WO2016091015A1 - 配电箱 - Google Patents

配电箱 Download PDF

Info

Publication number
WO2016091015A1
WO2016091015A1 PCT/CN2015/092460 CN2015092460W WO2016091015A1 WO 2016091015 A1 WO2016091015 A1 WO 2016091015A1 CN 2015092460 W CN2015092460 W CN 2015092460W WO 2016091015 A1 WO2016091015 A1 WO 2016091015A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution box
power
power information
metering
circuit
Prior art date
Application number
PCT/CN2015/092460
Other languages
English (en)
French (fr)
Inventor
李彬
赵宇
王兴越
宋宁
王婷
李利
王波
尹润静
孙建
辛锋
Original Assignee
国家电网公司
国网北京市电力公司
北京潞电电气设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网北京市电力公司, 北京潞电电气设备有限公司 filed Critical 国家电网公司
Publication of WO2016091015A1 publication Critical patent/WO2016091015A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/26Casings; Parts thereof or accessories therefor
    • H02B1/46Boxes; Parts thereof or accessories therefor
    • H02J13/0062
    • H02J13/0075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the present invention relates to the field of electrical equipment, and in particular to a power distribution box.
  • a miniaturized, outdoor-style distribution box that integrates power distribution, metering, and protection.
  • the embodiment of the invention provides a power distribution box to at least solve the technical problem that the collection efficiency of power information caused by manually collecting power information in the power distribution box in the related art is low.
  • a power distribution box includes: a plurality of metering devices installed in the power distribution box, wherein a first output end of each of the metering devices is used to output power information;
  • the device includes: a second output end respectively connected to the first input end of each of the metering devices, configured to send an acquisition instruction to each of the first input ends; a second input end, and the above
  • the first output end is connected to collect the power information of the metering device;
  • a communication device is connected to the collecting device, and is configured to send the power information collected by the collecting device to an external device.
  • the foregoing collecting device comprises: a processor, connected to the first input end of each of the metering devices and the first output end through a serial interface or a parallel interface or an Ethernet port.
  • the above collecting device is located inside the communication device.
  • the communication device includes: a wireless transmission module, connected to the collection device, configured to send the power information collected by the collection device to the external device by wireless transmission; or a wired transmission module connected to the collection device And configured to send the power information collected by the foregoing collecting device to the external device by means of wired transmission.
  • the wireless transmission module includes: a baseband signal processing circuit, and is connected to the foregoing collecting device, configured to perform baseband signal processing on the power information collected by the collecting device; and the radio frequency transmitting circuit is connected to the baseband signal processing circuit, and is configured to The baseband signal processed by the above baseband signal is modulated into a radio frequency signal and transmitted to the external device.
  • the wired transmission module includes: an Ethernet processing circuit, connected to the foregoing collecting device, configured to encapsulate the power information collected by the collecting device into a data packet conforming to an Ethernet transmission format; an Ethernet port, and an Ethernet processing A circuit connection, configured to send the above data packet to the external device.
  • the power distribution box further includes: an acquisition circuit connected to the incoming line of the power distribution box, configured to collect power parameters of the incoming line; and a capacitor connected to the input line of the collecting circuit and the power distribution box, and configured The power parameter of the incoming line is adjusted according to the power parameter collected by the collecting circuit; the alarm device is connected to the collecting circuit, and is configured to issue an alarm when the power parameter collected by the collecting circuit fails.
  • the acquisition circuit is connected to the communication device, and the collection device is further configured to send the power parameter of the incoming line to the external device by using the communication device.
  • the power distribution box further includes: a first insulating spacer disposed between the plurality of metering devices and the collecting device; and/or a second insulating spacer disposed on the collecting device and the communication device between.
  • the incoming line of the power distribution box is connected to the third input end of the metering device, and the outlet of the power distribution box is connected to the third output end of the metering device, wherein the outlet line is disposed in the porcelain bottle sleeve.
  • the communication device is disposed in the power distribution box, so that the power information of the power distribution box can be transmitted to the external device through the communication device, thereby eliminating the need to send personnel to the location where the power distribution box is located to manually record the power distribution.
  • the power information in the box solves the technical problem of low collection efficiency of power information caused by manually collecting power information in the power distribution box in the related art, and improves the collection efficiency of the power information.
  • FIG. 1 is a structural view of an optional distribution box in accordance with an embodiment of the present invention.
  • FIG. 2 is a structural diagram of another alternative power distribution box according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of still another alternative distribution box in accordance with an embodiment of the present invention.
  • FIG. 4 is a structural diagram of still another optional distribution box according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of still another alternative distribution box in accordance with an embodiment of the present invention.
  • FIG. 6 is a block diagram of still another alternative distribution box in accordance with an embodiment of the present invention.
  • the power distribution box 100 includes: a plurality of metering devices (metering devices 10-1, 10-2, 10-3), and a collecting device. 12.
  • a communication device 14 It should be noted that, in this embodiment, the number of the metering devices is three, which is only an example. In this embodiment, the number of the metering devices is not limited, as long as one collecting device is connected to the plurality of metering devices, That is, the examples protected by the present application.
  • the metering devices 10-1, 10-2, and 10-3 are installed in the power distribution box 100, and the first output end of each metering device is used to output power information, wherein the metering device 10-
  • the first output terminal B1-1 of 1 is used to output the power information measured by the metering device 10-1
  • the first output terminal B1-2 of the metering device 10-2 is used for the input.
  • the first output B1-3 of the metering device 10-3 is used to output the power information measured by the metering device 10-3.
  • the metering device may be, but not limited to, a power metering device such as an electric meter or a multimeter.
  • the metering device may be, but is not limited to, configured to collect power information related to the power device, wherein the power device may be, but not limited to, a transformer.
  • the power information may be, but not limited to, power information for industrial power or power information for domestic electricity.
  • the electric energy information measured by the electric meter may include, but is not limited to, at least one of the following: a current output by the transformer, a voltage outputted by the transformer, a power outputted by the transformer, and a line loss between the transformer and the total meter of the station.
  • each of the metering devices further includes a first input end for receiving an acquisition instruction of the collection device 12, wherein the metering device 10-1 includes a first input end A1-1, and the metering device 10-2 includes the first At the input end A1-2, the metering device 10-3 comprises a first input A1-3.
  • each of the metering devices stores the currently metered power information and the historically metered power information in a memory of the metering device.
  • the first input terminal A1-1 of the metering device 10-1 receives the acquisition command sent by the collection device 12, and the metering device 10-1 acquires from the local memory.
  • the power information corresponding to the instruction is collected and sent to the collection device 12 through the first output terminal B1-1, wherein the power information corresponding to the acquisition instruction may be the current metered power information stored in the memory or historically measured. Power information.
