WO2016091489A1 - Reacteur a lit radial permettant de mettre en œuvre de faible quantite de catalyseur - Google Patents

Reacteur a lit radial permettant de mettre en œuvre de faible quantite de catalyseur Download PDF

Info

Publication number
WO2016091489A1
WO2016091489A1 PCT/EP2015/075738 EP2015075738W WO2016091489A1 WO 2016091489 A1 WO2016091489 A1 WO 2016091489A1 EP 2015075738 W EP2015075738 W EP 2015075738W WO 2016091489 A1 WO2016091489 A1 WO 2016091489A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
catalyst
reactor
ferrule
modules
Prior art date
Application number
PCT/EP2015/075738
Other languages
English (en)
Inventor
Frederic Bazer-Bachi
Eric Lemaire
Alexandre Pagot
Gerard Papon
Pierre-Yves Le Goff
Eric Sanchez
Fabrice DELEAU
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to BR112017009987-0A priority Critical patent/BR112017009987B1/pt
Priority to US15/533,660 priority patent/US10323194B2/en
Priority to CN201580066793.XA priority patent/CN107427804B/zh
Publication of WO2016091489A1 publication Critical patent/WO2016091489A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/10Catalytic reforming with moving catalysts
    • C10G35/12Catalytic reforming with moving catalysts according to the "moving-bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • C10G35/09Bimetallic catalysts in which at least one of the metals is a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00938Flow distribution elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • the invention relates to the radial bed reactor technology with gravity circulation of catalyst and transverse flow of the load. It applies more particularly to the catalytic reforming of gasoline with continuous regeneration of the catalyst.
  • the invention makes it possible to implement very small amounts of catalyst according to a radial bed technology, a feature which is not possible with current technologies.
  • the present reactor makes it possible to achieve PPHs greater than 50 h -1 (ratio of the feed rate to the mass of catalyst).
  • the catalytic bed in a radial bed reactor is delimited by two grids, an internal grid and an external grid. More specifically, we generally distinguish:
  • the process fluid in radial flow and gravitational flow catalyst are separated by the internal grid which generally has a cylindrical shape of the same substantially vertical axis as the external grid.
  • the cylinder defined by the internal grid serves as a central collector to evacuate the gaseous effluents from the reaction zone between the outer gate and the inner gate and therefore of substantially annular shape.
  • US 4,441 1,870 discloses a reactor containing a plurality of reaction chambers, each of these chambers having an annular zone for the catalyst and the feed being distributed in the different reaction zones so as to achieve a uniform flow of reactants in the reaction zone. the different areas. This document does not provide any information on the geometric characteristics of said reaction zones.
  • Figure 1a shows an exploded view of the shell (1) of the reactor according to the invention, but not containing a module (M), so as to clearly view the floor (13) which supports said modules.
  • FIG. 1b is an exploded view of the reactor according to the invention in which we can see the modules (M) and their connection with the upper part of the ferrule (1), as well as the inlet legs of the catalyst (10) and the extraction legs (1 1).
  • FIG. 2a shows a section of the reactor in a view from above making it possible to see the modules (M), the catalytic zone of each module (4) and the external (2) and internal grids (3) defining said catalytic zone.
  • FIG. 2b shows a section of the reactor in side view making it possible to visualize the inlet of the charge (8) and the outlet of the effluents (12) as well as the volume (9) of distribution of the charge on all the modules (M) and the lower volume (7) for collecting the effluents from each module (M).
  • FIG. 2c represents a module (M) in side view and makes it possible to clearly understand the corresponding entity within the reactor.
  • the present invention describes a type of radial bed reactor, intended to implement a small amount of catalyst of the order of one tonne and which may advantageously be the first reactor of the series in a catalytic reforming unit of the gasolines which comprises according to the prior art, three to four reactors placed in series.
  • This reactor can be called modular in the sense that it consists of a set of identical modules operating in parallel and enclosed in a single ferrule.
  • the reactor according to the present invention is a reactor with a radial flow of the charge and with a gravity flow of the catalyst consisting of a set of substantially identical modules (M) enclosed in a single shell (1), having means for introduction of the catalyst (10) located in the upper part, and means for discharging said catalyst (1 1) located in the lower part (7), and means for introducing the load by an upper central tube (8) and means for discharging the effluents through a lower central pipe (12), each module having a cylinder defined by a substantially vertical outer wall (2) and a substantially vertical inner wall (5), the combination of the two walls defining an annular zone (4) containing the catalyst, and the outer (2) and inner (5) walls of each module being permeable to the gas charge and the gas effluents, and being generally constituted said modules being positioned vertically in a generally symmetrical manner with respect to the center of the ferrule (1), and the effluent outlets of each module being made by the central collector (3) of each module which communicates with the lower part
  • modules within the ferrule (1) there may be mentioned alignments of said modules according to several concentric circles. In general, whatever the particular arrangement of the modules within the shell, they are distributed approximately symmetrically with respect to the center of the shell (1).
  • the modules (M) are distributed regularly inside the shell in a circle.
  • the reactor according to the present invention has a number of modules between 3 and 12, and very preferably between 5 and 10.
  • the reactor according to the present invention has, for each module (M), a height-to-diameter ratio of between 3 and 30, and very preferably of between 7 and 11.
  • this reactor can be used as the head reactor in a catalytic reforming process of a gasoline type cut using a series of three or four radial bed reactors.
  • the flow of the feedstock and the catalyst can be described as follows:
  • the charge enters the shell (1) by means of the inlet pipe (8) located in the upper part of the reactor and then occupies the internal volume (9) from which it enters the inside of each module (M ) by passing through the outer gate of said module (2),
