WO2016095302A1 - 液晶显示面板 - Google Patents

液晶显示面板 Download PDF

Info

Publication number
WO2016095302A1
WO2016095302A1 PCT/CN2015/070635 CN2015070635W WO2016095302A1 WO 2016095302 A1 WO2016095302 A1 WO 2016095302A1 CN 2015070635 W CN2015070635 W CN 2015070635W WO 2016095302 A1 WO2016095302 A1 WO 2016095302A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
substrate
layer
disposed
film layer
Prior art date
Application number
PCT/CN2015/070635
Other languages
English (en)
French (fr)
Inventor
唐岳军
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/428,359 priority Critical patent/US9778513B2/en
Publication of WO2016095302A1 publication Critical patent/WO2016095302A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133738Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homogeneous alignment

Definitions

  • the invention belongs to the technical field of liquid crystal display, and in particular to a multi-domain vertical (MVA)-oriented liquid crystal display panel.
  • MVA multi-domain vertical
  • LCDs liquid crystal displays
  • the Vertical Alignment (VA) display mode is popular in the market due to its good viewing angle characteristics.
  • the long axis of the liquid crystal molecules in the pixel unit is perpendicular to the filter in an uncharged state, and each pixel unit is divided into a plurality of domain regions (multi-domain), in a power-on state.
  • the liquid crystal molecules in each domain region are deflected in respective directions.
  • the liquid crystal molecules in the same pixel unit are oriented into a plurality of directions, thereby compensating the viewing angles of the respective angles, thereby achieving uniformity in the respective viewing angle directions. Display to effectively improve the viewing angle characteristics in the gray scale display state of different viewing angles.
  • realizing a plurality of domain regions in a pixel unit can be realized by a PVA (Patterned VA) mode in which a lateral electric field is formed by a crack of a pixel electrode; and a protrusion structure in a pixel unit
  • the liquid crystal molecules form a multi-domain arranging MVA (Multi-domain VA) mode.
  • MVA Multi-domain VA
  • two types of spacers are disposed in different regions, one of which is a primary spacer and the other is a secondary spacer, both of which are located.
  • the above-mentioned convex structure is also disposed in the pixel unit, the structure is complicated, the manufacturing difficulty is increased, and the production cost is increased.
  • an object of the present invention is to provide a liquid crystal display.
  • the first substrate structure and the second substrate structure are disposed on the second substrate, and the second substrate structure includes at least: a second substrate and a plurality of sub-pixel regions formed on the second substrate, the first substrate structure
  • the method further includes: a first substrate, a common electrode layer, an insulating layer, a plurality of sub-insulators, a first conductive film layer, and a first alignment film layer, wherein the common electrode layer is disposed on the first substrate, and the insulating layer is disposed On the common electrode layer, the plurality of sub-insulators are disposed on the insulating layer, and the sub-isolator is located above the corresponding sub-pixel region and spaced apart from the second substrate structure.
  • the first conductive film layer is disposed on the insulating layer and covers the auxiliary spacer, the first alignment film layer covers an insulating layer other than the insulating layer covered by the first conductive film layer, and a first conductive film layer other than the first conductive film layer on the sub-spacer.
  • the secondary spacer is located above the center of its corresponding sub-pixel region.
  • the shape of the secondary spacer is a trapezoidal shape.
  • the first substrate structure further includes: a black matrix, a color filter layer, and a plurality of main spacers, wherein the black matrix is disposed on the first substrate, and the color filter layer is disposed on the black matrix
  • the common electrode layer is disposed on the color filter layer, the main spacer is disposed on the insulating layer, the main spacer is located below the black matrix, and the main spacer top
  • the second substrate structure is connected.
  • the second substrate structure further includes: a plurality of switch tubes and a second alignment film layer, wherein the plurality of switch tube arrays are arranged on the second substrate, and the pixel electrodes of the switch tubes are disposed in their corresponding In the sub-pixel region, the second alignment film layer covers the switch transistor and the sub-pixel region.
  • Another object of the present invention is to provide a liquid crystal display panel including a first substrate structure and a second substrate structure disposed on the cartridge, the second substrate structure including at least: a second substrate and a second substrate a plurality of sub-pixel regions, the first substrate structure at least comprising: a first substrate, a common electrode layer, an insulating layer, a plurality of conductive sub-insulators, a first conductive film layer, a first alignment film layer, and the common electrode layer Provided on the first substrate, the insulating layer is disposed on the common electrode layer, the plurality of conductive sub-isolators are disposed on the insulating layer, and the conductive auxiliary spacer is located in the corresponding sub-substrate Above the pixel region and spaced apart from the second substrate structure, the first conductive film layer is disposed on the insulating layer and contacting a bottom of the conductive auxiliary spacer, the first alignment film layer covering the a first conductive film layer and an insulating layer other than the insulating layer covered by
  • the conductive sub-isolator is located above the center of its corresponding sub-pixel region.
  • the conductive sub-spacer has a trapezoidal shape.
  • the first substrate structure further includes: a black matrix, a color filter layer, and a plurality of main spacers, wherein the black matrix is disposed on the first substrate, and the color filter layer is disposed on the black matrix
  • the common electrode layer is disposed on the color filter layer, the main spacer is disposed on the insulating layer, the main spacer is located below the black matrix, and the main spacer top
  • the second substrate structure is connected.
