WO2016091090A1 - 一种三相开关磁阻电机位置传感器故障诊断与定位方法 - Google Patents

一种三相开关磁阻电机位置传感器故障诊断与定位方法 Download PDF

Info

Publication number
WO2016091090A1
WO2016091090A1 PCT/CN2015/095893 CN2015095893W WO2016091090A1 WO 2016091090 A1 WO2016091090 A1 WO 2016091090A1 CN 2015095893 W CN2015095893 W CN 2015095893W WO 2016091090 A1 WO2016091090 A1 WO 2016091090A1
Authority
WO
WIPO (PCT)
Prior art keywords
position sensor
output signal
edge
detects
edge pulse
Prior art date
Application number
PCT/CN2015/095893
Other languages
English (en)
French (fr)
Inventor
陈昊
韩国强
程鹤
王千龙
王青
王星
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2016091090A1 publication Critical patent/WO2016091090A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Definitions

  • the invention relates to a fault diagnosis and positioning method for a three-phase switched reluctance motor position sensor, in particular to a fault diagnosis of a three-position multiple phase phase, multiple topological structures, a rotary or linear switched reluctance motor position sensor. Positioning.
  • the position sensor signal can provide a basis for the calculation of the rotational speed and the commutation of the motor, which plays an extremely important role in the reliable operation of the system.
  • the position sensor may fail, resulting in the loss of the edge pulse after the fault. If the position sensor fails, the position signal level state will remain unchanged, resulting in motor commutation failure, affecting the smooth running of the motor, so it is extremely important to diagnose the position sensor.
  • the traditional interval-based fault diagnosis method and the edge-based fault diagnosis method are mostly applicable to the constant-speed operation of the switched reluctance motor, which is not suitable for the acceleration and deceleration of the switched reluctance motor. How to realize the fault diagnosis and positioning of the position sensor of the switched reluctance motor at constant speed and acceleration and deceleration is one of the important directions of the current research of the switched reluctance motor system.
  • the object of the present invention is to provide a method for fault diagnosis and location of a three-phase switched reluctance motor position sensor in view of the problems in the prior art.
  • the output signal phase of the switched reluctance motor position sensor P is earlier than the phase of the output signal of the position sensor Q
  • the phase of the output signal of the position sensor Q is earlier than the phase of the output signal of the position sensor R
  • the phase of the output signal of the position sensor R Detecting the adjacent two edge pulses P 1 and the edge pulse P 2 of the switched reluctance motor position sensor output signal earlier than the output signal phase of the position sensor P, the time sequence upper edge pulse P 1 is earlier than the edge pulse P 2 , adjacent The spacing between the two edge pulses is an interval;
  • edge pulse P 1 detects the output signal of the position sensor Q
  • edge pulse P 2 detects the output signal of the position sensor P
  • the edge pulse P 1 detects the output signal of the position sensor P
  • the edge pulse P 2 detects the position. If the output signal of the sensor R or the edge pulse P 1 detects the output signal of the position sensor R, and the edge pulse P 2 detects the output signal of the position sensor Q, it is determined that the position sensor has no fault;
  • step 2) If other conditions than step 2) occur, it is judged that the position sensor is faulty;
  • the rising edge of the output signal of the position sensor P to the falling edge of the output signal of the position sensor R is the interval 1
  • the falling edge of the output signal of the position sensor R to the rising edge of the output signal of the position sensor Q is the interval 2
  • the position sensing The rising edge of the output signal of the device Q to the falling edge of the output signal of the position sensor P is the interval 3
  • the falling edge of the output signal of the position sensor P to the rising edge of the output signal of the position sensor R is the interval 4
  • the rising edge of the output signal of the position sensor R is
  • the falling edge of the output signal of the position sensor Q is the interval 5
  • the falling edge of the output signal of the position sensor Q to the rising edge of the output signal of the position sensor P is the interval 6;
  • the fault diagnosis buffer When the position sensor fault occurs in the interval 14, the fault diagnosis buffers three intervals; when the position sensor fault occurs in the interval 25, the fault diagnosis buffers two intervals; when the position sensor fault occurs in the 36 interval, the fault diagnosis buffers one Interval
