WO2016093549A2 - 우수한 용융 강도를 갖는 올레핀계 중합체 및 이를 포함하는 필름 - Google Patents

우수한 용융 강도를 갖는 올레핀계 중합체 및 이를 포함하는 필름 Download PDF

Info

Publication number
WO2016093549A2
WO2016093549A2 PCT/KR2015/013081 KR2015013081W WO2016093549A2 WO 2016093549 A2 WO2016093549 A2 WO 2016093549A2 KR 2015013081 W KR2015013081 W KR 2015013081W WO 2016093549 A2 WO2016093549 A2 WO 2016093549A2
Authority
WO
WIPO (PCT)
Prior art keywords
added
solution
melt strength
polymer
toluene
Prior art date
Application number
PCT/KR2015/013081
Other languages
English (en)
French (fr)
Other versions
WO2016093549A3 (ko
Inventor
정동훈
권헌용
승유택
이기수
홍대식
신은영
선순호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150169813A external-priority patent/KR101792171B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017519531A priority Critical patent/JP6505214B2/ja
Priority to US15/520,359 priority patent/US10316116B2/en
Publication of WO2016093549A2 publication Critical patent/WO2016093549A2/ko
Publication of WO2016093549A3 publication Critical patent/WO2016093549A3/ko

Links

Definitions

  • Olefin-based polymer having excellent melt strength and film comprising same [Cross Reference with Related Applications]
  • the present invention relates to an olefinic polymer having excellent melt strength and a film comprising the same.
  • a polymer film refers to a non-fibrous flat plastic molding having a thickness of 0.25 mm (l / 100 inch) or less.
  • Polymer is light, good barrier property, excellent transparency and relatively low price. It is used in almost all fields such as packaging materials, household goods, automobiles, electronic devices, aircraft, etc. It is easy to process and makes into film.
  • Synthetic polymers such as polyvinyl chloride and polyethylene terephthalate, have been developed and are widely used as polymer films. Currently, many synthetic polymers are used alone or blended as materials for films.
  • PE polyethylene
  • high density polyethylene high density polyethylene
  • linear low density polyethylene according to density, copolymerization, and branching type
  • various polyethylene products have been introduced in the metallocene catalyst system which has been commercialized recently.
  • Low-density polyethylene is one of general purpose resins that was used as an insulating material for military radars because of its excellent electrical properties after being successfully synthesized by ICI in 1933.
  • the main uses include general packaging, agriculture, shrink film, paper coating, etc., especially with long chain branching, which is suitable for coating applications due to its excellent melt tension.
  • Linear low density polyethylene (LLPDE), on the other hand, is prepared by copolymerizing ethylene and alpha olefins at low pressure using a polymerization catalyst, resulting in a narrow molecular weight distribution. It is a resin having a short chain branch of a certain length and no long chain branch. Linear low density polyethylene film has the characteristics of general polyethylene, and has high breaking strength and elongation, and excellent tear strength and falling layer stratification strength. Therefore, the use of stretch film and overlap film, which is difficult to apply to existing low density polyethylene or high density polyethylene, has increased. Doing.
  • linear low density polyethylenes using 1-butene or 1-nuxene as comonomers are mostly produced in single gas phase reactors or single loop slurry reactors, and are more productive than processes using 1-octene comonomers, but these products are also used. Due to the limitations of catalyst technology and process technology, physical properties are inferior to those of using 1-octene comonomer, and molecular weight distribution is narrow, resulting in poor processability. In order to solve such processing problems, expensive fluorine-based processing aids are also used, but it takes a long time to stabilize, and thus, loss of raw materials is not economical.
  • High-strength linear low density polyethylene has been introduced as having excellent fall stratification strength and more than twice the layered stratification strength, compared with a film made of general-purpose linear low density polyethylene polymerized under Ziegler-Natta catalyst.
  • a film made of general-purpose linear low density polyethylene polymerized under Ziegler-Natta catalyst due to the difficulty in controlling the molecular weight distribution of a single semi-ungunggi polymer phase, it has a typical narrow molecular weight distribution, which causes inferior processability. In order to improve this, in some cases, it is inconvenient to use some mixture of low density polyethylene.
  • the present invention is to provide an olefin-based polymer and a film containing the same having a narrow molecular weight distribution and excellent melt strength and haze characteristics and processability, showing a high productivity.
  • melt flow index (Ml) and melt strength (MS, melt strength) measured at 190 ° C, 2.16kg load conditions in accordance with ASTM D1238 is the following formula It provides an olefinic polymer that satisfies 1.
  • a film including the olepin-based polymer is provided.
  • the olefin polymer according to the present invention is excellent in workability, haze and mechanical properties, and particularly high in melt strength, which is advantageous for extrusion processing, and thus can be usefully used for films and the like.
  • first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
  • an olefin-based polymer having a melt flow index (Ml) and a melt strength (MS) satisfying the following formula 1 measured at 190 ° C. and a load condition of 2.16 kg is provided.
  • the present invention has completed the present invention based on the fact that the olefin polymer satisfies Equation 1, the physical properties of the polymer can be optimized to achieve high melt strength, excellent processability and good mechanical properties.
  • Polyethylene film is one of the important polymer products.
  • Linear low density polyethylene (mLLPDE) prepared using a metallocene catalyst in the polyethylene film has achieved very good physical properties when compared to other polymerizers having a similar molecular weight.
  • mLLPDE has a disadvantage in that the molecular weight distribution is narrow and the branched chain distribution according to the molecular weight is relatively uniform, resulting in poor processability.
  • the processing load is large due to the pressure applied to the resin during extrusion, and there is a problem in that optical roughness such as haze is deteriorated due to surface roughness during blowing.
  • the present invention provides an olefinic polymer exhibiting higher melt strength at the same molecular weight or melt index as compared to conventional commercially available linear low density polyethylene. Furthermore, since higher melt strength is shown in the same molecular weight distribution, workability improvement, haze characteristics, and high melt strength which are combined with a narrow molecular weight distribution can be simultaneously achieved.
  • melt strength is an important factor affecting the processability and productivity of the film, and the melt strength must be high during extrusion of blown film to improve the bubble processability, thereby improving the processability of the film. Furthermore, it may be advantageous in terms of productivity.
  • the leulevine-based polymer of the present invention satisfying Equation 1 may exhibit improved processability by showing a narrow molecular weight distribution and excellent melt strength while showing an equivalent level of physical strength.
  • melt flow index Ml
  • the olefin-based polymer has a melt flow index (Ml) measured at 190 ° C., 2.16 kg derating conditions according to ASTM D1238, from about 0.1 to about 2 gA0 mm, or from about 0.1 to about About 1.8 g / 10 min, or about 0.1 to 1.5 g 10 min. If the melt flow index is too high, long chain branches are not produced, so that the melt strength is difficult to rise, and if too low, the workability is poor, so the above range is preferable in this respect.
  • Ml melt flow index
  • ASTM according to D1238 a melt flow rate of the olefin-based polymer measured at 190 ° C ratio (MFRR, MI 2 L6 / MI 2. 16) is about 10 to about 100, or from about 20 to about 100, or about 20 to 80.
  • the olefin polymer of the present invention has a melt strength (MS) of about 60 mN or more, For example, about 60 to about 150 mN, or about 60 to about 120 mN, or about 70 to about 150 mN, or about 70 to about 120 mN.
  • MS melt strength
  • the olefinic polymer of the present invention also has a molecular weight distribution (weight average molecular weight / number average molecular weight) of 4 or less, for example, about 1 to about 4, or about 1, when the melt strength (MS) is 70 m / N or more. Generally from about 3.5 to about 3.5, or from about 2 to about 3.5. &Quot; A broader molecular weight distribution results in higher melt strength, while lowering the other physical strength of the polymer and increasing the high molecular weight portion of the surface upon extrusion of the blown film. There is a problem that haze increases. However, the olefinic polymer of the present invention can exhibit a high melt strength without sacrificing physical properties with a narrow molecular weight distribution by properly including the long chain branching.
  • the olefin polymer of the present invention can satisfy a constant relationship between melt strength and molecular weight distribution.
  • the melt strength of the present invention is 70 mN or more
  • the molecular weight distribution is 4 or less.
  • the leupin-based polymers of the present invention have a molecular weight distribution in the range of about 1 to about 4 when in the range of about 70 to about 150 mN.
  • high melt strength is required for processability and narrow molecular weight distribution is required for physical strength.
  • melt strength and molecular weight distribution are proportional to each other, so that high melt strength and low molecular weight distribution are simultaneously used. Hard to achieve.
  • the olefin polymer of the present invention has an advantage that the molecular weight distribution is maintained at 4 or less even at a high melt strength of 70 mN or more, so that these opposing physical properties can be simultaneously implemented.
  • the density of the olefinic polymer may be about 0.910 to about 0.950 g / cc, or about 0.910 to about 0.930 g / cc, but is not limited thereto. If the density is too high, exceeding 0.950 g / cc, it is not preferable because the probability of introducing long chain branching is small.
  • the olefin polymer of the present invention satisfies Equation 1 above, when the melt flow index, the melt flow rate ratio, the melt strength, the density, the molecular weight distribution, and the like are in the above-described ranges, the physical properties are more optimized to provide good workability, Haze and mechanical properties can be achieved.
  • the olefin polymer according to the present invention is preferably a copolymer of ethylene and alpha olefin comonomers, which are olefinic monomers.
  • alpha olefin pin comonomer an alpha olefin having 3 or more carbon atoms may be used.
  • Alpha olefins having 3 or more carbon atoms include propylene, 1-butene, 1-phen3 ⁇ 41 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene and 1-dodecene , 1-tetradecene, 1 ⁇ nucleodecene, 1 octadecene or 1-eicosene.
  • the olefin polymer according to the present invention exhibits the same level of physical strength as that of the conventional linear low density polyethylene, and has high melt strength during extrusion, so that it has excellent bubble stability and good workability, and has good haze characteristics. It can be usefully used for such purposes.
  • the olefin-based polymer according to the present invention having the above-mentioned characteristics uses a common supported metallocene compound including two or more metallocene compounds of different structures as a catalyst, and is copolymerized with yylene and alpha olepin. It can be obtained, such olefinic polymer may have the physical properties as described above.
  • the olefin-based polymer of the present invention as described above i) a first catalyst represented by the following formula (1); And ii) at least one selected from the group consisting of a second catalyst represented by the following formula (2) and a third catalyst represented by the following formula (3), in the presence of a common supported catalyst, polymerizing ethylene and alpha olepin comonomers: Can be obtained.
  • M is a Group 4 transition metal
  • B is carbon, silicon or germanium
  • Qi and Q 2 are each independently hydrogen, halogen, C o alkyl, C: alkenyl
  • Xi and 3 ⁇ 4 are each independently halogen, C 1-20 alkyl, C 2 ⁇ 20 alkenyl, C, Aryl, nitro, amido, alkylsilyl, C alkoxy, or C 1-20 sulfonate; Is the following Chemical Formula 2a,
  • C 2 is the following Formula 2a or 2b,
  • Ri to R 13 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, CO silylalkyl, _ 20 alkoxysilyl,. 2 o ether, 20 silyl ether, C I-20 alkoxy, C 6 20 aryl, C 0 alkylaryl, or C group 20 arylalkyl,
  • R ' ! To R ' 3 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, or C 6 _ 20 aryl,
  • R '10 to 13 are each independently hydrogen, C 0 alkyl, C 2-20 alkenyl, C 6 20 aryl, C 7-20 alkylaryl, C 20 arylalkyl, C 2 20 alkoxyalkyl or C 1 -20 or amine, or R 13 and R I0 to R'u) to two or more connected to each other adjacent R'n of 1 or more aliphatic rings, to form a ring, or heterocyclic, the aliphatic chain, Aromatic rings, or hetero rings, are unsubstituted or substituted with .20 alkyl;
  • Q is -CH 2 CH 2- , -C (Z0 (Z 2 )-or -Si (Z0 (Z 2 )-;
  • Z ! And Z 2 are each independently hydrogen, C o alkyl, C 3 _ 20 cycloalkyl, d_ 20 alkoxy, C 2 20 alkoxyalkyl, C 6 20 aryl, C 6 _ 10 aryloxy, C 2 . 20 alkenyl, C alkylaryl, or C 40 arylalkyl;
  • M 2 is a Group 4 transition metal
  • 3 ⁇ 4 and 3 ⁇ 4 are each independently halogen, 20 alkyl, C 2 . 20 alkenyl, C 6-20 aryl, nitro, amido, 20 alkylsilyl, C 1-20 alkoxy, or C 1-20 sulfonate;
  • M 3 is a Group 4 transition metal
  • 3 ⁇ 4 and 3 ⁇ 4 are each independently halogen, C 1-20 alkyl, C 2 20 alkenyl, C, Aryl, nitro, amido, C 1-20 alkylsilyl, C 1-20 alkoxy, or C 1-20 sulfonate;
  • Ri 4 to R 19 are each independently hydrogen, C 1-20 alkyl, C 2 _ 20 alkenyl, C ⁇ alkoxy, C 6-20 aryl, C 7 _ 20 alkylaryl, C 7 _ 20 arylalkyl, Cwo alkyl Silyl, C « 0 arylsilyl, or C 1-20 amine; Or two or more adjacent ones of R 14 to R 17 are connected to each other to form one or more aliphatic rings, aromatic rings, or hetero rings;
  • L 2 is _ 10 straight or branched alkylene
  • D 2 is -0-, -S-, -N (R)-or -Si (R) (R ')-, wherein R and R' are each independently hydrogen, halogen, c 1-20 alkyl, c 2-20 alkenyl, or c 6 20 aryl;
  • a 2 is hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 6 _ 20 aryl, C 20 alkylaryl,
  • B is carbon, silicon, or germanium, and is a bridge that binds a cyclopentadienyl series ligand and JR19 zy by a covalent bond;
  • J is a periodic table group 15 element or group 16 element
  • z is the oxidation number of the element J
  • y is the number of bonds of the J elements.
  • the first catalyst represented by Chemical Formula 1 is characterized in that a silyl group is substituted with d (Formula 2a).
  • the indene derivative of (Formula 2a) has a lower electron density than an indenoindole derivative or fluorenyl derivative, and includes a silyl group having a large steric hindrance, and thus has a similar structure due to steric hindrance and electron density.
  • a relatively low molecular weight olefin polymer can be polymerized with high activity.
  • fluorenyl derivatives which may be represented as C 2 (Formula 2b), form a crosslinked structure by a bridge, and exhibit high polymerization activity by locking a non-covalent electron pair which may act as a Lewis base to the ligand structure.
  • zirconium
  • silicon
  • Qi and Q 2 are each independently 20 alkyl or C 2-20 alkoxyalkyl
  • X! And X 2 are halogen.
  • is methyl and (is 6-tert-subspecially-nuclear chamber.
  • to R 13 is hydrogen
  • 1 ' 3 is C 1-20 alkyl. More preferably, R 3 is methyl.
  • the first catalyst represented by formula (1) mainly contributes to making a high molecular weight copolymer
  • the catalyst represented by formula (2) or formula (3) may contribute to making a relatively high molecular weight copolymer.
  • R 10 to R 13 and R '10 to' 13 are each independently hydrogen, C o alkyl, C 2 20, or alkoxyalkyl, or R 10 to Ri3, and R '10 to R' Two or more adjacent of 13 are linked to each other to form one or more aliphatic rings or aromatic rings, wherein the aliphatic rings or aromatic rings are unsubstituted or substituted with C 1-20 alkyl;
  • Q is -CH 2 CH 2- , -C (Z (Z 2 )-or- ⁇ () (3 ⁇ 4)-, and ⁇ and 3 ⁇ 4 are each independently C 1-20 alkyl or C 2 _ 20 alkoxyalkyl;
  • M 2 is zirconium; 3 ⁇ 4 and are halogen.
