WO2016088613A1 - Air-conditioning control device and air-conditioning control method - Google Patents

Air-conditioning control device and air-conditioning control method Download PDF

Info

Publication number
WO2016088613A1
WO2016088613A1 PCT/JP2015/082983 JP2015082983W WO2016088613A1 WO 2016088613 A1 WO2016088613 A1 WO 2016088613A1 JP 2015082983 W JP2015082983 W JP 2015082983W WO 2016088613 A1 WO2016088613 A1 WO 2016088613A1
Authority
WO
WIPO (PCT)
Prior art keywords
air volume
cooling device
aisle
air
cold aisle
Prior art date
Application number
PCT/JP2015/082983
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 潤一
泰彦 稲富
田中 真
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016088613A1 publication Critical patent/WO2016088613A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a technology of an air conditioning control device and an air conditioning control method for controlling the air conditioning of a server room.
  • the rack mount system is a system in which racks (housings) for storing devices divided into functional units are stacked in a cabinet, and a large number of such cabinets are arranged in a line on the floor of a server room.
  • the equipment stored in the rack generally sucks low temperature air from the front, cools the inside of the equipment, and exhausts high temperature air from the back.
  • the server room is managed in a constant temperature environment by cooling the high-temperature air exhausted from the devices by the cooling device. .
  • such rack rows are arranged in a plurality of rows with the suction surfaces and the exhaust surfaces of adjacent rows facing each other. That is, the suction ports are arranged so as to face each other and the exhaust ports face each other across the passage (space).
  • the space sandwiched between the suction surfaces is called cold aisle because low-temperature air cooled by a cooling device is supplied.
  • the space sandwiched between the exhaust surfaces is called hot aisle because high temperature exhaust from the equipment is supplied.
  • a floor blowing system that supplies low-temperature air cooled by a large cooling device installed near the machine room or server room wall to the cold aisle through the double floor space of the server room is generally used.
  • the heat generation amount of equipment has increased with the rapid increase in equipment processing speed and equipment processing capacity, and the cooling load has increased. Therefore, energy saving (energy saving) of the cooling system is required. It has been. For this reason, an increasing number of cases adopt a local cooling system in which equipment is locally cooled by a rack-type cooling device arranged in a rack row or a ceiling-type cooling device installed on a ceiling near the rack.
  • the air conditioning system described in Patent Document 1 is a system that uses both a local cooling method and a floor blowing method using a ceiling-suspended cooling device.
  • the air conditioning system described in Patent Literature 1 cools the base heat load of the equipment by the floor blowing method, and cools the other heat loads by local cooling.
  • the temperature difference of the inlet / outlet air of the cooling device is measured, and the cooling operation according to the heat load of the device can be performed by changing the air volume of the cooling device according to the measured temperature difference.
  • the air conditioning system described in Patent Document 2 is a system that uses both a local cooling method using a rack-type cooling device and a floor blowing method.
  • the air conditioning system described in Patent Document 2 is configured to partition the hot aisle and the cold aisle so that the hot aisles and the cold aisle communicate with each other instead of partitioning the hot aisle and the cold aisle for each aisle. By doing so, the air conditioning system described in Patent Document 2 can automatically maintain the balance of the air volume due to the static pressure difference even when the rack-type cooling device fails.
  • the present invention has been made in view of such a background, and the present invention has an object to operate an optimum cooling system.
  • the present invention is characterized in that the operating states of a plurality of cooling devices in which the sum of the excess air volume in the cold aisle and the hot aisle is not more than a predetermined value are selected.
  • Other solutions will be described in the embodiments.
  • an optimum cooling system can be operated.
  • FIG. 1 It is a top surface schematic diagram in the example of composition of the cooling system concerning a 1st embodiment. It is a figure which shows the structural example of the control apparatus which concerns on 1st Embodiment. It is a flowchart which shows the procedure of the selection process of the optimal driving
  • composition of a cooling system concerning a 1st embodiment, it is a figure showing when a failure has occurred in a cooling device. It is an upper surface schematic diagram of the cooling system which concerns on 2nd Embodiment. It is a perspective view of the cooling system which concerns on 2nd Embodiment.
  • FIG. 1 is a schematic top view of a configuration example of a cooling system according to the first embodiment.
  • the cooling system 10 according to the present embodiment is provided with a plurality of racks 5 that house devices 4 that suck in low-temperature air from the front and exhaust high-temperature air from the back.
  • the cooling device 3 is a rack-type cooling device, and is disposed in the vicinity of the rack 5 to locally cool the devices 4 such as servers in the rack 5.
  • the vertical direction of the drawing is referred to as a column.
  • only one device 4 is shown in order to prevent the drawing from being complicated, but actually, a plurality of devices 4 are housed in each rack 5.
  • the rack 5 storing the equipment 4 and the cooling device 3 are installed in a server room 11 which is a room.
  • a continuous row of racks 5 is referred to as a rack row 2.
  • the rack row 2 includes a cooling device 3. In the same row, they are arranged in the same direction, and in the rack row 2, each rack 5 (device 4) is arranged so that the suction surface and the exhaust surface face in the same direction (for the intake and exhaust of the cooling device 3). (Postscript). Further, the rack rows 2 are arranged such that the suction surfaces and the exhaust surfaces of the rack 5 face each other. Thereby, the space between the suction surfaces becomes the cold aisle 6, and the space between the exhaust surfaces becomes the hot aisle 7.
  • high temperature air is indicated by black arrows and low temperature air is indicated by white arrows.
  • the cooling device 3 sucks in the high-temperature air of the hot aisle 7, cools the high-temperature air, and supplies low-temperature air to the cold aisle 6.
  • the cooling system 10 is provided with a control device (the air conditioning control device 1) that calculates the air volume of the cold aisle 6 and the hot aisle 7 from the operating state of each cooling device 3 and searches for the optimal operating state of the cooling device 3. Yes.
  • the air conditioning control device 1 calculates the air volume of the cold aisle 6 and the hot aisle 7 from the operating state of each cooling device 3 and searches for the optimal operating state of the cooling device 3. Yes.
  • the control device 1 is connected to each cooling device 3 as indicated by a broken line, and controls the operating state of the cooling device 3 so that the air volume balance by the cooling device 3 is appropriate. Note that the alternate long and short dash line in FIG. 1 indicates the wall of the server room 11.
  • FIG. 2 is a diagram illustrating a configuration example of the control device according to the first embodiment. Reference is made to FIG. 1 as appropriate.
  • the control device 1 includes a memory 110 such as a RAM (Random Access Memory), a CPU (Central Processing Unit) 120, a storage device 130 such as an HD (Hard Disk), and a transmission / reception device 140.
  • the program stored in the storage device 130 is expanded in the memory 110 and executed by the CPU 120, so that the processing unit 111 is embodied, and the operation state selection unit 112 constituting the processing unit 111, the air flow balance calculation.
  • the unit 113, the operation coefficient calculation unit 114, the optimum operation state selection unit 115, and the cooling device control unit 116 are embodied.
  • the operation state selection unit (operation state search unit) 112 selects the operation state of the cooling device 3.
  • the air volume balance calculating unit (operating state searching unit) 113 is an air volume balance that is a balance of the intake air amount and the exhaust air amount in each cold aisle 6 and each hot aisle 7 in the operation state of the cooling device 3 selected by the operation state selecting unit 112. Is calculated.
  • the operation coefficient calculation unit (operation state search unit) 114 calculates an operation coefficient based on the air volume balance calculated by the air volume balance calculation unit 113.
  • the optimum operation state selection unit (operation state search unit) 115 selects the operation state of the cooling device 3 in which the calculated operation coefficient is equal to or less than a predetermined value (smallest here).
  • the cooling device control unit 116 controls each cooling device 3 so as to be in the operation state of the cooling device 3 selected by the optimum operation state selection unit 115.
  • FIG. 3 is a flowchart illustrating a procedure for selecting an optimum operation state of the cooling device according to the first embodiment. Reference is made to FIGS. 1 and 2 as appropriate.
  • the operation state selection unit 112 selects one combination of operation states of the cooling device 3 (S101).
  • the air volume balance calculating unit 113 calculates a total device air volume that is the sum of the air volume sucked by the device 4 stored in the rack 5 in each rack row 2 and the air volume discharged by the device 4 (S102). The process of step S102 will be described later.
  • the air volume balance calculation unit 113 calculates the cooling device total air volume that is the sum of the air volume sucked by the cooling device 3 and the air volume discharged by the cooling device 3 in each rack row 2 (S103). The process of step S103 will be described later.
  • the air volume balance calculating unit 113 calculates a cold aisle air volume balance, which is an air volume balance in the cold aisle 6, based on the calculated total device air volume and cooling device total air volume (S104). And the air volume balance calculation part 113 calculates the hot aisle air volume balance which is the air volume balance in the hot aisle 7 based on the calculated apparatus total air volume and cooling device total air volume (S105). The processing of step S104 and step S105 will be described later.
  • the operation coefficient calculation unit 114 calculates an operation coefficient based on the cold aisle air volume balance calculated in step S104 and the hot aisle air volume balance calculated in step S105 (S106). The process of step S106 will be described later. After the operation coefficient is calculated, the operation coefficient calculation unit 114 primarily stores the calculated operation coefficient in the storage device 130 together with information on the combination of operation states of the cooling device 3 that is the processing target.
  • the operation state selection unit 112 determines whether or not the calculation of the operation coefficient has been completed for all combinations of the operation states of the cooling device 3 (S107). As a result of step S107, when calculation of the operation coefficient is not completed for all combinations (S107 ⁇ No), the operation state selection unit 112 returns the process to step S101. As a result of step S107, when the operation coefficient is calculated for all combinations (S107 ⁇ Yes), the optimum operation state selection unit 115 selects the optimum operation state that is the operation state having the smallest operation coefficient (S108). And the cooling device control part 116 controls each cooling device 3 so that it may be in the driving
  • FIG. 4 is a generalized diagram of the configuration of the server room shown in FIG. 1 for the description of the air volume calculation.
  • each rack row 2 is indicated by (n, m).
  • n indicates the position with respect to the vertical direction of the paper. That is, from the top of the page,..., N-1, n, n + 1.
  • m indicates a position with respect to the left and right direction on the paper surface. That is, m ⁇ 1, m, m + 1.
  • n is referred to as a row and m is referred to as a column. Assume that the total number of rows and columns is N ⁇ M.
  • n indicates a position with respect to the vertical direction of the paper surface
  • m indicates a position with respect to the horizontal direction of the paper surface.
  • the value of n changes one by one (... n-1, n, n + 1 ...), but in the horizontal direction of the paper, cold aisle and 6 hot aisles 7 alternate. Are changed two by two (..., M + 2).
  • FIG. 5 is a diagram showing the relationship of the air volume in the server room shown in FIG.
  • the equipment 4 in the rack row (n, m) sucks the cold air from the cold aisle (n, m) and discharges the hot air to the hot aisle (n, m).
  • This is the total equipment air volume Q j, n, m . That is, Q j, n, m is the air volume of air that is sucked and discharged by all the devices 4 housed in the rack 5 in a certain rack row 2.