  • the catalyst is admitted into each module via an intake manifold (10) and flows in the annular zone (4) of each module in a gravitational manner and is then discharged from the module via an outlet pipe (1 1).
  • the PPH ratio of the feed rate to the weight of catalyst
  • the filler can have a paraffin content of up to 70% by weight, and even be an entirely paraffinic filler.
  • the invention essentially consists in producing a set of radial "modules" of small sizes allowing higher PPHs to be achieved than in traditional reactors, all of these modules being enclosed in a single shell.
  • FIG. 1a represents the reactor in exploded view and without module, so as to clearly visualize the outer shell (1) and of FIG. 1b which represents the reactor in an exploded view containing the modules.
  • FIGS. 2a and 2b show a reactor viewed from above (FIG. 2a) and from the side (FIG. 2b).
  • the load enters the shell (1) by means of the tubing (8) located in the upper part.
  • the charge then occupies the internal volume (9) from which it enters the interior of each module through the outer gate of said module (2).
  • the charge passes through the catalytic bed contained in the annular zone (4) of each module and the effluents resulting from the catalytic reaction are collected in the central collector (3) of each module.
  • the effluents of each module are grouped in the lower volume (7) of the ferrule (1).
  • the internal volume (9) and the lower volume (7) are separated by a floor (13) which is sealed between the two volumes and which also supports the modules (M).
  • the catalyst is admitted into each module through an intake manifold (10). It flows by gravity into the annular zone (4) of each module, then is evacuated from the module by an outlet pipe (1 1). There is at least one intake manifold (10) and one outlet manifold (1 1) per module.
  • the modules have the shape of cylinders delimited by a substantially vertical outer wall (2) and a substantially vertical inner wall (5), all of the two walls defining an annular zone (4) containing the catalyst.
  • the outer (2) and inner (5) walls of each module are permeable to the feedstock and the gas effluents, and generally consist of Johnson gate or other equivalent means.
  • These modules are positioned in a single shell (1) which serves as a volume for the supply of process gas through the upper part (6) and the evacuation of effluents.
  • the effluents from each catalytic zone are then collected in a common volume (7) located at the lower part of the ferrule (1).
  • the modules make it possible to produce catalytic beds with very small thicknesses, which considerably reduces the pressure drop constraints.
  • the height to diameter ratio of each module is generally between 3 and 30, preferably between 7 and 11.
  • the PPH (ratio of the feed rate to the weight of catalyst) is generally greater than 50 h -1, preferably greater than 100 h -1.
  • the centers of each module are advantageously positioned along a circle, as shown by way of example in FIG. 2a for a reactor containing 6 identical modules.
  • the number of modules is generally between 3 and 12, preferably between 5 and 10.
  • the central collectors (3) of each module communicate with the same volume (7) located at the lower part of the shell (1) which allows the evacuation of the effluent through the outlet pipe (12).
  • tie rods (6) for holding the modules (M) placed on the plate (13).
  • This plate (13) is sealed to prevent mixing of the load contained in the upper volume (9) with the effluent collected in the lower volume (7).
  • Said plate (13) is supported by pillars and reinforcing beams to support the weight of the modules (filled with catalyst).
  • Each module (M) has a fixing plate to the plate (13), this fixing can be performed by any means known to those skilled in the art.
  • the reactor also makes it possible to inspect visually through a manhole, the reactor once assembled, especially for external grids, and internal grids, at least in part.
  • the paralleling of several modules also makes it possible to consider condemning one in case of failure, while continuing to operate the system on the remaining modules.
  • the proposed system thus allows the achievement of high PPH objectives to optimize the reaction performance of the process, while providing a realistic mechanical concept, flexible, flexible and easy maintenance.
  • Example 1 represents the reference case not in accordance with the invention
  • Example 2 represents the performance of a unit according to the invention provided with a head reactor with the same operating conditions and the same total amount of catalyst as in Example 1.
  • Example 3 illustrates the performance of a unit having the same characteristics as that of Example 2, but dealing with a more severe load.
  • Example 1 a hydrocarbon feed is treated in four reaction zones arranged in series in four reactors.
  • the distribution of the catalyst in the reactors is as follows: 10% / 20% / 30% / 40% by weight relative to the total weight of catalyst.
  • the total amount of catalyst is 75 tons.
  • Table 1 gives the composition of the hydrocarbon feedstock:
  • the catalyst used in the reactors comprises a chlorinated alumina support, platinum and is promoted with tin.
  • the charge heated to 514 ° C. is thus treated successively in the four reactors with an intermediate heating of the effluent at 514 ° C. before being introduced into the next reaction zone.
  • Example 2 corresponds to Example 1 except that the hydrocarbon feed is treated in five reactors arranged in series with a distribution of the following catalyst: 2% / 10% / 20% / 30% / 38% by weight with respect to total weight of catalyst.
  • the small reactor according to the present invention is placed at the head. It is the reactor 1.
  • the total amount of catalyst is 75 tonnes to treat a hydrocarbon feed rate of 150 t / h.
  • Example 1 the feed and effluent from one reaction zone are heated to 514 ° C before entering the next reaction zone.
  • the dimensioning of the first reactor is carried out according to FIGS. 1 and 2 with the geometrical characteristics described in Table 4.
  • Example 3 illustrates the contribution of the invention from the point of view of the severity of charge. A load is all the more severe as its paraffin content is high. With an identical approach to the previous state, it is necessary to increase the amount of catalyst or the reactor inlet temperature to maintain the RON of the reformate. Example 3 is intended to treat a filler as described in Table 6, much more severe load than that of Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

