gravity is automatically returned to the inner cavity of the hot end heat exchange portion 410, and the heat radiated from the hot end is again absorbed to evaporate, thereby performing cycle phase change heat dissipation, effectively reducing the hot end temperature.
  • the condensation section 421 of a portion of the plurality of heat dissipation lines 420 is disposed in a third plane parallel to the first plane such that the two side walls 320 and the back of the housing 310 is in heat exchange with the condensation section 421 of the respective heat dissipation line 420, respectively.
  • the condensation section 421 of each of the heat dissipation conduits 420 whose condensation section 421 is disposed in the second plane is located between the first plane and the third plane.
  • the condensation section 421 is disposed in the cold of each of the heat dissipation pipes 420 in the first plane
  • the condensation section 421 and the condensation section 421 of each of the heat dissipation lines 420 whose condensation section 421 is disposed in the third plane are located on one side of the second plane.
  • the number of the heat dissipation pipes 420 whose condensation section 421 is arranged in the second plane is two, and is symmetrically arranged about a vertical geometric plane.
  • the number of the heat dissipating pipes 420 whose heat dissipating sections 421 are arranged in the first plane and the condensation sections 421 thereof are arranged in the third plane is one, and is symmetrically arranged about the vertical geometric symmetry plane,
  • the vertical geometric plane of symmetry may be the vertical plane of symmetry of the outer casing.
  • the projection length of the condensation section 421 of each of the heat dissipation ducts 420 whose condensation section 421 is disposed in the second plane is smaller than 1/2 of the width of the casing back 310 of the semiconductor refrigeration refrigerator and larger than the casing back 310.
  • One-fourth of the width is such that the condensation sections 421 of the two heat-dissipating conduits 420 are thermally coupled to the left and right halves of the outer surface of the outer casing back 310, respectively.
  • the condensation section 421 of the heat dissipation line 420 whose condensation section 421 is disposed in the first plane and the condensation section 421 of the heat dissipation line 420 whose condensation section 421 is disposed in the third plane have a projection length on the horizontal plane that is smaller than that of the semiconductor refrigeration refrigerator
  • the outer side wall 320 of the outer casing is wider than 1/2 of the width of the side wall 320 of the outer casing so that the condensation sections 421 of the two heat dissipating pipes 420 are thermally connected to the outer surfaces of the two side walls 320 of the outer casing, respectively.
  • each condensation section 421 of each heat dissipation line 420 is thermally coupled to the outer surface of the outer casing through the condensation section 421 of each of the heat dissipation pipes 420. It is realized on the back surface 310 of the outer casing and the outer surfaces of the two side walls 320. In some alternative embodiments of the invention, each condensation section 421 can abut against a respective thermally conductive plate that abuts the back 310 and the two side walls 320 of the outer casing to heat the interior of the refrigerator enclosure. More even.
  • each of the heat dissipation conduits 420 may be a copper tube, a stainless steel tube, an aluminum tube, or the like, preferably a copper tube.
  • the connecting section 422 of the heat dissipating conduit 420 whose condensation section 421 is thermally coupled to the sidewall 320 of the outer casing may include a first section 425 and a second section 426, wherein the first section 425 and the hot section
  • the inner cavity or conduit of the heat exchange portion 410 is in communication and extends to the front of the exterior of the hot end heat exchange portion 410, and the second section 426 is coupled to the first section 425 and laterally in a vertical plane parallel to the back 310 of the outer casing.
  • the connecting section 422 of the heat dissipating duct 420 whose condensation section 421 is thermally coupled to the back of the outer casing may include only the first section 425, communicate with the inner cavity or duct of the hot end heat exchange portion 410 and extend to the hot end heat exchange portion 410. Externally rearward and extending to the beginning of the condensation section 421 of the respective heat dissipation line 420.
  • the condensation section 421 of each of the heat dissipation conduits 420 can include a plurality of vertically spaced apart straight tube sections 423 and a bent section 424 that connects each two adjacent straight tube sections 423, wherein each straight tube section 423 is relatively
  • the water level is inclined at an angle of 10° to 70° to ensure that the liquid refrigerant flows freely by gravity therein, and the bending section 424 is preferably set to a “C” shape or an arc segment so that the condensation section 421 Generally, a slanted "Z" shape structure is presented.
  • the semiconductor refrigeration refrigerator of the embodiment of the present invention further includes a plurality of retaining wires. 50.
  • Each of the retaining wires 50 is disposed in a vertical direction.
  • the outer vertices (also referred to as apexes) of each of the bent sections 424 on the same side of each of the heat dissipation conduits 420 are welded to a respective retaining wire 50.
  • the two retaining wires 50 may be respectively fixed to both sides of the condensation section 421 of a corresponding heat dissipation pipe 420, and each of the retaining wires 50 is sequentially fixed to the corresponding condensation section 421 at different portions along the length thereof.
  • other portions of each of the heat dissipation pipes 420 that are in contact with the respective retention wires 50 may be welded to the retention wires 50.
  • the hot-end heat exchange portion 410 of the hot-end heat exchange device 400 may be a heat exchange copper block, and four stepped blind holes 411 extending in a vertical direction are disposed inside the heat exchange portion.
  • the horizontal pipe hole 412 at the lower portion of each step blind hole 411 is connected to form a pipe inside the hot end heat exchange portion 410.
  • the lower end of each heat dissipation pipe 420 can be inserted into the corresponding step blind hole 411.
  • the hot end heat exchange device 400 further includes a refrigerant infusion tube 430 having one end in communication with the corresponding horizontal tube hole 412 and the other end being configured to be operatively opened to receive the normally closed end of the refrigerant injected from the outside to Each of the heat dissipation pipes 420 is filled with a refrigerant.
  • the hot end heat exchange portion 410 of the hot end heat exchange device 400 may be a hot end heat exchange tank defining a cavity for containing a refrigerant in which gas and liquid phases coexist. And configured to allow the refrigerant to undergo phase change heat therein.
  • the connecting section 422 of each heat pipe 420 is connected to the upper portion of the inner cavity.
  • the hot-end heat exchange device 400 may also be provided with a three-way device for the perfusion of the refrigerant.
  • the three-way device is disposed on a connecting section 422 of a heat dissipating pipe 420, the first end and the second end of which are used for communicating corresponding two sections of the connecting section 422, and the third end is configured to be operatively opened to receive The normally closed end of the refrigerant injected from the outside.