  • the second substrate structure further includes: a plurality of switch tubes and a second alignment film layer, wherein the plurality of switch tube arrays are arranged on the second substrate, and the pixel electrodes of the switch tubes are disposed in their corresponding In the sub-pixel region, the second alignment film layer covers the switch transistor and the sub-pixel region.
  • the invention realizes the orientation of the liquid crystal molecules by using the sub-isolator between the first substrate and the second substrate, and does not need to use an additional protrusion structure as compared with the multi-domain vertical display mode liquid crystal display panel in the prior art.
  • the more uniform orientation of the liquid crystal molecules simplifies the manufacturing process of the liquid crystal display panel and saves costs.
  • FIG. 1 is a schematic structural view of a multi-domain vertical display mode liquid crystal display panel according to a first embodiment of the present invention
  • Figure 2 is a front elevational view of a first substrate in accordance with a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a multi-domain vertical display mode liquid crystal display panel according to a second embodiment of the present invention.
  • Figure 4 is a front elevational view of a first substrate in accordance with a second embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a multi-domain vertical display mode liquid crystal display panel according to a first embodiment of the present invention.
  • 2 is a front elevational view of a first substrate in accordance with a first embodiment of the present invention.
  • the black matrix 112, the color filter layer 113, and the common electrode layer 114 are covered under the insulating layer 115, and the first alignment film layer 118 is not shown in FIG.
  • a multi-domain vertical Alignment (MVA) display mode liquid crystal display panel includes a first substrate 111, a second substrate 121, and a liquid crystal layer 130, wherein The first substrate 111 and the second substrate 121 are disposed on the cell, and the liquid crystal layer 130 is disposed between the first substrate 111 and the second substrate 121.
  • the liquid crystal layer 130 contains negative liquid crystal molecules, but the present invention is not limited thereto.
  • the display area of the second substrate 121 includes a plurality of sub-pixel areas SP, and the second substrate 121 is provided with a plurality of arrayed switching tubes (eg, thin film transistors) 122, wherein the pixel electrodes 1221 of each of the switching tubes 122 are disposed. In its corresponding sub-pixel region SP.
  • a second alignment film layer 123 is further disposed on the second substrate 121, wherein the second alignment film layer 123 completely covers all the switching tubes 122 and all the sub-pixel regions SP.
  • the second alignment film layer 123 may be formed using a polyimide resin (Polyimide Resin, PI) material.
  • the first substrate 111 is provided with a black matrix 112, a color filter layer 113, a common electrode layer 114, an insulating layer 115, a plurality of main photo spacers (MPS) 116a, and a plurality of sub-spacers (Sub Photo Spacer, SPS) 116b, first conductive film layer 117, and first alignment film layer 118.
  • MPS main photo spacers
  • SPS sub-spacers
  • a black matrix (BM) 112 is formed on the first substrate 111, wherein the black matrix 112 may be made of black resin or metallic chromium.
  • the color filter layer 113 is formed on the first substrate 111 and covers the black matrix 112, wherein the color filter layer 113 includes a red (R) color resist layer, a green (G) color resist layer, and blue (which are sequentially formed).
  • R red
  • G green
  • blue which are sequentially formed.
  • the common electrode layer 114 is formed on the color filter layer 113, wherein the common electrode layer 114 may be made of a transparent indium tin oxide (ITO) material.
  • the insulating layer 115 is formed on the common electrode layer 114, and a plurality of main spacers 116a and a plurality of sub-insulators 116b are disposed on the insulating layer 115.
  • the insulating layer 115 can connect the common electrode layer 115 with the main spacer 116a and the sub-isolator 116b. Isolation.
  • the main spacer 116a is spaced below the black matrix 112, and the main spacer 116a is contiguous with the second substrate structure, wherein the main spacer is used to maintain a space between the first substrate structure and the second substrate structure.
  • each of the sub-pixel regions SP corresponds to one sub-spacer 116b, and the arrangement density of the main spacers 116a is smaller than the arrangement density of the sub-spacers 116b.
  • Each of the sub-spacers 116b is located above the corresponding sub-pixel region SP and has a certain interval from the second alignment film layer 123.
  • Each of the sub-spacers 116b may be formed of an elastic material such as resin, or may be made of silicon dioxide or the like. Hard material formation.
  • each of the sub-spacers 116b is located above the center of its corresponding sub-pixel area SP.
  • each of the secondary spacers 116b has a trapezoidal shape.
  • the first conductive film layer 117 is disposed on the insulating layer 115 and covers each of the sub-insulators 116b, wherein the first conductive film layer 117 may be made of a transparent indium tin oxide (ITO) material.
  • the first alignment film layer 118 covers the first conductive film layer 117 other than the first conductive film layer 117 on each of the sub-spacers 116b and the insulating layer 115 other than the insulating layer 115 covered by the first conductive film layer 117. That is, the first conductive film layer 117 covers only a portion of the insulating layer 115.
  • the first conductive film layer 117 is a dense electrode pattern that is dense so that the liquid crystal display panel minimizes the shielding effect of the first conductive film layer 117 on the common electrode layer 114 during normal display.
  • the first alignment film layer 118 does not cover the main spacer 116a.
  • the first alignment film layer 118 may be formed using a polyimide resin (Polyimide Resin, PI) material.
  • the first conductive film layer 117 is electrically connected to the pixel electrode 1221 of each of the switching tubes 122.
  • the negative liquid crystal molecules contained in the liquid crystal layer 130 are separated around the sub-electrode.
  • the sub-116b forms an orientation alignment having a certain pretilt angle (Pre-tiltAngle);
  • Pre-tiltAngle pretilt angle
  • UV light curing monomer added to the liquid crystal layer 130 is polymerized, thereby fixing the liquid crystal molecules to form a multi-domain arrangement around the sub-spacer 116b, and forming a multi-domain vertical display mode liquid crystal display panel.