La présente invention décrit un type de réacteur à lit radial permettant la mise en œuvre de faible quantité de catalyseur. Application du réacteur au procédé de reforming régénératif.

Description

REACTEUR A LIT RADIAL PERMETTANT DE METTRE EN ŒUVRE DE FAIBLE QUANTITE DE CATALYSEUR
DOMAINE DE L'INVENTION
L'invention concerne la technologie de réacteur à lit radial avec circulation gravitaire de catalyseur et écoulement transversal de la charge. Elle s'applique plus particulièrement au reformage catalytique des essences avec régénération continue du catalyseur. L'invention permet de mettre en œuvre de très faibles quantités de catalyseur selon une technologie de lit radial, particularité qui n'est pas possible avec les technologies actuelles.
Le présent réacteur permet d'atteindre des PPH supérieures à 50 h-1 (rapport du débit de charge sur la masse de catalyseur).
EXAMEN DE L'ART ANTERIEUR
Dans l'art antérieur concernant les réacteurs à lit radiaux, on peut citer le brevet US 6221320 qui fait un récapitulatif des technologies conventionnelles (figures 10 et 1 1 ),
Selon l'état de l'art, le lit catalytique dans un réacteur à lit radial est délimité par deux grilles, une grille interne et une grille externe. Plus précisément, on distingue généralement:
• Une grille interne qui délimite le collecteur central des effluents gazeux,
• Une grille externe qui délimite le volume d'alimentation de la charge à l'état gazeux. Le fluide procédé (ou charge) arrive par le volume externe défini entre la virole externe et la grille externe. Il traverse ensuite le lit catalytique de manière sensiblement horizontale et orthogonale à la circulation du catalyseur qui est gravitaire, c'est-à-dire sensiblement verticale de haut en bas.
Le fluide procédé en écoulement radial et le catalyseur en écoulement gravitaire sont séparés par la grille interne qui a généralement une forme cylindrique de même axe sensiblement vertical que la grille externe.
Le cylindre défini par la grille interne sert de collecteur central pour évacuer les effluents gazeux de la zone réactionnelle comprise entre la grille externe et la grille interne et donc de forme sensiblement annulaire.
Les contraintes liées à la technologie en lit radial sont multiples. En particulier, les vitesses de gaz à la traversée du lit catalytique sont limitées pour :
• éviter la cavitation en entrée du lit
• éviter le blocage du catalyseur à sa sortie contre la grille interne, aussi appelé « pinning » en anglais
• réduire les pertes de charge (fonction de la vitesse et de l'épaisseur du lit) Pour des questions de distribution homogène sur toute la hauteur du lit catalytique, une grille perforée destinée à créer de la perte de charge peut être ajoutée sur le collecteur central.
Pour des raisons de construction, il est nécessaire de laisser un espace suffisant entre la grille interne et la grille externe. Lorsqu'on cumule l'ensemble des contraintes, le volume minimal de catalyseur pouvant être enfermé dans une virole est très contraint. De manière générale selon l'art antérieur, les PPH maximales sont de l'ordre de 20 h"1 , alors que le réacteur selon la présente invention permet d'atteindre des PPH supérieures à 50 h-1 .
Le document US 4,41 1 ,870 décrit un réacteur contenant une pluralité de chambres réactionnelles, chacune de ces chambres comportant une zone annulaire pour le catalyseur et la charge étant distribuée dans les différentes zones réactionnelles de manière à réaliser un écoulement uniforme des réactifs dans les différentes zones. Ce document ne fournit aucune information sur les caractéristiques géométriques desdites zones réactionnelles. DESCRIPTION SOMMAIRE DES FIGURES
La figure 1 a représente une vue éclatée de la virole (1 ) du réacteur selon l'invention, mais ne contenant pas de module (M), de manière à bien visualiser le plancher (13) qui supporte lesdits modules.
La figure 1 b est une vue éclatée du réacteur selon l'invention dans laquelle on peut voir les modules (M) et leur connexion avec la partie supérieure de la virole (1 ), ainsi que les jambes d'admission du catalyseur (10) et les jambes de soutirage (1 1 ).
La figure 2a représente une coupe du réacteur en vue de dessus permettant de voir les modules (M), la zone catalytique de chaque module (4) et les grilles externes (2) et internes (3) définissant ladite zone catalytique.
La figure 2b représente une coupe du réacteur en vue de côté permettant de visualiser l'entrée de la charge (8) et la sortie des effluents (12) ainsi que le volume (9) de distribution de la charge sur l'ensemble des modules (M) et le volume inférieur (7) de collecte des effluents issus de chaque module (M).
