WO2016088812A1 - Silicone particles, sealing agent for liquid crystal dropping methods, and liquid crystal display element - Google Patents

Silicone particles, sealing agent for liquid crystal dropping methods, and liquid crystal display element Download PDF

Info

Publication number
WO2016088812A1
WO2016088812A1 PCT/JP2015/083920 JP2015083920W WO2016088812A1 WO 2016088812 A1 WO2016088812 A1 WO 2016088812A1 JP 2015083920 W JP2015083920 W JP 2015083920W WO 2016088812 A1 WO2016088812 A1 WO 2016088812A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
silicone
weight
less
crystal display
Prior art date
Application number
PCT/JP2015/083920
Other languages
French (fr)
Japanese (ja)
Inventor
恭幸 山田
沙織 上田
秀幸 林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2015560472A priority Critical patent/JP6586015B2/en
Priority to KR1020227021825A priority patent/KR20220098044A/en
Priority to CN201580037716.1A priority patent/CN106537240B/en
Priority to KR1020167033723A priority patent/KR102414978B1/en
Publication of WO2016088812A1 publication Critical patent/WO2016088812A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process

Definitions

  • the present invention relates to a silicone particle suitably used for a sealant such as a sealant for a liquid crystal dropping method. Moreover, this invention relates to the sealing compound for liquid crystal dropping methods, and a liquid crystal display element using the said silicone particle.
  • the liquid crystal display device manufacturing method can shorten the tact time, and it is easy to optimize the amount of liquid crystal used. Therefore, it has replaced the liquid crystal dropping method using a photo-curing and thermo-curing sealant. It's getting on.
  • liquid crystal dropping method first, a sealing agent is applied to one of two transparent substrates with electrodes by dispensing to form a frame-shaped seal pattern. Next, with the sealant in an uncured state, liquid crystal microdrops are dropped on the entire surface of the transparent substrate frame, and the other transparent substrate is immediately overlaid, and the sealant is irradiated with light such as ultraviolet rays and temporarily cured. I do. Thereafter, the sealant temporarily cured at the time of liquid crystal annealing is heated to be fully cured, thereby forming a seal portion and manufacturing a liquid crystal display element. If the transparent substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency. In recent years, this liquid crystal dropping method has become the mainstream of manufacturing methods for liquid crystal display elements.
  • narrow frame design the seal portion may be disposed under the wiring due to the narrowing of the frame.
  • the sealing agent used in the liquid crystal dropping method is required to have a property of being able to bond the members on both sides at an appropriate interval and absorb an impact with a uniform thickness. For this reason, a particle
  • Patent Documents 1 and 2 Such a sealing agent is disclosed in, for example, Patent Documents 1 and 2 below.
  • Patent Documents 1 and 2 describe using rubber powder such as silicone rubber powder as the particles.
  • Patent Document 3 discloses silicone particles produced using polyvinyl alcohol as a dispersion stabilizer as particles for use as a modifying additive.
  • the liquid crystal may be contaminated due to the silicone rubber powder.
  • the characteristics of a material called silicone due to the characteristics of a material called silicone, moisture permeability increases, and unevenness in liquid crystal display may occur.
  • the silicone particles as described in Patent Document 3 cannot be diverted from the viewpoint of physical properties in order to control the interval between resin members with high accuracy or to relieve impact.
  • An object of the present invention is to provide silicone particles that can reduce moisture permeability. Moreover, the objective of this invention is providing the sealing compound for liquid crystal dropping methods, and a liquid crystal display element using the said silicone particle.
  • a sealant for a liquid crystal dropping method that is cured by heating, has a particle diameter of 0.1 ⁇ m or more and 100 ⁇ m or less, and covers the silicone particle body and the surface of the silicone particle body
  • the organic polymer has a weight average molecular weight of 13,000 or more and 400,000 or less, and the organic polymer has a hydroxyl group (silicone particles used for a sealing agent for liquid crystal dropping method).
  • the compression elastic modulus when compressed by 10% is 100 N / mm 2 or less, and the compression recovery rate is 30% or more. It is.
  • the particle diameter is 0.1 ⁇ m or more and 100 ⁇ m or less
  • the silicone particle main body, and the organic polymer covering the surface of the silicone particle main body, and the weight of the organic polymer Silicone having an average molecular weight of 13,000 or more and 400000 or less, the organic polymer having a hydroxyl group, a compression elastic modulus of 10 N / mm 2 or less when compressed by 10%, and a compression recovery rate of 30% or more Particles are provided.
  • the organic polymer is polyvinyl alcohol or a cellulose derivative.
  • the silicone particle preferably does not contain a platinum catalyst or contains a platinum catalyst at 100 ppm or less, and more preferably does not contain a platinum catalyst.
  • the organic polymer is polyvinyl alcohol
  • the polymerization degree of the polyvinyl alcohol is 100 or more and 4000 or less
  • the saponification degree of the polyvinyl alcohol is 70 mol% or more, 95 mol% or less.
  • the material of the silicone particle body is an organopolysiloxane.
  • the material of the silicone particle body is a hydrolytic condensate of silane alkoxide.
  • the silane alkoxide includes dialkoxysilane.
  • the hydrolyzed condensate of the silane alkoxide is a monoalkoxysilane in an amount of 0% by weight to 20% by weight and a dialkoxysilane of 70% by weight or more in 100% by weight of the silane alkoxide. , 99.9% by weight or less, and a hydrolysis-condensation product of silane alkoxide containing trialkoxysilane and tetraalkoxysilane in total of 0.1% by weight to 30% by weight.
  • the silane alkoxide includes a silane alkoxide having a polymerizable functional group.
  • the silicone particle includes a light shielding agent.
  • a sealing agent for liquid crystal dropping method comprising a thermosetting component and silicone particles used for the above-described sealing agent for liquid crystal dropping method.
  • the sealant does not contain a photocurable component.
  • a first liquid crystal display element member, a second liquid crystal display element member, the first liquid crystal display element member, and the second liquid crystal display element member are provided.
  • a seal portion that seals the outer periphery of the first liquid crystal display element member and the second liquid crystal display element member in an opposed state, and the first liquid crystal display element inside the seal portion Liquid crystal disposed between the member for liquid crystal display and the member for the second liquid crystal display element, and the sealing portion is a thermosetting product of a sealing agent for liquid crystal dropping method, and the sealing agent for liquid crystal dropping method
  • the liquid crystal display element containing the silicone particle used for the thermosetting component and the sealing compound for liquid crystal dropping methods mentioned above is provided.
  • the silicone particles according to the present invention When the silicone particles according to the present invention are used in a sealing agent for a liquid crystal dropping method that is cured by heating, the silicone particles according to the present invention have a particle diameter of 0.1 ⁇ m to 100 ⁇ m, An organic polymer covering the surface of the silicone particle body, the organic polymer has a weight average molecular weight of 13,000 or more and 400,000 or less, and the organic polymer has a hydroxyl group, so that moisture permeability is lowered. be able to.
  • the silicone particles according to the present invention have a particle diameter of 0.1 ⁇ m or more and 100 ⁇ m or less, and have a silicone particle main body and an organic polymer covering the surface of the silicone particle main body, and the weight average of the organic polymer Since the molecular weight is 13,000 or more and 400,000 or less, the organic polymer has a hydroxyl group, the compression elastic modulus when compressed by 10% is 100 N / mm 2 or less, and the compression recovery rate is 30% or more. Wetness can be lowered.
  • FIG. 1 is a cross-sectional view showing a liquid crystal display element using silicone particles according to an embodiment of the present invention.
  • silicone particles The silicone particles according to the present invention are suitably used for a sealing agent for liquid crystal dropping method that is cured by heating.
  • the particle size of the silicone particles according to the present invention is 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the silicone particles according to the present invention have a silicone particle body and an organic polymer that covers the surface of the silicone particle body.
  • the organic polymer may cover the entire surface of the silicone particle main body, or may cover a part of the surface of the silicone particle main body.
  • the weight average molecular weight of the organic polymer is 13,000 or more and 400,000 or less.
  • the organic polymer has a hydroxyl group.
  • the particle size of the silicone particles according to the present invention is 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the silicone particles according to the present invention have a silicone particle body and an organic polymer that covers the surface of the silicone particle body.
  • the organic polymer may cover the entire surface of the silicone particle main body, or may cover a part of the surface of the silicone particle main body.
  • the weight average molecular weight of the organic polymer is 13,000 or more and 400,000 or less.
  • the organic polymer has a hydroxyl group.
  • the compression modulus (10% K value) when the silicone particles are compressed by 10% is preferably 100 N / mm 2 or less.
  • the compression recovery rate of the silicone particles is 30% or more.
  • the moisture permeability of the silicone particle portion can be lowered.
  • the silicone particles according to the present invention having such a configuration can be suitably used for sealing agents other than liquid crystal dropping method sealing agents, gap materials, and stress relaxation materials.
  • silicone particles By fixing silicone particles to a liquid crystal display element member or by retaining it in a cured product of a thermosetting compound, it is excellent in adhesiveness and can prevent the occurrence of seal break and liquid crystal contamination.
  • a sealing agent such as an agent can be obtained.
  • the compression modulus (10% K value) when the silicone particles are compressed by 10% is preferably 100 N / mm 2 or less, more preferably 50 N / mm 2 or less.
  • the 10% K value is less than or equal to the above upper limit, the silicone particles are easily deformed, so that the initial seal break is further suppressed.
  • the lower limit of the 10% K value of the silicone particles is not particularly limited.
  • the compression recovery rate of the silicone particles is preferably 30% or more, more preferably 40% or more, and still more preferably 60% or more. From the viewpoint of suppressing the spring back, the compression recovery rate of the silicone particles is preferably less than 100%.
  • the compression elastic modulus (10% K value) of the silicone particles can be measured as follows.
  • the silicone particles are compressed under the conditions of 25 ° C., compression speed of 0.3 mN / sec, and maximum test load of 20 mN on the end face of a cylindrical indenter (diameter: 100 ⁇ m, made of diamond).
  • the load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • the compression recovery rate of the silicone particles can be measured as follows.
  • ⁇ Spray silicone particles on the sample stage.
  • a load reverse load value
  • unloading is performed up to the origin load value (0.40 mN).
  • the load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation.
  • the load speed is 0.33 mN / sec.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • Compression recovery rate (%) [(L1-L2) / L1] ⁇ 100
  • L1 Compression displacement from the load value for origin to the reverse load value when applying a load
  • L2 Unloading displacement from the reverse load value to the load value for origin when releasing the load
  • the particle size of the silicone particles is 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the silicone particles can be suitably used for a sealing agent such as a liquid crystal dropping method sealing agent.
  • the particle size of the silicone particles is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the interval between the liquid crystal display element members becomes appropriate, the shock absorption becomes high, and the aggregated silicone particles are hardly formed.
  • the CV value of the particle diameter of the silicone particles is preferably 40% or less.
  • the aspect ratio of the silicone particles is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1.2 or less.
  • the aspect ratio indicates a major axis / minor axis.
  • the silicone particles preferably do not contain a platinum catalyst or contain a platinum catalyst at 100 ppm or less.
  • a platinum catalyst When using a platinum catalyst, the lower the platinum catalyst content, the better. When the content of the platinum catalyst is large, the liquid crystal contamination prevention property tends to decrease.
  • the platinum catalyst content is more preferably 80 ppm or less, still more preferably 60 ppm or less, still more preferably 50 ppm or less, still more preferably 40 ppm or less, particularly preferably 30 ppm or less, and particularly preferably 20 ppm or less, most preferably 10 ppm or less. It is.
  • silicone particles are often obtained by polymerizing monomers using a platinum catalyst.
  • the platinum catalyst is contained inside, and the platinum catalyst content exceeds 100 ppm.
  • silicone particles obtained without using a platinum catalyst generally do not contain a platinum catalyst.
  • Silicone particle body The material of the silicone particle body is preferably an organopolysiloxane, and more preferably a silane alkoxide. Each of the organopolysiloxane and the silane alkoxide may be used alone or in combination of two or more.
  • the silane alkoxide preferably contains silane alkoxide A represented by the following formula (1A) or silane alkoxide B represented by the following formula (1B).
  • the silane alkoxide may contain a silane alkoxide A represented by the following formula (1A) or may contain a silane alkoxide B represented by the following formula (1B).
  • R1 represents a hydrogen atom, a phenyl group or an alkyl group having 1 to 30 carbon atoms
  • R2 represents an alkyl group having 1 to 6 carbon atoms
  • n represents an integer of 0 to 2.
  • the plurality of R1s may be the same or different.
  • Several R2 may be the same and may differ.
  • R1 in the formula (1A) is an alkyl group having 1 to 30 carbon atoms
  • specific examples of R1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, an n-hexyl group, and a cyclohexyl group.
  • This alkyl group preferably has 10 or less carbon atoms, more preferably 6 or less.
  • the alkyl group includes a cycloalkyl group.
  • R2 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
  • silane alkoxide A examples include tetramethoxysilane, tetraethoxysilane, triethylsilane, t-butyldimethylsilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isopropyltrimethoxy.
  • Silane isobutyltrimethoxysilane, cyclohexyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diisopropyldimethoxysilane And diphenyldimethoxysilane. Silane alkoxides other than these may be used.
  • R1 is a hydrogen atom, a phenyl group, an alkyl group having 1 to 30 carbon atoms, an organic group having 1 to 30 carbon atoms having a polymerizable double bond, or an epoxy group having 1 to 30 carbon atoms.
  • R2 represents an alkyl group having 1 to 6 carbon atoms
  • n represents an integer of 0 to 2.
  • the plurality of R1s may be the same or different.
  • Several R2 may be the same and may differ.
  • At least one R1 is an organic group having 1 to 30 carbon atoms having a polymerizable double bond or an organic group having 1 to 30 carbon atoms having an epoxy group.
  • At least one R1 is preferably a vinyl group, a styryl group or a (meth) acryloxy group, more preferably a vinyl group or a (meth) acryloxy group, and even more preferably a vinyl group.
  • R1 in the formula (1B) is an alkyl group having 1 to 30 carbon atoms
  • specific examples of R1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, an n-hexyl group, and a cyclohexyl group.
  • This alkyl group preferably has 10 or less carbon atoms, more preferably 6 or less.
  • the alkyl group includes a cycloalkyl group.
  • Examples of the polymerizable double bond include a carbon-carbon double bond.
  • R1 is an organic group having 1 to 30 carbon atoms having a polymerizable double bond
  • specific examples of R1 include vinyl group, styryl group, allyl group, isopropenyl group, and 3- (meth) acrylic group.
  • Examples include a loxyalkyl group.
  • Examples of the styryl group include p-styryl group, o-styryl group, and m-styryl group.
  • Examples of the (meth) acryloxyalkyl group include a (meth) acryloxymethyl group, a (meth) acryloxyethyl group, and a (meth) acryloxypropyl group.
  • the number of carbon atoms of the organic group having 1 to 30 carbon atoms having a polymerizable double bond is preferably 2 or more, preferably 30 or less, more preferably 10 or less.
  • (meth) acryloxy means methacryloxy or acryloxy.
  • R2 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
  • the silane alkoxide preferably contains dialkoxysilane.
  • the hydrolyzed condensate of the silane alkoxide is not less than 0% by weight (unused) of monoalkoxysilane in 100% by weight of silane alkoxide, 20 Hydrolysis of a silane alkoxide containing not more than 10% by weight, dialkoxysilane not less than 70% by weight and not more than 99.9% by weight, and trialkoxysilane and tetraalkoxysilane in total of not less than 0.1% by weight and not more than 30% by weight Condensate is preferable, and in 100% by weight of silane alkoxide, 0% by weight (unused) of monoalkoxysilane, 15% by weight or less, 75% by weight or more of dialkoxysilane, 99% by weight or less, and trialkoxysilane And tetraalkoxysi
  • the silane alkoxide preferably includes a silane alkoxide having a polymerizable functional group, and more preferably includes a silane alkoxide having a polymerizable double bond.
  • the silane alkoxide having a polymerizable double bond include vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxydimethylvinylsilane, dimethoxyethylvinylsilane, diethoxymethyldivinylsilane, diethoxyethylvinylsilane, ethylmethyldisilane.
  • cyclic siloxane may be used, and modified (reactive) silicone oil may be used.
  • modified silicone oil include one-end modified silicone oil, both-end silicone oil, and side chain type silicone oil.
  • an oligomer is obtained by condensing the silane alkoxide in advance, and then a polymerization reaction is performed by a suspension polymerization method, a dispersion polymerization method, a miniemulsion polymerization method, an emulsion polymerization method, or the like. And a method for producing a silicone particle body.
  • Organic polymer examples include polyvinyl alcohol and cellulose derivatives. As for the said organic polymer, only 1 type may be used and 2 or more types may be used together.
  • the organic polymer is preferably polyvinyl alcohol or a cellulose derivative.
  • the organic polymer is preferably polyvinyl alcohol, and is preferably a cellulose derivative.
  • the organic polymer is preferably polyvinyl alcohol.
  • the degree of polymerization of the polyvinyl alcohol is preferably 100 or more, more preferably 350 or more, still more preferably 400 or more, particularly preferably 1000 or more, preferably 4000 or less, more preferably Is 3000 or less, more preferably 2500 or less.
  • the saponification degree of the polyvinyl alcohol is preferably 70 mol% or more, more preferably 75 mol% or more, still more preferably 80 mol% or more, preferably 95 mol% or less, More preferably, it is 90 mol% or less.
  • the method of coating the surface of the silicone particle body with the organic polymer includes adding an organic polymer as a dispersing agent when forming the particles, and stirring and bonding the organic polymer in an aqueous organic polymer solution after the particles are synthesized. And the like.
  • the silicone particles may contain a light shielding agent.
  • the liquid crystal display element sealing agent can be suitably used as a light shielding sealant.
  • a liquid crystal display device manufactured using a sealing agent for liquid crystal display devices containing silicone particles containing a light-shielding agent has sufficient light-shielding properties, and thus has high contrast without light leakage, and excellent image display quality.
  • a liquid crystal display element having the above can be realized.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, and carbon black. Titanium black or carbon black is preferred.
  • titanium black and carbon black exhibit a sufficient effect even if they are not surface-treated.
  • Surface treated with titanium black whose surface was treated with an organic component such as a coupling agent or titanium black coated with inorganic components such as silicon oxide, titanium oxide, germanium oxide, aluminum oxide, zirconium oxide and magnesium oxide. Titanium black can also be used. Titanium black treated with an organic component is preferable because it can enhance insulation.
  • titanium black examples include 12S, 13M, 13M-C, 13R-N, and 14M-C (all manufactured by Mitsubishi Materials Corporation); Tilac D (manufactured by Ako Kasei Co., Ltd.) and the like.
  • Examples of the carbon black include ketjen black, acetylene black, channel black, thermal black, and furnace black.
  • the content of the light shielding agent is preferably 1% by weight or more, more preferably 10% by weight or more, still more preferably 30% by weight or more, preferably 70% by weight or less, more preferably 60%. % By weight or less, more preferably 40% by weight or less.
  • the content of the light shielding agent is not less than the above lower limit, sufficient light shielding properties can be obtained.
  • flexibility of a silicone particle can be maintained as content of the said light-shielding agent is below the said upper limit, and a seal break can be suppressed.
  • sealing agent for liquid crystal dropping method
  • the above-mentioned sealing agent for liquid crystal dropping method (hereinafter sometimes abbreviated as sealing agent) is cured by heating.
  • the sealing agent includes a thermosetting component and the silicone particles.
  • the sealing agent may or may not contain a photocurable component.
  • the sealing agent may be irradiated with light for curing, or may not be irradiated with light.
  • the thermosetting component preferably contains a thermosetting compound and a polymerization initiator or a thermosetting agent.
  • a polymerization initiator and a thermosetting agent may be used in combination.
  • the content of the silicone particles is preferably 3 parts by weight or more, more preferably 5 parts by weight or more, preferably 70 parts by weight or less, more preferably 50 parts by weight or less with respect to 100 parts by weight of the thermosetting compound. It is. When the content of the silicone particles is not less than the above lower limit and not more than the above upper limit, the adhesiveness of the obtained liquid crystal dropping method sealing agent is further improved.
  • thermosetting compound examples include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
  • oxetane compounds examples include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
  • oxetane compounds examples include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
  • the said thermosetting compound only 1 type may be used and 2 or more types may be used together.
  • the thermosetting compound preferably contains a (meth) acrylic compound, and more preferably contains an epoxy (meth) acrylate.
  • the “(meth) acrylic compound” means a compound having a (meth) acryloyl group.
  • epoxy (meth) acrylate means a compound obtained by reacting all epoxy groups in an epoxy compound with (meth) acrylic acid.
  • (Meth) acryl means one or both of “acryl” and “methacryl”
  • (meth) acryloyl means one or both of “acryloyl” and “methacryloyl”.
  • “Acrylate” means one or both of "acrylate” and "methacrylate”.
  • Examples of the epoxy compound as a raw material for synthesizing the epoxy (meth) acrylate include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin. , Hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, orthocresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, Dripping down phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resins, glycidyl ester compounds, and bisphenol A type episulfide resins.
  • Examples of commercially available products of the bisphenol A type epoxy resin include jER828EL, jER1001, and jER1004 (all manufactured by Mitsubishi Chemical Corporation); Epicron 850-S (manufactured by DIC Corporation) and the like.
  • Examples of commercially available products of the bisphenol F type epoxy resin include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available products of the above bisphenol S type epoxy resin include Epicron EXA1514 (manufactured by DIC).
  • Examples of the commercially available 2,2′-diallylbisphenol A type epoxy resin include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available hydrogenated bisphenol type epoxy resins include Epicron EXA7015 (manufactured by DIC).
  • Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
  • Examples of commercially available resorcinol-type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
  • biphenyl type epoxy resins examples include jERYX-4000H (manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • diphenyl ether type epoxy resins examples include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • naphthalene type epoxy resins examples include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC Corporation), and the like.
  • phenol novolac epoxy resins examples include Epicron N-770 (manufactured by DIC).
  • Examples of commercially available ortho cresol novolac epoxy resins include Epicron N-670-EXP-S (manufactured by DIC).
  • Examples of commercially available dicyclopentadiene novolac epoxy resins include Epicron HP7200 (manufactured by DIC).
  • biphenyl novolac epoxy resins examples include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
  • naphthalene phenol novolac epoxy resins examples include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available products of the above glycidylamine type epoxy resin include jER630 (manufactured by Mitsubishi Chemical Corporation); Epicron 430 (manufactured by DIC Corporation); TETRAD-X (manufactured by Mitsubishi Gas Chemical Company) and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available products of the bisphenol A type episulfide resin include jERYL-7000 (manufactured by Mitsubishi Chemical Corporation).
  • epoxy resins include, for example, YDC-1312, YSLV-80XY, and YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.); XAC4151 (manufactured by Asahi Kasei Co., Ltd.); EXA-7120 (manufactured by DIC); TEPIC (manufactured by Nissan Chemical Co., Ltd.) and the like.