  • edge pulse P 1 detects the output signal of the position sensor Q, and the edge pulse P 2 detects the output signal of the position sensor R, it determines that the position sensor P has failed; if the edge pulse P 1 detects the output signal of the position sensor R, the edge When the pulse P 2 detects the output signal of the position sensor P, it is judged that the position sensor Q has failed; if the edge pulse P 1 detects the output signal of the position sensor P, and the edge pulse P 2 detects the output signal of the position sensor Q, the position is judged. Sensor R has failed;
  • edge pulse P 1 detects the output signal of the position sensor P, and the edge pulse P 2 also detects the output signal of the position sensor P, it is judged that both the position sensor R and the position sensor Q are faulty; if the edge pulse P 1 detects the position sensor Q output signal, edge pulse P 2 also detects the output signal of the position sensor Q, it is judged that the position sensor P and the position sensor R both fail; if the edge pulse P 1 detects the output signal of the position sensor R, the edge pulse P 2 When the output signal of the position sensor R is also detected, it is determined that both the position sensor Q and the position sensor P are faulty;
  • the present invention is applicable to fault diagnosis and positioning of three and three multiple phase, multiple topological structures, rotary or linear switched reluctance motor position sensors, and detects edge pulse of output signal of position sensor. Sequentially determine whether there is a position sensor fault, set the fault diagnosis buffer to avoid the occurrence of misdiagnosis, and locate the position sensor fault by discriminating the output signal of the position sensor of the edge pulse source, which is not only suitable for the faulty position sensor of the switched reluctance motor. Diagnosis and positioning, and it is suitable for fault diagnosis and positioning of position sensor during acceleration and deceleration of switched reluctance motor. It can be used for fault diagnosis and positioning of single position sensor and multiple position sensors. Motor speed change has no effect on diagnosis and positioning results. Diagnosis The method is reliable, practical, and has a wide range of engineering applications.
  • Figure 1 is a schematic view showing the installation of a three-phase 12/8 structure switched reluctance motor position sensor
  • FIG. 2 is a schematic diagram of the division of the fault diagnosis interval of the position sensor of the three-phase 12/8 structure switched reluctance motor
  • FIG. 3 is a schematic diagram of a fault diagnosis buffer of a three-phase 12/8 structure switched reluctance motor position sensor with a low level fault occurring in the interval 1;
  • FIG. 4 is a schematic diagram of a fault diagnosis buffer of a three-phase 12/8 structure switched reluctance motor position sensor with a low level fault occurring in the interval 4;
  • Figure 5a is a schematic diagram of the fault diagnosis buffer of the low-level fault of the three-phase 12/8 structure switched reluctance motor position sensor occurring in the interval 2;
  • Figure 5b is a schematic diagram of the fault diagnosis buffer of the three-phase 12/8 structure switched reluctance motor position sensor low level fault occurring in the interval 5;
  • Figure 6a is a schematic diagram of the fault diagnosis buffer of the three-phase 12/8 structure switched reluctance motor position sensor low level fault occurring in the interval 3;
  • Figure 6b is a schematic diagram of the fault diagnosis buffer of the three-phase 12/8 structure switched reluctance motor position sensor low level fault occurring in the interval 6;
  • Figure 8 is a low-level fault diagnosis and positioning result of a three-phase 12/8 structure switched reluctance motor position sensor Q;
  • Figure 9 is a low-level fault diagnosis and positioning result of a three-phase 12/8 structure switched reluctance motor position sensor R;
  • 10 is a schematic diagram of low-level fault diagnosis of two position sensors of a three-phase 12/8 structure switched reluctance motor
  • Figure 11 is a three-phase 12/8 structure switched reluctance motor position sensor R, position sensor Q low-level fault diagnosis and positioning results;
  • Figure 13 is a three-phase 12/8 structure switched reluctance motor position sensor P, position sensor Q low-level fault diagnosis and positioning results;
