WO2016088436A1 - Electrically conductive resin composition for resistance-type pressure sensor, resistance-type pressure sensor, resistance-type pressure sensor array, and pressure-sensor measurement system - Google Patents

Electrically conductive resin composition for resistance-type pressure sensor, resistance-type pressure sensor, resistance-type pressure sensor array, and pressure-sensor measurement system Download PDF

Info

Publication number
WO2016088436A1
WO2016088436A1 PCT/JP2015/077098 JP2015077098W WO2016088436A1 WO 2016088436 A1 WO2016088436 A1 WO 2016088436A1 JP 2015077098 W JP2015077098 W JP 2015077098W WO 2016088436 A1 WO2016088436 A1 WO 2016088436A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
type pressure
pressure
sensitive sensor
conductive resin
Prior art date
Application number
PCT/JP2015/077098
Other languages
French (fr)
Japanese (ja)
Inventor
杉本 靖
増子 崇
航介 浦島
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2016562331A priority Critical patent/JPWO2016088436A1/en
Publication of WO2016088436A1 publication Critical patent/WO2016088436A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to a conductive resin composition for a resistance type pressure sensor, a resistance type pressure sensor using the same, a resistance type pressure sensor array, and a pressure sensor measurement system.
  • the present invention has been made in view of such circumstances, and a conductive component for a resistance-type pressure-sensitive sensor that can realize a resistance-type pressure-sensitive sensor having a sufficient sensitivity using a resin component in the pressure-sensitive portion.
  • An object of the present invention is to provide a functional resin composition, a resistance type pressure sensor using the same, a resistance type pressure sensor array, and a pressure sensor measurement system.
  • the present invention is a conductive resin composition for a resistance-type pressure-sensitive sensor, which contains a resin component and a conductive filler, and is 25 ° C. of the conductive resin layer formed from the conductive resin composition.
  • the no-load resistance value is A 80
  • the resistance value when a load of 30 N / cm 2 at 80 ° C. is applied is B 80
  • the following formula (4), the following formula (5), and the following formula (6) It is preferable to satisfy.
  • the first conductive resin composition for resistance-type pressure sensitive sensors according to the present invention is 30 N / cm at a pressure increase rate of 120 N / min of the conductive resin layer formed from the conductive resin composition.
  • the resistance value at the pressure x when the pressure is increased to 2 is Cx
  • the resistance value at the pressure x when the pressure is depressurized from 30 N / cm 2 to 120 N / min is Dx
  • the following formula (7 ) Is preferably satisfied. 0.6 ⁇ Cx / Dx ⁇ 1.4 (7)
  • the coefficient of static friction of the conductive resin layer formed from the conductive resin composition is preferably 4.0 or less.
  • the static friction coefficient of the conductive resin layer here means the case where the material used as the electrode of the resistance type pressure sensitive sensor is used as the counterpart material.
  • the resin component preferably contains a polyvinyl butyral resin.
  • the storage elastic modulus of the resin component at 25 ° C. is 500 MPa or more.
  • the conductive filler is preferably a carbon-based conductive filler.
  • the content of the conductive filler is preferably 5 to 55 parts by mass with respect to 100 parts by mass in total of the resin component and the conductive filler.
  • the present invention is also a conductive resin composition for a resistance-type pressure-sensitive sensor containing a resin component and a conductive filler, wherein the resin component contains a polyvinyl butyral resin.
  • a conductive resin composition for a sensor is provided.
  • the present invention also includes a pair of electrodes and a conductive resin layer containing a resin component and a conductive filler provided between the electrodes, and the conductive resin layer at 25 ° C.
  • a resistance value when no load is A 25
  • the resistance value when a load of 30 N / cm 2 at 25 ° C. is applied is B 25
  • the following formula (1), the following formula (2), and the following formula (3) A first resistance type pressure sensitive sensor satisfying the above condition is provided.
  • the first resistance-type pressure-sensitive sensor according to the present invention has a no-load resistance value at 80 ° C. of the conductive resin layer of A 80 and 30 N / cm at 80 ° C. from the viewpoint that it can operate stably even under high temperature conditions.
  • the resistance value when the added second load when the B 80, the following formula (4) preferably satisfies the following formula (5) and the following formula (6).
  • the first resistance type pressure sensitive sensor according to the present invention has a resistance value at a pressure x when the conductive resin layer is pressurized to 30 N / cm 2 at a pressure increase rate of 120 N / min. It is preferable that the following formula (7) is satisfied, where Dx is a resistance value at the pressure x when the pressure is reduced from 30 N / cm 2 to 120 N / min. 0.6 ⁇ Cx / Dx ⁇ 1.4 (7)
  • the present invention also includes a pair of electrodes and a conductive resin layer containing a resin component and a conductive filler provided between the electrodes, and the resin component includes a polyvinyl butyral resin.
  • a second resistance type pressure sensitive sensor is provided.
  • the present invention also provides a first sensor sheet including a first film made of a conductive resin material, a first electrode provided on one side of the first film, and a conductive resin.
  • a second sensor sheet comprising a second film made of a material and a second electrode provided on one side of the second film is opposite to the side on which the electrode is provided.
  • the resistance-type pressure-sensitive sensor array according to the present invention has an unloaded resistance value at 80 ° C. of A 80 and a load of 30 N / cm 2 at 80 ° C. from the viewpoint of being able to operate stably even under high temperature conditions. It is preferable that the following formula (4), the following formula (5), and the following formula (6) are satisfied when the resistance value of B is 80 .
  • the resistance-type pressure-sensitive sensor array according to the present invention has a resistance value at a pressure x when the pressure is increased to 30 N / cm 2 at a pressure increase rate of 120 N / min from Cx, 30 N / cm 2 to 120 N / cm. It is preferable that the following formula (7) is satisfied, where Dx is a resistance value at the pressure x when the pressure is reduced at the rate of pressure reduction of min. 0.6 ⁇ Cx / Dx ⁇ 1.4 (7)
  • the surface tack force of the first and second films is preferably 300 mN or less.
  • the surface roughness Ra of the first and second films is preferably 8.0 nm or less.
  • the static friction coefficients of the first and second films are 4.0 or less.
  • the static friction coefficient of the first film means a static friction coefficient between the first film and the first electrode
  • the static friction coefficient of the second film means the second film and the second film. It means the coefficient of static friction with the electrode.
  • the conductive resin material preferably includes a resin component and a conductive filler.
  • the resin component contains a polyvinyl butyral resin.
  • the conductive filler is preferably a carbon-based conductive filler.
  • the content of the conductive filler is preferably 5 to 55 parts by mass with respect to 100 parts by mass in total of the resin component and the conductive filler.
  • the storage elastic modulus at 25 ° C. of the resin component is 500 MPa or more.
  • the present invention also includes a resistive pressure sensor array according to the present invention, and the resistive pressure sensor array includes a plurality of striped first sensor sheets arranged side by side. And a plurality of striped second sensor sheets arranged side by side in a direction intersecting the first sensor sheet, and a plurality of first sensor sheet films and a plurality of second sensor sheets.
  • a pressure-sensitive sensor measurement system in which a film of a sensor sheet is in contact with a matrix.
  • the pressure-sensitive sensor measurement system can detect changes in the pressure of the matrix and detect the strength and pressure position of the pressure.
  • a conductive resin composition for a resistance-type pressure-sensitive sensor that uses a resin component in the pressure-sensitive part and enables realization of a resistance-type pressure-sensitive sensor having sufficient sensitivity, and a resistance type using the same
  • a pressure-sensitive sensor, a resistance-type pressure-sensitive sensor array, and a pressure-sensitive sensor measurement system can be provided.
  • a resistance type pressure sensor having sufficient sensitivity and responsiveness, a resistance type pressure sensor array, a pressure sensor measurement system, and a conductive resin composition for a resistance type pressure sensor used therein Things can be provided.
  • a conductive resin material is used for the pressure-sensitive portion, and a resistance-type pressure-sensitive sensor array having durability in addition to good pressure sensing and responsiveness can be provided.
  • pressure-sensitive sensors that maintain durability such as pressure resistance and measurement reproducibility during repeated pressurization
  • a pressure-sensitive sensor can be realized.
  • FIG. 6 is a perspective view showing an embodiment of a matrix-type resistive pressure-sensitive sensor array in which a plurality of striped sensor sheets of FIG. 5 are arranged in a cross shape.
  • FIG. 8 is a schematic view of a zero-bias pressure sensor measurement system using the matrix-type resistance pressure sensor array of FIG. 7.
  • the resistance-type pressure-sensitive sensor 1 includes a pair of electrodes 10 and 20 (upper surface electrode 10 and lower surface electrode 20), and a resin component 32 and a conductive filler 34 provided between the electrodes.
  • a conductive resin layer 30 also referred to as a spacer.
  • FIG. 2 is a side view of the resistance-type pressure-sensitive sensor 1, and the resistance-type pressure-sensitive sensor 1 reduces the electrical resistance value between the electrodes when an external pressure is applied in a direction perpendicular to one of the electrode surfaces. Is detected as pressure intensity.
  • FIG. 3 and 4 are diagrams showing an embodiment of a resistance-type pressure-sensitive sensor array.
  • FIG. 3 is a side view of the resistance-type pressure-sensitive sensor array.
  • the resistance-type pressure-sensitive sensor array includes a first sensor sheet in which a first electrode 10 is formed on one surface of a film 30A (also referred to as a conductive resin film or a spacer) made of a conductive resin material.
  • a film 30A also referred to as a conductive resin film or a spacer
  • 11 also referred to as a conductive resin film with a single-sided electrode layer
  • the second electrode 20 on one side of a film 30B also referred to as a conductive resin film or a spacer
  • the second sensor sheet 22 (also referred to as a conductive resin film with a single-sided electrode layer) on which is formed is placed so that the opposite surfaces of the film on both sensor sheets are in contact with each other. Is made up of. Also in this resistance-type pressure-sensitive sensor array, when an external pressure is applied in a direction perpendicular to one of the electrode surfaces, the electrical resistance value between the electrodes decreases, and this resistance change is detected as pressure intensity.
  • FIG. 4 in order to demonstrate the structure of a resistance type pressure-sensitive sensor array, the perspective view in the state which two sensor sheets separated is shown.
  • the above-mentioned resistance-type pressure-sensitive sensor array it is possible to improve the hysteresis characteristic, which is a problem of the pressure detection method by the resistance change using the thickness change of the conductive resin material as the spacer between the pressure-sensitive sensor electrodes. That is, as an inter-electrode spacer, a conductive resin material in which conductive filler is dispersed in an insulating resin that can be elastically deformed against an external force is conventionally used. This method uses pass formation, but this method has a problem that measurement accuracy is not stable due to residual hysteresis at the time of decompression. Moreover, since it depends on the elastic deformation of the conductive resin material as the spacer, there is also a problem in repeated pressure resistance.
  • the conductive resin film with a single-sided electrode layer made of a conductive resin material that can suppress elastic deformation at the time of pressurization between the electrodes of the pressure-sensitive sensor, as will be described later.
  • the stacked spacer configuration measures not the thickness change during pressurization but the resistance change due to interface contact between conductive resin films. Durability during pressure can be improved.
  • Examples of the electrodes 10 and 20 include those formed from metals such as aluminum, copper, silver, gold, and platinum. Specifically, for example, a copper foil, an aluminum foil, a gold plating foil, a platinum wire, and a resin paste containing a conductive metal filler such as silver powder, copper powder, and aluminum powder can be used.