  • Examples of commercially available epoxy (meth) acrylates include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3702 1010, EA-1020, EA-5323, EA-5520, EA-CHD, and EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.); Epoxy ester M-600A, Epoxy ester 40EM, Epoxy ester 70PA, Epoxy ester 200PA , Epoxy ester 80MFA, epoch Siester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, and Epoxy ester 400EA (all manufactured by Kyoeisha
  • Examples of other (meth) acrylic compounds other than the above epoxy (meth) acrylate include, for example, ester compounds obtained by reacting (meth) acrylic acid with a compound having a hydroxyl group, and (meth) acrylic having an isocyanate compound having a hydroxyl group. Examples thereof include urethane (meth) acrylate obtained by reacting an acid derivative.
  • ester compound obtained by reacting the (meth) acrylic acid with a compound having a hydroxyl group any of a monofunctional ester compound, a bifunctional ester compound, and a trifunctional or higher functional ester compound may be used. .
  • Examples of the monofunctional ester compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and isobutyl (meth) ) Acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, Methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, ethyl carbitol (Meth) acrylate, phenoxy
  • bifunctional ester compound examples include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 Nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) Acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate Rate, propylene oxide-added bisphenol A di (meth) acrylate,
  • trifunctional or higher functional ester compound examples include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylolpropane tri (meth).
  • the urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. be able to.
  • Examples of the isocyanate compound that is a raw material of the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4.
  • MDI '-Diisocyanate
  • hydrogenated MDI polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris ( Isocyanatophenyl) thiophosphate, tetramethylxylene diisocyanate, and 1,6,10-undecant Isocyanate, and the like.
  • Examples of the isocyanate compound that is the raw material of the urethane (meth) acrylate include polyols such as ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, or polycaprolactone diol. And chain-extended isocyanate compounds obtained by reaction with excess isocyanate can also be used.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group as a raw material of the urethane (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • 2-hydroxybutyl (meth) acrylate divalents such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol
  • divalents such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol
  • Mono (meth) acrylates of alcohol mono (meth) acrylates and di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane, and glycerin
  • epoxy (meta) such as bisphenol A type epoxy acrylate Acrylate, and the like.
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, and M-1600 (all manufactured by Toagosei Co., Ltd.); EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803 , EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL220, and EBECRYL9200 Resin UN- 255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, and Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.); U-122P, U-108A, U-340P, U-4HA U-6HA, U-324A, U
  • the (meth) acrylic compound preferably has a hydrogen-bonding unit such as an —OH group, —NH— group, and —NH 2 group.
  • the (meth) acrylic compound preferably has two or three (meth) acryloyl groups.
  • the heatable compound may contain an epoxy compound.
  • Examples of the epoxy compound include an epoxy compound that is a raw material for synthesizing the epoxy (meth) acrylate and a partially (meth) acryl-modified epoxy compound.
  • the partial (meth) acryl-modified epoxy compound means a compound having at least one epoxy group and one (meth) acryloyl group.
  • the partial (meth) acryl-modified epoxy compound can be obtained, for example, by reacting (meth) acrylic acid with a part of two or more epoxy groups in a compound having two or more epoxy groups.
  • Examples of commercially available partial (meth) acrylic-modified epoxy compounds include KRM8287 (manufactured by Daicel Ornex).
  • the epoxy group is preferably 20 in a total of 100 mol% of the (meth) acryloyl group and the epoxy group in the whole thermosetting compound. It is at least mol%, preferably at most 50 mol%.
  • the epoxy group is less than or equal to the above upper limit, the liquid crystal display element sealant is less soluble in liquid crystals and liquid crystal contamination is less likely to occur, and the display performance of the liquid crystal display element is further improved.
  • polymerization initiator examples include radical polymerization initiators and cationic polymerization initiators. As for the said polymerization initiator, only 1 type may be used and 2 or more types may be used together.
  • radical polymerization initiator examples include a photo radical polymerization initiator that generates radicals by light irradiation, and a thermal radical polymerization initiator that generates radicals by heating.
  • the above radical polymerization initiator has a markedly faster curing rate than the thermosetting agent. For this reason, by using a radical polymerization initiator, it is possible to suppress the occurrence of seal breaks and liquid crystal contamination, and also to suppress the spring back that is easily generated by the silicone particles.
  • photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, and thioxanthone.
  • Photo radical polymerization initiator examples include, for example, IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Rusilin TPO (all manufactured by BASF Methyl Benin, Inc. Examples include ether and benzoin isopropyl ether (both manufactured by Tokyo Chemical Industry Co., Ltd.).
  • thermal radical polymerization initiator examples include azo compounds and organic peroxides. Azo compounds are preferred, and polymer azo initiators comprising polymer azo compounds are more preferred.
  • the polymer azo compound means a compound having an azo group, generating a radical capable of curing a (meth) acryloyloxy group by heat, and having a number average molecular weight of 300 or more.
  • the number average molecular weight of the polymeric azo initiator is preferably 1000 or more, more preferably 5000 or more, still more preferably 10,000 or more, preferably 300,000 or less, more preferably 100,000 or less, and still more preferably 90,000 or less. It is. When the number average molecular weight of the polymeric azo initiator is not less than the above lower limit, the polymeric azo initiator is unlikely to adversely affect the liquid crystal. When the number average molecular weight of the polymer azo initiator is not more than the above upper limit, mixing with the thermosetting compound becomes easy.
  • the above-mentioned number average molecular weight is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Examples of the column used for GPC measurement include Shodex LF-804 (manufactured by Showa Denko KK).
  • polymer azo initiator examples include a polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group preferably has a polyethylene oxide structure.
  • examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid).
  • VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, and V-501 for example. All of them are manufactured by Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • a photocationic polymerization initiator As the cationic polymerization initiator, a photocationic polymerization initiator can be suitably used.
  • the photocationic polymerization initiator generates a protonic acid or a Lewis acid when irradiated with light.
  • the kind of said photocationic polymerization initiator is not specifically limited, An ionic photoacid generation type may be sufficient and a nonionic photoacid generation type may be sufficient.
  • photocationic polymerization initiator examples include onium salts such as aromatic diazonium salts, aromatic halonium salts, and aromatic sulfonium salts; iron-allene complexes; titanocene complexes; organometallic complexes such as arylsilanol-aluminum complexes, etc. Is mentioned.
  • photocationic polymerization initiators examples include Adekaoptomer SP-150 and Adekaoptomer SP-170 (both manufactured by ADEKA).
  • the content of the polymerization initiator is preferably 0.1 parts by weight or more, more preferably 1 part by weight or more, preferably 30 parts by weight or less, more preferably 10 parts by weight with respect to 100 parts by weight of the thermosetting compound. It is 5 parts by weight or less, more preferably 5 parts by weight or less.
  • the sealing agent for liquid crystal display elements can be sufficiently cured.
  • the storage stability of the sealing agent for liquid crystal display elements is increased.
  • thermosetting agent examples include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, and acid anhydrides.
  • Organic acid hydrazide solid at 23 ° C. is preferably used.
  • the said thermosetting agent only 1 type may be used and 2 or more types may be used together.
  • Examples of the organic acid hydrazide solid at 23 ° C. include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, and malonic acid dihydrazide. It is done.
  • Examples of commercial products of organic acid hydrazide solid at 23 ° C. include Amicure VDH and Amicure UDH (all manufactured by Ajinomoto Fine Techno Co.); SDH, IDH, ADH, MDH (all manufactured by Otsuka Chemical Co., Ltd.) Is mentioned.
  • the content of the thermosetting agent with respect to 100 parts by weight of the thermosetting compound is preferably 1 part by weight or more, preferably 50 parts by weight or less, more preferably 30 parts by weight or less.
  • the content of the thermosetting agent is not less than the above lower limit, the liquid crystal display element sealing agent can be sufficiently thermoset.
  • the content of the thermosetting agent is not more than the above upper limit, the viscosity of the sealing agent for liquid crystal display elements does not become too high, and the coating property becomes good.
  • the liquid crystal display element sealing agent preferably contains a curing accelerator.
  • the sealing agent can be sufficiently cured without heating at a high temperature.
  • Examples of the curing accelerator include polyvalent carboxylic acids having an isocyanuric ring skeleton and epoxy resin amine adducts. Specific examples include tris (2-carboxymethyl) isocyanurate, tris (2-carboxyl). And ethyl) isocyanurate, tris (3-carboxypropyl) isocyanurate, and bis (2-carboxyethyl) isocyanurate.
  • the content of the curing accelerator is preferably 0.1 parts by weight or more and preferably 10 parts by weight or less with respect to 100 parts by weight of the thermosetting compound.
  • the content of the curing accelerator is not less than the above lower limit, the liquid crystal display element sealing agent is sufficiently cured, and heating at a high temperature is not necessary for curing. Adhesiveness of the sealing agent for liquid crystal display elements becomes it high that content of the said hardening accelerator is below the said upper limit.
  • the liquid crystal display element sealing agent preferably contains a filler for the purpose of improving the viscosity, improving the adhesion due to the stress dispersion effect, improving the linear expansion coefficient, and improving the moisture resistance of the cured product.
  • the filler examples include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, water Inorganic fillers such as aluminum oxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite, activated clay, and aluminum nitride, polyester particles, polyurethane particles, vinyl polymer particles, acrylic polymer particles, and Examples thereof include organic fillers such as core-shell acrylate copolymer particles. As for the said filler, only 1 type may be used and 2 or more types may be used together.
  • the content of the filler is preferably 10% by weight or more, more preferably 20% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less, in 100% by weight of the sealing material for liquid crystal display elements. It is. When the content of the filler is not less than the above lower limit, effects such as improvement in adhesiveness are sufficiently exhibited. When the content of the filler is not more than the above upper limit, the viscosity of the sealing agent for liquid crystal display elements does not become too high, and the coating property is improved.
  • the liquid crystal display element sealing agent preferably contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • a silane coupling agent only 1 type may be used and 2 or more types may be used together.
  • the silane coupling agent is excellent in the effect of improving the adhesion to the substrate and the like, and can be prevented from flowing out of the curable resin into the liquid crystal by chemically bonding with the curable resin.
  • -Phenyl-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane or 3-isocyanatopropyltrimethoxysilane is preferred.
  • the content of the silane coupling agent is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and preferably 20% by weight or less. More preferably, it is 10% by weight or less.
  • blending a silane coupling agent is fully exhibited as content of the said silane coupling agent is more than the said minimum.
  • the content of the silane coupling agent is not more than the above upper limit, the contamination of the liquid crystal by the liquid crystal display element sealing agent is further suppressed.
  • the liquid crystal display element sealing agent may contain a light shielding agent.
  • the liquid crystal display element sealing agent can be suitably used as a light shielding sealant.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Titanium black is preferred.
  • a liquid crystal display device manufactured using a sealing agent for liquid crystal display devices containing a light-shielding agent has sufficient light-shielding properties, and thus has high contrast without light leakage, and has excellent image display quality. An element can be realized.
  • the above-mentioned titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm.
  • the titanium black has a property of providing light shielding properties to the sealing agent for liquid crystal display elements by sufficiently shielding light having a wavelength in the visible light region, and has a property of transmitting light having a wavelength in the vicinity of the ultraviolet region. .
  • the insulating property of the light-shielding agent contained in the liquid crystal display element sealing agent is preferably high, and titanium black is suitable as the light-shielding agent having high insulation.
  • the optical density (OD value) per 1 ⁇ m of the titanium black is preferably 3 or more, more preferably 4 or more. The higher the light-shielding property of the titanium black, the better.
  • the OD value of the titanium black is not particularly limited, but the OD value is usually 5 or less.
  • titanium black and carbon black exhibit a sufficient effect even if they are not surface-treated.
  • Surface treated with titanium black whose surface was treated with an organic component such as a coupling agent or titanium black coated with inorganic components such as silicon oxide, titanium oxide, germanium oxide, aluminum oxide, zirconium oxide and magnesium oxide. Titanium black can also be used. Titanium black treated with an organic component is preferable because it can enhance insulation.
  • titanium black examples include 12S, 13M, 13M-C, 13R-N, and 14M-C (all manufactured by Mitsubishi Materials Corporation); Tilac D (manufactured by Ako Kasei Co., Ltd.) and the like.
  • the specific surface area of the titanium black is preferably 13 m 2 / g or more, more preferably 15 m 2 / g or more, preferably 30 m 2 / g or less, more preferably 25 m 2 / g or less.
  • the volume resistance of the titanium black is preferably 0.5 ⁇ ⁇ cm or more, more preferably 1 ⁇ ⁇ cm or more, preferably 3 ⁇ ⁇ cm or less, more preferably 2.5 ⁇ ⁇ cm or less.
  • the primary particle size of the light shielding agent affects the distance between the two liquid crystal display element members.
  • the primary particle size of the light-shielding agent is preferably 1 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, preferably 5 ⁇ m or less, more preferably 200 nm or less, still more preferably 100 nm or less.
  • the primary particle diameter of the light-shielding agent is not less than the above lower limit, the viscosity and thixotropy of the sealing agent for liquid crystal display elements are hardly increased and workability is improved.
  • the primary particle diameter of the light-shielding agent is not more than the above upper limit, the applicability of the liquid crystal display element sealing agent is improved.
  • the content of the light-shielding agent is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 30% by weight or more, and preferably 80% by weight or less with respect to 100 parts by weight of the thermosetting compound. More preferably, it is 70 weight% or less, More preferably, it is 60 weight% or less.
  • the content of the light shielding agent is not less than the above lower limit, sufficient light shielding properties can be obtained.
  • the content of the light-shielding agent is not more than the above upper limit, the adhesion of the sealing agent for liquid crystal display elements and the strength after curing are increased, and the drawing property is further improved.
  • the liquid crystal display element sealing agent contains a stress relaxation agent, a reactive diluent, a thixotropic agent, a spacer, a curing accelerator, an antifoaming agent, a leveling agent, a polymerization inhibitor, and other additives as necessary. May be.
  • the method for producing the liquid crystal display element sealing agent is not particularly limited.
  • a thermosetting compound using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three-roller.
  • the viscosity of the sealing agent for liquid crystal display elements at 25 ° C. and 1 rpm is preferably 50,000 Pa ⁇ s or more, preferably 500,000 Pa ⁇ s or less, more preferably 400,000 Pa ⁇ s or less.
  • the viscosity is measured using an E-type viscometer.
  • a liquid crystal display element can be obtained using the sealing agent containing the silicone particles.
  • the first liquid crystal display element member, the second liquid crystal display element member, the first liquid crystal display element member, and the second liquid crystal display element member face each other.
  • a seal portion that seals the outer periphery of the first liquid crystal display element member and the second liquid crystal display element member, and the first liquid crystal display element member and the above inside the seal portion.
  • a liquid crystal disposed between the second liquid crystal display element member In this liquid crystal display element, a liquid crystal dropping method is applied, and the seal portion is a thermosetting product of a sealing agent such as a liquid crystal dropping method.
  • the seal portion is formed by thermally curing a sealant such as a liquid crystal dropping method sealant.
  • FIG. 1 is a cross-sectional view showing a liquid crystal display element using silicone particles according to an embodiment of the present invention.
  • a liquid crystal display element 1 shown in FIG. 1 has a pair of transparent glass substrates 2.
  • the transparent glass substrate 2 has an insulating film (not shown) on the opposing surface. Examples of the material for the insulating film include SiO 2 .
  • a transparent electrode 3 is formed on the insulating film in the transparent glass substrate 2. Examples of the material of the transparent electrode 3 include ITO.
  • the transparent electrode 3 can be formed by patterning, for example, by photolithography.
  • An alignment film 4 is formed on the transparent electrode 3 on the surface of the transparent glass substrate 2. Examples of the material of the alignment film 4 include polyimide.
  • the liquid crystal 5 is sealed between the pair of transparent glass substrates 2.
  • a plurality of spacer particles 7 are disposed between the pair of transparent glass substrates 2.
  • the space between the pair of transparent glass substrates 2 is regulated by the plurality of spacer particles 7.
  • a seal portion 6 is disposed between the outer peripheral edges of the pair of transparent glass substrates 2. Outflow of the liquid crystal 5 to the outside is prevented by the seal portion 6.
  • the seal portion 6 includes silicone particles 6A.
  • the member positioned above the liquid crystal 5 is a first liquid crystal display element member
  • the member positioned below the liquid crystal is a second liquid crystal display element member.
  • liquid crystal display element shown in FIG. 1 is an example, and the structure of the liquid crystal display element can be changed as appropriate.
  • the silicone particles of the present invention are preferably used in a sealing agent for a liquid crystal dropping method.
  • a gap for controlling the interval between members with high accuracy can also be suitably used as a stress relieving material that relieves the impact of the material and the connecting portion between the members.
  • Example 1 Production of Silicone Oligomer 31 parts by weight of dimethoxymethylvinylsilane was added to a 500 ml separable flask placed in a hot tub, and then 9 parts by weight of a 10% by weight potassium hydroxide aqueous solution was added. The temperature was raised to 40 ° C., and stirring was performed for about 1 hour. Thereafter, 225 parts by weight of dimethoxydimethylsilane and 50 parts by weight of methyltrimethoxysilane were added, and the reaction was carried out with stirring for 1 hour.
  • the mixture was cooled to 40 ° C., 1 part by weight of acetic acid was added, and the mixture was stirred for 10 minutes, and allowed to stand in a separatory funnel for 12 hours or more.
  • the lower layer after two-layer separation was taken out and purified with an evaporator to obtain a silicone oligomer.
  • ion-exchanged water 150 parts by weight of ion-exchanged water, 0.8 part by weight of polyoxyethylene alkylphenyl ether (emulsifier) and polyvinyl alcohol (polymerization degree: about 2000, saponification degree: 86.5 to 89 mol%, manufactured by Nippon Synthetic Chemical Co., Ltd.) 80 parts by weight of a 5% by weight aqueous solution of “GOHSENOL GH-20”) was mixed to prepare 230.8 parts by weight of an aqueous solution B.
  • polyoxyethylene alkylphenyl ether emulsifier
  • polyvinyl alcohol polymerization degree: about 2000, saponification degree: 86.5 to 89 mol%, manufactured by Nippon Synthetic Chemical Co., Ltd.
  • Example 2 Polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 86.5-89 mol%, “GOHSENOL GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to polyvinyl alcohol (degree of polymerization: about 500, degree of saponification: 86.5- Silicone particles were obtained in the same manner as in Example 1 except that the content was changed to 89 mol%, weight average molecular weight: about 25000, “GOHSENOL GL-05” manufactured by Nippon Synthetic Chemical Co., Ltd.
  • Example 3 Polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 86.5 to 89 mol%, “GOHSENOL GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 78.5 to Silicone particles were obtained in the same manner as in Example 1 except that 81.5 mol%, weight average molecular weight: about 105000, and “GOHSENOL KH-20” manufactured by Nippon Synthetic Chemical Co., Ltd. were used.
  • Example 4 Polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 86.5 to 89 mol%, “GOHSENOL GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.) and sodium carboxymethylcellulose (weight average molecular weight: 57000 to 69000, Daiichi Kogyo Seiyaku Co., Ltd.) Silicone particles were obtained in the same manner as in Example 1 except that the product was changed to “Serogen F-SB” manufactured by the company.
  • Example 5 A 500 ml separable flask placed in a hot tub is charged with 250 parts by weight of ion-exchanged water and 50 parts by weight of a 5% by weight aqueous solution of polyvinyl alcohol (“GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.), and decamethylcyclopentasiloxane.
  • GH-20 polyvinyl alcohol
  • Example 6 Polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 86.5 to 89 mol%, “GOHSENOL GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 98.5 to Silicone particles were obtained in the same manner as in Example 1 except that 99.4 mol%, weight average molecular weight: about 88800, and “GOHSENOL NH-20” manufactured by Nippon Synthetic Chemical Co., Ltd. were used.
  • Example 7 180 parts by weight of ion-exchanged water and 100 parts by weight of an aqueous solution of 5% by weight polyvinyl alcohol (“GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.) were mixed to obtain a mixed solution.
  • GH-20 polyvinyl alcohol
  • the above solution is added to the above mixed solution, emulsified using an SPG membrane having a pore size of 1 ⁇ m, the emulsion is put into a 500 ml separable flask installed in a hot tub, and reacted at 85 ° C. for 6 hours. Silicone particles were obtained.
  • sealing agent for liquid crystal dropping method 50 parts by weight of bisphenol A type epoxy methacrylate (thermosetting compound, “KRM7985” manufactured by Daicel Ornex) and 20 parts by weight of caprolactone-modified bisphenol A type epoxy acrylate (thermosetting compound, “EBECRYL 3708” manufactured by Daicel Ornex) 30 parts by weight of partially acryl-modified bisphenol E type epoxy resin (thermosetting compound, “KRM8276” manufactured by Daicel Ornex Co., Ltd.) and 2,2-dimethoxy-2-phenylacetophenone (photo radical polymerization initiator, BASF Japan) "IRGACURE 651”) 2 parts by weight, malonic acid dihydrazide (thermosetting agent, "MDH” manufactured by Otsuka Chemical Co., Ltd.) 10 parts by weight, the resulting silicone particles 30 parts by weight, silica (filler, manufactured by Admatechs) "Admafine SO-C2 ")
  • liquid crystal display elements 1 part by weight of spacer particles (“Micropearl SP-2050” manufactured by Sekisui Chemical Co., Ltd.) having an average particle diameter of 5 ⁇ m is uniformly dispersed by a planetary stirrer with respect to 100 parts by weight of the obtained sealing agent for liquid crystal display elements.
  • the obtained spacer-containing sealant was filled into a dispensing syringe (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.) and subjected to defoaming treatment. Then, the sealing agent was apply
  • JC-5001LA manufactured by Chisso Corporation
  • JC-5001LA manufactured by Chisso Corporation
  • the laminated cell was irradiated with 100 mW / cm 2 ultraviolet rays for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 1 hour to thermally cure the sealing agent, and a liquid crystal display element (cell gap 5 ⁇ m) was obtained. Obtained.
  • Method for evaluating liquid crystal contamination prevention About the obtained liquid crystal display element, the display nonuniformity produced in the liquid crystal (especially corner part) around a seal part was observed visually.
  • the liquid crystal contamination prevention property was determined according to the following criteria.
  • Evaluation method of low moisture permeability The obtained liquid crystal display element was stored for 36 hours in an environment of a temperature of 80 ° C. and a humidity of 90% RH, and then driven with a voltage of AC 3.5 V, and the periphery of the halftone sealant was visually observed. Low moisture permeability was determined according to the following criteria.

