WO2016095238A1 - 质子交换膜燃料电池电堆一致性的检测方法及检测装置 - Google Patents

质子交换膜燃料电池电堆一致性的检测方法及检测装置 Download PDF

Info

Publication number
WO2016095238A1
WO2016095238A1 PCT/CN2014/094472 CN2014094472W WO2016095238A1 WO 2016095238 A1 WO2016095238 A1 WO 2016095238A1 CN 2014094472 W CN2014094472 W CN 2014094472W WO 2016095238 A1 WO2016095238 A1 WO 2016095238A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
exchange membrane
proton exchange
cell stack
membrane fuel
Prior art date
Application number
PCT/CN2014/094472
Other languages
English (en)
French (fr)
Inventor
孙公权
杨林林
姬峰
秦兵
孙海
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2016095238A1 publication Critical patent/WO2016095238A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws

Definitions

  • the invention belongs to the field of fuel cells, and in particular relates to a test method for consistency of fluid distribution in a fuel cell stack.
  • Proton exchange membrane fuel cell is an energy conversion device that directly converts fuel chemical energy into electrical energy. It has the advantages of high power generation efficiency and environmental friendliness, and has broad application prospects in the fields of power, carrying and backup power.
  • a stack is the "heart" of a fuel cell and is the site where electrochemical reactions occur to convert the chemical energy of a fuel into electrical energy.
  • a stack consists of tens to hundreds of cells, which consist of a membrane electrode and a plate with flow channels on either side of the membrane electrode. Inconsistent performance of the single battery will affect the performance of the stack and reduce the service life.
  • the inconsistency of the reactor There are two main reasons for the inconsistency of the reactor: 1) the inconsistency of the membrane electrode, the performance difference caused by the process and material uniformity in the process of manufacturing the membrane electrode; 2) the inconsistency of the fluid distribution due to the plate.
  • the processing process and the stack assembly process cause different resistance drops in the flow field, resulting in inconsistent reactant flow rates into the individual cells, resulting in a difference in performance of the cells.
  • Patent CN102981124A proposes a method for judging the consistency of the inner membrane electrode of the stack by electrochemically active surface area.
  • the relationship between the battery performance and the electrochemical active surface area is still unclear, and the decrease of the electrochemical active surface area does not necessarily cause battery performance. The decline, so this method is only a reference value for the consistency detection of the reactor.
  • the present invention provides a simple method for detecting the consistency of fluid distribution in a fuel cell.
  • a cathode gas (or anode) of the fuel cell is introduced with a mixture of H 2 and an inert gas, and a positive voltage is applied to the cathode (or anode) (sufficient to completely oxidize H 2 ), and the magnitude of the measured oxidation current can be reflected in the flow channel.
  • the flow rate of the reactants is electrochemically oxidized at the cathode (or anode), and electrons generated by the protons passing through the ion exchange membrane to the anode (or cathode) react with the external circuit to form H 2 .
  • the reaction is controlled by mass transfer, that is, the oxidation current is related to the H 2 mass transfer flux, and the mass transfer flux of H 2 is the flow rate of the mixed gas. Closely connected. Therefore, the magnitude of the oxidation current can reflect the level of the gas flow.
  • an object of the present invention is to provide a simple and easy method for detecting the consistency of a stack.
  • the technical solution adopted by the present invention is: a method for detecting the consistency of a proton exchange membrane fuel cell stack, wherein the proton exchange membrane fuel cell stack is composed of two or more cells stacked in series and connected in series with a gas path.
  • the proton exchange membrane fuel cell stack includes an anode inlet and a cathode inlet;
  • H 2 is electrochemically oxidized at the cathode (or anode), and electrons generated by the protons passing through the ion exchange membrane to the anode (or cathode) react with the external circuit to form H 2 . Since the rate of electrochemical oxidation of H 2 Pt or Pd based catalyst surface faster group, the reaction is controlled by mass transfer, i.e. oxidation current magnitude associated with the mass transfer flux of H 2 and H 2 mass transfer flux is mixed with The flow of gas is closely connected. Therefore, the magnitude of the oxidation current can reflect the level of the gas flow.
  • Applying a voltage for hydrogen oxidation between the two electrodes of the proton exchange membrane fuel cell stack is specifically a mixture of hydrogen and an inert gas at the anode inlet of the fuel cell stack, and the proton exchange membrane fuel cell is electrically charged.
  • the same positive voltage is applied to each of the anode cells of the stack;
  • a mixture of hydrogen and an inert gas is introduced into the cathode inlet of the proton exchange membrane fuel cell stack, and a same positive voltage is applied to each of the cathode cells of the proton exchange membrane fuel cell stack;
  • the optimization condition in the detection process is that the membrane electrode in each unit cell of the proton exchange membrane fuel cell stack is intact; the optimal condition is that the membrane electrode performance in each unit cell of the proton exchange membrane fuel cell stack is consistent.
  • the voltage for hydrogen oxidation is from 0.3 to 0.9V.
  • the positive voltage is 0.3-0.9V.
  • the volume concentration of hydrogen in the mixed gas is from 0.1 to 10%.
  • the inert gas is one or a mixture of two or more of nitrogen, helium, and argon.
  • the unit cell includes a membrane electrode and an anode plate and a cathode plate disposed on both sides thereof; the membrane electrode includes an electrolyte membrane and an electrocatalyst attached to both side surfaces thereof; the electrocatalyst is a Pt group or Pd-based electrocatalyst.
  • a method for detecting the consistency of a proton exchange membrane fuel cell stack wherein the proton exchange membrane fuel cell stack is composed of two or more cells stacked in series and connected in series with a gas path; the proton exchange membrane fuel cell stack includes an anode Inlet and a cathode inlet;
  • the detecting method includes the following steps,
  • the step (2) test process is specifically: introducing a mixture of hydrogen and an inert gas into the anode inlet of the proton exchange membrane fuel cell stack, and applying a same positive voltage between the anodes of the single cell of the proton exchange membrane fuel cell stack. Or a mixture of hydrogen and inert gas is introduced into the cathode inlet of the proton exchange membrane fuel cell stack, and an identical positive voltage is applied between the cathode cells of the proton exchange membrane fuel cell stack.
  • the voltage for hydrogen oxidation is from 0.3 to 0.9V.
  • the applied positive voltage is 0.3-0.9V.
  • the volume concentration of hydrogen in the mixed gas is from 0.1 to 10%.
  • the inert gas is one or a mixture of two or more of nitrogen, helium, and argon.
  • the unit cell includes a membrane electrode and an anode plate and a cathode plate disposed on both sides thereof; the membrane electrode includes an electrolyte membrane and an electrocatalyst attached thereto; and the electrocatalyst is a Pt-based or Pd-based group catalyst.
  • a specific test procedure for a method for detecting the consistency of a proton exchange membrane fuel cell stack is:
  • the inert gas is one or more of N 2 , Ar, He;
  • the concentration of hydrogen in the mixed gas is 0.1-10%
  • the mixed gas may or may not be humidified
  • the catalyst used in the proton exchange membrane fuel cell is a Pt or Pd based catalyst.
  • the positive potential has a magnitude of 0.3-0.9V
  • the other chamber of the test stack may be supplied with an inert gas (one or two or more of N 2 , Ar, He) or deionized water, or may be unreachable.
  • an inert gas one or two or more of N 2 , Ar, He
  • deionized water or may be unreachable.
  • i n is the nth cell test current value