  • the use of a three-way device reduces the difficulty of injecting the refrigerant process and provides a means of maintenance.
  • Embodiments of the present invention also provide a semiconductor refrigeration refrigerator.
  • the semiconductor refrigerating refrigerator may include: a liner 100, a casing, a semiconductor refrigerating sheet, or any of the above embodiments.
  • the outer casing generally has two structures, one is assembled, that is, assembled by the top cover, the left and right side walls 320, the outer casing back 310, the lower bottom plate and the like into a complete box.
  • the other type is a one-piece type, that is, the top cover and the left and right side walls 320 are rolled into an inverted U-shape as required, which is called a U-shell, and is welded to the casing back 310 and the lower floor to form a box.
  • the semiconductor refrigerating refrigerator of the embodiment of the present invention preferably uses a monolithic outer casing, that is, the outer casing includes a U shell and a back 310, wherein the U shell is disposed on the outer side of the side wall and the top wall of the inner liner 100, and the rear back 310 and the inner casing of the outer casing The rear wall of 100 defines an installation space.
  • a storage compartment is defined in the inner tank 100.
  • the semiconductor refrigerating sheet may be disposed between the back 310 of the outer casing and the rear wall of the inner liner 100, that is, in the installation space defined by the rear back 310 of the outer casing and the rear wall of the inner liner 100.
  • the hot-end heat exchange device 400 may be installed such that the rear surface of the hot-end heat exchange portion 410 is thermally connected to the hot end of the semiconductor refrigerating sheet, and the condensation portion 421 of each of the heat-dissipating tubes 420 is attached to the inner surface of the outer casing. Rely on to dissipate heat from the hot end to the surrounding environment.
  • the semiconductor refrigerating sheet may be disposed at a lower portion of the semiconductor refrigerating refrigerator, and the hot end thereof may be in thermal contact with the front surface of the hot end heat exchange portion 410 of the hot end heat exchange device 400.
  • the semiconductor refrigerating sheet may be disposed in a middle portion or an upper portion of the semiconductor refrigerating refrigerator.
  • the semiconductor refrigerating refrigerator may further be provided with: a heat conducting device. The heat conducting device is vertically disposed between the back 310 of the outer casing and the rear wall of the inner casing 100 as a heat bridge.
  • the heat transfer device can generally include a first heat transfer block, a thermal conductor, and a second heat transfer block.
  • the first heat transfer block is thermally connected to the hot end of the semiconductor refrigerating sheet directly or otherwise;
  • the thermal conductor has a predetermined heat transfer length in the vertical direction, and the first end is located at the upper end and the first heat transfer block Thermally connecting to transfer heat of the hot end of the semiconductor refrigerating sheet from the first end to the second end located below;
  • the second heat transfer block is coupled to the second end of the heat conductor and to the rear surface of the hot end heat exchange portion 410 Connect directly by direct contact or other means.
  • the hot end heat exchange portion 410 can be disposed at a lower position to provide a larger upwardly extending space for the heat dissipating conduit 420, thereby enabling the semiconductor refrigerator to have a larger heat dissipating area.
  • the semiconductor refrigerating refrigerator of the embodiment may further include: a cold end heat exchange device 200, which is thermally connected to the cold end of the semiconductor refrigerating sheet for generating the cold end The cooling capacity is conducted to the storage compartment to cool the storage compartment using the semiconductor cooling fins.
  • the cold-end heat exchange device 200 may include: a cold-end heat exchange portion and a refrigerant Line 20.
  • the cold-end heat exchange portion defines a lumen for accommodating the refrigerant in which the gas-liquid two phases coexist, and is configured to allow the refrigerant to undergo phase change heat therein.
  • the refrigerant line 20 is configured to allow the refrigerant to flow therein and undergo phase change heat, and the first end of each of the refrigerant lines 20 formed to be the open end communicates with the lower portion of the inner cavity of the cold end heat exchange portion,
  • Each of the refrigerant tubes 20 is bent obliquely downward from its first end to terminate at a second end that is formed as a closed end.
  • the evaporation section 21 of the refrigerant line 20 can abut against the inner liner 100 of the refrigerator.
  • the evaporation section 21 of the partial refrigerant line 20 abuts against the outer surface of the rear wall of the liner, and the remaining part of the refrigerant line 20
  • the evaporation section 21 abuts against the outer surfaces of the two side walls of the inner liner.
  • the refrigerant poured in the cold-end heat exchange portion and the refrigerant line 20 may be carbon dioxide or other refrigerant, and the amount of refrigerant perfusion may be obtained by passing a test.
  • Each refrigerant line 20 is bent downwardly to ensure that the liquid refrigerant can flow freely in the line by gravity.
  • the refrigerant undergoes gas-liquid phase change in the cold-end heat exchange portion and the refrigerant pipe 20 to perform heat cycle. Specifically, when the semiconductor refrigerating sheet is energized, the temperature of the cold end is lowered, and the temperature of the cold-end heat exchange portion is decreased by conduction, and the refrigerant in the gaseous state undergoes phase change condensation when it is cold, and changes into a low-temperature liquid refrigerant.
  • the liquid refrigerant flows downward along the lumen of the refrigerant line 20 by gravity, and the refrigerant that condenses and flows down in the refrigerant line 20 is heated by the heat inside the refrigerator to evaporate and change into a gaseous state.
  • the gaseous vapor rises under the pressure of the heat source, and the gaseous refrigerant rises to the cold-end heat exchange portion to continue the condensation, thereby circulating the refrigeration, so that the temperature of the storage compartment is lowered to achieve the temperature drop.
  • the structure may be such that the semiconductor refrigerating sheet is disposed between the rear wall of the refrigerator liner 100 and the back of the refrigerator casing 310.
  • the rear wall of the cold-end heat exchange portion of the cold-end heat exchange device 200 is in thermal contact with the cold end of the semiconductor refrigerating sheet.
  • the hot end of the semiconductor refrigerating sheet is directly in thermal contact with the first heat transfer block of the heat conducting device; the second heat transfer block of the heat conducting device is directly in thermal contact with the rear surface of the hot end heat exchange portion 410.
  • those skilled in the art may also employ other forms of cold end heat exchange device 200, for example, employing a cold end heat exchange device 200 including a heat pipe, fins, and a fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种热端换热装置(400)及具有该热端换热装置(400)的半导体制冷冰箱。该热端换热装置(400)包括:热端换热部(410),限定有用于容装气液两相共存的制冷剂的内腔或管道;多根散热管路(420),每根散热管路(420)具有在一竖直平面中向上弯折延伸且末端封闭的冷凝段(421),和从冷凝段(421)的起始端向下弯折延伸并连通至内腔或管道的连接段(422);而且多根散热管路(420)中至少部分散热管路(420)的冷凝段(421)布置于相互垂直的两个竖直平面中。由于至少部分散热管路(420)的冷凝段(421)布置于相互垂直的两个竖直平面中,可使外壳的至少一个侧壁和后背与散热管路(420)的冷凝段(421)进行热交换,显著提高了热端换热装置(400)的散热效率和半导体制冷冰箱的能效。