Abstract

Provided are silicone particles which are used in a sealing agent for liquid crystal dropping methods, and which are able to be decreased in moisture permeability. Silicone particles according to the present invention are used in a sealing agent for liquid crystal dropping methods, said sealing agent being cured by heating. The silicone particles have particle diameters of from 0.1 μm to 100 μm (inclusive), and each silicone particle comprises a silicone particle main body and an organic polymer that covers the surface of the silicone particle main body. The organic polymer has a weight average molecular weight of from 13,000 to 400,000 (inclusive), and comprises a hydroxyl group.

Description

シリコーン粒子、液晶滴下工法用シール剤及び液晶表示素子Silicone particles, sealant for liquid crystal dropping method, and liquid crystal display element
 本発明は、液晶滴下工法用シール剤などのシール剤に好適に用いられるシリコーン粒子に関する。また、本発明は、上記シリコーン粒子を用いた液晶滴下工法用シール剤及び液晶表示素子に関する。 The present invention relates to a silicone particle suitably used for a sealant such as a sealant for a liquid crystal dropping method. Moreover, this invention relates to the sealing compound for liquid crystal dropping methods, and a liquid crystal display element using the said silicone particle.
 近年、液晶表示素子の製造方法は、タクトタイムを短縮することができ、液晶の使用量の最適化が容易であることから、光硬化及び熱硬化併用型のシール剤を用いる液晶滴下工法にかわりつつある。 In recent years, the liquid crystal display device manufacturing method can shorten the tact time, and it is easy to optimize the amount of liquid crystal used. Therefore, it has replaced the liquid crystal dropping method using a photo-curing and thermo-curing sealant. It's getting on.
 液晶滴下工法では、まず、2枚の電極付き透明基板の一方に、シール剤をディスペンスにより塗布し、枠状のシールパターンを形成する。次に、シール剤が未硬化の状態で、液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を重ねあわせ、シール剤に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に仮硬化されたシール剤を加熱して本硬化させることで、シール部を形成して、液晶表示素子を作製する。透明基板の貼り合わせを減圧下で行えば、極めて高い効率で液晶表示素子を製造することができる。近年、この液晶滴下工法が、液晶表示素子の製造方法の主流となっている。 In the liquid crystal dropping method, first, a sealing agent is applied to one of two transparent substrates with electrodes by dispensing to form a frame-shaped seal pattern. Next, with the sealant in an uncured state, liquid crystal microdrops are dropped on the entire surface of the transparent substrate frame, and the other transparent substrate is immediately overlaid, and the sealant is irradiated with light such as ultraviolet rays and temporarily cured. I do. Thereafter, the sealant temporarily cured at the time of liquid crystal annealing is heated to be fully cured, thereby forming a seal portion and manufacturing a liquid crystal display element. If the transparent substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency. In recent years, this liquid crystal dropping method has become the mainstream of manufacturing methods for liquid crystal display elements.
 ところで、携帯電話及び携帯ゲーム機等の各種液晶パネル付きモバイル機器が普及しており、現在、装置の小型化は最も求められている課題である。小型化の手法として、液晶表示部の狭額縁化が挙げられる(以下、「狭額縁設計」ともいう)。例えば、狭額縁化によって、シール部が配線下に配置されることがある。 By the way, mobile devices with various liquid crystal panels such as mobile phones and mobile game machines are widespread, and downsizing of the device is the most demanded problem at present. As a technique for downsizing, there is a narrow frame of the liquid crystal display (hereinafter also referred to as “narrow frame design”). For example, the seal portion may be disposed under the wiring due to the narrowing of the frame.
 液晶滴下工法で狭額縁設計の液晶表示素子を製造する場合には、配線によりシール部に光の当たらない箇所が存在するため、充分に光照射されず硬化が進行しない光硬化性樹脂の部分が生じる。結果として、未硬化のシール剤が液晶と接するため、液晶がシール剤に差し込み、シールブレイクが発生して液晶が漏れ出したり、仮硬化工程後に未硬化の光硬化性樹脂及び微量に含まれている不純物等が溶出して、液晶が汚染されたりするという問題がある。 When manufacturing a liquid crystal display element with a narrow frame design by the liquid crystal dropping method, there is a part where light does not hit the seal part due to wiring, so there is a portion of the photocurable resin that does not sufficiently irradiate light and does not proceed with curing. Arise. As a result, since the uncured sealant comes into contact with the liquid crystal, the liquid crystal is inserted into the sealant, a seal break occurs and the liquid crystal leaks out, or is contained in an uncured photocurable resin and a trace amount after the temporary curing process. There is a problem that the liquid crystal is contaminated by elution of impurities.
 また、液晶滴下工法に用いるシール剤には、均一な厚みで、両側の部材を適切な間隔で、貼り合わせたり、衝撃を吸収したりすることが可能である性質が求められる。このため、シール剤に、粒子が配合されることがある。粒子によって、部材間の間隔を高精度に制御したり、衝撃を緩和したりすることができる。 In addition, the sealing agent used in the liquid crystal dropping method is required to have a property of being able to bond the members on both sides at an appropriate interval and absorb an impact with a uniform thickness. For this reason, a particle | grain may be mix | blended with a sealing compound. The particles can control the interval between the members with high accuracy and can reduce the impact.
 このようなシール剤は、例えば下記の特許文献1,2に開示されている。特許文献1,2では、上記粒子として、シリコーンゴム粉末等のゴム粉末を用いることが記載されている。 Such a sealing agent is disclosed in, for example, Patent Documents 1 and 2 below. Patent Documents 1 and 2 describe using rubber powder such as silicone rubber powder as the particles.
 また、下記の特許文献3には、広く改質用添加剤用途の粒子として、ポリビニルアルコールを分散安定剤として用いて作製されたシリコーン粒子が開示されている。 Further, the following Patent Document 3 discloses silicone particles produced using polyvinyl alcohol as a dispersion stabilizer as particles for use as a modifying additive.
特開2009-139922号公報JP 2009-139922 A WO2011/001895A1WO2011 / 001895A1 特開2013-53237号公報JP 2013-53237 A
 特許文献1,2に記載のような一般的なシリコーンゴム粉末を用いると、シリコーンゴム粉末に起因して、液晶が汚染されることがある。また、シリコーンという材料の特性上、透湿性が高くなり、液晶表示にむらが発生することがある。さらに、特許文献3に記載のようなシリコーン粒子は、樹脂の部材間の間隔を高精度に制御したり、衝撃を緩和したりするようなシール剤用途には物性面の観点から転用できない。 When a general silicone rubber powder as described in Patent Documents 1 and 2 is used, the liquid crystal may be contaminated due to the silicone rubber powder. In addition, due to the characteristics of a material called silicone, moisture permeability increases, and unevenness in liquid crystal display may occur. Furthermore, the silicone particles as described in Patent Document 3 cannot be diverted from the viewpoint of physical properties in order to control the interval between resin members with high accuracy or to relieve impact.
 本発明の目的は、透湿性を低くすることができるシリコーン粒子を提供することである。また、本発明の目的は、上記シリコーン粒子を用いた液晶滴下工法用シール剤及び液晶表示素子を提供することである。 An object of the present invention is to provide silicone particles that can reduce moisture permeability. Moreover, the objective of this invention is providing the sealing compound for liquid crystal dropping methods, and a liquid crystal display element using the said silicone particle.
 本発明の広い局面によれば、加熱によって硬化される液晶滴下工法用シール剤に用いられ、粒子径が0.1μm以上、100μm以下であり、シリコーン粒子本体と、前記シリコーン粒子本体の表面を被覆している有機ポリマーとを有し、前記有機ポリマーの重量平均分子量が13000以上、400000以下であり、かつ前記有機ポリマーが水酸基を有する、シリコーン粒子(液晶滴下工法用シール剤に用いるシリコーン粒子)が提供される。 According to a wide aspect of the present invention, it is used for a sealant for a liquid crystal dropping method that is cured by heating, has a particle diameter of 0.1 μm or more and 100 μm or less, and covers the silicone particle body and the surface of the silicone particle body And the organic polymer has a weight average molecular weight of 13,000 or more and 400,000 or less, and the organic polymer has a hydroxyl group (silicone particles used for a sealing agent for liquid crystal dropping method). Provided.
 本発明に係るシリコーン粒子(液晶滴下工法用シール剤に用いるシリコーン粒子)のある特定の局面では、10%圧縮したときの圧縮弾性率が100N/mm以下であり、圧縮回復率が30%以上である。 In a specific aspect of the silicone particles according to the present invention (silicone particles used in the sealing agent for liquid crystal dropping method), the compression elastic modulus when compressed by 10% is 100 N / mm 2 or less, and the compression recovery rate is 30% or more. It is.
 本発明の広い局面によれば、粒子径が0.1μm以上、100μm以下であり、シリコーン粒子本体と、前記シリコーン粒子本体の表面を被覆している有機ポリマーとを有し、前記有機ポリマーの重量平均分子量が13000以上、400000以下であり、かつ前記有機ポリマーが水酸基を有し、10%圧縮したときの圧縮弾性率が100N/mm以下であり、圧縮回復率が30%以上である、シリコーン粒子が提供される。 According to a wide aspect of the present invention, the particle diameter is 0.1 μm or more and 100 μm or less, the silicone particle main body, and the organic polymer covering the surface of the silicone particle main body, and the weight of the organic polymer Silicone having an average molecular weight of 13,000 or more and 400000 or less, the organic polymer having a hydroxyl group, a compression elastic modulus of 10 N / mm 2 or less when compressed by 10%, and a compression recovery rate of 30% or more Particles are provided.
 本発明に係るシリコーン粒子のある特定の局面では、前記有機ポリマーが、ポリビニルアルコール又はセルロース誘導体である。 In a specific aspect of the silicone particle according to the present invention, the organic polymer is polyvinyl alcohol or a cellulose derivative.
 本発明に係るシリコーン粒子のある特定の局面では、前記シリコーン粒子は、好ましくは、白金触媒を含まないか、又は白金触媒を100ppm以下で含み、より好ましくは、白金触媒を含まない。 In a specific aspect of the silicone particle according to the present invention, the silicone particle preferably does not contain a platinum catalyst or contains a platinum catalyst at 100 ppm or less, and more preferably does not contain a platinum catalyst.
 本発明に係るシリコーン粒子のある特定の局面では、前記有機ポリマーが、ポリビニルアルコールであり、前記ポリビニルアルコールの重合度が100以上、4000以下であり、前記ポリビニルアルコールのけん化度が70モル%以上、95モル%以下である。 In a specific aspect of the silicone particles according to the present invention, the organic polymer is polyvinyl alcohol, the polymerization degree of the polyvinyl alcohol is 100 or more and 4000 or less, and the saponification degree of the polyvinyl alcohol is 70 mol% or more, 95 mol% or less.
 本発明に係るシリコーン粒子のある特定の局面では、前記シリコーン粒子本体の材料が、オルガノポリシロキサンである。 In a specific aspect of the silicone particle according to the present invention, the material of the silicone particle body is an organopolysiloxane.
 本発明に係るシリコーン粒子のある特定の局面では、前記シリコーン粒子本体の材料が、シランアルコキシドの加水分解縮合物である。 In a specific aspect of the silicone particle according to the present invention, the material of the silicone particle body is a hydrolytic condensate of silane alkoxide.
 本発明に係るシリコーン粒子のある特定の局面では、前記シランアルコキシドが、ジアルコキシシランを含む。 In a specific aspect of the silicone particle according to the present invention, the silane alkoxide includes dialkoxysilane.
 本発明に係るシリコーン粒子のある特定の局面では、前記シランアルコキシドの加水分解縮合物が、シランアルコキシド100重量%中、モノアルコキシシラン0重量%以上、20重量%以下、ジアルコキシシラン70重量%以上、99.9重量%以下、及び、トリアルコキシシランとテトラアルコキシシランとを合計で0.1重量%以上、30重量%以下を含むシランアルコキシドの加水分解縮合物である。 In a specific aspect of the silicone particle according to the present invention, the hydrolyzed condensate of the silane alkoxide is a monoalkoxysilane in an amount of 0% by weight to 20% by weight and a dialkoxysilane of 70% by weight or more in 100% by weight of the silane alkoxide. , 99.9% by weight or less, and a hydrolysis-condensation product of silane alkoxide containing trialkoxysilane and tetraalkoxysilane in total of 0.1% by weight to 30% by weight.
 本発明に係るシリコーン粒子のある特定の局面では、前記シランアルコキシドが、重合性官能基を有するシランアルコキシドを含む。 In a specific aspect of the silicone particle according to the present invention, the silane alkoxide includes a silane alkoxide having a polymerizable functional group.
 本発明に係るシリコーン粒子のある特定の局面では、前記シリコーン粒子は、遮光剤を含む。 In a specific aspect of the silicone particle according to the present invention, the silicone particle includes a light shielding agent.
 本発明の広い局面によれば、熱硬化性成分と、上述した液晶滴下工法用シール剤に用いるシリコーン粒子を含む、液晶滴下工法用シール剤が提供される。 According to a wide aspect of the present invention, there is provided a sealing agent for liquid crystal dropping method comprising a thermosetting component and silicone particles used for the above-described sealing agent for liquid crystal dropping method.
 本発明に係る液晶滴下工法用シール剤のある特定の局面では、前記シール剤は、光硬化性成分を含まない。 In a specific aspect of the sealant for the liquid crystal dropping method according to the present invention, the sealant does not contain a photocurable component.
 本発明の広い局面によれば、第1の液晶表示素子用部材と、第2の液晶表示素子用部材と、前記第1の液晶表示素子用部材と前記第2の液晶表示素子用部材とが対向した状態で、前記第1の液晶表示素子用部材と前記第2の液晶表示素子用部材との外周をシールしているシール部と、前記シール部の内側で、前記第1の液晶表示素子用部材と前記第2の液晶表示素子用部材との間に配置されている液晶とを備え、前記シール部が、液晶滴下工法用シール剤の熱硬化物であり、前記液晶滴下工法用シール剤が、熱硬化性成分と、上述した液晶滴下工法用シール剤に用いるシリコーン粒子を含む、液晶表示素子が提供される。 According to a wide aspect of the present invention, a first liquid crystal display element member, a second liquid crystal display element member, the first liquid crystal display element member, and the second liquid crystal display element member are provided. A seal portion that seals the outer periphery of the first liquid crystal display element member and the second liquid crystal display element member in an opposed state, and the first liquid crystal display element inside the seal portion Liquid crystal disposed between the member for liquid crystal display and the member for the second liquid crystal display element, and the sealing portion is a thermosetting product of a sealing agent for liquid crystal dropping method, and the sealing agent for liquid crystal dropping method However, the liquid crystal display element containing the silicone particle used for the thermosetting component and the sealing compound for liquid crystal dropping methods mentioned above is provided.
 本発明に係るシリコーン粒子は、加熱によって硬化される液晶滴下工法用シール剤に用いられる場合に、本発明に係るシリコーン粒子は、粒子径が0.1μm以上、100μm以下であり、シリコーン粒子本体と、上記シリコーン粒子本体の表面を被覆している有機ポリマーとを有し、上記有機ポリマーの重量平均分子量が13000以上、400000以下であり、かつ上記有機ポリマーが水酸基を有するので、透湿性を低くすることができる。 When the silicone particles according to the present invention are used in a sealing agent for a liquid crystal dropping method that is cured by heating, the silicone particles according to the present invention have a particle diameter of 0.1 μm to 100 μm, An organic polymer covering the surface of the silicone particle body, the organic polymer has a weight average molecular weight of 13,000 or more and 400,000 or less, and the organic polymer has a hydroxyl group, so that moisture permeability is lowered. be able to.
 本発明に係るシリコーン粒子は、粒子径が0.1μm以上、100μm以下であり、シリコーン粒子本体と、上記シリコーン粒子本体の表面を被覆している有機ポリマーとを有し、上記有機ポリマーの重量平均分子量が13000以上、400000以下であり、かつ上記有機ポリマーが水酸基を有し、10%圧縮したときの圧縮弾性率が100N/mm以下であり、圧縮回復率が30%以上であるので、透湿性を低くすることができる。 The silicone particles according to the present invention have a particle diameter of 0.1 μm or more and 100 μm or less, and have a silicone particle main body and an organic polymer covering the surface of the silicone particle main body, and the weight average of the organic polymer Since the molecular weight is 13,000 or more and 400,000 or less, the organic polymer has a hydroxyl group, the compression elastic modulus when compressed by 10% is 100 N / mm 2 or less, and the compression recovery rate is 30% or more. Wetness can be lowered.
図1は、本発明の一実施形態に係るシリコーン粒子を用いた液晶表示素子を示す断面図である。FIG. 1 is a cross-sectional view showing a liquid crystal display element using silicone particles according to an embodiment of the present invention.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 (シリコーン粒子)
 本発明に係るシリコーン粒子は、加熱によって硬化される液晶滴下工法用シール剤に好適に用いられる。
(Silicone particles)
The silicone particles according to the present invention are suitably used for a sealing agent for liquid crystal dropping method that is cured by heating.
 本発明に係るシリコーン粒子の粒子径は0.1μm以上、100μm以下である。本発明に係るシリコーン粒子は、シリコーン粒子本体と、上記シリコーン粒子本体の表面を被覆している有機ポリマーとを有する。なお、有機ポリマーは、シリコーン粒子本体の表面全体を被覆していてもよく、シリコーン粒子本体の表面の一部を被覆していてもよい。上記有機ポリマーの重量平均分子量は13000以上、400000以下である。上記有機ポリマーは、水酸基を有する。このような構成を有する本発明では、本発明に係るシリコーン粒子を含む液晶滴下工法用シール剤を用いた液晶表示素子において、シール部の透湿性を低くすることができる。結果として、液晶内への水分の浸入を抑えることができ、液晶表示のむらを防ぐことができる。 The particle size of the silicone particles according to the present invention is 0.1 μm or more and 100 μm or less. The silicone particles according to the present invention have a silicone particle body and an organic polymer that covers the surface of the silicone particle body. The organic polymer may cover the entire surface of the silicone particle main body, or may cover a part of the surface of the silicone particle main body. The weight average molecular weight of the organic polymer is 13,000 or more and 400,000 or less. The organic polymer has a hydroxyl group. In this invention which has such a structure, in the liquid crystal display element using the sealing compound for liquid crystal dropping methods containing the silicone particle which concerns on this invention, the moisture permeability of a seal | sticker part can be made low. As a result, the intrusion of moisture into the liquid crystal can be suppressed, and unevenness of the liquid crystal display can be prevented.
 また、本発明に係るシリコーン粒子の粒子径は0.1μm以上、100μm以下である。本発明に係るシリコーン粒子は、シリコーン粒子本体と、上記シリコーン粒子本体の表面を被覆している有機ポリマーとを有する。なお、有機ポリマーは、シリコーン粒子本体の表面全体を被覆していてもよく、シリコーン粒子本体の表面の一部を被覆していてもよい。上記有機ポリマーの重量平均分子量は13000以上、400000以下である。上記有機ポリマーは、水酸基を有する。上記シリコーン粒子を10%圧縮したときの圧縮弾性率(10%K値)は、好ましくは100N/mm以下である。上記シリコーン粒子の圧縮回復率は30%以上である。このような構成を有する本発明では、本発明に係るシリコーン粒子を用いた液晶表示素子において、シリコーン粒子部分の透湿性を低くすることができる。このような構成を有する本発明に係るシリコーン粒子は、液晶滴下工法シール剤以外のシール剤や、ギャップ材や、応力緩和材に好適に用いることができる。 The particle size of the silicone particles according to the present invention is 0.1 μm or more and 100 μm or less. The silicone particles according to the present invention have a silicone particle body and an organic polymer that covers the surface of the silicone particle body. The organic polymer may cover the entire surface of the silicone particle main body, or may cover a part of the surface of the silicone particle main body. The weight average molecular weight of the organic polymer is 13,000 or more and 400,000 or less. The organic polymer has a hydroxyl group. The compression modulus (10% K value) when the silicone particles are compressed by 10% is preferably 100 N / mm 2 or less. The compression recovery rate of the silicone particles is 30% or more. In the present invention having such a configuration, in the liquid crystal display element using the silicone particles according to the present invention, the moisture permeability of the silicone particle portion can be lowered. The silicone particles according to the present invention having such a configuration can be suitably used for sealing agents other than liquid crystal dropping method sealing agents, gap materials, and stress relaxation materials.
 シリコーン粒子を液晶表示素子用部材と固着させることにより又は熱硬化性化合物の硬化物中に留めることにより、接着性に優れ、シールブレイクや液晶汚染の発生を抑制することができる液晶滴下工法用シール剤などのシール剤を得ることができる。 By fixing silicone particles to a liquid crystal display element member or by retaining it in a cured product of a thermosetting compound, it is excellent in adhesiveness and can prevent the occurrence of seal break and liquid crystal contamination. A sealing agent such as an agent can be obtained.
 シリコーン粒子を10%圧縮したときの圧縮弾性率(10%K値)は、好ましくは100N/mm以下、より好ましくは50N/mm以下である。上記10%K値が上記上限以下であると、シリコーン粒子が容易に変形することから、初期でのシールブレイクがより一層抑制される。シリコーン粒子の10%K値の下限は特に限定されない。 The compression modulus (10% K value) when the silicone particles are compressed by 10% is preferably 100 N / mm 2 or less, more preferably 50 N / mm 2 or less. When the 10% K value is less than or equal to the above upper limit, the silicone particles are easily deformed, so that the initial seal break is further suppressed. The lower limit of the 10% K value of the silicone particles is not particularly limited.
 シリコーン粒子の圧縮回復率は好ましくは30%以上、より好ましくは40%以上、更に好ましくは60%以上である。スプリングバックを抑制する観点からは、シリコーン粒子の圧縮回復率は好ましくは100%未満である。 The compression recovery rate of the silicone particles is preferably 30% or more, more preferably 40% or more, and still more preferably 60% or more. From the viewpoint of suppressing the spring back, the compression recovery rate of the silicone particles is preferably less than 100%.
 上記シリコーン粒子の上記圧縮弾性率(10%K値)は、以下のようにして測定できる。 The compression elastic modulus (10% K value) of the silicone particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下でシリコーン粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 Using a micro-compression tester, the silicone particles are compressed under the conditions of 25 ° C., compression speed of 0.3 mN / sec, and maximum test load of 20 mN on the end face of a cylindrical indenter (diameter: 100 μm, made of diamond). The load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
 10%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:シリコーン粒子が10%圧縮変形したときの荷重値(N)
 S:シリコーン粒子が10%圧縮変形したときの圧縮変位(mm)
 R:シリコーン粒子の半径(mm)
10% K value (N / mm 2 ) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load value when the silicone particles are 10% compressively deformed (N)
S: Compression displacement (mm) when the silicone particles are 10% compressively deformed
R: radius of silicone particles (mm)
 シリコーン粒子の上記圧縮回復率は、以下のようにして測定できる。 The compression recovery rate of the silicone particles can be measured as follows.
 試料台上にシリコーン粒子を散布する。散布されたシリコーン粒子1個について、微小圧縮試験機を用いて、シリコーン粒子の中心方向に、シリコーン粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 ¡Spray silicone particles on the sample stage. For each of the dispersed silicone particles, a load (reverse load value) is applied in the center direction of the silicone particles until the silicone particles are compressed and deformed by 30% using a micro compression tester. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
 圧縮回復率(%)=[(L1-L2)/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでのまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
Compression recovery rate (%) = [(L1-L2) / L1] × 100
L1: Compression displacement from the load value for origin to the reverse load value when applying a load L2: Unloading displacement from the reverse load value to the load value for origin when releasing the load
 上記シリコーン粒子の粒子径は、0.1μm以上、100μm以下である。シリコーン粒子の粒子径が上記下限以上及び上記上限以下であると、シリコーン粒子を液晶滴下工法用シール剤などのシール剤に好適に用いることができる。上記シリコーン粒子の粒子径は、好ましくは1μm以上、より好ましくは5μm以上であり、好ましくは50μm以下、より好ましくは20μm以下、更に好ましくは10μm以下である。上記シリコーン粒子の粒子径が上記下限以上及び上記上限以下であると、液晶表示素子部材間の間隔が適度になり、衝撃吸収性が高くなり、凝集したシリコーン粒子が形成されにくくなる。 The particle size of the silicone particles is 0.1 μm or more and 100 μm or less. When the particle diameter of the silicone particles is not less than the above lower limit and not more than the above upper limit, the silicone particles can be suitably used for a sealing agent such as a liquid crystal dropping method sealing agent. The particle size of the silicone particles is preferably 1 μm or more, more preferably 5 μm or more, preferably 50 μm or less, more preferably 20 μm or less, and even more preferably 10 μm or less. When the particle diameter of the silicone particles is not less than the above lower limit and not more than the above upper limit, the interval between the liquid crystal display element members becomes appropriate, the shock absorption becomes high, and the aggregated silicone particles are hardly formed.
 2つの液晶表示素子用部材の間隔を高精度に制御する観点からは、上記シリコーン粒子の粒子径のCV値は、好ましくは40%以下である。 From the viewpoint of controlling the interval between the two liquid crystal display element members with high accuracy, the CV value of the particle diameter of the silicone particles is preferably 40% or less.
 上記シリコーン粒子のアスペクト比は、好ましくは2以下、より好ましくは1.5以下、更に好ましくは1.2以下である。上記アスペクト比は、長径/短径を示す。 The aspect ratio of the silicone particles is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1.2 or less. The aspect ratio indicates a major axis / minor axis.
 上記シリコーン粒子は、白金触媒を含まないか、又は白金触媒を100ppm以下で含むことが好ましい。白金触媒を用いる場合に、白金触媒の含有量は少ないほどよい。白金触媒の含有量が多いと、液晶汚染防止性が低下する傾向がある。白金触媒の含有量はより好ましくは80ppm以下、より一層好ましくは60ppm以下、更に好ましくは50ppm以下、更に一層好ましくは40ppm以下、特に好ましくは30ppm以下、また特に好ましくは20ppm以下、最も好ましくは10ppm以下である。 The silicone particles preferably do not contain a platinum catalyst or contain a platinum catalyst at 100 ppm or less. When using a platinum catalyst, the lower the platinum catalyst content, the better. When the content of the platinum catalyst is large, the liquid crystal contamination prevention property tends to decrease. The platinum catalyst content is more preferably 80 ppm or less, still more preferably 60 ppm or less, still more preferably 50 ppm or less, still more preferably 40 ppm or less, particularly preferably 30 ppm or less, and particularly preferably 20 ppm or less, most preferably 10 ppm or less. It is.
 一般に、シリコーン粒子は、白金触媒を用いて、モノマーを重合させることにより得られていることが多い。このようなシリコーン粒子では、たとえ洗浄したとしても、白金触媒が内部に含まれ、白金触媒の含有量は100ppmを超える。これに対して、白金触媒を用いずに得られたシリコーン粒子では、白金触媒は一般に含まれない。 Generally, silicone particles are often obtained by polymerizing monomers using a platinum catalyst. In such silicone particles, even if washed, the platinum catalyst is contained inside, and the platinum catalyst content exceeds 100 ppm. In contrast, silicone particles obtained without using a platinum catalyst generally do not contain a platinum catalyst.
 以下、シリコーン粒子の他の詳細を説明する。 Hereinafter, other details of the silicone particles will be described.
 シリコーン粒子本体:
 上記シリコーン粒子本体の材料は、オルガノポリシロキサンであることが好ましく、シランアルコキシドであることがより好ましい。オルガノポリシロキサン及びシランアルコキシドはそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