  • the collection device 12 includes a second output terminal A2 and a second input terminal B2.
  • the second output terminal A2 is respectively connected to the first input terminals (A1-1, A1-2, A1-3) of each of the metering devices 10-1, 10-2, 10-3 for the first input end Sending the above-mentioned acquisition instruction;
  • the second input terminal B2 is respectively connected to the first output terminals (B1-1, B1-2, B1-3) of each of the metering devices 10-1, 10-2, 10-3 for The above power information of each metering device is collected.
  • the collecting device 12 is respectively connected to the first input end of each metering device via a second output terminal A2, and the first output of each metering device is respectively passed through the second input terminal B2 of the collecting device 12. End connection, this is only an example, which is not limited in this embodiment.
  • the collection device 12 can pass through three second outputs (for example, A2-1, A2-2, A2-3, not shown in the figure).
  • the collecting device 12 can also pass three a second input (eg, B2-1, B2-2, B2-3, not shown) is coupled to the first output of the metering device 10-1, 10-2, 10-3, respectively (B1-1, B1-2, B1-3) connection, that is, the second input terminal B2-1 and the first output terminal B1-1, the second input terminal B2-2 and the first output terminal B1-2,
  • the second input terminal B2-3 is coupled to the first output terminal B1-3.
  • the collecting device 12 polls the power information in the collecting and measuring devices 10-1, 10-2, and 10-3 according to a predetermined collection period, or the collecting device 12 simultaneously collects the metering device every predetermined sampling period.
  • Power information in 10-1, 10-2, 10-3 Selecting different acquisition periods for different types of power information according to the importance degree of the power information in the metering devices 10-1, 10-2, 10-3, for example, when the power information to be collected is the voltage or power output by the transformer, You can choose a shorter acquisition cycle, such as 10S, to achieve real-time monitoring of the transformer's working conditions.
  • the power information to be collected is the power of the user's electricity meter, you can choose a relatively long acquisition cycle, such as 24h, 1 month, and so on.
  • the communication device 14 is connected to the above-mentioned collection device 12 and configured to transmit the power information collected by the collection device 12 to an external device.
  • the external device may be, but is not limited to, a concentrator, a handheld terminal, and a distribution network primary station of the power station area.
  • the communication device is disposed in the power distribution box, so that the power information of the power distribution box can be transmitted to the external device through the communication device, thereby eliminating the need to send personnel to the location where the power distribution box is located to manually record the power distribution.
  • the power information in the box solves the technical problem of low collection efficiency of power information caused by manually collecting power information in the power distribution box in the related art, and improves the collection efficiency of the power information.
  • the collection device 12 of the distribution box 100 further includes a processor 20.
  • the processor 20 is coupled to the first input and the first output of the metering device 10-1, 10-2, 10-3, respectively, via a serial interface or a parallel interface or an Ethernet port. That is, the second output terminal A2 and the second input terminal B2 may be output pins and input pins in the serial interface, respectively, or may be output leads and input leads in the Ethernet port.
  • the processor 20 is respectively connected to the first input end and the first output end of the metering device 10-1, 10-2, 10-3 through a serial interface
  • the serial port can be a COM port, an RS232, RS422, RS485, etc., the serial port of the processor and the pin corresponding to the communication port of the first input terminals A1-1, A1-2, A1-3 and the first output terminals B1-1, B1-2, B1-3 Connection, data serial communication is realized, and serial communication can be applied when the amount of power information data is relatively small and communication is required to be stable.
  • the processor 20 may adopt a parallel interface (such as USB) and the first input terminals A1-1 and A1. -2, A1-3 and the first output terminals B1-1, B1-2, B1-3 are connected to realize fast and efficient transmission of power information data.
  • a parallel interface such as USB
  • the processor 20 can use the Ethernet port and the first input end of the metering device A1. -1, A1-2, A1-3 are connected to the first output terminals B1-1, B1-2, B1-3.
  • the collection device 12 of the distribution box is located inside the communication device 14.
  • the acquisition device is integrated into the communication device, and the acquisition device can be, but is not limited to, communicated through the serial port and the communication device. Taking into account the actual environment installed on site and the space of the distribution box, this saves the internal space of the distribution box, enables better integration of other devices in the distribution box, and simplifies the wires and communication lines inside the distribution box. Wiring for easy installation and overhaul.
  • FIG. 2 is a structural diagram of another optional distribution box according to an embodiment of the present invention, and the communication device 14 of the distribution box 100 includes : Wireless transmission module 20, wired transmission module 22.
  • the wireless transmission module 20 includes: a baseband signal processing circuit L1 and a radio frequency transmitting circuit L2.
  • the wired transmission module 22 includes an Ethernet processing circuit L3 and an Ethernet port K3.
  • the foregoing communication device 14 includes the wireless transmission module 20 and the wired transmission module 22, which is only an example, which is not limited in this embodiment.
  • the communication device 14 described above may include only the wireless transmission module 20 or only the wired transmission module 22.
  • the baseband signal processing circuit L1 is connected to the acquisition device 12 and configured to perform baseband signal processing on the power information collected by the acquisition device 12, and the radio frequency transmission circuit L2 is connected to the baseband signal processing circuit L1 and configured to process the baseband signal.
  • the baseband signal is modulated into a radio frequency signal and sent to the above external device.
  • the communication device 14 may transmit the power information to an external device such as GPRS, carrier wave, micro power wireless, ZIGBEE, etc., by way of wireless transmission.
  • the power information is transmitted to the external device by means of wireless transmission, and the technical effect of less wiring and convenient installation can be achieved.
  • the communication device 14 in this embodiment may also transmit power information to the external device through the wired transmission module 22 (ie, using wired transmission).
  • the Ethernet processing circuit L3 is connected to the above-mentioned collecting device 12, and is configured to package the power information collected by the collecting device 12 into a data packet conforming to the Ethernet transmission format, the Ethernet port K3, and the Ethernet processing.
  • the circuit L3 is connected and arranged to transmit the above data packet to the above external device.
  • the communication device 14 transmits the power information to an external device such as a twisted pair cable, a cable, a cable television network, or the like by means of wired transmission.
  • an external device such as a twisted pair cable, a cable, a cable television network, or the like.
  • the transmission can be stabilized, safe, and efficient, and the related network can be utilized, and the technical effect of low cost can be achieved.
  • the communication device 14 may separately transmit the power information of the metering devices 10-1, 10-2, 10-3, or the communication device 14 may be the metering devices 10-1, 10-2, 10-
  • the power information of 3 is encapsulated in a data packet for overall transmission, which is not limited in this application.
  • FIG. 3 is a structural diagram of still another optional distribution box according to an embodiment of the present invention.
  • the power distribution box 100 further includes: an acquisition circuit. L4, capacitor C0, and alarm device 30.
  • the collecting circuit L4 is connected to the line of the power distribution box 100, and is set to collect the power input of the power incoming line. number. As shown in FIG. 3, the collecting circuit L4 can be connected to the power incoming line and the power outgoing line of the power distribution box, and is configured to collect power parameters of the power distribution box line, and the power parameters include voltage, current, active power, and reactive power parameters of the circuit. Harmonics, etc.