  • FIG. 3 is a schematic structural view of a multi-domain vertical display mode liquid crystal display panel according to a second embodiment of the present invention.
  • Figure 4 is a front elevational view of a first substrate in accordance with a second embodiment of the present invention.
  • the black matrix 112, the color filter layer 113, and the common electrode layer 114 are covered under the insulating layer 115, and the first alignment film layer 118 is not shown in FIG.
  • a multi-domain vertical Alignment (MVA) display mode liquid crystal display panel includes a first substrate 111, a second substrate 121, and a liquid crystal layer 130, wherein The first substrate 111 and the second substrate 121 are disposed on the cell, and the liquid crystal layer 130 is disposed between the first substrate 111 and the second substrate 121.
  • the liquid crystal layer 130 contains negative liquid crystal molecules.
  • the display area of the second substrate 121 includes a plurality of sub-pixel areas SP, and the second substrate 121 is provided with a plurality of arrayed switching tubes (eg, thin film transistors) 122, wherein the pixel electrodes 1221 of each of the switching tubes 122 are disposed. In its corresponding sub-pixel region SP.
  • a second alignment film layer 123 is further disposed on the second substrate 121, wherein the second alignment film layer 123 completely covers all the switching tubes 122 and all the sub-pixel regions SP.
  • the second alignment film layer 123 may be formed of a polyimide resin (Polyimide Resin, PI) material.
  • the first substrate 111 is provided with a black matrix 112, a color filter layer 113, a common electrode layer 114, an insulating layer 115, a plurality of main spacers 116a, a plurality of conductive sub-insulators 119, a first conductive film layer 117, and a first Alignment film layer 118.
  • a black matrix (BM) 112 is formed on the first substrate 111, wherein the black matrix 112 may be made of black resin or metallic chromium.
  • the switch tube 122 formed on the second substrate 121 faces the black matrix 112.
  • the color filter layer 113 is formed on the first substrate 111 and covers the black matrix 112, wherein the color filter layer 113 includes a red (R) color resist layer, a green (G) color resist layer, and blue (which are sequentially formed).
  • R red
  • G green
  • blue which are sequentially formed.
  • the common electrode layer 114 is formed on the color filter layer 113, wherein the common electrode layer 114 may be made of a transparent indium tin oxide (ITO) material.
  • the insulating layer 115 is formed on the common electrode layer 114, several The main spacer 116a and the plurality of conductive sub-insulators 119 are disposed on the insulating layer 115 such that the insulating layer 115 can isolate the common electrode layer 115 from the main spacer 116a and the conductive sub-spacer 119.
  • the main spacer 116a is spaced below the black matrix 112, and the main spacer 116a is contiguous with the second substrate structure, wherein the main spacer is used to maintain a space between the first substrate structure and the second substrate structure.
  • each of the sub-pixel regions SP corresponds to one conductive sub-spacer 119, and the arrangement density of the main spacers 116a is smaller than the arrangement density of the conductive sub-spacers 119.
  • Each of the conductive sub-insulators 119 is located above its corresponding sub-pixel region SP and has a certain interval from the second alignment film layer 123, wherein each of the conductive sub-insulators 119 may be formed of a metal material such as aluminum.
  • each of the conductive sub-spacers 119 is located above the center of its corresponding sub-pixel region SP.
  • each of the conductive sub-insulators 119 has a trapezoidal shape.
  • the first conductive film layer 117 is disposed on the insulating layer 115, and the first conductive film layer 117 is in contact with the bottom of each of the conductive sub-insulators 119, wherein the first conductive film layer 117 may be made of a transparent indium tin oxide (ITO) material. production.
  • the first alignment film layer 118 covers the first conductive film layer 117 and the insulating layer 115 other than the insulating layer 115 covered by the first conductive film layer 117, that is, the first conductive film layer 117 covers only the portion of the insulating layer 115. .
  • the first conductive film layer 117 is a dense electrode pattern that is dense so that the liquid crystal display panel minimizes the shielding effect of the first conductive film layer 117 on the common electrode layer 114 during normal display.
  • the first alignment film layer 118 does not cover the main spacer 116a.
  • the first alignment film layer 118 may be formed using a polyimide resin (Polyimide Resin, PI) material.
  • the first conductive film layer 117 is electrically connected to the pixel electrode 1221 of each of the switching transistors 122, here, because the first conductive film layer 117 and each of the conductive auxiliary spacers The bottom of the 119 is in contact, so that each of the conductive sub-spacers 119 is also energized.
  • the negative liquid crystal molecules contained in the liquid crystal layer 130 form an orientation with a certain pre-tilt angle around the conductive sub-spacers 119.
  • UV light (UV) light is irradiated, and the ultraviolet light curing monomer added in the liquid crystal layer 130 is subjected to polymerization reaction, thereby fixing the liquid crystal molecules to form a multi-domain arrangement around the conductive sub-spacer 119, and forming a multi-domain vertical display mode liquid crystal display. panel.
  • the pair between the first substrate and the second substrate is utilized.
  • the spacer realizes a more uniform orientation of the liquid crystal molecules, and compared with the multi-domain vertical display mode liquid crystal display panel in the prior art, there is no need to additionally use a protrusion structure to realize the orientation of the liquid crystal molecules, and the manufacturing process of the liquid crystal display panel is simplified. And save costs.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供了一种液晶显示面板,包括第二基板结构,第二基板结构至少包括若干子像素区域(SP),第一基板结构至少包括:第一基板(111)、公共电极层(114)、绝缘层(115)、若干副隔离子(116b)、第一导电膜层(117)、第一配向膜层(118),公共电极层(114)、绝缘层(115)及若干副隔离子(116b)依序设置在第一基板(111)上,副隔离子(116b)位于其对应的子像素区域(SP)的上方且与第二基板结构具有间隔,第一导电膜层(117)设置于绝缘层(115)上并覆盖副隔离子(116b),第一配向膜层(118)覆盖除第一导电膜层(117)覆盖之外的绝缘层(115)以及除副隔离子(116b)上之外的第一导电膜层(117)。利用副隔离子(116b)实现液晶分子更均匀的取向,从而简化制造工序,节省成本。