  • the area and thickness of the electrode can be appropriately set according to the application of the resistance type pressure sensitive sensor, but the thickness is preferably 1 to 1000 ⁇ m from the viewpoint of flexibility and durability.
  • the surface tack force of the conductive resin film used in the resistance-type pressure sensor or the resistance-type pressure sensor array of the present embodiment is preferably 300 mN or less (probe diameter 5.1 mm, rescue method).
  • this tack force exceeds 300 mN, there is a high possibility that good resistance recovery at the time of pressure reduction will not be obtained, or in a resistance type pressure sensitive sensor array in which conductive resin films with single-sided electrode layers are stacked.
  • good resistance recovery low hysteresis characteristics
  • the Resca method is to place the sample with the adhesive side facing up, and press the probe from the top to detect the force to peel it off. It is commercially available as a tacking tester from Reska Co., Ltd. Can do.
  • the surface roughness (arithmetic average roughness (Ra value)) of the conductive resin layer or conductive resin film is preferably 8.0 nm or less.
  • Ra arithmetic average roughness
  • the conductive resin material can contain a resin component and a conductive filler.
  • the resin component preferably has a storage elastic modulus at 25 ° C. of 500 MPa or more.
  • the storage elastic modulus is less than 500 MPa, in the resistance type pressure sensitive sensor array, a resistance change due to the inter-electrode spacer thickness deformation at the time of pressurization occurs, and the measurement accuracy is stabilized due to residual hysteresis at the time of pressure release.
  • the resin component preferably has a glass transition temperature (Tg) of 15 to 250 ° C. in terms of flexibility, durability, and heat resistance. If the Tg of the resin component is less than 15 ° C., the surface tack force is likely to exceed 300 mN, and if it exceeds 250 ° C., the flexibility is likely to be impaired. Furthermore, the resin component preferably contains a resin having a Tg of 40 to 250 ° C. from the viewpoint of durability and heat resistance.
  • Tg glass transition temperature
  • the resin used for the resin component is (meth) acrylic polymer, polyimide resin, urethane resin, polyphenylene ether resin, silicone resin, epoxy resin, phenol resin, polyethylene resin, polyvinyl chloride resin, polyethylene terephthalate resin, nylon resin. , Polyvinylidene fluoride resin, polyvinyl chloride resin, polysulfone resin, polyether sulfone resin, nitrile butadiene resin, ABS resin, melamine resin, urea resin, polycarbonate resin, polyacetal resin, silicone resin, polyetherimide resin, phenoxy resin, modified Examples include polyphenylene ether resins, polyamide resins, polyvinyl butyral resins, fluororesins, and various modified resins.
  • the peptide whose weight average molecular weight is 5000 or more can be used alone or in combination of two or more.
  • the weight average molecular weight can be determined by measuring by GPC and converting to standard polystyrene.
  • a polyimide resin and / or a polyvinyl butyral resin is preferable from the viewpoints of the above-mentioned conductive resin film formability, film surface tack force, film surface roughness, and elastic modulus. Furthermore, in this embodiment, it is preferable that a resin component contains polyvinyl butyral resin from a viewpoint of a sensitivity, durability, heat resistance, the dispersibility of a conductive filler, and film forming property.
  • the resin component can also contain a thermosetting resin for the purpose of suppressing heat flow at high temperatures.
  • a thermosetting resin can use the component which consists of a reactive compound which raise
  • Reactive compounds that cause a crosslinking reaction by heat include epoxy resin, bismaleimide resin, cyanate ester resin, phenol resin, urea resin, melamine resin, alkyd resin, acrylic resin, unsaturated polyester resin, silicone resin, resorcinol formaldehyde resin, From xylene resin, furan resin, polyurethane resin, ketone resin, triallyl cyanurate resin, polyisocyanate resin, resin containing tris (2-hydroxyethyl) isocyanurate, resin containing triallyl trimellitate, from cyclopentadiene
  • epoxy resin which is one of the preferable thermosetting resins
  • those containing at least two epoxy groups in the molecule are more preferable, and phenol glycidyl ether type epoxy resins are extremely preferable from the viewpoint of curability and cured product characteristics.
  • examples of such resins include bisphenol A type (or AD type, S type, and F type) glycidyl ether, water-added bisphenol A type glycidyl ether, ethylene oxide adduct bisphenol A type glycidyl ether, and propylene oxide adduct.
  • Trifunctional type such as bisphenol A type glycidyl ether, phenol novolac resin glycidyl ether, cresol novolac resin glycidyl ether, bisphenol A novolac resin glycidyl ether, naphthalene resin glycidyl ether, trisphenolmethane type Glycidyl ether, glycidyl ether of dicyclopentadienephenol resin, heterocycle-containing epoxy resin, alicyclic epoxy resin, glycidyl ester of dimer acid, trifunctional type Or glycidyl amine tetrafunctional) glycidyl amine naphthalene resin, diallyl bisphenol A diglycidyl ether or its polycondensate, and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the curing agent for the epoxy resin known curing agents that are usually used can be used.
  • Bisphenols having two or more phenolic hydroxyl groups in one molecule such as S, phenol novolac resin, xylylene-modified phenol resin, bisphenol A novolac resin or cresol novolac resin, phenol novolac resin, phenol aralkyl resin, cresol Examples thereof include novolak resin, naphthol aralkyl resin, triphenolmethane resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin.
  • the content of the curing agent is preferably 0.5 to 2 as an equivalent ratio of the number of epoxy groups of all epoxy resins to the number of hydroxyl groups of all curing agents.
  • the conductive filler as long as it is a filler having conductivity, it can be used regardless of the material and shape, for example, metal fillers such as aluminum particles, copper particles, silver particles, gold particles and platinum particles, carbon powder, Carbon-based conductive fillers such as carbon nanofibers and carbon nanotubes (CNT) can be used. From the viewpoints of dispersibility, electrical conductivity retention during expansion / contraction or bending, and light weight, carbon-based conductive fillers such as carbon black, carbon nanofibers, and carbon nanotubes are preferred. Carbon nanotubes are preferred from the viewpoints of dispersibility, electrical conductivity retention during expansion / contraction or bending, and light weight.
  • metal fillers such as aluminum particles, copper particles, silver particles, gold particles and platinum particles
  • carbon powder Carbon-based conductive fillers such as carbon nanofibers and carbon nanotubes (CNT) can be used. From the viewpoints of dispersibility, electrical conductivity retention during expansion / contraction or bending, and light weight, carbon-based conductive fillers such as carbon black, carbon
  • the blending amount of the conductive filler is preferably set so that the conductive resin layer or the conductive resin film satisfies a resistance value described later.
  • the conductive resin layer or the conductive resin film contains a conductive filler in a proportion of 5 to 55% by volume.
  • the conductive resin layer or the conductive resin film contains the conductive filler in a proportion of 5 to 55% by mass. If the conductive filler is less than 5% by mass, there is a high possibility that it will not be possible to ensure a decrease in resistance value during pressurization, and if it exceeds 55% by mass, the linearity of the decrease in resistance value during pressurization will be impaired, and film forming properties will be lost. , Surface smoothness tends to be impaired, both of which are not preferred.
  • the content of the conductive filler is preferably 5 to 55 parts by mass with respect to 100 parts by mass in total of the resin component and the conductive filler.
  • the conductive resin layer can be formed from a conductive resin composition for resistance-type pressure-sensitive sensors containing the resin component and the conductive filler. Moreover, about a conductive resin film, it can form from said conductive resin composition.
  • the conductive resin composition can be prepared by adding a conductive filler to a resin solution obtained by dissolving a resin in a solvent, and stirring and mixing. At this time, a coupling agent may be added to improve the dispersibility of the filler.
  • a coupling agent may be added to improve the dispersibility of the filler.
  • the solvent to be used include cyclohexanone, 1-methyl-2-pyrrolidone, toluene and the like. Of these, cyclohexanone is preferable from the viewpoint of film forming property.
  • a resin varnish obtained by adding a conductive filler to a resin solution in which a resin is dissolved in a solvent and stirring and mixing is formed on a coating machine. It can be obtained by volatilizing the solvent under conditions of up to 250 ° C. and 10 to 60 minutes.
  • the compounding amount of the conductive filler in the conductive resin composition is preferably 5 to 55% by volume of the conductive filler when the conductive resin layer or the conductive resin film is formed.
  • the blending amount of the conductive filler can be set to a ratio of 5 to 55% by volume based on the total volume of the resin component and the conductive filler.
  • the area and thickness of the conductive resin layer or conductive resin film can be appropriately set according to the application of the resistance type pressure sensitive sensor, but the thickness is preferably 1 to 1000 ⁇ m from the viewpoint of flexibility and durability.
  • the conductive resin layer 30 has the following formula when the no-load resistance value at 25 ° C. is A 25 and the resistance value when a load of 30 N / cm 2 at 25 ° C. is applied is B 25: It is preferable to satisfy (1), the following formula (2), and the following formula (3).
  • Resistance of the conductive resin layer in the resistive-type pressure sensor is a conductive resin layer having a thickness of 50 [mu] m, the area having a laminated structure sandwiched between a copper foil having a thickness of 20 ⁇ m is the sensor element of 1 cm 2 and the measurement sample, the The value measured by an electrical resistance measuring device at a predetermined temperature for a sample.
  • the humidity is set to 60% RH.
  • the resistance value when a load is applied a load is gradually applied to the sensor element from 0 N to 30 N per cm 2 over 15 seconds using a pressure gauge. And the resistance value of the sensor element which added the load of 30N per cm ⁇ 2 > is measured similarly to the above.
  • the resistance value at no load of the conductive resin layer formed from the conductive resin composition at 80 ° C. is A 80 and 30 N at 80 ° C. / resistance value when a load is applied in cm 2 a when the B 80, the following formula (4), preferably satisfies the following formula (5) and the following formula (6).
  • the conductive resin layer formed from the composition satisfies the above resistance value condition.
  • the resistance value at the pressure x when the pressure is increased to 30 N / cm 2 at a pressure increase rate of 120 N / min of the conductive resin layer formed from the conductive resin composition is Cx, 30 N / cm. It is preferable that the following formula (7) is satisfied when the resistance value at the pressure x when the pressure is reduced from 2 to 120 N / min is Dx. 0.6 ⁇ Cx / Dx ⁇ 1.4 (7)
  • the resistance values Cx and Dx when the pressure x is less than 10 N / cm 2 preferably satisfy the above formula (7), and the resistance values Cx and Dx when the pressure x is 0 N / cm 2 are the above formula. It is more preferable to satisfy (7).
  • the resistance-type pressure-sensitive sensor array of the present embodiment that is, a first sensor sheet comprising a first film made of a conductive resin material and a first electrode provided on one side of the first film; A second sensor sheet comprising a second film made of a conductive resin material and a second electrode provided on one side of the second film, and a surface of each film on which the electrode is provided;
  • the resistance-type pressure-sensitive sensor array arranged so that the opposite surfaces are in contact with each other has a resistance value when no load is applied at 25 ° C. at A 25 and a load of 30 N / cm 2 at 25 ° C.
  • B is 25
  • the resistance value is obtained by measuring a sensor element having a laminated structure in which a film made of a conductive resin material having a thickness of 50 ⁇ m is sandwiched between copper foils having a thickness of 20 ⁇ m and having an area of 1 cm 2 , and the sample is electrically measured at a predetermined temperature. A value measured by a resistance measuring device.
  • the humidity is set to 60% RH.