  • R 10 to R 13 and R '10 to 1' 13 are each independently hydrogen, methyl or 6-tert-buteuk upon-or haeksil, or R 10 to R 13 and R ' two or more adjacent u) to R ′ 13 are linked to each other to form one or more benzene rings or cyclonucleic acid rings, wherein the benzene rings are unsubstituted or substituted with tert-butoxy;
  • Q is -CH 2 CH 2- , -C (Z,) (Z 2 )-or -Si (Z0 (Z 2 )-;
  • 3 ⁇ 4 and Z 2 are each independently methyl or 6-tert-subspecific-nucleus
  • M 2 is zirconium and X 3 and 3 ⁇ 4 are chloro.
  • the third catalyst represented by Chemical Formula 3 may contribute to making a copolymer having a molecular weight intermediate between the first catalyst and the second catalyst.
  • M 3 is titanium; And X 6 is halogen; R 14 to R 19 are C I-20 alkyl; L 2 is C M0 straight or branched alkylene; D 2 is -0-; A 2 is C 20 alkyl; B is silicon; J is nitrogen; z is the oxidation number of the element J; y is the number of bonds of the J elements.
  • the carrier may be a carrier containing a hydroxy group on the surface, and preferably has a highly reactive hydroxyl group and a siloxane group which are dried to remove moisture on the surface. Carriers may be used.
  • silica, silica-alumina, silica-magnesia, etc., dried at a high temperature may be used, and these are usually oxides, carbonates, sulfates, such as Na 2 0, 2 C0 3 , BaS0 4 , and Mg (N0 3 ) 2 . , And nitrate components.
  • the mass ratio of the catalyst to the carrier is preferably 1: 1 to 1: 1000.
  • the carrier and the catalyst in the mass ratio it may be advantageous in terms of maintaining the activity and economical efficiency of the catalyst by showing the appropriate supported catalyst activity.
  • the mass ratio of at least one selected from the group consisting of a second catalyst represented by 2 and a third catalyst represented by Chemical Formula 3 is preferably 1: 100 to 100: 1. It may be advantageous in terms of maintaining the activity and economical efficiency of the catalyst by showing the optimum catalytic activity in the mass ratio.
  • promoters may be used to prepare the olefin polymer.
  • the promoter may further include one or more of the promoter compounds represented by the following Formula 4, Formula 5 or Formula 6.
  • R 30 may be the same as or different from each other, and each independently halogen; Hydrocarbons having 1 to 20 carbon atoms; Or a hydrocarbon having 1 to 20 carbon atoms substituted with halogen;
  • n is an integer of 2 or more
  • R 31 is as defined in Formula 4 above;
  • J is aluminum or boron
  • is a neutral or cationic Lewis base
  • is a hydrogen atom
  • is a Group 13 element
  • A may be the same or different from each other, and each independently is an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms, unsubstituted or substituted with one or more hydrogen atoms, halogen, hydrocarbon having 1 to 20 carbon atoms, alkoxy or phenoxy. .
  • Examples of the compound represented by the formula (4) include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane, and the like, and more preferred compound is methyl aluminoxane.
  • Examples of the compound represented by Formula 5 include trimethylaluminum triethylaluminum, triisobutylaluminum, tripropylaluminum tributylaluminum, dimethylchloroaluminum, triisopropylaluminum tri-S-butylaluminum, tricyclopentylaluminum, and tripentyl Aluminum triisopentyl aluminum trinuclear silaluminum, trioctyl aluminum, dimethylaluminum, methyldiethylaluminum, triphenylaluminum tri-P-allyl aluminum, dimethylaluminum methoxide, dimethylaluminum trimethylbotriethylboron, triiso Butyl boron, tripropyl boron Tributylboron and the like, and more preferred compounds are selected from trimethylaluminum, triethylaluminum and triisobutylaluminum.
  • Examples of the compound represented by Formula 6 include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, and trimethylammonium tetra (P—lryl) Boron,
  • Trimethylammonium tetra ( ⁇ , ⁇ -dimethylphenyl) boron Trimethylammonium tetra ( ⁇ , ⁇ -dimethylphenyl) boron
  • Trimethylammonium tetra ( ⁇ -ryll) aluminum Trimethylammonium tetra ( ⁇ -ryll) aluminum
  • Trimethylammonium tetra ( ⁇ -trifluoromethylphenyl) aluminum Trimethylammonium tetra ( ⁇ -trifluoromethylphenyl) aluminum
  • Triphenylcarbonium tetra ( ⁇ -trifluoromethylphenyl) boron Triphenylcarbonium tetrapentafluorophenylboron, and the like.
  • the common supported catalyst according to the present invention is prepared by supporting a cocatalyst compound on a carrier, supporting the first catalyst on the carrier, and supporting the second catalyst and / or the third catalyst on the carrier.
  • the order of loading of the catalyst can be changed as necessary.
  • a hydrocarbon solvent such as pentane, nucleic acid, heptane, or the like, or an aromatic solvent such as benzene or toluene may be used.
  • the metallocene compound and the cocatalyst compound may be used in a form supported on silica or alumina.
  • the leupin-based polymer of the present invention can be prepared by a production method comprising the step of polymerizing ethylene and an alpha olefin monomer in the presence of the common supported catalyst.
  • alpha-olefin monomers include propylene, 1-butene, 1_pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1 -Dodecene, 1-tetradecene, 1-nuxadecene, 1-eicosene, and the like, and two or more thereof may be mixed and copolymerized.
  • the content of the alpha olefin which is the comonomer is not particularly limited and may be appropriately selected depending on the use, purpose, and the like of the ethylene-alpha olefin polymer. More specifically, it may be more than 0 and 99 mol% or less. ⁇
  • the polymerization reaction may be carried out by homopolymerization with one olefinic monomer or copolymerization with two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor.
  • the common supported catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, chlorine such as dichloromethane and chlorobenzene.
  • the solution may be dissolved or diluted in a hydrocarbon solvent substituted with an atom or the like.
  • the solvent used herein is preferably used by removing a small amount of water, air, or the like acting as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter.
  • a film comprising the above-described olefinic polymer.
  • Film comprising the olefinic polymer of the present invention, as described above in the description of the olefinic polymer, exhibits the same level of physical strength as compared to the conventional linear low density polyethylene, while the melt strength during extrusion processing is high bubble stability It has excellent bubble stability and good workability, and its haze property is good, so it can be usefully used depending on the needs.
  • the film comprising the olefin-based polymer has a haze of less than 20%, for example about 1 to about 20%, or about 1 to about 50, measured according to ISO 13468 standards at a thickness of 50. 18%, or about 1 to about 15% of good haze properties.
  • the film of the present invention for example, using the olefin polymer, injection molding method, compression molding method, extrusion molding method, injection compression molding method, foam injection molding method, inflation method (inflation), T die method (T die), calender method It can be produced by (Calendar), blow molding method, vacuum molding method, and the like, in addition to the processing method generally used in the technical field to which the present invention belongs can be used without particular limitation.
  • Step 1) Preparation of Ligand Compound 4.05 g (20 mmol) of ((IH-inden-3 -yl) methyl) trimethylsilane ((1 H-inden-3 -yl) methyl) trimethylsilane was added to a dried 250 mL Schlenk flask (first flask). It was dissolved in 40 mL of diethyl ether under gas. After cooling to 0 ° C, 9.6 mL (24 mmol) of 2.5 M n-BuLi nucleic acid solution was slowly added dropwise. The reaction mixture was slowly warmed to room temperature and then stirred for 24 hours.
  • the ligand compound synthesized in Step 1 was dissolved in 4 equivalents of MTBE and 60 mL of toluene, and then 2 equivalents of n-BuLi nucleic acid solution was added thereto. After one day, all of the solvent inside the flask was removed under vacuum and dissolved in the same amount of toluene.
  • One equivalent of ZrCl 4 (THF) 2 was taken in a glove box and placed in a 250 mL Schlenk flask to prepare a suspension in which luluene was added.
  • the lithiated ligand compound was slowly added to the toluene suspension of ZrCl 4 (THF) 2 .
  • the reaction mixture was slowly raised to room temperature, stirred for one day to proceed with the reaction, and then removed by vacuum vacuum to about 1/5 of the volume of toluene in the mixture, and the nucleic acid of about 5 times the volume of the remaining Recrystallization was added. Filter the mixture to avoid contact with outside air 61
  • the prepared nucleic acid slurry was filtered under argon, and the filtered solid and the filtrate were both evaporated under vacuum reduced pressure.
  • the remaining filter cake (filter cake) and filtrate were confirmed through NMR, respectively, and weighed in a glove box to confirm the yield and purity.
  • NMR criteria purity (wt%) 100%, Mw: 605.85 NMR (500 MHz, CDC1 3 ): 0.88 (3H, m), 1.15 (9H, m), 1.17-1.47 (10H, m), 1.53 (4H, d), 1.63 (3H, m), 1.81 (1H , m), 6.12 (2H, m), 7.15 (2H, m), 7.22-7.59 (8H, m)
  • the ligand compound synthesized in Step 1 was dissolved in 4 equivalents of MTBE and toluene, and 2.1 equivalents of n-BuLi hexane solution was added thereto, followed by lithiation for 24 hours.
  • 2.1 equivalents of ZrCl 4 (THF) 2 was taken in a glove box, placed in a 250 mL Schlenk flask, and ether was added to prepare a suspension. After both flasks were cooled down to -78 ° C, the lithiated ligand compound was slowly added to the suspension of ZrCl 4 (THF) 2 .
  • the mixture was slowly warmed to room temperature and stirred for one day, after which the ether in the mixture was removed to about 1/5 volume by vacuum decompression and recrystallized by adding 5 times the volume of nucleic acid of the remaining solvent.
  • the prepared nucleic acid slurry was filtered under argon, and the filtered solid and the filtrate were both evaporated under vacuum reduced pressure.
  • the remaining filter cake (filter cake) and filtrate were confirmed through NMR, respectively, and weighed in a glove box to confirm the yield and purity. 4.4 g (6.3 mmol, 67.4%) of a brown solid were obtained from 5.1 g (9.4 mmol) of ligand compounds.
  • the ligand compound synthesized in Step 1 was dissolved in 4 equivalents of MTBE and toluene, and 2.1 equivalents of n-BuLi solution was added thereto, followed by lithiation for 24 hours.
  • 2.1 equivalents of ZrCl 4 (THF) 2 was taken in a glove box, placed in a 250 mL Schlenk flask, and ether was added to prepare a suspension. After both flasks were cooled down to -78 ° C, the lithiated ligand compound was slowly added to the suspension of ZrCl 4 (THF) 2 .
  • the mixture was slowly warmed to room temperature, stirred for one day, vacuum reduced and the toluene solution was filtered under argon to remove LiCl, a filtered solid filter cake.
  • the filtrate was vacuum-reduced to remove toluene and recrystallized by adding about the same amount of pentane as the previous solvent.
  • the prepared pentane slurry * was filtered under argon, and the filtered solid and the filtrate were both evaporated under vacuum reduced pressure.
  • the remaining filter cake (filter cake) and filtrate were confirmed through NMR, respectively, and weighed in a glove box to confirm the yield and purity. As a result, 3.15 g (4.63 mmol, 46.3%) of orange solids were obtained.
  • the yellow solution obtained was identified as methyl (6-t-butoxynucleosil) (tetramethyl CpH) t-butylaminosilane (Methyl (6-t-buthoxyhexyl) (tetramethylCpH) t-Butylaminosilane) compound by 1 H-NMR. .
  • nucleic acid was added to filter the product. After removing the nucleic acid from the resulting filter solution, the desired ([methyl (6-t-buthoxyhexyl) silyl 5-tetramethylCp) (t-But ⁇
  • toluene solution 2.0 kg was added to a 20 L sus high-pressure reactor, and 1,000 g of silica (SP2412, manufactured by Grace Davison) was added, followed by stirring while raising the reaction temperature to 40 ° C. 30 wt% methylaluminoxane (MAO) / 2.8 kg of toluene solution (Albemarle) was added, and the temperature was reduced to 70 ° C., followed by stirring at 200 rpm for 12 hours. After the reactor temperature was lowered to 40 ° C., the stirring was stopped and settled for 10 minutes, followed by decantation of the reaction solution.
  • silica SP2412, manufactured by Grace Davison
  • toluene solution 3.0 kg was added to a 20 L sus high-pressure reactor, 1,200 g of silica (SP2412, manufactured by Grace Davison) was added, followed by stirring while raising the reactor temperature to 40 ° C. After dispersing the silica in 60 minutes, 7.5 kg of 10 wt% methylaluminoxane (MAO) / luene solution was added thereto, the temperature was raised to 80 ° C., and the mixture was stirred at 200 rpm for 12 hours. After the reaction temperature was lowered to 40 ° C. again, the stirring was stopped and the reaction solution was decanted after being settled for 60 minutes.
  • silica SP2412, manufactured by Grace Davison
  • toluene solution 3.0 kg was added to a 20 L sus high-pressure reactor, 1,200 g of silica (SP2412, manufactured by Grace Davison) was added, followed by stirring while raising the reactor temperature to 40 ° C. After the silica was sufficiently dispersed for 60 minutes, 5 kg of 10 wt% methylaluminoxane (MAO) / luene solution was added thereto, the silver was raised to 80 ° C., and stirred at 200 rpm for 12 hours. After the reaction temperature was lowered to 40 ° C. again, the stirring was stopped and the reaction was destationed for 60 minutes, followed by decantation of the reaction solution.
  • silica SP2412, manufactured by Grace Davison
  • Ethylene-1-nuxene copolymerization was carried out using a continuous polymerization reactor (volume 140L) which is an isobutane slurry loop process.
  • the reaction velocity was operated at about 111 ⁇ / 8, ethylene, 1-hexene haeksen ⁇ hydrogen gas and comonomers needed for polymerization), it was successively added with a constant rate.
  • the reaction pressure was 40 bar and the polymerization temperature was performed at 84 ° C.
  • Example No. Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Catalyst Preparation Example 1 Preparation Example 1 Preparation Example 1 Preparation Example 1 Preparation Example 2 Preparation Example 2 Ethylene 25 25 25 25 22 22
  • LG Chem's LUCENE SP510 a commercial mLLDPE prepared by slurry loop process polymerization, was prepared.
  • the sample was connected to Rheotens of Rheo-tester 2000) and measured five times under the following conditions, and then the average value was taken.
  • Sample specification Pellets were placed in a capillary die at a temperature of 190 ° C., and melted for 5 minutes, and then the resin was constantly measured at a piston speed of 5 mm / s using rhetens.
  • PL-GPC 220 was used to measure the number average molecular weight and the weight average molecular weight, and the molecular weight distribution was expressed as the ratio of the weight average molecular weight and the number average molecular weight.
  • Film forming conditions Film forming was performed by using a film blowing method. Film-forming temperature is 100 to 200 ° C, and BUR (blow up ratio) was set to 2.0 to 3.0.
  • Haze (%) Measured according to ISO 13468 standard. At this time, the thickness of the specimen was 50 kPa, measured 10 times per specimen and the average value was taken.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
  • melt strength (MS) according to the melt flow index (Ml) is shown in the graphs of the olefinic polymers of Examples and Comparative Examples.
  • red round dots correspond to Examples 1 to 6, respectively, in turn, and black square dots correspond to Comparative Examples 1 to 6, respectively, in order.
  • red line (A) connects each point of the embodiments
  • black line (B) connects each point of the comparative examples.
  • red equilateral dots correspond to Examples 6, 3, 4, and 2, respectively, and black square dots sequentially correspond to Comparative Example 5, Comparative Example 4, and Comparative Example, respectively.
  • red line (A) connects each point of the embodiments
  • black line (B) connects each point of the comparative examples.
  • the leulevine-based polymer according to the present invention satisfies the following Equation 1 in terms of the melt strength (MS) according to the melt flow index (Ml), but the olefinic polymer of the comparative example is I was not satisfied.
  • the olefin polymer of the embodiment according to the present invention showed a characteristic that the molecular weight distribution (Mw / Mn) is all 4 or less when the melt strength (MS) is 70m N or more,
  • MS melt strength
  • the leupin-based polymer of the comparative example did not satisfy the relationship between this characteristic melt strength and molecular weight distribution.