  • Q n is the nth cell gas flow rate
  • Figure 1 is a schematic diagram of a single cell in which a proton exchange membrane; 2 and 2' are catalytic layers; 3 and 3' are diffusion layers; and 4 and 4' are plates with flow channels.
  • a mixture of H 2 and N 2 is introduced into the cathode 4' (or anode) of the fuel cell, and then a positive potential is applied to the cathode (or anode), at which time H 2 is electrically oxidized in the catalytic layer 2' to generate
  • the protons reach the catalytic layer 2 through the proton exchange membrane 1, and the protons in the catalytic layer 2 are electrically reduced by electrons from the external circuit to form H 2 .
  • the detected current is calculated according to formula (1).
  • i is a current
  • J is a hydrogen molar flux
  • F is a Faraday constant
  • n is a reaction transfer electron number, here is 2.
  • the mass transfer flux J is related to the gas flow rate Q entering the battery, which is illustrated below with reference to FIG. 2 is a schematic view showing the distribution of H 2 concentration during the test, in which 2 is a catalytic layer; 3 is a diffusion layer; and 4 is a plate with a flow path.
  • C ch is the concentration of H 2 in the flow channel
  • C cl is the concentration of H 2 in the catalytic layer
  • the gas flow rate of the nth cell Q n can be calculated by the following formula
  • m represents the mth cell in the stack
  • i m is the m-cell cell current value
  • Q m is the m-th cell gas flow.
  • n is a positive integer >2.
  • a detecting device for detecting a consistency of a fluid distribution of a proton exchange membrane fuel cell stack comprising a mixed gas supply device, a DC power source and a current detecting module;
  • the mixed gas supply device is configured to supply a mixed gas to a anode inlet or a cathode inlet of a proton exchange membrane fuel cell stack;
  • the DC power supply and current detecting module is configured to apply voltage to each of the cells of the proton exchange membrane fuel cell stack and simultaneously The current of each cell of the proton exchange membrane fuel cell stack is detected.
  • the power source and current detecting module may be an integrated device, or may be independent power supply devices and current detecting devices.
  • the power source and current detecting module is an electrochemical workstation or a programmable power source when the integrated device is used.
  • the power device is one of a controllable switching power supply and a power module
  • the current detecting device is an ammeter, a Hall current sensor, and a current detecting module.
  • the testing device is provided with: 1. gas flow control device, including valves 601, 602, 603, mass flow meters 604, 605, 606; 2 gas mixer 610; 3 isolated power supply 650, data acquisition and processing Unit 640.
  • the isolated power supply is composed of a plurality of power sources that can independently apply voltage to the stack, and the isolated power supply can be a plurality of constant voltage sources with current measurement functions, as shown in FIG. It can be one of an electrochemical workstation, a programmable power supply, and a switching power supply.
  • the isolated power supply is composed of an independent module power supply and a detection current device. As shown in FIG. 8, it may be one of an ammeter, a Hall current sensor, and a current detecting module.
  • the method for detecting fluid distribution consistency and stack consistency of a proton exchange membrane fuel cell according to the present invention is simple and easy to implement, and the detecting device is simple and easy to assemble, for accurately detecting a proton exchange membrane fuel cell stack.
  • the performance of each single battery is significant.
  • FIG. 1 is a schematic view of a proton exchange membrane fuel cell unit.
  • 1 proton exchange membrane 1 proton exchange membrane; 2 and 2' are first and second catalytic layers; 3 and 3' are first and second diffusion layers, respectively; 4 and 4' are first and second with flow paths, respectively Two plates.
  • 2 is a schematic view showing the distribution of H 2 concentration in the membrane electrode during the test, wherein 2 is a catalytic layer; 3 is a diffusion layer; and 4 is a plate with a flow channel.
  • Figure 3 is a schematic diagram of the stack test, in which a mixture of H 2 and N 2 is introduced into the cathode chamber of the stack, and a positive potential is applied to the cathode of the unit cell.
  • Figure 4 is a schematic diagram of the stack test. A mixture of H 2 and N 2 is introduced into the anode chamber of the stack. At this time, a positive potential is applied to the anode of the unit cell.
  • Figure 5 is the relationship between the test current and the gas flow rate under different membrane electrode compression conditions.
  • FIG. 6 is a schematic illustration of a detection device.
  • 601, 602, and 603 are valves, 604, 605, and 606 are mass flow meters, 610 is a mixer, 620 is a fuel cell stack, 640 is a data acquisition and processing unit, and 650 is a power source.
  • FIG. 7 is a schematic diagram of an isolated power supply 650, wherein 701, 702, 703, 704, 705, and 706 are constant voltage sources with current measurement functions, and may be one of an electrochemical workstation, a programmable power supply, and a switching power supply.
  • 8 is a schematic diagram of an isolated power supply 650, wherein 801, 802, 803, 804, 805, and 806 are module power supplies, and 811, 812, 813, 814, 815, and 816 are current detecting devices, which are current meters, Hall current sensors, and sampling. One of a resistor and a high-side current sense amplifier.
  • the stack used contains three single cells.
  • the cell area was 25 cm 2
  • the proton exchange membrane used was Nafion 115
  • the catalyst was Pt/C.
  • a mixture of H 2 and N 2 was introduced into the cathode at a total flow rate of 1 L/min and a H 2 volume concentration of 1.5%.
  • the anode chamber was free of any fluid but remained in communication with the atmosphere.
  • a 0.6 V positive potential was applied to each of the single cell cathodes using an electrochemical workstation Soltron 1287, and the current was recorded.
  • the test schematic is shown in Figure 3. The test results are as follows:
  • the stack used contains three single cells.
  • the cell area was 25 cm 2
  • the proton exchange membrane used was Nafion 115
  • the catalyst was Pt/C.
  • a mixture of H 2 and N 2 was introduced into the anode chamber, the volume of H 2 was 1.5%, and the cathode chamber was purged with deionized water.
  • a DC power supply, Aetna PPS3005 was used to apply a positive potential of 0.9 V to the cathode of each single cell, and the current was recorded.
  • the test schematic is shown in Figure 4. The test results are as follows:
  • the stack used contains six single cells.
  • the cell area was 25 cm 2
  • the proton exchange membrane used was Nafion 212
  • the catalyst was Pt/C.
  • a saturated humidified H 2 , N 2 mixture gas was introduced into the cathode chamber, the total flow rate was 1 L/min, the H 2 volume concentration was 2%, and the anode chamber was passed through saturated humidification N 2 .
  • a positive potential of 0.8 V was applied to each of the single cell cathodes using the isolation module power supply as shown in Fig. 8, and the current was recorded.
  • the performance of the hydrogen-air fuel cell at 65 ° C saturated humidification was then tested at a flow rate of 7.5 L/min, and the cell voltages were recorded at 1 A/cm 2 constant current discharge.
  • the hydrogen oxidation rate of the anode side is extremely fast, and the overpotential of the battery is mainly caused by the mass transfer reaction process of the cathode oxygen. Therefore, the difference in main cathode performance of a proton exchange membrane fuel cell using H 2 as a fuel.
  • the test and calculation results are shown in the table below.
  • the voltage of the batteries 3 and 4 is low. It can be seen from the analysis that for the battery 4, its V n ⁇ V n ⁇ , the performance of the membrane electrode itself is slightly inferior. On the other hand, for the battery 3, the V n value falls within the acceptable voltage range, and the reason why the voltage is low is that the air supply amount is small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fuel Cell (AREA)