  • the cooling device 3 in the rack row (n, m) sucks high-temperature air from the hot aisle (n, m) and discharges low-temperature air to the cold aisle (n, m).
  • This is the total cooling device air volume Q k, n, m . That is, Q k, n, m is the air volume of the air sucked and discharged by all the cooling devices 3 in a certain rack row 2. Note that q n, m and q n + 1, m in cold aisle (n, m) will be described later.
  • the air volume balance calculating unit 113 calculates Q j, n, m and Q k, n, m for all rack rows 2.
  • the total air volume of the equipment and the total air volume of the cooling device are calculated by the air volume balance calculation unit 113 based on the specifications of each device 4 input in advance, the specifications of the cooling device 3, and the like.
  • the processing up to this point is the processing of step S102 and step S103 in FIG.
  • the air volume balance calculation unit 113 of the control device 1 calculates the air volume balance for each cold aisle 6 and hot aisle 7 adjacent to each rack row 2. That is, the air volume balance calculating unit 113 calculates the air volume balance of each cold aisle 6 based on the total equipment air volume and the cooling device total air volume of the rack row 2 adjacent to each cold aisle 6. Similarly, the air volume balance calculating unit 113 calculates the air volume balance of each hot aisle 7 based on the total equipment air volume and the cooling device total air volume of the rack row 2 adjacent to each hot aisle 7.
  • FIG. 6 (a) is a figure which shows the air volume balance in the cold aisle (n, m) of FIG.
  • Q j, n, m-1 is the air volume of the low-temperature air sucked by the equipment 4 in the rack row (n, m-1) from the cold aisle (n, m).
  • Q j, n, m is the air volume of the low-temperature air sucked by the device 4 in the rack row (n, m) from the cold aisle (n, m).
  • Q k, n, m ⁇ 1 is the air volume of the low-temperature air discharged from the cooling device 3 in the rack row (n, m ⁇ 1) to the cold aisle (n, m).
  • Q k, n, m is the air volume of the low-temperature air discharged from the cooling device 3 in the rack row (n, m) to the cold aisle (n, m).
  • q n, m is the air volume of the low-temperature air exchanged with the cold aisle (n ⁇ 1, m) adjacent to the cold aisle (n, m).
  • q n + 1, m is the air volume of low-temperature air exchanged with the cold aisle (n + 1, m) adjacent to the cold aisle (n, m).
  • the air volume balance QC , n, m in the cold aisle (n, m) is the total equipment air flow for the rack row (n, m-1) and the rack row (n, m) adjacent to the cold aisle (n, m) and Since it is the sum total of the cooling device total air volume, it is expressed by the following equation (1).
  • the air volume flowing into the cold aisle (n, m) is positive, and the air volume flowing out from the cold aisle (n, m) is negative.
  • the excess and deficiency of the air volume in the cold aisle (n, m) is the air volume of the low-temperature air exchanged between the adjacent cold aisle (n-1, m) and the cold aisle (n + 1, m).
  • the expression (1) is expressed by the following equation:
  • the air volume q n, m of cold air exchanged between the cold aisle (n, m) and the cold aisle (n-1, m) and the cold aisle (n, m) In consideration of the air volume q n + 1, m of the low-temperature air exchanged between and the cold aisle (n + 1, m), it is expressed as the following equation (2).
  • FIG.6 (b) is a figure which shows the air volume balance in the hot aisle (n, m) of FIG.
  • Q j, n, m is the air volume of the high-temperature air discharged from the equipment 4 in the rack row (n, m) to the hot aisle (n, m).
  • Q j, n, m + 1 is the air volume of the high-temperature air discharged from the devices in the rack row (n, m + 1) to the hot aisle (n, m).
  • Q k, n, m is the air volume of the high-temperature air that the cooling device 3 in the rack row (n, m) sucks from the hot aisle (n, m).
  • Q k, n, m + 1 is the air volume of the high-temperature air that the cooling device 3 in the rack row (n, m + 1) sucks from the hot aisle (n, m).
  • the air volume balance Q H, n, m in the hot aisle (n, m) is the equipment total air volume and the cooling device for the rack row (n, m) and the rack row (n, m + 1) adjacent to the hot aisle (n, m). Since it is the sum total of the total air volume, it is expressed by the following equation (3).
  • the air volume flowing into the hot aisle (n, m) is positive, and the air volume flowing out from the hot aisle (n, m) is negative.
  • the air volume supplied to the hot aisle 7 is excessive than the air volume discharged from the hot aisle 7, the air volume of the high-temperature air may flow into the cold aisle 6, and the device 4 may suck the air volume of the high-temperature air. is there. Therefore, the air volume balance Q H, n, m in the hot aisle (n, m) must meet the conditions of the following equation (4).
  • step S104 is the processing of step S104 and step S105 in FIG.
  • Qj, n, 0 , Qj, n, M , Qj, 0, m , Qj, N, m , Qk, n, 0 , Qk, n, M , Qk, 0, m , Qk, N, m , q1 , m , qN + 1, m are the air volumes at the wall of the server room 11, and all have values of zero.
  • the operation coefficient calculation unit 114 calculates an operation coefficient representing the surplus air volume from the air volume balance calculated in each cold aisle 6 and each hot aisle 7 and calculates the combination of the states of the cooling device 3 that minimizes the operation coefficient. Select.
  • the air volume balance of the cold aisle 6 is from the rack row (1, m) to the rack row (N, m). It is necessary that the sum is minimized, and the absolute value of the sum is from the rack row (n, 1) to the rack row (n, M). Therefore, the operating coefficient in the cold aisle 6 is the operating state of the cooling device 3 in which the cold aisle operating coefficient ⁇ C expressed by the following equation (5) is minimized.
  • Formula (6) is the sum total of the absolute value of the air volume balance in each hot aisle 7.
  • each operation coefficient ⁇ C , ⁇ H is a surplus air volume in the cold aisle 6 and the hot aisle 7.
  • the operation coefficient calculation unit 114 calculates the operation coefficient ⁇ represented by Expression (7), which is the sum of the cold aisle operation coefficient ⁇ C according to Expression (5) and the hot aisle operation coefficient ⁇ H according to Expression (6).
  • the operation coefficient calculation unit 114 calculates the cold aisle operation coefficient ⁇ C , the hot aisle operation coefficient ⁇ H, and the operation coefficient ⁇ based on the equipment air volume and the cooling apparatus air volume related to the combination of operating states of the respective cooling devices 3. calculate. Then, the optimum operation state selection unit 115 identifies the combination of operation states of the cooling device 3 that minimizes the operation coefficient ⁇ in step S108 of FIG. In this way, the control device 1 searches for and selects the optimum operating state of the cooling device 3.
  • the air volume of the device 4 used when calculating the operating coefficient and the air volume of the cooling device 3 may be used by measuring the actual operating air volume, or by measuring the power consumption and the air temperature. May be used in anticipation. Further, the operating coefficient may be calculated using the rated airflow values of the device 4 and the cooling device 3. In addition, a genetic algorithm, a local search method, or an optimization algorithm such as a neural network may be used to search for the operation state of the cooling device 3 at which the operation coefficient ⁇ is the minimum value. By using such an optimization algorithm, it is not necessary to calculate the operating coefficient ⁇ for all operating states of the cooling device 3.
  • the operation coefficient ⁇ is set.
  • the optimum operation state selection unit 115 searches whether it can be minimized. If the cooling device 3 can adjust the operating state in a stepwise manner from “strong” to “weak”, the operation coefficient calculation unit 114 determines the operating coefficient for each operating state of each cooling device 3. Calculate whether ⁇ can be minimized. The processing up to this point is the processing of step S106 and step S108 in FIG.
  • the present embodiment it is possible to perform a cooling operation that realizes energy saving without breaking the air volume balance between the cold aisle 6 and the hot aisle 7. Further, the local cooling configuration enables air conditioning of the entire server room 11 that realizes energy saving, so that the initial cost can be reduced.
  • the air volume balance calculation unit 113 sets the air volume flowing into the cold aisle 6 and the hot aisle 7 as positive, the air volume flowing out from the cold aisle and the hot aisle as negative, and the inflow air volume and the exhaust air volume in the cold aisle and the hot aisle.
  • the total air volume balance is calculated for each cold aisle and hot aisle.
  • the operation coefficient calculation unit 114 adds the air volume balance in the cold aisle in the column where the cold aisle is connected, and adds the absolute value of the addition result for each column to the cold aisle operation coefficient ( ⁇ C : Calculated as surplus air volume of the cold aisle 6).
  • the operation coefficient calculation unit 114, the hot aisle operation coefficient sum of the absolute values of air flow balance in the hot aisle is calculated as (theta H excess air volume of the hot aisle 7).
  • the operation state selection unit 115 calculates the operation coefficient ( ⁇ ) by adding the cold aisle operation coefficient and the hot aisle operation coefficient, and searches for (selects) the operation state of the cooling device having the smallest operation coefficient. . By doing in this way, search (selection) of an optimal driving
  • a spare machine for the cooling device 3 (hereinafter referred to as the preliminary cooling device 3 a) is installed in order to prevent the failure of the device 4 due to the temperature rise of the cold aisle 6.
  • the two rack rows 2 adjacent to the hot aisle 7 are defined as one section, it is preferable that at least one precooling device 3a is installed in one section.
  • the optimum operation state can be maintained by calculating the combination of the operation state of the cooling device 3 and the preliminary cooling device 3a that minimizes the operation coefficient ⁇ by the above-described method. Thereby, the reliability of the cooling system 10 can be improved.
  • FIG. 9 is a schematic top view of the cooling system according to the second embodiment
  • FIG. 10 is a perspective view of the cooling system according to the second embodiment.
  • the ceiling-mounted cooling device 8 is installed in the upper part of each rack 5.
  • the equipment 4 (FIG. 1) is accommodated in each rack 5.
  • the ceiling-mounted cooling device 8 is in a state of completely covering the upper part of the hot aisle 7 (FIG. 10).
  • the ceiling-suspended cooling device 8 sucks high-temperature air (dotted arrow in FIG.
  • control device 1 calculates the combination of the operation states of the ceiling-mounted cooling device 8 that minimizes the operation coefficient ⁇ described above, and thus, a cooling system that realizes energy saving, as in the first embodiment. Even if either the operation of 10a or the ceiling-mounted cooling device 8 breaks down, the optimal operation of the cooling system 10a can be performed.
  • the configuration of the control device 1 is the same as that shown in FIG. 2, and the search and selection of the optimum operation state is the same as that in the first embodiment.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • each of the above-described configurations, functions, the respective units 111 to 116, the storage device 130, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Further, as shown in FIG. 2, the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor such as a CPU. In addition to storing the program, table, file, etc.
  • control line and the information line are those that are considered necessary for the explanation, and not all the control lines and the information lines are necessarily shown. In practice, it can be considered that almost all configurations are connected to each other.
  • Control device air conditioning control device 2 rack row 3, 31 cooling device 3a, 32 preliminary cooling device 4 equipment 5 rack 6 cold aisle 7 hot aisle 8 ceiling-mounted cooling device 10, 10a cooling system 11, 11a server room (room) 111 processing unit 112 operation state selection unit (operation state search unit) 113 Airflow balance calculation unit (operating state search unit) 114 Driving coefficient calculation unit (driving state search unit) 115 Optimal operation state selection unit (operation state search unit) 116 Cooling device controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Air Conditioning Control Device (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Provided is a control device (1) for controlling a plurality of cooling devices (3) installed for the purpose of cooling equipment (4) in a room having cold aisles (6) and hot aisles (7), the device characterized by having an operating state search unit for calculating a combination of operating states of the cooling devices (3) such that the sum of the excess air volume of the cold aisles (6) and the excess air volume of the hot aisles (7) does not exceed a prescribed level, and a cooling device control unit (116) for controlling the cooling devices (3) so as to bring about the calculated operating states of the cooling devices (3).