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 우수한 용융 강도를 갖는 을레핀계 중합체 및 이를 포함하는 필름에 관한 것이다. 본 발명에 따른 올레핀계 중합체는, 가공성, 헤이즈 및 기계적 물성이 우수하며, 특히 융융 강도가 높아 압출 가공에 유리하여 필름 등의 용도로 유용하게 사용할 수 있다.

Description

【발명의 명칭】
우수한 용융 강도를 갖는 올레핀계 중합체 및 이를 포함하는 필름 【관련 출원들과의 상호 인용】
본 출원은 2014년 12월 .8일자 한국 특허 출원 제 1으2014-0174977호 및 2015년 12월 1일자 한국 특허 출원 제 10-2015-0169813호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
【기술분야】
본 발명은 우수한 용융 강도를 갖는 올레핀계 중합체 및 이를 포함하는 필름에 관한 것이다.
【발명의 배경이 되는 기술】
일반적으로 고분자 필름은 두께가 0.25 mm(l/100 inch) 이하의 비섬유형 평판상의 플라스틱 성형물을 말한다. 고분자는 가볍고 차단성이 좋으며 투명성도 뛰어나고 가격도 상대적으로 저렴하여 포장재, 생활용품, 자동차, 전자기기, 항공기 등 거의 모든 분야에서 사용되고 있으며 가공이 용이하여 필름으로 만들기 쉽다ᅳ 국내외에서 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리에틸렌테레프탈레이트 등의 합성 고분자가 개발되어 고분자 필름으로서 널리 사용되고 있으며, 현재는 수많은 합성 고분자를 단독으로 또는 블렌딩하여 필름용 재료로 이용하고 있다.
특히 폴리에틸렌 (PE)의 경우는 밀도와 공중합, 분지 종류에 따라 저밀도 폴리에틸렌, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌으로 나누며, 최근에 상용화가 진행된 메탈로센 촉매계에서도 다양한 폴리에틸렌 제품들이 나오고 있다.
저밀도 폴리에틸렌은 1933년 ICI사에서 합성에 성공한 후, 뛰어난 전기적 성질이 주목되어 군사용 레이더의 절연재료로서 사용되다가 각종 포장재를 증심으로 용도가 확대된 범용수지 중의 하나이다. 주요 용도로는 일반 포장용, 농업용, 수축필름용, 종이코팅용 등이 있으며, 특히 장쇄 분지를 가지고 있어 용융장력이 뛰어나 코팅 용도에 적합하다.
한편, 선형 저밀도 폴리에틸렌 (LLPDE)은 중합 촉매를 사용하여 저압에서 에틸렌과 알파 올레핀을 공중합하여 제조되어, 분자량 분포가 좁고 일정한 길이의 단쇄 분지를 가지며, 장쇄 분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙추층격강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다.
한편, 1 -부텐 또는 1-핵센을 공단량체로 사용하는 선형 저밀도 폴리에틸렌은 대부분 단일 기상반응기 또는 단일 루프 슬러리 반응기에서 제조되며, 1-옥텐 공단량체를 사용하는 공정 대비 생산성은 높으나, 이러한 제품 역시 사용 촉매기술 및 공정기술의 한계로 물성이 1-옥텐 공단량체 사용시보다 크게 열세하고, 분자량 분포가 좁아 가공성이 불량한 문제가 있다. 이러한 가공 상의 문제해결을 위해 고가의 플루오르계 가공조제를 사용하기도 하나 안정화되는 데 시간이 많이 걸리고, 이에 따른 원료의 손실도 많아 경제적이지 못하다.
이러한 문제의 개선을 위해 많은 노력이 진행되고 있으며, 예를 들어 한국특허 게 218,046호, 한국특허 제 223, 105호, 미국특허 게 5,798,424호, 미국특허 쩨 6,1 14,276호, 일본특허 게 2,999,162호 등에 마그네슘 담지형 비메탈로센계 을레핀 중합용 신촉매는 을레핀 공중합시 고분자 사슬 내 공단량체 분포, 분자량 분포 등과 같은 분자구조 제어능력이 탁월하여, 소위 "고강도 선형 저밀도 폴리에틸렌"을 합성할 수 있는 것으로 보고되어 있다. 고강도 선형 저밀도 폴리에틸렌은 지글러-나타계 촉매 하에서 중합한 범용 선형 저밀도 폴리에틸렌으로 제조한 필름과 대비시, 2배 이상의 낙추층격강도를 가지며 이에 따라 고층격 특성이 우수한 것으로 소개되어 있다. 그러나 단일 반웅기 중합상 분자량 분포 제어의 어려움으로 전형적인 좁은 분자량분포를 가지며, 이로 인해 가공성이 열세한 문제를 안고 있다. 이의 개선을 위해 경우에 따라서는 저밀도 폴리에틸렌을 일부 혼합해 사용해야 하는 불편함이 있다.
이러한 배경에서 물성과 가공성 간의 균형이 이루어진 보다 우수한 제품의 제조가 끊임없이 요구되고 있으며 이에 대한 개선이 더욱 필요한 상태이다.
【발명의 내용】 【해결하고자 하는 과제】
상기 종래기술의 문제점을 해결하기 위해, 본 발명은 좁은 분자량 분포를 가지면서도 용융 강도 및 헤이즈 특성이 우수하고 가공성이 향상되어, 높은 생산성을 나타내는 올레핀계 중합체 및 이를 포 i하는 필름을 제공하고자 한다.
【과제의 해결 수단】 ,
상기 과제를 해결하기 위하여, 본 발명의 일 구현예에 따르면, ASTM D1238에 따라 190°C , 2.16kg 하중 조건에서 측정한 용융 흐름 지수 (Ml)와, 용융 강도 (MS, melt strength)가 하기 식 1을 만족하는, 을레핀계 중합체를 제공한다.
[식 1]
-32.0*log MI + 75.2 < MS < -40.9*log MI + 77.9
또한 본 발명의 다른 일 구현예에 따르면, 상기 을레핀계 중합체를 포함하는 필름 (film)을 제공한다.
【발명의 효과】
본 발명에 따른 올레핀계 중합체는, 가공성, 헤이즈 및 기계적 물성이 우수하며, 특히 융융 강도가 높아 압출 가공에 유리하여 필름 등의 용도로 유용하게 사용할 수 있다.
【도면의 간단한 설명】
도 1은 본 발명의 실시예 및 비교예의 용융 흐름 지수 (Ml)에 따른 용융 강도 (MS, melt strength)의 관계를 나타내는 그래프이다.
도 2는 본 발명의 실시예 및 비교예의 따른 용융 강도 (MS)에 따른 분자량 분포와의 관계를 나타내는 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들올 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것 로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하 발명의 구체적인 구현예에 따른 올레핀계 증합체 및 이를 포함하는 필름에 대하여 상세히 설명하기로 한다. 본 발명의 일 구현예에 따르면,
ASTM D1238에 따라 190 °C , 2.16kg 하중 조건에서 측정한 용융 흐름 지수 (Ml)와, 용융 강도 (MS, melt strength)가 하기 식 1을 만족하는, 올레핀계 중합체를 제공한다.
[식 1]
-32.0*log MI + 75.2 <MS < -40.9*log MI + 77.9
본 발명은 올레핀계 중합체가 상기 식 1을 만족함으로써, 중합체의 물성이 최적화되어 높은 용융 강도, 우수한 가공성 및 양호한 기계적 물성을 달성할 수 있음에 기초하여 본 발명을 완성하였다.
폴리에틸렌 필름 (polyethylene film)은 중요한 고분자 제품 중 하나이다. 폴리에틸렌 필름 중 메탈로센 촉매를 이용하여 제조되는 선형저밀도 폴리에틸렌 (mLLPDE)은 유사한 분자량을 갖는 다른 증합체와 비교하였을 때 매우 우수한 물리적 물성을 구현하였다. 그러나, mLLPDE은 분자량 분포가 좁고 분자량에 따른 분지쇄 분포가 비교적 균일하여 가공성이 좋지 않다는 단점이 있다. 이로 인하여 압출 가공시 수지에 부하되는 압력으로 인해 가공 부하가 크며, 불로잉 (blowing) 가공시 표면 거칠기 (surface roughness)가 발생하여 헤이즈 등의 광학 물성이 떨어지는 문제가 있다. 이러한 문제점을 개선하기 위하여, mLLPDE에 분자량 분포가 넓고 장쇄 분지를 갖는 저밀도 폴리에틸렌 (LPDE)를 흔합하여 사용하기도 하나, 이 또한 공정상 불편함을 초래한다.
이에, 본 발명은 종래의 상용화된 선형저밀도 폴리에틸렌에 비하여, 동일한 분자량 또는 용융 지수에서 더 높은 용융 강도 (melt strength)를 나타내는 올레핀계 중합체를 제공한다. 또한, 동일 분자량 분포에서 보다 높은 용융 강도를 나타내므로, 좁은 분자량 분포에 뫼한 가공성 향상, 헤이즈 특성 및 높은 용융 강도를 동시에 달성할 수 있다.
용융 강도는 필름의 가공성 및 생산성에 영향을 미치는 중요한 인자로, 블로운 필름 (blown film)의 압출 가공시 용융 강도가 높아야 버블 안정성 (bubble . stability)이 우수하여 필름의 가공성을 향상시킬 수 있고, 나아가 생산성 측면에 유리할 수 있다.
상기 식 1을 만족하는 본 발명의 을레핀계 중합체는 일반적인 선형저밀도 폴리에틸렌과 비교하여, 동등한 수준의 물리적 강도를 나타내면서 좁은 분자량 분포 및 우수한 용융 강도를 보여 향상된 가공성을 나타낼 수 있다.
유사한 용융 흐름 지수 (Ml)를 갖는 을레핀계 중합체에 대하여, 용융 강도가 상기 식 1의 범위를 벗어나 용융 강도가 너무 낮거나 너무 높을 경우, 압출 가공시 가공성이 저하되거나 필름의 기계적 물성이 저하될 수가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 올레핀계 증합체는 ASTM D1238에 따라 190°C , 2.16kg 하증 조건에서 측정한 용융 흐름 지수 (Ml)가 약 0.1 내지 약 2 gA0mm, 또는 약 0.1 내지 약 1.8 g/10min, 또는 약 0.1 내지 1.5 g 10min 일 수 있다. 용융 흐름 지수가 너무 높으면 장쇄 분지가 생성되지 않아 용융 강도가 상승되기 어려우며, 너무 낮으면 가공성이 좋지 않게 되므로 이러한 관점에서 상기 범위가 바람직하다.
또한, 본 발명의 일 실시예에 따르면, ASTM D1238에 따라 190 °C에서 측정한 상기 올레핀계 중합체의 용융 유동율비 (MFRR, MI2 L6/MI2.16)는 약 10 내지 약 100, 또는 약 20 내지 약 100, 또는 약 20 내지 80 일 수 있다.
본 발명의 을레핀계 중합체는 용융 강도 (MS)가 약 60 mN 이상으로, 예를 들어, 약 60 내지 약 150 mN, 또는 약 60 내지 약 120 mN, 또는 약 70 내지 약 150 mN, 또는 약 70 내지 약 120 mN인 범위를 갖는다.
또한, 본 발명의 을레핀계 중합체는 또한 용융 강도 (MS)가 70m/N 이상일 때, 분자량 분포 (중량 평균 분자량 /수 평균 분자량)가 4 이하로, 예를 들어 약 1 내지 약 4, 또는 약 1 내지 약 3.5, 또는 약 2 내지 약 3.5인 범위를 갖는다ᅳ 일반적으로 분자량 분포가 넓어지면 용융 강도는 높아지는 반면, 중합체의 다른 물리적 강도가 약해지며 고분자량 부분의 증가로 인하여 블로운 필름의 압출시 표면 헤이즈가 증가하게 되는 문제가 있다. 그러나, 본 발명의 올레핀계 중합체는 장쇄 분지를 적절히 포함함으로써 좁은 분자량 분포로 물리적 특성을 저해하지 않으면서도 높은 용융 강도를 나타낼 수 있다.
더하여, 본 발명의 올레핀계 중합체는 용융 강도과 분자량 분포가 일정한 관계를 만족할 수 있다. 예를 들어, 본 발명의 을레핀계 중합체는 용융 강도가 70 mN 이상일 때, 분자량 분포가 4 이하이다. 보다 구체적으로, 본 발명의 을레핀계 증합체는 약 70 내지 약 150 mN의 범위일 때, 분자량 분포가 약 1 내지 약 4의 범위를 갖는다. 앞서 설명하였듯이, 가공성을 위해서는 높은 용융 강도가 요구되고, 물리적 강도를 위해서는 좁은 분자량 분포가 필요하나, 일반적인 올레핀계 중합체에서 용융 강도와 분자량 분포는 서로 비례하는 물성으로 높은 용융 강도와 낮은 분자량 분포를 동시에 달성하기 어렵다. 그러나, 본 발명의 올레핀계 중합체는 70 mN 이상의 높은 용융 강도에서도 분자량 분포가 4 이하로 유지되어 이와 같은 서로 상반되는 물성을 동시에 구현할 수 있는 장점이 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 을레핀계 중합체의 밀도 (density)는 약 0.910 내지 약 0.950 g/cc, 또는 약 0.910 내지 약 0.930 g/cc 일 수 있으나, 이에 한정되는 것은 아니다. 밀도가 0.950 g/cc를 초과하여 너무 높으면 장쇄 분지가 도입될 확률이 적어지므로 바람직하지 못하다. 본 발명의 올레핀계 중합체는, 상기 식 1을 만족하면서, 상기와 같이 용융 흐름 지수, 용융 유동율비, 용융 강도, 밀도, 분자량 분포 등이 상술한 범위에 있을 때, 물성이 보다 최적화되어 양호한 가공성, 헤이즈 및 기계적 물성을 달성할 수 있다. 본 발명에 따른 올레핀계 중합체는 을레핀계 단량체인 에틸렌과 알파 올레핀 공단량체의 공중합체인 것이 바람직하다.
상기 알파 을레핀 공단량체로는 탄소수 3 이상인 알파 올레핀이 사용될 수 있다. 탄소수 3 이상의 알파 올레핀으로는 프로필렌, 1-부텐, 1-펜¾1 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1ᅳ핵사데센 , 1_옥타데센 또는 1-에이코센 등이 있다.
본 발명에 따른 올레핀계 중합체는 종래의 선형저밀도 폴리에틸렌과 비교하여 동등한 수준의 물리적 강도를 나타내면서도 압출 가공시 용융 강도가 높아 버블 안정성 (bubble stability)이 우수하여 가공성이 양호하며, 헤이즈 특성이 좋아 필름 등의 용도로 유용하게 사용할 수 있다.
상술한 특징을 갖는 본 발명에 따른 올레핀계 중합체는 서로 다른 구조의 메탈로센 화합물을 2종 이상으로 포함하는 흔성 담지 메탈로센 화합물을 촉매로 사용하여, 예틸렌 및 알파 을레핀과의 공중합으로 얻을 수 있으며, 이러한 을레핀계 중합체는 전술한 바와 같은 물성을 가질 수 있다. 보다 구체적으로, 상기와 같은 본 발명의 올레핀계 증합체는 i) 하기 화학식 1로 표시되는 제 1 촉매; 및 ii) 하기 화학식 2로 표시되는 제 2 촉매 및 하기 화학식 3으로 표시되는 제 3 촉매로 이루어진 군에서 선택된 1종 이상을 포함하는, 흔성 담지 촉매의 존재 하에, 에틸렌 및 알파 을레핀 공단량체를 중합하여 수득될 수 있다.