Silicone particle body:
The material of the silicone particle body is preferably an organopolysiloxane, and more preferably a silane alkoxide. Each of the organopolysiloxane and the silane alkoxide may be used alone or in combination of two or more.
 より一層柔軟な構造にする観点からは、上記シランアルコキシドは、下記式(1A)で表されるシランアルコキシドA又は下記式(1B)で表されるシランアルコキシドBを含むことが好ましい。上記シランアルコキシドは、下記式(1A)で表されるシランアルコキシドAを含んでいてもよく、下記式(1B)で表されるシランアルコキシドBを含んでいてもよい。 From the viewpoint of making the structure even more flexible, the silane alkoxide preferably contains silane alkoxide A represented by the following formula (1A) or silane alkoxide B represented by the following formula (1B). The silane alkoxide may contain a silane alkoxide A represented by the following formula (1A) or may contain a silane alkoxide B represented by the following formula (1B).
 Si(R1)(OR2)4-n  ・・・(1A)
 上記式(1A)中、R1は水素原子、フェニル基又は炭素数1~30のアルキル基を表し、R2は炭素数1~6のアルキル基を表し、nは0~2の整数を表す。nが2であるとき、複数のR1は同一であってもよく、異なっていてもよい。複数のR2は同一であってもよく、異なっていてもよい。
Si (R1) n (OR2) 4-n (1A)
In the above formula (1A), R1 represents a hydrogen atom, a phenyl group or an alkyl group having 1 to 30 carbon atoms, R2 represents an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 0 to 2. When n is 2, the plurality of R1s may be the same or different. Several R2 may be the same and may differ.
 上記式(1A)中の上記R1が炭素数1~30のアルキル基である場合、R1の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、及びn-デシル基等が挙げられる。このアルキル基の炭素数は好ましくは10以下、より好ましくは6以下である。なお、アルキル基には、シクロアルキル基が含まれる。 When R1 in the formula (1A) is an alkyl group having 1 to 30 carbon atoms, specific examples of R1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, an n-hexyl group, and a cyclohexyl group. Group, n-octyl group, n-decyl group and the like. This alkyl group preferably has 10 or less carbon atoms, more preferably 6 or less. The alkyl group includes a cycloalkyl group.
 上記R2の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、及びイソブチル基等が挙げられる。 Specific examples of R2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
 上記シランアルコキシドAの具体例としては、テトラメトキシシラン、テトラエトキシシラン、トリエチルシラン、t-ブチルジメチルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン及びジフェニルジメトキシシラン等が挙げられる。これら以外のシランアルコキシドを用いてもよい。 Specific examples of the silane alkoxide A include tetramethoxysilane, tetraethoxysilane, triethylsilane, t-butyldimethylsilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isopropyltrimethoxy. Silane, isobutyltrimethoxysilane, cyclohexyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diisopropyldimethoxysilane And diphenyldimethoxysilane. Silane alkoxides other than these may be used.
 Si(R1)(OR2)4-n  ・・・(1B)
 上記式(1B)中、R1は水素原子、フェニル基、炭素数1~30のアルキル基、重合性二重結合を有する炭素数1~30の有機基又はエポキシ基を有する炭素数1~30の有機基を表し、R2は炭素数1~6のアルキル基を表し、nは0~2の整数を表す。nが2であるとき、複数のR1は同一であってもよく、異なっていてもよい。複数のR2は同一であってもよく、異なっていてもよい。但し、少なくとも1つのR1は、重合性二重結合を有する炭素数1~30の有機基又はエポキシ基を有する炭素数1~30の有機基である。少なくとも1つのR1は、ビニル基、スチリル基又は(メタ)アクリロキシ基であることが好ましく、ビニル基、又は(メタ)アクリロキシ基であることがより好ましく、ビニル基であることが更に好ましい。
Si (R1) n (OR2) 4-n (1B)
In the above formula (1B), R1 is a hydrogen atom, a phenyl group, an alkyl group having 1 to 30 carbon atoms, an organic group having 1 to 30 carbon atoms having a polymerizable double bond, or an epoxy group having 1 to 30 carbon atoms. Represents an organic group, R2 represents an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 0 to 2. When n is 2, the plurality of R1s may be the same or different. Several R2 may be the same and may differ. However, at least one R1 is an organic group having 1 to 30 carbon atoms having a polymerizable double bond or an organic group having 1 to 30 carbon atoms having an epoxy group. At least one R1 is preferably a vinyl group, a styryl group or a (meth) acryloxy group, more preferably a vinyl group or a (meth) acryloxy group, and even more preferably a vinyl group.
 上記式(1B)中の上記R1が炭素数1~30のアルキル基である場合、R1の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、及びn-デシル基等が挙げられる。このアルキル基の炭素数は好ましくは10以下、より好ましくは6以下である。なお、アルキル基には、シクロアルキル基が含まれる。 When R1 in the formula (1B) is an alkyl group having 1 to 30 carbon atoms, specific examples of R1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, an n-hexyl group, and a cyclohexyl group. Group, n-octyl group, n-decyl group and the like. This alkyl group preferably has 10 or less carbon atoms, more preferably 6 or less. The alkyl group includes a cycloalkyl group.
 上記重合性二重結合としては、炭素-炭素二重結合が挙げられる。上記R1が重合性二重結合を有する炭素数1~30の有機基である場合に、R1の具体例としては、ビニル基、スチリル基、アリル基、イソプロペニル基、及び3-(メタ)アクリロキシアルキル基等が挙げられる。上記スチリル基としては、p-スチリル基、o-スチリル基、及びm-スチリル基が挙げられる。上記(メタ)アクリロキシアルキル基としては、(メタ)アクリロキシメチル基、(メタ)アクリロキシエチル基及び(メタ)アクリロキシプロピル基等が挙げられる。上記重合性二重結合を有する炭素数1~30の有機基の炭素数は好ましくは2以上であり、好ましくは30以下、より好ましくは10以下である。上記「(メタ)アクリロキシ」は、メタクリロキシ又はアクリロキシを意味する。 Examples of the polymerizable double bond include a carbon-carbon double bond. When R1 is an organic group having 1 to 30 carbon atoms having a polymerizable double bond, specific examples of R1 include vinyl group, styryl group, allyl group, isopropenyl group, and 3- (meth) acrylic group. Examples include a loxyalkyl group. Examples of the styryl group include p-styryl group, o-styryl group, and m-styryl group. Examples of the (meth) acryloxyalkyl group include a (meth) acryloxymethyl group, a (meth) acryloxyethyl group, and a (meth) acryloxypropyl group. The number of carbon atoms of the organic group having 1 to 30 carbon atoms having a polymerizable double bond is preferably 2 or more, preferably 30 or less, more preferably 10 or less. The above “(meth) acryloxy” means methacryloxy or acryloxy.
 上記R2の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、及びイソブチル基等が挙げられる。 Specific examples of R2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
 より一層柔軟な構造にする観点からは、上記シランアルコキシドは、ジアルコキシシランを含むことが好ましい。より一層柔軟な構造にし、かつ粒子の凝集をより一層抑制する観点からは、上記シランアルコキシドの加水分解縮合物は、シランアルコキシド100重量%中、モノアルコキシシラン0重量%(未使用)以上、20重量%以下、ジアルコキシシラン70重量%以上、99.9重量%以下、及び、トリアルコキシシランとテトラアルコキシシランとを合計で0.1重量%以上、30重量%以下を含むシランアルコキシドの加水分解縮合物であることが好ましく、シランアルコキシド100重量%中、モノアルコキシシラン0重量%(未使用)以上、15重量%以下、ジアルコキシシラン75重量%以上、99重量%以下、及び、トリアルコキシシランとテトラアルコキシシランとを合計で1重量%以上、25重量%以下を含むシランアルコキシドの加水分解縮合物であることがより好ましい。 From the viewpoint of making the structure more flexible, the silane alkoxide preferably contains dialkoxysilane. From the viewpoint of making the structure more flexible and further suppressing the aggregation of particles, the hydrolyzed condensate of the silane alkoxide is not less than 0% by weight (unused) of monoalkoxysilane in 100% by weight of silane alkoxide, 20 Hydrolysis of a silane alkoxide containing not more than 10% by weight, dialkoxysilane not less than 70% by weight and not more than 99.9% by weight, and trialkoxysilane and tetraalkoxysilane in total of not less than 0.1% by weight and not more than 30% by weight Condensate is preferable, and in 100% by weight of silane alkoxide, 0% by weight (unused) of monoalkoxysilane, 15% by weight or less, 75% by weight or more of dialkoxysilane, 99% by weight or less, and trialkoxysilane And tetraalkoxysilane in total containing 1% by weight or more and 25% by weight or less And more preferably the hydrolysis-condensation product.
 粒子径をより一層容易に調整する観点からは、上記シランアルコキシドが、重合性官能基を有するシランアルコキシドを含むことが好ましく、重合性二重結合を有するシランアルコキシドを含むことがより好ましい。重合性二重結合を有するシランアルコキシドの具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキジメチルビニルシシラン、ジメトキシエチルビニルシラン、ジエトキシメチルジビニルシラン、ジエトキシエチルビニルシラン、エチルメチルジビニルシラン、メチルビニルジメトキシシラン、エチルビニルジメトキシシラン、メチルビニルジエトキシシラン、エチルビニルジエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、及び3-アクリロキシプロピルトリメトキシシラン等が挙げられる。また、環状シロキサンを用いてもよく、変性(反応性)シリコーンオイル等を用いてもよい。環状シロキサンの具体例としては、デカメチルシクロペンタシロキサン等が挙げられる。変性シリコーンオイルとしては、片末端変性シリコーンオイル、両末端シリコーンオイル、及び側鎖型シリコーンオイル等が挙げられる。 From the viewpoint of more easily adjusting the particle diameter, the silane alkoxide preferably includes a silane alkoxide having a polymerizable functional group, and more preferably includes a silane alkoxide having a polymerizable double bond. Specific examples of the silane alkoxide having a polymerizable double bond include vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxydimethylvinylsilane, dimethoxyethylvinylsilane, diethoxymethyldivinylsilane, diethoxyethylvinylsilane, ethylmethyldisilane. Vinylsilane, methylvinyldimethoxysilane, ethylvinyldimethoxysilane, methylvinyldiethoxysilane, ethylvinyldiethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3 -Methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, etc.Moreover, cyclic siloxane may be used, and modified (reactive) silicone oil may be used. Specific examples of the cyclic siloxane include decamethylcyclopentasiloxane. Examples of the modified silicone oil include one-end modified silicone oil, both-end silicone oil, and side chain type silicone oil.
 上記シリコーン粒子本体の具体的な製造方法としては、上記シランアルコキシドを予め縮合してオリゴマーを得た後、懸濁重合法、分散重合法、ミニエマルション重合法、又は乳化重合法等で重合反応を行い、シリコーン粒子本体を作製する方法等がある。 As a specific method for producing the silicone particle main body, an oligomer is obtained by condensing the silane alkoxide in advance, and then a polymerization reaction is performed by a suspension polymerization method, a dispersion polymerization method, a miniemulsion polymerization method, an emulsion polymerization method, or the like. And a method for producing a silicone particle body.
 有機ポリマー:
 上記有機ポリマーとしては、ポリビニルアルコール、及びセルロース誘導体等が挙げられる。上記有機ポリマーは、1種のみが用いられてもよく、2種以上が併用されてもよい。
Organic polymer:
Examples of the organic polymer include polyvinyl alcohol and cellulose derivatives. As for the said organic polymer, only 1 type may be used and 2 or more types may be used together.
 透湿性をより一層低くする観点からは、上記有機ポリマーは、ポリビニルアルコール又はセルロース誘導体であることが好ましい。上記有機ポリマーは、ポリビニルアルコールであることが好ましく、セルロース誘導体であることが好ましい。特に、透湿性をより一層低くする観点からは、上記有機ポリマーは、ポリビニルアルコールであることが好ましい。 From the viewpoint of further reducing moisture permeability, the organic polymer is preferably polyvinyl alcohol or a cellulose derivative. The organic polymer is preferably polyvinyl alcohol, and is preferably a cellulose derivative. In particular, from the viewpoint of further reducing moisture permeability, the organic polymer is preferably polyvinyl alcohol.
 透湿性をより一層低くする観点からは、上記ポリビニルアルコールの重合度は好ましくは100以上、より好ましくは350以上、更に好ましくは400以上、特に好ましくは1000以上であり、好ましくは4000以下、より好ましくは3000以下、更に好ましくは2500以下である。 From the viewpoint of further reducing the moisture permeability, the degree of polymerization of the polyvinyl alcohol is preferably 100 or more, more preferably 350 or more, still more preferably 400 or more, particularly preferably 1000 or more, preferably 4000 or less, more preferably Is 3000 or less, more preferably 2500 or less.
 透湿性をより一層低くする観点からは、上記ポリビニルアルコールのけん化度は好ましくは70モル%以上、より好ましくは75モル%以上、更に好ましくは80モル%以上であり、好ましくは95モル%以下、より好ましくは90モル%以下である。 From the viewpoint of further reducing the moisture permeability, the saponification degree of the polyvinyl alcohol is preferably 70 mol% or more, more preferably 75 mol% or more, still more preferably 80 mol% or more, preferably 95 mol% or less, More preferably, it is 90 mol% or less.
 上記シリコーン粒子本体の表面を上記有機ポリマーで被覆する方法としては、粒子の形成時に分散剤として有機ポリマーを添加する方法、粒子の合成後に有機ポリマー水溶液中で撹拌して、有機ポリマーを付着及び結合させる方法等が挙げられる。 The method of coating the surface of the silicone particle body with the organic polymer includes adding an organic polymer as a dispersing agent when forming the particles, and stirring and bonding the organic polymer in an aqueous organic polymer solution after the particles are synthesized. And the like.
 遮光剤:
 上記シリコーン粒子は、遮光剤を含んでもよい。上記遮光剤の使用により、液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。
Shading agent:
The silicone particles may contain a light shielding agent. By using the light shielding agent, the liquid crystal display element sealing agent can be suitably used as a light shielding sealant.
 遮光剤を含有するシリコーン粒子を含む液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。 A liquid crystal display device manufactured using a sealing agent for liquid crystal display devices containing silicone particles containing a light-shielding agent has sufficient light-shielding properties, and thus has high contrast without light leakage, and excellent image display quality. A liquid crystal display element having the above can be realized.
 上記遮光剤としては、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、及びカーボンブラック等が挙げられる。チタンブラック又はカーボンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, and carbon black. Titanium black or carbon black is preferred.
 上記チタンブラック及びカーボンブラックは、表面処理されていなくても充分な効果を発揮する。表面がカップリング剤等の有機成分で処理されたチタンブラックや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム及び酸化マグネシウム等の無機成分で被覆されたチタンブラック等の表面処理されたチタンブラックを用いることもできる。絶縁性を高めることができるので、有機成分で処理されているチタンブラックが好ましい。 The above-described titanium black and carbon black exhibit a sufficient effect even if they are not surface-treated. Surface treated with titanium black whose surface was treated with an organic component such as a coupling agent or titanium black coated with inorganic components such as silicon oxide, titanium oxide, germanium oxide, aluminum oxide, zirconium oxide and magnesium oxide. Titanium black can also be used. Titanium black treated with an organic component is preferable because it can enhance insulation.
 上記チタンブラックの市販品としては、例えば、12S、13M、13M-C、13R-N、及び14M-C(いずれも三菱マテリアル社製);ティラックD(赤穂化成社製)等が挙げられる。 Examples of commercially available titanium black include 12S, 13M, 13M-C, 13R-N, and 14M-C (all manufactured by Mitsubishi Materials Corporation); Tilac D (manufactured by Ako Kasei Co., Ltd.) and the like.
 上記カーボンブラックとしては、ケッチェンブラック、アセチレンブラック、チャネルブラック、サーマルブラック及びファーネスブラック等が挙げられる。 Examples of the carbon black include ketjen black, acetylene black, channel black, thermal black, and furnace black.
 シリコーン粒子100重量%中、上記遮光剤の含有量は好ましくは1重量%以上、より好ましくは10重量%以上、更に好ましくは30重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下、更に好ましくは40重量%以下である。上記遮光剤の含有量が上記下限以上であると、十分な遮光性が得られる。上記遮光剤の含有量が上記上限以下であると、シリコーン粒子の柔軟性を維持することができ、シールブレイクを抑制することができる。 In 100% by weight of the silicone particles, the content of the light shielding agent is preferably 1% by weight or more, more preferably 10% by weight or more, still more preferably 30% by weight or more, preferably 70% by weight or less, more preferably 60%. % By weight or less, more preferably 40% by weight or less. When the content of the light shielding agent is not less than the above lower limit, sufficient light shielding properties can be obtained. The softness | flexibility of a silicone particle can be maintained as content of the said light-shielding agent is below the said upper limit, and a seal break can be suppressed.
 (液晶滴下工法用シール剤)
 上記液晶滴下工法用シール剤(以下、シール剤と略記することがある)は、加熱によって硬化される。上記シール剤は、熱硬化性成分と、上記シリコーン粒子とを含む。上記シール剤は、光硬化性成分を含んでいてもよく、含んでいなくてもよい。上記シール剤は、硬化のために、光が照射されてもよく、光が照射されなくてもよい。なお、上記シール剤が光硬化成分を含まない場合は、光の照射下で保管されてもよい。
(Sealant for liquid crystal dropping method)
The above-mentioned sealing agent for liquid crystal dropping method (hereinafter sometimes abbreviated as sealing agent) is cured by heating. The sealing agent includes a thermosetting component and the silicone particles. The sealing agent may or may not contain a photocurable component. The sealing agent may be irradiated with light for curing, or may not be irradiated with light. In addition, when the said sealing agent does not contain a photocuring component, you may store under irradiation of light.
 上記熱硬化性成分は、熱硬化性化合物と、重合開始剤又は熱硬化剤とを含むことが好ましい。この場合に、重合開始剤と熱硬化剤とを併用してもよい。 The thermosetting component preferably contains a thermosetting compound and a polymerization initiator or a thermosetting agent. In this case, a polymerization initiator and a thermosetting agent may be used in combination.
 上記熱硬化性化合物100重量部に対して、上記シリコーン粒子の含有量は好ましくは3重量部以上、より好ましくは5重量部以上であり、好ましくは70重量部以下、より好ましくは50重量部以下である。上記シリコーン粒子の含有量が上記下限以上及び上記上限以下であると、得られる液晶滴下工法用シール剤の接着性がより一層良好になる。 The content of the silicone particles is preferably 3 parts by weight or more, more preferably 5 parts by weight or more, preferably 70 parts by weight or less, more preferably 50 parts by weight or less with respect to 100 parts by weight of the thermosetting compound. It is. When the content of the silicone particles is not less than the above lower limit and not more than the above upper limit, the adhesiveness of the obtained liquid crystal dropping method sealing agent is further improved.
 上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。上記熱硬化性化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. As for the said thermosetting compound, only 1 type may be used and 2 or more types may be used together.
 接着性及び長期信頼性をより一層高くする観点からは、上記熱硬化性化合物は、(メタ)アクリル化合物を含有することが好ましく、エポキシ(メタ)アクリレートを含有することがより好ましい。上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味する。上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基に、(メタ)アクリル酸を反応させた化合物を意味する。なお、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、(メタ)アクリロイル」は「アクリロイル」と「メタクリロイル」との一方又は双方を意味し、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味する。 From the viewpoint of further improving adhesiveness and long-term reliability, the thermosetting compound preferably contains a (meth) acrylic compound, and more preferably contains an epoxy (meth) acrylate. The “(meth) acrylic compound” means a compound having a (meth) acryloyl group. The above “epoxy (meth) acrylate” means a compound obtained by reacting all epoxy groups in an epoxy compound with (meth) acrylic acid. “(Meth) acryl” means one or both of “acryl” and “methacryl”, and (meth) acryloyl means one or both of “acryloyl” and “methacryloyl”. "Acrylate" means one or both of "acrylate" and "methacrylate".
 上記エポキシ(メタ)アクリレートを合成するための原料であるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、及びビスフェノールA型エピスルフィド樹脂等が挙げられる。 Examples of the epoxy compound as a raw material for synthesizing the epoxy (meth) acrylate include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin. , Hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, orthocresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, Dripping down phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resins, glycidyl ester compounds, and bisphenol A type episulfide resins.
 上記ビスフェノールA型エポキシ樹脂の市販品としては、例えば、jER828EL、jER1001、及びjER1004(いずれも三菱化学社製);エピクロン850-S(DIC社製)等が挙げられる。 Examples of commercially available products of the bisphenol A type epoxy resin include jER828EL, jER1001, and jER1004 (all manufactured by Mitsubishi Chemical Corporation); Epicron 850-S (manufactured by DIC Corporation) and the like.
 上記ビスフェノールF型エポキシ樹脂の市販品としては、例えば、jER806、及びjER4004(いずれも三菱化学社製)等が挙げられる。 Examples of commercially available products of the bisphenol F type epoxy resin include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
 上記ビスフェノールS型エポキシ樹脂の市販品としては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。 Examples of commercially available products of the above bisphenol S type epoxy resin include Epicron EXA1514 (manufactured by DIC).
 上記2,2’-ジアリルビスフェノールA型エポキシ樹脂の市販品としては、例えば、RE-810NM(日本化薬社製)等が挙げられる。 Examples of the commercially available 2,2′-diallylbisphenol A type epoxy resin include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
 上記水添ビスフェノール型エポキシ樹脂の市販品としては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。 Examples of commercially available hydrogenated bisphenol type epoxy resins include Epicron EXA7015 (manufactured by DIC).
 上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂の市販品としては、例えば、EP-4000S(ADEKA社製)等が挙げられる。 Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
 上記レゾルシノール型エポキシ樹脂の市販品としては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。 Examples of commercially available resorcinol-type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
 上記ビフェニル型エポキシ樹脂の市販品としては、例えば、jERYX-4000H(三菱化学社製)等が挙げられる。 Examples of commercially available biphenyl type epoxy resins include jERYX-4000H (manufactured by Mitsubishi Chemical Corporation).
 上記スルフィド型エポキシ樹脂の市販品としては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。 Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
 上記ジフェニルエーテル型エポキシ樹脂の市販品としては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。 Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
 上記ジシクロペンタジエン型エポキシ樹脂の市販品としては、例えば、EP-4088S(ADEKA社製)等が挙げられる。 Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
 上記ナフタレン型エポキシ樹脂の市販品としては、例えば、エピクロンHP4032、及びエピクロンEXA-4700(いずれもDIC社製)等が挙げられる。 Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC Corporation), and the like.
 上記フェノールノボラック型エポキシ樹脂の市販品としては、例えば、エピクロンN-770(DIC社製)等が挙げられる。 Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
 上記オルトクレゾールノボラック型エポキシ樹脂の市販品としては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。 Examples of commercially available ortho cresol novolac epoxy resins include Epicron N-670-EXP-S (manufactured by DIC).
 上記ジシクロペンタジエンノボラック型エポキシ樹脂の市販品としては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。 Examples of commercially available dicyclopentadiene novolac epoxy resins include Epicron HP7200 (manufactured by DIC).
 上記ビフェニルノボラック型エポキシ樹脂の市販品としては、例えば、NC-3000P(日本化薬社製)等が挙げられる。 Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
 上記ナフタレンフェノールノボラック型エポキシ樹脂の市販品としては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。 Examples of commercially available naphthalene phenol novolac epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
 上記グリシジルアミン型エポキシ樹脂の市販品としては、例えば、jER630(三菱化学社製);エピクロン430(DIC社製);TETRAD-X(三菱ガス化学社製)等が挙げられる。 Examples of commercially available products of the above glycidylamine type epoxy resin include jER630 (manufactured by Mitsubishi Chemical Corporation); Epicron 430 (manufactured by DIC Corporation); TETRAD-X (manufactured by Mitsubishi Gas Chemical Company) and the like.
 上記アルキルポリオール型エポキシ樹脂の市販品としては、例えば、ZX-1542(新日鉄住金化学社製);エピクロン726(DIC社製);エポライト80MFA(共栄社化学社製);デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂の市販品としては、例えば、YR-450、及びYR-207(いずれも新日鉄住金化学社製);エポリードPB(ダイセル社製)等が挙げられる。
Commercially available products of the above alkyl polyol type epoxy resins include, for example, ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.); Epicron 726 (manufactured by DIC Corporation); Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.); Etc.).
Examples of commercially available rubber-modified epoxy resins include YR-450 and YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.); Epolide PB (manufactured by Daicel).
 上記グリシジルエステル化合物の市販品としては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。 Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
 上記ビスフェノールA型エピスルフィド樹脂の市販品としては、例えば、jERYL-7000(三菱化学社製)等が挙げられる。 Examples of commercially available products of the bisphenol A type episulfide resin include jERYL-7000 (manufactured by Mitsubishi Chemical Corporation).
 上記エポキシ樹脂の他の市販品としては、例えば、YDC-1312、YSLV-80XY、及びYSLV-90CR(いずれも新日鉄住金化学社製);XAC4151(旭化成社製);jER1031、及びjER1032(いずれも三菱化学社製);EXA-7120(DIC社製);TEPIC(日産化学社製)等が挙げられる。 Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, and YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.); XAC4151 (manufactured by Asahi Kasei Co., Ltd.); EXA-7120 (manufactured by DIC); TEPIC (manufactured by Nissan Chemical Co., Ltd.) and the like.
 上記エポキシ(メタ)アクリレートの市販品としては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、及びEBECRYLRDX63182(いずれもダイセル・オルネクス社製);EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、及びEMA-1020(いずれも新中村化学工業社製);エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、及びエポキシエステル400EA(いずれも共栄社化学社製);デナコールアクリレートDA-141、デナコールアクリレートDA-314、及びデナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。 Examples of commercially available epoxy (meth) acrylates include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL3702 1010, EA-1020, EA-5323, EA-5520, EA-CHD, and EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.); Epoxy ester M-600A, Epoxy ester 40EM, Epoxy ester 70PA, Epoxy ester 200PA , Epoxy ester 80MFA, epoch Siester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, and Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.); And Denacol acrylate DA-911 (all manufactured by Nagase ChemteX Corporation).
 上記エポキシ(メタ)アクリレート以外の他の(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。 Examples of other (meth) acrylic compounds other than the above epoxy (meth) acrylate include, for example, ester compounds obtained by reacting (meth) acrylic acid with a compound having a hydroxyl group, and (meth) acrylic having an isocyanate compound having a hydroxyl group. Examples thereof include urethane (meth) acrylate obtained by reacting an acid derivative.
 上記(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物としては、単官能のエステル化合物、2官能のエステル化合物及び3官能以上のエステル化合物の内のいずれを用いてもよい。 As the ester compound obtained by reacting the (meth) acrylic acid with a compound having a hydroxyl group, any of a monofunctional ester compound, a bifunctional ester compound, and a trifunctional or higher functional ester compound may be used. .