Description

热端换热装置及半导体制冷冰箱 技术领域
本发明涉及制冷设备,特别是涉及一种热端换热装置及具有该热端换热装置的半导体制冷冰箱。
背景技术
半导体制冷冰箱,也称之为热电冰箱。其利用半导体制冷片通过高效环形双层热管散热及传导技术和自动变压变流控制技术实现制冷,无需制冷工质和机械运动部件,解决了介质污染和机械振动等传统机械制冷冰箱的应用问题。
然而,半导体制冷片的冷端在制冷的同时,会在其热端产生大量的热量,为保证半导体制冷片可靠持续地进行工作,需要及时对热端进行散热,然而现有技术中针对半导体制冷片的热端散热一般使用翅片的方式与周边环境进行热交换。现有采用翅片的换热装置的散热效率较低,满足不了半导体制冷冰箱的散热要求,大大制约了半导体制冷冰箱的发展。
目前现有技术中出现了通过设置风机对散热片进行强制对流散热的方案,以提高换热效率,但是散热翅片本身体积较大,另外设置风扇更加占用冰箱空间。风扇启动后会引起噪音增加,而且风扇连续工作,可靠性也较差。
发明内容
本发明第一方面的一个目的是要提供一种换热效率高、占用空间小的热端换热装置。
本发明第一方面的一个进一步的目的是要尽量提高热端换热装置的有效散热面积。
本发明第一方面的另一个进一步的目的是要使得热端换热装置生产及装配工艺简单、与冰箱本体配合可靠稳定。
本发明第二方面的一个目的是要提供一种具有上述热端换热装置的半导体制冷冰箱。
根据本发明第一方面,提供了一种用于半导体制冷冰箱的热端换热装置。该热端换热装置包括:
热端换热部,限定有用于容装气液两相共存的制冷剂的内腔或管道,且配置成允许制冷剂在其内流动并发生相变换热;和
多根散热管路,配置成允许制冷剂在其内流动且发生相变换热,每根所述散热管路具有:在一竖直平面中向上弯折延伸且末端封闭的冷凝段,和从所述冷凝段的起始端向下弯折延伸并连通至所述内腔或管道的连接段;而且
所述多根散热管路中至少部分散热管路的冷凝段布置于相互垂直的两个竖直平面中。
可选地,所述热端换热部为扁平长方体状,其相对设置的前表面与后表面的面积大于其他表面的面积,且所述热端换热部的前表面或后表面用作与热源热连接的换热面。
可选地,所述两个竖直平面包括与所述热端换热部的后表面垂直的第一平面和与所述热端换热部的后表面平行的第二平面。
可选地,所述多根散热管路中部分散热管路的冷凝段布置于与所述第一平面平行的第三平面中。
可选地,其冷凝段布置于所述第二平面中的每根散热管路的冷凝段位于所述第一平面和所述第三平面之间;
其冷凝段布置于所述第一平面中的每根散热管路的冷凝段和其冷凝段布置于所述第三平面中的每根散热管路的冷凝段均位于所述第二平面的一侧。
可选地,其冷凝段布置于所述第二平面中的散热管路的数量为两根,关于一竖向几何对称面对称设置。
可选地,其冷凝段布置于所述第一平面中的散热管路和其冷凝段布置于所述第三平面中的散热管路的数量均为一根,并关于所述竖向几何对称面对称设置。
可选地,其冷凝段布置于所述第二平面中的每根散热管路的冷凝段在水平面上的投影长度小于所述半导体制冷冰箱的外壳后背宽度的1/2且大于所述外壳后背宽度的1/4;
其冷凝段布置于所述第一平面中的散热管路的冷凝段和其冷凝段布置于所述第三平面中的散热管路的冷凝段在水平面上的投影长度均小于所述半导体制冷冰箱的外壳侧壁宽度且大于所述外壳侧壁宽度的1/2。
可选地,每根所述散热管路的冷凝段包括:多个直管区段,沿竖直方向间隔地设置,每个所述直管区段以相对于水平面呈10°至70°的角度倾斜 设置;和弯折区段,连接每两个相邻所述直管区段。
可选地,所述热端换热装置还包括:多个固位钢丝,沿竖直方向设置;而且每根所述散热管路同侧的各个弯折区段的外顶点处管壁均焊接于一个所述固位钢丝。
根据本发明的第二方面,提供了一种半导体制冷冰箱。该半导体制冷冰箱包括:内胆,其内限定有储物间室;外壳,包括有U壳和后背,设置于所述内胆的外侧;半导体制冷片,设置于所述外壳的后背与所述内胆的后壁之间;和上述任一种热端换热装置,设置于所述外壳的后背与所述内胆的后壁之间,且其被安装成使其热端换热部的后表面与所述半导体制冷片的热端热连接,而且使其每根散热管路的冷凝段与所述外壳的内表面贴靠,以将来自所述热端散发的热量散发至周围环境。
本发明的热端换热装置及半导体制冷冰箱中,至少部分散热管路的冷凝段布置于相互垂直的两个竖直平面中,显著提高了热端换热装置的有效散热面积,可使外壳的至少一个侧壁和后背与散热管路的冷凝段进行热交换,显著提高了热端换热装置的散热效率和提高了半导体制冷冰箱的能效;且充分利用冰箱结构,占用空间小。