[
Figure imgf000009_0001
상기 화학식 1에서,
M은 4족 전이금속이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Qi 및 Q2는 각각 독립적으로 수소, 할로겐, C o 알킬, C: 알케닐
C6-20 아릴, C7-20 알킬아릴, C기 20 아릴알킬, d_20 알콕시 , C2.20 알콕시알킬, C 헤테로시클로알킬, 또는 C520 헤테로아릴이고;
Xi 및 ¾는 각각 독립적으로 할로겐, C1-20 알킬, C220 알케닐, C, 아릴, 니트로, 아미도, 알킬실릴, C o 알콕시, 또는 C1-20 술폰네이트이고; 은 하기 화학식 2a이고,
C2는 하기 화학식 2a또는 화학식 2b이고,
[
Figure imgf000010_0001
상기 화학식 2a 및 2b에서,
Ri 내지 R13은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C o 실릴알킬, _20 알콕시실릴, .2o 에테르, 20 실릴에테르, CI-20 알콕시, C6 20 아릴, C 0 알킬아릴, 또는 C기 20 아릴알킬이고,
R'! 내지 R'3은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, 또는 C6_20 아릴이며,
[화학식 2]
Figure imgf000011_0001
상기 화학식 2에서,
Rio 내지 및 R'10 내지 13은 각각 독립적으로 수소, C 0 알킬, C2-20 알케닐, C6 20 아릴, C7-20 알킬아릴, C 20 아릴알킬, C2 20 알콕시알킬 또는 C1-20 아민이거나, 또는 RI0 내지 R13 및 R'u) 내지 R'n 중 인접하는 2개 이상이 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성하고, 상기 지방족 고리, 방향족 고리, 또는 헤테로 고리는 비치환되거나 또는 .20 알킬로 치환되고;
Q는 -CH2CH2-, -C(Z0(Z2)- 또는 -Si(Z0(Z2)-이고;
Z! 및 Z2는 각각 독립적으로 수소, C o 알킬, C3_20 시클로알킬, d_20 알콕시, C2 20 알콕시알킬, C6 20 아릴, C6_10 아릴옥시, C2.20 알케닐, C 알킬아릴, 또는 C 40 아릴알킬이고;
M2는 4족 전이금속이며;
¾ 및 ¾는 각각 독립적으로 할로겐, 20 알킬, C2.20 알케닐, C6-20 아릴, 니트로, 아미도, 20 알킬실릴, C1-20 알콕시, 또는 C1-20 술폰네이트이고;
[
Figure imgf000011_0002
상기 화학식 3에서,
M3은 4족 전이금속이고;
¾ 및 ¾은 각각 독립적으로 할로겐, C1-20 알킬, C2 20 알케닐, C, 아릴, 니트로, 아미도, C1-20 알킬실릴, C1-20 알콕시, 또는 C1-20 술폰네이트이고;
Ri4 내지 R19는 각각 독립적으로 수소, C1-20 알킬, C2_20 알케닐, C^o 알콕시, C6-20 아릴, C7_20 알킬아릴, C7_20 아릴알킬, Cwo 알킬실릴, C«0 아릴실릴, 또는 C1-20 아민이거나; 또는 상기 R14 내지 R17 중 인접하는 2개 이상이 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성하고;
L2는 _10 직쇄 또는 분지쇄 알킬렌이며;
D2는 -0-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 각각 독립적으로 수소, 할로겐, c1-20 알킬, c2-20 알케닐, 또는 c6 20 아릴이며;
A2는 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C6_20 아릴, C기 20 알킬아릴,
C7-20 아릴알킬, C1-20 알콕시, C2-20 알콕시알킬, c2-20 헤테로시클로알킬, 또는 C5-20 헤테로아릴이고;
B는 탄소, 실리콘, 또는 게르마늄이고, 시클로펜타디에닐 계열 리간드와 JR19z-y를 공유 결합에 의해 묶어주는 다리이고;
J는 주기율표 15족 원소 또는 16족 원소이며;
z는 J 원소의 산화수이고;
y는 J 원소의 결합수이다.
상기 화학식 1로 표시되는 제 1 촉매는, 특히 d (화학식 2a)에 실릴기가 치환되어 있는 것을 특징으로 한다. 또한, (화학식 2a)의 인덴 유도체는 인데노인돌 유도체나 플루오레닐 유도체에 비해 상대적으로 전자 밀도가 낮으며, 입체 장애가 큰 실릴기를 포함함에 따라 입체 장애 효과 및 전자 밀도적 요인에 의하여 유사한 구조의 메탈로센 화합물에 비해 상대적으로 낮은 분자량의 올레핀 중합체를 고활성으로 중합할 수 있다. 또한, C2(화학식 2b)와 같이 표시될 수 있는 플루오레닐 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가잠으로써 높은 중합 활성을 나타낸다. 바람직하게는, 상기 화학식 1에서 , Μ은 지르코늄이고 , Β는 실리콘이고, Qi 및 Q2는 각각 독립적으로 20 알킬 또는 C2-20 알콕시알킬이고, X! 및 X2는 할로겐이다. 보다 바람직하게는, ^은 메틸이고, ( 는 6-터트-부특시 -핵실이다. 또한, 바람직하게는, 상기 화학식 2a 및 2b에서, 내지 R13은 수소이고, 내지 1 '3은 C1-20 알킬이다. 보다 바람직하게는, 내지 R'3은 메틸이다.
상기 제 1 촉매의 제조방법은 후술하는 실시예에 구체화하여 설명한다.
상기 흔성 담지 촉매에서, 화학식 1로 표시되는 제 1 촉매는 주로 고분자량의 공중합체를 만드는데 기여하고, 화학식 2 또는 화학식 3으로 표시되는 촉매는 상대적으로 쩌분자량의 공중합체를 만드는데 기여할 수 있다.
바람직하게는, 상기 화학식 2에서, R10 내지 R13 및 R'10 내지 '13은 각각 독립적으로 수소, C o 알킬 또는 C2 20 알콕시알킬이거나, 또는 R10 내지 Ri3 및 R'10 내지 R'13 중 인접하는 2개 이상이 서로 연결되어 1개 이상의 지방족 고리 또는 방향족 고리를 형성하고, 상기 지방족 고리 또는 방향족 고리는 비치환되거나 또는 C1-20 알킬로 치환되고; Q는 -CH2CH2-, -C(Z (Z2)- 또는 -^( )(¾)-이고; \ 및 ¾는 각각 독립적으로 C1-20 알킬 또는 C2_20 알콕시알킬이고; M2는 지르코늄이며 ; ¾ 및 는 할로겐이다.
보다 바람직하게는, 상기 화학식 2에서, R10 내지 R13 및 R'10 내지 1 '13은 각각 독립적으로 수소, 메틸 또는 6-터트-부특시-핵실이거나, 또는 R10 내지 R13 및 R'u) 내지 R'13 중 인접하는 2개 이상이 서로 연결되어 1개 이상의 벤젠 고리 또는 사이클로핵산 고리를 형성하고, 상기 벤젠 고리는 비치환되거나 또는 터트-부톡시로 치환되고; Q는 -CH2CH2-, -C(Z,)(Z2)- 또는 -Si(Z0(Z2)-이고; ¾ 및 Z2는 각각 독립적으로 메틸 또는 6-터트-부특시 -핵실이고; M2는 지르코늄이며 ; X3 및 ¾는 클로로이다.
의 대표적인 예는 하기와 같다:
Figure imgf000013_0001
Figure imgf000014_0001
상기 제 2 촉매의 제조방법은 후술하는 실시예에 구체화하여 설명한다.
상기 화학식 3으로 표시되는 제 3 촉매는, 상기 제 1 촉매와 제 2 촉매의 중간 정도의 분자량의 공중합체를 만드는데 기여할 수 있다.
바람직하게는, 상기 화학식 3에서, M3은 티타늄이고; 및 X6은 할로겐이고; R14 내지 R19는 CI-20 알킬이고; L2는 CM0 직쇄 또는 분지쇄 알킬렌이며; D2는 -0-이고; A2는 C 20 알킬이고; B는 실리콘이고; J는 질소이며; z는 J 원소의 산화수이고; y는 J 원소의 결합수이다.
상기 화학식 3으로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure imgf000015_0001
상기 제 3 촉매의 제조방법은 후술하는 실시예에 구체화하여 설명한다ᅳ
본 발명에 따른 흔성 담지 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반웅성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.
예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카 -마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na20, 2C03, BaS04, 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
본 발명에 따른 흔성 담지 촉매에 있어서, 촉매 대 담체의 질량비는 1 :1 내지 1 :1000인 것이 바람직하다. 상기 질량비로 담체 및 촉매를 포함할 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다.
또한, 상기 0 상기 화학식 1로 표시되는 게 1 촉매와 ii) 상기 화학식
2로 표시되는 제 2 촉매 및 상기 화학식 3으로 표시되는 제 3 촉매로 이루어진 군에서 선택된 1종 이상의 질량비는 1 :100 내지 100:1인 것이 바람직하다. 상기 질량비에서 최적의 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다.
상기 촉매 이외에, 조촉매를 추가로 사용하여 올레핀 중합체를 제조하는데 사용할 수 있다. 상기 조촉매로는 하기 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 조촉매 화합물 중 1종 이상을 추가로 포함할 수 있다.
[화학식 4]
-[A1(R30)-O]m- 상기 화학식 4에서, R30은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
m은 2 이상의 정수이며;
[화학식 5]
J(R3 l)3
상기 화학식 5에서,
R31는 상기 화학식 4에서 정의된 바와 같고;
J는 알루미늄 또는 보론이며;
[화학식 6]
[E-H]+[ZA4]" 또는 [E]+[ZA4]
상기 화학식 6에서,
Ε는 중성 또는 양이온성 루이스 염기이고;
Η는 수소 원자이며;
Ζ는 13족 원소이고;
Α는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
상기 화학식 4로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 더욱 바람직한 화합물은 메틸알루미녹산이다.
상기 화학식 5로 표시되는 화합물의 예로는 트리메틸알루미늄 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄 트리 -S-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄 트리이소펜틸알루미늄 트리핵실알루미늄, 트리옥틸알루미늄 에될디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄 트리 -P-를릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에특시드 트리메틸보 트리에틸보론, 트리이소부틸보론, 트리프로필보론 트리부틸보론 등이 포함되며, 더욱 바람직한 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 중에서 선택된다.
상기 화학식 6으로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라 (P—를릴)보론,
트리메틸암모니움테트라 (ο,ρ-디메틸페닐)보론,
트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리메틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리부틸암모니움테트라펜타플로로페닐보론,
Ν,Ν-디에틸아닐리니움테트라페닐보론, '
Ν,Ν-디에틸아닐리니움테트라펜타플로로페닐보론,
디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄,
트리메틸암모니움테트라 (Ρ-를릴)알루미늄,
트리프로필암모니움테트라 (Ρ-를릴)알루미늄,
트리에틸암모니움테트라 (ο,ρ-디메틸페닐)알루미늄,
트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)알루미늄,
트리메틸암모니움테트라 (Ρ-트리플로로메틸페닐)알루미늄,
트리부틸암모니움테트라펜타플로로페닐알루미늄,
Ν,Ν-디에틸아닐리니움테트라페닐알루미늄,
Ν,Ν-디에틸아닐리니움테트라펜타플로로페닐알루미늄,
디에틸암모니움테트라펜타테트라페닐알루미늄,
트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라 (Ρ-를릴)보론,
트리에틸암모니움테트라 (ο,ρ-디메틸페닐)보론,
트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리페닐카보니움테트라 (Ρ-트리플로로메틸페닐)보론, 트리페닐카보니움테트라펜타플로로페닐보론 등이 있다.
본 발명에 따른 흔성 담지 촉매는 담체에 조촉매 화합물을 담지시키는 단계, 상기 담체에 상기 제 1 촉매를 담지시키는 단계, 및 상기 담체에 상기 제 2 촉매 및 /또는 제 3 촉매를 담지시키는 단계로 제조할 수 있으며, 촉매 담지 순서는 필요에 따라 바뀔 수 있다.
상기 흔성 담지 촉매의 제조시에 반응 용매로서 펜탄, 핵산, 헵탄 등과 같은 탄화수소계 용매, 또는 벤젠, 를루엔 등과 같은 방향족계 용매가 사용될 수 있다. 또한, 메탈로센 화합물과 조촉매 화합물은 실리카나 알루미나에 담지된 형태로도 이용할 수 있다.
본 발명의 을레핀계 중합체는 상기 흔성 담지 촉매의 존재 하에서, 에틸렌과 알파올레핀계 단량체를 중합시키는 단계를 포함하는 제조방법에 의해 제조할 수 있다.