 上記単官能のエステル化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、及び2-(メタ)アクリロイロキシエチルホスフェート等が挙げられる。 Examples of the monofunctional ester compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and isobutyl (meth) ) Acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, Methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, ethyl carbitol (Meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2, 2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) Acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isononyl (meth) acrylate, isomyristyl (meth) Acrylate, 2-butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, bicyclopentenyl (meth) acrylate, isodecyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, 2- (Meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, glycidyl (meth) acrylate, and 2- (meth) And acryloyloxyethyl phosphate.
 上記2官能のエステル化合物としては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、及びポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional ester compound include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 Nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) Acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate Rate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol dicyclopentadienyl di (meth) acrylate, 1,3- Butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) ) Acrylate, polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, and poly Butadiene di (meth) acrylate.
 上記3官能以上のエステル化合物としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、及びトリス(メタ)アクリロイルオキシエチルフォスフェート等が挙げられる。 Examples of the trifunctional or higher functional ester compound include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylolpropane tri (meth). Acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, Pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide addition Riserintori (meth) acrylate, and tris (meth) acryloyloxyethyl phosphate, and the like.
 上記ウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. be able to.
 上記ウレタン(メタ)アクリレートの原料であるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイオシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、及び1,6,10-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound that is a raw material of the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4. '-Diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris ( Isocyanatophenyl) thiophosphate, tetramethylxylene diisocyanate, and 1,6,10-undecant Isocyanate, and the like.
 上記ウレタン(メタ)アクリレートの原料であるイソシアネート化合物として、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、又はポリカプロラクトンジオール等のポリオールと、過剰のイソシアネートとの反応により得られる鎖延長されたイソシアネート化合物も使用することができる。 Examples of the isocyanate compound that is the raw material of the urethane (meth) acrylate include polyols such as ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, or polycaprolactone diol. And chain-extended isocyanate compounds obtained by reaction with excess isocyanate can also be used.
 上記ウレタン(メタ)アクリレートの原料である水酸基を有する(メタ)アクリル酸誘導体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、及び2-ヒドロキシブチル(メタ)アクリレート等の市販品;エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、及びポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレート;トリメチロールエタン、トリメチロールプロパン、及びグリセリン等の三価のアルコールのモノ(メタ)アクリレート及びジ(メタ)アクリレート;ビスフェノールA型エポキシアクリレート等のエポキシ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid derivative having a hydroxyl group as a raw material of the urethane (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. And commercially available products such as 2-hydroxybutyl (meth) acrylate; divalents such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol Mono (meth) acrylates of alcohol; mono (meth) acrylates and di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane, and glycerin; epoxy (meta) such as bisphenol A type epoxy acrylate Acrylate, and the like.
 上記ウレタン(メタ)アクリレートの市販品としては、例えば、M-1100、M-1200、M-1210、及びM-1600(いずれも東亞合成社製);EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9260、EBECRYL1290、EBECRYL5129、EBECRYL4842、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、及びEBECRYL2220(いずれもダイセル・オルネクス社製);アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、及びアートレジンSH-500B(いずれも根上工業社製);U-122P、U-108A、U-340P、U-4HA、U-6HA、U-324A、U-15HA、UA-5201P、UA-W2A、U-1084A、U-6LPA、U-2HA、U-2PHA、UA-4100、UA-7100、UA-4200、UA-4400、UA-340P、U-3HA、UA-7200、U-2061BA、U-10H、U-122A、U-340A、U-108、U-6H、及びUA-4000(いずれも新中村化学工業社製);AH-600、AT-600、UA-306H、AI-600、UA-101T、UA-101I、UA-306T、及びUA-306I(いずれも共栄社化学社製)等が挙げられる。 Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, and M-1600 (all manufactured by Toagosei Co., Ltd.); EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803 , EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL220, and EBECRYL9200 Resin UN- 255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, and Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.); U-122P, U-108A, U-340P, U-4HA U-6HA, U-324A, U-15HA, UA-5201P, UA-W2A, U-1084A, U-6LPA, U-2HA, U-2PHA, UA-4100, UA-7100, UA-4200, UA -4400, UA-340P, U-3HA, UA-7200, U-2061BA, U-10H, U-122A, U-340A, U-108, U-6H, and UA-4000 (all Shin-Nakamura Chemical Industries AH-600, AT-600, UA-306H, AI-600, UA-101T, UA-101I UA-306T, and UA-306I (all manufactured by Kyoeisha Chemical Co., Ltd.).
 液晶への悪影響を抑える観点からは、上記(メタ)アクリル化合物は、-OH基、-NH-基、-NH基等の水素結合性のユニットを有することが好ましい。 From the viewpoint of suppressing adverse effects on the liquid crystal, the (meth) acrylic compound preferably has a hydrogen-bonding unit such as an —OH group, —NH— group, and —NH 2 group.
 反応性を高くする観点からは、上記(メタ)アクリル化合物は、(メタ)アクリロイル基を2つ又は3つ有することが好ましい。 From the viewpoint of increasing the reactivity, the (meth) acrylic compound preferably has two or three (meth) acryloyl groups.
 液晶表示素子用シール剤の接着性を向上させる観点からは、上記熱化性化合物は、エポキシ化合物を含有してもよい。 From the viewpoint of improving the adhesiveness of the sealing agent for liquid crystal display elements, the heatable compound may contain an epoxy compound.
 上記エポキシ化合物としては、例えば、上記エポキシ(メタ)アクリレートを合成するための原料であるエポキシ化合物や、部分(メタ)アクリル変性エポキシ化合物等が挙げられる。 Examples of the epoxy compound include an epoxy compound that is a raw material for synthesizing the epoxy (meth) acrylate and a partially (meth) acryl-modified epoxy compound.
 上記部分(メタ)アクリル変性エポキシ化合物とは、エポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味する。上記部分(メタ)アクリル変性エポキシ化合物は、例えば、2つ以上のエポキシ基を有する化合物において、2つ以上のエポキシ基の一部に(メタ)アクリル酸を反応させることによって得ることができる。 The partial (meth) acryl-modified epoxy compound means a compound having at least one epoxy group and one (meth) acryloyl group. The partial (meth) acryl-modified epoxy compound can be obtained, for example, by reacting (meth) acrylic acid with a part of two or more epoxy groups in a compound having two or more epoxy groups.
 上記部分(メタ)アクリル変性エポキシ化合物の市販品としては、例えば、KRM8287(ダイセル・オルネクス社製)等が挙げられる。 Examples of commercially available partial (meth) acrylic-modified epoxy compounds include KRM8287 (manufactured by Daicel Ornex).
 上記熱硬化性化合物として上記(メタ)アクリル化合物と上記エポキシ化合物とを用いる場合、上記熱硬化性化合物全体における(メタ)アクリロイル基とエポキシ基との合計100モル%中、エポキシ基は好ましくは20モル%以上であり、好ましくは50モル%以下である。上記エポキシ基が上記上限以下であると、液晶表示素子用シール剤の液晶に対する溶解性が低くなって液晶汚染がより一層生じ難くなり、液晶表示素子の表示性能がより一層良好になる。 When the (meth) acrylic compound and the epoxy compound are used as the thermosetting compound, the epoxy group is preferably 20 in a total of 100 mol% of the (meth) acryloyl group and the epoxy group in the whole thermosetting compound. It is at least mol%, preferably at most 50 mol%. When the epoxy group is less than or equal to the above upper limit, the liquid crystal display element sealant is less soluble in liquid crystals and liquid crystal contamination is less likely to occur, and the display performance of the liquid crystal display element is further improved.
 上記重合開始剤としては、ラジカル重合開始剤、及びカチオン重合開始剤等が挙げられる。上記重合開始剤は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the polymerization initiator include radical polymerization initiators and cationic polymerization initiators. As for the said polymerization initiator, only 1 type may be used and 2 or more types may be used together.
 上記ラジカル重合開始剤としては、光照射によりラジカルを発生する光ラジカル重合開始剤、及び加熱によりラジカルを発生する熱ラジカル重合開始剤等が挙げられる。 Examples of the radical polymerization initiator include a photo radical polymerization initiator that generates radicals by light irradiation, and a thermal radical polymerization initiator that generates radicals by heating.
 上記ラジカル重合開始剤は、熱硬化剤に比べて硬化速度が格段に速い。このため、ラジカル重合開始剤を用いることにより、シールブレイクや、液晶汚染の発生を抑制し、かつ、上記シリコーン粒子により発生しやすいスプリングバックも抑制できる。 The above radical polymerization initiator has a markedly faster curing rate than the thermosetting agent. For this reason, by using a radical polymerization initiator, it is possible to suppress the occurrence of seal breaks and liquid crystal contamination, and also to suppress the spring back that is easily generated by the silicone particles.
 上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、及びチオキサントン等が挙げられる。 Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, and thioxanthone.
 上記光ラジカル重合開始剤の市販品としては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、及びルシリンTPO(いずれもBASF Japan社製);ベンソインメチルエーテル、ベンゾインエチルエーテル、及びベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。 Commercially available products of the above photo radical polymerization initiator include, for example, IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Rusilin TPO (all manufactured by BASF Methyl Benin, Inc. Examples include ether and benzoin isopropyl ether (both manufactured by Tokyo Chemical Industry Co., Ltd.).
 上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、及び有機過酸化物等が挙げられる。アゾ化合物が好ましく、高分子アゾ化合物からなる高分子アゾ開始剤がより好ましい。 Examples of the thermal radical polymerization initiator include azo compounds and organic peroxides. Azo compounds are preferred, and polymer azo initiators comprising polymer azo compounds are more preferred.
 高分子アゾ化合物とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成し、数平均分子量が300以上である化合物を意味する。 The polymer azo compound means a compound having an azo group, generating a radical capable of curing a (meth) acryloyloxy group by heat, and having a number average molecular weight of 300 or more.
 上記高分子アゾ開始剤の数平均分子量は好ましくは1000以上、より好ましくは5000以上、更に好ましくは1万以上であり、好ましくは30万以下、より好ましくは10万以下、更に好ましくは9万以下である。上記高分子アゾ開始剤の数平均分子量が上記下限以上であると、高分子アゾ開始剤が液晶に悪影響を与えにくい。上記高分子アゾ開始剤の数平均分子量が上記上限以下であると、熱硬化性化合物への混合が容易になる。 The number average molecular weight of the polymeric azo initiator is preferably 1000 or more, more preferably 5000 or more, still more preferably 10,000 or more, preferably 300,000 or less, more preferably 100,000 or less, and still more preferably 90,000 or less. It is. When the number average molecular weight of the polymeric azo initiator is not less than the above lower limit, the polymeric azo initiator is unlikely to adversely affect the liquid crystal. When the number average molecular weight of the polymer azo initiator is not more than the above upper limit, mixing with the thermosetting compound becomes easy.
 上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPC測定に用いるカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。 The above-mentioned number average molecular weight is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC). Examples of the column used for GPC measurement include Shodex LF-804 (manufactured by Showa Denko KK).
 上記高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有する高分子アゾ開始剤等が挙げられる。 Examples of the polymer azo initiator include a polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
 上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤は、ポリエチレンオキサイド構造を有することが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールとの重縮合物、及び4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンとの重縮合物等が挙げられ、具体的には例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001、及びV-501(いずれも和光純薬工業社製)等が挙げられる。 The polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group preferably has a polyethylene oxide structure. Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid). And, for example, VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, and V-501 (for example). All of them are manufactured by Wako Pure Chemical Industries, Ltd.).
 上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、及びパーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
 上記カチオン重合開始剤として、光カチオン重合開始剤を好適に用いることができる。上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生する。上記光カチオン重合開始剤の種類は、特に限定されず、イオン性光酸発生タイプであってもよく、非イオン性光酸発生タイプであってもよい。 As the cationic polymerization initiator, a photocationic polymerization initiator can be suitably used. The photocationic polymerization initiator generates a protonic acid or a Lewis acid when irradiated with light. The kind of said photocationic polymerization initiator is not specifically limited, An ionic photoacid generation type may be sufficient and a nonionic photoacid generation type may be sufficient.
 上記光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ハロニウム塩、芳香族スルホニウム塩等のオニウム塩類;鉄-アレン錯体;チタノセン錯体;アリールシラノール-アルミニウム錯体等の有機金属錯体類等が挙げられる。 Examples of the photocationic polymerization initiator include onium salts such as aromatic diazonium salts, aromatic halonium salts, and aromatic sulfonium salts; iron-allene complexes; titanocene complexes; organometallic complexes such as arylsilanol-aluminum complexes, etc. Is mentioned.
 上記光カチオン重合開始剤の市販品としては、例えば、アデカオプトマーSP-150、及びアデカオプトマーSP-170(いずれもADEKA社製)等が挙げられる。 Examples of commercially available photocationic polymerization initiators include Adekaoptomer SP-150 and Adekaoptomer SP-170 (both manufactured by ADEKA).
 上記熱硬化性化合物100重量部に対して、上記重合開始剤の含有量は好ましくは0.1重量部以上、より好ましくは1重量部以上であり、好ましくは30重量部以下、より好ましくは10重量部以下、更に好ましくは5重量部以下である。上記重合開始剤の含有量が上記下限以上であると、液晶表示素子用シール剤を充分に硬化させることができる。上記重合開始剤の含有量が上記上限以下であると、液晶表示素子用シール剤の貯蔵安定性が高くなる。 The content of the polymerization initiator is preferably 0.1 parts by weight or more, more preferably 1 part by weight or more, preferably 30 parts by weight or less, more preferably 10 parts by weight with respect to 100 parts by weight of the thermosetting compound. It is 5 parts by weight or less, more preferably 5 parts by weight or less. When the content of the polymerization initiator is not less than the above lower limit, the sealing agent for liquid crystal display elements can be sufficiently cured. When the content of the polymerization initiator is not more than the above upper limit, the storage stability of the sealing agent for liquid crystal display elements is increased.
 上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、及び酸無水物等が挙げられる。23℃で固形の有機酸ヒドラジドが好適に用いられる。上記熱硬化剤は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, and acid anhydrides. Organic acid hydrazide solid at 23 ° C. is preferably used. As for the said thermosetting agent, only 1 type may be used and 2 or more types may be used together.
 上記23℃で固形の有機酸ヒドラジドとしては、例えば、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、及びマロン酸ジヒドラジド等が挙げられる。 Examples of the organic acid hydrazide solid at 23 ° C. include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, and malonic acid dihydrazide. It is done.
 上記23℃で固形の有機酸ヒドラジドの市販品としては、例えば、アミキュアVDH、及びアミキュアUDH(いずれも味の素ファインテクノ社製);SDH、IDH、ADH、及びMDH(いずれも大塚化学社製)等が挙げられる。 Examples of commercial products of organic acid hydrazide solid at 23 ° C. include Amicure VDH and Amicure UDH (all manufactured by Ajinomoto Fine Techno Co.); SDH, IDH, ADH, MDH (all manufactured by Otsuka Chemical Co., Ltd.) Is mentioned.
 上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは1重量部以上であり、好ましくは50重量部以下、より好ましくは30重量部以下である。上記熱硬化剤の含有量が上記下限以上であると、液晶表示素子用シール剤を充分に熱硬化させることができる。上記熱硬化剤の含有量が上記上限以下であると、液晶表示素子用シール剤の粘度が高くなりすぎず、塗布性が良好になる。 The content of the thermosetting agent with respect to 100 parts by weight of the thermosetting compound is preferably 1 part by weight or more, preferably 50 parts by weight or less, more preferably 30 parts by weight or less. When the content of the thermosetting agent is not less than the above lower limit, the liquid crystal display element sealing agent can be sufficiently thermoset. When the content of the thermosetting agent is not more than the above upper limit, the viscosity of the sealing agent for liquid crystal display elements does not become too high, and the coating property becomes good.
 上記液晶表示素子用シール剤は、硬化促進剤を含有することが好ましい。上記硬化促進剤を用いることにより、高温で加熱しなくても充分にシール剤を硬化させることができる。 The liquid crystal display element sealing agent preferably contains a curing accelerator. By using the curing accelerator, the sealing agent can be sufficiently cured without heating at a high temperature.
 上記硬化促進剤としては、例えば、イソシアヌル環骨格を有する多価カルボン酸やエポキシ樹脂アミンアダクト物等が挙げられ、具体的には例えば、トリス(2-カルボキシメチル)イソシアヌレート、トリス(2-カルボキシエチル)イソシアヌレート、トリス(3-カルボキシプロピル)イソシアヌレート、及びビス(2-カルボキシエチル)イソシアヌレート等が挙げられる。 Examples of the curing accelerator include polyvalent carboxylic acids having an isocyanuric ring skeleton and epoxy resin amine adducts. Specific examples include tris (2-carboxymethyl) isocyanurate, tris (2-carboxyl). And ethyl) isocyanurate, tris (3-carboxypropyl) isocyanurate, and bis (2-carboxyethyl) isocyanurate.
 上記熱硬化性化合物100重量部に対して、上記硬化促進剤の含有量は好ましくは0.1重量部以上であり、好ましくは10重量部以下である。上記硬化促進剤の含有量が上記下限以上であると、液晶表示素子用シール剤が充分に硬化し、硬化させるために高温での加熱が必要ではなくなる。上記硬化促進剤の含有量が上記上限以下であると、液晶表示素子用シール剤の接着性が高くなる。 The content of the curing accelerator is preferably 0.1 parts by weight or more and preferably 10 parts by weight or less with respect to 100 parts by weight of the thermosetting compound. When the content of the curing accelerator is not less than the above lower limit, the liquid crystal display element sealing agent is sufficiently cured, and heating at a high temperature is not necessary for curing. Adhesiveness of the sealing agent for liquid crystal display elements becomes it high that content of the said hardening accelerator is below the said upper limit.
 上記液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の向上等を目的として、充填剤を含有することが好ましい。 The liquid crystal display element sealing agent preferably contains a filler for the purpose of improving the viscosity, improving the adhesion due to the stress dispersion effect, improving the linear expansion coefficient, and improving the moisture resistance of the cured product.
 上記充填剤としては、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、セリサイト、活性白土、及び窒化アルミニウム等の無機充填剤や、ポリエステル粒子、ポリウレタン粒子、ビニル重合体粒子、アクリル重合体粒子、及びコアシェルアクリレート共重合体粒子等の有機充填剤等が挙げられる。上記充填剤は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the filler include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, water Inorganic fillers such as aluminum oxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite, activated clay, and aluminum nitride, polyester particles, polyurethane particles, vinyl polymer particles, acrylic polymer particles, and Examples thereof include organic fillers such as core-shell acrylate copolymer particles. As for the said filler, only 1 type may be used and 2 or more types may be used together.
 上記液晶表示素子用シール材100重量%中、上記充填剤の含有量は好ましくは10重量%以上、より好ましくは20重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下である。上記充填剤の含有量が上記下限以上であると、接着性の改善等の効果が充分に発揮される。上記充填剤の含有量が上記上限以下であると、液晶表示素子用シール剤の粘度が高くなりすぎず、塗布性が良好になる。 The content of the filler is preferably 10% by weight or more, more preferably 20% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less, in 100% by weight of the sealing material for liquid crystal display elements. It is. When the content of the filler is not less than the above lower limit, effects such as improvement in adhesiveness are sufficiently exhibited. When the content of the filler is not more than the above upper limit, the viscosity of the sealing agent for liquid crystal display elements does not become too high, and the coating property is improved.
 上記液晶表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。シランカップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The liquid crystal display element sealing agent preferably contains a silane coupling agent. The silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate. As for a silane coupling agent, only 1 type may be used and 2 or more types may be used together.
 上記シランカップリング剤に関しては、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができることから、例えば、N-フェニル-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン又は3-イソシアネートプロピルトリメトキシシラン等が好ましい。 The silane coupling agent is excellent in the effect of improving the adhesion to the substrate and the like, and can be prevented from flowing out of the curable resin into the liquid crystal by chemically bonding with the curable resin. -Phenyl-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane or 3-isocyanatopropyltrimethoxysilane is preferred.
 上記液晶表示素子用シール材100重量%中、上記シランカップリング剤の含有量は、好ましくは0.1重量%以上、より好ましくは0.5重量%以上であり、好ましくは20重量%以下、より好ましくは10重量%以下である。上記シランカップリング剤の含有量が上記下限以上であると、シランカップリング剤を配合することによる効果が充分に発揮される。上記シランカップリング剤の含有量が上記上限以下であると、液晶表示素子用シール剤による液晶の汚染がより一層抑えられる。 In 100% by weight of the liquid crystal display element sealing material, the content of the silane coupling agent is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and preferably 20% by weight or less. More preferably, it is 10% by weight or less. The effect by mix | blending a silane coupling agent is fully exhibited as content of the said silane coupling agent is more than the said minimum. When the content of the silane coupling agent is not more than the above upper limit, the contamination of the liquid crystal by the liquid crystal display element sealing agent is further suppressed.
 上記液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤の使用により、液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The liquid crystal display element sealing agent may contain a light shielding agent. By using the light shielding agent, the liquid crystal display element sealing agent can be suitably used as a light shielding sealant.
 上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、及び樹脂被覆型カーボンブラック等が挙げられる。チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Titanium black is preferred.
 遮光剤を含有する液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。 A liquid crystal display device manufactured using a sealing agent for liquid crystal display devices containing a light-shielding agent has sufficient light-shielding properties, and thus has high contrast without light leakage, and has excellent image display quality. An element can be realized.
 上記チタンブラックは、波長300~800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長370~450nmの光に対する透過率が高くなる物質である。上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで液晶表示素子用シール剤に遮光性を付与する性質を有する一方で、紫外線領域付近の波長の光は透過させる性質を有する。液晶表示素子用シール剤に含有される遮光剤の絶縁性は高いことが好ましく、絶縁性が高い遮光剤として、チタンブラックが好適である。 The above-mentioned titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. The titanium black has a property of providing light shielding properties to the sealing agent for liquid crystal display elements by sufficiently shielding light having a wavelength in the visible light region, and has a property of transmitting light having a wavelength in the vicinity of the ultraviolet region. . The insulating property of the light-shielding agent contained in the liquid crystal display element sealing agent is preferably high, and titanium black is suitable as the light-shielding agent having high insulation.
 上記チタンブラックの1μmあたりの光学濃度(OD値)は、好ましくは3以上、より好ましくは4以上である。上記チタンブラックの遮光性は高ければ高いほどよく、上記チタンブラックのOD値に好ましい上限は特にないが、OD値は通常は5以下である。 The optical density (OD value) per 1 μm of the titanium black is preferably 3 or more, more preferably 4 or more. The higher the light-shielding property of the titanium black, the better. The OD value of the titanium black is not particularly limited, but the OD value is usually 5 or less.
 上記チタンブラック及びカーボンブラックは、表面処理されていなくても充分な効果を発揮する。表面がカップリング剤等の有機成分で処理されたチタンブラックや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム及び酸化マグネシウム等の無機成分で被覆されたチタンブラック等の表面処理されたチタンブラックを用いることもできる。絶縁性を高めることができるので、有機成分で処理されているチタンブラックが好ましい。 The above-described titanium black and carbon black exhibit a sufficient effect even if they are not surface-treated. Surface treated with titanium black whose surface was treated with an organic component such as a coupling agent or titanium black coated with inorganic components such as silicon oxide, titanium oxide, germanium oxide, aluminum oxide, zirconium oxide and magnesium oxide. Titanium black can also be used. Titanium black treated with an organic component is preferable because it can enhance insulation.
 上記チタンブラックの市販品としては、例えば、12S、13M、13M-C、13R-N、及び14M-C(いずれも三菱マテリアル社製);ティラックD(赤穂化成社製)等が挙げられる。 Examples of commercially available titanium black include 12S, 13M, 13M-C, 13R-N, and 14M-C (all manufactured by Mitsubishi Materials Corporation); Tilac D (manufactured by Ako Kasei Co., Ltd.) and the like.
 上記チタンブラックの比表面積は好ましくは13m/g以上、より好ましくは15m/g以上であり、好ましくは30m/g以下、より好ましくは25m/g以下である。 The specific surface area of the titanium black is preferably 13 m 2 / g or more, more preferably 15 m 2 / g or more, preferably 30 m 2 / g or less, more preferably 25 m 2 / g or less.