  • the capacitor CO is a tunable capacitor, and is connected to the acquisition circuit L4, and is configured to adjust the power parameter of the incoming line according to the power parameter collected by the acquisition circuit.
  • the capacitor CO is also connected to the input line of the above-mentioned acquisition circuit L4 and the distribution box, and the acquisition circuit L4 collects the power parameter, and the capacitance CO reacts according to the power parameter.
  • Real-time circuit conditions such as excessive reactive power, overvoltage, undervoltage, short circuit, overcurrent, harmonics, and three-phase unbalance.
  • the power factor is increased by the capacitor compensation by adjusting the capacitance value of the power grid (ie, adjusting the capacitance value of the capacitor CO), and the load is from the capacitor C0. Absorbing reactive current, thereby reducing the reactive current delivered by the grid, reducing the line current carrying, and reducing the line loss.
  • the power running condition of the incoming line circuit of the power distribution box is adjusted, and the reactive power compensation control algorithm operation can be performed according to the collected parameters to determine the two-stage and cyclic switching of the single smart capacitor.
  • the power line operating voltage and current are adjusted by adjusting the capacitance value of the capacitor C0 or the circuit breaker (not shown) connected by the capacitor C0.
  • the alarm device 30 is connected to the above-mentioned acquisition circuit L4, and is configured to issue an alarm when a power parameter collected by the acquisition circuit fails, such as overvoltage, undervoltage, short circuit, or overcurrent.
  • the alarm device can send an alarm message by means of buzzer, vibration, warning light, and the like.
  • the electrical load in the power grid such as electric motor and transformer
  • the reactive energy is not charged, it takes up the current carrying capacity of some lines, causing the line current to increase and the line loss. It also increases, and the corresponding reactive power needs to be provided to these devices during operation.
  • a reactive power compensation device such as a capacitor in the power grid
  • the reactive power consumed by the inductive load can be provided, and the reactive power supplied by the power supply to the inductive load and transmitted by the line can be reduced, because the reactive power is reduced in the power grid. Flow, so it can reduce the power loss caused by the transmission of reactive power of the line and transformer, and achieve the effect of the reactive power compensation circuit.
  • the power line operating voltage and current are adjusted by adjusting the capacitance value of the capacitor C0 or the circuit breaker (not shown) connected by the capacitor C0, thereby realizing Over-temperature protection and self-diagnosis of power lines.
  • the acquisition circuit L4 is connected to the communication device 14, and the acquisition circuit L4 is further configured to transmit the power parameter of the incoming line to the external device by the communication device 14.
  • the acquisition circuit L4 includes a communication interface, and the communication interface is connected to the communication device 14. The acquisition circuit L4 transmits the collected power parameters to the communication device 14 through the communication interface, and the communication device 14 transmits the power parameters to the external device. .
  • the power distribution box 100 further includes: a first insulation partition M1 and a second insulation partition M2.
  • the first insulating spacer M1 is disposed on the above-described weighing devices 10-1, 10-2, 10-3 and Between the above-mentioned collecting devices, a second insulating spacer M2 is disposed between the above-mentioned collecting device and the above-mentioned communication device.
  • the distribution box is disposed first between the metering devices 10-1, 10-2, 10-3 and the communication device 14. Insulating partition M1.
  • the first insulating partition M1 or the first insulating partition M1 and the second insulating partition M2 are physically separated in the distribution box 100, thereby improving the safety between the devices in the power distribution box. Sexuality makes wiring easier and facilitates disassembly and maintenance of the distribution box.
  • each metering device further includes: a third input end and a third output end, wherein the metering device 10-1 comprises: a third input end A3-1 and a third output end B3- 1.
  • the metering device 10-2 comprises a third input terminal A3-2 and a third output terminal B3-2.
  • the metering device 10-3 comprises a third input terminal A3-3 and a third output terminal B3-3.
  • the power inlets of the power distribution box 100 are respectively connected to the third input end of each metering device, and the power outlets of the power distribution box are respectively connected to the third output end of each metering device, wherein The above power outlet is disposed in the above-mentioned porcelain bottle casing.
  • the incoming line of the distribution box adopts the lower line of the box, and the outlet line adopts two forms: the upper line or the lower line of the box.
  • the low-pressure porcelain bottle casing is used for the upper line to fix the cable and seal (waterproof and dustproof).
  • the bus bar of the outlet terminal is connected to the copper bar of the porcelain bushing.
  • Porcelain bottle casing not only has the advantages of small size, small quality, good sealing performance, strong versatility and easy maintenance, but also has specified electrical strength, sufficient mechanical strength, good thermal stability, and can withstand transient overheating during short circuit. .
  • Embodiments of the present invention provide a power distribution box device.
  • the communication device is disposed in the power distribution box, so that the power information of the power distribution box can be transmitted to the external device through the communication device, thereby eliminating the need to send personnel to the location where the power distribution box is located to manually record the power distribution.
  • the power information in the box solves the technical problem of low collection efficiency of power information caused by manually collecting power information in the power distribution box in the related art, and improves the collection efficiency of the power information.
  • a protection device such as an acquisition circuit and a capacitor to the distribution box to protect the power line when a power line passing through the distribution box fails.
  • the disclosed device may be through other parties.
  • the device embodiments described above are merely illustrative.
  • the division of the foregoing devices is only a logical function division.
  • there may be another division manner for example, multiple devices or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection shown or discussed herein may be an indirect coupling or communication connection through some interface, device or device, and may be electrical or otherwise.
  • the above described devices as separate components may or may not be physically separate, and the components displayed as devices may or may not be physical devices, that is, may be located in one place, or may be distributed to multiple network devices. Some or all of the devices may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional device in various embodiments of the present invention may be integrated into one processing device, or each device may exist physically separately, or two or more devices may be integrated into one device.
  • the above integrated device can be implemented in the form of hardware or in the form of a software function device.
  • the integrated device described above if implemented in the form of a software functional device and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention may contribute to the related art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, mobile terminal, server or network device, etc.) to perform all or part of the steps of the above-described apparatus of various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .
  • the communication device is disposed in the power distribution box, so that the power information of the power distribution box can be transmitted to the external device through the communication device, thereby eliminating the need to send personnel to the location where the power distribution box is located to manually record the power distribution.
  • the power information in the box solves the technical problem of low collection efficiency of power information caused by manually collecting power information in the power distribution box in the related art, and improves the collection efficiency of the power information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种配电箱(100),包括:多个计量装置(10-1,10-2,10-3),安装在所述配电箱内,每个所述计量装置的第一输出端(B1-1,B1-2,B1-3)用于输出电力信息;采集装置(12),包括:第二输出端(A2),分别与每个所述计量装置的第一输入端(A1-1,A1-2,A1-3)连接,用于向每个所述第一输入端(A1-1,A1-2,A1-3)发送采集指令;第二输入端(B2),与每个所述计量装置的所述第一输出端(B1-1,B1-2,B1-3)连接,用于采集所述计量装置的所述电力信息;一个通信装置(14),与所述采集装置(12)连接,用于将所述采集装置(12)采集的电力信息发送到外部设备。本发明解决了人工采集配电箱中的电力信息效率较低的技术问题。