Description

空調制御装置及び空調制御方法Air conditioning control device and air conditioning control method
 本発明は、サーバルームの空調を制御する空調制御装置及び空調制御方法の技術に関する。 The present invention relates to a technology of an air conditioning control device and an air conditioning control method for controlling the air conditioning of a server room.
 サーバルームには、コンピュータやサーバ等の電子機器(以下、機器と称する)が集約された状態で多数設置され、これらの機器が昼夜にわたって連続稼働している。サーバルームにおける機器の設置は、ラックマウント方式が主流になっている。ラックマウント方式は、機器を機能単位別に分割して収納するラック(筺体)を、キャビネットに段積みする方式であり、かかるキャビネットがサーバルームの床上に多数整列配置されている。ラックに収納されている機器は前面から低温空気を吸い込み、機器の内部を冷却して背面から高温空気を排気するものが一般的である。 In the server room, a large number of electronic devices such as computers and servers (hereinafter referred to as devices) are installed in a centralized state, and these devices are continuously operated day and night. Rack-mounting is the mainstream for installing equipment in server rooms. The rack mount system is a system in which racks (housings) for storing devices divided into functional units are stacked in a cabinet, and a large number of such cabinets are arranged in a line on the floor of a server room. The equipment stored in the rack generally sucks low temperature air from the front, cools the inside of the equipment, and exhausts high temperature air from the back.
 これらの機器は、高温状態になるとシステム停止等のトラブルを引き起こすおそれがあるため、冷却装置によって機器から排気された高温空気を冷却することで、サーバルームは、一定の温度環境に管理されている。 Since these devices may cause problems such as system shutdown when they reach a high temperature state, the server room is managed in a constant temperature environment by cooling the high-temperature air exhausted from the devices by the cooling device. .
 さらに、サーバルームでは、このようなラック列が、隣接する列の吸込面同士及び排気面同士を対向させて複数列配置される。つまり、通路(空間)を挟んで吸込み口同士が対面し、排気口同士が対面するように配置されている。吸込面同士で挟まれた空間は冷却装置で冷却した低温空気が供給されることからコールドアイルと呼ばれる。同様に、排気面同士で挟まれた空間は機器からの高温排気が供給されることからホットアイルと呼ばれている。 Furthermore, in the server room, such rack rows are arranged in a plurality of rows with the suction surfaces and the exhaust surfaces of adjacent rows facing each other. That is, the suction ports are arranged so as to face each other and the exhaust ports face each other across the passage (space). The space sandwiched between the suction surfaces is called cold aisle because low-temperature air cooled by a cooling device is supplied. Similarly, the space sandwiched between the exhaust surfaces is called hot aisle because high temperature exhaust from the equipment is supplied.
 従来におけるサーバルームの空調方式では、機械室又はサーバルーム壁際に設置された大型の冷却装置で冷却された低温空気をサーバルームの二重床空間を介してコールドアイルに供給する床吹出し方式が一般的である。しかし、近年では、機器の処理速度や、機器の処理能力の急激な上昇に伴い機器の発熱量が増大し、冷却負荷が増大していることから、冷却システムの省エネ(省エネルギ)化が求められている。そのため、ラック列に配置するラック型の冷却装置やラック近傍の天井に設置する天吊型の冷却装置により局所的に機器の冷却を行う局所冷却方式を採用するケースが増加している。 In the conventional server room air conditioning system, a floor blowing system that supplies low-temperature air cooled by a large cooling device installed near the machine room or server room wall to the cold aisle through the double floor space of the server room is generally used. Is. However, in recent years, the heat generation amount of equipment has increased with the rapid increase in equipment processing speed and equipment processing capacity, and the cooling load has increased. Therefore, energy saving (energy saving) of the cooling system is required. It has been. For this reason, an increasing number of cases adopt a local cooling system in which equipment is locally cooled by a rack-type cooling device arranged in a rack row or a ceiling-type cooling device installed on a ceiling near the rack.
 このような局所冷却方式では、二重床空間を介さずに冷却した空気をコールドアイルに供給することができるので、送風動力を削減できるだけでなく床下空間を小さくすることができる。一方、サーバルーム内に設置される機器は稼働後の増設や移設を見越して計画されることから、多くの場合、サーバルーム稼働時の熱負荷は計画した熱負荷よりも小さい。 In such a local cooling method, since the cooled air can be supplied to the cold aisle without going through the double floor space, not only the blowing power can be reduced but also the space under the floor can be reduced. On the other hand, since the equipment installed in the server room is planned in anticipation of expansion and relocation after operation, in many cases, the heat load during operation of the server room is smaller than the planned heat load.
 それに対し、冷却装置はサーバルーム稼働後に増設することが困難であり、予め計画熱負荷を処理できる冷却装置を設置しておくケースが多い。
 さらに、サーバルームの冷却システムでは、冷却装置が故障した場合、機器に供給される低温空気の温度が上昇し、機器を破損させる恐れがあるため、予備の冷却装置の設置が要求される。したがって、サーバルームの冷却装置は、熱負荷に対して過剰に設置されており、冷却装置を最適な組み合わせで運転しなければ、過剰運転により省エネ性が損なわれる恐れがある。また、機器の増設時や冷却装置の故障時等に冷却装置の運転を切り替える場合、コールドアイル及びホットアイルの風量バランスが崩れ、機器が高温空気を吸い込み、機器が破損してしまう恐れがある。
On the other hand, it is difficult to add a cooling device after the server room is operated, and there are many cases where a cooling device capable of processing a planned heat load is installed in advance.
Further, in the server room cooling system, if the cooling device fails, the temperature of the low-temperature air supplied to the device rises, and the device may be damaged, so that a spare cooling device is required to be installed. Accordingly, the server room cooling apparatus is excessively installed with respect to the heat load, and unless the cooling apparatuses are operated in an optimum combination, there is a possibility that the energy saving performance may be impaired due to the excessive operation. In addition, when switching the operation of the cooling device when the device is added or when the cooling device is broken, the air volume balance between the cold aisle and the hot aisle is lost, and the device may inhale high-temperature air and the device may be damaged.
 このような背景から、局所冷却方式により機器を冷却する場合の冷却装置の最適な運転方法について様々な技術が開示されている。例えば、特許文献1に記載の空調システムは、天吊型の冷却装置による局所冷却方式と床吹出し方式を併用したシステムである。特許文献1に記載の空調システムは、機器のベース熱負荷を床吹出し方式で冷却し、それ以外の熱負荷を局所冷却により冷却する。局所冷却では、冷却装置の出入口空気の温度差が測定され、測定温度差に応じて冷却装置の風量を変えることで機器の熱負荷に応じた冷却運転を行うことができる。 From such a background, various techniques have been disclosed for the optimum operation method of the cooling device when the equipment is cooled by the local cooling method. For example, the air conditioning system described in Patent Document 1 is a system that uses both a local cooling method and a floor blowing method using a ceiling-suspended cooling device. The air conditioning system described in Patent Literature 1 cools the base heat load of the equipment by the floor blowing method, and cools the other heat loads by local cooling. In the local cooling, the temperature difference of the inlet / outlet air of the cooling device is measured, and the cooling operation according to the heat load of the device can be performed by changing the air volume of the cooling device according to the measured temperature difference.
 また、例えば、特許文献2に記載の空調システムは、ラック型の冷却装置による局所冷却方式と床吹出し方式を併用したシステムである。特許文献2に記載の空調システムは、ホットアイル及びコールドアイルをアイル毎に間仕切るのではなく、ホットアイル同士及びコールドアイル同士を連通するように間仕切る構成としている。このようにすることで、特許文献2に記載の空調システムは、ラック型冷却装置が故障した場合にも静圧差により自動的に風量のバランスを保つことができる。 Also, for example, the air conditioning system described in Patent Document 2 is a system that uses both a local cooling method using a rack-type cooling device and a floor blowing method. The air conditioning system described in Patent Document 2 is configured to partition the hot aisle and the cold aisle so that the hot aisles and the cold aisle communicate with each other instead of partitioning the hot aisle and the cold aisle for each aisle. By doing so, the air conditioning system described in Patent Document 2 can automatically maintain the balance of the air volume due to the static pressure difference even when the rack-type cooling device fails.
特開2012-092999号公報JP 2012-092999 A 特開2014-156981号公報JP 2014-156981 A
 しかし、各冷却装置の運転状態を変えると、コールドアイル及びホットアイルの風量バランスが崩れる可能性がある。その場合、ホットアイルの高温空気が他のアイルへ流出し、機器が高温空気を吸い込んでしまうおそれがある。また、特許文献2に記載の冷却システムのように、局所冷却方式と床吹出し方式を併用する場合、低温空気をコールドアイルに供給するための床下空間が必要となる。これにより、特許文献2に記載の冷却システムは、イニシャルコストが高くなるだけでなく、局所冷却方式と床吹出し方式との併用運転中は局所冷却方式のみで冷却運転を行った場合に比べて省エネ性が損なわれるおそれがある。 However, if the operating state of each cooling device is changed, the air volume balance between cold aisle and hot aisle may be lost. In that case, the hot aisle hot air may flow out to other aisles and the equipment may inhale the hot air. Moreover, like the cooling system of patent document 2, when using a local cooling system and a floor blowing system together, the underfloor space for supplying low temperature air to a cold aisle is needed. As a result, the cooling system described in Patent Document 2 not only increases the initial cost, but also saves energy compared to the case where the cooling operation is performed only by the local cooling method during the combined operation of the local cooling method and the floor blowing method. May be impaired.
 このような背景に鑑みて本発明がなされたのであり、本発明は、最適な冷却システムの運用を課題とする。 The present invention has been made in view of such a background, and the present invention has an object to operate an optimum cooling system.
 前記した課題を解決するため、本発明は、コールドアイルとホットアイルとにおける余剰風量の和が所定以下となる複数の冷却装置の運転状態を選定することを特徴とする。
 その他の解決手段については、実施形態中において記載する。
In order to solve the above-described problems, the present invention is characterized in that the operating states of a plurality of cooling devices in which the sum of the excess air volume in the cold aisle and the hot aisle is not more than a predetermined value are selected.
Other solutions will be described in the embodiments.
 本発明によれば、最適な冷却システムの運用が可能となる。 According to the present invention, an optimum cooling system can be operated.
第1実施形態に係る冷却システムの構成例における上面模式図である。It is a top surface schematic diagram in the example of composition of the cooling system concerning a 1st embodiment. 第1実施形態に係る制御装置の構成例を示す図である。It is a figure which shows the structural example of the control apparatus which concerns on 1st Embodiment. 第1実施形態に係る冷却装置の最適運転状態の選定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the selection process of the optimal driving | running state of the cooling device which concerns on 1st Embodiment. サーバルームの構成を一般化した図である。It is the figure which generalized the structure of the server room. サーバルームにおける風量の関係を示す図である。It is a figure which shows the relationship of the air volume in a server room. (a)はコールドアイルにおける風量収支を示す図であり、(b)はホットアイルにおける風量収支を示す図である。(A) is a figure which shows the air volume balance in a cold aisle, (b) is a figure which shows the air quantity balance in a hot aisle. 第1実施形態に係る冷却システムの別の構成例を示す図である。It is a figure which shows another structural example of the cooling system which concerns on 1st Embodiment. 第1実施形態に係る冷却システムの別の構成例において、冷却装置に故障が発生したときを示す図である。In another example of composition of a cooling system concerning a 1st embodiment, it is a figure showing when a failure has occurred in a cooling device. 第2実施形態に係る冷却システムの上面模式図である。It is an upper surface schematic diagram of the cooling system which concerns on 2nd Embodiment. 第2実施形態に係る冷却システムの斜視図である。It is a perspective view of the cooling system which concerns on 2nd Embodiment.
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。 Next, modes for carrying out the present invention (referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate.
[第1実施形態]
(システム構成)
 図1は、第1実施形態に係る冷却システムの構成例における上面模式図である。
 本実施形態に係る冷却システム10には、図1に示すように、前面から低温空気を吸い込み、背面から高温空気を排気する機器4を収納しているラック5が複数設置されている。また、冷却装置3はラック型冷却装置であり、ラック5の近傍に配置され、ラック5内におけるサーバ等の機器4を局所的に冷却している。以下、紙面縦方向を列と称する。図1において、図が煩雑になるのを防ぐため、機器4は1つしか示していないが、実際には複数の機器4が、各ラック5内に収納されている。
 機器4を収納しているラック5及び冷却装置3は、部屋であるサーバルーム11内に設置されている。
[First Embodiment]
(System configuration)
FIG. 1 is a schematic top view of a configuration example of a cooling system according to the first embodiment.
As shown in FIG. 1, the cooling system 10 according to the present embodiment is provided with a plurality of racks 5 that house devices 4 that suck in low-temperature air from the front and exhaust high-temperature air from the back. The cooling device 3 is a rack-type cooling device, and is disposed in the vicinity of the rack 5 to locally cool the devices 4 such as servers in the rack 5. Hereinafter, the vertical direction of the drawing is referred to as a column. In FIG. 1, only one device 4 is shown in order to prevent the drawing from being complicated, but actually, a plurality of devices 4 are housed in each rack 5.