 上記チタンブラックの体積抵抗は好ましくは0.5Ω・cm以上、より好ましくは1Ω・cm以上であり、好ましくは3Ω・cm以下、より好ましくは2.5Ω・cm以下である。 The volume resistance of the titanium black is preferably 0.5 Ω · cm or more, more preferably 1 Ω · cm or more, preferably 3 Ω · cm or less, more preferably 2.5 Ω · cm or less.
 上記遮光剤の一次粒子径は、2つの液晶表示素子用部材の間隔に影響する。上記遮光剤の一次粒子径は好ましくは1nm以上、より好ましくは5nm以上、更に好ましくは10nm以上であり、好ましくは5μm以下、より好ましくは200nm以下、更に好ましくは100nm以下である。上記遮光剤の一次粒子径が上記下限以上であると、液晶表示素子用シール剤の粘度やチクソトロピーが大きく増大し難く、作業性が良好になる。上記遮光剤の一次粒子径が上記上限以下であると、液晶表示素子用シール剤の塗布性が良好になる。 The primary particle size of the light shielding agent affects the distance between the two liquid crystal display element members. The primary particle size of the light-shielding agent is preferably 1 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, preferably 5 μm or less, more preferably 200 nm or less, still more preferably 100 nm or less. When the primary particle diameter of the light-shielding agent is not less than the above lower limit, the viscosity and thixotropy of the sealing agent for liquid crystal display elements are hardly increased and workability is improved. When the primary particle diameter of the light-shielding agent is not more than the above upper limit, the applicability of the liquid crystal display element sealing agent is improved.
 上記熱硬化性化合物100重量部に対して、上記遮光剤の含有量は好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは30重量%以上であり、好ましくは80重量%以下、より好ましくは70重量%以下、更に好ましくは60重量%以下である。上記遮光剤の含有量が上記下限以上であると、充分な遮光性が得られる。上記遮光剤の含有量が上記上限以下であると、液晶表示素子用シール剤の密着性や硬化後の強度が高くなり、更に描画性が高くなる。 The content of the light-shielding agent is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 30% by weight or more, and preferably 80% by weight or less with respect to 100 parts by weight of the thermosetting compound. More preferably, it is 70 weight% or less, More preferably, it is 60 weight% or less. When the content of the light shielding agent is not less than the above lower limit, sufficient light shielding properties can be obtained. When the content of the light-shielding agent is not more than the above upper limit, the adhesion of the sealing agent for liquid crystal display elements and the strength after curing are increased, and the drawing property is further improved.
 上記液晶表示素子用シール剤は、必要に応じて、応力緩和剤、反応性希釈剤、揺変剤、スペーサ、硬化促進剤、消泡剤、レベリング剤、重合禁止剤、その他添加剤等を含有してもよい。 The liquid crystal display element sealing agent contains a stress relaxation agent, a reactive diluent, a thixotropic agent, a spacer, a curing accelerator, an antifoaming agent, a leveling agent, a polymerization inhibitor, and other additives as necessary. May be.
 上記液晶表示素子用シール剤を製造する方法は特に限定されず、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、及び3本ロール等の混合機を用いて、熱硬化性化合物と、重合開始剤又は熱硬化剤と、シリコーン粒子と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 The method for producing the liquid crystal display element sealing agent is not particularly limited. For example, a thermosetting compound using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three-roller. And a method of mixing a polymerization initiator or a thermosetting agent, silicone particles, and an additive such as a silane coupling agent added as necessary.
 上記液晶表示素子用シール剤の25℃及び1rpmでの粘度は好ましくは5万Pa・s以上であり、好ましくは50万Pa・s以下、より好ましくは40万Pa・s以下である。上記粘度が上記下限以上及び上記上限以下であると、液晶表示素子用シール剤の塗布性が良好になる。上記粘度は、E型粘度計を用いて測定される。 The viscosity of the sealing agent for liquid crystal display elements at 25 ° C. and 1 rpm is preferably 50,000 Pa · s or more, preferably 500,000 Pa · s or less, more preferably 400,000 Pa · s or less. When the viscosity is not less than the above lower limit and not more than the above upper limit, the applicability of the sealing agent for liquid crystal display elements is improved. The viscosity is measured using an E-type viscometer.
 (液晶表示素子)
 上記シリコーン粒子を含む上記シール剤を用いて、液晶表示素子を得ることができる。液晶表示素子は、第1の液晶表示素子用部材と、第2の液晶表示素子用部材と、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材とが対向した状態で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との外周をシールしているシール部と、上記シール部の内側で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との間に配置されている液晶とを備える。この液晶表示素子では、液晶滴下工法が適用され、かつ上記シール部が、液晶滴下工法用シール剤などのシール剤の熱硬化物である。上記シール部が、液晶滴下工法用シール剤などのシール剤を熱硬化させることにより形成されている。
(Liquid crystal display element)
A liquid crystal display element can be obtained using the sealing agent containing the silicone particles. In the liquid crystal display element, the first liquid crystal display element member, the second liquid crystal display element member, the first liquid crystal display element member, and the second liquid crystal display element member face each other. A seal portion that seals the outer periphery of the first liquid crystal display element member and the second liquid crystal display element member, and the first liquid crystal display element member and the above inside the seal portion. And a liquid crystal disposed between the second liquid crystal display element member. In this liquid crystal display element, a liquid crystal dropping method is applied, and the seal portion is a thermosetting product of a sealing agent such as a liquid crystal dropping method. The seal portion is formed by thermally curing a sealant such as a liquid crystal dropping method sealant.
 図1は、本発明の一実施形態に係るシリコーン粒子を用いた液晶表示素子を示す断面図である。 FIG. 1 is a cross-sectional view showing a liquid crystal display element using silicone particles according to an embodiment of the present invention.
 図1に示す液晶表示素子1は、一対の透明ガラス基板2を有する。透明ガラス基板2は、対向する面に絶縁膜(図示せず)を有する。絶縁膜の材料としては、例えば、SiO等が挙げられる。透明ガラス基板2における絶縁膜上に透明電極3が形成されている。透明電極3の材料としては、ITO等が挙げられる。透明電極3は、例えば、フォトリソグラフィーによりパターニングして形成可能である。透明ガラス基板2の表面上の透明電極3上に、配向膜4が形成されている。配向膜4の材料としては、ポリイミド等が挙げられている。 A liquid crystal display element 1 shown in FIG. 1 has a pair of transparent glass substrates 2. The transparent glass substrate 2 has an insulating film (not shown) on the opposing surface. Examples of the material for the insulating film include SiO 2 . A transparent electrode 3 is formed on the insulating film in the transparent glass substrate 2. Examples of the material of the transparent electrode 3 include ITO. The transparent electrode 3 can be formed by patterning, for example, by photolithography. An alignment film 4 is formed on the transparent electrode 3 on the surface of the transparent glass substrate 2. Examples of the material of the alignment film 4 include polyimide.
 一対の透明ガラス基板2間には、液晶5が封入されている。一対の透明ガラス基板2間には、複数のスペーサ粒子7が配置されている。複数のスペーサ粒子7により、一対の透明ガラス基板2の間隔が規制されている。一対の透明ガラス基板2の外周の縁部間には、シール部6が配置されている。シール部6によって、液晶5の外部への流出が防がれている。シール部6には、シリコーン粒子6Aが含まれている。液晶表示素子1では、液晶5の上側に位置する部材が、第1の液晶表示素子用部材であり、液晶の下側に位置する部材が、第2の液晶表示素子用部材である。 The liquid crystal 5 is sealed between the pair of transparent glass substrates 2. A plurality of spacer particles 7 are disposed between the pair of transparent glass substrates 2. The space between the pair of transparent glass substrates 2 is regulated by the plurality of spacer particles 7. A seal portion 6 is disposed between the outer peripheral edges of the pair of transparent glass substrates 2. Outflow of the liquid crystal 5 to the outside is prevented by the seal portion 6. The seal portion 6 includes silicone particles 6A. In the liquid crystal display element 1, the member positioned above the liquid crystal 5 is a first liquid crystal display element member, and the member positioned below the liquid crystal is a second liquid crystal display element member.
 なお、図1に示す液晶表示素子は一例であり、液晶表示素子の構造は適宜変更することができる。 Note that the liquid crystal display element shown in FIG. 1 is an example, and the structure of the liquid crystal display element can be changed as appropriate.
 本発明のシリコーン粒子は、上述のように液晶滴下工法用シール剤に用いられることが好ましいが、本発明のシリコーン粒子の特有の物性を利用して、部材間の間隔を高精度に制御するギャップ材や、部材間の接続部分の衝撃を緩和したりするような応力緩和材としても好適に用いることができる。 As described above, the silicone particles of the present invention are preferably used in a sealing agent for a liquid crystal dropping method. However, by utilizing the specific physical properties of the silicone particles of the present invention, a gap for controlling the interval between members with high accuracy. It can also be suitably used as a stress relieving material that relieves the impact of the material and the connecting portion between the members.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 (実施例1)
 (1)シリコーンオリゴマーの作製
 温浴槽内に設置した500mlのセパラブルフラスコに、ジメトキシメチルビニルシラン31重量部を入れた後、10重量%水酸化カリウム水溶液9重量部を添加した。40℃に昇温し、約1時間撹拌を行った。その後、ジメトキシジメチルシラン225重量部、及びメチルトリメトキシシラン50重量部を添加し、1時間撹拌しながら反応を行った。反応終了後、40℃まで冷却させ、酢酸1重量部を添加して10分撹拌させ、12時間以上分液漏斗内で静置した。二層分離後の下層を取り出して、エバポレーターにて精製することでシリコーンオリゴマーを得た。
(Example 1)
(1) Production of Silicone Oligomer 31 parts by weight of dimethoxymethylvinylsilane was added to a 500 ml separable flask placed in a hot tub, and then 9 parts by weight of a 10% by weight potassium hydroxide aqueous solution was added. The temperature was raised to 40 ° C., and stirring was performed for about 1 hour. Thereafter, 225 parts by weight of dimethoxydimethylsilane and 50 parts by weight of methyltrimethoxysilane were added, and the reaction was carried out with stirring for 1 hour. After completion of the reaction, the mixture was cooled to 40 ° C., 1 part by weight of acetic acid was added, and the mixture was stirred for 10 minutes, and allowed to stand in a separatory funnel for 12 hours or more. The lower layer after two-layer separation was taken out and purified with an evaporator to obtain a silicone oligomer.
 (2)シリコーン粒子(有機ポリマーを含む)の作製
 得られたシリコーンオリゴマー60重量部に、tert-ブチル-2-エチルペルオキシヘキサノアート(重合開始剤、日油社製「パーブチルO」)1重量部を溶解させた溶解液A61重量部を用意した。また、イオン交換水150重量部に、ポリオキシエチレンアルキルフェニルエーテル(乳化剤)0.8重量部とポリビニルアルコール(重合度:約2000、けん化度:86.5~89モル%、日本合成化学社製「ゴーセノールGH-20」)の5重量%水溶液80重量部とを混合して、水溶液B230.8重量部を用意した。
(2) Preparation of silicone particles (including organic polymer) 1 part by weight of tert-butyl-2-ethylperoxyhexanoate (polymerization initiator, “Perbutyl O” manufactured by NOF Corporation) was added to 60 parts by weight of the obtained silicone oligomer. 61 parts by weight of a solution A in which parts were dissolved was prepared. In addition, 150 parts by weight of ion-exchanged water, 0.8 part by weight of polyoxyethylene alkylphenyl ether (emulsifier) and polyvinyl alcohol (polymerization degree: about 2000, saponification degree: 86.5 to 89 mol%, manufactured by Nippon Synthetic Chemical Co., Ltd.) 80 parts by weight of a 5% by weight aqueous solution of “GOHSENOL GH-20”) was mixed to prepare 230.8 parts by weight of an aqueous solution B.
 温浴槽中に設置したセパラブルフラスコに、上記溶解液A61重量部を入れた後、上記水溶液B230.8重量部を添加した。その後、Shirasu Porous Glass(SPG)膜(細孔平均径約5μm)を用いることで、乳化を行った。その後、85℃に昇温して、9時間重合を行った。重合後の粒子の全量を遠心分離により水洗浄した後、粒子をイオン交換水100重量部に再度分散させて、分散液を得た。次に、分散液にコロイダルシリカ(日産化学工業社製「MP-2040」)1重量部を添加した後に凍結乾燥することで、基材粒子を得た。得られた基材粒子を分級操作することで、平均粒子径6.1μmのシリコーン粒子を得た。得られたシリコーン粒子では、有機ポリマーは水酸基を有し、有機ポリマーの重量平均分子量は約98000であった。 After 61 parts by weight of the solution A was put into a separable flask installed in a hot tub, 230.8 parts by weight of the aqueous solution B was added. Then, emulsification was performed using a Shirasu Porous Glass (SPG) membrane (pore average diameter of about 5 μm). Then, it heated up to 85 degreeC and superposition | polymerization was performed for 9 hours. The entire amount of the particles after polymerization was washed with water by centrifugation, and then the particles were dispersed again in 100 parts by weight of ion-exchanged water to obtain a dispersion. Next, 1 part by weight of colloidal silica (“MP-2040” manufactured by Nissan Chemical Industries, Ltd.) was added to the dispersion, followed by lyophilization to obtain base particles. By classifying the obtained base material particles, silicone particles having an average particle size of 6.1 μm were obtained. In the obtained silicone particles, the organic polymer had a hydroxyl group, and the weight average molecular weight of the organic polymer was about 98,000.
 (実施例2)
 ポリビニルアルコール(重合度:約2000、けん化度:86.5~89モル%、日本合成化学社製「ゴーセノールGH-20」)を、ポリビニルアルコール(重合度:約500、けん化度:86.5~89モル%、重量平均分子量:約25000、日本合成化学社製「ゴーセノールGL-05」)に変更したこと以外は実施例1と同様にして、シリコーン粒子を得た。
(Example 2)
Polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 86.5-89 mol%, “GOHSENOL GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to polyvinyl alcohol (degree of polymerization: about 500, degree of saponification: 86.5- Silicone particles were obtained in the same manner as in Example 1 except that the content was changed to 89 mol%, weight average molecular weight: about 25000, “GOHSENOL GL-05” manufactured by Nippon Synthetic Chemical Co., Ltd.
 (実施例3)
 ポリビニルアルコール(重合度:約2000、けん化度:86.5~89モル%、日本合成化学社製「ゴーセノールGH-20」)を、ポリビニルアルコール(重合度:約2000、けん化度:78.5~81.5モル%、重量平均分子量:約105000、日本合成化学社製「ゴーセノールKH-20」)に変更したこと以外は実施例1と同様にして、シリコーン粒子を得た。
(Example 3)
Polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 86.5 to 89 mol%, “GOHSENOL GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 78.5 to Silicone particles were obtained in the same manner as in Example 1 except that 81.5 mol%, weight average molecular weight: about 105000, and “GOHSENOL KH-20” manufactured by Nippon Synthetic Chemical Co., Ltd. were used.
 (実施例4)
 ポリビニルアルコール(重合度:約2000、けん化度:86.5~89モル%、日本合成化学社製「ゴーセノールGH-20」)を、カルボキシメチルセルロースナトリウム(重量平均分子量:57000~69000、第一工業製薬社製「セロゲンF-SB」)に変更したこと以外は実施例1と同様にして、シリコーン粒子を得た。
Example 4
Polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 86.5 to 89 mol%, “GOHSENOL GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.) and sodium carboxymethylcellulose (weight average molecular weight: 57000 to 69000, Daiichi Kogyo Seiyaku Co., Ltd.) Silicone particles were obtained in the same manner as in Example 1 except that the product was changed to “Serogen F-SB” manufactured by the company.
 (実施例5)
 温浴槽内に設置した500mlのセパラブルフラスコに、イオン交換水250重量部及び5重量%のポリビニルアルコール(日本合成化学社製「GH-20」)水溶液50重量部を入れ、デカメチルシクロペンタシロキサン25重量部、メチルトリメトキシシラン5重量部、反応性変性シリコーンオイル(アクリル変性、両末端型、信越化学工業社製「X-22-2445」)17.5重量部、及び、反応性変性シリコーンオイル(カルビノール変性、片末端型、信越化学工業社製「X-22-170BX」)2.5重量部を添加して5分撹拌した後に、10重量%水酸化カリウム水溶液を滴下した。その後、85℃に昇温して、5時間撹拌することで、デカメチルシクロペンタシロキサンの開環を行った。その後、50℃まで冷却して6時間反応を行うことで、シリコーン粒子を得た。
(Example 5)
A 500 ml separable flask placed in a hot tub is charged with 250 parts by weight of ion-exchanged water and 50 parts by weight of a 5% by weight aqueous solution of polyvinyl alcohol (“GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.), and decamethylcyclopentasiloxane. 25 parts by weight, 5 parts by weight of methyltrimethoxysilane, 17.5 parts by weight of reactive-modified silicone oil (acryl-modified, both-end type, “X-22-2445” manufactured by Shin-Etsu Chemical Co., Ltd.), and reactive-modified silicone After adding 2.5 parts by weight of oil (carbinol-modified, one-end type, “X-22-170BX” manufactured by Shin-Etsu Chemical Co., Ltd.) and stirring for 5 minutes, a 10% by weight aqueous potassium hydroxide solution was added dropwise. Thereafter, the temperature was raised to 85 ° C., and the decamethylcyclopentasiloxane was ring-opened by stirring for 5 hours. Then, the silicone particle was obtained by cooling to 50 degreeC and performing reaction for 6 hours.
 (実施例6)
 ポリビニルアルコール(重合度:約2000、けん化度:86.5~89モル%、日本合成化学社製「ゴーセノールGH-20」)を、ポリビニルアルコール(重合度:約2000、けん化度:98.5~99.4モル%、重量平均分子量:約88800、日本合成化学社製「ゴーセノールNH-20」)に変更したこと以外は実施例1と同様にして、シリコーン粒子を得た。
(Example 6)
Polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 86.5 to 89 mol%, “GOHSENOL GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 98.5 to Silicone particles were obtained in the same manner as in Example 1 except that 99.4 mol%, weight average molecular weight: about 88800, and “GOHSENOL NH-20” manufactured by Nippon Synthetic Chemical Co., Ltd. were used.
 (実施例7)
 イオン交換水180重量部及び5重量%のポリビニルアルコール(日本合成化学社製「GH-20」)水溶液100重量部を混合し、混合液を得た。反応性変性シリコーンオイル(アクリル変性、両末端型、信越化学工業社製「X-22-2445」)60重量部及び反応性変性シリコーンオイル(メタクリル変性、両末端型、信越化学工業社製「X-22-164」)10重量部に、t-Butyl peroxy-2-ethylhexanoate(日油社製「パーブチルO」)1重量部を溶解させた溶解液を用意した。上記混合液に上記溶解液を添加し、孔径1μmのSPG膜を用いて乳化を行い、温浴槽内に設置した500mlのセパラブルフラスコに乳化物を入れ、85℃で6時間反応させることで、シリコーン粒子を得た。
(Example 7)
180 parts by weight of ion-exchanged water and 100 parts by weight of an aqueous solution of 5% by weight polyvinyl alcohol (“GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.) were mixed to obtain a mixed solution. 60 parts by weight of reactive modified silicone oil (acrylic modified, both ends type, "X-22-2445" manufactured by Shin-Etsu Chemical Co., Ltd.) and reactive modified silicone oil (methacrylic modified, both ends type, "X manufactured by Shin-Etsu Chemical Co., Ltd." -22-164 ") A solution was prepared by dissolving 1 part by weight of t-Butyl peroxide-2-ethylhexanoate (" Perbutyl O "manufactured by NOF Corporation) in 10 parts by weight. The above solution is added to the above mixed solution, emulsified using an SPG membrane having a pore size of 1 μm, the emulsion is put into a 500 ml separable flask installed in a hot tub, and reacted at 85 ° C. for 6 hours. Silicone particles were obtained.
 (比較例1)
 ポリビニルアルコール(重合度:約2000、けん化度:86.5~89モル%、日本合成化学社製「ゴーセノールGH-20」)を、ポリビニルアルコール(重合度:約300、けん化度:78.5~81.5モル%、重量平均分子量:約15900、日本合成化学社製「ゴーセノールGL-03」)に変更したこと以外は実施例1と同様にして、シリコーン粒子を得た。
(Comparative Example 1)
Polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 86.5-89 mol%, “GOHSENOL GH-20” manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to polyvinyl alcohol (degree of polymerization: about 300, degree of saponification: 78.5- Silicone particles were obtained in the same manner as in Example 1, except that the weight was changed to 81.5 mol%, weight average molecular weight: about 15900, “GOHSENOL GL-03” manufactured by Nippon Synthetic Chemical Co., Ltd.
 (比較例2)
 ポリビニルアルコールを添加しなかったこと以外は実施例5と同様にして、シリコーン粒子を得た。
(Comparative Example 2)
Silicone particles were obtained in the same manner as in Example 5 except that polyvinyl alcohol was not added.
 (評価)
 (1)シリコーン粒子の粒子径
 得られたシリコーン粒子について、レーザー回折式粒度分布測定装置(マルバーン社製「マスターサイザー2000」)を用いて粒子径を測定し、平均値を算出した。
(Evaluation)
(1) Particle size of silicone particles The obtained silicone particles were measured for particle size using a laser diffraction particle size distribution measuring device ("Mastersizer 2000" manufactured by Malvern), and the average value was calculated.
 (2)シリコーン粒子の圧縮弾性率(10%K値)
 得られたシリコーン粒子の上記圧縮弾性率(10%K値)を、23℃の条件で、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
(2) Compression elastic modulus of silicone particles (10% K value)
The compression modulus (10% K value) of the obtained silicone particles was measured using a micro compression tester (“Fischer Scope H-100” manufactured by Fischer) according to the method described above under the condition of 23 ° C. .
 (3)シリコーン粒子の圧縮回復率
 シリコーン粒子の上記圧縮回復率を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
(3) Compression recovery rate of silicone particles The compression recovery rate of silicone particles was measured by the above-described method using a micro compression tester (Fischer Scope H-100 manufactured by Fischer).
 (4)液晶汚染防止性
 液晶滴下工法用シール剤の調製:
 ビスフェノールA型エポキシメタクリレート(熱硬化性化合物、ダイセル・オルネクス社製「KRM7985」)50重量部と、カプロラクトン変性ビスフェノールA型エポキシアクリレート(熱硬化性化合物、ダイセル・オルネクス社製「EBECRYL3708」)20重量部と、部分アクリル変性ビスフェノールE型エポキシ樹脂(熱硬化性化合物、ダイセル・オルネクス社製「KRM8276」)30重量部と、2,2-ジメトキシ-2-フェニルアセトフェノン(光ラジカル重合開始剤、BASF Japan社製「IRGACURE651」)2重量部と、マロン酸ジヒドラジド(熱硬化剤、大塚化学社製「MDH」)10重量部と、得られたシリコーン粒子30重量部と、シリカ(充填剤、アドマテックス社製「アドマファインSO-C2」)20重量部と、3-グリシドキシプロピルトリメトキシシラン(シランカップリング剤、信越化学工業社製「KBM-403」)2重量部と、コアシェルアクリレート共重合体微粒子(応力緩和剤、ゼオン化成社製「F351」)とを配合し、遊星式撹拌装置(シンキー社製「あわとり練太郎」)にて撹拌した後、セラミック3本ロールにて均一に混合させて液晶表示素子用シール剤を得た。
(4) Prevention of liquid crystal contamination Preparation of sealing agent for liquid crystal dropping method:
50 parts by weight of bisphenol A type epoxy methacrylate (thermosetting compound, “KRM7985” manufactured by Daicel Ornex) and 20 parts by weight of caprolactone-modified bisphenol A type epoxy acrylate (thermosetting compound, “EBECRYL 3708” manufactured by Daicel Ornex) 30 parts by weight of partially acryl-modified bisphenol E type epoxy resin (thermosetting compound, “KRM8276” manufactured by Daicel Ornex Co., Ltd.) and 2,2-dimethoxy-2-phenylacetophenone (photo radical polymerization initiator, BASF Japan) "IRGACURE 651") 2 parts by weight, malonic acid dihydrazide (thermosetting agent, "MDH" manufactured by Otsuka Chemical Co., Ltd.) 10 parts by weight, the resulting silicone particles 30 parts by weight, silica (filler, manufactured by Admatechs) "Admafine SO-C2 ") 20 parts by weight, 2-glycidoxypropyltrimethoxysilane (silane coupling agent," KBM-403 "manufactured by Shin-Etsu Chemical Co., Ltd.), and core-shell acrylate copolymer fine particles (stress relaxation) Agent, “F351” manufactured by ZEON Kasei Co., Ltd.) and stirred with a planetary stirrer (“Shintaro Nawataro” manufactured by Shinky), and then mixed uniformly with a three-roll ceramic roll. A sealing agent was obtained.
 液晶表示素子の作製:
 得られた各液晶表示素子用シール剤100重量部に対して平均粒子径5μmのスペーサ粒子(積水化学工業社製「ミクロパールSP-2050」)1重量部を遊星式撹拌装置によって均一に分散させ、得られたスペーサ含有シール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製「PSY-10E」)に充填し、脱泡処理を行った。その後、ディスペンサー(武蔵エンジニアリング社製「SHOTMASTER300」)を用いて、ITO薄膜付きの透明電極基板に長方形の枠を描くように、シール剤を塗布した。続いて、TN液晶(チッソ社製「JC-5001LA」)の微小滴を液晶滴下装置にて滴下して塗布し、他方の透明基板を、真空貼り合わせ装置を用いて5Paの真空下にて貼り合わせた。貼り合わせた後のセルに、メタルハライドランプを用いて100mW/cmの紫外線を30秒照射した後、120℃で1時間加熱してシール剤を熱硬化させ、液晶表示素子(セルギャップ5μm)を得た。
Production of liquid crystal display elements:
1 part by weight of spacer particles (“Micropearl SP-2050” manufactured by Sekisui Chemical Co., Ltd.) having an average particle diameter of 5 μm is uniformly dispersed by a planetary stirrer with respect to 100 parts by weight of the obtained sealing agent for liquid crystal display elements. The obtained spacer-containing sealant was filled into a dispensing syringe (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.) and subjected to defoaming treatment. Then, the sealing agent was apply | coated so that a rectangular frame might be drawn on the transparent electrode substrate with an ITO thin film using dispenser ("SHOTMASTER300" by Musashi engineering company). Subsequently, fine droplets of TN liquid crystal (“JC-5001LA” manufactured by Chisso Corporation) are applied dropwise by a liquid crystal dropping device, and the other transparent substrate is attached under a vacuum of 5 Pa using a vacuum bonding device. Combined. The laminated cell was irradiated with 100 mW / cm 2 ultraviolet rays for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 1 hour to thermally cure the sealing agent, and a liquid crystal display element (cell gap 5 μm) was obtained. Obtained.
 液晶汚染防止性の評価方法:
 得られた液晶表示素子について、シール部周辺の液晶(特にコーナー部)に生じる表示むらを目視にて観察した。液晶汚染防止性を下記の基準で判定した。
Method for evaluating liquid crystal contamination prevention:
About the obtained liquid crystal display element, the display nonuniformity produced in the liquid crystal (especially corner part) around a seal part was observed visually. The liquid crystal contamination prevention property was determined according to the following criteria.
 [液晶汚染防止性の判定基準]
 ○○:表示むら全くなし
 ○:ごくわずかに表示むら発生
 △:目立つ表示むら発生
 ×:酷い表示むら発生
[Criteria for preventing liquid crystal contamination]
○○: No display unevenness ○: Very slight display unevenness △: Conspicuous display unevenness ×: Severe display unevenness occurred
 (5)低透湿性(高温高湿下で保管した後に駆動した液晶表示素子の色むら評価)
 上記(4)の評価で得られた液晶表示素子を用意した。
(5) Low moisture permeability (evaluation of uneven color of liquid crystal display element driven after storage under high temperature and high humidity)
A liquid crystal display element obtained by the evaluation of (4) above was prepared.
 低透湿性の評価方法:
 得られた液晶表示素子を温度80℃、湿度90%RHの環境下にて36時間保管した後、AC3.5Vの電圧駆動をさせ、中間調のシール剤周辺を目視で観察した。低透湿性を下記の基準で判定した。
Evaluation method of low moisture permeability:
The obtained liquid crystal display element was stored for 36 hours in an environment of a temperature of 80 ° C. and a humidity of 90% RH, and then driven with a voltage of AC 3.5 V, and the periphery of the halftone sealant was visually observed. Low moisture permeability was determined according to the following criteria.
 [低透湿性の判定基準]
 ○○:シール部周辺に色むらが全くなし
 ○:ごくわずかに色むら発生
 △:目立つ色むら発生
 ×:ひどい色むら発生
[Judgment criteria for low moisture permeability]
○○: No color unevenness around the seal part ○: Very slight color unevenness △: Conspicuous color unevenness ×: Severe color unevenness generated
 結果を下記の表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1…液晶表示素子
 2…透明ガラス基板
 3…透明電極
 4…配向膜
 5…液晶
 6…シール部
 6A…シリコーン粒子
 7…スペーサ粒子
DESCRIPTION OF SYMBOLS 1 ... Liquid crystal display element 2 ... Transparent glass substrate 3 ... Transparent electrode 4 ... Alignment film 5 ... Liquid crystal 6 ... Seal part 6A ... Silicone particle 7 ... Spacer particle