  • Fig. 14 is a schematic diagram showing the correspondence relationship between the high and low level fault sections of the three-phase 12/8 structure switched reluctance motor position sensor.
  • Figure 1 shows the three-position 12/8 structure switch reluctance motor three position sensors P, Q, R installation diagram, three position sensors P, Q, R installation angle interval angle ⁇ is 60 degrees, the resulting position sensor Output signal such as 2, the phase of the output signal of the switched reluctance motor position sensor P is earlier than the phase of the output signal of the position sensor Q, the phase of the output signal of the position sensor Q is earlier than the phase of the output signal of the position sensor R, and the position sensor R The phase of the output signal is earlier than the phase of the output signal of the position sensor P; the rising edge of the output signal of the position sensor P to the falling edge of the output signal of the position sensor R is the interval 1, and the falling edge of the output signal of the position sensor R rises to the output signal of the position sensor Q.
  • the rising edge of the output signal of the position sensor Q to the falling edge of the output signal of the position sensor P is the interval 3
  • the falling edge of the output signal of the position sensor P to the rising edge of the output signal of the position sensor R is the interval 4
  • the position sensor R The rising edge of the output signal to the output signal of the position sensor Q is the interval 5
  • the falling edge of the output signal of the position sensor Q to the rising edge of the output signal of the position sensor P is the interval 6.
  • the adjacent two edge pulses P 1 and the edge pulse P 2 of the switched reluctance motor position sensor output signal are detected.
  • the time sequence upper edge pulse P 1 is earlier than the edge pulse P 2 , and the interval between adjacent two edge pulses is one interval.
  • the edge pulse P 1 detects the output signal of the position sensor Q
  • the edge pulse P 2 detects the output signal of the position sensor P
  • the edge pulse P 1 detects the output signal of the position sensor P
  • the edge pulse P 2 detects the output signal of the position sensor Q
  • the fault diagnosis buffer When the position sensor P has a low level fault in the interval 14, as shown in FIG. 3 and FIG. 4, the fault diagnosis buffers three intervals; when the position sensor P has a low level fault in the interval 25, as shown in FIG. 5(a, b) Show that the fault diagnosis buffers two intervals; when the position sensor P has a low level fault in the interval 36, as shown in Fig. 6 (a, b), the fault diagnosis buffers an interval;
  • the position sensor fault After passing through the fault buffer, the position sensor fault is located. If the edge pulse P 1 detects the output signal of the position sensor Q and the edge pulse P 2 detects the output signal of the position sensor R, it is determined that the position sensor P has a low level fault. , as shown in Figure 7. If the edge pulse P 1 detects the output signal of the position sensor R and the edge pulse P 2 detects the output signal of the position sensor P, it is judged that the position sensor Q has a low level fault, as shown in FIG. If the edge pulse P 1 detects the output signal of the position sensor P, and the edge pulse P 2 detects the output signal of the position sensor Q, it is determined that the position sensor R has a low level fault, as shown in FIG. 9;
  • the fault diagnosis can be performed according to the above method, as shown in FIG. 10;
  • edge pulse P 1 detects the output signal of the position sensor P
  • edge pulse P 2 also detects the output signal of the position sensor P
  • edge pulse P 1 detects the output signal of the position sensor Q, and the edge pulse P 2 also detects the output signal of the position sensor Q, it is determined that both the position sensor P and the position sensor R have a low level fault, as shown in FIG. 12;
  • edge pulse P 1 detects the output signal of the position sensor R, and the edge pulse P 2 also detects the output signal of the position sensor R, it is determined that both the position sensor Q and the position sensor P have a low level fault, as shown in FIG. 13;
  • the above method is also applicable to the fault diagnosis and location of the three-phase 6/4 structure, three-phase 24/16 structure and the like of the switched reluctance motor position sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种三相开关磁阻电机位置传感器故障诊断与定位方法,适用于三及三的倍数相、多种拓扑结构、旋转式或直线式开关磁阻电机位置传感器的故障诊断与定位。根据位置传感器输出信号相邻两个边沿脉冲顺序判断是否有位置传感器故障,设置故障诊断缓冲区间,避免误诊断的发生,通过辨别边沿脉冲来源的位置传感器输出信号,对位置传感器故障进行定位,可用于单个位置传感器及多个位置传感器的故障诊断与定位,电机速度变化对诊断与定位结果无影响,诊断方法可靠,实用性强,具有广泛的工程应用价值。