进一步地,本发明的热端换热装置及半导体制冷冰箱中散热管路一端连通至热端换热部,并倾斜向上弯折延伸,利用制冷剂在热端换热部和多根散热管路中相变循环换热,有效地传导半导体制冷片的热端产生大量的热量,而且利用多根相互独立的散热管路,加工工艺更加简便,有助于与冰箱结构的配合。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的热端换热装置的示意性主视图;
图2是根据本发明一个实施例的热端换热装置的示意性左视图;
图3是图1中A处的示意性局部放大图;
图4是根据本发明一个实施例的半导体制冷冰箱的局部结构的示意性主视图;
图5是根据本发明一个实施例的半导体制冷冰箱的局部结构的示意性剖视图;
图6是根据本发明一个实施例的半导体制冷冰箱的局部结构的示意性后视图;
图7是根据本发明一个实施例的半导体制冷冰箱的局部结构的示意性右视图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。在本发明的描述中,术语“上”、“下”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。
图1是根据本发明一个实施例的热端换热装置400的示意性主视图。如图1所示,并参考图2和图3,本发明实施例提供了一种用于半导体制冷冰箱的热端换热装置400,其可包括热端换热部410和多根散热管路420。具体地,热端换热部410限定有用于容装气液两相共存的制冷剂的内腔或管道,且配置成允许制冷剂在其内流动并发生相变换热。多根散热管路420配置成允许制冷剂在其内流动且发生相变换热。每根散热管路420具有:在一竖直平面中向上弯折延伸且末端封闭的冷凝段421,和从冷凝段421的起始端向下弯折延伸并连通至内腔或管道的连接段422。也就是说,每根散热管路420的形成为开口端的第一端连通至内腔或管道的上部,每根散热管路420从其第一端倾斜向上地弯折延伸,终结于其形成为封闭端的第二端。特别地,多根散热管路420中至少部分散热管路420的冷凝段421布置于相互垂直的两个竖直平面中,可使外壳的至少一个侧壁320和后背310与散热管路420的冷凝段421进行热交换,显著提高了热端换热装置400的散热效率和提高了半导体制冷冰箱的能效;且充分利用冰箱结构,占用空间小。
在本发明的一些实施例中,热端换热部410和散热管路420中灌注的制 冷剂可以为水或其他制冷工质,且制冷剂的灌注量可以由通过试验测试得出。每根散热管路420向上地弯折延伸的结构需要保证液态的制冷剂可以依靠重力自由的在管路中流动。本实施例的热端换热装置400工作时,制冷剂在热端换热部410和散热管路420中进行气液相变,进行热循环。
热端换热装置400的热端换热部410可为扁平长方体状,该热端换热部410的相对设置的前表面与后表面的面积大于其他表面的面积,且热端换热部410的前表面或后表面用作与热源(例如半导体制冷片的热端)热连接的换热面,热连接的方式可以包括该外表面直接与该冷源接触贴靠或者通过导热层接触,其中导热层可以为涂覆于外表面和冷源之间的导热硅胶或石墨等。本实施例中的“热连接”或“热接触”,本可以是是直接抵靠接触,采用热传导的方式进行传热。若抵靠接触面涂覆导热硅脂(石墨或其他介质),可将其认为是抵靠接触面上的一部分,作为改善热连接(或热接触)的导热层。
多根散热管路420中至少部分散热管路420的冷凝段421布置于相互垂直的两个竖直平面中,其中,所述两个竖直平面包括与热端换热部410的后表面垂直的第一平面和与热端换热部410的后表面平行的第二平面,以使外壳的至少一个侧壁320和后背310与散热管路420的冷凝段421进行热交换。
本发明实施例的热端换热装置400应用到半导体制冷冰箱时,热端换热装置400的热端换热部410可设置在外壳后背310与内胆100后壁之间,且与半导体制冷片的热端热连接。每根散热管路420的冷凝段421与外壳的内表面贴靠。该半导体制冷冰箱的工作过程为:半导体制冷片通电工作时,热端散发热量,与之热连接的热端换热部410的温度相应升高,热端换热部410内的液态制冷剂遇热时发生相变蒸发,变化成为气态,气态的制冷剂会在热源压力下沿着散热管路420上升,将热量经过外壳传给周围环境,制冷剂冷凝放热后重新相变为液态,依靠重力自动回流至热端换热部410内腔中,再次吸收热端散发的热量进行蒸发,由此进行循环相变散热,有效地降低热端温度。