Description

配电箱 技术领域
本发明涉及电力设备领域,具体而言,涉及一种配电箱。
背景技术
随着农村电网改造的不断深入,大量的配电箱被应用于农村智能电网及各配电台区中。为适应农网智能化发展需要,满足客户对供电能力、供电质量和供电服务的新要求,提高农网智能配电台区标准化、规范化建设水平,亟需一种适应农村低压配电装置标准化、小型化、户外式的配电箱,它能集配电、计量、保护于一体。
目前,为了获取传统的柱上低压综合配电箱中的电力信息,需要派人员定期去柱上低压综合配电箱所在的位置,打开柱上低压综合配电箱,人工记录配电箱中的电力信息。
然而,这种通过人工采集配电箱中的电力信息的方式,需要花费较长的时间,导致电力信息的采集效率较低。此外,传统的配电箱内低压出线端子无绝缘防护措施,在人工打开配电箱来记录配电箱中的电力信息时,记录的人员存在一定的触电危险。
针对上述技术问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种配电箱,以至少解决相关技术中由于人工采集配电箱中的电力信息所导致的电力信息的采集效率较低的技术问题。
根据本发明实施例的一个方面,提供了一种配电箱,包括:多个计量装置,安装在上述配电箱内,每个上述计量装置的第一输出端用于输出电力信息;一个采集装置,包括:第二输出端,分别与每个上述计量装置的第一输入端连接,用于向每个上述第一输入端发送采集指令;第二输入端,与每个上述计量装置的上述第一输出端连接,用于采集上述计量装置的上述电力信息;一个通信装置,与上述采集装置连接,设置为将上述采集装置采集的电力信息发送到外部设备。
可选地,上述采集装置包括:处理器,通过串行接口或并行接口或以太网口与每个上述计量装置的上述第一输入端和上述第一输出端连接。
可选地,上述采集装置位于上述通信装置的内部。
可选地,上述通信装置包括:无线传输模块,与上述采集装置连接,设置为将上述采集装置采集的电力信息通过无线传输的方式发送到上述外部设备;或者有线传输模块,与上述采集装置连接,设置为将上述采集装置采集的电力信息通过有线传输的方式发送到上述外部设备。
可选地,上述无线传输模块包括:基带信号处理电路,与上述采集装置连接,设置为对上述采集装置采集的电力信息进行基带信号处理;射频发射电路,与上述基带信号处理电路连接,设置为将经上述基带信号处理得到的基带信号调制成射频信号发送到上述外部设备。
可选地,上述有线传输模块包括:以太网处理电路,与上述采集装置连接,设置为将上述采集装置采集的电力信息封装成符合以太网传输格式的数据包;以太网口,与以太网处理电路连接,设置为将上述数据包发送到上述外部设备。
可选地,上述配电箱还包括:采集电路,与上述配电箱的进线连接,设置为采集上述进线的电力参数;电容,与上述采集电路和配电箱的进线连接,设置为根据上述采集电路采集的电力参数调节上述进线的电力参数;告警装置,与上述采集电路连接,设置为在上述采集电路采集的电力参数出现故障时,发出告警。
可选地,上述采集电路与上述通信装置连接,上述采集装置还设置为通过上述通信装置将上述进线的电力参数发送到上述外部设备。
可选地,上述配电箱还包括:第一绝缘隔板,设置在上述多个计量装置和上述采集装置之间;和/或第二绝缘隔板,设置在上述采集装置和上述通信装置之间。
可选地,上述配电箱的进线与上述计量装置的第三输入端连接,上述配电箱的出线与上述计量装置的第三输出端连接,其中,上述出线设置在瓷瓶套管中。
在本发明实施例中,在配电箱内设置通信装置,使得可以将配电箱的电力信息通过该通信装置传输到外部设备,从而不需要派人员去配电箱所在的位置人工记录配电箱中的电力信息,解决了相关技术中由于人工采集配电箱中的电力信息所导致的电力信息的采集效率较低的技术问题,提高了电力信息的采集效率。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种可选的配电箱的结构图;
图2是根据本发明实施例的另一种可选的配电箱的结构图;
图3是根据本发明实施例的又一种可选的配电箱的结构图;
图4是根据本发明实施例的又一种可选的配电箱的结构图;
图5是根据本发明实施例的又一种可选的配电箱的结构图;以及
图6是根据本发明实施例的又一种可选的配电箱的结构图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或装置的过程、装置、***、产品或设备不必限于清楚地列出的那些步骤或装置,而是可包括没有清楚地列出的或对于这些过程、装置、产品或设备固有的其它步骤或装置。
实施例1
根据本发明实施例,提供了一种配电箱,如图1所示,上述配电箱100包括:多个计量装置(计量装置10-1、10-2、10-3)、一个采集装置12、一个通信装置14。需要说明的是,在本实施例中,计量装置的个数为3个,这仅是一种示例,本实施例对于计量装置的个数不做限定,只要一个采集装置连接多个计量装置,即属于本申请所保护的示例。
在本实施例中,上述计量装置10-1、10-2、10-3安装在上述配电箱100内,每个计量装置的第一输出端用于输出电力信息,其中,计量装置10-1的第一输出端B1-1用于输出计量装置10-1所计量的电力信息,计量装置10-2的第一输出端B1-2用于输 出计量装置10-2所计量的电力信息,计量装置10-3的第一输出端B1-3用于输出计量装置10-3所计量的电力信息。
可选地,上述计量装置可以但不限于为电表或万用表等电力计量装置,上述计量装置可以但不限于设置为采集与电力装置相关的电力信息,其中,上述电力装置可以但不限于为变压器。可选地,上述电力信息可以但不限于为工业用电的电力信息或者生活用电的电力信息。作为一种可选的示例,上述电表计量的电力信息可以但不限于包括以下至少之一:变压器输出的电流、变压器输出的电压、变压器输出的功率、变压器到台区总表之间的线损,台区总表输出的电流、台区总表输出的电压、台区总表输出的功率、台区总表到用户电表之间的线损,用户电表的电量,电力信息的采集时间。
可选地,上述每个计量装置还包括第一输入端,用于接收采集装置12的采集指令,其中,计量装置10-1包括第一输入端A1-1,计量装置10-2包括第一输入端A1-2,计量装置10-3包括第一输入端A1-3。
可选地,上述每个计量装置将当前计量的电力信息和历史上计量的电力信息存储在该计量装置的存储器内。以计量装置10-1的第一输入端A1-1为例,在工作过程中,第一输入端A1-1接收采集装置12发送的采集指令,计量装置10-1从本地的存储器中获取与采集指令对应的电力信息,并通过第一输出端B1-1发送给采集装置12,其中,上述与采集指令对应的电力信息可以为存储在上述存储器中的当前计量的电力信息或历史上计量的电力信息。