La figure 2c représente un module (M) en vue de côté et permet de bien comprendre l'entité correspondante au sein du réacteur.
DESCRIPTION SOMMAIRE DE L'INVENTION
La présente invention décrit un type de réacteur à lit radial, destiné à mettre en œuvre de faible quantité de catalyseur de l'ordre de la tonne et qui peut avantageusement constituer le premier réacteur de la série dans une unité de reformage catalytique des essences qui comprend selon l'art antérieur trois à quatre réacteurs placés en série. Ce réacteur peut être appelé modulaire au sens où il est constitué d'un ensemble de modules identiques fonctionnant en parallèle et enfermés dans une virole unique.
Plus précisément, le réacteur selon la présente invention est un réacteur à écoulement radial de la charge et à écoulement gravitaire du catalyseur constitué d'un ensemble de modules (M) sensiblement identiques enfermés dans une virole unique (1 ), possédant des moyens d'introduction du catalyseur (10) situés dans la partie supérieure, et des moyens d'évacuation dudit catalyseur (1 1 ) situés dans la partie inférieure (7), et un moyen d'introduction de la charge par une tubulure centrale supérieure (8) et un moyen d'évacuation des effluents par une tubulure centrale inférieure (12), chaque module ayantja forme d'un cylindre délimité par une paroi externe (2) sensiblement verticale et une paroi interne (5) sensiblement verticale, l'ensemble des deux parois définissant une zone annulaire (4) contenant le catalyseur, et les parois externes (2) et internes (5) de chaque module étant perméables à la charge gaz et aux effluents gaz, et étant généralement constituées de grille Johnson ou équivalentes, lesdits modules étant positionnés verticalement de manière globalement symétrique par rapport au centre de la virole (1 ), et les sorties des effluents de chaque module se faisant par le collecteur central (3) de chaque module qui communique avec la partie inférieure (7) de la virole (1 ), le volume interne (9) et le volume inférieur (7) étant séparés par un plancher (13) qui fait étanchéité entre les deux volumes et permet également de supporter les modules (M), et l'épaisseur de lit radial de chaque module (M) étant comprise entre 10 et 400 mm, et préférentiellement comprise entre 50 et 250 mm.
Parmi les dispositions possibles des modules au sein de la virole (1 ), on peut citer des alignements desdits modules selon plusieurs cercles concentriques. De manière générale, quelle que soit la disposition particulière des modules au sein de la virole, ils sont répartis de façon à peu près symétrique par rapport au centre de la virole (1 ).
De façon préférée, dans le réacteur à écoulement radial selon présente invention, les modules (M) se répartissent régulièrement à l'intérieur de la virole selon un cercle.
De façon préférée, le réacteur selon la présente invention présente un nombre de modules compris entre 3 et 12, et très préférentiellement compris entre 5 et 10.
De façon préférée, le réacteur selon la présente invention, présente pour chaque module (M), un rapport hauteur sur diamètre compris entre 3 et 30, et très préférentiellement compris entre 7 et 1 1 . Avantageusement ce réacteur peut être utilisé comme le réacteur de tête dans un procédé de reformage catalytique d'une coupe de type essence utilisant une série de trois ou quatre réacteurs à lit radiaux. Dans ce cas, on peut décrire l'écoulement de la charge et du catalyseur de la façon suivante :
« la charge entre dans la virole (1 ) au moyen de la tubulure d'entrée (8) située en partie supérieure du réacteur et occupe alors le volume interne (9) à partir duquel elle pénètre à l'intérieur de chaque module (M) en traversant la grille externe dudit module (2),
• la charge traverse le lit catalytique contenu dans la zone annulaire (4) de chaque module (M) et les effluents résultant de la réaction catalytique sont collectés dans le collecteur central (3) de chaque module,
• les effluents de chaque module sont regroupés dans le volume inférieur (7) de la virole (1 ),et sont évacués du réacteur par la tubulure de sortie (12),
• le catalyseur est admis dans chaque module par une tubulure d'admission (10) et s'écoule gravitairement dans la zone annulaire (4) de chaque module, puis est évacué du module par une tubulure de sortie (1 1 ).
Dans un procédé de reformage catalytique d'une coupe de type essence utilisant le réacteur selon la présente invention, la PPH (ratio du débit de charge sur le poids de catalyseur) est supérieure à 50 h"1 , préférentiellement supérieure à 100 h"1.