  • the resistance value when a load is applied a load is gradually applied to the sensor element from 0 N to 30 N per cm 2 over 15 seconds using a pressure gauge. And the resistance value of the sensor element which added the load of 30N per cm ⁇ 2 > is measured similarly to the above.
  • the resistance value at the pressure x when the pressure was increased to 30 N / cm 2 at a pressure increase rate of 120 N / min was depressurized at a pressure decrease rate of Cx, 30 N / cm 2 to 120 N / min.
  • the resistance value at the time pressure x is Dx, it is preferable to satisfy the following formula (7).
  • the resistance values Cx and Dx when the pressure x is less than 10 N / cm 2 preferably satisfy the above formula (7), and the resistance values Cx and Dx when the pressure x is 0 N / cm 2 are the above formula. It is more preferable to satisfy (7).
  • the resistance-type pressure-sensitive sensor array of this embodiment uses a striped sensor sheet 13 having a film 30C made of a conductive resin material and an electrode 10 provided on one side of the film 30C shown in FIG.
  • stripe sensor sheets can be arranged in a cross shape. Further, by adopting a matrix configuration as shown in FIG. 7, it is possible to detect not only the pressure level at the time of pressurization but also the pressed position.
  • the resistance-type pressure-sensitive sensor array shown in FIG. 7 is formed on a striped first sensor sheet 11 and a striped second sensor sheet 22, and includes a plurality of striped first sensor sheets 11 and a plurality of striped first sensor sheets 11.
  • the striped second sensor sheet 22 is overlapped in a cross shape so that the conductive resin surfaces opposite to the electrode forming surfaces of both sensor sheets are in contact with each other, and the striped first sensor sheet 11 and the striped second sensor sheet 22 are striped.
  • the second sensor sheet 22 is configured in a matrix.
  • the resistance-type pressure-sensitive sensor array includes a plurality of stripe-shaped first sensor sheets arranged side by side, and a plurality of stripe-shaped arrangements arranged side by side in a direction intersecting the first sensor sheet.
  • the second sensor sheet has a configuration in which a plurality of first sensor sheet films and a plurality of second sensor sheet films are in contact with each other in a matrix, and the matrix pressure It is possible to detect a change and detect the strength of the press and the press position.
  • the contact with the matrix means that the portion where the film of the first sensor sheet and the film of the second sensor sheet are superposed is arranged in a matrix.
  • the pressure detection accuracy can be increased by narrowing the stripe width of the matrix sensor sheet and increasing the electrode density.
  • the pressure-sensitive sensor measurement system according to this embodiment includes a resistance-type pressure-sensitive sensor array according to this embodiment that functions as a pressure-sensitive sensor matrix and an interface circuit as shown in FIG. And a control microcomputer and a control PC.
  • FIG. 8 shows an example of a pressure sensor measuring system including a resistance type pressure sensor array having 25 pressure sensors in 5 rows and 5 columns.
  • D0 to D4 are scanned and a voltage is applied, and the resistance at that time is detected by the detection circuit of AD0 to AD4, thereby detecting which sensor is applied with pressure. it can.
  • the control microcomputer shown in FIG. 7 controls the control microcomputer, passes through the interface circuit, sequentially scans D0 to D4, synchronizes with it, detects the resistance of AD0 to AD4 by the detection circuit, and loads are applied to which pressure sensitive sensor. Detect.
  • the detection information is transmitted to the control PC, and the information is processed based on the detection information.
  • Polyimide A 1,3-bis (3-aminopropyl) tetramethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: LP-7100) in a 300 mL flask equipped with a thermometer, stirrer, condenser, and nitrogen inlet pipe 12.42 g, 22.62 g of polyoxypropylenediamine (trade name: D400, molecular weight: 452.4) manufactured by BASF Corporation, and 140 g of N-methyl-2-pyrrolidone were charged and stirred to prepare a reaction solution. did.
  • the molecular weight of the polyimide resin was measured using gel permeation chromatography using N, N-dimethylformamide (DMF) as a solvent, and a standard polystyrene calibration curve was used using the following equipment and measurement conditions. It is a value determined by conversion.
  • DMF N, N-dimethylformamide
  • the above resin composition was coated on a copper foil having a thickness of 20 ⁇ m and dried at 120 ° C. for 20 minutes to form a resin film having a thickness of 50 ⁇ m.
  • a copper foil having a thickness of 20 ⁇ m was attached to the produced film, and this was cut into a size of 1 cm in length ⁇ 1 cm in width to obtain a pressure-sensitive sensor element.
  • Polyimide A synthesized by the above method.
  • Polyimide B synthesized by the above method.
  • Polyimide C synthesized by the above method.
  • Carbon nanofiber A Showa Denko, trade name VGCF-H (carbon nanofiber, 150 nm diameter) Nickel filler: manufactured by Inco, # 123 (average particle size 10 ⁇ m) Carbon black: # 2650 (average particle size 13 ⁇ m) manufactured by Mitsubishi Chemical Corporation
  • the resistance value of the resin layer of the resistance type pressure sensitive sensor element was measured using a pressure gauge and an electric resistance measuring device.
  • the humidity was constant at 60% RH.
  • a resistance value C 0 at a pressure of 0 N / cm 2 was determined from the relationship between the pressure and the resistance value obtained at this time. Also, at 25 ° C., to measure the resistance of the resin layer when pressure gradually dividing the load over 15 seconds 30 N / cm 2 to 0N / cm 2, the relationship between the resistance value obtained at this time pressure The resistance value D 0 at a pressure of 0 N / cm 2 was determined. A case where the responsiveness of the following formula (7) is satisfied is indicated by “ ⁇ ”, and a case where the condition is not satisfied is indicated by “x”.
  • the average surface roughness (surface roughness) of the surface of the resin material in which the resin film having a thickness of 50 ⁇ m was formed on the copper foil produced above was measured with an AFM (Atomic Force Microscope). Using a scanning probe microscope (SPA400-DFM manufactured by Hitachi High-Technologies Corporation) as an AFM, the surface of the resin material was measured in a measurement area of 1 ⁇ m square.
  • AFM Anamic Force Microscope
  • the tack force was evaluated by a probe tack test according to JIS Z0237-1991 (adhesive tape / adhesive sheet test method). Using a tack tester manufactured by Reska Co., Ltd., the peel strength was measured under the conditions of the probe diameter: 5.1 mm, the contact speed: 2 mm / sec, and the peel speed 10 mm / sec. The standard contact conditions were contact load: 0.98 N / cm 2 , contact time: 1 sec, and measurement temperature: 25 ° C.
  • the thickness of the conductive resin layer is 1 to 1000 ⁇ m
  • the Tg of the resin component is 15 to 250 ° C.
  • the conductive filler is carbon nanotube or carbon nanofiber.
  • the blending amount is preferably 5 to 55% by mass
  • the surface roughness Ra of the conductive resin layer is 8.0 nm or less
  • the static friction coefficient is 4.0 or less.
  • Resistive pressure-sensitive sensor conductive resin using acrylic rubber B (reference examples B-3 to 5) having a Tg of ⁇ 30 ° C. and acrylic rubber C (reference examples B-6 to 8) having a Tg of ⁇ 30 ° C.
  • acrylic rubber B reference examples B-3 to 5
  • acrylic rubber C reference examples B-6 to 8
  • the surface roughness Ra is more than 8.0 nm
  • the static friction coefficient is more than 4.0
  • the smoothness is also inferior.
  • polyvinyl butyral A (Examples B-1 to 3) having a Tg of 70 ° C.
  • polyimide B (Examples 4 to 6) at 73 ° C.
  • polyimide C (Examples B-7 to 9) at 120 ° C.
  • the formulas (1) to (4) are satisfied, the surface roughness Ra is small, the static friction coefficient is low, the tack value is small, and good characteristics are exhibited.
  • the resin component has a Tg of 15 to 250 ° C. and the conductive filler is carbon nanofiber and the blending amount is 5 to 55% by mass, it is shown in Reference Examples B-1 and B-1 and Comparative Examples B-1 to B-3.
  • the surface roughness, the static friction coefficient, and the tack value may not be satisfied without satisfying the formula (3) or the formula (4), it is possible to select a resin and a conductive filler to be used so as to satisfy each formula and characteristics. preferable.
  • Examples B-1 to 9 satisfying the expressions (1) to (4) the surface roughness, the static friction coefficient, and the tack value are all small, have sufficient sensitivity as a resistance-type pressure-sensitive sensor, and are responsive. Excellent.
  • the above resin composition was applied onto a copper foil having a thickness of 20 ⁇ m, and dried at 120 ° C. for 20 minutes to obtain a conductive resin film with a copper foil having a thickness of 50 ⁇ m.
  • the conductive resin film with copper foil was cut into a size of 1 cm in length and 1 cm in width, and was stacked so that the resin surfaces of the test pieces were in contact with each other to obtain a pressure-sensitive sensor element.
  • a resistance value C 0 at a pressure of 0 N / cm 2 was determined from the relationship between the pressure and the resistance value obtained at this time. Also, at 25 ° C., to measure the resistance of the resin layer when pressure gradually dividing the load over 15 seconds 30 N / cm 2 to 0N / cm 2, the relationship between the resistance value obtained at this time pressure The resistance value D 0 at a pressure of 0 N / cm 2 was determined. A case where the responsiveness of the following formula (7) is satisfied is indicated by “ ⁇ ”, and a case where the condition is not satisfied is indicated by “x”.
  • the surface roughness of the conductive resin film was measured with an AFM (Atomic Force Microscope).
  • a scanning probe microscope (SPA400-DFM manufactured by SII Nano Technology Co., Ltd. (currently Hitachi High-Tech Science Co., Ltd.) was used as the AFM, and the surface of the resin material was measured in a measurement area of 1 ⁇ m square.
  • the tack force was determined by using a tack tester manufactured by Reska Co., Ltd., measuring the peel strength under the conditions of probe diameter: 5.1 mm, contact speed: 2 mm / sec, and peel speed of 10 mm / sec.
  • the standard contact conditions were contact load: 0.98 N / cm 2 , contact time: 1 sec, and measurement temperature: 25 ° C.
  • Resistive pressure sensor is at no load high resistance (Equation (1), ⁇ 1K ⁇ / cm 2), when the load is low resistance (Equation (2), 0.01K ⁇ / cm 2 ⁇ 1000K ⁇ / cm 2 ),
  • the ratio (no load / load) is 10 or more (formula (3)), and the ratio of the resistance Cx during boosting to the resistance Dy during step-down is 0.6 ⁇ Cx / Dy ⁇ 1.4 (formula (7) )).
  • Comparative Examples C-4 to 9 where the blending amount of the conductive filler is as small as 0 to 3% by mass, the resistance at the time of loading is high and the formula (2) is not satisfied.
  • Reference Examples C-1 and C-2 using acrylic rubber A (storage elastic modulus at 25 ° C. of 300 MPa) whose storage elastic modulus (25 ° C.) of the resin component of the conductive resin material is less than 500 MPa, the tack value is high and responsive. Formula (4) is not satisfied.
  • Reference Examples C-3 to C-5 using acrylic rubber B storage elastic modulus at 25 ° C. of 0.1 MPa
  • the surface roughness exceeds 8 nm
  • the tack value exceeds 300 mN
  • the response formula Does not satisfy 4).
  • polyvinyl butyral A (Examples C-1 to 3, storage modulus of 2000 MPa at 25 ° C.) having a storage elastic modulus (25 ° C.) of the resin component of the conductive resin material of 500 MPa or more
  • polyimide B (Example C-4-6, storage modulus of 2000 MPa at 25 ° C.)