Description

液晶显示面板 技术领域
本发明属于液晶显示技术领域,具体地讲,涉及一种多畴垂直(MVA)取向型液晶显示面板。
背景技术
随着光电与半导体技术的演进,也带动了平板显示器(Flat Panel Display)的蓬勃发展,而在诸多平板显示器中,液晶显示器(Liquid Crystal Display,简称LCD)因具有高空间利用效率、低消耗功率、无辐射以及低电磁干扰等诸多优越特性,已成为市场的主流。
在液晶显示器的各种显示模式中,垂直排列(Vertical Alignment,VA)显示模式由于其良好的视角特性受到市场的欢迎。在VA显示模式的LCD中,像素单元内液晶分子的长轴在不加电的状态下与滤光片垂直,每个像素单元被划分为多个畴区(多畴),在加电状态下,每个畴区内的液晶分子向各自的方向偏转,通过这种方法,将同一像素单元中的液晶分子取向分为多个方向,由此补偿各个角度的视角,进而实现各个视角方向的均匀显示,以有效改善不同观察角度的灰阶显示状态下的视角特性。
现有技术中,实现像素单元中的多个畴区可以由以下方式实现:由像素电极的裂缝形成侧向电场的PVA(Patterned VA)模式;由像素单元中的凸起(Protrusions)结构来使液晶分子形成多畴排列的MVA(Multi-domain VA)模式。但是在现有的液晶显示面板中,为了保持液晶显示面板之间的间隔,会在不同区域设置两种隔离子,其中一种为主隔离子,另一种为副隔离子,二者均位于黑色矩阵上,如果将上述凸起结构也设置在像素单元中,会使结构复杂,增加制作难度,且会增加生产成本。
发明内容
为了解决上述现有技术存在的问题,本发明的目的在于提供一种液晶显示 面板,包括对盒设置的第一基板结构及第二基板结构,所述第二基板结构至少包括:第二基板及形成在所述第二基板上的若干子像素区域,所述第一基板结构至少包括:第一基板、公共电极层、绝缘层、若干副隔离子、第一导电膜层、第一配向膜层,所述公共电极层设置在所述第一基板上,所述绝缘层设置在所述公共电极层上,所述若干副隔离子设置在所述绝缘层上,所述副隔离子位于其对应的所述子像素区域的上方且与所述第二基板结构具有间隔,所述第一导电膜层设置于所述绝缘层上并覆盖所述副隔离子,所述第一配向膜层覆盖除所述第一导电膜层覆盖的绝缘层之外的绝缘层以及除所述副隔离子上的第一导电膜层之外的第一导电膜层。
进一步地,所述副隔离子位于其对应的所述子像素区域中心处的上方。
进一步地,所述副隔离子的形状为梯柱状。
进一步地,所述第一基板结构还包括:黑色矩阵、彩色滤光层及若干主隔离子,所述黑色矩阵设置在所述第一基板上,所述彩色滤光层设置在所述黑色矩阵上,所述公共电极层设置在所述彩色滤光层上,所述主隔离子设置在所述绝缘层上,所述主隔离子位于所述黑色矩阵的下方,且所述主隔离子顶接所述第二基板结构。
进一步地,所述第二基板结构还包括:若干开关管及第二配向膜层,所述若干开关管阵列排布在所述第二基板上,所述开关管的像素电极设置在其对应的子像素区域中,所述第二配向膜层覆盖所述开关管及所述子像素区域。
本发明的另一目的还在于提供一种液晶显示面板,包括对盒设置的第一基板结构及第二基板结构,所述第二基板结构至少包括:第二基板及形成在所述第二基板上的若干子像素区域,所述第一基板结构至少包括:第一基板、公共电极层、绝缘层、若干导电副隔离子、第一导电膜层、第一配向膜层,所述公共电极层设置在所述第一基板上,所述绝缘层设置在所述公共电极层上,所述若干导电副隔离子设置在所述绝缘层上,所述导电副隔离子位于其对应的所述子像素区域的上方且与所述第二基板结构具有间隔,所述第一导电膜层设置于所述绝缘层上并接触所述导电副隔离子的底部,所述第一配向膜层覆盖所述第一导电膜层以及除所述第一导电膜层覆盖的绝缘层之外的绝缘层。
进一步地,所述导电副隔离子位于其对应的所述子像素区域中心处的上方。
进一步地,所述导电副隔离子的形状为梯柱状。
进一步地,所述第一基板结构还包括:黑色矩阵、彩色滤光层及若干主隔离子,所述黑色矩阵设置在所述第一基板上,所述彩色滤光层设置在所述黑色矩阵上,所述公共电极层设置在所述彩色滤光层上,所述主隔离子设置在所述绝缘层上,所述主隔离子位于所述黑色矩阵的下方,且所述主隔离子顶接所述第二基板结构。
进一步地,所述第二基板结构还包括:若干开关管及第二配向膜层,所述若干开关管阵列排布在所述第二基板上,所述开关管的像素电极设置在其对应的子像素区域中,所述第二配向膜层覆盖所述开关管及所述子像素区域。
本发明利用第一基板与第二基板之间的副隔离子实现液晶分子的取向,与现有技术中的多畴垂直显示模式液晶显示面板相比,无需额外的使用凸起(Protrusions)结构实现液晶分子更均匀的取向,简化液晶显示面板的制造工序,且节省成本。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1是根据本发明的第一实施例的多畴垂直显示模式液晶显示面板的结构示意图;