Description

一种三相开关磁阻电机位置传感器故障诊断与定位方法 技术领域
本发明涉及一种三相开关磁阻电机位置传感器故障诊断与定位方法,尤其是适用于三及三的倍数相、多种拓扑结构、旋转式或直线式开关磁阻电机位置传感器的故障诊断与定位。
背景技术
开关磁阻电机***中,位置传感器信号能为转速计算和电机换相提供依据,对于***可靠运行具有极其重要的作用。但由于灰尘、碰撞等原因,位置传感器会发生失效故障,导致故障后边沿脉冲的丢失。若位置传感器失效,位置信号电平状态将保持不变,导致电机换相失败,影响电机的平稳运行,因此对位置传感器进行故障诊断极其重要。传统的基于区间时间的故障诊断方法和基于边沿捕获的故障诊断方法大都适用于开关磁阻电机匀速运行情况,对于开关磁阻电机加减速运行情况不适应。如何实现开关磁阻电机匀速和加减速运行时位置传感器故障诊断与定位,是当前开关磁阻电机***技术攻关的重要方向之一。
发明内容
技术问题:本发明的目的是针对已有技术中存在问题,提供一种三相开关磁阻电机位置传感器故障诊断与定位方法。
技术方案:本发明的三相开关磁阻电机位置传感器故障诊断与定位方法:
1)使开关磁阻电机位置传感器P的输出信号相位时间上早于位置传感器Q的输出信号相位,位置传感器Q的输出信号相位早于位置传感器R的输出信号相位,位置传感器R的输出信号相位早于位置传感器P的输出信号相位,检测开关磁阻电机位置传感器输出信号的相邻两个边沿脉冲P1和边沿脉冲P2,时间顺序上边沿脉冲P1早于边沿脉冲P2,相邻两个边沿脉冲的间距为一个区间;
2)若边沿脉冲P1检测到位置传感器Q的输出信号,边沿脉冲P2检测到位置传感器P的输出信号,或边沿脉冲P1检测到位置传感器P的输出信号,边沿脉冲P2检测到位置传感器R的输出信号,或边沿脉冲P1检测到位置传感器R的输出信号,边沿脉冲P2检测到位置传感器Q的输出信号,则判断位置传感器无故障;
3)若除步骤2)之外的其他情况出现,则判断位置传感器有故障;
4)位置传感器P的输出信号上升沿至位置传感器R的输出信号下降沿为区间①,位置传感器R的输出信号下降沿至位置传感器Q的输出信号上升沿为区间②,位置传感 器Q的输出信号上升沿至位置传感器P的输出信号下降沿为区间③,位置传感器P的输出信号下降沿至位置传感器R的输出信号上升沿为区间④,位置传感器R的输出信号上升沿至位置传感器Q的输出信号下降沿为区间⑤,位置传感器Q的输出信号下降沿至位置传感器P的输出信号上升沿为区间⑥;
5)当位置传感器故障发生在区间①④时,故障诊断缓冲三个区间;当位置传感器故障发生在区间②⑤时,故障诊断缓冲两个区间;当位置传感器故障发生在③⑥区间时,故障诊断缓冲一个区间;
6)经过故障缓冲区间后,对位置传感器故障进行定位:
若边沿脉冲P1检测到位置传感器Q的输出信号,边沿脉冲P2检测到位置传感器R的输出信号,则判断位置传感器P发生故障;若边沿脉冲P1检测到位置传感器R的输出信号,边沿脉冲P2检测到位置传感器P的输出信号,则判断位置传感器Q发生故障;若边沿脉冲P1检测到位置传感器P的输出信号,边沿脉冲P2检测到位置传感器Q的输出信号,则判断位置传感器R发生故障;