  • polyimide C (Examples C-7-9, storage modulus of 4000 MPa at 25 ° C.) have a surface roughness of 8 nm or less and a tack value of 300 mN.
  • the following conditions were satisfied and all of the formulas (1) to (4) were satisfied, and it was suitable as a resistance type pressure sensitive sensor.
  • Comparative Examples C-10 and 11 are cases where nickel filler (Comparative Example C-10) and carbon black (Comparative Example C-11) were used as the conductive filler, the surface roughness was 8 nm or less, and the tack value was Is 300 mN or less, but does not satisfy the expressions (2) to (3).
  • the conductive filler is preferably carbon nanofiber A having a small particle size.
  • SYMBOLS 1 Resistance type pressure sensor, 10, 20 ... Electrode, 11 ... 1st sensor sheet, 12 ... 2nd sensor sheet, 13 ... Striped sensor sheet, 30 ... Conductive resin layer, 30A, 30B, 30C ... Film (spacer), 32 ... resin component, 34 ... conductive filler.

Abstract

This resistance-type pressure sensor 1 is provided with: a pair of electrodes 10, 20; and an electrically conductive resin layer 30 which is provided between the electrodes and which contains a resin component 32 and an electrically conductive filler 34. When the electrically conductive resin layer 30 resistance value at 25°C under no load is denoted by A25 and the electrically conductive resin layer 30 resistance value at 25°C under a load of 30 N/cm2 is denoted by B25, formulae (1), (2), and (3) are satisfied. A25 ≥ 1 kΩ (1) 1000 kΩ ≥ B25 ≥ 0.01 kΩ (2) A25/B25 ≥ 10 (3)

Description

抵抗型感圧センサ用導電性樹脂組成物、抵抗型感圧センサ、抵抗型感圧センサアレイ及び感圧センサ計測システムConductive resin composition for resistance type pressure sensor, resistance type pressure sensor, resistance type pressure sensor array, and pressure sensor measurement system
 本発明は、抵抗型感圧センサ用導電性樹脂組成物及びこれを用いる抵抗型感圧センサ、抵抗型感圧センサアレイ及び感圧センサ計測システムに関する。 The present invention relates to a conductive resin composition for a resistance type pressure sensor, a resistance type pressure sensor using the same, a resistance type pressure sensor array, and a pressure sensor measurement system.
 近年、高分子等の樹脂材料を利用した抵抗型感圧センサが数多く報告されている(例えば、下記特許文献1~4を参照)。樹脂材料を使用したセンサは柔軟性、及び形状追従性を付与できる他、軽量で薄型化又は大面積化など形状自由度が高いため、ウエアラブル、ヘルスケア、及び医療分野など、様々な用途及び形態への応用が期待できる。これらの感圧センサは、加圧抵抗値変化のリニアリティに加え、除圧時の良好な抵抗値回復性を備えていることが好ましく、これらの性能を確保できる導電性樹脂材料が求められている。 In recent years, many resistance-type pressure-sensitive sensors using resin materials such as polymers have been reported (see, for example, Patent Documents 1 to 4 below). Sensors using resin materials can give flexibility and shape following properties, and are lightweight, thin, and have a high degree of freedom in shape such as an increase in area, so they can be used in various applications and forms such as wearables, healthcare, and medical fields. Application to can be expected. These pressure sensors preferably have a good resistance value recoverability at the time of pressure removal in addition to the linearity of the pressure resistance change, and a conductive resin material capable of ensuring these performances is required. .
特開2012-103273号公報JP 2012-103273 A 特開2012-208038号公報JP 2012-208038 A 特開2013-61208号公報JP 2013-61208 A 特開2013-68562号公報JP 2013-68562 A
 本発明は、このような実情に鑑みてなされたものであり、感圧部に樹脂成分が用いられ、十分な感度を有する抵抗型感圧センサの実現を可能とする抵抗型感圧センサ用導電性樹脂組成物並びにそれを用いた抵抗型感圧センサ、抵抗型感圧センサアレイ及び感圧センサ計測システムを提供することを目的とする。 The present invention has been made in view of such circumstances, and a conductive component for a resistance-type pressure-sensitive sensor that can realize a resistance-type pressure-sensitive sensor having a sufficient sensitivity using a resin component in the pressure-sensitive portion. An object of the present invention is to provide a functional resin composition, a resistance type pressure sensor using the same, a resistance type pressure sensor array, and a pressure sensor measurement system.
 上記課題を解決するために本発明は、樹脂成分及び導電フィラーを含有する抵抗型感圧センサ用導電性樹脂組成物であって、導電性樹脂組成物から形成される導電性樹脂層の25℃における無負荷時抵抗値をA25、25℃における30N/cmの荷重を加えたときの抵抗値をB25としたときに、下記式(1)、下記式(2)及び下記式(3)を満たす第1の抵抗型感圧センサ用導電性樹脂組成物を提供する。
25≧1kΩ   (1)
1000kΩ≧B25≧0.01kΩ   (2)
25/B25≧10   (3)
In order to solve the above problems, the present invention is a conductive resin composition for a resistance-type pressure-sensitive sensor, which contains a resin component and a conductive filler, and is 25 ° C. of the conductive resin layer formed from the conductive resin composition. When the resistance value at no load in A 25 is A 25 , and the resistance value when a load of 30 N / cm 2 at 25 ° C. is applied is B 25 , the following formula (1), the following formula (2), and the following formula (3 The first conductive resin composition for resistance-type pressure sensitive sensors is provided.
A 25 ≧ 1 kΩ (1)
1000 kΩ ≧ B 25 ≧ 0.01 kΩ (2)
A 25 / B 25 ≧ 10 (3)
 本発明に係る第1の抵抗型感圧センサ用導電性樹脂組成物は、高温条件下でも安定して動作可能という観点から、導電性樹脂組成物から形成される導電性樹脂層の80℃における無負荷時抵抗値をA80、80℃における30N/cmの荷重を加えたときの抵抗値をB80としたときに、下記式(4)、下記式(5)及び下記式(6)を満たすことが好ましい。
80≧1kΩ   (4)
1000kΩ≧B80≧0.01kΩ   (5)
80/B80≧10   (6)
From the viewpoint that the first conductive resin composition for resistance-type pressure-sensitive sensors according to the present invention can operate stably even under high-temperature conditions, the conductive resin layer formed from the conductive resin composition at 80 ° C. When the no-load resistance value is A 80 and the resistance value when a load of 30 N / cm 2 at 80 ° C. is applied is B 80 , the following formula (4), the following formula (5), and the following formula (6) It is preferable to satisfy.
A 80 ≧ 1kΩ (4)
1000 kΩ ≧ B 80 ≧ 0.01 kΩ (5)
A 80 / B 80 ≧ 10 (6)
 本発明に係る第1の抵抗型感圧センサ用導電性樹脂組成物は、応答性の観点から、導電性樹脂組成物から形成される導電性樹脂層の120N/minの昇圧速度で30N/cmまで加圧したときの圧力xにおける抵抗値をCx、30N/cmから120N/minの降圧速度で除圧していったときの圧力xにおける抵抗値をDxとしたときに、下記式(7)を満たすことが好ましい。
0.6≦Cx/Dx≦1.4   (7)
From the viewpoint of responsiveness, the first conductive resin composition for resistance-type pressure sensitive sensors according to the present invention is 30 N / cm at a pressure increase rate of 120 N / min of the conductive resin layer formed from the conductive resin composition. When the resistance value at the pressure x when the pressure is increased to 2 is Cx, and the resistance value at the pressure x when the pressure is depressurized from 30 N / cm 2 to 120 N / min is Dx, the following formula (7 ) Is preferably satisfied.
0.6 ≦ Cx / Dx ≦ 1.4 (7)
 本発明に係る第1の抵抗型感圧センサ用導電性樹脂組成物は、導電性樹脂組成物から形成される導電性樹脂層の静摩擦係数が4.0以下であることが好ましい。なお、ここでいう導電性樹脂層の静摩擦係数は、抵抗型感圧センサの電極として用いられる材料を相手材とした場合を意味する。 In the first conductive resin composition for resistance-type pressure-sensitive sensors according to the present invention, the coefficient of static friction of the conductive resin layer formed from the conductive resin composition is preferably 4.0 or less. In addition, the static friction coefficient of the conductive resin layer here means the case where the material used as the electrode of the resistance type pressure sensitive sensor is used as the counterpart material.
 本発明に係る第1の抵抗型感圧センサ用導電性樹脂組成物において、樹脂成分がポリビニルブチラール樹脂を含むことが好ましい。 In the first resistance-type pressure sensitive sensor conductive resin composition according to the present invention, the resin component preferably contains a polyvinyl butyral resin.
 また、樹脂成分の25℃における貯蔵弾性率が500MPa以上であることが好ましい。 Moreover, it is preferable that the storage elastic modulus of the resin component at 25 ° C. is 500 MPa or more.
 更に、導電フィラーがカーボン系導電フィラーであることが好ましい。 Furthermore, the conductive filler is preferably a carbon-based conductive filler.
 また、導電フィラーの含有量が、樹脂成分及び導電フィラーの合計100質量部に対し、5~55質量部であることが好ましい。 In addition, the content of the conductive filler is preferably 5 to 55 parts by mass with respect to 100 parts by mass in total of the resin component and the conductive filler.
 上記課題を解決するために本発明はまた、樹脂成分及び導電フィラーを含有する抵抗型感圧センサ用導電性樹脂組成物であって、樹脂成分がポリビニルブチラール樹脂を含む第2の抵抗型感圧センサ用導電性樹脂組成物を提供する。 In order to solve the above-mentioned problem, the present invention is also a conductive resin composition for a resistance-type pressure-sensitive sensor containing a resin component and a conductive filler, wherein the resin component contains a polyvinyl butyral resin. A conductive resin composition for a sensor is provided.
 上記課題を解決するために本発明はまた、一対の電極と、該電極間に設けられた、樹脂成分及び導電フィラーを含有する導電性樹脂層と、を備え、導電性樹脂層の25℃における無負荷時抵抗値をA25、25℃における30N/cmの荷重を加えたときの抵抗値をB25としたときに、下記式(1)、下記式(2)及び下記式(3)を満たす第1の抵抗型感圧センサを提供する。
25≧1kΩ   (1)
1000kΩ≧B25≧0.01kΩ   (2)
25/B25≧10   (3)
In order to solve the above problems, the present invention also includes a pair of electrodes and a conductive resin layer containing a resin component and a conductive filler provided between the electrodes, and the conductive resin layer at 25 ° C. When the resistance value when no load is A 25 and the resistance value when a load of 30 N / cm 2 at 25 ° C. is applied is B 25 , the following formula (1), the following formula (2), and the following formula (3) A first resistance type pressure sensitive sensor satisfying the above condition is provided.
A 25 ≧ 1 kΩ (1)
1000 kΩ ≧ B 25 ≧ 0.01 kΩ (2)
A 25 / B 25 ≧ 10 (3)
 本発明に係る第1の抵抗型感圧センサは、高温条件下でも安定して動作可能という観点から、導電性樹脂層の80℃における無負荷時抵抗値をA80、80℃における30N/cmの荷重を加えたときの抵抗値をB80としたときに、下記式(4)、下記式(5)及び下記式(6)を満たすことが好ましい。
80≧1kΩ   (4)
1000kΩ≧B80≧0.01kΩ   (5)
80/B80≧10   (6)
The first resistance-type pressure-sensitive sensor according to the present invention has a no-load resistance value at 80 ° C. of the conductive resin layer of A 80 and 30 N / cm at 80 ° C. from the viewpoint that it can operate stably even under high temperature conditions. the resistance value when the added second load when the B 80, the following formula (4), preferably satisfies the following formula (5) and the following formula (6).