在本发明的一些实施例中,多根散热管路420中部分散热管路420的冷凝段421布置于与第一平面平行的第三平面中,以使外壳的两个侧壁320和后背310分别与相应散热管路420的冷凝段421进行热交换。具体地,其冷凝段421布置于第二平面中的每根散热管路420的冷凝段421位于第一平面和第三平面之间。其冷凝段421布置于第一平面中的每根散热管路420的冷 凝段421和其冷凝段421布置于第三平面中的每根散热管路420的冷凝段421均位于第二平面的一侧。
为了保证半导体制冷冰箱外壳散热较均匀,其冷凝段421布置于第二平面中的散热管路420的数量为两根,关于一竖向几何对称面对称设置。其冷凝段421布置于第一平面中的散热管路420和其冷凝段421布置于第三平面中的散热管路420的数量均为一根,并关于该竖向几何对称面对称设置,该竖向几何对称面可以为外壳的竖向对称面。进一步地,其冷凝段421布置于第二平面中的每根散热管路420的冷凝段421在水平面上的投影长度小于半导体制冷冰箱的外壳后背310宽度的1/2且大于外壳后背310宽度的1/4,以使该两根散热管路420的冷凝段421分别与外壳后背310外表面的左半部分和右半部分热连接。其冷凝段421布置于第一平面中的散热管路420的冷凝段421和其冷凝段421布置于第三平面中的散热管路420的冷凝段421在水平面上的投影长度均小于半导体制冷冰箱的外壳侧壁320宽度且大于外壳侧壁320宽度的1/2,以使该两根散热管路420的冷凝段421分别与外壳的两个侧壁320外表面热连接。
为了更好地使每个冷凝段421的热量传递至冰箱外壳,每根散热管路420的冷凝段421与外壳的外表面热连接是通过每个根散热管路420的冷凝段421分别贴靠于外壳的后背310和两个侧壁320外表面实现的。在本发明的一些替代性实施例中,每个冷凝段421可贴靠于一个相应导热平板上,导热平板在与外壳的后背310和两个侧壁320贴靠,以使冰箱外壳内受热更加均匀。
在本发明的一些实施例中,每个散热管路420可以选用铜管、不锈钢管、铝管等,优选为铜管。如图3所示,其冷凝段421与外壳的侧壁320热连接的散热管路420的连接段422可包括第一区段425和第二区段426,其中第一区段425与热端换热部410的内腔或管道连通且延伸至热端换热部410外部前方,第二区段426与第一区段425连接且在与外壳的后背310平行的竖直平面上横向地且倾斜向上地延伸后,并向前且倾斜向上地弯折至外壳侧壁320以连接相应的散热管路420的冷凝段421。其冷凝段421与外壳的背热连接的散热管路420的连接段422可仅包括第一区段425,与热端换热部410的内腔或管道连通且延伸至热端换热部410外部后方,并延伸至相应散热管路420的冷凝段421的起始端。
每根散热管路420的冷凝段421可包括多个竖向间隔设置的直管区段423和连接每两个相邻直管区段423的弯折区段424,其中每个直管区段423以相对于水平面呈10°至70°的角度倾斜设置以保证液态制冷剂在其内依靠重力自由流动,而弯折区段424优选设置为“C”字形,或为弧形管段,从而使得冷凝段421总体上呈现一种倾斜的“Z”字形结构。
为了防止每根散热管路420的冷凝段421发生变形,以保证每根制散热管路420内制冷剂有效地流动和进行热交换,本发明实施例的半导体制冷冰箱还包括多个固位钢丝50。每个固位钢丝50沿竖直方向设置。每根散热管路420同侧的各个弯折区段424的外顶点处(也可称为顶凸处)管壁均焊接于一个相应固位钢丝50。具体地,两个固位钢丝50可分别固定于一个相应散热管路420的冷凝段421的两侧,且每个固位钢丝50在沿其长度的不同部位处依次固定于相应冷凝段421的相应侧的各个弯折区段424的顶凸处。进一步地,每根散热管路420的其它与相应固位钢丝50接触的部分均可焊接于该固位钢丝50。
在本发明实施例中,如图3所示,热端换热装置400的热端换热部410可为换热铜块,其内部设置有四个沿竖直方向延伸的阶梯盲孔411和连通每个阶梯盲孔411下部的水平管孔412,以形成热端换热部410内部的管道。每根散热管路420的下端可插接于相应阶梯盲孔411内。热端换热装置400还包括一根制冷剂灌注管430,其一端与相应水平管孔412连通,另一端为配置成可操作地打开以接收从外部注入的制冷剂的常闭端,以向每根散热管路420内灌注制冷剂。
在本发明的一些替代性实施例中,热端换热装置400的热端换热部410可为热端换热箱,其内限定有用于容装气液两相共存的制冷剂的内腔,且配置成允许制冷剂在其内发生相变换热。每根散热管路420的连接段422连通至内腔的上部。热端换热装置400还可以设置三通装置用于制冷剂的灌注。该三通装置设置于一根散热管路420的连接段422上,其第一端和第二端用于连通连接段422的相应两区段,第三端为配置成可操作地打开以接收从外部注入的制冷剂的常闭端。利用三通装置降低了灌注制冷剂工艺的难度,并为维修提供了手段。