상기 알파-올레핀계 단량체의 구체적인 예로는 프로필렌, 1-부텐, 1_펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-에이코센 등이 있으며 , 이들을 2종 이상 흔합하여 공중합할 수도 있다.
상기 공단량체인 알파올레핀의 함량은 특별히 제한되는 것은 아니며, 에틸렌 -알파올레핀 중합체의 용도, 목적 등에 따라 적절하게 선택할 수 있다. 보다 구체적으로는 0 초과 99 몰% 이하일 수 있다.
상기 중합 반응은 하나의 연속식 슬러리 중합 반웅기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반웅기를 이용하여 하나의 올레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합여 진행할 수 있다.
상기 흔성 담지 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. 본 발명의 다른 일 구현예에 따르면, 상술한 을레핀계 중합체를 포함하는 필름을 제공한다.
본 발명의 올레핀계 중합체를 포함하는 필름은, 상기 을레핀계 중합체에 대한 설명에서 상술한 바와 같이, 종래의 선형저밀도 폴리에틸렌과 비교하여 동등한 수준의 물리적 강도를 나타내면서도 압출 가공시 용융 강도가 높아 버블 안정성 (bubble stability)이 우수하여 가공성이 양호하며, 헤이즈 특성이 좋아 필요로 하는 용도에 따라 유용하게 사용할 수 있다
본 발명의 일 실시예에 따르면, 상기 올레핀계 중합체를 포함하는 필름은 두께 50 에서 ISO 13468 기준에 따라 측정한 헤이즈가 20%이하로, 예를 들어 약 1 내지 약 20%, 또는 약 1 내지 약 18%, 또는 약 1 내지 약 15%의 양호한 해이즈 특성을 나타낼 수 있다
상기 본 발명의 필름은, 상기 올레핀계 중합체를 이용하여 예를 들면 사출 성형법, 압축 성형법, 압출 성형법, 사출압축 성형법, 발포 사출 성형법, 인플레이션법 (inflation), T 다이법 (T die), 캘린더법 (Calendar), 블로우 성형법, 진공 성형법 등에 의해 제조할 수 있으며, 그 외에도 본 발명이 속한 기술 분야에서 일반적으로 사용되는 가공 방법을 특별한 제한 없이 사용할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다ᅳ 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
<실시예 >
메탈로센 화합물의 합성예
Figure imgf000019_0001
단계 1) 리간드 화합물의 제조 건조된 250 mL Schlenk flask (제 1 플라스크)에 (( IH-인덴 -3 -일)메틸)트리메틸실란 (( 1 H-inden-3 -yl)methyl)trimethylsilane) 4.05 g(20 mmol)을 넣고 아르곤 기체 하에서 디에틸에테르 40 mL에 녹였다. 0°C까지 냉각한 후, 2.5 M n-BuLi 핵산 용액 9.6 mL(24 mmol)를 천천히 적가하였다. 반응 흔합물을 천천히 상온으로 승온시킨 후, 24시간 동안 교반하였다. 다른 250 mL Schlenk flask에 (6-터트-부록시핵실)디클로로 (메틸)실란 2.713 g(10 mmol)을 핵산 30 mL에 녹인 용액을 준비하고, 이를 -78 °C까지 냉각한 뒤, 여기에 제 1 플라스크의 흔합물을 천천히 적가하였다. 적가한 후 흔합물을 상온으로 천천히 승온하고, 24시간 동안 교반시켰다. 여기에 물 50 mL을 넣고 유기층을 에테르로 3회 추출 (50 mL x 3)하였다. 모아진 유기층에 적당량의 MgS04를 넣어 잠시 교반한 후, 필터하여 감압 하에 용매를 건조시킨 결과, 6.1 g (분자량: 603.11, 10.05 mmol, 100.5%수율)의 노란색 오일 형태의 리간드 화합물을 수득하였다. 얻어진 리간드 화합물은 별도의 분리 과정없이 메탈로센 화합물의 제조에 사용하였다.
Ή NMR (500 MHz, CDC13): 0.02 (18H, m), 0.82 (3H, m), 1.15 (3H, m), 1.17
(9H, m), 1.42 (H, m), l'.96 (2H, m), 2.02 (2H, m), 3.21 (2H, m), 3.31 (IH, s), 5.86 (IH, m), 6.10 (IH, m), 7.14 (3H, m), 7.14 (2H, m) 7.32 (3H, m) 단계 2) 메탈로센 화합물의 제조
오븐에 건조한 250 mL Schlenk flask에 상기 단계 1에서 합성한 리간드 화합물을 넣고 4당량의 MTBE와 를루엔 60 mL에 녹인 다음, 2당량의 n-BuLi 핵산 용액을 가하였다. 하루가 지난 후 진공 조건에서 플라스크 내부의 용매를 모두 제거하고 동량의 를루엔에 용해시켰다. Glove box 내에서 1당량의 ZrCl4(THF)2을 취해 250 mL Schlenk flask에 담고 를루엔을 넣은 서스펜션 (suspension)을 준비하였다. 위의 두 개의 플라스크 모두 -78 °C까지 넁각시킨 후 lithiation된 리간드 화합물을 천천히 ZrCl4(THF)2 의 를루엔 서스펜션에 가하였다. 주입이 끝난 후, 반응 흔합물은 천천히 상온까지 올려 하루 동안 교반하여 반응을 진행시킨 후 흔합물 내의 를루엔을 약 1/5 부피까지 진공 감압을 통해 제거하고 남은 를루엔의 5배 정도 부피의 핵산을 가해 재결정시켰다. 외부 공기와 닿지 않게 흔합물을 여과하여 61
Figure imgf000021_0001
SI
(6-62-£9I001 'ON SVD)tln½
Figure imgf000021_0002
(ur
Ή1) I ᅳ L '(ra 'HI) i'/. '(ui 'Η2) 9ίᅳ L '(ui 'Ηΐ) l'L '(^ 'ΗΙ)86·9 '(∞ 'HI) Z.6'9 X∞ 'HI) S6'9 '(ui ¾1) 9ξ-ξ '(m 'HI) '(^ Ήζ) LVZ '(s £17.∑: '(ui ¾9) 99Ί 7) ςν\
'Η6) Ot^'l '(Ρ 'Η£) 8ΓΙ '86Ό '(^ '腦 ) £0'0 -(HDQD 'ZH 00S) ¾WN H,
X£ti9L: '%001: 그 Γ
Figure imgf000021_0003
T80ClO/SlOZaM/X3d 6^SC60/910Z OAV (6-터트-부톡시핵실)디클로로 (메틸)실란 ((6-tert-butoxyhexyl)dichloro(methyl)silane ) 2.713 g(10 mmol)과 핵산 30 mL를 넣고 -78 °C까지 넁각한 다음, 여기에 위에서 준비된 흔합물을 적가하였다. 상기 흔합물을 천천히 상온으로 승온시키고 24시간 동안 교반하였다. 여기에 물 50 mL을 넣어 quenching하고 유기층을 분리하여 MgS04로 건조시켰다ᅳ 그 결과, 3.882 g(9.013 mmol, 90%)의 생성물을 얻었다.
NMR 기준 purity (wt%)=l 00%, Mw=430.70
1H NMR (500 MHz, CDC13): -0.45, -0.22, -0.07, 0.54 (total 3H, s), 0.87 (1H, m), 1.13 (9H, m), 1.16-1.46 (10H, m), 3.25 (2H, m), 3.57 (1H, m), 6.75, 6.85, 6.90, 7.11: 7.12, 7.19 (total 4H, m), 7.22-7.45 (4H, m), 7.48-7.51 (4H, m) 단계 2) 메탈로센 화합물의 제조
오본에 건조한 250 mL Schlenk flask에 상기 단계 1에서 합성한 리간드 화합물을 넣고 4당량의 MTBE와 를루엔 60 mL에 녹였다. 여기에 2.1당량의 n-BuLi 핵산 용액을 가하고 24시간 동안 lithiation시킨 다음, 용매를 모두 진공 감압하여 제거하였다. 이를 핵산 용매 하에 schlenk filter를 통하여 Li-salt만 얻었다 (3.092 g, 6.987 mmol). 보다 순수한 촉매 전구체를 얻기 위하여 purification을 진행하였다. Glove box 내에서 2.1당량의 ZrCl4(THF)2을 취해 250 mL Schlenk flask에 담고 를루엔을 넣어 서스펜션 (suspension)을 준비하였다. 상기 두 개의 플라스크 모두 -78 °C까지 넁각시킨 다음, lithiation된 리간드 화합물을 천천히 ZrCl4(THF)2의 틀루엔 서스펜션에 가하였다. 상기 흔합물을 천천히 상온으로 승온시키고 하루 동안 교반한 다음, 흔합물 내의 를루엔을 진공 감압을 통해 제거하고 이전 용매 정도 부피의 핵산을 가해 재결정시켰다. 제조된 핵산 슬러리를 아르곤 하에 여과하고, 여과된 고체와 여과액을 모두 진공 감압 하에 용매를 증발시켰다. 위에 남은 필터 케이크 (filter cake)와 filtrate를 각각 NMR을 통하여 확인하고, glove box 내에서 계량하여 수율 및 순도를 확인하였다.
3.1 g(6.987 mmol)의 리간드 화합물로부터 1.321 g(2.806 mmol, 40.2%)의 노란색 오일을 얻어 를루엔 용액으로 보관하였다 (0.3371 mmol/mg).
NMR 기준 purity (wt%)=100%, Mw: 605.85 Ή NMR (500 MHz, CDC13): 0.88 (3H, m), 1.15 (9H, m), 1.17-1.47 (10H, m), 1.53 (4H, d), 1.63 (3H, m), 1.81 (1H, m), 6.12 (2H, m), 7.15 (2H, m), 7.22-7.59 (8H, m)
Figure imgf000023_0001
단계 1) 리간드 화합물의 제조
건조된 250 mL Schlenk flask에
2-(6-터트-부록시핵실)사이클로펜타 -1,3-디엔 (2-(6-tert-butoxyhexyl)cydopenta-l,3- diene) 5.25 g(23.6 mmol)을 넣고 메탄올 50 mL와 아세톤 4 mL을 넣은 후 0°C까지 넁각시켰다. 여기에 피를리딘 2.95 mL(1.5 당량)을 적가한 다음, 천천히 상온으로 승온시키고 7시간 동안 교반하였다. 여기에 물 50 mL을 넣어 quenching하고 유기층을 분리하여 MgS04로 건조시켰다. 그 결과, 2-(6-터트-부록시핵실) -5- (프로판 -2-일리덴)사이클로펜타 -1,3-디엔 (2-(6-tert-butoxy hexyl)-5-(propaan-2-ylidene)cyclopenta-l,3-diene) 5.0 g(19.07 mmol, 80.7%)가 생성되었음을 NMR로 확인하였고, 이를 에테르에 녹였다.
다른 건조된 250 mL Schlenk flask에
2,7-디 -터트 -부틸 -9H-플루오렌 (2,7-di-tert-butyl-9H-fluorene) 2.784 g(10 mmol)을 넣고 아르곤 상태로 만들어 준 다음, 감압 하에 에테르 50 mL를 넣어 녹였다. 상기 용액을 0°C로 넁각한 다음 2.5M n-BuLi 핵산 용액 4.8 mL(12 mmol)을 적가하고, 상온으로 승온시킨 후 하루 동안 교반하였다. 상기 용액을 앞서 제조한 2-(6-터트-부특시핵실) -5- (프로판 -2-일리덴)사이클로펜타 -1,3-디엔의 에테르 용액에 적가한 다음, 하루 동안 교반하였다. 여기에 물 50 mL을 넣어 quenching하고 유기층을 분리하여 MgS04로 건조시킨 후 여과하여 순수한 용액을 얻었다. 상기 용액을 진공 감압 하에 용매를 모두 증발시켜 5.0 g(9.36 mmol, 93.6%)의 오일을 얻었다. NMR 기준 purity (wt%)=l 00%, Mw=540.86
Ή NMR (500 MHz, CDC13): 0.87 (IH, m), 0.99 (6H, m), 1.19 (9H, s), 1.30 (11H, s), 1.41 (11, s), 1.51-1.67 (5H, m), 3.00, 3.13 (IH, s), 3.35 (2H, m), 3.87, 4.05, 4.09, 4.11 (IH, s), 5.72, 5.97, 6.14, 6.61 (3H, s), 7.28 (IH, m), 7.35 (IH, m), 7.42 (IH, m), 7.58 (2H, m), 7.69 (2H, d) 단계 2) 메탈로센 화합물의 제조
오븐에 건조한 250 mL Schlenk flask에 상기 단계 1에서 합성한 리간드 화합물을 넣고 MTBE 4당량과 를루엔에 녹인 다음, 2.1 당량의 n-BuLi 헥산 용액을 가하고 24시간 동안 lithiation시켰다. Glove box 내에서 2.1 당량의 ZrCl4(THF)2을 취해 250 mL Schlenk flask에 담고 에테르를 넣어 서스펜션 (suspension)을 준비하였다. 상기 두 개의 플라스크 모두 -78 °C까지 넁각시킨 다음, lithiation된 리간드 화합물을 천천히 ZrCl4(THF)2의 서스펜션에 가하였다. 상기 흔합물을 천천히 상온으로 승온시키고 하루 동안 교반한 다음, 흔합물 내의 에테르를 진공 감압을 통해 약 1/5 부피까지 제거하고, 남아있는 용매의 5배 부피의 핵산을 가해 재결정시켰다. 제조된 핵산 슬러리를 아르곤 하에 여과하고, 여과된 고체와 여과액을 모두 진공 감압 하에 용매를 증발시켰다. 위에 남은 필터 케이크 (filter cake)와 filtrate를 각각 NMR을 통하여 확인하고, glove box 내에서 계량하여 수율 및 순도를 확인하였다. 5.1 g(9.4 mmol)의 리간드 화합물로부터 4.4 g(6.3 mmol, 67.4%)의 갈색 고체가 얻어졌다.
NMR 기준 purity (wt%)=l 00%, Mw: 700.98
1H NMR (500 MHz, CDC13): 1.17 (9H, s), 1.23-1.26 (6H, m), 1.27 (12H, s), 1.38 (6H, s), 1.40-1.44 (4H, m), 2.33 (3H, s), 2.36 (3H, s), 3.33 (2H, t), 5.31 (IH, m), 5.54 (IH, m), 5.95 (IH, m), 7.39 (IH, m), 7.58 (2H, m), 7.62 (IH, m), 7.70 (IH, s), 8.00 (lH, t) 합성예 2-4
Figure imgf000025_0001
단계 1) 리간드 화합물의 제조