A 80 ≧ 1kΩ (4)
1000 kΩ ≧ B 80 ≧ 0.01 kΩ (5)
A 80 / B 80 ≧ 10 (6)
 本発明に係る第1の抵抗型感圧センサは、応答性の観点から、導電性樹脂層の、120N/minの昇圧速度で30N/cmまで加圧したときの圧力xにおける抵抗値をCx、30N/cmから120N/minの降圧速度で除圧していったときの圧力xにおける抵抗値をDxとしたときに、下記式(7)を満たすことが好ましい。
0.6≦Cx/Dx≦1.4   (7)
From the viewpoint of responsiveness, the first resistance type pressure sensitive sensor according to the present invention has a resistance value at a pressure x when the conductive resin layer is pressurized to 30 N / cm 2 at a pressure increase rate of 120 N / min. It is preferable that the following formula (7) is satisfied, where Dx is a resistance value at the pressure x when the pressure is reduced from 30 N / cm 2 to 120 N / min.
0.6 ≦ Cx / Dx ≦ 1.4 (7)
 上記課題を解決するために本発明はまた、一対の電極と、該電極間に設けられた、樹脂成分及び導電フィラーを含有する導電性樹脂層と、を備え、樹脂成分がポリビニルブチラール樹脂を含む第2の抵抗型感圧センサを提供する。 In order to solve the above problems, the present invention also includes a pair of electrodes and a conductive resin layer containing a resin component and a conductive filler provided between the electrodes, and the resin component includes a polyvinyl butyral resin. A second resistance type pressure sensitive sensor is provided.
 上記課題を解決するために本発明はまた、導電性樹脂材料からなる第1のフィルム及び該第1のフィルムの片面に設けられた第1の電極を備える第1のセンサシートと、導電性樹脂材料からなる第2のフィルム及び該第2のフィルムの片面に設けられた第2の電極とを備える第2のセンサシートとが、それぞれのフィルムの、電極が設けられている面とは反対側の面同士が接触するように配置され、25℃における無負荷時抵抗値をA25、25℃における30N/cmの荷重を加えたときの抵抗値をB25としたときに、下記式(1)、下記式(2)及び下記式(3)を満たす抵抗型感圧センサアレイを提供する。
25≧1kΩ   (1)
1000kΩ≧B25≧0.01kΩ   (2)
25/B25≧10   (3)
In order to solve the above problems, the present invention also provides a first sensor sheet including a first film made of a conductive resin material, a first electrode provided on one side of the first film, and a conductive resin. A second sensor sheet comprising a second film made of a material and a second electrode provided on one side of the second film is opposite to the side on which the electrode is provided. When the no-load resistance value at 25 ° C. is A 25 and the resistance value when applying a load of 30 N / cm 2 at 25 ° C. is B 25 , the following formula ( 1) A resistance-type pressure-sensitive sensor array that satisfies the following formula (2) and the following formula (3) is provided.
A 25 ≧ 1 kΩ (1)
1000 kΩ ≧ B 25 ≧ 0.01 kΩ (2)
A 25 / B 25 ≧ 10 (3)
 本発明に係る抵抗型感圧センサアレイは、高温条件下でも安定して動作可能という観点から、80℃における無負荷時抵抗値をA80、80℃における30N/cmの荷重を加えたときの抵抗値をB80としたときに、下記式(4)、下記式(5)及び下記式(6)を満たすことが好ましい。
80≧1kΩ   (4)
1000kΩ≧B80≧0.01kΩ   (5)
80/B80≧10   (6)
The resistance-type pressure-sensitive sensor array according to the present invention has an unloaded resistance value at 80 ° C. of A 80 and a load of 30 N / cm 2 at 80 ° C. from the viewpoint of being able to operate stably even under high temperature conditions. It is preferable that the following formula (4), the following formula (5), and the following formula (6) are satisfied when the resistance value of B is 80 .
A 80 ≧ 1kΩ (4)
1000 kΩ ≧ B 80 ≧ 0.01 kΩ (5)
A 80 / B 80 ≧ 10 (6)
 本発明に係る抵抗型感圧センサアレイは、応答性の観点から、120N/minの昇圧速度で30N/cmまで加圧したときの圧力xにおける抵抗値をCx、30N/cmから120N/minの降圧速度で除圧していったときの圧力xにおける抵抗値をDxとしたときに、下記式(7)を満たすことが好ましい。
0.6≦Cx/Dx≦1.4   (7)
From the viewpoint of responsiveness, the resistance-type pressure-sensitive sensor array according to the present invention has a resistance value at a pressure x when the pressure is increased to 30 N / cm 2 at a pressure increase rate of 120 N / min from Cx, 30 N / cm 2 to 120 N / cm. It is preferable that the following formula (7) is satisfied, where Dx is a resistance value at the pressure x when the pressure is reduced at the rate of pressure reduction of min.
0.6 ≦ Cx / Dx ≦ 1.4 (7)
 本発明に係る抵抗型感圧センサアレイにおいて、第1及び第2のフィルムの表面タック力が300mN以下であることが好ましい。 In the resistance-type pressure-sensitive sensor array according to the present invention, the surface tack force of the first and second films is preferably 300 mN or less.
 また、第1及び第2のフィルムの表面粗さRaが8.0nm以下であることが好ましい。 The surface roughness Ra of the first and second films is preferably 8.0 nm or less.
 更に、第1及び第2のフィルムの静摩擦係数が4.0以下であることが好ましい。なお、ここでいう第1のフィルムの静摩擦係数とは第1のフィルムと第1の電極との間における静摩擦係数を意味し、第2のフィルムの静摩擦係数とは第2のフィルムと第2の電極との間における静摩擦係数を意味する。 Furthermore, it is preferable that the static friction coefficients of the first and second films are 4.0 or less. Here, the static friction coefficient of the first film means a static friction coefficient between the first film and the first electrode, and the static friction coefficient of the second film means the second film and the second film. It means the coefficient of static friction with the electrode.
 本発明に係る抵抗型感圧センサアレイは、導電性樹脂材料が樹脂成分及び導電フィラーを含むことが好ましい。 In the resistive pressure sensor array according to the present invention, the conductive resin material preferably includes a resin component and a conductive filler.
 また、樹脂成分がポリビニルブチラール樹脂を含むことが好ましい。 Further, it is preferable that the resin component contains a polyvinyl butyral resin.
 更に、導電フィラーがカーボン系導電フィラーであることが好ましい。 Furthermore, the conductive filler is preferably a carbon-based conductive filler.
 また、導電フィラーの含有量が、樹脂成分及び導電フィラーの合計100質量部に対し、5~55質量部であることが好ましい。 In addition, the content of the conductive filler is preferably 5 to 55 parts by mass with respect to 100 parts by mass in total of the resin component and the conductive filler.
 更に、樹脂成分の25℃における貯蔵弾性率が500MPa以上であることが好ましい。 Furthermore, it is preferable that the storage elastic modulus at 25 ° C. of the resin component is 500 MPa or more.
 上記課題を解決するために本発明はまた、上記本発明に係る抵抗型感圧センサアレイを備え、抵抗型感圧センサアレイは、並んで配置されている複数のストライプ状の第1のセンサシートと、該第1のセンサシートと交差する方向に並んで配置されている複数のストライプ状の前記第2のセンサシートとを有し、複数の第1のセンサシートのフィルムと複数の第2のセンサシートのフィルムとがマトリックス状に接触している感圧センサ計測システムを提供する。 In order to solve the above-described problems, the present invention also includes a resistive pressure sensor array according to the present invention, and the resistive pressure sensor array includes a plurality of striped first sensor sheets arranged side by side. And a plurality of striped second sensor sheets arranged side by side in a direction intersecting the first sensor sheet, and a plurality of first sensor sheet films and a plurality of second sensor sheets. A pressure-sensitive sensor measurement system in which a film of a sensor sheet is in contact with a matrix.
 本発明に係る感圧センサ計測システムは、マトリクスの圧力変化を検知し、押圧の強弱、押圧位置を検出可能とすることができる。 The pressure-sensitive sensor measurement system according to the present invention can detect changes in the pressure of the matrix and detect the strength and pressure position of the pressure.
 本発明によれば、感圧部に樹脂成分が用いられ、十分な感度を有する抵抗型感圧センサの実現を可能とする抵抗型感圧センサ用導電性樹脂組成物並びにそれを用いた抵抗型感圧センサ、抵抗型感圧センサアレイ及び感圧センサ計測システムを提供することができる。また、本発明によれば、十分な感度と応答性を有する抵抗型感圧センサ、抵抗型感圧センサアレイ、感圧センサ計測システム、及びこれらに用いられる抵抗型感圧センサ用導電性樹脂組成物を提供することができる。更に、本発明によれば、感圧部に導電樹脂材料が使用され、良好な圧力センシング及び応答性に加え、耐久性を備える抵抗型感圧センサアレイを提供することができる。 According to the present invention, a conductive resin composition for a resistance-type pressure-sensitive sensor that uses a resin component in the pressure-sensitive part and enables realization of a resistance-type pressure-sensitive sensor having sufficient sensitivity, and a resistance type using the same A pressure-sensitive sensor, a resistance-type pressure-sensitive sensor array, and a pressure-sensitive sensor measurement system can be provided. Further, according to the present invention, a resistance type pressure sensor having sufficient sensitivity and responsiveness, a resistance type pressure sensor array, a pressure sensor measurement system, and a conductive resin composition for a resistance type pressure sensor used therein Things can be provided. Furthermore, according to the present invention, a conductive resin material is used for the pressure-sensitive portion, and a resistance-type pressure-sensitive sensor array having durability in addition to good pressure sensing and responsiveness can be provided.
 シート状体重計、人の重心、歩行計測などの他、人の動作をアシストするロボット又はアクチュエータ用センサには、耐圧性、繰返し加圧時の計測再現性などの耐久性を保持する感圧センサが求められているが、本発明によれば、このような感圧センサの実現も可能となる。 In addition to sheet weight scales, human center of gravity, walking measurement, and other sensors for robots or actuators that assist human movement, pressure-sensitive sensors that maintain durability such as pressure resistance and measurement reproducibility during repeated pressurization However, according to the present invention, such a pressure-sensitive sensor can be realized.