在本实施例中,采集装置12包括:第二输出端A2和第二输入端B2。第二输出端A2分别与每个计量装置10-1、10-2、10-3的第一输入端(A1-1、A1-2、A1-3)连接,用于向上述第一输入端发送上述采集指令;第二输入端B2,分别与每个计量装置10-1、10-2、10-3的第一输出端(B1-1、B1-2、B1-3)连接,用于采集每个计量装置的上述电力信息。
在本实施例中,采集装置12通过一个第二输出端A2分别与每个计量装置的第一输入端连接,以及采集装置12通过一个第二输入端B2分别与每个计量装置的第一输出端连接,这仅是一个示例,本实施例对此不做限定,例如,采集装置12可以通过三个第二输出端(例如,A2-1、A2-2、A2-3,图中未示出)分别与计量装置10-1、10-2、10-3的第一输入端(A1-1、A1-2、A1-3)连接,即,第二输出端A2-1与第一输入端A1-1连接,第二输出端A2-2与第一输入端A1-2连接,第二输出端A2-3与第一输入端A1-3连接;同样,采集装置12还可以通过三个第二输入端(例如,B2-1、B2-2、B2-3,图中未示出)分别与计量装置10-1、10-2、10-3的第一输出端(B1-1、B1-2、B1-3)连接,即,第二输入端B2-1与第一输出端B1-1,第二输入端B2-2与第一输出端B1-2, 第二输入端B2-3与第一输出端B1-3。
可选地,上述采集装置12按预定的采集周期轮询采集计量装置10-1、10-2、10-3中的电力信息,或者,上述采集装置12每隔预定的采集周期同时采集计量装置10-1、10-2、10-3中的电力信息。根据计量装置10-1、10-2、10-3中的电力信息的重要程度为不同类型的电力信息选择不同的采集周期,例如,当需要采集的电力信息为变压器输出的电压或功率时,可以选择较短的采集周期,如10S,以便对变压器工作状况实现实时监测,当需要采集的电力信息为用户电表的电量时,可以选择相对较长的采集周期,如24h、1个月等。
在本实施例中,通信装置14,与上述采集装置12连接,设置为将上述采集装置12采集的电力信息发送到外部设备。
可选地,在本实施例中,外部设备可以但不限于为电力台区的集中器、手持终端、配网主站。
在本发明实施例中,在配电箱内设置通信装置,使得可以将配电箱的电力信息通过该通信装置传输到外部设备,从而不需要派人员去配电箱所在的位置人工记录配电箱中的电力信息,解决了相关技术中由于人工采集配电箱中的电力信息所导致的电力信息的采集效率较低的技术问题,提高了电力信息的采集效率。
可选地,如图2所示,配电箱100的采集装置12还包括:处理器20。处理器20通过串行接口或并行接口或以太网口分别与计量装置10-1、10-2、10-3的第一输入端和第一输出端连接。也就是说,第二输出端A2和第二输入端B2可以分别为串行接口中的输出引脚和输入引脚,或者,可以为以太网口中的输出引线和输入引线。
可选地,处理器20通过串行接口分别与计量装置10-1、10-2、10-3的第一输入端和第一输出端连接,具体地,串行接口可用COM口、RS232、RS422、RS485等,处理器的串行接口与第一输入端A1-1、A1-2、A1-3和第一输出端B1-1、B1-2、B1-3的通信口对应的引脚连接,实现数据串行通信,串行通信可应用在电力信息数据量比较少,要求通信稳定的情况下使用。作为一种可选的实现方式,当电力信息数据量较大,数据传输稳定性相对要求较低的情况下,处理器20可采用并行接口(如USB)与第一输入端A1-1、A1-2、A1-3和第一输出端B1-1、B1-2、B1-3连接,实现电力信息数据的快速高效传输。作为另一种可选的实现方式,当电力信息数据量较大,且实时性要求较高,需要对电力信息进行实时采集,处理器20可使用以太网口与计量装置的第一输入端A1-1、A1-2、A1-3和第一输出端B1-1、B1-2、B1-3连接。
可选地,配电箱的采集装置12位于通信装置14的内部。在本实施例中,采集装置被集成到通信装置的内部,采集装置可以但不限于通过串口和通信装置实现通信。 考虑到现场安装的实际环境和配电箱的空间大小,这样既节约了配电箱的内部空间,实现了配电箱内其他装置更好地组合,又能简化配电箱内部电线和通信线的布线,方便安装和检修。
作为本发明另一种可选的实施例,如图2所示,图2是根据本发明实施例的另一种可选的配电箱的结构图,上述配电箱100的通信装置14包括:无线传输模块20、有线传输模块22。无线传输模块20包括:基带信号处理电路L1、射频发射电路L2;有线传输模块22包括:以太网处理电路L3、以太网口K3。
需要说明的是,上述通信装置14同时包括无线传输模块20和有线传输模块22,这仅是一个示例,本实施例对此不做限定。例如,上述通信装置14可以仅包括无线传输模块20,或,仅包括有线传输模块22。
基带信号处理电路L1,与采集装置连接12,设置为对采集装置12采集的电力信息进行基带信号处理,射频发射电路L2,与上述基带信号处理电路L1连接,设置为将经上述基带信号处理得到的基带信号调制成射频信号发送到上述外部设备。
可选地,通信装置14可采用无线传输的方式将电力信息传输到外部设备,如GPRS、载波、微功率无线、ZIGBEE等。在本实施例中,通过无线传输的方式将电力信息传输到外部设备,可以实现布线少和安装方便的技术效果。
可选地,本实施例中的通信装置14还可以通过有线传输模块22(即,采用有线传输的方式)将电力信息传输到外部设备。如图2所示,以太网处理电路L3,与上述采集装置12连接,设置为将上述采集装置12采集的电力信息封装成符合以太网传输格式的数据包,以太网口K3,与以太网处理电路L3连接,设置为将上述数据包发送到上述外部设备。
在上述实施例中,通信装置14采用有线传输的方式将电力信息传输到外部设备,如双绞线、电缆、有线电视网线等。在本实施例中,通过有线传输的方式传输电力信息,可以实现传输稳定,安全,高效,且能利用相关的网络,成本较低的技术效果。
在上述实施例中,通信装置14可以对计量装置10-1、10-2、10-3的电力信息进行分开传输,或者,通信装置14可以将计量装置10-1、10-2、10-3的电力信息封装在一个数据包中进行整体传输,本申请对此不做限定。
作为本发明又一种可选的实施例,如图3所示,图3是根据本发明实施例的又一种可选的配电箱的结构图,上述配电箱100还包括:采集电路L4、电容C0、告警装置30。