本发明实施例还提供了一种半导体制冷冰箱。如图4和图5所示,该半导体制冷冰箱可包括:内胆100、外壳、半导体制冷片、上述任一实施例中 的热端换热装置400和门体500等。该外壳一般存在两种结构,一种是拼装式、即由顶盖、左右侧壁320、外壳后背310、下底板等拼装成一个完整的箱体。另一种是整体式,即将顶盖与左右侧壁320按要求辊轧成一倒“U”字形,称为U壳,在与外壳后背310、下底板点焊成箱体。本发明实施例的半导体制冷冰箱优选使用整体式外壳,即外壳包括有U壳和后背310,其中U壳设置于内胆100的侧壁和顶壁的外侧,外壳的后背310与内胆100的后壁限定有安装空间。
本发明实施例的半导体制冷冰箱中内胆100内限定有储物间室。半导体制冷片可设置于外壳的后背310与内胆100的后壁之间,即位于外壳的后背310与内胆100的后壁限定的安装空间内。热端换热装置400可被安装成使其热端换热部410的后表面与半导体制冷片的热端热连接,而且使其每根散热管路420的冷凝段421与外壳的内表面贴靠,以将来自热端散发的热量散发至周围环境。
具体地,半导体制冷片可设置于半导体制冷冰箱的下部,且其热端可与热端换热装置400的热端换热部410的前表面接触热连接。在本发明的一些替代性实施例中,半导体制冷片可设置于半导体制冷冰箱的中部或上部,为了扩展热端换热装置400的散热空间,半导体制冷冰箱还可以设置有:导热装置。该导热装置竖直设置于所述外壳的后背310与所述内胆100的后壁之间作为热桥。该导热装置一般性地可以包括:第一传热块、导热体和第二传热块。第一传热块与半导体制冷片的热端以直接贴靠或其他方式热连接;导热体在竖直方向上具有预设的传热长度,其位于上方的第一端与第一传热块热连接,以将半导体制冷片的热端的热量从第一端传至位于下方的第二端;第二传热块与导热体的第二端连接,并与热端换热部410的后表面以直接贴靠或其他方式热连接。利用热桥,热端换热部410可以布置在较低的位置上,为散热管路420提供更大的向上延伸的空间,从而可以使半导体冰箱具有更大的散热面积。
为解决半导体制冷片向储物间室内提供冷量的问题,本实施例的半导体制冷冰箱还可以包括:冷端换热装置200,与半导体制冷片的冷端热连接,用于将冷端产生的冷量传导至储物间室内,从而利用半导体制冷片对储物间室进行制冷。
如图6和图7所示,该冷端换热装置200可包括:冷端换热部和制冷剂 管路20。冷端换热部限定有用于容装气液两相共存的制冷剂的内腔,且配置成允许制冷剂在其内发生相变换热。制冷剂管路20配置成允许制冷剂在其内流动且发生相变换热,而且每根制冷剂管路20的形成为开口端的第一端连通至冷端换热部的内腔的下部,每根制冷剂管路20的从其第一端倾斜向下地弯折延伸,终结于其形成为封闭端的第二端。制冷剂管路20的蒸发段21可以贴靠在冰箱的内胆100上,例如部分制冷剂管路20的蒸发段21贴靠于内胆后壁的外表面,其余部分制冷剂管路20的蒸发段21贴靠于内胆两个侧壁的外表面。冷端换热部和制冷剂管路20中灌注的制冷剂可以为二氧化碳或其他制冷工质,且制冷剂的灌注量可以由通过试验测试得出。每根制冷剂管路20向下地弯折延伸需要保证液态的制冷剂可以依靠重力自由的在管路中流动。本实施例的冷端换热装置200工作时,制冷剂在冷端换热部和制冷剂管路20中进行气液相变,进行热循环。具体地,当半导体制冷片通电工作时,冷端温度下降,通过传导,冷端换热部温度相应下降,其内气态的制冷剂遇冷时发生相变冷凝,变化成为低温的液态制冷剂,液态的制冷剂会靠重力沿着制冷剂管路20管腔下流,冷凝下流的制冷剂在制冷剂管路20中由于吸收冰箱内部的热量受热相变蒸发,变化成为气态。气态蒸汽在热源压力的推动下会上升,气态制冷剂上升到冷端换热部处继续冷凝,由此循环制冷,致使导致储物间室的温度下降实现降温。
使用该冷端换热装置200与以上实施例介绍的热端换热装置400进行装配时,其结构可以为:半导体制冷片布置在冰箱内胆100的后壁与冰箱外壳后背310之间的空间的上部,冷端换热装置200的冷端换热部的后壁与半导体制冷片的冷端贴靠热连接。半导体制冷片的热端与导热装置的第一传热块直接贴靠热连接;导热装置的第二传热块并与热端换热部410的后表面以直接贴靠热连接。在本发明的一些替代性实施例中,本领域的技术人员也可采用其它形式的冷端换热装置200,例如,采用包括热管、翅片和风机的冷端换热装置200。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (11)