本発明に係る抵抗型感圧センサの一実施形態を示す図であり、(a)はセンサの斜視図であり、(b)は(a)におけるI-I線に沿う断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows one Embodiment of the resistance type pressure sensitive sensor which concerns on this invention, (a) is a perspective view of a sensor, (b) is sectional drawing which follows the II line | wire in (a). 本発明に係る抵抗型感圧センサの一実施形態を示す側面図である。It is a side view showing one embodiment of a resistance type pressure sensitive sensor concerning the present invention. 本発明に係る抵抗型感圧センサアレイの一実施形態を示す側面図である。It is a side view showing one embodiment of a resistance type pressure sensitive sensor array concerning the present invention. 本発明に係る抵抗型感圧センサアレイの構成を示す斜視図である。It is a perspective view which shows the structure of the resistance type pressure sensitive sensor array which concerns on this invention. 本発明に係る抵抗型感圧センサアレイを構成する、ストライプ状センサシートの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the striped sensor sheet which comprises the resistance-type pressure-sensitive sensor array which concerns on this invention. 図5のストライプ状センサシートをクロス状に配置した抵抗型感圧センサアレイの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the resistance type pressure-sensitive sensor array which has arrange | positioned the stripe-shaped sensor sheet | seat of FIG. 5 in the cross shape. 図5のストライプ状センサシートをクロス状に複数配置したマトリクス状抵抗型感圧センサアレイの一実施形態を示す斜視図である。FIG. 6 is a perspective view showing an embodiment of a matrix-type resistive pressure-sensitive sensor array in which a plurality of striped sensor sheets of FIG. 5 are arranged in a cross shape. 本発明に係る抵抗型感圧センサアレイを使用した感圧センサ計測システム構成の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the pressure sensitive sensor measurement system structure using the resistance type pressure sensitive sensor array which concerns on this invention. 図7のマトリクス状抵抗型感圧センサアレイを使用したゼロバイアス型感圧センサ計測システムの概略図である。FIG. 8 is a schematic view of a zero-bias pressure sensor measurement system using the matrix-type resistance pressure sensor array of FIG. 7.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
 図1に示されるように、抵抗型感圧センサ1は、一対の電極10,20(上面電極10及び下面電極20)と、該電極間に設けられた、樹脂成分32及び導電フィラー34を含有する導電性樹脂層30(スペーサーともいう)と、を備える。図2は抵抗型感圧センサ1の側面図であり、抵抗型感圧センサ1は、一方の電極面に対して垂直方向に外圧を加えると電極間の電気抵抗値が減少し、この抵抗変化を圧力強弱として検出する。 As shown in FIG. 1, the resistance-type pressure-sensitive sensor 1 includes a pair of electrodes 10 and 20 (upper surface electrode 10 and lower surface electrode 20), and a resin component 32 and a conductive filler 34 provided between the electrodes. A conductive resin layer 30 (also referred to as a spacer). FIG. 2 is a side view of the resistance-type pressure-sensitive sensor 1, and the resistance-type pressure-sensitive sensor 1 reduces the electrical resistance value between the electrodes when an external pressure is applied in a direction perpendicular to one of the electrode surfaces. Is detected as pressure intensity.
 図3及び4は、抵抗型感圧センサアレイの一実施形態を示す図である。図3は抵抗型感圧センサアレイの側面図である。図3に示されるように、抵抗型感圧センサアレイは、導電性樹脂材料からなるフィルム30A(導電樹脂フィルム又はスペーサーともいう)の片面に第1の電極10が形成された第1のセンサシート11(片面電極層付き導電樹脂フィルムともいう)と、第1のセンサシートと同構成、すなわち、導電性樹脂材料からなるフィルム30B(導電樹脂フィルム又はスペーサーともいう)の片面に第2の電極20が形成された第2のセンサシート22(片面電極層付き導電樹脂フィルムともいう)とが、両センサシートにおけるフィルムの電極形成面とは反対側の面同士が接触するように重ね合わせて配置されることで構成されている。この抵抗型感圧センサアレイにおいても、一方の電極面に対して垂直方向に外圧を加えると電極間の電気抵抗値が減少し、この抵抗変化を圧力強弱として検出する。なお、図4では、抵抗型感圧センサアレイの構成を説明するために、2つのセンサシートが離れた状態での斜視図を示している。 3 and 4 are diagrams showing an embodiment of a resistance-type pressure-sensitive sensor array. FIG. 3 is a side view of the resistance-type pressure-sensitive sensor array. As shown in FIG. 3, the resistance-type pressure-sensitive sensor array includes a first sensor sheet in which a first electrode 10 is formed on one surface of a film 30A (also referred to as a conductive resin film or a spacer) made of a conductive resin material. 11 (also referred to as a conductive resin film with a single-sided electrode layer) and the same structure as the first sensor sheet, that is, the second electrode 20 on one side of a film 30B (also referred to as a conductive resin film or a spacer) made of a conductive resin material. The second sensor sheet 22 (also referred to as a conductive resin film with a single-sided electrode layer) on which is formed is placed so that the opposite surfaces of the film on both sensor sheets are in contact with each other. Is made up of. Also in this resistance-type pressure-sensitive sensor array, when an external pressure is applied in a direction perpendicular to one of the electrode surfaces, the electrical resistance value between the electrodes decreases, and this resistance change is detected as pressure intensity. In addition, in FIG. 4, in order to demonstrate the structure of a resistance type pressure-sensitive sensor array, the perspective view in the state which two sensor sheets separated is shown.
 上記の抵抗型感圧センサアレイによれば、感圧センサ電極間のスペーサとしての導電性樹脂材料の厚み変化を利用した抵抗変化による圧力検出方式の課題であった、ヒステリシス特性を向上できる。すなわち、電極間スペーサとして、従来は外力に対して弾性変形可能な絶縁性樹脂に導電フィラーを分散した導電性樹脂材料が使用され、加圧時の厚みを変化させて導電フィラー同士の接触による導電パス形成を利用する方式であったが、この方式では除圧時のヒステリシス残存に起因して計測精度が安定しないという問題があった。また、スペーサとしての導電性樹脂材料の弾性変形に依存するため、繰り返し加圧耐性にも課題があった。本実施形態の抵抗型感圧センサアレイによれば、感圧センサの電極間に、後述するように、加圧時の弾性変形を抑制できる導電性樹脂材料からなる片面電極層付き導電樹脂フィルムを重ね合せたスペーサ構成とすることで、加圧時の厚み変化ではなく、導電樹脂フィルム間の界面接触による抵抗変化を計測する構成とすることで、良好な圧力センシング及び応答性に加え、繰返し加圧時の耐久性を向上できる。 According to the above-mentioned resistance-type pressure-sensitive sensor array, it is possible to improve the hysteresis characteristic, which is a problem of the pressure detection method by the resistance change using the thickness change of the conductive resin material as the spacer between the pressure-sensitive sensor electrodes. That is, as an inter-electrode spacer, a conductive resin material in which conductive filler is dispersed in an insulating resin that can be elastically deformed against an external force is conventionally used. This method uses pass formation, but this method has a problem that measurement accuracy is not stable due to residual hysteresis at the time of decompression. Moreover, since it depends on the elastic deformation of the conductive resin material as the spacer, there is also a problem in repeated pressure resistance. According to the resistance-type pressure-sensitive sensor array of the present embodiment, the conductive resin film with a single-sided electrode layer made of a conductive resin material that can suppress elastic deformation at the time of pressurization between the electrodes of the pressure-sensitive sensor, as will be described later. In addition to good pressure sensing and responsiveness in addition to repeated pressure application, the stacked spacer configuration measures not the thickness change during pressurization but the resistance change due to interface contact between conductive resin films. Durability during pressure can be improved.
 電極10,20としては、例えば、アルミ、銅、銀、金、白金などの金属から形成されるものが挙げられる。具体的には、例えば、銅箔、アルミ箔、金メッキ箔、白金線、並びに、銀粉、銅粉、アルミ粉等の導電性金属フィラーを含有する樹脂ペーストが挙げられる。電極の面積及び厚みについては、抵抗型感圧センサの用途に応じて適宜設定することができるが、柔軟性及び耐久性の観点から、厚みは1~1000μmが好ましい。 Examples of the electrodes 10 and 20 include those formed from metals such as aluminum, copper, silver, gold, and platinum. Specifically, for example, a copper foil, an aluminum foil, a gold plating foil, a platinum wire, and a resin paste containing a conductive metal filler such as silver powder, copper powder, and aluminum powder can be used. The area and thickness of the electrode can be appropriately set according to the application of the resistance type pressure sensitive sensor, but the thickness is preferably 1 to 1000 μm from the viewpoint of flexibility and durability.
 本実施形態の抵抗型感圧センサ又は抵抗型感圧センサアレイに用いられる上記導電樹脂フィルムの表面タック力は300mN以下(プローブ径5.1mm、レスカ法)であることが好ましい。このタック力が300mNを超えると、除圧時の良好な抵抗回復性が得られなくなる可能性が高くなる、又は、片面電極層付き導電樹脂フィルムを重ね合せて配置した抵抗型感圧センサアレイにおいて、加圧時の導電樹脂フィルム間の界面接触による抵抗変化のリニアリティが損なわれる可能性が高くなることに加え、除圧時の良好な抵抗値回復性(低ヒステリシス特性)が得られなくなる可能性が高くなるため、好ましくない。レスカ法は、試料の粘着面を上にして置き、上部からプローブを粘着面に押しつけ、引き剥がす力を検出するものであり、株式会社レスカからタッキング試験機として市販されており、これを用いることができる。 The surface tack force of the conductive resin film used in the resistance-type pressure sensor or the resistance-type pressure sensor array of the present embodiment is preferably 300 mN or less (probe diameter 5.1 mm, rescue method). When this tack force exceeds 300 mN, there is a high possibility that good resistance recovery at the time of pressure reduction will not be obtained, or in a resistance type pressure sensitive sensor array in which conductive resin films with single-sided electrode layers are stacked. In addition to increasing the possibility that the linearity of resistance change due to interface contact between conductive resin films during pressurization will be impaired, there is a possibility that good resistance recovery (low hysteresis characteristics) during decompression may not be obtained Is unfavorable because of the high. The Resca method is to place the sample with the adhesive side facing up, and press the probe from the top to detect the force to peel it off. It is commercially available as a tacking tester from Reska Co., Ltd. Can do.
 また、上記の導電性樹脂層又は導電樹脂フィルムの表面粗さ(算術平均粗さ(Ra値))は8.0nm以下であることが好ましい。表面粗さRaが8.0nmを超えると、電極と接触したときに安定した動作を維持出来なくなる可能性が高くなる、又は、上記の片面電極層付き導電樹脂フィルムを重ね合せて配置した抵抗型感圧センサアレイにおいて、加圧時の導電樹脂フィルム間の界面接触による抵抗変化のリニアリティが損なわれる可能性が高くなるため、好ましくない。 The surface roughness (arithmetic average roughness (Ra value)) of the conductive resin layer or conductive resin film is preferably 8.0 nm or less. When the surface roughness Ra exceeds 8.0 nm, there is a high possibility that stable operation cannot be maintained when it comes in contact with the electrode, or the resistance type in which the conductive resin film with the single-sided electrode layer is arranged to overlap. In a pressure-sensitive sensor array, since the possibility that the linearity of the resistance change due to the interface contact between the conductive resin films during pressurization is impaired is increased, it is not preferable.
 上記導電性樹脂材料は、樹脂成分及び導電フィラーを含有することができる。樹脂成分は、25℃における貯蔵弾性率が500MPa以上であることが好ましい。この貯蔵弾性率が500MPaを下回ると、上記抵抗型感圧センサアレイにおいて、加圧時の電極間スペーサ厚変形による抵抗変化が発現し、除圧時のヒステリシス残存に起因して計測精度が安定しなくなる可能性が高くなることに加え、繰り返し加圧耐性が損なわれる可能性が高くなり、好ましくない。 The conductive resin material can contain a resin component and a conductive filler. The resin component preferably has a storage elastic modulus at 25 ° C. of 500 MPa or more. When the storage elastic modulus is less than 500 MPa, in the resistance type pressure sensitive sensor array, a resistance change due to the inter-electrode spacer thickness deformation at the time of pressurization occurs, and the measurement accuracy is stabilized due to residual hysteresis at the time of pressure release. In addition to an increase in the possibility of disappearance, there is a high possibility that the repeated pressure resistance is impaired, which is not preferable.