若边沿脉冲P1检测到位置传感器P的输出信号,边沿脉冲P2也检测到位置传感器P的输出信号,则判断位置传感器R和位置传感器Q均发生故障;若边沿脉冲P1检测到位置传感器Q的输出信号,边沿脉冲P2也检测到位置传感器Q的输出信号,则判断位置传感器P和位置传感器R均发生故障;若边沿脉冲P1检测到位置传感器R的输出信号,边沿脉冲P2也检测到位置传感器R的输出信号,则判断位置传感器Q和位置传感器P均发生故障;
若始终检测不到边沿脉冲,则判断位置传感器P、位置传感器Q和位置传感器R均发生故障。
有益效果:由于采用了上述技术方案,本发明对三及三的倍数相、多种拓扑结构、旋转式或直线式开关磁阻电机位置传感器故障诊断与定位适用,通过检测位置传感器输出信号边沿脉冲顺序判断是否有位置传感器故障,设置故障诊断缓冲区间,避免误诊断的发生,通过辨别边沿脉冲来源的位置传感器输出信号,对位置传感器故障进行定位,不仅适用于开关磁阻电机匀速运行位置传感器故障诊断与定位,而且适用于开关磁阻电机加减速运行时位置传感器故障诊断与定位,可用于单个位置传感器及多个位置传感器的故障诊断与定位,电机速度变化对诊断与定位结果无影响,诊断方法可靠,实用性强,具有广泛的工程应用价值。
附图说明
图1是三相12/8结构开关磁阻电机位置传感器安装示意图;
图2是三相12/8结构开关磁阻电机位置传感器故障诊断区间划分示意图;
图3是三相12/8结构开关磁阻电机位置传感器低电平故障发生在区间①的故障诊断缓冲示意图;
图4是三相12/8结构开关磁阻电机位置传感器低电平故障发生在区间④的故障诊断缓冲示意图;
图5a)是三相12/8结构开关磁阻电机位置传感器低电平故障发生在区间②的故障诊断缓冲示意图;
图5b)是三相12/8结构开关磁阻电机位置传感器低电平故障发生在区间⑤的故障诊断缓冲示意图;
图6a)是三相12/8结构开关磁阻电机位置传感器低电平故障发生在区间③的故障诊断缓冲示意图;
图6b)是三相12/8结构开关磁阻电机位置传感器低电平故障发生在区间⑥的故障诊断缓冲示意图;
图7是三相12/8结构开关磁阻电机位置传感器P低电平故障诊断定位结果;
图8是三相12/8结构开关磁阻电机位置传感器Q低电平故障诊断定位结果;
图9是三相12/8结构开关磁阻电机位置传感器R低电平故障诊断定位结果;
图10是三相12/8结构开关磁阻电机两个位置传感器低电平故障诊断示意图;
图11是三相12/8结构开关磁阻电机位置传感器R、位置传感器Q低电平故障诊断定位结果;
图12是三相12/8结构开关磁阻电机位置传感器P、位置传感器R低电平故障诊断定位结果;
图13是三相12/8结构开关磁阻电机位置传感器P、位置传感器Q低电平故障诊断定位结果;
图14是三相12/8结构开关磁阻电机位置传感器高低电平故障区间划分对应关系示意图。
具体实施方式
下面结合附图对本发明的一个实施例作进一步的描述:
图1所示是三相12/8结构开关磁阻电机三只位置传感器P、Q、R安装示意图,三只位置传感器P、Q、R安装角度间隔角度α为60度,所产生的位置传感器输出信号如 图2所示,使开关磁阻电机位置传感器P的输出信号相位时间上早于位置传感器Q的输出信号相位,位置传感器Q的输出信号相位早于位置传感器R的输出信号相位,位置传感器R的输出信号相位早于位置传感器P的输出信号相位;位置传感器P的输出信号上升沿至位置传感器R的输出信号下降沿为区间①,位置传感器R的输出信号下降沿至位置传感器Q的输出信号上升沿为区间②,位置传感器Q的输出信号上升沿至位置传感器P的输出信号下降沿为区间③,位置传感器P的输出信号下降沿至位置传感器R的输出信号上升沿为区间④,位置传感器R的输出信号上升沿至位置传感器Q的输出信号下降沿为区间⑤,位置传感器Q的输出信号下降沿至位置传感器P的输出信号上升沿为区间⑥。
检测开关磁阻电机位置传感器输出信号的相邻两个边沿脉冲P1和边沿脉冲P2,时间顺序上边沿脉冲P1早于边沿脉冲P2,相邻两个边沿脉冲的间距为一个区间。
图2所示,若边沿脉冲P1检测到位置传感器Q的输出信号,边沿脉冲P2检测到位置传感器P的输出信号,或边沿脉冲P1检测到位置传感器P的输出信号,边沿脉冲P2检测到位置传感器R的输出信号,或边沿脉冲P1检测到位置传感器R的输出信号,边沿脉冲P2检测到位置传感器Q的输出信号,则判断位置传感器无故障;若除此之外的其他情况出现,则判断位置传感器有故障;
当位置传感器P在区间①④发生低电平故障,如图3图4所示,故障诊断缓冲三个区间;当位置传感器P在区间②⑤发生低电平故障,如图5(a、b)所示,故障诊断缓冲两个区间;当位置传感器P在区间③⑥发生低电平故障,如图6(a、b)所示,故障诊断缓冲一个区间;
经过故障缓冲区间后,对位置传感器故障进行定位,若边沿脉冲P1检测到位置传感器Q的输出信号,边沿脉冲P2检测到位置传感器R的输出信号,则判断位置传感器P发生低电平故障,如图7所示。若边沿脉冲P1检测到位置传感器R的输出信号,边沿脉冲P2检测到位置传感器P的输出信号,则判断位置传感器Q发生低电平故障,如图8所示。若边沿脉冲P1检测到位置传感器P的输出信号,边沿脉冲P2检测到位置传感器Q的输出信号,则判断位置传感器R发生低电平故障,如图9所示;
当位置传感器P和位置传感器R两个位置传感器发生低电平故障,根据上述方法可进行故障诊断,如图10所示;
若边沿脉冲P1检测到位置传感器P的输出信号,边沿脉冲P2也检测到位置传感器P的输出信号,则判断位置传感器R和位置传感器Q均发生低电平故障,如图11所示;
若边沿脉冲P1检测到位置传感器Q的输出信号,边沿脉冲P2也检测到位置传感器Q的输出信号,则判断位置传感器P和位置传感器R均发生低电平故障,如图12所示;
若边沿脉冲P1检测到位置传感器R的输出信号,边沿脉冲P2也检测到位置传感器R的输出信号,则判断位置传感器Q和位置传感器P均发生低电平故障,如图13所示;
若始终检测不到边沿脉冲,则判断位置传感器P、位置传感器Q和位置传感器R均发生低电平故障;
检测开关磁阻电机位置传感器输出信号的相邻两个边沿脉冲P1和边沿脉冲P2,重复上述步骤,诊断三相开关磁阻电机位置传感器发生高电平故障,并定位所发生故障的位置传感器,对应的区间划分如图14所示。
上述方法对三相6/4结构、三相24/16结构等开关磁阻电机位置传感器故障诊断与定位也适用。