Dans un procédé de reformage catalytique d'une coupe de type essence utilisant le réacteur selon la présente invention, la charge peut avoir une teneur en paraffines qui peut aller jusqu'à 70 % poids, et même être une charge entièrement paraffinique.
DESCRIPTION DETAILLEE DE L'INVENTION
L'invention consiste essentiellement à réaliser un ensemble de « modules » de lit radiaux de faibles tailles permettant d'atteindre des PPH plus élevées que dans des réacteurs traditionnels, l'ensemble de ces modules étant enfermé dans une virole unique.
La description qui suit est faite au moyen de la figure 1 a qui représente le réacteur en vue éclatée et sans module, de manière à bien visualiser la virole externe (1 ) et de la figure 1 b qui représente le réacteur en vue éclatée contenant les modules.
Les figures 2a et 2b représentent un réacteur vue de dessus (figure 2a) et de côté (figure 2b). La charge entre dans la virole (1 ) au moyen de la tubulure (8) située en partie supérieure. La charge occupe alors le volume interne (9) à partir duquel elle pénètre à l'intérieur de chaque module en traversant la grille externe dudit module (2).
La charge traverse le lit catalytique contenu dans la zone annulaire (4) de chaque module et les effluents résultant de la réaction catalytique sont collectés dans le collecteur central (3) de chaque module. Les effluents de chaque module sont regroupés dans le volume inférieur (7) de la virole (1 ).
Le volume interne (9) et le volume inférieur (7) sont séparés par un plancher (13) qui fait étanchéité entre les deux volumes et qui permet également de supporter les modules (M).
Le catalyseur est admis dans chaque module par une tubulure d'admission (10). Il s'écoule gravitairement dans la zone annulaire (4) de chaque module, puis est évacué du module par une tubulure de sortie (1 1 ). Il y a au moins une tubulure d'admission (10) et une tubulure de sortie (1 1 ) par module.
Les modules ont la forme de cylindres délimités par une paroi externe (2) sensiblement verticale et une paroi interne (5) sensiblement verticale, l'ensemble des deux parois définissant une zone annulaire (4) contenant le catalyseur. Les parois externes (2) et internes (5) de chaque module sont perméables à la charge et aux effluents gaz, et sont généralement constituées de grille Johnson ou autres moyens équivalents. Ces modules sont positionnés dans une seule et même virole (1 ) qui sert de volume pour l'alimentation en gaz de procédé par la partie supérieure (6) et l'évacuation des effluents.
Les effluents de chaque zone catalytique sont alors collectés dans un volume commun (7) situé à la partie inférieure de la virole (1 ). Les modules permettent de réaliser des lits catalytiques de très faibles épaisseurs, ce qui réduit considérablement les contraintes de perte de charge.
Le rapport hauteur sur diamètre de chaque module est généralement compris entre 3 et 30, préférentiellement compris entre 7 et 1 1 .
L'épaisseur de lit radial de chaque module est comprise entre 10 et 300 mm, généralement inférieure à 100 mm (1 mm = 10 3 m).
La PPH (ratio du débit de charge sur le poids de catalyseur) est généralement supérieure à 50 h"1 préférentiellement supérieure à 100 h-1 . Les centres de chaque module sont positionnés avantageusement le long d'un cercle, comme cela est montré à titre d'exemple sur la figure 2a pour un réacteur contenant 6 modules identiques.
Le nombre de modules est généralement compris entre 3 et 12, préférentiellement compris entre 5 et 10.
Les collecteurs centraux (3) de chaque module communiquent avec un même volume (7) situé à la partie inférieure de la virole (1 ) qui permet l'évacuation de l'effluent par la tubulure de sortie (12).
A la partie supérieure de la virole (1 ) se trouvent des tirants (6) permettant de maintenir les modules (M) posés sur la plaque (13). Cette plaque (13) est étanche pour éviter tout mélange de la charge contenue dans le volume supérieur (9) avec les effluents rassemblés dans le volume inférieur (7). Ladite plaque (13) est soutenue par des piliers et poutres de renfort pour supporter le poids des modules (remplis de catalyseur).
Chaque module (M) dispose d'une plaque de fixation à la plaque (13), cette fixation pouvant être réalisée par tout moyen connu de l'homme du métier.
Le réacteur permet également d'inspecter visuellement par un trou d'homme, le réacteur une fois assemblé, notamment pour les grilles externes, et grilles internes, au moins en partie. La mise en parallèle de plusieurs modules permet également d'envisager d'en condamner un en cas de défaillance, tout en continuant à faire fonctionner le système sur les modules restants.