 また、樹脂成分は、柔軟性、耐久性、及び耐熱性の点で、ガラス転移温度(Tg)が15~250℃であることが好ましい。樹脂成分のTgが15℃を下回ると表面タック力が300mNを超える可能性が高くなり、250℃を超えると柔軟性が損なわれる可能性が高くなるため、いずれも好ましくない。更に、樹脂成分は、耐久性及び耐熱性の観点から、Tgが40~250℃の樹脂を含有することがより好ましい。 In addition, the resin component preferably has a glass transition temperature (Tg) of 15 to 250 ° C. in terms of flexibility, durability, and heat resistance. If the Tg of the resin component is less than 15 ° C., the surface tack force is likely to exceed 300 mN, and if it exceeds 250 ° C., the flexibility is likely to be impaired. Furthermore, the resin component preferably contains a resin having a Tg of 40 to 250 ° C. from the viewpoint of durability and heat resistance.
 樹脂成分に使用する樹脂としては、(メタ)アクリル重合体、ポリイミド樹脂、ウレタン樹脂、ポリフェニレンエーテル樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリエチレンテレフタラート樹脂、ナイロン樹脂、ポリフッ化ビニリデン樹脂、ポリビニルクロライド樹脂、ポリサルフォン樹脂、ポリエーテルサルフォン樹脂、ニトリルブタジエン樹脂、ABS樹脂、メラミン樹脂、ウレア樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、シリコーン樹脂、ポリエーテルイミド樹脂、フェノキシ樹脂、変性ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリビニルブチラール樹脂、フッ素樹脂、各種変性樹脂等が挙げられる。また、重量平均分子量が5000以上のペプチドを用いてもよい。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。重量平均分子量は、GPCにより測定し、標準ポリスチレン換算して求めることができる。 The resin used for the resin component is (meth) acrylic polymer, polyimide resin, urethane resin, polyphenylene ether resin, silicone resin, epoxy resin, phenol resin, polyethylene resin, polyvinyl chloride resin, polyethylene terephthalate resin, nylon resin. , Polyvinylidene fluoride resin, polyvinyl chloride resin, polysulfone resin, polyether sulfone resin, nitrile butadiene resin, ABS resin, melamine resin, urea resin, polycarbonate resin, polyacetal resin, silicone resin, polyetherimide resin, phenoxy resin, modified Examples include polyphenylene ether resins, polyamide resins, polyvinyl butyral resins, fluororesins, and various modified resins. Moreover, you may use the peptide whose weight average molecular weight is 5000 or more. These can be used alone or in combination of two or more. The weight average molecular weight can be determined by measuring by GPC and converting to standard polystyrene.
 本実施形態においては、上記の導電樹脂フィルム形成性、フィルム表面タック力、フィルム表面粗さ、及び弾性率の観点から、ポリイミド樹脂、及び/又は、ポリビニルブチラール樹脂が好ましい。更に、本実施形態においては、感度、耐久性、耐熱性、導電性フィラーの分散性、及び製膜性の観点から、樹脂成分がポリビニルブチラール樹脂を含むことが好ましい。 In the present embodiment, a polyimide resin and / or a polyvinyl butyral resin is preferable from the viewpoints of the above-mentioned conductive resin film formability, film surface tack force, film surface roughness, and elastic modulus. Furthermore, in this embodiment, it is preferable that a resin component contains polyvinyl butyral resin from a viewpoint of a sensitivity, durability, heat resistance, the dispersibility of a conductive filler, and film forming property.
 樹脂成分は、上記の樹脂に加えて、高温時の熱流動を抑制する目的で、熱硬化性樹脂を含有することもできる。このような熱硬化性樹脂は、熱により架橋反応を起こす反応性化合物からなる成分を、特に限定されることはなく使用することができる。熱により架橋反応を起こす反応性化合物としては、エポキシ樹脂、ビスマレイミド樹脂、シアネートエステル樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、アルキド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、レゾルシノールホルムアルデヒド樹脂、キシレン樹脂、フラン樹脂、ポリウレタン樹脂、ケトン樹脂、トリアリルシアヌレート樹脂、ポリイソシアネート樹脂、トリス(2-ヒドロキシエチル)イソシアヌラートを含有する樹脂、トリアリルトリメリタートを含有する樹脂、シクロペンタジエンから合成された熱硬化性樹脂、芳香族ジシアナミドの三量化による熱硬化性樹脂、イソブチレン・無水マレイン酸の共重合体等の他、酸二無水物、イソシアネート化合物、多官能のアクリレート及び/又はメタクリレート化合物、スチリル基を有する化合物、ジアリルビスフェノールA、ビスアリルナジイミド、ジアリルフタレート又はジアリルフタレートのプレポリマー、ジアリルメラミン、トリアリルイソシアヌレート、アリル変性フェノールノボラック、1,3-ジアリル-5-グリシジルイソシアヌレート等が挙げられる。これらの中でも、高温での優れた熱流動抑制を付与できる点で、エポキシ樹脂が好ましい。なお、これら熱硬化性樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。 In addition to the above resin, the resin component can also contain a thermosetting resin for the purpose of suppressing heat flow at high temperatures. Such a thermosetting resin can use the component which consists of a reactive compound which raise | generates a crosslinking reaction with a heat | fever, without being specifically limited. Reactive compounds that cause a crosslinking reaction by heat include epoxy resin, bismaleimide resin, cyanate ester resin, phenol resin, urea resin, melamine resin, alkyd resin, acrylic resin, unsaturated polyester resin, silicone resin, resorcinol formaldehyde resin, From xylene resin, furan resin, polyurethane resin, ketone resin, triallyl cyanurate resin, polyisocyanate resin, resin containing tris (2-hydroxyethyl) isocyanurate, resin containing triallyl trimellitate, from cyclopentadiene In addition to synthesized thermosetting resins, thermosetting resins by trimerization of aromatic dicyanamide, copolymers of isobutylene / maleic anhydride, etc., acid dianhydrides, isocyanate compounds, polyfunctional acrylates and / or meta Relate compound, compound having styryl group, diallyl bisphenol A, bisallyl nadiimide, diallyl phthalate or diallyl phthalate prepolymer, diallyl melamine, triallyl isocyanurate, allyl modified phenol novolak, 1,3-diallyl-5-glycidyl isocyanate Examples include nurate. Among these, an epoxy resin is preferable in that excellent thermal fluidity suppression at a high temperature can be imparted. In addition, these thermosetting resins can be used individually by 1 type or in combination of 2 or more types.
 好ましい熱硬化性樹脂の一つであるエポキシ樹脂としては、分子内に少なくとも2個のエポキシ基を含むものがより好ましく、硬化性及び硬化物特性の点からフェノールのグリシジルエーテル型のエポキシ樹脂が極めて好ましい。このような樹脂としては、例えば、ビスフェノールA型(又はAD型、S型、F型)のグリシジルエーテル、水添加ビスフェノールA型のグリシジルエーテル、エチレンオキシド付加体ビスフェノールA型のグリシジルエーテル、プロピレンオキシド付加体ビスフェノールA型のグリシジルエーテル、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテル、ナフタレン樹脂のグリシジルエーテル、トリスフェノールメタン型などの3官能型(又は4官能型)のグリシジルエーテル、ジシクロペンタジエンフェノール樹脂のグリシジルエーテル、複素環含有エポキシ樹脂、脂環式エポキシ樹脂、ダイマー酸のグリシジルエステル、3官能型(又は4官能型)のグリシジルアミン、ナフタレン樹脂のグリシジルアミン、ジアリルビスフェノールAジグリシジルエーテル又はその重縮合物、等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。 As an epoxy resin which is one of the preferable thermosetting resins, those containing at least two epoxy groups in the molecule are more preferable, and phenol glycidyl ether type epoxy resins are extremely preferable from the viewpoint of curability and cured product characteristics. preferable. Examples of such resins include bisphenol A type (or AD type, S type, and F type) glycidyl ether, water-added bisphenol A type glycidyl ether, ethylene oxide adduct bisphenol A type glycidyl ether, and propylene oxide adduct. Trifunctional type (or tetrafunctional type) such as bisphenol A type glycidyl ether, phenol novolac resin glycidyl ether, cresol novolac resin glycidyl ether, bisphenol A novolac resin glycidyl ether, naphthalene resin glycidyl ether, trisphenolmethane type Glycidyl ether, glycidyl ether of dicyclopentadienephenol resin, heterocycle-containing epoxy resin, alicyclic epoxy resin, glycidyl ester of dimer acid, trifunctional type Or glycidyl amine tetrafunctional) glycidyl amine naphthalene resin, diallyl bisphenol A diglycidyl ether or its polycondensate, and the like. These can be used individually by 1 type or in combination of 2 or more types.
 上記エポキシ樹脂の硬化剤としては、通常用いられている公知の硬化剤を使用することができ、例えば、アミン類、ポリアミド、酸無水物、ポリスルフィド、三フッ化ホウ素、ビスフェノールA、ビスフェノールF、ビスフェノールSのようなフェノール性水酸基を1分子中に2個以上有するビスフェノール類、フェノールノボラック樹脂、キシリレン変性フェノール樹脂、ビスフェノールAノボラック樹脂又はクレゾールノボラック樹脂等のフェノール樹脂、フェノールノボラック樹脂、フェノールアラルキル樹脂、クレゾールノボラック樹脂、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等が挙げられる。硬化剤の含有量としては、全エポキシ樹脂のエポキシ基数と全硬化剤の水酸基数の当量比として0.5~2で配合することが好ましい。 As the curing agent for the epoxy resin, known curing agents that are usually used can be used. For example, amines, polyamides, acid anhydrides, polysulfides, boron trifluoride, bisphenol A, bisphenol F, bisphenol. Bisphenols having two or more phenolic hydroxyl groups in one molecule such as S, phenol novolac resin, xylylene-modified phenol resin, bisphenol A novolac resin or cresol novolac resin, phenol novolac resin, phenol aralkyl resin, cresol Examples thereof include novolak resin, naphthol aralkyl resin, triphenolmethane resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin. The content of the curing agent is preferably 0.5 to 2 as an equivalent ratio of the number of epoxy groups of all epoxy resins to the number of hydroxyl groups of all curing agents.
 導電フィラーとしては、導電性を有するフィラーであれば、特に材質、形状は問わず用いることができ、例えば、アルミ粒子、銅粒子、銀粒子、金粒子及び白金粒子などの金属フィラー、カーボン粉末、カーボンナノファイバー及びカーボンナノチューブ(CNT)などのカーボン系導電フィラー等を用いることができる。分散性、伸縮時又は折り曲げ時の導電保持、軽量性の観点から、カーボンブラック、カーボンナノファイバー又はカーボンナノチューブ等のカーボン系導電フィラーが好ましい。分散性、伸縮時または折り曲げ時の導電保持、軽量性の観点から、カーボンナノチューブが好ましい。 As the conductive filler, as long as it is a filler having conductivity, it can be used regardless of the material and shape, for example, metal fillers such as aluminum particles, copper particles, silver particles, gold particles and platinum particles, carbon powder, Carbon-based conductive fillers such as carbon nanofibers and carbon nanotubes (CNT) can be used. From the viewpoints of dispersibility, electrical conductivity retention during expansion / contraction or bending, and light weight, carbon-based conductive fillers such as carbon black, carbon nanofibers, and carbon nanotubes are preferred. Carbon nanotubes are preferred from the viewpoints of dispersibility, electrical conductivity retention during expansion / contraction or bending, and light weight.