  1. 一种用于半导体制冷冰箱的热端换热装置,包括:
    热端换热部,限定有用于容装气液两相共存的制冷剂的内腔或管道,且配置成允许制冷剂在其内流动并发生相变换热;和
    多根散热管路,配置成允许制冷剂在其内流动且发生相变换热,每根所述散热管路具有:在一竖直平面中向上弯折延伸且末端封闭的冷凝段,和从所述冷凝段的起始端向下弯折延伸并连通至所述内腔或管道的连接段;而且
    所述多根散热管路中至少部分散热管路的冷凝段布置于相互垂直的两个竖直平面中。
  2. 根据权利要求1所述的热端换热装置,其中
    所述热端换热部为扁平长方体状,其相对设置的前表面与后表面的面积大于其他表面的面积,且所述热端换热部的前表面或后表面用作与热源热连接的换热面。
  3. 根据权利要求2所述的热端换热装置,其中
    所述两个竖直平面包括与所述热端换热部的后表面垂直的第一平面和与所述热端换热部的后表面平行的第二平面。
  4. 根据权利要求3所述的热端换热装置,其中
    所述多根散热管路中部分散热管路的冷凝段布置于与所述第一平面平行的第三平面中。
  5. 根据权利要求4所述的热端换热装置,其中
    其冷凝段布置于所述第二平面中的每根散热管路的冷凝段位于所述第一平面和所述第三平面之间;
    其冷凝段布置于所述第一平面中的每根散热管路的冷凝段和其冷凝段布置于所述第三平面中的每根散热管路的冷凝段均位于所述第二平面的一侧。
  6. 根据权利要求5所述的热端换热装置,其中
    其冷凝段布置于所述第二平面中的散热管路的数量为两根,关于一竖向几何对称面对称设置。
  7. 根据权利要求6所述的热端换热装置,其中
    其冷凝段布置于所述第一平面中的散热管路和其冷凝段布置于所述第三平面中的散热管路的数量均为一根,并关于所述竖向几何对称面对称设置。
  8. 根据权利要求7所述的热端换热装置,其中
    其冷凝段布置于所述第二平面中的每根散热管路的冷凝段在水平面上的投影长度小于所述半导体制冷冰箱的外壳后背宽度的1/2且大于所述外壳后背宽度的1/4;
    其冷凝段布置于所述第一平面中的散热管路的冷凝段和其冷凝段布置于所述第三平面中的散热管路的冷凝段在水平面上的投影长度均小于所述半导体制冷冰箱的外壳侧壁宽度且大于所述外壳侧壁宽度的1/2。
  9. 根据权利要求1所述的热端换热装置,其中
    每根所述散热管路的冷凝段包括:
    多个直管区段,沿竖直方向间隔地设置,每个所述直管区段以相对于水平面呈10°至70°的角度倾斜设置;和
    弯折区段,连接每两个相邻所述直管区段。
  10. 根据权利要求9所述的热端换热装置,进一步包括:
    多个固位钢丝,沿竖直方向设置;而且
    每根所述散热管路同侧的各个弯折区段的外顶点处管壁均焊接于一个所述固位钢丝。
  11. 一种半导体制冷冰箱,包括:
    内胆,其内限定有储物间室;
    外壳,包括有U壳和后背,设置于所述内胆的外侧;
    半导体制冷片,设置于所述外壳的后背与所述内胆的后壁之间;和
    根据权利要求1至10中任一项所述的热端换热装置,设置于所述外壳的后背与所述内胆的后壁之间,且其被安装成使其热端换热部的后表面与所述半导体制冷片的热端热连接,而且使其每根散热管路的冷凝段与所述外壳的内表面贴靠,以将来自所述热端散发的热量散发至周围环境。
PCT/CN2015/090986 2014-12-15 2015-09-28 热端换热装置及半导体制冷冰箱 WO2016095588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410778448.6 2014-12-15
CN201410778448.6A CN104534727B (zh) 2014-12-15 2014-12-15 热端换热装置及半导体制冷冰箱