The rack 5 storing the equipment 4 and the cooling device 3 are installed in a server room 11 which is a room.
 一続きになっているラック5の列をラック列2と称する。なお、ラック列2には、冷却装置3が含まれている。同じ列では同方向となる配置されるとともに、ラック列2において、各ラック5(機器4)は、吸込面及び排気面が同方向を向くよう配置されている(冷却装置3の吸排気については後記)。また、ラック列2同士は、ラック5の吸込面同士及び排気面同士が対向するよう配置される。これにより、吸込面同士で挟まれた空間がコールドアイル6となり、排気面同士で挟まれた空間がホットアイル7となる。なお、図1では、高温空気を黒矢印、低温空気を白矢印で示している。
 冷却装置3は、ホットアイル7の高温空気を吸い込んで、この高温空気を冷却し、コールドアイル6に低温空気を供給する。
A continuous row of racks 5 is referred to as a rack row 2. The rack row 2 includes a cooling device 3. In the same row, they are arranged in the same direction, and in the rack row 2, each rack 5 (device 4) is arranged so that the suction surface and the exhaust surface face in the same direction (for the intake and exhaust of the cooling device 3). (Postscript). Further, the rack rows 2 are arranged such that the suction surfaces and the exhaust surfaces of the rack 5 face each other. Thereby, the space between the suction surfaces becomes the cold aisle 6, and the space between the exhaust surfaces becomes the hot aisle 7. In FIG. 1, high temperature air is indicated by black arrows and low temperature air is indicated by white arrows.
The cooling device 3 sucks in the high-temperature air of the hot aisle 7, cools the high-temperature air, and supplies low-temperature air to the cold aisle 6.
 また、冷却システム10には各冷却装置3の運転状態からコールドアイル6とホットアイル7の風量を演算し、最適な冷却装置3の運転状態を探索する制御装置(空調制御装置1が設置されている。 Further, the cooling system 10 is provided with a control device (the air conditioning control device 1) that calculates the air volume of the cold aisle 6 and the hot aisle 7 from the operating state of each cooling device 3 and searches for the optimal operating state of the cooling device 3. Yes.
 制御装置1は、破線で示されるように各冷却装置3に接続されており、冷却装置3による風量のバランスが適切となるように冷却装置3の運転状態を制御する。
 なお、図1における一点鎖線はサーバルーム11の壁を示している。
The control device 1 is connected to each cooling device 3 as indicated by a broken line, and controls the operating state of the cooling device 3 so that the air volume balance by the cooling device 3 is appropriate.
Note that the alternate long and short dash line in FIG. 1 indicates the wall of the server room 11.
(制御装置の構成)
 図2は、第1実施形態に係る制御装置の構成例を示す図である。適宜、図1を参照する。
 制御装置1は、RAM(Random Access Memory)等のメモリ110、CPU(Central Processing Unit)120、HD(Hard Disk)等の記憶装置130及び送受信装置140を有している。
 記憶装置130に格納されているプログラムが、メモリ110に展開され、CPU120によって実行されることで、処理部111が具現化しているとともに、処理部111を構成する運転状態選定部112、風量収支算出部113、運転係数算出部114、最適運転状態選定部115及び冷却装置制御部116が具現化している。
(Configuration of control device)
FIG. 2 is a diagram illustrating a configuration example of the control device according to the first embodiment. Reference is made to FIG. 1 as appropriate.
The control device 1 includes a memory 110 such as a RAM (Random Access Memory), a CPU (Central Processing Unit) 120, a storage device 130 such as an HD (Hard Disk), and a transmission / reception device 140.
The program stored in the storage device 130 is expanded in the memory 110 and executed by the CPU 120, so that the processing unit 111 is embodied, and the operation state selection unit 112 constituting the processing unit 111, the air flow balance calculation. The unit 113, the operation coefficient calculation unit 114, the optimum operation state selection unit 115, and the cooling device control unit 116 are embodied.
 運転状態選定部(運転状態探索部)112は、冷却装置3の運転状態を選定する。
 風量収支算出部(運転状態探索部)113は、運転状態選定部112が選定した冷却装置3の運転状態において、各コールドアイル6及び各ホットアイル7における吸込風量及び排出風量の収支である風量収支を算出する。
 運転係数算出部(運転状態探索部)114は、風量収支算出部113が算出した風量収支に基づいて運転係数を算出する。
 最適運転状態選定部(運転状態探索部)115は、算出した運転係数が所定以下の(ここでは最も小さくなる)冷却装置3の運転状態を選定する。
 冷却装置制御部116は、最適運転状態選定部115が選定した冷却装置3の運転状態となるよう、各冷却装置3を制御する。
The operation state selection unit (operation state search unit) 112 selects the operation state of the cooling device 3.
The air volume balance calculating unit (operating state searching unit) 113 is an air volume balance that is a balance of the intake air amount and the exhaust air amount in each cold aisle 6 and each hot aisle 7 in the operation state of the cooling device 3 selected by the operation state selecting unit 112. Is calculated.
The operation coefficient calculation unit (operation state search unit) 114 calculates an operation coefficient based on the air volume balance calculated by the air volume balance calculation unit 113.
The optimum operation state selection unit (operation state search unit) 115 selects the operation state of the cooling device 3 in which the calculated operation coefficient is equal to or less than a predetermined value (smallest here).
The cooling device control unit 116 controls each cooling device 3 so as to be in the operation state of the cooling device 3 selected by the optimum operation state selection unit 115.
(フローチャート)
 図3は、第1実施形態に係る冷却装置の最適運転状態の選定処理の手順を示すフローチャートである。適宜、図1及び図2を参照する。
 まず、運転状態選定部112は、冷却装置3の運転状態の組み合わせを1つ選定する(S101)。
 次に、風量収支算出部113は、各ラック列2においてラック5に格納されている機器4が吸い込む風量と、機器4が排出する風量との総和である機器総風量を算出する(S102)。ステップS102の処理は、後記して説明する。
 そして、風量収支算出部113は、各ラック列2において冷却装置3が吸い込む風量と、冷却装置3が排出する風量との総和である冷却装置総風量を算出する(S103)。ステップS103の処理は、後記して説明する。
(flowchart)
FIG. 3 is a flowchart illustrating a procedure for selecting an optimum operation state of the cooling device according to the first embodiment. Reference is made to FIGS. 1 and 2 as appropriate.
First, the operation state selection unit 112 selects one combination of operation states of the cooling device 3 (S101).
Next, the air volume balance calculating unit 113 calculates a total device air volume that is the sum of the air volume sucked by the device 4 stored in the rack 5 in each rack row 2 and the air volume discharged by the device 4 (S102). The process of step S102 will be described later.
Then, the air volume balance calculation unit 113 calculates the cooling device total air volume that is the sum of the air volume sucked by the cooling device 3 and the air volume discharged by the cooling device 3 in each rack row 2 (S103). The process of step S103 will be described later.
 続いて、風量収支算出部113は、算出した機器総風量及び冷却装置総風量を基に、コールドアイル6における風量の収支であるコールドアイル風量収支を算出する(S104)。
 そして、風量収支算出部113は、算出した機器総風量及び冷却装置総風量を基に、ホットアイル7における風量の収支であるホットアイル風量収支を算出する(S105)。ステップS104及びステップS105の処理は後記して説明する。
Subsequently, the air volume balance calculating unit 113 calculates a cold aisle air volume balance, which is an air volume balance in the cold aisle 6, based on the calculated total device air volume and cooling device total air volume (S104).
And the air volume balance calculation part 113 calculates the hot aisle air volume balance which is the air volume balance in the hot aisle 7 based on the calculated apparatus total air volume and cooling device total air volume (S105). The processing of step S104 and step S105 will be described later.
 次に、運転係数算出部114は、ステップS104で算出したコールドアイル風量収支及びステップS105で算出したホットアイル風量収支を基に、運転係数を算出する(S106)。ステップS106の処理は後記して説明する。運転係数の算出後、運転係数算出部114は算出した運転係数を、処理対象となっている冷却装置3の運転状態の組み合わせの情報とともに記憶装置130に一次保存する。 Next, the operation coefficient calculation unit 114 calculates an operation coefficient based on the cold aisle air volume balance calculated in step S104 and the hot aisle air volume balance calculated in step S105 (S106). The process of step S106 will be described later. After the operation coefficient is calculated, the operation coefficient calculation unit 114 primarily stores the calculated operation coefficient in the storage device 130 together with information on the combination of operation states of the cooling device 3 that is the processing target.
 続いて、運転状態選定部112は、冷却装置3の運転状態のすべての組み合わせについて運転係数の算出が完了したか否かを判定する(S107)。
 ステップS107の結果、すべての組み合わせについて運転係数の算出が完了していない場合(S107→No)、運転状態選定部112はステップS101へ処理を戻す。
 ステップS107の結果、すべての組み合わせについて運転係数を算出している場合(S107→Yes)、最適運転状態選定部115が、運転係数が最も小さい運転状態である最適運転状態を選定する(S108)。
 そして、冷却装置制御部116は、最適運転状態選定部115が選定した冷却装置3の運転状態となるよう、各冷却装置3を制御する(S109)。具体的には、冷却装置制御部116が、ステップS108で選定された最適運転状態となるよう、各冷却装置3のON・OFFを制御したり、風量を調整したりする。
Subsequently, the operation state selection unit 112 determines whether or not the calculation of the operation coefficient has been completed for all combinations of the operation states of the cooling device 3 (S107).
As a result of step S107, when calculation of the operation coefficient is not completed for all combinations (S107 → No), the operation state selection unit 112 returns the process to step S101.
As a result of step S107, when the operation coefficient is calculated for all combinations (S107 → Yes), the optimum operation state selection unit 115 selects the optimum operation state that is the operation state having the smallest operation coefficient (S108).
And the cooling device control part 116 controls each cooling device 3 so that it may be in the driving | running state of the cooling device 3 which the optimal driving | running state selection part 115 selected (S109). Specifically, the cooling device control unit 116 controls ON / OFF of each cooling device 3 and adjusts the air volume so that the optimum operation state selected in step S108 is obtained.
 以下、制御装置1による最適運転状態の選定処理について詳細に説明する。適宜、図1及び図2を参照する。
 図4は、風量算出の説明のため、図1に示すサーバルームの構成を一般化した図である。
 なお、図4では機器4(図1)が収納されているラック5と冷却装置3との区別を図示省略している。
Hereinafter, the selection process of the optimal operation state by the control device 1 will be described in detail. Reference is made to FIGS. 1 and 2 as appropriate.
FIG. 4 is a generalized diagram of the configuration of the server room shown in FIG. 1 for the description of the air volume calculation.
In FIG. 4, the distinction between the rack 5 in which the device 4 (FIG. 1) is stored and the cooling device 3 is omitted.
(機器総風量及び冷却装置総風量の算出)
 まず、図3のステップS102における機器総風量の算出及びステップS103における冷却装置総風量の算出について、図4及び図5を参照して、詳細に説明する。
 図4に示すように、各ラック列2は(n,m)で位置が示されている。このうち、nは紙面上下方向に対する位置を示している。すなわち、紙面上方から・・・n-1,n,n+1・・・となる。また、mは紙面左右方向に対する位置を示している。すなわち、紙面左方向から・・・m-1、m、m+1・・・となる。なお、nを行、mを列と称することがある。行及び列の総数は、N×Mであるものとする。
(Calculation of total device air volume and cooling device total air volume)
First, the calculation of the equipment total air volume in step S102 of FIG. 3 and the calculation of the cooling device total air volume in step S103 will be described in detail with reference to FIG. 4 and FIG.
As shown in FIG. 4, the position of each rack row 2 is indicated by (n, m). Among these, n indicates the position with respect to the vertical direction of the paper. That is, from the top of the page,..., N-1, n, n + 1. In addition, m indicates a position with respect to the left and right direction on the paper surface. That is, m−1, m, m + 1. In some cases, n is referred to as a row and m is referred to as a column. Assume that the total number of rows and columns is N × M.
 コールドアイル6及びホットアイル7も同様に(n,m)で位置が示されている。コールドアイル6及びホットアイル7においても、nは紙面上下方向に対する位置を示しており、mは紙面左右方向に対する位置を示している。
 紙面上下方向に関しては、nの値が1つずつ変化しているが(・・・n-1,n,n+1・・・)、紙面左右方向に関しては、コールドアイル及6びホットアイル7が交互に配置されているため2つずつ変化している(・・・m、m+2・・・)。
The positions of the cold aisle 6 and the hot aisle 7 are similarly indicated by (n, m). Also in the cold aisle 6 and the hot aisle 7, n indicates a position with respect to the vertical direction of the paper surface, and m indicates a position with respect to the horizontal direction of the paper surface.
In the vertical direction of the paper, the value of n changes one by one (... n-1, n, n + 1 ...), but in the horizontal direction of the paper, cold aisle and 6 hot aisles 7 alternate. Are changed two by two (..., M + 2...).
 図5は、図4に示すサーバルームにおける風量の関係を示す図である。
 ここで、ラック列(n,m)に注目すると、ラック列(n,m)における機器4がコールドアイル(n,m)から低温空気を吸い込み、ホットアイル(n,m)へ高温空気を排出する。これを、機器総風量Qj,n,mとする。すなわち、Qj,n,mは、あるラック列2におけるラック5に収納されているすべての機器4が吸入及び排出する空気の風量である。
FIG. 5 is a diagram showing the relationship of the air volume in the server room shown in FIG.