Abstract

一种质子交换膜燃料电池电堆(620)流体分配一致性的检测方法,一质子交换膜燃料电池电堆(620),由2节以上的依次堆叠的单电池组成;所述质子交换膜燃料电池电堆(620)包括一阳极入口和一阴极入口,于所述质子交换膜燃料电池电堆(620)阳极入口或阴极入口通入氢气同惰性气体的混合气,并在质子交换膜燃料电池电堆(620)各单电池两极间施加同一用于氢气氧化的电压,通过测试并比较各节单电池的氧化电流I n的一致性来判断质子交换膜燃料电池电堆(620)流体分配的一致性。与现有技术相比,所述检测质子交换膜燃料电池(620)流体分配一致性及电堆一致性的检测方法,简单易于实现,检测装置简单易于组装,对于准确检测质子交换膜燃料电池电堆(620)各单电池性能意义重大。

Description

质子交换膜燃料电池电堆一致性的检测方法及检测装置 技术领域
本发明属于燃料电池领域,具体涉及一种燃料电池电堆内流体分配一致性的测试方法。
背景技术
质子交换膜燃料电池是一种将燃料化学能直接转换为电能的能量转化装置,具有发电效率高,对环境友好等优点,在动力、携行及备用电源领域有广泛的应用前景。
电堆是燃料电池的“心脏”,是电化学反应发生的场所,用以将燃料的化学能转化为电能。一个电堆是由数十到数百节单电池组成,单电池由膜电极和位于膜电极两侧的带有流道的极板构成。单电池性能不一致将影响电堆性能的发挥,并减短使用寿命。
产生电堆不一致性主要有两方面的原因:1)膜电极的不一致性,在制造膜电极过程中,由工艺及材质均匀性问题导致的性能差异;2)流体分配的不一致性,由于极板加工过程及电堆组装过程引起流场的阻力降不同,导致进入各个单电池的反应物流量不一致,从而引起单电池的性能差异。
目前对于电堆一致性的检测鲜有满意方法。我们可以检测运行过程中电堆内每节单电池电压,但是此电压差异是由于膜电极本身性能差异引起还是由于供料不足(反应物流量不一致)引起,这是难以判断的。专利CN102981124A提出一种以电化学活性表面积来判断电堆内膜电极一致性的方法,然而电池性能同电化学活性表面积的关系至今尚不明晰,电化学活性表面积的下降并不一定会引起电池性能的下降,故此方法仅是对电堆一致性检测有一定参考价值。
针对以上问题,本发明提供一种简便的测试燃料电池内流体分配一致性的检测方法。在燃料电池的阴极(或阳极)通入H2同惰性气体的混合气,并在阴极(或阳极)施加一正电压(足以将H2完全氧化),所测氧化电流的大小可反应流道内反应物流量的高低。测试时,H2在阴极(或阳极)发生电化学氧化,生成质子通过离子交换膜到达阳极(或阴极)同外电路来的电子反应生成H2。由于H2在Pt基催化剂表面的电化学氧化速率较快,该反应受传质控制,即氧化电流大小同H2传质通量相关,而H2的传质通量是跟混合气的流量紧密相连的。故氧化电流的大小可反应气体流量的高低。
发明内容
针对以上问题,本发明目的在于提供一种简便易行的检测电堆一致性的方法。
为实现上述目的,本发明采用的技术方案为:质子交换膜燃料电池电堆一致性的检测方法,所述质子交换膜燃料电池电堆由2节以上的依次堆叠且气路串联的单电池组成;所述质子交换膜燃料电池电堆包括一阳极入口和一阴极入口;
于所述质子交换膜燃料电池电堆阳极入口或阴极入口通入氢气同惰性气体的混合气,并在质子交换膜燃料电池电堆各单电池两极间施加同一用于氢气氧化的电压,通过测试并比较各节单电池的氧化电流In的一致性来判断质子交换膜燃料电池电堆流体分配的一致性。
其理论依据为:H2在阴极(或阳极)发生电化学氧化,生成质子通过离子交换膜到达阳极(或阴极)同外电路来的电子反应生成H2。由于H2在Pt基或Pd基催化剂表面的电化学氧化速率较快,该反应受传质控制,即氧化电流大小同H2传质通量相关,而H2的传质通量是跟混合气的流量紧密相连的。故氧化电流的大小可反应气体流量的高低。
所述在质子交换膜燃料电池电堆各单电池两极间施加一用于氢气氧化的电压具体为当于燃料电池电堆阳极入口通入氢气同惰性气体的混合气,在质子交换膜燃料电池电 堆各单电池阳极施加一相同的正电压;
或于质子交换膜燃料电池电堆阴极入口通入氢气同惰性气体的混合气,并在质子交换膜燃料电池电堆各单电池阴极施加一相同的正电压;
通过测试并比较各节单电池的氧化电流的一致性来判断燃料电池电堆流体分配的一致性;若所述氧化电流一致则进入所述电堆内各单体电池流体流量一致,若所述氧化电流不一致则进入所述电堆内各单体电池流体流量不一致。
所述检测过程中的优化条件为质子交换膜燃料电池电堆各节单电池中的膜电极完好无损;最优条件为质子交换膜燃料电池电堆各节单电池中的膜电极性能一致。
所述用于氢气氧化的电压为0.3-0.9V。
所述正电压为0.3-0.9V。
所述混合气中氢气的体积浓度为0.1-10%。