아르곤 하에 건조된 250 mL Schlenk flask (제 1 플라스크)에 인덴 (indene) 1.162 g(10 mmol)을 넣고 에테르 5 mL 및 핵산 40 mL의 공용매에 용해시켰다. 상기 용액을 0°C까지 넁각한 후 2.5 M n-BuLi 핵산 용액 4.8 mL(12 mmol)을 적가하였다. 상기 흔합물을 천천히 상온으로 승온시키고, 하루 동안 교반하였다. 다른 250 mL Schlenk flask (제 2 플라스크)에 (6-터트 -부록시헥실)디클로로 (메틸)실란 ((6-tert-butoxyhexyl)dichloro(methyl)silane ) 2.713 g(10 mmol)과 핵산 100 mL를 넣고 -78 °C까지 냉각한 다음, 여기에 위에서 준비된 게 1 플라스크의 흔합물을 적가하였다.
다른 건조된 250 mL Schlenk flask (제 3 플라스크)에 2-메틸 -4-페닐 인덴 (2-methyl-4-phenyl indene) 2.063 g(10 mmol)을 넣고 에테르 40 mL에 용해시켰다. 상기 용액을 0°C까지 냉각한 후 2.5 M n-BuLi 핵산 용액 4.8 mL(12 mmol)을 적가하였다. 상기 흔합물을 천천히 상온으로 승온시키고, 하루 동안 교반하였다. 여기에 0.1 mol%의 copper cyanide를 적가한 후 1시간 동안 교반하였다. 상기 흔합물을 앞의 제 2 플라스크에 넣고 하루 동안 교반하였다. 여기에 물 50 mL을 넣어 quenching하고 에테르로 work-up하여 유기층을 분리하여 MgS< 로 건조시켰다. 그 결과, 5.53 g(10.61 mmol, 106.1%)의 생성물을 갈색 오일로 얻었다.
NMR 기준 purity (wt%)= 100%, Mw: 520.82
Ή NMR (500 MHz, CDC13): -0.44, -0.36, -0.28, -0.19, 0.09-0.031 (total 3H, m), 0.84 (IH, m), 1.09 (9H, s), 1.23-1.47 (10H, m), 2.14 (3H, s), 3.25 (2H, m), 3.45 (2H. m), 6.38, 6.53, 6.88, 6.92 (total 2H, m), 6.93 (IH, m), 7.11-7.24 (2H, m), 7.28-7.32 (3H, m), 7.35 (2H, m), 7.44 (3H, m), 7.53 (2H, m) 단계 2) 메탈로센 화합물의 제조
오븐에 건조한 250 mL Schlenk flask에 상기 단계 1에서 합성한 리간드 화합물을 넣고 4당량의 MTBE와 를루엔에 녹인 다음, 2.1당량의 n-BuLi 용액을 가하고 24시간 동안 lithiation시켰다. Glove box 내에서 2.1당량의 ZrCl4(THF)2을 취해 250 mL Schlenk flask에 담고 에테르를 넣어 서스펜션 (suspension)을 준비하였다. 상기 두 개의 플라스크 모두 -78 °C까지 넁각시킨 다음, lithiation된 리간드 화합물을 천천히 ZrCl4(THF)2의 서스펜션에 가하였다. 상기 흔합물을 천천히 상온으로 승온시키고 하루 동안 교반한 다음, 진공 감압하고 를루엔 용액을 아르곤 하에서 여과하여 여과된 고체 필터 케이크 (filter cake)인 LiCl을 제거하였다. 여과액을 진공 감압하여 를루엔을 제거하고 이전 용매 정도의 펜탄을 가하여 재결정시켰다. 제조된 펜탄 슬러리 * 아르곤 하에 여과하고, 여과된 고체와 여과액을 모두 진공 감압 하에 용매를 증발시켰다. 위에 남은 필터 케이크 (filter cake)와 filtrate를 각각 NMR을 통하여 확인하고, glove box 내에서 계량하여 수율 및 순도를 확인하였다. 그 결과, 필터 케이크 (filter cake) 3.15 g(4.63 mmol, 46.3%)의 주황색 고체가 얻어졌다.
NMR 기준 purity (wt%)=l 00%, Mw: 680.93
Ή NMR (500 MHz, CDC13): 0.01 (3H, s), 0.89 (3H, m), 1.19 (9H, s), 1.26-1.33 (6H, m), 1.50 (4H, m), 2.06, 2.15, 2.36 (total 3H, m), 3.35 (2H, m), 3.66 (1H, s), 6.11-6.99 (3H, s), 7.13-7.17 (2H, m), 7.36-7.68 (10H, m) 합성예 2-5
itert-Bu-0-( :H2V)MeSi(9-C Hg)2ZrCl2
1) 리간드 화합물의 제조
THF 용매 하에서 tert-Bu-0-(CH2)6Cl 화합물과 Mg(0) 간의 반응으로부터 그리냐드 (Grignard) 시약인 tert-Bu-0-(CH2)6MgCl 용액 1.0 mole을 얻었다. 상기 제조된 그리냐드 화합물을 -30°C의 상태의 MeSiCl3 화합물 (176.1 mL, 1.5 mol)과 THF (2.0 mL)가 담겨있는 폴라스크에 가하고, 상온에서 8시간 이상 교반시킨 후, 걸러낸 용액을 진공 건조하여 tert-Bu-0-(CH2)6SiMeCl2의 화합물을 얻었다 (수율 92%). -20 °C에서 반웅기에 플루오렌 (3.33 g, 20 mmol)과 핵산 (100 mL)와 MTBE (methyl tert-butyl ether, 1.2 mL, 10 mmol)를 넣고, 8 ml의 n-BuLi (2.5 M in Hexane)을 천천히 가하고, 상온에서 6시간 교반시켰다. 교반이 종결된 후, 반응기 온도를 -30 °C로 넁각시키고, -30 °C에서 핵산 (100 ml)에 녹아있는 tert-Bu-0-(CH2)6SiMeCl2 (2.7 g, 10 mmol) 용액에 상기 제조된 플루오레닐 리튬 용액을 1 시간에 걸쳐 천천히 가하였다. 상온에서 8 시간 이상 교반한 후, 물을 첨가하여 추출하고, 건조 (evaporation)하여
(tert-Bu-O-(CH2)6)MeSi(9-C13H10)2 화합물을 얻었다 (5.3 g, 수율 100%). 리간드의 구조는 1H-NMR을 통해 확인하였다.
1H NMR(500MHz, CDC13): -0.35 (MeSi, 3H, s), 0.26 (Si-CH2, 2H, m), 0.58
(CH2, 2H, m), 0.95 (CH2, 4H, m), 1.17(tert-BuO, 9H, s), 1.29(CH2, 2H, m), 3.21(tert-BuO-CH2, 2H, t), 4.10(Flu-9H, 2H, s), 7.25(Flu-H, 4H, m), 7.35(Flu-H, 4H, m), 7.40(Flu-H, 4H, m), 7.85(Flu-H, 4H, d). 2) 메탈로센 화합물의 제조
-20 °C에서 (tert-Bu-O-(CH2)6)MeSi(9-Ci3H10)2 (3.18 g, 6 mmol)/MTBE (20 mL) 용액에 4.8 ml의 n-BuLi (2.5M in Hexane)을 천천히 가하고 상온으로 올리면서 8시간 이상 반응시킨 후, -20 °C에서 상기 제조된 디리튬염 (dilithium salts) 슬러리 용액을 ZrCl4(THF)2 (2.26 g, 6 mmol)/핵산 (20 mL)의 슬러리 용액으로 천천히 가하고 상온에서 8시간. 동안 더 반응시켰다. 침전물을 여과하고 여러 번 핵산으로 씻어내어 붉은색 고체 형태의 (tert-Bu-0-(CH2)6)MeSi(9-C 13H9)2ZrCl2 화합물을 얻었다 (4.3g, 수율 94.5%).
1H NMR(500MHz, C6D6): 1.15(tert-BuO, 9H, s), 1.26 (MeSi, 3H, s), 1.58 (Si-CH2, 2H, m), 1.66 (CH2, 4H, m), 1.91(CH2, 4H, m), 3.32(tert-BuO-CH2, 2H, t), 6.86 (Flu-H, 2H, t), 6.90 (Flu-H, 2H, t), 7.15 (Flu-H, 4H, m), 7.60 (Flu-H, 4H, dd), 7.64(Flu-H, 2H, d), 7.77(Flu-H, 2H, d) 합성예 3
tBu-O-rCH7½ (CH^SirC5(CH 4)(tBu-N)TiCl7
상온에서 50 g의 Mg(s)를 10 L 반옹기에 가한 후, THF 300 mL을 가하였다 . I2 0.5 g 정도를 가한 후, 반응기 온도를 50 °C로 유지하였다. 반웅기 온도가 안정화된 후 250 g의 6-t-부톡시핵실 클로라이드 (6-t-buthoxyhexyl chloride)를 피딩펌프 (feeding pump)를 이용하여 5 mL/min의 속도로 반웅기에 가하였다. 6-t-부톡시핵실 클로라이드를 가함에 따라 반응기 은도가 4 내지 5 °C정도 상승하는 것을 관찰하였다. 계속적으로 6-t-부록시핵실 클로라이드를 가하면서 12 시간 교반하였다. 반응 12시간 후 검은색의 반응용액을 얻었다. 생성된 검은색의 용액 2 mL 취한 뒤 물을 가하여 유기층을 얻어 1H-NMR을 통해 6-t-부록시핵산 (6-t-buthoxyhexane)을 확인하였다. 상기
6-t-부록시핵산으로부터 그리냐드 (Gringanrd) 반응이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부톡시핵실 마그네습 클로라이드 (6-t-buthoxyhexyl magnesium chloride)를 합성하였다 .
MeSiCl3 500 g과 1 L의 THF를 반웅기에 가한 후 반웅기 온도를 -20°C까지 냉각하였다. 합성한 6-t-부록시핵실 마그네슴 클로라이드 중 560 g을 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 그리냐드 시약 (Grignard reagent)의 피딩 (feeding)이 끝난 후 반응기 은도를 천천히 상온으로 을리면서 12시간 교반하였다. 반웅 12시간 후 흰색의 MgCl2염이 생성되는 것을 확인하였다. 핵산 4 L을 가하여 랩도리 (labdori)을 통해 염을 제거하여 필터용액을 얻었다. 얻은 필터용액을 반웅기에 가한 후 70°C에서 핵산을 제거하여 엷은 노란색의 액체를 얻었다. 얻은 액체를 1H-NMR을 통해 원하는 메틸 (6-t-부톡시 핵실)디클로로실란 {Methyl(6-t-buthoxy hexyl)dichlorosilane} 화합물임을 확인하였다.
1H-NMR (CDC13): 3.3 (t, 2H), 1,5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H)
테트라메틸시클로펜타디엔 (tetramethylcyclopentadiene) 1.2 mol (150 g)와 2.4 L의 THF를 반웅기에 가한 후 반웅기 온도를 -20°C로 넁각하였다. n-BuLi 480 mL 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. n-BuLi을 가한 후 반웅기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반웅 12시간 후, 당량의 메틸 (6-t-부톡시 핵실)디클로로실란 (Methyl(6-t-buthoxy hexyl)dichlorosilane) (326 g, 350 mL)을 빠르게 반웅기에 가하였다. 반웅기 온도를 천천히 상온으로 올리면서 12시간 교반한 후 다시 반웅기 온도를 0°C로 냉각시킨 후 2당량의 t— BuNH2을 가하였다. 반응기 온도를 천천히 상온으로 을리면서 12시간 교반하였다. 반응 12시간 후 THF을 제거하고 4 L의 핵산을 가하여 랩도리를 통해 염을 제거한 필터용액을 얻었다. 필터용액을 다시 반응기에 가한 후, 핵산을 70°C에서 제거하여 노란색의 용액을 얻었다. 얻을 노란색의 용액을 1H-NMR을 통해 메틸 (6-t-부톡시핵실) (테트라메틸 CpH)t-부틸아미노실란 (Methyl(6-t-buthoxyhexyl) (tetramethylCpH)t-Butylaminosilane) 화합물임을 확인하였다.
n-BuLi과 리간드 디메틸 (테트라메틸 CpH)t-부틸아민실란 (Dimethyl(tetramethylCpH)t-Butylaminosilane)로부터 THF용액에서 합성한 -78 °C의 리간드의 디리튬염에 TiCl3(THF)3(10 mmol)을 빠르게 가하였다. 반웅용액을 천천히 -78 °C에서 상온으로 을리면서 12시간 교반하였다. 12시간 교반 후, 상온에서 당량의 PK¾(10mmol)를 반웅용액에 가한 후 12시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 짙은 검은색의 용액을 얻었다. 생성된 반웅용액에서 THF를 제거한 후 핵산을 가하여 생성물을 필터하였다. 얻을 필터 용액에서 핵산을 제거한 후, 1H-NMR로부터 원하는 ([methyl(6-t-buthoxyhexyl)silyl 5-tetramethylCp)(t-But^^
(tBu-0-(CH2)6)(CH3)Si(C5(CH3)4)(tBu-N)TiCl2 임을 확인하였다.
1H-NMR (CDC13): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 ~ 0.8 (m), 1.4 (s, 9H), 1.2(s, 9H), 0.7 (s, 3H) 흔성 담지 촉매의 제조
제조예 1
20L sus 고압 반응기에 를루엔 용액 2.0 kg을 넣고 실리카 (Grace Davison사 제조 SP2412) 1,000 g을 투입한 후, 반웅기 은도를 40°C로 올리면서 교반하였다ᅳ 30 wt% 메틸알루미녹산 (MAO)/를루엔 용액 (Albemarle사) 2.8 kg을 투입하고, 70°C로 온도를 을린 후 200 rpm으로 12시간 동안 교반하였다. 반응기 온도를 40°C로 낮춘 후 교반을 중지하고 10분 동안 세를링 (settling)시킨 후 반응 용액을 디캔테이션 (decantation)하였다.
반응기에 를루엔 2.0 kg을 투입하고, 합성예 1의 화합물 30 g과 를루엔 1,000 mL 용액을 반응기에 투입하고 85 °C로 승온한 후, 90분 동안 교반하였다. 반응기 온도를 40°C로 낮춘 후 교반을 중지하고 30분 동안 세를링시킨 후 반웅 용액을 디캔테이션 (decantation)하였다. 반웅기에 핵산 2.0 kg을 투입하고 디캔테이션한 후 , 80°C에서 3시간 동안 건조하였다.