Here, paying attention to the rack row (n, m), the equipment 4 in the rack row (n, m) sucks the cold air from the cold aisle (n, m) and discharges the hot air to the hot aisle (n, m). To do. This is the total equipment air volume Q j, n, m . That is, Q j, n, m is the air volume of air that is sucked and discharged by all the devices 4 housed in the rack 5 in a certain rack row 2.
 また、ラック列(n,m)における冷却装置3がホットアイル(n,m)から高温空気を吸い込み、コールドアイル(n,m)へ低温空気を排出する。これを、冷却装置総風量Qk,n,mとする。すなわち、Qk,n,mは、あるラック列2におけるすべての冷却装置3が吸入及び排出する空気の風量である。なお、コールドアイル(n,m)におけるqn,m及びqn+1,mについては後記する。
 風量収支算出部113は、すべてのラック列2に対して、Qj,n,m及びQk,n,mを算出する。
Further, the cooling device 3 in the rack row (n, m) sucks high-temperature air from the hot aisle (n, m) and discharges low-temperature air to the cold aisle (n, m). This is the total cooling device air volume Q k, n, m . That is, Q k, n, m is the air volume of the air sucked and discharged by all the cooling devices 3 in a certain rack row 2. Note that q n, m and q n + 1, m in cold aisle (n, m) will be described later.
The air volume balance calculating unit 113 calculates Q j, n, m and Q k, n, m for all rack rows 2.
 このような機器総風量及び冷却装置総風量は、予め入力されている各機器4のスペックや、冷却装置3のスペック等を基に、風量収支算出部113によって算出される。
 ここまでが、図3におけるステップS102及びステップS103の処理である。
The total air volume of the equipment and the total air volume of the cooling device are calculated by the air volume balance calculation unit 113 based on the specifications of each device 4 input in advance, the specifications of the cooling device 3, and the like.
The processing up to this point is the processing of step S102 and step S103 in FIG.
(コールドアイル風量収支及びホットアイル風量収支の算出)
 次に、図3のステップS104におけるコールドアイル風量収支の算出及びステップS105におけるホットアイル風量収支の算出について詳細に説明する。
 制御装置1の風量収支算出部113は、各ラック列2に隣接するコールドアイル6及びホットアイル7毎に風量収支の算出を行う。
 すなわち、風量収支算出部113は、各コールドアイル6に隣接するラック列2の機器総風量及び冷却装置総風量を基に、各コールドアイル6の風量収支を算出する。同様に、風量収支算出部113は、各ホットアイル7に隣接するラック列2の機器総風量及び冷却装置総風量を基に、各ホットアイル7の風量収支を算出する。
(Calculation of cold aisle air volume balance and hot aisle air volume balance)
Next, the calculation of the cold aisle air volume balance in step S104 of FIG. 3 and the calculation of the hot aisle air volume balance in step S105 will be described in detail.
The air volume balance calculation unit 113 of the control device 1 calculates the air volume balance for each cold aisle 6 and hot aisle 7 adjacent to each rack row 2.
That is, the air volume balance calculating unit 113 calculates the air volume balance of each cold aisle 6 based on the total equipment air volume and the cooling device total air volume of the rack row 2 adjacent to each cold aisle 6. Similarly, the air volume balance calculating unit 113 calculates the air volume balance of each hot aisle 7 based on the total equipment air volume and the cooling device total air volume of the rack row 2 adjacent to each hot aisle 7.
 このことを、図6を参照して説明する。
(コールドアイル風量収支)
 図6(a)は、図5のコールドアイル(n,m)における風量収支を示す図である。
 図6(a)において、Qj,n,m-1は、コールドアイル(n,m)からラック列(n,m-1)における機器4が吸い込む低温空気の風量である。また、Qj,n,mは、コールドアイル(n,m)からラック列(n,m)における機器4が吸い込む低温空気の風量である。
This will be described with reference to FIG.
(Cold aisle wind balance)
Fig.6 (a) is a figure which shows the air volume balance in the cold aisle (n, m) of FIG.
In FIG. 6A , Q j, n, m-1 is the air volume of the low-temperature air sucked by the equipment 4 in the rack row (n, m-1) from the cold aisle (n, m). Q j, n, m is the air volume of the low-temperature air sucked by the device 4 in the rack row (n, m) from the cold aisle (n, m).
 そして、Qk,n,m-1は、ラック列(n,m-1)における冷却装置3がコールドアイル(n,m)へ排出する低温空気の風量である。同様に、Qk,n,mは、ラック列(n,m)における冷却装置3がコールドアイル(n,m)へ排出する低温空気の風量である。 Q k, n, m−1 is the air volume of the low-temperature air discharged from the cooling device 3 in the rack row (n, m−1) to the cold aisle (n, m). Similarly, Q k, n, m is the air volume of the low-temperature air discharged from the cooling device 3 in the rack row (n, m) to the cold aisle (n, m).
 また、qn,mは、コールドアイル(n,m)に隣接するコールドアイル(n-1,m)との間でやりとりされる低温空気の風量である。同様に、qn+1,mは、コールドアイル(n,m)に隣接するコールドアイル(n+1,m)との間でやりとりされる低温空気の風量である。 Further, q n, m is the air volume of the low-temperature air exchanged with the cold aisle (n−1, m) adjacent to the cold aisle (n, m). Similarly, q n + 1, m is the air volume of low-temperature air exchanged with the cold aisle (n + 1, m) adjacent to the cold aisle (n, m).
 コールドアイル(n,m)における風量収支QC,n,mは、コールドアイル(n,m)に隣接するラック列(n,m-1)及びラック列(n,m)に対する機器総風量及び冷却装置総風量の総和であるので、以下の式(1)で表される。 The air volume balance QC , n, m in the cold aisle (n, m) is the total equipment air flow for the rack row (n, m-1) and the rack row (n, m) adjacent to the cold aisle (n, m) and Since it is the sum total of the cooling device total air volume, it is expressed by the following equation (1).
 QC,n,m=Qk,n,m-1+Qk,n,m-Qj,n,m-1-Qj,n,m ・・・ (1) Q C, n, m = Q k, n, m-1 + Q k, n, m -Q j, n, m-1 -Q j, n, m ··· (1)
 ここで、コールドアイル(n,m)に流入する空気の風量を正、コールドアイル(n,m)から流出する空気の風量を負としている。
 コールドアイル(n,m)における風量の過不足分は、隣接するコールドアイル(n-l、m)及びコールドアイル(n+1、m)との間でやり取りされる低温空気の風量となる。従って、式(1)は、コールドアイル(n,m)とコールドアイル(n-1,m)との間でやりとりされる低温空気の風量qn,m、及び、コールドアイル(n,m)とコールドアイル(n+1,m)との間でやりとりされる低温空気の風量qn+1,mを考慮して、以下の式(2)のように表わされる。
Here, the air volume flowing into the cold aisle (n, m) is positive, and the air volume flowing out from the cold aisle (n, m) is negative.
The excess and deficiency of the air volume in the cold aisle (n, m) is the air volume of the low-temperature air exchanged between the adjacent cold aisle (n-1, m) and the cold aisle (n + 1, m). Therefore, the expression (1) is expressed by the following equation: The air volume q n, m of cold air exchanged between the cold aisle (n, m) and the cold aisle (n-1, m) and the cold aisle (n, m) In consideration of the air volume q n + 1, m of the low-temperature air exchanged between and the cold aisle (n + 1, m), it is expressed as the following equation (2).
 QC,n,m=qn,m+qn+1,m
     =Qk,n,m-1+Qk,n,m-Qj,n,m-1-Qj,n,m ・・・ (2)
Q C, n, m = q n, m + q n + 1, m
= Q k, n, m-1 + Q k, n, m -Q j, n, m-1 -Q j, n, m (2)
(ホットアイル風量収支)
 次に、ホットアイル7における風量収支について説明する。
 図6(b)は、図5のホットアイル(n,m)における風量収支を示す図である。
 図6(b)において、Qj,n,mは、ラック列(n,m)における機器4がホットアイル(n,m)へ排出する高温空気の風量である。また、Qj,n,m+1は、ラック列(n,m+1)における機器がホットアイル(n,m)へ排出する高温空気の風量である。
(Hot Isle Air Volume Balance)
Next, the air volume balance in the hot aisle 7 will be described.
FIG.6 (b) is a figure which shows the air volume balance in the hot aisle (n, m) of FIG.
In FIG. 6B, Q j, n, m is the air volume of the high-temperature air discharged from the equipment 4 in the rack row (n, m) to the hot aisle (n, m). Further, Q j, n, m + 1 is the air volume of the high-temperature air discharged from the devices in the rack row (n, m + 1) to the hot aisle (n, m).
 そして、Qk,n,mは、ラック列(n,m)における冷却装置3がホットアイル(n,m)から吸い込む高温空気の風量である。同様に、Qk,n,m+1は、ラック列(n,m+1)における冷却装置3がホットアイル(n,m)から吸い込む高温空気の風量である。 Q k, n, m is the air volume of the high-temperature air that the cooling device 3 in the rack row (n, m) sucks from the hot aisle (n, m). Similarly, Q k, n, m + 1 is the air volume of the high-temperature air that the cooling device 3 in the rack row (n, m + 1) sucks from the hot aisle (n, m).
 ホットアイル(n,m)における風量収支QH,n,mは、ホットアイル(n,m)に隣接するラック列(n,m)及びラック列(n,m+1)に対する機器総風量及び冷却装置総風量の総和であるので、以下の式(3)で表される。 The air volume balance Q H, n, m in the hot aisle (n, m) is the equipment total air volume and the cooling device for the rack row (n, m) and the rack row (n, m + 1) adjacent to the hot aisle (n, m). Since it is the sum total of the total air volume, it is expressed by the following equation (3).
 QH,n,m=Qj,n,m+Qj,n,m+1-Qk,n,m-Qk,n,m-1 ・・・ (3) QH , n, m = Qj, n, m + Qj, n, m + 1- Qk , n, m- Qk , n, m-1 (3)
 なお、ホットアイル(n,m)に流入する空気の風量を正、ホットアイル(n,m)から流出する空気の風量を負としている。
 ここで、ホットアイル7に供給される風量が、ホットアイル7から排出される風量より過剰であると、高温空気の風量がコールドアイル6に流出し、機器4が高温空気の風量を吸い込むおそれがある。従って、ホットアイル(n,m)における風量収支QH,n,mは以下の式(4)の条件を満たさなくてはならない。
Note that the air volume flowing into the hot aisle (n, m) is positive, and the air volume flowing out from the hot aisle (n, m) is negative.
Here, if the air volume supplied to the hot aisle 7 is excessive than the air volume discharged from the hot aisle 7, the air volume of the high-temperature air may flow into the cold aisle 6, and the device 4 may suck the air volume of the high-temperature air. is there. Therefore, the air volume balance Q H, n, m in the hot aisle (n, m) must meet the conditions of the following equation (4).
 QH,n,m=Qj,n,m+Qj,n,m+1-Qk,n,m-Qk,n,m-1≦0 ・・・ (4) QH , n, m = Qj, n, m + Qj, n, m + 1- Qk , n, m- Qk , n, m- 1≤0 (4)
 ここまでが、図3におけるステップS104及びステップS105の処理である。
 なお、Qj,n,0、Qj,n,M、Qj,0,m、Qj,N,m、Qk,n,0、Qk,n,M、Qk,0,m、Qk,N,m、q1、m、qN+1,mは、サーバルーム11の壁における風量となり、いずれも値は0である。
The processing up to this point is the processing of step S104 and step S105 in FIG.
Qj, n, 0 , Qj, n, M , Qj, 0, m , Qj, N, m , Qk, n, 0 , Qk, n, M , Qk, 0, m , Qk, N, m , q1 , m , qN + 1, m are the air volumes at the wall of the server room 11, and all have values of zero.
(運転係数算出及び最適運転状態選定)
 次に、図3のステップS106における運転係数の算出及びステップS108における最適運転状態の選定について詳細に説明する。
 運転係数算出部114は、算出された各コールドアイル6及び各ホットアイル7で算出された風量収支から余剰風量を表す運転係数を算出し、運転係数が最小となる冷却装置3の状態の組み合わせを選定する。
(Calculation of operating coefficient and selection of optimum operating condition)
Next, calculation of the operation coefficient in step S106 of FIG. 3 and selection of the optimum operation state in step S108 will be described in detail.
The operation coefficient calculation unit 114 calculates an operation coefficient representing the surplus air volume from the air volume balance calculated in each cold aisle 6 and each hot aisle 7 and calculates the combination of the states of the cooling device 3 that minimizes the operation coefficient. Select.
 ラック列2がN×Mの構成を有しているとすると、最適な冷却運転を行う場合、コールドアイル6の風量収支は、ラック列(1,m)からラック列(N,m)までの総和が最小になり、かつ、その絶対値は、ラック列(n,1)からラック列(n,M)までの総和が最小になることが必要である。
 従って、コールドアイル6における運転係数は、以下の式(5)で表わされるコールドアイル運転係数θが最小となる冷却装置3の運転状態である。
Assuming that the rack row 2 has an N × M configuration, when performing an optimal cooling operation, the air volume balance of the cold aisle 6 is from the rack row (1, m) to the rack row (N, m). It is necessary that the sum is minimized, and the absolute value of the sum is from the rack row (n, 1) to the rack row (n, M).
Therefore, the operating coefficient in the cold aisle 6 is the operating state of the cooling device 3 in which the cold aisle operating coefficient θ C expressed by the following equation (5) is minimized.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、QC,n,2s=0(s=1,2,・・・)である。
 式(5)は、コールドアイル6が連なっている列において、コールドアイル6における風量収支を加算し、加算した結果の絶対値を、列毎に加算したものである。
 また、最適な冷却運転を行う場合、ホットアイル7の風量収支は、ラック列(1,m)からラック列(N,m)までの絶対値の総和が最小になり、かっ、ラック列(n,1)からラック列(n,M)までの総和が最小になることが必要である。
 従って、ホットアイル7における運転係数は、以下の式(6)で表わされるホットアイル運転係数θが最小となる冷却装置3の運転状態である。
Incidentally, Q C, n, 2s = 0 (s = 1,2, ···) it is.
Expression (5) is obtained by adding the air volume balance in the cold aisle 6 in the column where the cold aisle 6 is connected, and adding the absolute value of the addition result for each column.
Further, when performing the optimum cooling operation, the air volume balance of the hot aisle 7 has the smallest sum of absolute values from the rack row (1, m) to the rack row (N, m), and the rack row (n , 1) to the rack row (n, M) must be minimized.
Therefore, the operation coefficient in the hot aisle 7 is a driving state of the cooling device 3 that hot aisle operation coefficient theta H is minimized, which is represented by the following formula (6).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、QH,n,2s=0(s=1,2,・・・)である。
 式(6)は、各ホットアイル7における風量収支の絶対値の総和である。
 ちなみに、各運転係数θ,θは、コールドアイル6及びホットアイル7における余剰風量である。
 運転係数算出部114は、式(5)によるコールドアイル運転係数θと、式(6)によるホットアイル運転係数θの和である式(7)で表される運転係数θを算出する。
Q H, n, 2s = 0 (s = 1, 2,...).
Formula (6) is the sum total of the absolute value of the air volume balance in each hot aisle 7.