所述惰性气体为氮气、氦气、氩气中的一种或两种以上的混合物。
所述单电池包括一膜电极和置于其两侧的阳极极板和阴极极板;所述膜电极包括一电解质膜和附着于其二侧表面的电催化剂;所述电催化剂为Pt基或Pd基电催化剂。
质子交换膜燃料电池电堆一致性的检测方法,所述质子交换膜燃料电池电堆由2节以上的依次堆叠且气路串联的单电池组成;所述质子交换膜燃料电池电堆包括一阳极入口和一阴极入口;
所述检测方法包括如下步骤,
(1)测量燃料电池电堆工作过程中各单电池电压Vn
(2)于所述燃料电池电堆阳极入口或阴极入口通入氢气同惰性气体的混合气,并在燃料电池电堆各单电池两极间施加一用于氢气氧化的电压,测试各节单电池的氧化电流In,同时找出小于各节单电池平均氧化电流所对应的单电池K,并计算氧化电流In对应的气体流量Qn
(3)理论计算确定合格膜电极在运行条件下当气体流量为Qn时对应的电压范围Vn ο
(4)对比Vn和Vn ο,若Vn在Vn ο范围之内,则单电池K性能差异源于电堆流体分配不一致,若Vn小于Vn ο,则单电池K性能差异还与膜电极本身相关。
所述步骤(2)测试过程具体为于质子交换膜燃料电池电堆阳极入口通入氢气同惰性气体的混合气,并在质子交换膜燃料电池电堆各单电池阳极间施加一相同的正电压;或于质子交换膜燃料电池电堆阴极入口通入氢气同惰性气体的混合气,并在质子交换膜燃料电池电堆各单电池阴极间施加一相同的正电压。
所述用于氢气氧化的电压为0.3-0.9V。
所述施加的正电压为0.3-0.9V。
所述混合气中氢气的体积浓度为0.1-10%。
所述惰性气体为氮气、氦气、氩气中的一种或两种以上的混合物。
所述单电池包括一膜电极和置于其两侧的阳极极板和阴极极板;所述膜电极包括一电解质膜和附着于其上的电催化剂;所述电催化剂为Pt基或Pd基催化剂。
一种质子交换膜燃料电池电堆一致性的检测方法的具体测试步骤为:
(1)向燃料电池电堆的阴极(或阳极)腔室通入H2和惰性气体的混合气;
所述惰性气体为N2、Ar、He中的一种或两种以上;
所述混合气中氢气的浓度为0.1-10%;
所述混合气可以增湿亦可以不增湿;
所述质子交换膜燃料电池所使用催化剂为Pt或Pd基催化剂。
(2)对各个单电池的阴极(或阳极)施加一正电位,如图3、4所示,记录电流大小;
所述正电位的大小为0.3-0.9V;
所述测试电堆的另一腔室可通入惰性气体(N2、Ar、He中的一种或两种以上)或去离子水,亦可不通。
(3)依据测试电流大小得出进入各单电池内流量比值,即i1:i2:i3:…in=Q1:Q2:Q3:…Qn
式中in为第n节单电池测试电流值,Qn为进入第n节单电池气体流量。知道进入电堆内气体总流量,便可依据上式计算出进入各个单电池内的气体流量。
以下结合图1和图2阐述本发明的原理。图1是单电池示意图,其中1质子交换膜;2和2’为催化层;3和3’为扩散层;4和4’为带有流道的极板。
测试时,在燃料电池的阴极4’(或阳极)通入H2和N2混合气,之后在阴极(或阳极)施加一正电位,此时H2在催化层2’发生电氧化,生成的质子通过质子交换膜1到达催化层2,在催化层2质子同外电路来的电子发生电还原反应生成H2。所检测的到的电流按式(1)计算,
i=J×nF   (1)
式(1)中i为电流,J为氢气摩尔通量,F为法拉第常数,n为反应转移电子数,此处为2。传质通量J是与进入电池内气体流量Q相关的,下面以图2来说明。图2是测试过程中H2浓度分布示意图,图中2为催化层;3为扩散层;4为带有流道的极板。在稳态情况下
J=k(Cch-Ccl)   (2)
其中,Cch为流道中H2的浓度,Ccl为催化层中H2的浓度,k传质系数。因施加电位足够高,氢气被完全氧化,即催化层内H2的浓度Ccl=0,故从式2知传质通量J同传质系数成正比,依据量纲分析知传质关联式,
k=f(Re,Sc)   (3)
其中,Re为雷诺数,Sc为施密特数(仅与流体物性相关,此实验中为一常数)。从中可知k与雷诺数紧密相关,而
Re=dvρ/μ∝Q   (4)
其中,d为流道水力直径,v为流速,ρ为密度,μ为粘度。当流体确定后Re仅随流速v而变,而流速同流量成正比,故Re同流体流量Q成正比。综合式(1)-(4)可知电流i同流体流量Q是紧密相关的,故可以用电流大小来反映进入流道内流体的流量大小。通过实验发现在常用气体流量范围,即通常在气体流量计量比低于5时,电流同流量是线性关系(如图5所示),即
i∝Q   (5)
此时第n节单电池Qn的气体流量分配为可通过如下公式计算
Figure PCTCN2014094472-appb-000001
m表示电堆中第m节单电池,im为第m节单电池测试电流值,Qm为进入第m节单电池气体流量。
m,n为>2的正整数。
当然电流同流量关系并不限于以上线性关系。