를루엔 3.0 kg을 반응기에 투입하고, 합성예 2-4의 화합물 50 g과 를루엔 l,000 mL 용액을 반응기에 투입하고 40°C에서 90분 동안 교반하였다. 반응기 온도를 상온으로 낮춘 후 교반을 중지하고 30 분 동안 세를링시킨 후 반응 용액을 디캔테이션하였다. 반응기에 핵산 3.0 kg을 투입하고 핵산 슬러리 용액을 20L filter dryer로 이송하고 핵산 용액을 여과하였다. 50°C에서 4시간 동안 감압 하에 건조하여 1.50 kg-SiO2 흔성 담지 촉매를 제조하였다. 제조예 2
20L sus 고압 반응기에 를루엔 용액 2.0 kg을 넣고 실리카 (Grace Davison사 제조 SP2412) 1,050 g을 투입한 후, 반응기 온도를 40°C로 올리면서 교반하였다. 30 wt% 메틸알루미녹산 (MAO)/를루엔 용액 (Albemarle사) 3.3 kg을 투입하고, 70°C로 온도를 을린 후 200 rpm으로 6시간 동안 교반하였다. 반웅기 은도를 40 로 낮춘 후 교반을 중지하고 10분 동안 세를링 (settling)시킨 후 반응 용액을 디캔테이션 (decantation)하였다. 반응기에 를루엔 2.0 kg을 투입하고 10분간 교반한 후 교반을 중지하고 10분 동안 세를링시킨 후 반웅 용액을 디캔테이션하였다.
2,000 mL의 schlenk flask에 를루엔 1,000 mL와 합성예 2-3의 화합물 33 g 및 합성예 1의 화합물 25 g을 투입하고 상온에서 30분 동안 교반하였다. 반응기에 를루엔 2.0 kg을 투입하고 먼저 준비된 슈링크 플라스크 반응 용액을 반응기로 투입하고 85 °C로 승온한 후, 90분 동안 교반하였다. 반응기 온도를 40°C로 낮춘 후 교반을 중지하고 30분 동안 세를링시킨 후 반응 용액을 디캔테이션하였다.
반웅기에 핵산 2.0 kg을 투입하고 디캔테이션한 후, 80°C에서 3시간 동안 건조하였다. 를루엔 3.0 kg을 반응기에 투입하고, 합성예 2-1의 화합물 20 g과 를루엔 1,000 mL 용액을 반응기에 투입하고 40°C에서 90분 동안 교반하였다.
반응기 은도를 상온으로 낮춘 후 교반을 중지하고 30 분 동안 세를링시킨 후 반응 용액을 디캔테이션하였다. 반웅기에 핵산 3.0 kg을 투입하고 핵산 슬러리 용액을 20L filter dryer로 이송하고 핵산 용액을 여과하였다. 50 °C에서 4시간 동안 감압 하에 건조하여 1.55 kg-Si( 혼성 담지 촉매를 제조하였다. 비교 제조예 1
20L sus 고압 반응기에 를루엔 용액 3.0 kg을 넣고 실리카 (Grace Davison사 제조 SP2412) 1,200 g을 투입한 후, 반응기 온도를 40 °C로 올리면서 교반하였다. 실리카를 60분 동안 층분히 분산시킨 후, 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액 7.5 kg을 투입하고, 80 °C로 온도를 올린 후 200 rpm으로 12시간 동안 교반하였다. 반웅기 온도를 다시 40°C로 낮춘 후 교반을 중지하고 60분 동안 세를링 (settling)시킨 후 반응 용액을 디캔테이션 (decantation)하였다. 를루엔 3.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 60분 동안 세를링시키고 를루엔 용액을 디캔테이션하였다. 반응기에 틀루엔 2.0 kg을 투입하고, 합성예 2-5의 화합물 33.2 g과 를루엔 1,500 mL를 플라스크에 담아서 용액을 준비하고 30 분간 소니케이션 (sonication)을 실시하였다. 이와 같이 준비된 합성예 2-5의 화합물 /를루엔 용액을 반웅기에 투입하고 200 rpm으로 90분간 교반하였다. 교반을 중지하고 60분 동안 세를링시킨 후 반웅 용액을 디캔테이션하였다. 반응기에 를루엔 2.0 kg을 투입하고, 합성예 2-1의 화합물 5으7 g과 를루엔 1,500 mL를 플라스크게 담아서 용액을 준비하고 30 분간 소니케이션을 실시하였다. 이와 같이 준비된 합성예 2-1의 화합물 /를루엔 용액을 반응기에 투입하고 200 rpm으로 90분간 교반하였다. 교반을 증지하고 60분 동안 세를링시킨 후 반응 용액을 디캔테이션하였다.
반응기에 를루엔 2.0 kg을 투입하고, 합성예 3의 화합물 36.7 g과 를루엔 500 mL를 플라스크게 담아서 용액을 준비하고 30 분간 소니케이션을 실시하였다. 이와 같이 준비된 합성예 3의 화합물 /를루엔 용액을 반응기에 투입하고 200 rpm으로 90 분간 교반하였다. 반웅기 온도를 상온으로 낮춘 후 교반을 중지하고 60 분 동안 세를링시킨 후 반웅 용액을 디캔테이션하였다. 반응기에 를루엔 2.0 kg을 투입하고 10분간 교반한 후, 교반올 중지하고 60분 동안 세를링시키고 를루엔 용액을 디캔테이션하였다.
반응기에 핵산 3.0 kg을 투입하고 핵산 슬러리를 filter dryer로 이송하고 핵산 용액을 필터하였다. 50 °C에서 4시간 동안 감압 하에 건조하여 l,130g-SiO2 흔성 담지 촉매를 제조하였다. 비교 제조예 2
20L sus 고압 반응기에 를루엔 용액 3.0 kg을 넣고 실리카 (Grace Davison사 제조 SP2412) 1 ,200 g을 투입한 후, 반응기 온도를 40°C로 올리면서 교반하였다. 실리카를 60분 동안 충분히 분산시킨 후, 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액 그 5 kg을 투입하고, 80°C로 은도를 올린 후 200 rpm으로 12시간 동안 교반하였다. 반웅기 온도를 다시 40°C로 낮춘 후 교반을 중지하고 60분 동안 세를링 (settling)시킨 후 반웅 용액을 디캔테이션 (decantation)하였다. 를루엔 3.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 60분 동안 세를링시키고 를루엔 용액을 디캔테이션 하였다. 반응기에 를루엔 2.0 kg을 투입하고, 합성예 2-3의 화합물 30.5 g과 를루엔 1 ,500 mL를 플라스크에 담아서 용액을 준비하고 30 분간 소니케이션 (sonication)을 질시하였다. 이와 같이 준비된 합성예 2-3의 화합물 /를루엔 용액을 반응기에 투입하고 200 rpm으로 90분간 교반하였다. 교반을 중지하고 60분 동안 세를링시킨 후 반응 용액을 디캔테이션하였다. 반웅기에 를루엔 2.0 kg을 투입하고, 합성예 2-2의 화합물 1().3 g과 를루엔 1,500 mL를 플라스크게 담아서 용액을 준비하고 30 분간 소니케이션을 실시하였다. 이와 같이 준비된 합성예 2-2의 화합물 /를루엔 용액을 반응기에 투입하고 200 rpm으로 90분간 교반하였다. 교반을 중지하고 60분 동안 세를링시킨 후 반웅 용액을 디캔테이션하였다. .
반웅기에 를루엔 2.0 kg을 투입하고, 합성예 3의 화합물 36.7 g과 를루엔 500 mL를 플라스크게 담아서 용액을 준비하고 30 분간 소니케이션을 실시하였다. 이와 같이 준비된 합성예 3의 화합물 /를루엔 용액을 반웅기에 투입하고 200 rpm으로 90 분간 교반하였다. 반웅기 온도를 상은으로 낮춘 후 교반을 중지하고 60 분 동안 세를링시킨 후 반웅 용액을 디캔테이션하였다. 반응기에 를루엔 2.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 60분 동안 세를링시키고 를루엔 용액을 디캔테이션하였다.
반웅기에 핵산 3.0 kg을 투입하고 핵산 슬러리를 filter dryer로 이송하고 핵산 용액을 필터하였다ᅳ 50°C에서 4시간 동안 감압 하에 건조하여 850g-SiO2 흔성 담지 촉매를 제조하였다. 을레핀 중합의 실시예
실시예 1
isobutane slurry loop process인 연속 중합 반응기 (부피 140L)를 이용하여 에틸렌 -1-핵센 공중합을 실시하였다. 반응 유속은 약 Ί 111/8로 운전하였고, 중합에 필요한 에틸렌, 수소 기체 및 공단량체인 1-핵센 Ο-hexene)은, 일정한 속도로 연속적으로 투입되었다. 반웅기 압력은 40 bar, 중합 온도는 84°C에서 수행하였다.
실시예 1 내지 6의 상세한 중합 조건은 하기 표 1에, 비교예 1 내지
3의 중합 조건은 하기 표 2에 각각 나타내었다. .
【표 1 ]
실시예 No. 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 사용 촉매 제조예 1 제조예 1 제조예 1 제조예 1 제조예 2 제조예 2 에틸렌 25 25 25 25 22 22
투입량 (kg/hr)
1-핵센 8.7 8.8 8.5 8.5 18.2 15.0 투입량 (wt%)
수소 25 28 35 36 20 11
투입량 (ppm)
Slurry density(g/L) 550 548 543 544 554 550 촉매 활성 6.7 5.5 5.1 5.1 4.4 5.3 (kgPE/kgSi02/hr)
Bulk 0.44 0.42 0.41 0.42 0.40 0.40 density(g/mL) Settling 60 49 48 49 53 50 efficiency(%)
【표 2】
Figure imgf000034_0001
비교예 4
slurry loop process 중합 공정으로 제조된 상업용 mLLDPE인 LG 화학의 LUCENE SP330을 준비하였다. 비교예 5
slurry loop process 증합 공정으로 제조된 상업용 mLLDPE인 LG 화학의 LUCENE SP310을 준비하였다. 비교예 6
slurry loop process 중합 공정으로 제조된 상업용 mLLDPE인 LG 화학의 LUCENE SP510을 준비하였다.
<실험예 >
상기 실시예 1 내지 6 및 비교예 1 내지 6으로부터 수득된 중합체에 대하여 하기 방법으로 필름을 제막하고 물성을 측정한 결과를 각각 표 3과 표 4에 나타내었다.
1) 밀도: ASTM 1505
2) 용융 흐름 지수 (Ml, 2.16 kg/10분): 측정 은도 190 °C , ASTM 1238
3) 용융 흐름 지수 (Ml, 21.6 kg/10분): 측정 온도 190 °C , ASTM 1238 4) 용융 강도 (MS, melt strength): 모세관 레오미터 (Gottfert사의
Rheo-tester 2000)의 레오텐스 (Rheotens)에 샘플을 연결하여 다음 조건에서 5회 측정한 후 평균값을 취하였다.
샘플 규격 : 190 °C의 온도에서 모세관 다이 (capillary die)에 펠렛 수지를 넣고 5분간 melting 후에 피스톤 속도 5mm/s로 일정하게 나오는 수지를 레오텐스를 통해 측정하였다.
모세관 다이 (capillary die ) 규격: Lo/Do=l 5
모세관 다이 (capillary die)에서 레오텐스 휠 (rheothens wheel)까지의 거리: 80mm
휠 (wheel) 가속도: 12mm/s2
5) 분자량, 및 분자량 분포: 측정 온도 160 °C , HT-GPC (Agilent 사의
PL-GPC 220)을 이용하여 수 평균 분자량, 중량 평균분자량을 측정하고, 분자량 분포는 중량 평균분자량과 수 평균분자량의 비로 나타내었다.
6) 제막 조건: 필름 블로잉 (film blowing) 방법을 이용하여 제막을 실시하였다. 제막 온도는 100 내지 200 °C로 하고, BUR(blow up ratio)는 2.0 내지 3.0으로 하였다.
7) 헤이즈 (Haze, %): ISO 13468기준에 따라 측정하였다. 이때 시편의 두께는 50卿로 하고, 한 시편당 10회 측정하여 그 평균값을 취하였다.
【표 3】
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6
MI(g/10min) 0.27 0.40 0.67 0.72 0.94 1.05 밀도 (g/cm3) 0.926 0.927 0.927 0.927 0.921 0.921
MFRR 74 69 59 62 40 37
(MI2I.6/MI2.16)
분자량분포 3.04 3.09 3.02 3.18 2.82 2.78
Figure imgf000036_0001
【표 4】
Figure imgf000036_0002
또한, 상기 실시예 및 비교예의 을레핀계 중합체에 대하여, 용융 흐름 지수 (Ml)에 따른 용융 강도 (MS, melt strength)의 관계와 용융 강도 (MS)에 따른 분자량 분포의 관계를 그래프로 나타내었다.
도 1은 본 발명의 실시예 및 비교예의 용융 흐름 지수 (Ml)에 따른 용융 강도 (MS, melt strength)의 관계를 나타내는 그래프이다.
도 1에서, 붉은색 둥근 점들은 차례대로 각각 실시예 1 내지 6에 해당하고, 검은색 사각형 점들은 차례대로 각각 비교예 1 내지 6에 해당한다. 또한, 붉은색 선 (A)은 실시예들의 각 지점을 연결한 것이고, 검은색 선 (B)은 비교예들의 각 지점을 연결한 것이다.
도 2는 본 발명의 실시예 및 비교예의 따른 용융 강도 (MS)에 따른 분자량 분포와의 관계를 나타내는 그래프이다. 도 2에서, 붉은색 등근 점들은 차례대로 각각 실시예 6, 실시예 3, 실시예 4 및 실시예 2에 해당하고, 검은색 사각형 점들은 차례대로 각각 비교예 5, 비교예 4, 비교예 3 및 비교예 1에 해당한다. 또한, 붉은색 선 (A)은 실시예들의 각 지점을 연결한 것이고, 검은색 선 (B)은 비교예들의 각 지점을 연결한 것이다.
상기 표 3 내지 4와 도 1을 참고하면, 본 발명에 따른 실시예의 을레핀계 중합체는 용융 흐름 지수 (Ml)에 따른 용융 강도 (MS)가 하기 식 1을 모두 만족하나, 비교예의 을레핀계 중합체는 만족하지 못하였다.
[식 1]
-32.0*log MI + 75.2 < MS < -40.9*log MI + 77.9
또한, 표 3 내지 4와 도 2를 참고하면, 본 발명에 따른 실시예의 올레핀계 중합체는 용융 강도 (MS)가 70m N 이상일 때, 분자량 분포 (Mw/Mn)가 모두 4이하인 특징을 보였으나, 비교예의 을레핀계 중합체는 이러한 특징적인 용융 강도와 분자량 분포와의 관계를 만족하지 못하였다.