图2是根据本发明的第一实施例的第一基板的正视图;
图3是根据本发明的第二实施例的多畴垂直显示模式液晶显示面板的结构示意图;
图4是根据本发明的第二实施例的第一基板的正视图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。
在附图中,相同的标号将始终被用于表示相同的元件。将理解的是,尽管在这里可使用术语“第一”、“第二”等来描述各种元件,但是这些元件不应受这些术语的限制。这些术语仅用于将一个元件与另一个元件区分开来。
图1是根据本发明的第一实施例的多畴垂直显示模式液晶显示面板的结构示意图。图2是根据本发明的第一实施例的第一基板的正视图。其中,在图2中,黑色矩阵112、彩色滤光层113和公共电极层114被覆盖在绝缘层115之下,并且图2中未示出第一配向膜层118。
参照图1和图2,根据本发明的第一实施例的多畴垂直(Multi-domain Vertical Alignment,MVA)显示模式液晶显示面板包括第一基板111、第二基板121及液晶层130,其中,第一基板111与第二基板121对盒设置,液晶层130设置在第一基板111与第二基板121之间。优选的,在根据本发明的第一实施例中,液晶层130中包含负性的液晶分子,但本发明并不限制于此。
第二基板121的显示区域包含有多个子像素区域SP,且第二基板121上设置有若干阵列排布的开关管(例如,薄膜晶体管)122,其中,每个开关管122的像素电极1221设置在其对应的子像素区域SP中。在第二基板121上还设置有第二配向膜层123,其中,该第二配向膜层123将所有开关管122及所有子像素区域SP完全覆盖其下。在根据本发明的第一实施例中,该第二配向膜层123可采用聚酰亚胺树脂(Polyimide Resin,PI)材料形成。
在第一基板111上设置有:黑色矩阵112、彩色滤光层113、公共电极层114、绝缘层115、若干主隔离子(Main Photo Spacer,MPS)116a、若干副隔离子(Sub Photo Spacer,SPS)116b、第一导电膜层117及第一配向膜层118。
黑色矩阵(BM)112形成在第一基板111上,其中,黑色矩阵112可由黑色树脂或者金属铬制成。在第二基板121上形成的开关管122与黑色矩阵112 正对。彩色滤光层113形成在第一基板111上,并覆盖黑色矩阵112,其中,该彩色滤光层113包括依次形成的红色(R)色阻层、绿色(G)色阻层和蓝色(B)色阻层。
公共电极层114形成在彩色滤光层113上,其中,公共电极层114可由透明的氧化铟锡(ITO)材料制成。绝缘层115形成在公共电极层114上,若干主隔离子116a及若干副隔离子116b设置在绝缘层115上,这样,绝缘层115可将公共电极层115与主隔离子116a、副隔离子116b进行隔离。
主隔离子116a间隔位于黑色矩阵112的下方,且主隔离子116a顶接第二基板结构,其中,主隔离子用于保持第一基板结构与第二基板结构之间的间隔。在本实施例中,每个子像素区域SP均对应一个副隔离子116b,而主隔离子116a的布置密度小于副隔离子116b的布置密度。
每个副隔离子116b位于其对应的子像素区域SP的上方且与第二配向膜层123具有一定的间隔,其中,每个副隔离子116b可由树脂等弹性材料形成,也可由二氧化硅等硬性材料形成。优选的,在根据本发明的第一实施例中,每个副隔离子116b位于其对应的子像素区域SP中心处的上方。优选的,在根据本发明的第一实施例中,每个副隔离子116b呈梯柱状。
第一导电膜层117设置于绝缘层115上且覆盖每个副隔离子116b,其中,第一导电膜层117可由透明的氧化铟锡(ITO)材料制成。第一配向膜层118覆盖除每个副隔离子116b上的第一导电膜层117之外的第一导电膜层117以及除第一导电膜层117覆盖的绝缘层115之外的绝缘层115,也就是说,第一导电膜层117只覆盖绝缘层115的部分。第一导电膜层117为密布的极细的电极图案(pattern),以使液晶显示面板在正常显示时尽量减小第一导电膜层117对公共电极层114的屏蔽作用。
此外,第一配向膜层118不覆盖主隔离子116a。第一配向膜层118可采用聚酰亚胺树脂(Polyimide Resin,PI)材料形成。
在根据本发明的第一实施例中,先将第一导电膜层117与每个开关管122的像素电极1221进行通电导通,这时液晶层130中包含的负性液晶分子会围绕副隔离子116b形成具有一定预倾角(Pre-tiltAngle)的定向排列;然后采用 紫外光(UV)光照射,液晶层130中添加的紫外光固化单体进行聚合反应,从而固定液晶分子围绕副隔离子116b形成多畴排列,进行形成多畴垂直显示模式液晶显示面板。