一种质子交换膜燃料电池电堆流体分配一致性的检测方法所用检测装置,包括混合气供应装置、直流电源及电流检测模块;
所述混合气供应装置用于为质子交换膜燃料电池电堆阳极入口或阴极入口提供混合气;所述直流电源及电流检测模块用于为质子交换膜燃料电池电堆各单电池施加电压并同时检测质子交换膜燃料电池电堆各单电池的电流。
所述电源及电流检测模块可为一体化装置,亦可为相互独立的电源装置和电流检测装置。
所述电源及电流检测模块为一体化装置时为电化学工作站或可编程电源。
所述电源及电流检测模块为相互独立的电源装置和电流检测装置时,电源装置为可控开关电源、电源模块中的一种,电流检测装置为电流表、霍尔电流传感器、电流检测模块中的一种。
以图6为例说明,测试装置具备:1.气体流量控制设备,包括阀门601、602、603、质量流量计604、605、606;2气体混合器610;3隔离电源650,数据采集及处理单元640。
所述的隔离电源为多个可独立向电堆施加电压的电源组成,所述的隔离电源可以是多个带带电流测量功能的恒压源,如图7所示,所述的恒压源可以为电化学工作站、可编程电源、开关电源中的一种。
所述的隔离电源为独立模块电源和检测电流器件构成,如图8所示,可以是电流表、霍尔电流传感器、电流检测模块中的一种。
与现有技术相比,本发明所述检测质子交换膜燃料电池流体分配一致性及电堆一致性的检测方法,简单易于实现,检测装置简单易于组装,对于准确检测质子交换膜燃料电池电堆各单电池性能意义重大。
附图说明
图1为质子交换膜燃料电池单电池的示意图。
其中,1质子交换膜;2和2’分别为第一和第二催化层;3和3’分别为第一和第二扩散层;4和4’分别为带有流道的第一和第二极板。
图2是测试过程中膜电极内H2浓度分布示意图,其中2为催化层;3为扩散层;4为带有流道的极板。
图3是电堆测试示意图,在电堆阴极腔室通入H2、N2混合气,此时需在单电池的阴极施加一正电位。
图4是电堆测试示意图,在电堆阳极腔室通入H2、N2混合气,此时需在单电池的阳极施加一正电位。
图5是不同膜电极压缩量条件下测试电流同气体流量的关系。
图6是检测装置的示意图。其中601、602、603为阀门,604、605、606为质量流量计,610为混合器,620为燃料电池电堆,640为数据采集及处理单元,650为电源。
图7是隔离电源650示意图,其中701、702、703、704、705、706为带电流测量功能的恒压源,可以是电化学工作站、可编程电源、开关电源中的一种。
图8是隔离电源650示意图,其中801、802、803、804、805、806为模块电源,811、812、813、814、815、816为检测电流器件,可以是电流表、霍尔电流传感器、取样电阻和高边电流检测放大器中的一种。
具体实施方式
下面结合实施例对本发明作详细的描述。当然本发明并不仅限于下述具体的实施例。
实施例1
所用电堆含有三节单电池。单电池面积为25cm2,所用质子交换膜为Nafion 115,催化剂为Pt/C。测试时向阴极通入H2和N2混合气,总流量为1L/min,H2体积浓度为1.5%,阳极腔室不通入任何流体但保持与大气连通。之后使用电化学工作站Soltron 1287对各单电池阴极施加一0.6V正电位,记录电流大小。测试示意图见图3,测试结果如下:
电池编号 电流大小mA
1 517.4
2 446.4
3 494.3
实施例2
所用电堆含有三节单电池。单电池面积为25cm2,所用质子交换膜为Nafion 115,催化剂为Pt/C。测试时向阳极腔室通入H2和N2混合气,H2体积浓度为1.5%,阴极腔室通入去离子水。之后使用直流电源安泰信PPS3005对各单电池阴极施加一0.9V正电位,记录电流大小。测试示意图见图4,测试结果如下:
电池编号 电流大小mA
1 561.2
2 376.4
3 525.6
实施例3
所用电堆含有六节单电池。单电池面积为25cm2,所用质子交换膜为Nafion 212,催化剂为Pt/C。测试时向阴极腔室通入饱和增湿的H2、N2混合气,总流量为1L/min,H2体积浓度为2%,阳极腔室通入饱和增湿N2。之后使用如图8所示的隔离模块电源对各单电池阴极施加一0.8V正电位,记录电流大小。之后测试在65℃饱和增湿情况下氢空燃料电池性能,在空气流量为7.5L/min,记录在1A/cm2恒流放电情况下各单池电压。对于氢空燃料电池,阳极侧氢气电氧化速率极快,电池的过电位主要由阴极氧的传质反应过程造成的。故对使用H2做燃料的质子交换膜燃料电池主要阴极性能的差异。测试及计算结果见下表。
Figure PCTCN2014094472-appb-000002
从中看出电池3、4电压偏低。经分析可知对于电池4,其Vn<Vn ο,则其膜电极本身性能略差。而对于电池3,其Vn值落在合格电压范围内,则其电压低的原因在于空气供应量偏少。