采集电路L4,与上述配电箱100的线路连接,设置为采集上述电力进线的电力参 数。如图3所示,采集电路L4可与配电箱的电力进线和电力出线连接,设置为采集上述配电箱线路的电力参数,电力参数包括电路的电压、电流、有功、无功参数,谐波等。
在本实施例中,电容CO为可调电容,与采集电路L4连接,设置为根据上述采集电路采集的电力参数调节上述进线的电力参数。可选地,当采集电路L4和配电箱的进线连接时,电容CO也与上述采集电路L4和配电箱的进线连接,上述采集电路L4采集电力参数,电容CO根据上述电力参数反应的实时电路状况,如无功功率过高、过压、欠压、短路、过流、过谐波、三相不平衡等。当配电箱进线电力参数显示电力线无功功率过高时,通过调节接入电网的电容值的大小(即,调节电容CO的电容值),经电容补偿提高功率因数,负载从电容器C0中吸纳无功电流,从而减少电网输送的无功电流,减少线路载流,达到减少线损耗的效果。在本实施例中,调节配电箱进线电路的电力运行状况,还可以根据采集参数进行无功补偿控制算法运算,决定单台智能电容器的两级、循环投切。同时当电力线过压、欠压、短路、过流等故障时,通过调节电容C0的电容值或者电容C0连接的断路器(图中未示出),来调节电力线运行电压和电流。
在本实施例中,告警装置30,与上述采集电路L4连接,设置为在上述采集电路采集的电力参数出现故障时,如过压、欠压、短路、过流,发出告警。可选地,告警装置可通过蜂鸣、震动、告警灯等方式发出告警信息。
在实际电力配电和输送网中,电网中的电力负荷如电动机、变压器等大部分属于感性负荷,尽管无功电能不收费,但占用了部分线路的载流量,造成线路电流增大,线损耗也增大,在运行过程中需向这些设备提供相应的无功功率。在电网中安装电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,达到了无功补偿电路的功效。同时当电力线过压、欠压、短路、过流等故障时,通过调节电容C0的电容值或者电容C0连接的断路器(图中未示出),来调节电力线运行电压和电流,从而实现对电力线的过温保护与自诊断。
可选地,上述采集电路L4与上述通信装置14连接,上述采集电路L4还设置为通过上述通信装置14将上述进线的电力参数发送到上述外部设备。在本实施例中,采集电路L4包括通讯接口,通讯接口和通信装置14连接,采集电路L4通过通讯接口将采集的上述电力参数发送给通信装置14,通信装置14将上述电力参数发送到外部设备。
可选地,上述的配电箱100还包括:第一绝缘隔板M1、第二绝缘隔板M2。在本实施例中,如图4所示,第一绝缘隔板M1,设置在上述计量装置10-1、10-2、10-3和 上述采集装置之间;第二绝缘隔板M2,设置在上述采集装置和上述通信装置之间。作为一种可选的示例,如图5所示,当采集装置集成在通信装置内部时,配电箱在计量装置10-1、10-2、10-3和通信装置14之间设置第一绝缘隔板M1。在本实施例中,配电箱100中采用第一绝缘隔板M1或者第一绝缘隔板M1和第二绝缘隔板M2将各个装置物理隔离,提高了配电箱体内各个装置之间的安全性,使布线更简单,方便配电箱拆装和维护。
可选地,如图6所示,每个计量装置还包括:第三输入端和第三输出端,其中,计量装置10-1包括:第三输入端A3-1和第三输出端B3-1,计量装置10-2包括:第三输入端A3-2和第三输出端B3-2,计量装置10-3包括:第三输入端A3-3和第三输出端B3-3。在本实施例中,上述配电箱100的电力进线分别与每个计量装置的第三输入端连接,上述配电箱的电力出线分别与每个计量装置的第三输出端连接,其中,上述电力出线设置在上述瓷瓶套管中。
配电箱的进线方式采用箱体下进线,出线采用箱体上面出线或下出线两种形式。上出线时采用低压瓷瓶套管,起到固定电缆、密封(防水、防尘)的作用。出线端子铜排与瓷瓶套管铜排连接出线。瓷瓶套管不仅具有外形小、质量小、密封性能好、通用性强和便于维修等优点,而且具有规定的电气强度、足够的机械强度、良好的热稳定性,并能承受短路时的瞬间过热。
本发明实施例提供了一种配电箱装置。在本发明实施例中,在配电箱内设置通信装置,使得可以将配电箱的电力信息通过该通信装置传输到外部设备,从而不需要派人员去配电箱所在的位置人工记录配电箱中的电力信息,解决了相关技术中由于人工采集配电箱中的电力信息所导致的电力信息的采集效率较低的技术问题,提高了电力信息的采集效率。
还可以在配电箱中加入采集电路和电容等保护装置,当通过配电箱的电力线出现故障时,起到保护电力线的作用。
需要说明的是,对于前述的各装置实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方 式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述装置的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个装置或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或装置的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的装置可以是或者也可以不是物理上分开的,作为装置显示的部件可以是或者也可以不是物理装置,即可以位于一个地方,或者也可以分布到多个网络装置上。可以根据实际的需要选择其中的部分或者全部装置来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能装置可以集成在一个处理装置中,也可以是各个装置单独物理存在,也可以两个或两个以上装置集成在一个装置中。上述集成的装置既可以采用硬件的形式实现,也可以采用软件功能装置的形式实现。
上述集成的装置如果以软件功能装置的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、移动终端、服务器或者网络设备等)执行本发明各个实施例上述装置的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上上述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
在本发明实施例中,在配电箱内设置通信装置,使得可以将配电箱的电力信息通过该通信装置传输到外部设备,从而不需要派人员去配电箱所在的位置人工记录配电箱中的电力信息,解决了相关技术中由于人工采集配电箱中的电力信息所导致的电力信息的采集效率较低的技术问题,提高了电力信息的采集效率。