Le système proposé permet donc l'atteinte des objectifs de PPH élevés pour optimiser les performances réactionnelles du procédé, tout en proposant un concept mécanique réaliste, modulable, flexible et de maintenance aisée.
EXEMPLES
Les exemples qui suivent permettent d'illustrer le dimensionnement d'un réacteur selon l'invention destiné à être placé en tête d'une unité de reforming régénératif traitant une charge dont le débit de naphta est de 150 t/h de charge.
· L'exemple 1 représente le cas de référence non-conforme à l'invention, • L'exemple 2 représente les performances d'une unité selon l'invention munie d'un réacteur de tête avec les mêmes conditions opératoires et la même quantité totale de catalyseur que dans l'exemple 1 .
• L'exemple 3 illustre les performances d'une unité ayant les mêmes caractéristiques que celle de l'exemple 2, mais traitant une charge plus sévère.
Dans l'exemple 1 , on traite une charge d'hydrocarbures dans quatre zones réactionnelles disposées en série dans quatre réacteurs. La répartition du catalyseur dans les réacteurs est la suivante: 10%/20%/30%/40% poids par rapport au poids total de catalyseur.
La quantité totale de catalyseur est de 75 tonnes.
Le tableau 1 donne la composition de la charge d'hydrocarbures :
• point initial d'ébullition 100 °C, point final d'ébullition 170°C :
Figure imgf000009_0001
Tableau 1
Le catalyseur mis en œuvre dans les réacteurs comprend un support de type alumine chlorée, du platine et est promu avec de l'étain.
La charge chauffée à 514°C est ainsi traitée successivement dans les quatre réacteurs avec un chauffage intermédiaire de l'effluent à 514°C avant son introduction dans la zone réactionnelle suivante.
Les conditions opératoires dans les quatre zones réactionnelles sont données dans le tableau 2. Ces conditions ont été choisies pour produire un réformat récupéré en sortie du quatrième réacteur dont l'indice de RON (Research Octane Number selon la terminologie anglo-saxonne) est égal à 102.
Figure imgf000009_0002
Tableau 2 L'exemple 2 correspond à l'exemple 1 sauf que la charge d'hydrocarbures est traitée dans cinq réacteurs disposés en série avec une répartition du catalyseur suivante: 2%/10%/20%/30%/38% poids par rapport au poids total de catalyseur. Le petit réacteur selon la présente invention est placé en tête. C'est le réacteur 1 .
La quantité totale de catalyseur est de 75 tonnes pour traiter un débit de charge d'hydrocarbures de 150 t/h.
Comme dans l'exemple 1 , la charge et l'effluent d'une zone réactionnelle sont chauffées à 514°C avant d'entrer dans la zone réactionnelle suivante.
Les conditions opératoires dans les zones réactionnelles des réacteurs sont regroupées dans le tableau 3 suivant:
Figure imgf000010_0001
Tableau 3
Le dimensionnement du premier réacteur est réalisé conformément aux figures 1 et 2 avec les caractéristiques géométriques décrites dans le tableau 4.
Figure imgf000010_0002
Tableau 4 En mettant en œuvre le petit réacteur de tête selon l'invention, on limite la chute de température dans cette première zone réactionnelle, mais également dans les autres zones 2, 3, 4 et 5.
Etant donné que l'activité du catalyseur est fonction de la température moyenne dans le lit catalytique, en limitant la chute de température on améliore par conséquent le rendement composés en aromatiques, comme indiqué dans le tableau 5.
Figure imgf000011_0001
Tableau 5
Cette augmentation de température dans les lits catalytiques impacte grandement l'activité du catalyseur. Pour une même quantité de catalyseur comme illustré ci-dessous, le gain en production d'aromatique permet une amélioration en RON de 1 ,6 point.
L'exemple 3 permet d'illustrer l'apport de l'invention du point de vue de la sévérité de charge. Une charge est d'autant plus sévère que sa teneur en paraffines est élevée. Avec une approche identique à l'état antérieur, il est nécessaire d'augmenter la quantité de catalyseur ou la température en entrée réacteur pour maintenir le RON du reformat. L'exemple 3 vise à traiter une charge telle que décrite dans le tableau 6, charge beaucoup plus sévère que celle de l'exemple 1 .
Figure imgf000011_0002
Tableau 6 Avec les mêmes conditions opératoires que celles décrites dans les tableaux 3 et 4, le RON du réformât est maintenu à 102 malgré une augmentation de 15 % pds de la quantité de paraffines dans la charge.
Figure imgf000012_0001
Tableau 7