Claims (19)

  1. 质子交换膜燃料电池电堆一致性的检测方法,其特征在于:质子交换膜燃料电池电堆由2节以上的依次堆叠且气路串联的单电池组成;所述质子交换膜燃料电池电堆包括一阳极入口和一阴极入口;
    于所述质子交换膜燃料电池电堆阳极入口或阴极入口通入氢气同惰性气体的混合气,并在质子交换膜燃料电池电堆各单电池两极间施加同一用于氢气氧化的电压,通过测试并比较各节单电池的氧化电流In的一致性来判断质子交换膜燃料电池电堆流体分配的一致性。
  2. 如权利要求1所述的检测方法,其特征在于:所述在质子交换膜燃料电池电堆各单电池两极间施加一用于氢气氧化的电压具体为当于燃料电池电堆阳极入口通入氢气同惰性气体的混合气,在质子交换膜燃料电池电堆各单电池阳极施加一相同的正电压;
    或于质子交换膜燃料电池电堆阴极入口通入氢气同惰性气体的混合气,并在质子交换膜燃料电池电堆各单电池阴极施加一相同的正电压;
    通过测试并比较各节单电池的氧化电流的一致性来判断燃料电池电堆流体分配的一致性;若所述氧化电流一致则进入所述电堆内各单体电池流体流量一致,若所述氧化电流不一致则进入所述电堆内各单体电池流体流量不一致。
  3. 如权利要求1-2任一所述的检测方法,其特征在于:所述检测过程中的优化条件为质子交换膜燃料电池电堆各节单电池中的膜电极完好无损;最优条件为质子交换膜燃料电池电堆各节单电池中的膜电极性能一致。
  4. 如权利要求1所述的检测方法,其特征在于:所述用于氢气氧化的电压为0.3-0.9V。
  5. 如权利要求2所述的检测方法,其特征在于:所述正电压为0.3-0.9V。
  6. 如权利要求1-2任一所述的检测方法,其特征在于:所述混合气中氢气的体积浓度为0.1-10%。
  7. 如权利要求1-2任一所述的检测方法,其特征在于:所述惰性气体为氮气、氦气、氩气中的一种或两种以上的混合物。
  8. 如权利要求1所述的检测方法,其特征在于:所述单电池包括一膜电极和置于其两侧的阳极极板和阴极极板;所述膜电极包括一电解质膜和附着于其二侧表面的电催化剂;所述电催化剂为Pt基或Pd基电催化剂。
  9. 质子交换膜燃料电池电堆一致性的检测方法,其特征在于:一质子交换膜燃料电池电堆由2节以上的依次堆叠且气路串联的单电池组成;所述质子交换膜燃料电池电堆包括一阳极入口和一阴极入口;
    所述检测方法包括如下步骤,
    (1)测量燃料电池电堆工作过程中各单电池电压Vn
    (2)于所述燃料电池电堆阳极入口或阴极入口通入氢气同惰性气体的混合气,并在燃料电池电堆各单电池两极间施加一用于氢气氧化的电压,测试各节单电池的氧化电流In,同时找出小于各节单电池平均氧化电流所对应的单电池K,并计算氧化电流In对应的气体流量Qn
    (3)理论计算确定合格膜电极在运行条件下当气体流量为Qn时对应的电压范围Vn°;
    (4)对比Vn和Vn°,若Vn在Vn°范围之内,则单电池K性能差异源于电堆流体分配不一致,若Vn小于Vn°,则单电池K性能差异还与膜电极本身相关。
  10. 如权利要求9所述的检测方法,其特征在于:所述步骤(2)测试过程具体为 于质子交换膜燃料电池电堆阳极入口通入氢气同惰性气体的混合气,并在质子交换膜燃料电池电堆各单电池阳极间施加一相同的正电压;或于质子交换膜燃料电池电堆阴极入口通入氢气同惰性气体的混合气,并在质子交换膜燃料电池电堆各单电池阴极间施加一相同的正电压。
  11. 如权利要求9所述的检测方法,其特征在于:所述用于氢气氧化的电压为0.3-0.9V。
  12. 如权利要求10所述的检测方法,其特征在于:所述施加的正电压为0.3-0.9V。
  13. 如权利要求9-10任一所述的检测方法,其特征在于:所述混合气中氢气的体积浓度为0.1-10%。
  14. 如权利要求9-10任一所述的检测方法,其特征在于:所述惰性气体为氮气、氦气、氩气中的一种或两种以上的混合物。
  15. 如权利要求9所述的检测方法,其特征在于:所述单电池包括一膜电极和置于其两侧的阳极极板和阴极极板;所述膜电极包括一电解质膜和附着于其上的电催化剂;所述电催化剂为Pt基或Pd基催化剂。
  16. 一种权利要求1-15任一所述质子交换膜燃料电池电堆流体分配一致性的检测方法所用检测装置,其特征在于:包括混合气供应装置、直流电源及电流检测模块;
    所述混合气供应装置用于为质子交换膜燃料电池电堆阳极入口或阴极入口提供混合气;所述直流电源及电流检测模块用于为质子交换膜燃料电池电堆各单电池施加电压并同时检测质子交换膜燃料电池电堆各单电池的电流。
  17. 如权利要求16所述检测装置,其特征在于:所述电源及电流检测模块可为一体化装置,亦可为相互独立的电源装置和电流检测装置。
  18. 如权利要求16所述检测装置,其特征在于:所述电源及电流检测模块为一体化装置时为电化学工作站或可编程电源。
  19. 如权利要求16所述检测装置,其特征在于:所述电源及电流检测模块为相互独立的电源装置和电流检测装置时,电源装置为可控开关电源、电源模块中的一种,电流检测装置为电流表、霍尔电流传感器、电流检测模块中的一种。
PCT/CN2014/094472 2014-12-15 2014-12-22 质子交换膜燃料电池电堆一致性的检测方法及检测装置 WO2016095238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410779579.6A CN105789660B (zh) 2014-12-15 2014-12-15 质子交换膜燃料电池电堆一致性的检测方法及检测装置
CN201410779579.6 2014-12-15