图3是根据本发明的第二实施例的多畴垂直显示模式液晶显示面板的结构示意图。图4是根据本发明的第二实施例的第一基板的正视图。其中,在图4中,黑色矩阵112、彩色滤光层113和公共电极层114被覆盖在绝缘层115之下,并且图2中未示出第一配向膜层118。
参照图3和图4,根据本发明的第二实施例的多畴垂直(Multi-domain Vertical Alignment,MVA)显示模式液晶显示面板包括第一基板111、第二基板121及液晶层130,其中,第一基板111与第二基板121对盒设置,液晶层130设置在第一基板111与第二基板121之间。优选的,在根据本发明的第二实施例中,液晶层130中包含负性的液晶分子。
第二基板121的显示区域包含有多个子像素区域SP,且第二基板121上设置有若干阵列排布的开关管(例如,薄膜晶体管)122,其中,每个开关管122的像素电极1221设置在其对应的子像素区域SP中。在第二基板121上还设置有第二配向膜层123,其中,该第二配向膜层123将所有开关管122及所有子像素区域SP完全覆盖其下。在根据本发明的第二实施例中,该第二配向膜层123可采用聚酰亚胺树脂(Polyimide Resin,PI)材料形成。
在第一基板111上设置有:黑色矩阵112、彩色滤光层113、公共电极层114、绝缘层115、若干主隔离子116a、若干导电副隔离子119、第一导电膜层117及第一配向膜层118。
黑色矩阵(BM)112形成在第一基板111上,其中,黑色矩阵112可由黑色树脂或者金属铬制成。在第二基板121上形成的开关管122与黑色矩阵112正对。彩色滤光层113形成在第一基板111上,并覆盖黑色矩阵112,其中,该彩色滤光层113包括依次形成的红色(R)色阻层、绿色(G)色阻层和蓝色(B)色阻层。
公共电极层114形成在彩色滤光层113上,其中,公共电极层114可由透明的氧化铟锡(ITO)材料制成。绝缘层115形成在公共电极层114上,若干 主隔离子116a及若干导电副隔离子119设置在绝缘层115上,这样,绝缘层115可将公共电极层115与主隔离子116a、导电副隔离子119进行隔离。
主隔离子116a间隔位于黑色矩阵112的下方,且主隔离子116a顶接第二基板结构,其中,主隔离子用于保持第一基板结构与第二基板结构之间的间隔。在本实施例中,每个子像素区域SP均对应一个导电副隔离子119,而主隔离子116a的布置密度小于导电副隔离子119的布置密度。
每个导电副隔离子119位于其对应的子像素区域SP的上方且与第二配向膜层123具有一定的间隔,其中,每个导电副隔离子119可由铝等金属材料形成。优选的,在根据本发明的第二实施例中,每个导电副隔离子119位于其对应的子像素区域SP中心处的上方。优选的,在根据本发明的第二实施例中,每个导电副隔离子119呈梯柱状。
第一导电膜层117设置于绝缘层115上,并且第一导电膜层117与每个导电副隔离子119的底部接触,其中,第一导电膜层117可由透明的氧化铟锡(ITO)材料制成。第一配向膜层118覆盖第一导电膜层117以及除第一导电膜层117覆盖的绝缘层115之外的绝缘层115,也就是说,第一导电膜层117只覆盖绝缘层115的部分。第一导电膜层117为密布的极细的电极图案(pattern),以使液晶显示面板在正常显示时尽量减小第一导电膜层117对公共电极层114的屏蔽作用。
此外,第一配向膜层118不覆盖主隔离子116a。第一配向膜层118可采用聚酰亚胺树脂(Polyimide Resin,PI)材料形成。
在根据本发明的第二实施例中,先将第一导电膜层117与每个开关管122的像素电极1221进行通电导通,这里,由于第一导电膜层117与每个导电副隔离子119的底部接触,所以每个导电副隔离子119也被通电,这时液晶层130中包含的负性液晶分子会围绕导电副隔离子119形成具有一定预倾角(Pre-tilt Angle)的定向排列;然后采用紫外光(UV)光照射,液晶层130中添加的紫外光固化单体进行聚合反应,从而固定液晶分子围绕导电副隔离子119形成多畴排列,进行形成多畴垂直显示模式液晶显示面板。
综上所述,在根据本发明的实施例中,利用第一基板与第二基板之间的副 隔离子实现液晶分子更均匀的取向,与现有技术中的多畴垂直显示模式液晶显示面板相比,无需额外的使用凸起(Protrusions)结构实现液晶分子的取向,简化液晶显示面板的制造工序,且节省成本。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (16)