Claims

【청구범위】 【청구항 1】 ASTM D1238에 따라 190 °C , 2.16kg 하중 조건에서 측정한 용융 흐름 지수 (Ml)와, 용융 강도 (MS, melt strength)가 하기 식 1을 만족하는, 올레핀계 중합체:
[식 1]
-32.0*log MI + 75.2 < MS < -40.9*log MI + 77.9
【청구항 2】
제 1항에 있어서,
ASTM D1238에 따라 190 °C, 2.16kg 하중 조건에서 측정한 용융 흐름 지수 (Ml)가 0.1 내지 2 g/10min인, 올레핀계 중합체.
【청구항 3】
게 1항에 있어서,
ASTM D1238에 따라 190°C에서 측정한 용융 유동율비 (MFRR, MI21.6/MI2.16)가 10 내지 100인, 을레핀계 중합체.
【청구항 4】
제 1항에 있어서,
용융 강도 (MS)가 60 내지 150 mN인, 올레핀계 중합체.
【청구항 5】
거 11항에 있어서,
분자량 분포 (Mw/Mn)가 4이하인, 올레핀계 중합체.
【청구항 6】
제 1항에 있어서,
밀도 (density)가 0.910 내지 0.950 g cc인, 올레핀계 중합체.
【청구항 7】
제 1항에 있어서,
에틸렌; 및 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐,
1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센 및 1-에이코센으로 구성되는 군으로부터 선택되는 1종 이상의 알파 올레핀 공단량체와의 공중합체인, 을레핀계 중합체.
【청구항 8】
제 1항의 을레핀계 중합체를 포함하는 필름 (film).
【청구항 9
제 8항에 있어서,
두께 50卿에서 ISO 13468 기준에 따라 측정한 헤이즈가 20%이하인,il르
ᄆ ·
PCT/KR2015/013081 2014-12-08 2015-12-02 우수한 용융 강도를 갖는 올레핀계 중합체 및 이를 포함하는 필름 WO2016093549A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017519531A JP6505214B2 (ja) 2014-12-08 2015-12-02 優れた溶融強度を有するオレフィン系重合体およびこれを含むフィルム
US15/520,359 US10316116B2 (en) 2014-12-08 2015-12-02 Olefin-based polymer having excellent melt strength and film including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140174977 2014-12-08
KR10-2014-0174977 2014-12-08
KR10-2015-0169813 2015-12-01
KR1020150169813A KR101792171B1 (ko) 2014-12-08 2015-12-01 우수한 용융 강도를 갖는 올레핀계 중합체 및 이를 포함하는 필름

Publications (2)

Publication Number Publication Date
WO2016093549A2 true WO2016093549A2 (ko) 2016-06-16
WO2016093549A3 WO2016093549A3 (ko) 2016-08-04

Family

ID=56108325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013081 WO2016093549A2 (ko) 2014-12-08 2015-12-02 우수한 용융 강도를 갖는 올레핀계 중합체 및 이를 포함하는 필름

Country Status (1)

Country Link
WO (1) WO2016093549A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071701A (zh) * 2017-01-25 2018-12-21 Lg化学株式会社 负载型混杂催化剂
JP2019524963A (ja) * 2016-11-08 2019-09-05 エルジー・ケム・リミテッド エチレン/アルファ−オレフィン共重合体
US20210163639A1 (en) * 2017-05-10 2021-06-03 Univation Technologies, Llc Catalyst systems and processes for using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3752759B2 (ja) * 1997-01-07 2006-03-08 東ソー株式会社 エチレン系重合体及びその製造方法
WO1998034985A1 (en) * 1997-02-07 1998-08-13 Exxon Chemical Patents Inc. High melt strength polyethylene compositions
ITMI981548A1 (it) * 1998-07-07 2000-01-07 Montell Tecnology Company Bv Scomposizioni polietileniche aventi elevate proprieta' ottiche e meccaniche e migliorata lavorabilita' allo stato fuso
US6960634B2 (en) * 2001-10-31 2005-11-01 Univation Technologies, Llc Methods for adjusting melt properties of metallocene catalyzed olefin copolymers
CN103476810B (zh) * 2011-03-28 2017-04-05 陶氏环球技术有限责任公司 制备熔体强度增强的乙烯/α‑烯烃共聚物及其制品的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019524963A (ja) * 2016-11-08 2019-09-05 エルジー・ケム・リミテッド エチレン/アルファ−オレフィン共重合体
US10858465B2 (en) 2016-11-08 2020-12-08 Lg Chem, Ltd. Ethylene/alpha-olefin copolymer
CN109071701A (zh) * 2017-01-25 2018-12-21 Lg化学株式会社 负载型混杂催化剂
US10865260B2 (en) 2017-01-25 2020-12-15 Lg Chem, Ltd. Supported hybrid catalyst
CN109071701B (zh) * 2017-01-25 2021-01-19 Lg化学株式会社 负载型混杂催化剂
US20210163639A1 (en) * 2017-05-10 2021-06-03 Univation Technologies, Llc Catalyst systems and processes for using the same

Also Published As

Publication number Publication date
WO2016093549A3 (ko) 2016-08-04

Similar Documents

Publication Publication Date Title
US9556289B2 (en) Supported hybrid catalyst and method for preparing olefin-based polymer using the same
US10316116B2 (en) Olefin-based polymer having excellent melt strength and film including the same
KR101592436B1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
KR101658172B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
CN108401432B (zh) 用于合成烯烃共聚物的催化剂组合物和制备烯烃共聚物的方法
JP6328239B2 (ja) 加工性に優れたオレフィン系重合体
WO2016167601A1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR20190074963A (ko) 폴리에틸렌 공중합체 및 이의 제조 방법
WO2015076618A1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
CN110869399B (zh) 聚乙烯共聚物及其制备方法
KR20070098276A (ko) 선형 저밀도 폴리에틸렌의 제조방법
KR101831418B1 (ko) 가공성 및 표면 특성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016167547A1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016167568A1 (ko) 가공성이 우수한 에틸렌 /알파-올레핀 공중합체
KR102228533B1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016093549A2 (ko) 우수한 용융 강도를 갖는 올레핀계 중합체 및 이를 포함하는 필름
KR20180083247A (ko) 올레핀 중합체 및 이의 제조 방법
WO2015194813A1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
KR102174389B1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
CN118076691A (zh) 聚乙烯组合物和包含该组合物的双轴拉伸膜
KR20240062822A (ko) 폴리에틸렌 조성물 및 이를 포함하는 이축 연신 필름
WO2016167548A1 (ko) 가공성 및 표면 특성이 우수한 에틸렌 /알파-올레핀 공중합체

Legal Events

Date Code Title Description
ENP Entry into the national phase in:

Ref document number: 2017519531

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15520359

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867465

Country of ref document: EP

Kind code of ref document: A2