Publications (1)

Publication Number Publication Date
WO2016095238A1 true WO2016095238A1 (zh) 2016-06-23

Family

ID=56125698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094472 WO2016095238A1 (zh) 2014-12-15 2014-12-22 质子交换膜燃料电池电堆一致性的检测方法及检测装置

Country Status (2)

Country Link
CN (1) CN105789660B (zh)
WO (1) WO2016095238A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037740A (zh) * 2018-04-23 2018-12-18 天津中德应用技术大学 氢燃料电池堆膜电极单体电压同步检测装置及其方法
CN109616680A (zh) * 2018-12-28 2019-04-12 中科军联(张家港)新能源科技有限公司 一种多通道阵列式直接甲醇燃料电池电堆活化测试台
CN109638319A (zh) * 2018-12-05 2019-04-16 新源动力股份有限公司 一种燃料电池电堆流体分配一致性检测方法及装置
CN109657348A (zh) * 2018-12-18 2019-04-19 安徽江淮汽车集团股份有限公司 一种质子交换膜燃料电池建模方法
CN112782583A (zh) * 2020-12-10 2021-05-11 江苏耀扬新能源科技有限公司 一种筛选和匹配燃料电池单片电池的方法和测试夹具
CN112993342A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 一种燃料电池电堆温度分布的精细调控方法
CN114142065A (zh) * 2021-11-30 2022-03-04 新源动力股份有限公司 一种质子交换膜燃料电池电堆预处理活化方法
CN114188568A (zh) * 2021-12-14 2022-03-15 北京亿华通科技股份有限公司 一种多堆燃料电池的氢气供应***及其流量压力控制方法
CN114325035A (zh) * 2021-11-15 2022-04-12 北京格睿能源科技有限公司 燃料电池膜电极一致性筛选装置及方法
CN114551944A (zh) * 2022-01-07 2022-05-27 国网浙江省电力有限公司电力科学研究院 质子交换膜燃料电池内部含水量的快速控制方法及***
CN114894359A (zh) * 2022-03-31 2022-08-12 东风汽车集团股份有限公司 一种燃料电池电堆紧固力检测方法及装置
CN116111128A (zh) * 2023-03-30 2023-05-12 福州大学 一种以氢氮混合气体为燃料的质子交换膜燃料电池

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108871690A (zh) * 2018-07-09 2018-11-23 上海神力科技有限公司 一种燃料电池电堆串漏在线检测***及方法
CN111063920B (zh) * 2019-12-30 2020-12-01 新源动力股份有限公司 一种燃料电池电堆流体分配一致性检测方法
CN114628740B (zh) * 2020-12-12 2024-03-19 中国科学院大连化学物理研究所 一种燃料电池电堆流体分配一致性的检测方法及装置
CN112665889B (zh) * 2020-12-28 2022-08-02 新源动力股份有限公司 一种电堆冷却液流量分配一致性检测方法
CN112886037B (zh) * 2021-02-02 2022-08-19 清华大学 燃料电池堆多片膜电极多参数同步检测方法和装置
CN114976146B (zh) * 2021-02-25 2023-07-11 上海氢晨新能源科技有限公司 用于燃料电池单电池的快速检测和诊断方法及其应用***
CN113206276A (zh) * 2021-04-25 2021-08-03 无锡威孚高科技集团股份有限公司 一种质子交换膜燃料电池自升温的方法、装置及***
CN113629278B (zh) * 2021-06-30 2024-03-26 北京化工大学 一种可准确测试由氢气杂质引起的燃料电池阳极过电位的方法及其应用
CN114243064B (zh) * 2021-12-08 2024-02-13 中国科学院大连化学物理研究所 一种燃料电池阳极氢气控制方法及装置
CN114497647A (zh) * 2022-03-21 2022-05-13 北京亿华通科技股份有限公司 一种燃料电池停机诊断方法及其装置
CN116516416B (zh) * 2023-06-26 2023-10-27 上海治臻新能源股份有限公司 一种电解槽的检测方法、单电池及电堆装置
CN116914195B (zh) * 2023-07-27 2024-05-31 上海徐工智能科技有限公司 燃料电池电堆的分区测试方法、***及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045863A1 (en) * 2007-10-05 2009-04-08 Atomic Energy Council - Institute of Nuclear Energy Research Method for supplying fuel to fuel cell
CN101566594A (zh) * 2008-04-24 2009-10-28 汉能科技有限公司 一种检验燃料电池堆中单片膜电极组缺陷的方法
CN103018678A (zh) * 2012-12-06 2013-04-03 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池的测试***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130004872A1 (en) * 2011-07-01 2013-01-03 GM Global Technology Operations LLC Method for early detection of membrane failures of fuel cell stacks and fuel cell system component defects

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045863A1 (en) * 2007-10-05 2009-04-08 Atomic Energy Council - Institute of Nuclear Energy Research Method for supplying fuel to fuel cell
CN101566594A (zh) * 2008-04-24 2009-10-28 汉能科技有限公司 一种检验燃料电池堆中单片膜电极组缺陷的方法
CN103018678A (zh) * 2012-12-06 2013-04-03 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池的测试***