  1. 一种液晶显示面板,包括对盒设置的第一基板结构及第二基板结构,所述第二基板结构至少包括:第二基板及形成在所述第二基板上的若干子像素区域,
    其中,所述第一基板结构至少包括:第一基板、公共电极层、绝缘层、若干副隔离子、第一导电膜层、第一配向膜层,
    所述公共电极层设置在所述第一基板上,所述绝缘层设置在所述公共电极层上,所述若干副隔离子设置在所述绝缘层上,所述副隔离子位于其对应的所述子像素区域的上方且与所述第二基板结构具有间隔,所述第一导电膜层设置于所述绝缘层上并覆盖所述副隔离子,所述第一配向膜层覆盖除所述第一导电膜层覆盖的绝缘层之外的绝缘层以及除所述副隔离子上的第一导电膜层之外的第一导电膜层。
  2. 根据权利要求1所述的液晶显示面板,其中,所述副隔离子位于其对应的所述子像素区域中心处的上方。
  3. 根据权利要求1所述的液晶显示面板,其中,所述副隔离子的形状为梯柱状。
  4. 根据权利要求2所述的液晶显示面板,其中,所述副隔离子的形状为梯柱状。
  5. 根据权利要求1所述的液晶显示面板,其中,所述第一基板结构还包括:黑色矩阵、彩色滤光层及若干主隔离子,所述黑色矩阵设置在所述第一基板上,所述彩色滤光层设置在所述黑色矩阵上,所述公共电极层设置在所述彩色滤光层上,所述主隔离子设置在所述绝缘层上,所述主隔离子位于所述黑色矩阵的下方,且所述主隔离子顶接所述第二基板结构。
  6. 根据权利要求2所述的液晶显示面板,其中,所述第一基板结构还包括:黑色矩阵、彩色滤光层及若干主隔离子,所述黑色矩阵设置在所述第一基板上,所述彩色滤光层设置在所述黑色矩阵上,所述公共电极层设置在所述彩 色滤光层上,所述主隔离子设置在所述绝缘层上,所述主隔离子位于所述黑色矩阵的下方,且所述主隔离子顶接所述第二基板结构。
  7. 根据权利要求1所述的液晶显示面板,其中,所述第二基板结构还包括:若干开关管及第二配向膜层,所述若干开关管阵列排布在所述第二基板上,所述开关管的像素电极设置在其对应的子像素区域中,所述第二配向膜层覆盖所述开关管及所述子像素区域。
  8. 根据权利要求2所述的液晶显示面板,其中,所述第二基板结构还包括:若干开关管及第二配向膜层,所述若干开关管阵列排布在所述第二基板上,所述开关管的像素电极设置在其对应的子像素区域中,所述第二配向膜层覆盖所述开关管及所述子像素区域。
  9. 一种液晶显示面板,包括对盒设置的第一基板结构及第二基板结构,所述第二基板结构至少包括:第二基板及形成在所述第二基板上的若干子像素区域,
    其中,所述第一基板结构至少包括:第一基板、公共电极层、绝缘层、若干导电副隔离子、第一导电膜层、第一配向膜层,
    所述公共电极层设置在所述第一基板上,所述绝缘层设置在所述公共电极层上,所述若干导电副隔离子设置在所述绝缘层上,所述导电副隔离子位于其对应的所述子像素区域的上方且与所述第二基板结构具有间隔,所述第一导电膜层设置于所述绝缘层上并接触所述导电副隔离子的底部,所述第一配向膜层覆盖所述第一导电膜层以及除所述第一导电膜层覆盖的绝缘层之外的绝缘层。
  10. 根据权利要求9所述的液晶显示面板,其中,所述导电副隔离子位于其对应的所述子像素区域中心处的上方。
  11. 根据权利要求9所述的液晶显示面板,其中,所述导电副隔离子的形状为梯柱状。
  12. 根据权利要求10所述的液晶显示面板,其中,所述导电副隔离子的形状为梯柱状。
  13. 根据权利要求9所述的液晶显示面板,其中,所述第一基板结构还包括:黑色矩阵、彩色滤光层及若干主隔离子,所述黑色矩阵设置在所述第一基板上,所述彩色滤光层设置在所述黑色矩阵上,所述公共电极层设置在所述彩色滤光层上,所述主隔离子设置在所述绝缘层上,所述主隔离子位于所述黑色矩阵的下方,且所述主隔离子顶接所述第二基板结构。
  14. 根据权利要求10所述的液晶显示面板,其中,所述第一基板结构还包括:黑色矩阵、彩色滤光层及若干主隔离子,所述黑色矩阵设置在所述第一基板上,所述彩色滤光层设置在所述黑色矩阵上,所述公共电极层设置在所述彩色滤光层上,所述主隔离子设置在所述绝缘层上,所述主隔离子位于所述黑色矩阵的下方,且所述主隔离子顶接所述第二基板结构。
  15. 根据权利要求9所述的液晶显示面板,其中,所述第二基板结构还包括:若干开关管及第二配向膜层,所述若干开关管阵列排布在所述第二基板上,所述开关管的像素电极设置在其对应的子像素区域中,所述第二配向膜层覆盖所述开关管及所述子像素区域。
  16. 根据权利要求9所述的液晶显示面板,其中,所述第二基板结构还包括:若干开关管及第二配向膜层,所述若干开关管阵列排布在所述第二基板上,所述开关管的像素电极设置在其对应的子像素区域中,所述第二配向膜层覆盖所述开关管及所述子像素区域。
PCT/CN2015/070635 2014-12-15 2015-01-13 液晶显示面板 WO2016095302A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/428,359 US9778513B2 (en) 2014-12-15 2015-01-13 Liquid crystal display panel comprising multiple main photo spacers disposed directly below a black matrix and multiple sub-photo spacers disposed between the black matrix