Claims (1)

  1. 一种三相开关磁阻电机位置传感器故障诊断与定位方法,其特征在于:
    1)使开关磁阻电机位置传感器P的输出信号相位时间上早于位置传感器Q的输出信号相位,位置传感器Q的输出信号相位早于位置传感器R的输出信号相位,位置传感器R的输出信号相位早于位置传感器P的输出信号相位,检测开关磁阻电机位置传感器输出信号的相邻两个边沿脉冲P1和边沿脉冲P2,时间顺序上边沿脉冲P1早于边沿脉冲P2,相邻两个边沿脉冲的间距为一个区间;
    2)若边沿脉冲P1检测到位置传感器Q的输出信号,边沿脉冲P2检测到位置传感器P的输出信号,或边沿脉冲P1检测到位置传感器P的输出信号,边沿脉冲P2检测到位置传感器R的输出信号,或边沿脉冲P1检测到位置传感器R的输出信号,边沿脉冲P2检测到位置传感器Q的输出信号,则判断位置传感器无故障;
    3)若除步骤2)之外的其他情况出现,则判断位置传感器有故障;
    4)位置传感器P的输出信号上升沿至位置传感器R的输出信号下降沿为区间①,位置传感器R的输出信号下降沿至位置传感器Q的输出信号上升沿为区间②,位置传感器Q的输出信号上升沿至位置传感器P的输出信号下降沿为区间③,位置传感器P的输出信号下降沿至位置传感器R的输出信号上升沿为区间④,位置传感器R的输出信号上升沿至位置传感器Q的输出信号下降沿为区间⑤,位置传感器Q的输出信号下降沿至位置传感器P的输出信号上升沿为区间⑥;
    5)当位置传感器故障发生在区间①④时,故障诊断缓冲三个区间;当位置传感器故障发生在区间②⑤时,故障诊断缓冲两个区间;当位置传感器故障发生在③⑥区间时,故障诊断缓冲一个区间;
    6)经过故障缓冲区间后,对位置传感器故障进行定位:
    若边沿脉冲P1检测到位置传感器Q的输出信号,边沿脉冲P2检测到位置传感器R的输出信号,则判断位置传感器P发生故障;若边沿脉冲P1检测到位置传感器R的输出信号,边沿脉冲P2检测到位置传感器P的输出信号,则判断位置传感器Q发生故障;若边沿脉冲P1检测到位置传感器P的输出信号,边沿脉冲P2检测到位置传感器Q的输出信号,则判断位置传感器R发生故障;
    若边沿脉冲P1检测到位置传感器P的输出信号,边沿脉冲P2也检测到位置传感器P的输出信号,则判断位置传感器R和位置传感器Q均发生故障;若边沿脉冲P1检测到位置传感器Q的输出信号,边沿脉冲P2也检测到位置传感器Q的输出信号,则判断位置传 感器P和位置传感器R均发生故障;若边沿脉冲P1检测到位置传感器R的输出信号,边沿脉冲P2也检测到位置传感器R的输出信号,则判断位置传感器Q和位置传感器P均发生故障;
    若始终检测不到边沿脉冲,则判断位置传感器P、位置传感器Q和位置传感器R均发生故障。
PCT/CN2015/095893 2014-12-08 2015-11-30 一种三相开关磁阻电机位置传感器故障诊断与定位方法 WO2016091090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410745099.8A CN104459593A (zh) 2014-12-08 2014-12-08 一种三相开关磁阻电机位置传感器故障诊断与定位方法
CN201410745099.8 2014-12-08

Publications (1)

Publication Number Publication Date
WO2016091090A1 true WO2016091090A1 (zh) 2016-06-16

Family

ID=52905948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095893 WO2016091090A1 (zh) 2014-12-08 2015-11-30 一种三相开关磁阻电机位置传感器故障诊断与定位方法

Country Status (2)