Claims

REVENDICATIONS
1 ) Réacteur à écoulement radial de la charge et à écoulement gravitaire du catalyseur constitué d'un ensemble de modules (M) sensiblement identiques enfermés dans une virole unique (1 ), et régulièrement répartis à l'intérieur de ladite virole selon un cercle, chaque module (M) ayant un rapport hauteur sur diamètre compris entre 7 et 1 1 , et chaque module (M) possédant des moyens d'introduction du catalyseur (10) situés dans la partie supérieure, et des moyens d'évacuation dudit catalyseur (1 1 ) situés dans la partie inférieure (7) de la virole (1 ), et un moyen d'introduction de la charge par une tubulure centrale supérieure (8) et un moyen d'évacuation des effluents par une tubulure centrale inférieure (12), chaque module ayant Ja forme d'un cylindre délimité par une paroi externe (2) sensiblement verticale, et une paroi interne (5) sensiblement verticale, l'ensemble des deux parois (2) et (5) définissant une zone annulaire (4) contenant le catalyseur, et les parois externes (2) et internes (5) de chaque module étant perméables à la charge gaz et aux effluents gaz, et étant constituées de grille Johnson ou équivalentes, lesdits modules étant positionnés verticalement de façon globalement symétrique par rapport au centre de la virole (1 ), et les sorties des effluents de chaque module se faisant par le collecteur central (3) de chaque module qui communique avec la partie inférieure (7) de la virole (1 ), le volume interne (9) de la virole (1 ) et le volume inférieur (7) de la virole
(1 ) étant séparés par un plancher (13) qui fait étanchéité entre les deux volumes et permet également de supporter les modules (M), et l'épaisseur de lit radial de chaque module (M) étant comprise entre 10 et 400 mm, et préférentiellement comprise entre 50 et 250 mm, et le nombre de modules étant compris entre 5 et 10.
2) Procédé de reformage catalytique d'une coupe de type essence utilisant le réacteur selon la revendication 1 , placé en tête de la série des réacteurs constituant l'unité de reformage, dans lequel :
· la charge entre dans la virole (1 ) au moyen de la tubulure d'entrée (8) située en partie supérieure du réacteur et occupe alors le volume interne (9) à partir duquel elle pénètre à l'intérieur de chaque module (M) en traversant la grille externe dudit module (2), • la charge traverse le lit catalytique contenu dans la zone annulaire (4) de chaque module (M) et les effluents résultant de la réaction catalytique sont collectés dans le collecteur central (3) de chaque module, puis
• les effluents de chaque module sont regroupés dans le volume inférieur (7) de la virole (1 ), et sont évacués du réacteur par la tubulure de sortie (12),
• le catalyseur est admis dans chaque module par une tubulure d'admission (10) et s'écoule gravitairement dans la zone annulaire (4) de chaque module, puis est évacué du module par une tubulure de sortie (1 1 ).
3) Procédé de reformage catalytique d'une coupe de type essence selon la revendication 2, dans lequel la PPH (ratio du débit de charge sur le poids de catalyseur) est supérieure à 50 h"1 , préférentiellement supérieure à 100 h-1 .
4) Procédé de reformage catalytique d'une coupe de type essence selon la revendication 2, dans lequel la charge a une teneur en paraffines qui peut aller jusqu'à 70 % poids.
5) Procédé de reformage catalytique d'une coupe de type essence selon la revendication 2, dans lequel la charge est entièrement paraffinique.
PCT/EP2015/075738 2014-12-08 2015-11-04 Reacteur a lit radial permettant de mettre en œuvre de faible quantite de catalyseur WO2016091489A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112017009987-0A BR112017009987B1 (pt) 2014-12-08 2015-11-04 Reator com escoamento radial da carga e com escoamento gravitante do catalisador e processo de reforma catalítica de uma mistura de tipo gasolina
US15/533,660 US10323194B2 (en) 2014-12-08 2015-11-04 Radial bed reactor allowing the use of a small quantity of catalyst
CN201580066793.XA CN107427804B (zh) 2014-12-08 2015-11-04 允许使用少量催化剂的径向床反应器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1462077A FR3029429B1 (fr) 2014-12-08 2014-12-08 Reacteur a lit radial permettant de mettre en œuvre de faible quantite de catalyseur
FR1462077 2014-12-08

Publications (1)

Publication Number Publication Date
WO2016091489A1 true WO2016091489A1 (fr) 2016-06-16

Family

ID=52589577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/075738 WO2016091489A1 (fr) 2014-12-08 2015-11-04 Reacteur a lit radial permettant de mettre en œuvre de faible quantite de catalyseur

Country Status (6)

Country Link
US (1) US10323194B2 (fr)
CN (1) CN107427804B (fr)
BR (1) BR112017009987B1 (fr)
FR (1) FR3029429B1 (fr)
TW (1) TW201627061A (fr)
WO (1) WO2016091489A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10478794B1 (en) * 2019-02-26 2019-11-19 Chevron Phillips Chemical Company Lp Bi-modal radial flow reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411870A (en) 1981-12-28 1983-10-25 Uop Inc. Reactor system
US6221320B1 (en) 1990-10-03 2001-04-24 Nagaoka International Corporation Device and method for holding catalyst in a radial flow reactor
FR2922124A1 (fr) * 2007-10-10 2009-04-17 Inst Francais Du Petrole Reacteur en lit fixe a couches minces pour le traitement chimique de solide catalytique finement divise
FR2948580A1 (fr) * 2009-07-29 2011-02-04 Inst Francais Du Petrole Dispositif de distribution de la charge et de recuperation des effluents dans un reacteur catalytique a lit radial