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410779122.5A CN104460142B (zh) 2014-12-15 2014-12-15 液晶显示面板
CN201410779122.5 2014-12-15

Publications (1)

Publication Number Publication Date
WO2016095302A1 true WO2016095302A1 (zh) 2016-06-23

Family

ID=52906436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070635 WO2016095302A1 (zh) 2014-12-15 2015-01-13 液晶显示面板

Country Status (2)

Country Link
CN (1) CN104460142B (zh)
WO (1) WO2016095302A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793406A (zh) * 2015-04-29 2015-07-22 深圳市华星光电技术有限公司 液晶显示面板及液晶显示器
CN104950527A (zh) 2015-07-01 2015-09-30 合肥鑫晟光电科技有限公司 显示基板及其制造方法、显示面板和显示装置
US10747046B2 (en) 2015-07-01 2020-08-18 Boe Technology Group Co., Ltd. Display substrate, display panel and display apparatus having the same, and fabricating method thereof
CN105425472B (zh) * 2015-12-31 2019-09-17 武汉华星光电技术有限公司 液晶显示面板及其制备方法
CN107479264A (zh) * 2017-09-25 2017-12-15 惠科股份有限公司 显示面板和显示装置
JP2019101095A (ja) * 2017-11-29 2019-06-24 シャープ株式会社 液晶パネル
CN111443521B (zh) * 2020-04-28 2023-07-25 深圳市华星光电半导体显示技术有限公司 一种显示面板、其制备方法以及显示装置
WO2023039764A1 (zh) * 2021-09-15 2023-03-23 京东方科技集团股份有限公司 液晶显示面板及其制作方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258267A (ja) * 2000-12-26 2002-09-11 Toray Ind Inc カラーフィルター及びこれを用いた液晶表示装置
JP2006251597A (ja) * 2005-03-14 2006-09-21 Seiko Epson Corp 液晶装置、液晶装置の製造方法及び電子機器
CN101261405A (zh) * 2007-03-09 2008-09-10 群康科技(深圳)有限公司 液晶面板
US20090268131A1 (en) * 2008-04-28 2009-10-29 Au Optronics Corporation Touch panel, color filter substrate and fabricating method thereof
WO2010095187A1 (ja) * 2009-02-23 2010-08-26 シャープ株式会社 液晶表示装置及びその製造方法
CN102116962A (zh) * 2005-09-22 2011-07-06 夏普株式会社 液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258267A (ja) * 2000-12-26 2002-09-11 Toray Ind Inc カラーフィルター及びこれを用いた液晶表示装置
JP2006251597A (ja) * 2005-03-14 2006-09-21 Seiko Epson Corp 液晶装置、液晶装置の製造方法及び電子機器
CN102116962A (zh) * 2005-09-22 2011-07-06 夏普株式会社 液晶显示装置
CN101261405A (zh) * 2007-03-09 2008-09-10 群康科技(深圳)有限公司 液晶面板
US20090268131A1 (en) * 2008-04-28 2009-10-29 Au Optronics Corporation Touch panel, color filter substrate and fabricating method thereof
WO2010095187A1 (ja) * 2009-02-23 2010-08-26 シャープ株式会社 液晶表示装置及びその製造方法

Also Published As

Publication number Publication date
CN104460142A (zh) 2015-03-25
CN104460142B (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2016095302A1 (zh) 液晶显示面板
US20180321549A1 (en) Color filter substrate and liquid crystal display device
TWI522704B (zh) 顯示面板
US9429795B2 (en) Display panel having particular spacer arrangement
TW201816494A (zh) 畫素單元及其顯示面板
US9201278B2 (en) Array substrate and display device comprising a first transparent conductive layer having a plurality of protrusions corresponding to a plurality of slit structures
WO2013071840A1 (zh) Tft阵列基板及显示设备
US20140184972A1 (en) Display panel and liquid crystal display including the same
TWI418904B (zh) 畫素結構及具有此畫素結構之顯示面板
WO2021031559A1 (zh) 液晶显示面板及其制备方法
WO2015100903A1 (zh) 阵列基板、显示面板及显示装置
US20170102590A1 (en) Display panel and display device
US11868011B2 (en) Liquid crystal display panel
JP2006031022A (ja) 液晶表示器
WO2021203483A1 (zh) 显示面板及显示装置
CN104423085A (zh) 显示装置
TWI518411B (zh) 彩色濾光基板及顯示面板
WO2017049884A1 (zh) 一种阵列基板、曲面显示面板、曲面显示装置
US10101615B2 (en) Array substrate and manufacturing method thereof, liquid crystal panel and display device
JP5738748B2 (ja) 液晶表示素子
TWI479242B (zh) 一種面內切換型液晶顯示面板
US20180210295A1 (en) Array substrate, color film substrate and liquid crystal panel
US9778513B2 (en) Liquid crystal display panel comprising multiple main photo spacers disposed directly below a black matrix and multiple sub-photo spacers disposed between the black matrix
US20160041431A1 (en) Display panel and display device
US9244303B2 (en) Wide-viewing-angle liquid crystal display panel, color film base plate and manufacturing method thereof as well as display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14428359

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868819

Country of ref document: EP

Kind code of ref document: A1