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037740B (zh) * 2018-04-23 2023-11-10 天津中德应用技术大学 氢燃料电池堆膜电极单体电压同步检测装置及其方法
CN109037740A (zh) * 2018-04-23 2018-12-18 天津中德应用技术大学 氢燃料电池堆膜电极单体电压同步检测装置及其方法
CN109638319A (zh) * 2018-12-05 2019-04-16 新源动力股份有限公司 一种燃料电池电堆流体分配一致性检测方法及装置
CN109638319B (zh) * 2018-12-05 2021-02-02 新源动力股份有限公司 一种燃料电池电堆流体分配一致性检测方法及装置
CN109657348B (zh) * 2018-12-18 2023-08-08 安徽江淮汽车集团股份有限公司 一种质子交换膜燃料电池建模方法
CN109657348A (zh) * 2018-12-18 2019-04-19 安徽江淮汽车集团股份有限公司 一种质子交换膜燃料电池建模方法
CN109616680A (zh) * 2018-12-28 2019-04-12 中科军联(张家港)新能源科技有限公司 一种多通道阵列式直接甲醇燃料电池电堆活化测试台
CN109616680B (zh) * 2018-12-28 2024-01-23 中科军联(张家港)新能源科技有限公司 一种多通道阵列式直接甲醇燃料电池电堆活化测试台
CN112993342A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 一种燃料电池电堆温度分布的精细调控方法
CN112993342B (zh) * 2019-12-13 2022-02-11 中国科学院大连化学物理研究所 一种燃料电池电堆温度分布的精细调控方法
CN112782583A (zh) * 2020-12-10 2021-05-11 江苏耀扬新能源科技有限公司 一种筛选和匹配燃料电池单片电池的方法和测试夹具
CN114325035A (zh) * 2021-11-15 2022-04-12 北京格睿能源科技有限公司 燃料电池膜电极一致性筛选装置及方法
CN114325035B (zh) * 2021-11-15 2024-04-16 北京格睿能源科技有限公司 燃料电池膜电极一致性筛选装置及方法
CN114142065B (zh) * 2021-11-30 2023-08-29 新源动力股份有限公司 一种质子交换膜燃料电池电堆预处理活化方法
CN114142065A (zh) * 2021-11-30 2022-03-04 新源动力股份有限公司 一种质子交换膜燃料电池电堆预处理活化方法
CN114188568A (zh) * 2021-12-14 2022-03-15 北京亿华通科技股份有限公司 一种多堆燃料电池的氢气供应***及其流量压力控制方法
CN114551944A (zh) * 2022-01-07 2022-05-27 国网浙江省电力有限公司电力科学研究院 质子交换膜燃料电池内部含水量的快速控制方法及***
CN114551944B (zh) * 2022-01-07 2023-10-10 国网浙江省电力有限公司电力科学研究院 质子交换膜燃料电池内部含水量的快速控制方法及***
CN114894359A (zh) * 2022-03-31 2022-08-12 东风汽车集团股份有限公司 一种燃料电池电堆紧固力检测方法及装置
CN114894359B (zh) * 2022-03-31 2023-08-15 东风汽车集团股份有限公司 一种燃料电池电堆紧固力检测方法及装置
CN116111128A (zh) * 2023-03-30 2023-05-12 福州大学 一种以氢氮混合气体为燃料的质子交换膜燃料电池

Also Published As

Publication number Publication date
CN105789660A (zh) 2016-07-20
CN105789660B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2016095238A1 (zh) 质子交换膜燃料电池电堆一致性的检测方法及检测装置
US11973248B2 (en) Method for diagnosing degradation of fuel cell stack, method for multi-point analysis of fuel cell, and method for estimating performance of fuel cell membrane electrode
CN109990952A (zh) 一种燃料电池电堆膜电极串漏检测***及方法
TWI427308B (zh) 多功能固態氧化物燃料電池檢測裝置
WO2006029254A1 (en) A diagnostic method for an electrochemical fuel cell and fuel cell components
US10020525B2 (en) Method and system for diagnosing state of fuel cell stack
US20190036137A1 (en) Health monitoring of an electrochemical cell stack
US9496573B2 (en) Intact method of evaluating unit cells in a fuel cell stack and a device using the same
US7078118B2 (en) Performance enhancing break-in method for a PEM fuel cell
KR20200074539A (ko) 연료전지 막 전극 접합체 내구성 평가 방법 및 장치
JP2016115460A (ja) 燃料電池の検査方法
CN114628740B (zh) 一种燃料电池电堆流体分配一致性的检测方法及装置
KR101105364B1 (ko) 연료 농도 센서 및 센싱 방법, 이를 이용한 연료전지의 연료 재순환 시스템 장치 및 방법, 이를 이용한 연료전지 이용 장치
CN109669135B (zh) 燃料电池多点分析方法
KR101724730B1 (ko) 연료전지의 전극 활성도 측정 방법
CN210576241U (zh) 一种测量液流电池电解液浓度分布的装置
EP4027417A1 (en) Dual purpose sensor for measuring hydrogen and humidity in the anode loop of a fuel cell system
JP6517899B2 (ja) 燃料電池の出力検査方法
CN117665617A (zh) 一种基于弛豫时间分布的燃料电池极化解耦方法
CN116093382A (zh) 一种获取质子交换膜燃料电池极化损失分布的测试***及测试方法
CN110718706A (zh) 一种测量液流电池电解液浓度分布的装置
KR101566727B1 (ko) 연료 전지의 전극 열화 분석 장치 및 방법
CN116264304A (zh) 一种质子交换膜燃料电池电堆阴极流体分配的检测方法
Kmiotek Effects of Low Voltage Testing on PEM Fuel Cell with Current Control by Hydrogen Flow
JP2017190969A (ja) 触媒の評価装置と評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908273

Country of ref document: EP

Kind code of ref document: A1