Claims (16)

  1.  加熱によって硬化される液晶滴下工法用シール剤に用いられ、
     粒子径が0.1μm以上、100μm以下であり、
     シリコーン粒子本体と、前記シリコーン粒子本体の表面を被覆している有機ポリマーとを有し、
     前記有機ポリマーの重量平均分子量が13000以上、400000以下であり、かつ前記有機ポリマーが水酸基を有する、シリコーン粒子。
    Used for liquid crystal dripping sealant cured by heating,
    The particle diameter is 0.1 μm or more and 100 μm or less,
    Having a silicone particle body and an organic polymer covering the surface of the silicone particle body,
    Silicone particles, wherein the organic polymer has a weight average molecular weight of 13,000 or more and 400,000 or less, and the organic polymer has a hydroxyl group.
  2.  10%圧縮したときの圧縮弾性率が100N/mm以下であり、
     圧縮回復率が30%以上である、請求項1に記載のシリコーン粒子。
    The compression elastic modulus when compressed by 10% is 100 N / mm 2 or less,
    The silicone particle according to claim 1, wherein the compression recovery rate is 30% or more.
  3.  粒子径が0.1μm以上、100μm以下であり、
     シリコーン粒子本体と、前記シリコーン粒子本体の表面を被覆している有機ポリマーとを有し、
     前記有機ポリマーの重量平均分子量が13000以上、400000以下であり、かつ前記有機ポリマーが水酸基を有し、
     10%圧縮したときの圧縮弾性率が100N/mm以下であり、
     圧縮回復率が30%以上である、シリコーン粒子。
    The particle diameter is 0.1 μm or more and 100 μm or less,
    Having a silicone particle body and an organic polymer covering the surface of the silicone particle body,
    The organic polymer has a weight average molecular weight of 13,000 or more and 400,000 or less, and the organic polymer has a hydroxyl group,
    The compression elastic modulus when compressed by 10% is 100 N / mm 2 or less,
    Silicone particles having a compression recovery rate of 30% or more.
  4.  前記有機ポリマーが、ポリビニルアルコール又はセルロース誘導体である、請求項1~3のいずれか1項に記載のシリコーン粒子。 The silicone particles according to any one of claims 1 to 3, wherein the organic polymer is polyvinyl alcohol or a cellulose derivative.
  5.  白金触媒を含まないか、又は白金触媒を100ppm以下で含む、請求項1~4のいずれか1項に記載のシリコーン粒子。 The silicone particle according to any one of claims 1 to 4, which does not contain a platinum catalyst or contains a platinum catalyst at 100 ppm or less.
  6.  白金触媒を含まない、請求項5に記載のシリコーン粒子。 6. Silicone particles according to claim 5, which do not contain a platinum catalyst.
  7.  前記有機ポリマーが、ポリビニルアルコールであり、
     前記ポリビニルアルコールの重合度が100以上、4000以下であり、
     前記ポリビニルアルコールのけん化度が70モル%以上、95モル%以下である、請求項1~6のいずれか1項に記載のシリコーン粒子。
    The organic polymer is polyvinyl alcohol;
    The degree of polymerization of the polyvinyl alcohol is 100 or more and 4000 or less,
    The silicone particles according to any one of claims 1 to 6, wherein the saponification degree of the polyvinyl alcohol is 70 mol% or more and 95 mol% or less.
  8.  前記シリコーン粒子本体の材料が、オルガノポリシロキサンである、請求項1~7のいずれか1項に記載のシリコーン粒子。 The silicone particles according to any one of claims 1 to 7, wherein the material of the silicone particle main body is an organopolysiloxane.
  9.  前記シリコーン粒子本体の材料が、シランアルコキシドの加水分解縮合物である、請求項1~8のいずれか1項に記載のシリコーン粒子。 The silicone particles according to any one of claims 1 to 8, wherein the material of the silicone particle main body is a hydrolytic condensate of silane alkoxide.
  10.  前記シランアルコキシドが、ジアルコキシシランを含む、請求項9に記載のシリコーン粒子。 10. The silicone particles according to claim 9, wherein the silane alkoxide contains dialkoxysilane.
  11.  前記シランアルコキシドの加水分解縮合物が、シランアルコキシド100重量%中、モノアルコキシシラン0重量%以上、20重量%以下、ジアルコキシシラン70重量%以上、99.9重量%以下、及び、トリアルコキシシランとテトラアルコキシシランとを合計で0.1重量%以上、30重量%以下を含むシランアルコキシドの加水分解縮合物である、請求項10に記載のシリコーン粒子。 The hydrolyzed condensate of the silane alkoxide is, in 100% by weight of the silane alkoxide, 0% by weight or more and 20% by weight or less of the monoalkoxysilane, 70% by weight or more and 99.9% by weight or less of the dialkoxysilane, and trialkoxysilane. The silicone particle according to claim 10, which is a hydrolyzed condensate of silane alkoxide containing a total of 0.1% by weight and 30% by weight of tetraalkoxysilane.
  12.  前記シランアルコキシドが、重合性官能基を有するシランアルコキシドを含む、請求項9~11のいずれか1項に記載のシリコーン粒子。 The silicone particle according to any one of claims 9 to 11, wherein the silane alkoxide includes a silane alkoxide having a polymerizable functional group.
  13.  遮光剤を含む、請求項1~12のいずれか1項に記載のシリコーン粒子。 The silicone particles according to any one of claims 1 to 12, comprising a light-shielding agent.
  14.  熱硬化性成分と、
     請求項1~13のいずれか1項に記載のシリコーン粒子を含む、液晶滴下工法用シール剤。
    A thermosetting component;
    A sealing agent for a liquid crystal dropping method, comprising the silicone particles according to any one of claims 1 to 13.
  15.  光硬化性成分を含まない、請求項14に記載の液晶滴下工法用シール剤。 The sealing agent for liquid crystal dropping method according to claim 14, which does not contain a photocurable component.
  16.  第1の液晶表示素子用部材と、
     第2の液晶表示素子用部材と、
     前記第1の液晶表示素子用部材と前記第2の液晶表示素子用部材とが対向した状態で、前記第1の液晶表示素子用部材と前記第2の液晶表示素子用部材との外周をシールしているシール部と、
     前記シール部の内側で、前記第1の液晶表示素子用部材と前記第2の液晶表示素子用部材との間に配置されている液晶とを備え、
     前記シール部が、液晶滴下工法用シール剤の熱硬化物であり、
     前記液晶滴下工法用シール剤が、熱硬化性成分と、請求項1~13のいずれか1項に記載のシリコーン粒子を含む、液晶表示素子。
    A first liquid crystal display element member;
    A second liquid crystal display element member;
    The outer periphery of the first liquid crystal display element member and the second liquid crystal display element member is sealed in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other. Sealing part,
    A liquid crystal disposed between the first liquid crystal display element member and the second liquid crystal display element member inside the seal portion;
    The seal part is a thermosetting product of a sealing agent for liquid crystal dropping method,
    The liquid crystal display element, wherein the liquid crystal dropping method sealant comprises a thermosetting component and the silicone particles according to any one of claims 1 to 13.
PCT/JP2015/083920 2014-12-04 2015-12-02 Silicone particles, sealing agent for liquid crystal dropping methods, and liquid crystal display element WO2016088812A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015560472A JP6586015B2 (en) 2014-12-04 2015-12-02 Silicone particles, sealant for liquid crystal dropping method, and liquid crystal display element
KR1020227021825A KR20220098044A (en) 2014-12-04 2015-12-02 Silicone particles, sealing agent for liquid crystal dropping methods, and liquid crystal display element
CN201580037716.1A CN106537240B (en) 2014-12-04 2015-12-02 Polysiloxane particles, sealant for liquid crystal dropping process, and liquid crystal display element
KR1020167033723A KR102414978B1 (en) 2014-12-04 2015-12-02 Silicone particles, sealing agent for liquid crystal dropping methods, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246114 2014-12-04
JP2014246114 2014-12-04