Incidentally, each operation coefficient θ C , θ H is a surplus air volume in the cold aisle 6 and the hot aisle 7.
The operation coefficient calculation unit 114 calculates the operation coefficient θ represented by Expression (7), which is the sum of the cold aisle operation coefficient θ C according to Expression (5) and the hot aisle operation coefficient θ H according to Expression (6).
 θ=θ+θ ・・・ (7) θ = θ C + θ H (7)
 具体的には、運転係数算出部114は、各冷却装置3の稼働状態の組み合わせに関する機器風量、冷却装置風量を基に、コールドアイル運転係数θ、ホットアイル運転係数θ及び運転係数θを算出する。そして、最適運転状態選定部115が、図3のステップS108において、運転係数θが最小となるような冷却装置3の稼働状態の組み合わせを特定する。
 このようにして、制御装置1は、最適な冷却装置3の稼働状態を探索し、選定する。
Specifically, the operation coefficient calculation unit 114 calculates the cold aisle operation coefficient θ C , the hot aisle operation coefficient θ H, and the operation coefficient θ based on the equipment air volume and the cooling apparatus air volume related to the combination of operating states of the respective cooling devices 3. calculate. Then, the optimum operation state selection unit 115 identifies the combination of operation states of the cooling device 3 that minimizes the operation coefficient θ in step S108 of FIG.
In this way, the control device 1 searches for and selects the optimum operating state of the cooling device 3.
 ここで、運転係数の算出を行う際に使用する機器4の風量や、冷却装置3の風量は実際の運転風量を測定して使用してもよいし、消費電力や空気温度を測定して風量を予測して使用してもかまわない。また、機器4及び冷却装置3の定格風量値を使用して、運転係数を算出してもかまわない。
 また、運転係数θが最小値となる冷却装置3の運転状態の探索は、遺伝的アルゴリズムや、局所探索法や、ニューラルネットワーク等の最適化アルゴリズムが用いられてもよい。このような最適化アルゴリズムを用いることで、冷却装置3のすべての運転状態について運転係数θが算出される必要がなくなる。
Here, the air volume of the device 4 used when calculating the operating coefficient and the air volume of the cooling device 3 may be used by measuring the actual operating air volume, or by measuring the power consumption and the air temperature. May be used in anticipation. Further, the operating coefficient may be calculated using the rated airflow values of the device 4 and the cooling device 3.
In addition, a genetic algorithm, a local search method, or an optimization algorithm such as a neural network may be used to search for the operation state of the cooling device 3 at which the operation coefficient θ is the minimum value. By using such an optimization algorithm, it is not necessary to calculate the operating coefficient θ for all operating states of the cooling device 3.
 なお、冷却装置3が「ON」、「OFF」の2状態しか稼働状態がない場合は、どの冷却装置3を「ON」にし、どの冷却装置3を「OFF」にすれば、運転係数θを最小にできるかを最適運転状態選定部115が探索する。
 冷却装置3が、稼働状態を「強」から「弱」の間で段階的に調節できるのであれば、運転係数算出部114は、各冷却装置3をどのような稼働状態にすれば、運転係数θを最小にできるかを算出する。
 ここまでが、図3におけるステップS106及びステップS108の処理である。
In addition, when the cooling device 3 has only two operating states of “ON” and “OFF”, which cooling device 3 is set to “ON” and which cooling device 3 is set to “OFF”, the operation coefficient θ is set. The optimum operation state selection unit 115 searches whether it can be minimized.
If the cooling device 3 can adjust the operating state in a stepwise manner from “strong” to “weak”, the operation coefficient calculation unit 114 determines the operating coefficient for each operating state of each cooling device 3. Calculate whether θ can be minimized.
The processing up to this point is the processing of step S106 and step S108 in FIG.
 本実施形態によれば、コールドアイル6とホットアイル7との風量バランスを崩すことなく省エネを実現した冷却運転が可能となる。
 また、局所冷却の構成で、省エネを実現したサーバルーム11全体の空調が可能となるので、イニシャルコストを低減することができる。
According to the present embodiment, it is possible to perform a cooling operation that realizes energy saving without breaking the air volume balance between the cold aisle 6 and the hot aisle 7.
Further, the local cooling configuration enables air conditioning of the entire server room 11 that realizes energy saving, so that the initial cost can be reduced.
 さらに、風量収支算出部113が、コールドアイル6とホットアイル7とに流入する風量を正とし、コールドアイル及びホットアイルから流出する風量を負として、コールドアイル及びホットアイルにおける流入風量及び排出風量の総和である風量収支をコールドアイル及びホットアイル毎に算出する。
 そして、運転係数算出部114が、コールドアイルが連なっている列において、コールドアイルにおける風量収支を加算し、加算した結果の絶対値を、列毎に加算したものをコールドアイル運転係数(θ:コールドアイル6の余剰風量)として算出する。また、運転係数算出部114は、各ホットアイルにおける風量収支の絶対値の総和をホットアイル運転係数(θ:ホットアイル7の余剰風量)として算出する。
 さらに、運転状態選定部115が、コールドアイル運転係数及びホットアイル運転係数を加算したものを運転係数(θ)として算出し、該運転係数が最も小さくなる冷却装置の運転状態を探索(選定)する。
 このようにすることで、最適な運転状態の探索(選定)を定量的に行うことができる。
Further, the air volume balance calculation unit 113 sets the air volume flowing into the cold aisle 6 and the hot aisle 7 as positive, the air volume flowing out from the cold aisle and the hot aisle as negative, and the inflow air volume and the exhaust air volume in the cold aisle and the hot aisle. The total air volume balance is calculated for each cold aisle and hot aisle.
Then, the operation coefficient calculation unit 114 adds the air volume balance in the cold aisle in the column where the cold aisle is connected, and adds the absolute value of the addition result for each column to the cold aisle operation coefficient (θ C : Calculated as surplus air volume of the cold aisle 6). Further, the operation coefficient calculation unit 114, the hot aisle operation coefficient sum of the absolute values of air flow balance in the hot aisle: is calculated as (theta H excess air volume of the hot aisle 7).
Further, the operation state selection unit 115 calculates the operation coefficient (θ) by adding the cold aisle operation coefficient and the hot aisle operation coefficient, and searches for (selects) the operation state of the cooling device having the smallest operation coefficient. .
By doing in this way, search (selection) of an optimal driving | running state can be performed quantitatively.
(冷却装置が故障した場合)
 冷却装置3が故障した場合、コールドアイル6の温度上昇により機器4の故障を引き起こすおそれがある。従って、図7に示すように、コールドアイル6の温度上昇による機器4の故障を防ぐために冷却装置3の予備機(以下、予備冷却装置3aと称する)が設置される。
 予備冷却装置3aは、ホットアイル7に隣接する2列のラック列2を1区画とした場合
に、1区画に少なくとも1台設置されるのが好ましい。
(If the cooling device fails)
When the cooling device 3 breaks down, the temperature of the cold aisle 6 may increase, causing the device 4 to break down. Therefore, as shown in FIG. 7, a spare machine for the cooling device 3 (hereinafter referred to as the preliminary cooling device 3 a) is installed in order to prevent the failure of the device 4 due to the temperature rise of the cold aisle 6.
When the two rack rows 2 adjacent to the hot aisle 7 are defined as one section, it is preferable that at least one precooling device 3a is installed in one section.
 図8に示すように、冷却装置31,3が1台故障した場合、故障した冷却装置3と同一区画内に設置されている予備冷却装置32,3aが運転されることが多い。このような場合、運転している冷却装置3の配置が変わり、コールドアイル6の風量バランスが崩れてしまうおそれがある。本実施形態によれば、前記した方法で運転係数θが最小となる冷却装置3と予備冷却装置3aの運転状態の組み合わせを算出することで、最適な運転状態を保つことができる。これにより、冷却システム10の信頼性を向上させることができる。 As shown in FIG. 8, when one of the cooling devices 31 and 3 fails, the preliminary cooling devices 32 and 3a installed in the same section as the failed cooling device 3 are often operated. In such a case, the arrangement of the cooling device 3 in operation may change, and the air volume balance of the cold aisle 6 may be lost. According to the present embodiment, the optimum operation state can be maintained by calculating the combination of the operation state of the cooling device 3 and the preliminary cooling device 3a that minimizes the operation coefficient θ by the above-described method. Thereby, the reliability of the cooling system 10 can be improved.
[第2実施形態]
 次に、図9及び図10を参照して、本発明の第2実施形態について説明する。
 図9は第2実施形態に係る冷却システムの上面模式図であり、図10は第2実施形態に係る冷却システムの斜視図である。
 図9及び図10に示すように、冷却システム10aでは各ラック5の上部に天吊型の冷却装置8が設置されている。各ラック5の内部には機器4(図1)が収納されている。図9及び図10に示すように、天吊型の冷却装置8は、ホットアイル7(図10)の上部を完全に覆った状態となっている。天吊型の冷却装置8は、ホットアイル7に向けて開口している開口部からホットアイル7の高温空気(図10のドット矢印)を吸い込み、内部で冷却した後、コールドアイル6(図10)側の開口部から低温空気(図10の白矢印)を排出する。なお、ある天吊型の冷却装置8が故障した場合、予め設置してある予備の天吊型の冷却装置が稼働するようにしてもよい。
 なお、天吊型の冷却装置8も、第1実施形態と同様、ラック5に対して冗長となるよう設置されている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 9 is a schematic top view of the cooling system according to the second embodiment, and FIG. 10 is a perspective view of the cooling system according to the second embodiment.
As shown in FIG.9 and FIG.10, in the cooling system 10a, the ceiling-mounted cooling device 8 is installed in the upper part of each rack 5. As shown in FIG. The equipment 4 (FIG. 1) is accommodated in each rack 5. As shown in FIGS. 9 and 10, the ceiling-mounted cooling device 8 is in a state of completely covering the upper part of the hot aisle 7 (FIG. 10). The ceiling-suspended cooling device 8 sucks high-temperature air (dotted arrow in FIG. 10) of the hot aisle 7 from an opening that opens toward the hot aisle 7, cools the inside, and then cools the cold aisle 6 (FIG. 10). ) Low temperature air (white arrow in FIG. 10) is discharged from the opening on the side. In addition, when a certain ceiling-suspended cooling device 8 breaks down, a spare ceiling-suspended cooling device installed in advance may be operated.
The ceiling-suspended cooling device 8 is also installed redundantly with respect to the rack 5 as in the first embodiment.
 第2実施形態では、制御装置1が前記した運転係数θを最小にする天吊型の冷却装置8の運転状態の組み合わせを算出することで、第1実施形態と同様、省エネを実現した冷却システム10aの運転や、天吊型の冷却装置8のいずれかが故障しても、最適な冷却システム10aの運転を可能とする。 In the second embodiment, the control device 1 calculates the combination of the operation states of the ceiling-mounted cooling device 8 that minimizes the operation coefficient θ described above, and thus, a cooling system that realizes energy saving, as in the first embodiment. Even if either the operation of 10a or the ceiling-mounted cooling device 8 breaks down, the optimal operation of the cooling system 10a can be performed.
 なお、第2実施形態において、制御装置1の構成は図2と同様であり、また、最適運転状態の探索・選定も第1実施形態と同様であるので、ここでは説明を省略する。 In the second embodiment, the configuration of the control device 1 is the same as that shown in FIG. 2, and the search and selection of the optimum operation state is the same as that in the first embodiment.
 本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to having all the configurations described. In addition, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、前記した各構成、機能、各部111~116、記憶装置130等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図2に示すように、前記した各構成、機能等は、CPU等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、HDに格納すること以外に、メモリや、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
Further, each of the above-described configurations, functions, the respective units 111 to 116, the storage device 130, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Further, as shown in FIG. 2, the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor such as a CPU. In addition to storing the program, table, file, etc. for realizing each function, in addition to storing it in the HD, a memory, a recording device such as an SSD (Solid State Drive), an IC (Integrated Circuit) card, an SD (Secure) It can be stored in a recording medium such as a Digital) card or a DVD (Digital Versatile Disc).
Moreover, in each embodiment, the control line and the information line are those that are considered necessary for the explanation, and not all the control lines and the information lines are necessarily shown. In practice, it can be considered that almost all configurations are connected to each other.
 1   制御装置(空調制御装置)
 2   ラック列
 3,31 冷却装置
 3a,32 予備冷却装置
 4   機器
 5   ラック
 6   コールドアイル
 7   ホットアイル
 8   天吊型の冷却装置
 10,10a 冷却システム
 11,11a  サーバルーム(部屋)
 111 処理部
 112 運転状態選定部(運転状態探索部)
 113 風量収支算出部(運転状態探索部)
 114 運転係数算出部(運転状態探索部)
 115 最適運転状態選定部(運転状態探索部)
 116 冷却装置制御部
1 Control device (air conditioning control device)
2 rack row 3, 31 cooling device 3a, 32 preliminary cooling device 4 equipment 5 rack 6 cold aisle 7 hot aisle 8 ceiling-mounted cooling device 10, 10a cooling system 11, 11a server room (room)
111 processing unit 112 operation state selection unit (operation state search unit)
113 Airflow balance calculation unit (operating state search unit)
114 Driving coefficient calculation unit (driving state search unit)
115 Optimal operation state selection unit (operation state search unit)
116 Cooling device controller