Publications (1)

Publication Number Publication Date
WO2016095588A1 true WO2016095588A1 (zh) 2016-06-23

Family

ID=52850301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090986 WO2016095588A1 (zh) 2014-12-15 2015-09-28 热端换热装置及半导体制冷冰箱

Country Status (2)

Country Link
CN (1) CN104534727B (zh)
WO (1) WO2016095588A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112137538A (zh) * 2019-06-27 2020-12-29 青岛海尔洗碗机有限公司 一种洗碗机
CN115212670A (zh) * 2022-06-29 2022-10-21 成都易态科技有限公司 工业窑炉烟气净化装置及黄磷烟气净化***

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534727B (zh) * 2014-12-15 2016-10-26 青岛海尔股份有限公司 热端换热装置及半导体制冷冰箱
CN106766527A (zh) * 2016-12-26 2017-05-31 青岛海尔股份有限公司 一种具有双制冷***的冰箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862146A (zh) * 2006-05-31 2006-11-15 广东新宝电器股份有限公司 一种电子冰箱的热管装置及其制作方法
CN103423924A (zh) * 2013-08-29 2013-12-04 顺德职业技术学院 一种内藏式磁流体热管半导体电子冰箱
CN103438607A (zh) * 2013-08-29 2013-12-11 顺德职业技术学院 一种磁流体热管半导体电子冰箱
CN203810826U (zh) * 2014-03-28 2014-09-03 海尔集团公司 冰箱
CN104534727A (zh) * 2014-12-15 2015-04-22 青岛海尔股份有限公司 热端换热装置及半导体制冷冰箱

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2745005Y (zh) * 2004-12-11 2005-12-07 佛山市顺德区凯琴电器有限公司 全静音半导体冰箱
CN2797986Y (zh) * 2005-04-29 2006-07-19 王龙岩 半导体冰箱的制冷散热结构
CN201289264Y (zh) * 2008-10-23 2009-08-12 王志平 热电双温双控电冰箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862146A (zh) * 2006-05-31 2006-11-15 广东新宝电器股份有限公司 一种电子冰箱的热管装置及其制作方法
CN103423924A (zh) * 2013-08-29 2013-12-04 顺德职业技术学院 一种内藏式磁流体热管半导体电子冰箱
CN103438607A (zh) * 2013-08-29 2013-12-11 顺德职业技术学院 一种磁流体热管半导体电子冰箱
CN203810826U (zh) * 2014-03-28 2014-09-03 海尔集团公司 冰箱
CN104534727A (zh) * 2014-12-15 2015-04-22 青岛海尔股份有限公司 热端换热装置及半导体制冷冰箱

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112137538A (zh) * 2019-06-27 2020-12-29 青岛海尔洗碗机有限公司 一种洗碗机
CN112137538B (zh) * 2019-06-27 2024-04-30 青岛海尔洗碗机有限公司 一种洗碗机
CN115212670A (zh) * 2022-06-29 2022-10-21 成都易态科技有限公司 工业窑炉烟气净化装置及黄磷烟气净化***
CN115212670B (zh) * 2022-06-29 2023-07-04 成都易态科技有限公司 工业窑炉烟气净化装置及黄磷烟气净化***

Also Published As

Publication number Publication date
CN104534727A (zh) 2015-04-22
CN104534727B (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
WO2016095587A1 (zh) 冷端换热装置及半导体制冷冰箱
WO2016095589A1 (zh) 半导体制冷冰箱
CN104329871B (zh) 半导体制冷冰箱及其冷端换热装置
WO2016095588A1 (zh) 热端换热装置及半导体制冷冰箱
CN104329828B (zh) 半导体制冷冰箱及其热端换热装置
CN104329857B (zh) 冰箱
CN104329850B (zh) 半导体制冷冰箱及其热端换热装置
CN104344642A (zh) 半导体制冷冰箱及其热端换热装置
CN104329868A (zh) 半导体制冷冰箱及其冷端换热装置
CN104344641B (zh) 半导体制冷冰箱及其热端换热装置
CN217952747U (zh) 用于半导体制冷片的换热***
CN104329866A (zh) 半导体制冷冰箱及其冷端换热装置
WO2016095590A1 (zh) 弯折管件及具有该弯折管件的半导体制冷冰箱
CN104329829A (zh) 半导体制冷冰箱及其热端换热装置
CN107747831A (zh) 一种稳定型列管冷却装置
CN104329827B (zh) 一种热交换装置及半导体冰箱
CN105485969B (zh) 换热装置及具有该换热装置的半导体制冷冰箱
CN104329890B (zh) 导热装置及具有该导热装置的半导体冰箱
CN113316361B (zh) 热虹吸散热器、***以及应用
CN204421417U (zh) 换热装置及半导体制冷冰箱
JP2003139417A (ja) 冷却装置
CN105466260B (zh) 换热装置及具有该换热装置的半导体制冷冰箱
CN104329832B (zh) 热交换装置及具有该热交换装置的半导体冰箱
CN204007283U (zh) 一种散热器壳
JP2009109051A (ja) ヒートポンプ給湯機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869099

Country of ref document: EP

Kind code of ref document: A1