Claims (10)

  1. 一种配电箱,包括:
    多个计量装置,安装在所述配电箱内,每个所述计量装置的第一输出端用于输出电力信息;
    一个采集装置,包括:第二输出端,分别与每个所述计量装置的第一输入端连接,用于向每个所述第一输入端发送采集指令;第二输入端,与每个所述计量装置的所述第一输出端连接,用于采集所述计量装置的所述电力信息;
    一个通信装置,与所述采集装置连接,设置为将所述采集装置采集的电力信息发送到外部设备。
  2. 根据权利要求1所述的配电箱,其中,所述采集装置包括:
    处理器,通过串行接口或并行接口或以太网口与每个所述计量装置的所述第一输入端和所述第一输出端连接。
  3. 根据权利要求1或2所述的配电箱,其中,所述采集装置位于所述通信装置的内部。
  4. 根据权利要求1所述的配电箱,其中,所述通信装置包括:
    无线传输模块,与所述采集装置连接,设置为将所述采集装置采集的电力信息通过无线传输的方式发送到所述外部设备;或者
    有线传输模块,与所述采集装置连接,设置为将所述采集装置采集的电力信息通过有线传输的方式发送到所述外部设备。
  5. 根据权利要求4所述的配电箱,其中,所述无线传输模块包括:
    基带信号处理电路,与所述采集装置连接,设置为对所述采集装置采集的电力信息进行基带信号处理;
    射频发射电路,与所述基带信号处理电路连接,设置为将经所述基带信号处理得到的基带信号调制成射频信号发送到所述外部设备。
  6. 根据权利要求4所述的配电箱,其中,所述有线传输模块包括:
    以太网处理电路,与所述采集装置连接,设置为将所述采集装置采集的电力信息封装成符合以太网传输格式的数据包;
    以太网口,与以太网处理电路连接,设置为将所述数据包发送到所述外部设备。
  7. 根据权利要求1所述的配电箱,其中,还包括:
    采集电路,与所述配电箱的进线连接,设置为采集所述进线的电力参数;
    电容,与所述采集电路和配电箱的进线连接,设置为根据所述采集电路采集的电力参数调节所述进线的电力参数;
    告警装置,与所述采集电路连接,设置为在所述采集电路采集的电力参数出现故障时,发出告警。
  8. 根据权利要求7所述的配电箱,其中,所述采集电路与所述通信装置连接,所述采集装置还设置为通过所述通信装置将所述进线的电力参数发送到所述外部设备。
  9. 根据权利要求1所述的配电箱,其中,还包括:
    第一绝缘隔板,设置在所述多个计量装置和所述采集装置之间;和/或
    第二绝缘隔板,设置在所述采集装置和所述通信装置之间。
  10. 根据权利要求1所述的配电箱,其中,所述配电箱的进线与所述计量装置的第三输入端连接,所述配电箱的出线与所述计量装置的第三输出端连接,其中,所述出线设置在瓷瓶套管中。
PCT/CN2015/092460 2014-12-12 2015-10-21 配电箱 WO2016091015A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410769081.1 2014-12-12
CN201410769081.1A CN104505737A (zh) 2014-12-12 2014-12-12 配电箱