Claims (7)

  1.  コールドアイル及びホットアイルを有する部屋において、機器を冷却するため設置されている複数の冷却装置を制御する空調制御装置であって、
     前記コールドアイルの余剰風量と前記ホットアイルの余剰風量との和が所定以下となる各冷却装置の運転状態の組み合わせを算出する運転状態探索部と、
     前記算出した冷却装置の運転状態となるよう、各冷却装置を制御する冷却装置制御部と、
     を有することを特徴とする空調制御装置。
    In a room having a cold aisle and a hot aisle, an air conditioning control device that controls a plurality of cooling devices installed to cool equipment,
    An operation state search unit for calculating a combination of operation states of the cooling devices in which the sum of the excess air volume of the cold aisle and the excess air volume of the hot aisle is equal to or less than a predetermined value;
    A cooling device controller that controls each cooling device so as to be in the calculated operating state of the cooling device;
    The air-conditioning control apparatus characterized by having.
  2.  前記運転状態探索部は、
     前記コールドアイル及び前記ホットアイルに流入する風量を正とし、前記コールドアイル及び前記ホットアイルから流出する風量を負として、前記コールドアイル及び前記ホットアイルにおける流入風量及び排出風量の総和である風量収支を前記コールドアイル及び前記ホットアイル毎に算出し、
     前記コールドアイルが連なる列において、前記コールドアイルにおける風量収支を加算し、前記加算した結果の絶対値を、前記列毎に加算したものを、前記コールドアイルの余剰風量であるコールドアイル運転係数として算出し、
     各ホットアイルにおける風量収支の絶対値の総和を、前記ホットアイルの余剰風量であるホットアイル運転係数として算出し、
     前記コールドアイル運転係数と前記ホットアイル運転係数とを加算したものを運転係数として算出し、該運転係数が最も小さくなる冷却装置の運転状態を探索する
     ことを特徴とする請求項1に記載の空調制御装置。
    The driving state search unit
    An air volume balance that is the sum of the inflow air volume and the exhaust air volume in the cold aisle and the hot aisle, with the air volume flowing into the cold aisle and the hot aisle being positive and the air volume flowing out from the cold aisle and the hot aisle is negative. Calculate for each cold aisle and hot aisle,
    In the row where the cold aisles are connected, the air volume balance in the cold aisle is added, and the absolute value of the added result is added for each row, and is calculated as the cold aisle operating coefficient which is the excess air flow of the cold aisle. And
    The sum of absolute values of the air volume balance in each hot aisle is calculated as a hot aisle operating coefficient that is the surplus air volume of the hot aisle,
    2. The air conditioner according to claim 1, wherein a value obtained by adding the cold aisle operation coefficient and the hot aisle operation coefficient is calculated as an operation coefficient, and an operation state of the cooling device having the smallest operation coefficient is searched. Control device.
  3.  前記運転状態探索部は、
     前記冷却装置に故障が発生すると、前記コールドアイルの余剰風量と前記ホットアイルの余剰風量との和が最小となる冷却装置の運転状態の組み合わせを算出する
     ことを特徴とする請求項1に記載の空調制御装置。
    The driving state search unit
    The combination of the operating state of the cooling device that calculates the sum of the excess air volume of the cold aisle and the excess air volume of the hot aisle when the failure occurs in the cooling device is calculated. Air conditioning control device.
  4.  前記運転状態探索部は、
     前記冷却装置に故障が発生すると、予備冷却装置を稼働させた状態における、前記コールドアイルの余剰風量と前記ホットアイルの余剰風量との和が最小となる冷却装置の運転状態の組み合わせを算出する
     ことを特徴とする請求項3に記載の空調制御装置。
    The driving state search unit
    When a failure occurs in the cooling device, a combination of operating states of the cooling device that minimizes the sum of the excess air volume of the cold aisle and the excess air volume of the hot aisle in a state where the preliminary cooling device is operated is calculated. The air-conditioning control apparatus according to claim 3.
  5.  前記冷却装置は、ラック型冷却装置である
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の空調制御装置。
    The air conditioning control device according to any one of claims 1 to 4, wherein the cooling device is a rack-type cooling device.
  6.  前記冷却装置は、天吊型の冷却装置である
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の空調制御装置。
    The air-conditioning control device according to any one of claims 1 to 4, wherein the cooling device is a ceiling-mounted cooling device.
  7.  コールドアイル及びホットアイルを有する部屋において、機器を冷却するため設置されている複数の冷却装置を制御する空調制御装置の空調制御方法であって、
     前記コールドアイルの余剰風量と前記ホットアイルの余剰風量との和が所定以下となる各冷却装置の運転状態の組み合わせを算出し、
     前記算出した冷却装置の運転状態となるよう、各冷却装置を制御する
     ことを特徴とする空調制御方法。
    In a room having a cold aisle and a hot aisle, an air conditioning control method of an air conditioning control device for controlling a plurality of cooling devices installed to cool equipment,
    Calculating a combination of operating states of each cooling device in which the sum of the excess air volume of the cold aisle and the excess air volume of the hot aisle is equal to or less than a predetermined value;
    Each cooling device is controlled so that it may be in the operation state of the calculated cooling device. An air-conditioning control method characterized by things.
PCT/JP2015/082983 2014-12-02 2015-11-25 Air-conditioning control device and air-conditioning control method WO2016088613A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-244192 2014-12-02
JP2014244192A JP2016109311A (en) 2014-12-02 2014-12-02 Air-conditioning control device and air-conditioning control method