Publications (1)

Publication Number Publication Date
WO2016088812A1 true WO2016088812A1 (en) 2016-06-09

Family

ID=56091752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083920 WO2016088812A1 (en) 2014-12-04 2015-12-02 Silicone particles, sealing agent for liquid crystal dropping methods, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6586015B2 (en)
KR (2) KR102414978B1 (en)
CN (1) CN106537240B (en)
TW (1) TWI665294B (en)
WO (1) WO2016088812A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082353A1 (en) * 2015-11-11 2017-05-18 積水化学工業株式会社 Particles, particle material, connecting material, and connection structure
JP2017227826A (en) * 2016-06-24 2017-12-28 積水化学工業株式会社 Sealant particle, sealant and liquid crystal display device
WO2018203500A1 (en) * 2017-05-01 2018-11-08 積水化学工業株式会社 Resin particle, connecting material, and connection structure
US20210198536A1 (en) * 2018-05-25 2021-07-01 3M Innovative Properties Company Phase separated articles
TWI838336B (en) 2017-05-01 2024-04-11 日商積水化學工業股份有限公司 Resin particles, connecting material and connecting structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109836545A (en) * 2019-02-01 2019-06-04 涌奇材料技术(上海)有限公司 A kind of preparation method and applications of surface modified organic silicon micron ball
CN113448126B (en) * 2021-06-22 2022-04-08 Tcl华星光电技术有限公司 Frame sealing glue, preparation method thereof and liquid crystal display panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06503064A (en) * 1991-06-21 1994-04-07 アライド−シグナル・インコーポレーテッド How to coat silica spheres
JP2007114704A (en) * 2005-10-24 2007-05-10 Nec Lcd Technologies Ltd Liquid crystal display apparatus and method for manufacturing the same
JP2009139922A (en) * 2007-11-16 2009-06-25 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60146228A (en) * 1984-01-10 1985-08-01 Ricoh Co Ltd Liquid crystal display element
US6090960A (en) * 1997-01-07 2000-07-18 Sharp Laboratories Of America, Inc. Precursor with (methoxy) (methyl) silylolefin ligand to deposit copper and method same
US6359667B1 (en) * 1998-02-09 2002-03-19 Catalysts & Chemicals Industries Co., Ltd. Organopolysiloxane fine particles, process for the production thereof and liquid crystal displays
JP4530137B2 (en) * 2003-09-17 2010-08-25 信越化学工業株式会社 Organopolysiloxane composition for sealing and sealing precision electronic parts, corrosion prevention or delay method for precision electronic parts, and silver-containing precision electronic parts
WO2011001895A1 (en) 2009-07-01 2011-01-06 日本化薬株式会社 Liquid crystal sealing agent for liquid crystal dropping method and liquid crystal display cell using same
KR101030019B1 (en) * 2009-12-31 2011-04-20 제일모직주식회사 Transparent resin for encapsulation material and electronic device including the same
JP5780003B2 (en) * 2011-06-08 2015-09-16 住友大阪セメント株式会社 COMPOSITION COMPOSITION AND TRANSPARENT COMPOSITION OF INORGANIC OXIDE PARTICLES AND SILICONE RESIN
JP5881341B2 (en) 2011-09-05 2016-03-09 アイカ工業株式会社 Method for producing composite fine particles
KR102164731B1 (en) * 2013-05-24 2020-10-13 세키스이가가쿠 고교가부시키가이샤 Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06503064A (en) * 1991-06-21 1994-04-07 アライド−シグナル・インコーポレーテッド How to coat silica spheres
JP2007114704A (en) * 2005-10-24 2007-05-10 Nec Lcd Technologies Ltd Liquid crystal display apparatus and method for manufacturing the same
JP2009139922A (en) * 2007-11-16 2009-06-25 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082353A1 (en) * 2015-11-11 2017-05-18 積水化学工業株式会社 Particles, particle material, connecting material, and connection structure
JPWO2017082353A1 (en) * 2015-11-11 2018-08-30 積水化学工業株式会社 Particle, particle material, connecting material and connecting structure
JP2017227826A (en) * 2016-06-24 2017-12-28 積水化学工業株式会社 Sealant particle, sealant and liquid crystal display device
WO2018203500A1 (en) * 2017-05-01 2018-11-08 積水化学工業株式会社 Resin particle, connecting material, and connection structure
CN110088160A (en) * 2017-05-01 2019-08-02 积水化学工业株式会社 Resin particle, connecting material and connection structural bodies
KR20190139194A (en) * 2017-05-01 2019-12-17 세키스이가가쿠 고교가부시키가이샤 Resin Particles, Connection Materials, and Connection Structures
JPWO2018203500A1 (en) * 2017-05-01 2020-03-12 積水化学工業株式会社 Resin particles, connection material and connection structure
JP7092670B2 (en) 2017-05-01 2022-06-28 積水化学工業株式会社 Resin particles, connecting materials and connecting structures
CN110088160B (en) * 2017-05-01 2023-06-13 积水化学工业株式会社 Resin particle, connection material, and connection structure
KR102584161B1 (en) 2017-05-01 2023-10-04 세키스이가가쿠 고교가부시키가이샤 Resin particles, connection materials and connection structures
TWI838336B (en) 2017-05-01 2024-04-11 日商積水化學工業股份有限公司 Resin particles, connecting material and connecting structure
US20210198536A1 (en) * 2018-05-25 2021-07-01 3M Innovative Properties Company Phase separated articles

Also Published As

Publication number Publication date
CN106537240B (en) 2020-11-13
TW201629180A (en) 2016-08-16
KR102414978B1 (en) 2022-07-01
KR20220098044A (en) 2022-07-08
CN106537240A (en) 2017-03-22
JP6586015B2 (en) 2019-10-02
KR20170093700A (en) 2017-08-16
TWI665294B (en) 2019-07-11
JPWO2016088812A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6586015B2 (en) Silicone particles, sealant for liquid crystal dropping method, and liquid crystal display element
JP5685346B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP2023081959A (en) Silicone particle, method of manufacturing silicone particle, sealant for liquid crystal dripping technique, and liquid crystal display element
JP6404119B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6795400B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6163045B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6905158B2 (en) Sealing agent for display elements, vertical conductive materials, and display elements
JP6386377B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2018062159A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP2017227826A (en) Sealant particle, sealant and liquid crystal display device
WO2020085081A1 (en) Sealant for display element, cured product, vertical conductive material, and display element
JP6683429B2 (en) Curable resin particles used in a sealing agent for a liquid crystal dropping method, a sealing agent for a liquid crystal dropping method, and a liquid crystal display element
JP6666682B2 (en) Sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
TWI826652B (en) Curable resin compositions, sealants for liquid crystal display elements, vertical conductive materials, and liquid crystal display elements
WO2018062168A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
TW202136323A (en) Curable resin composition, sealing agent for liquid crystal display element, vertically conductive material, and liquid crystal display element
TW202003776A (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2016021628A1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015560472

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865115

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167033723

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865115

Country of ref document: EP

Kind code of ref document: A1