Publications (1)

Publication Number Publication Date
WO2016091015A1 true WO2016091015A1 (zh) 2016-06-16

Family

ID=52947467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092460 WO2016091015A1 (zh) 2014-12-12 2015-10-21 配电箱

Country Status (2)

Country Link
CN (1) CN104505737A (zh)
WO (1) WO2016091015A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547047A (zh) * 2017-10-19 2018-01-05 广东电网有限责任公司江门供电局 一种分布式光伏并网监测***及监测方法
CN111210362A (zh) * 2019-12-30 2020-05-29 国网北京市电力公司 数据采集器的选择方法、装置、存储介质和处理器
CN114500512A (zh) * 2022-01-29 2022-05-13 昆明易云电力技术有限公司 基于区块链人工智能的台区应用技术

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505737A (zh) * 2014-12-12 2015-04-08 国家电网公司 配电箱
CN109406871A (zh) * 2018-09-07 2019-03-01 国网安徽省电力有限公司淮南供电公司 一种环网柜内置计量***的数据传送方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013177623A8 (en) * 2012-05-30 2014-06-26 Energy Saving Systems Pty Ltd A control module and control system for controlling electrical power supply to a load-side electrical distribution network
CN203859389U (zh) * 2014-04-28 2014-10-01 南京鼎牌电器有限公司 配电箱及电网智能配电监控设备
CN204243535U (zh) * 2014-12-12 2015-04-01 国家电网公司 配电箱
CN104505737A (zh) * 2014-12-12 2015-04-08 国家电网公司 配电箱

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201340969Y (zh) * 2009-01-14 2009-11-04 江门市集雅电器有限公司 远程控制智能综合配电箱
CN202103478U (zh) * 2010-09-09 2012-01-04 郑州博源电器成套设备有限公司 智能综合配电箱
CN104158285A (zh) * 2013-05-16 2014-11-19 北京中科泛美科技有限公司 一种用于用电终端的用电监控***
CN204243532U (zh) * 2014-12-12 2015-04-01 国家电网公司 配电箱

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013177623A8 (en) * 2012-05-30 2014-06-26 Energy Saving Systems Pty Ltd A control module and control system for controlling electrical power supply to a load-side electrical distribution network
CN203859389U (zh) * 2014-04-28 2014-10-01 南京鼎牌电器有限公司 配电箱及电网智能配电监控设备
CN204243535U (zh) * 2014-12-12 2015-04-01 国家电网公司 配电箱
CN104505737A (zh) * 2014-12-12 2015-04-08 国家电网公司 配电箱

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547047A (zh) * 2017-10-19 2018-01-05 广东电网有限责任公司江门供电局 一种分布式光伏并网监测***及监测方法
CN111210362A (zh) * 2019-12-30 2020-05-29 国网北京市电力公司 数据采集器的选择方法、装置、存储介质和处理器
CN111210362B (zh) * 2019-12-30 2023-07-14 国网北京市电力公司 数据采集器的选择方法、装置、存储介质和处理器
CN114500512A (zh) * 2022-01-29 2022-05-13 昆明易云电力技术有限公司 基于区块链人工智能的台区应用技术

Also Published As

Publication number Publication date
CN104505737A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2016091015A1 (zh) 配电箱
CN103647293A (zh) 低压台区工况监测与三相负荷平衡自动调整***
CN104701986A (zh) 一种箱式变电站智能型终端
CN104135071A (zh) 一种多功能低压智能开关
CN201562961U (zh) 交流发电机中性点综合柜
CN208283494U (zh) 一种基于一二次融合式故障隔离智能测控装置
CN203813519U (zh) 一组集中控制智能配电柜
CN204243532U (zh) 配电箱
CN204481573U (zh) 一种低压馈线单元负荷可定制电力智能终端
CN214755733U (zh) 智慧式建筑工地用的成套设备接线***
CN204243535U (zh) 配电箱
Atmaja et al. Smart Grid communication applications: measurement equipment and networks architecture for data and energy flow
CN204992785U (zh) 一种带故障预警和诊断功能的低压配电网监控***
CN208955747U (zh) 智能配变终端监测***
CN203942491U (zh) 一种光伏阵列汇流箱
CN208316308U (zh) 集成光伏并网升压站***
CN203193389U (zh) 一种可定制低压大用户智能用电装置
CN204992260U (zh) 单电源供电可扩展不重复固定式计量设备
CN202534960U (zh) 一种终端型箱式变电***
CN109787353A (zh) 农网台区变测控装置
CN205103343U (zh) 一种电路测量保护***
CN210724691U (zh) 一种光伏电站监控平台
CN208738849U (zh) 一种带保护功能的三相不平衡自动调节装置
CN108110896A (zh) 电力监测***、方法、终端、及计算机可读存储介质
CN219247541U (zh) 一种可远程通信的综合配电箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867268

Country of ref document: EP

Kind code of ref document: A1