Country Link
CN (1) CN104459593A (zh)
WO (1) WO2016091090A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9906182B2 (en) 2014-08-27 2018-02-27 China University Of Mining And Technology Three-phase switched reluctance motor torque ripple two-level suppression method
CN111263308A (zh) * 2020-01-15 2020-06-09 上海交通大学 定位数据采集方法及***
CN111780971A (zh) * 2020-06-10 2020-10-16 杭州杰牌传动科技有限公司 一种基于转速传感器的多轴传动装置故障诊断***及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459593A (zh) * 2014-12-08 2015-03-25 中国矿业大学 一种三相开关磁阻电机位置传感器故障诊断与定位方法
CN106301136B (zh) * 2016-09-06 2019-05-31 中国矿业大学 一种具有容错功能的开关磁阻电机相电流重构方法
CN110672141B (zh) * 2018-07-03 2021-11-30 中国科学院苏州纳米技术与纳米仿生研究所 自供电传感器的检测方法及其检测***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422127A (zh) * 2009-03-31 2012-04-18 法雷奥电机设备公司 诊断用于确定多相旋转电机的转子的角位置的传感器的功能故障的方法和设备
CN103424651A (zh) * 2013-07-23 2013-12-04 西北工业大学 一种霍尔位置传感器故障检测方法
CN103439655A (zh) * 2013-06-19 2013-12-11 南京航空航天大学 开关磁阻电机位置传感器的带有容错控制的故障诊断方法
CN103472263A (zh) * 2013-09-03 2013-12-25 清华大学 一种永磁同步电机霍尔传感器故障诊断方法
CN104459593A (zh) * 2014-12-08 2015-03-25 中国矿业大学 一种三相开关磁阻电机位置传感器故障诊断与定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422127A (zh) * 2009-03-31 2012-04-18 法雷奥电机设备公司 诊断用于确定多相旋转电机的转子的角位置的传感器的功能故障的方法和设备
CN103439655A (zh) * 2013-06-19 2013-12-11 南京航空航天大学 开关磁阻电机位置传感器的带有容错控制的故障诊断方法
CN103424651A (zh) * 2013-07-23 2013-12-04 西北工业大学 一种霍尔位置传感器故障检测方法
CN103472263A (zh) * 2013-09-03 2013-12-25 清华大学 一种永磁同步电机霍尔传感器故障诊断方法
CN104459593A (zh) * 2014-12-08 2015-03-25 中国矿业大学 一种三相开关磁阻电机位置传感器故障诊断与定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, ZICHENG ET AL.: "Fault Diagnosis and Fault-Tolerant Control Strategy for Rotor Position Sensors of Brushless DC Motor Drives", MICROMOTORS, vol. 47, no. 4, 28 April 2014 (2014-04-28), pages 59 - 61, ISSN: 1001-6848 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9906182B2 (en) 2014-08-27 2018-02-27 China University Of Mining And Technology Three-phase switched reluctance motor torque ripple two-level suppression method
CN111263308A (zh) * 2020-01-15 2020-06-09 上海交通大学 定位数据采集方法及***
CN111780971A (zh) * 2020-06-10 2020-10-16 杭州杰牌传动科技有限公司 一种基于转速传感器的多轴传动装置故障诊断***及方法

Also Published As

Publication number Publication date
CN104459593A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2016091090A1 (zh) 一种三相开关磁阻电机位置传感器故障诊断与定位方法
WO2016091091A1 (zh) 四相开关磁阻电机两只位置传感器故障诊断与定位方法
WO2016091092A1 (zh) 四相开关磁阻电机四只位置传感器故障诊断与定位方法
US9837945B2 (en) Motor control method and system
CN103439655B (zh) 开关磁阻电机位置传感器的带有容错控制的故障诊断方法
CN105162384B (zh) 一种开关磁阻电机转子位置方波信号故障诊断和容错方法
CN106247924B (zh) 旋转角度检测器
CN103424651A (zh) 一种霍尔位置传感器故障检测方法
KR20130065411A (ko) 모터의 홀센서 고장 판단방법
CN102347726A (zh) 电机控制中转子位置观测的装置和方法
CN104165649A (zh) 一种无刷直流电机霍尔传感器上电自检测方法
CN105573304B (zh) 一种永磁同步电机霍尔位置传感器故障诊断方法
KR20160042212A (ko) 브러쉬리스 모터 제어 고장 검출 방법 및 시스템
WO2016090956A1 (zh) 一种开关磁阻电机位置传感器故障容错控制方法
KR101704215B1 (ko) 모터 제어 방법
US8796980B2 (en) Fault detection system and method for overspeed protection speed sensors
CN105041702A (zh) 一种磁悬浮分子泵控制方法及***
CN104079216B (zh) 三相有传感器bldc电机驱动***及其驱动方法
CN105526857B (zh) 用于容错地检测旋转角的方法
US11581788B2 (en) Hall sensor fault detection for gate crossing mechanisms
CN106655686A (zh) 一种直流无刷电机霍尔传感器冗余设计
EP2921922B1 (en) Method and apparatus for monitoring a signal
CN107241035B (zh) 一种具有导电环故障容错功能的无刷直流电机驱动***
EP3136584A2 (en) Sensor and control systems for electrical machines
JP6875159B2 (ja) ブラシレスモータの位相調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866608

Country of ref document: EP

Kind code of ref document: A1