Publications (1)

Publication Number Publication Date
WO2016088613A1 true WO2016088613A1 (en) 2016-06-09

Family

ID=56091561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082983 WO2016088613A1 (en) 2014-12-02 2015-11-25 Air-conditioning control device and air-conditioning control method

Country Status (2)

Country Link
JP (1) JP2016109311A (en)
WO (1) WO2016088613A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257730A (en) * 2008-03-26 2009-11-05 Ntt Facilities Inc Rack air conditioning system
JP2010002148A (en) * 2008-06-23 2010-01-07 Ntt Facilities Inc Method of controlling linkage of air conditioning facility and ict equipment
WO2014014606A1 (en) * 2012-07-17 2014-01-23 University Of North Dakota Carbon dioxide capture and conversion to a carbamate salt and polyurea
JP2014163661A (en) * 2013-02-28 2014-09-08 Hitachi Ltd Air conditioning control device of data center

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5762646B2 (en) * 2013-04-24 2015-08-12 株式会社日立システムズ Container type data center

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257730A (en) * 2008-03-26 2009-11-05 Ntt Facilities Inc Rack air conditioning system
JP2010002148A (en) * 2008-06-23 2010-01-07 Ntt Facilities Inc Method of controlling linkage of air conditioning facility and ict equipment
WO2014014606A1 (en) * 2012-07-17 2014-01-23 University Of North Dakota Carbon dioxide capture and conversion to a carbamate salt and polyurea
JP2014163661A (en) * 2013-02-28 2014-09-08 Hitachi Ltd Air conditioning control device of data center

Also Published As

Publication number Publication date
JP2016109311A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
US11985802B2 (en) Control systems and prediction methods for it cooling performance in containment
JP4883491B2 (en) Electronic equipment cooling system
Tang et al. Thermal-aware task scheduling to minimize energy usage of blade server based datacenters
EP2169328A2 (en) Air-conditioning control system and air-conditioning control method
US7051946B2 (en) Air re-circulation index
US7373268B1 (en) Method and system for dynamically controlling cooling resources in a data center
JP6044235B2 (en) Container type data center, air conditioning control program, and air conditioning control method
JP4575977B2 (en) Air conditioning equipment control system, air conditioning equipment control method, computer room power management system, and power management method
US20030193777A1 (en) Data center energy management system
US20140141707A1 (en) Data Center Air Circulation
US9158345B1 (en) Managing computer performance
JP6036428B2 (en) Electronic device cooling system and electronic device cooling method
US9009061B2 (en) Cooling resource capacity allocation based on optimization of cost function with lagrange multipliers
US20130317654A1 (en) Air-conditioning control system and air-conditioning control method
US20120136487A1 (en) Modulized heat-dissipation control method for datacenter
JP2012037193A (en) Air conditioning system
JP2016211766A (en) Data center, air conditioning system of data center, and method for controlling air conditioning of data center
JP5492716B2 (en) Air conditioning system for data center
US20040017653A1 (en) Modular fan brick and method for exchanging air in a brick-based computer system
JP6607800B2 (en) Cooling system, air conditioning control device, and air conditioning control method
JP6083305B2 (en) Electronic equipment cooling system
WO2016088613A1 (en) Air-conditioning control device and air-conditioning control method
JP5568535B2 (en) Data center load allocation method and information processing system
CN112431780A (en) Method and system for regulating and controlling lower-layer fan of 4U storage server
JP6587987B2 (en) Cooling system, air conditioning control device, and air conditioning control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15864522

Country of ref document: EP

Kind code of ref document: A1