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059961A (en) * 1998-04-27 2000-05-09 Uop Llc Method to alleviate thermal cycles in moving bed radial flow reactor
US8101133B2 (en) * 2010-02-25 2012-01-24 Praxair Technology, Inc. Radial flow reactor
US8313561B2 (en) * 2010-10-05 2012-11-20 Praxair Technology, Inc. Radial bed vessels having uniform flow distribution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411870A (en) 1981-12-28 1983-10-25 Uop Inc. Reactor system
US6221320B1 (en) 1990-10-03 2001-04-24 Nagaoka International Corporation Device and method for holding catalyst in a radial flow reactor
FR2922124A1 (fr) * 2007-10-10 2009-04-17 Inst Francais Du Petrole Reacteur en lit fixe a couches minces pour le traitement chimique de solide catalytique finement divise
FR2948580A1 (fr) * 2009-07-29 2011-02-04 Inst Francais Du Petrole Dispositif de distribution de la charge et de recuperation des effluents dans un reacteur catalytique a lit radial

Also Published As

Publication number Publication date
BR112017009987A2 (pt) 2018-01-02
FR3029429A1 (fr) 2016-06-10
TW201627061A (zh) 2016-08-01
FR3029429B1 (fr) 2018-07-27
US10323194B2 (en) 2019-06-18
BR112017009987B1 (pt) 2021-06-01
CN107427804A (zh) 2017-12-01
CN107427804B (zh) 2020-12-01
US20170313950A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
EP2995380B1 (fr) Regenerateur de catalyseurs
CA2925656C (fr) Dispositif de melange et de distribution avec zones de melange et d'echange
CA1209790A (fr) Procede et dispositif pour soutirer des particules solides et introduire une charge liquide a la partie inferieure d'une zone de contact
EP2151277B1 (fr) Réacteur gaz-liquide à écoulement co-courant ascendant avec plateau distributeur
FR2950822A1 (fr) Dispositif de chargement de particules de catalyseur dans des tubes presentant une zone annulaire
EP3374073A1 (fr) Dispositif de filtration et de distribution pour reacteur catalytique
FR2993794A1 (fr) Reacteur de regeneration en continu de catalyseur avec caisson de melange de gaz et de distribution de gaz dans la zone d'oxychloration
FR2948580A1 (fr) Dispositif de distribution de la charge et de recuperation des effluents dans un reacteur catalytique a lit radial
FR3020968A1 (fr) Reacteur a lit radial multitubulaire
EP3265223B1 (fr) Reacteur a lit incline permettant de mettre en oeuvre de faible quantite de catalyseur
EP3463607B1 (fr) Nouveau système de distribution ou de collecte périphérique pour un procédé de séparation en lit mobile simulé utilisant n-colonnes en série
EP2162207A2 (fr) Enceinte contenant un lit granulaire et une distribution d'une phase gazeuse et d'une phase liquide circulant en un écoulement ascendant dans cette enceinte.
EP3897961A1 (fr) Reacteur pour la conversion du dioxyde de carbone
EP3417932A1 (fr) Reacteurs à lit fixe ou mobile à écoulement radial comprenant des internes améliorés
WO2016091489A1 (fr) Reacteur a lit radial permettant de mettre en œuvre de faible quantite de catalyseur
EP2995379B1 (fr) Régénérateur apte à régénérer des catalyseurs dans des conditions opératoires différentes
FR2995798A1 (fr) Reacteur de regeneration en continu de catalyseur avec des moyens deflecteurs pour devier l'ecoulement du catalyseur dans la zone d'oxychloration
FR2657273A1 (fr) Enceinte reactionnelle comprenant un reacteur calandre et des moyens de stratification du courant d'un fluide caloporteur.
EP2545205A1 (fr) Procede d'electrochimie a rendement ameliore et reacteur electrochimique tel qu'un electrolyseur a haute temperature (eht) associe
EP3064268B1 (fr) Ensemble de collecte d'un fluide gazeux pour reacteur radial
FR2729585A1 (fr) Enceintes a lit mobile en ecoulement regularise
FR3043339A1 (fr) Dispositif de filtration et de distribution pour reacteur catalytique
FR2821283A1 (fr) Procede et reacteur multi-etages catalytique a faible epaisseur avec echangeur thermique interne, et son utilisation
WO2012150185A1 (fr) Reacteur solide / gaz caloporteur comprenant des diffuseurs de gaz a risques d'obturation reduits
FR3045405A1 (fr) Reacteur en lit mobile de faible capacite a ecoulement radial de la charge compose de plusieurs parties reliees par des brides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15790134

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017009987

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15533660

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017009987

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170512

122 Ep: pct application non-entry in european phase

Ref document number: 15790134

Country of ref document: EP

Kind code of ref document: A1