 導電フィラーの配合量は、導電性樹脂層又は導電樹脂フィルムが後述する抵抗値を満たすように設定することが好ましい。本実施形態においては、加圧センシング性(加圧抵抗値変化)確保の観点から、導電性樹脂層又は導電樹脂フィルムに導電フィラーが5~55体積%の割合で含まれることが好ましい。 The blending amount of the conductive filler is preferably set so that the conductive resin layer or the conductive resin film satisfies a resistance value described later. In the present embodiment, from the viewpoint of securing pressure sensing property (change in pressure resistance value), it is preferable that the conductive resin layer or the conductive resin film contains a conductive filler in a proportion of 5 to 55% by volume.
 また、本実施形態においては、加圧センシング性(加圧抵抗値変化)確保の観点から、導電性樹脂層又は導電樹脂フィルムに導電フィラーが5~55質量%の割合で含まれることが好ましい。導電性フィラーが5質量%未満では、加圧時の抵抗値低下を確保できなくなる可能性が高くなり、55質量%を超えると加圧時の抵抗値低下のリニアリティが損なわれる他、製膜性、表面平滑性が損なわれる傾向にあり、いずれも好ましくない。 Further, in the present embodiment, from the viewpoint of ensuring pressurization sensing property (change in pressurization resistance value), it is preferable that the conductive resin layer or the conductive resin film contains the conductive filler in a proportion of 5 to 55% by mass. If the conductive filler is less than 5% by mass, there is a high possibility that it will not be possible to ensure a decrease in resistance value during pressurization, and if it exceeds 55% by mass, the linearity of the decrease in resistance value during pressurization will be impaired, and film forming properties will be lost. , Surface smoothness tends to be impaired, both of which are not preferred.
 また、本実施形態においては、導電フィラーの含有量が、樹脂成分及び導電フィラーの合計100質量部に対し、5~55質量部であることが好ましい。 In the present embodiment, the content of the conductive filler is preferably 5 to 55 parts by mass with respect to 100 parts by mass in total of the resin component and the conductive filler.
 導電性樹脂層は、上記樹脂成分及び上記導電フィラーを含有する抵抗型感圧センサ用導電性樹脂組成物から形成することができる。また、導電樹脂フィルムについても、上記の導電性樹脂組成物から形成することができる。 The conductive resin layer can be formed from a conductive resin composition for resistance-type pressure-sensitive sensors containing the resin component and the conductive filler. Moreover, about a conductive resin film, it can form from said conductive resin composition.
 導電性樹脂組成物は、溶剤に樹脂を溶解した樹脂溶液に導電フィラーを添加し、攪拌・混合して作製することができる。このとき、フィラーの分散性を向上するためにカップリング剤を添加しても良い。用いる溶剤は、シクロヘキサノン、1-メチル-2-ピロリドン、トルエン等が挙げられる。中でも製膜性の点で、シクロヘキサノンが好ましい。 The conductive resin composition can be prepared by adding a conductive filler to a resin solution obtained by dissolving a resin in a solvent, and stirring and mixing. At this time, a coupling agent may be added to improve the dispersibility of the filler. Examples of the solvent to be used include cyclohexanone, 1-methyl-2-pyrrolidone, toluene and the like. Of these, cyclohexanone is preferable from the viewpoint of film forming property.
 導電性樹脂層又は導電樹脂フィルムは、溶剤に樹脂を溶解した樹脂溶液に導電フィラーを添加し、攪拌・混合して得られた樹脂ワニスを塗工機上で製膜化し、その後オーブン中で80~250℃、10~60分の条件で溶剤を揮発することで得ることができる。 For the conductive resin layer or conductive resin film, a resin varnish obtained by adding a conductive filler to a resin solution in which a resin is dissolved in a solvent and stirring and mixing is formed on a coating machine. It can be obtained by volatilizing the solvent under conditions of up to 250 ° C. and 10 to 60 minutes.
 導電性樹脂組成物(例えば、樹脂ワニス)における上記導電フィラーの配合量は、導電性樹脂層又は導電樹脂フィルムを形成したときに導電フィラーが5~55体積%の割合となることが好ましい。例えば、導電フィラーの配合量は、上記樹脂成分及び上記導電フィラーの合計体積を基準として5~55体積%の割合とすることができる。 The compounding amount of the conductive filler in the conductive resin composition (for example, resin varnish) is preferably 5 to 55% by volume of the conductive filler when the conductive resin layer or the conductive resin film is formed. For example, the blending amount of the conductive filler can be set to a ratio of 5 to 55% by volume based on the total volume of the resin component and the conductive filler.
 導電性樹脂層又は導電樹脂フィルムの面積及び厚みは、抵抗型感圧センサの用途に応じて適宜設定することができるが、柔軟性及び耐久性の観点から、厚みは1~1000μmが好ましい。 The area and thickness of the conductive resin layer or conductive resin film can be appropriately set according to the application of the resistance type pressure sensitive sensor, but the thickness is preferably 1 to 1000 μm from the viewpoint of flexibility and durability.
 本実施形態において、導電性樹脂層30は、25℃における無負荷時抵抗値をA25、25℃における30N/cmの荷重を加えたときの抵抗値をB25としたときに、下記式(1)、下記式(2)及び下記式(3)を満たすことが好ましい。
25≧1kΩ   (1)
1000kΩ≧B25≧0.01kΩ   (2)
25/B25≧10   (3)
In this embodiment, the conductive resin layer 30 has the following formula when the no-load resistance value at 25 ° C. is A 25 and the resistance value when a load of 30 N / cm 2 at 25 ° C. is applied is B 25: It is preferable to satisfy (1), the following formula (2), and the following formula (3).
A 25 ≧ 1 kΩ (1)
1000 kΩ ≧ B 25 ≧ 0.01 kΩ (2)
A 25 / B 25 ≧ 10 (3)
 抵抗型感圧センサにおける導電性樹脂層の抵抗値は、厚み50μmの導電性樹脂層を、厚み20μmの銅箔で挟んだ積層構造を有する面積が1cmのセンサ素子を測定用試料とし、この試料について所定の温度で電気抵抗測定装置によって測定される値をいう。なお、湿度は60%RHに設定される。 Resistance of the conductive resin layer in the resistive-type pressure sensor is a conductive resin layer having a thickness of 50 [mu] m, the area having a laminated structure sandwiched between a copper foil having a thickness of 20μm is the sensor element of 1 cm 2 and the measurement sample, the The value measured by an electrical resistance measuring device at a predetermined temperature for a sample. The humidity is set to 60% RH.
 また、荷重を加えたときの抵抗値については、圧力ゲージを用いて上記センサ素子に荷重を1cmあたり0Nから30Nまで15秒かけて徐々に加える。そして、1cmあたり30Nの荷重を加えたセンサ素子の抵抗値を上記と同様に測定する。 As for the resistance value when a load is applied, a load is gradually applied to the sensor element from 0 N to 30 N per cm 2 over 15 seconds using a pressure gauge. And the resistance value of the sensor element which added the load of 30N per cm < 2 > is measured similarly to the above.
 導電性樹脂層30は、高温条件下でも安定して動作可能という観点から、導電性樹脂組成物から形成される導電性樹脂層の80℃における無負荷時抵抗値をA80、80℃における30N/cmの荷重を加えたときの抵抗値をB80としたときに、下記式(4)、下記式(5)及び下記式(6)を満たすことが好ましい。
80≧1kΩ   (4)
1000kΩ≧B80≧0.01kΩ   (5)
80/B80≧10   (6)
From the viewpoint that the conductive resin layer 30 can operate stably even under high temperature conditions, the resistance value at no load of the conductive resin layer formed from the conductive resin composition at 80 ° C. is A 80 and 30 N at 80 ° C. / resistance value when a load is applied in cm 2 a when the B 80, the following formula (4), preferably satisfies the following formula (5) and the following formula (6).
A 80 ≧ 1kΩ (4)
1000 kΩ ≧ B 80 ≧ 0.01 kΩ (5)
A 80 / B 80 ≧ 10 (6)
 また、上述した本実施形態に係る抵抗型感圧センサ用導電性樹脂組成物は、組成物から形成される導電性樹脂層が上記の抵抗値の条件を満たすことが好ましい。 Further, in the conductive resin composition for a resistance type pressure sensitive sensor according to this embodiment described above, it is preferable that the conductive resin layer formed from the composition satisfies the above resistance value condition.
 また、応答性の観点から、導電性樹脂組成物から形成される導電性樹脂層の120N/minの昇圧速度で30N/cmまで加圧したときの圧力xにおける抵抗値をCx、30N/cmから120N/minの降圧速度で除圧していったときの圧力xにおける抵抗値をDxとしたときに、下記式(7)を満たすことが好ましい。
0.6≦Cx/Dx≦1.4   (7)
Further, from the viewpoint of responsiveness, the resistance value at the pressure x when the pressure is increased to 30 N / cm 2 at a pressure increase rate of 120 N / min of the conductive resin layer formed from the conductive resin composition is Cx, 30 N / cm. It is preferable that the following formula (7) is satisfied when the resistance value at the pressure x when the pressure is reduced from 2 to 120 N / min is Dx.
0.6 ≦ Cx / Dx ≦ 1.4 (7)
 本実施形態においては、圧力xが10N/cm未満での抵抗値Cx及びDxが上記式(7)を満たすことが好ましく、圧力xが0N/cmでの抵抗値Cx及びDxが上記式(7)を満たすことがより好ましい。 In the present embodiment, the resistance values Cx and Dx when the pressure x is less than 10 N / cm 2 preferably satisfy the above formula (7), and the resistance values Cx and Dx when the pressure x is 0 N / cm 2 are the above formula. It is more preferable to satisfy (7).
 また、本実施形態の抵抗型感圧センサアレイ、すなわち、導電性樹脂材料からなる第1のフィルム及び該第1のフィルムの片面に設けられた第1の電極を備える第1のセンサシートと、導電性樹脂材料からなる第2のフィルム及び該第2のフィルムの片面に設けられた第2の電極とを備える第2のセンサシートとが、それぞれのフィルムの、電極が設けられている面とは反対側の面同士が接触するように配置された抵抗型感圧センサアレイは、25℃における無負荷時抵抗値をA25、25℃における30N/cmの荷重を加えたときの抵抗値をB25としたときに、下記式(1)、下記式(2)及び下記式(3)を満たすことが好ましい。
25≧1kΩ   (1)
1000kΩ≧B25≧0.01kΩ   (2)
25/B25≧10   (3)
Also, the resistance-type pressure-sensitive sensor array of the present embodiment, that is, a first sensor sheet comprising a first film made of a conductive resin material and a first electrode provided on one side of the first film; A second sensor sheet comprising a second film made of a conductive resin material and a second electrode provided on one side of the second film, and a surface of each film on which the electrode is provided; The resistance-type pressure-sensitive sensor array arranged so that the opposite surfaces are in contact with each other has a resistance value when no load is applied at 25 ° C. at A 25 and a load of 30 N / cm 2 at 25 ° C. When B is 25 , it is preferable to satisfy the following formula (1), the following formula (2), and the following formula (3).
A 25 ≧ 1 kΩ (1)
1000 kΩ ≧ B 25 ≧ 0.01 kΩ (2)
A 25 / B 25 ≧ 10 (3)
 上記抵抗値は、厚み50μmの導電性樹脂材料からなるフィルムを、厚み20μmの銅箔で挟んだ積層構造を有する面積が1cmのセンサ素子を測定用試料とし、この試料について所定の温度で電気抵抗測定装置によって測定される値をいう。なお、湿度は60%RHに設定される。 The resistance value is obtained by measuring a sensor element having a laminated structure in which a film made of a conductive resin material having a thickness of 50 μm is sandwiched between copper foils having a thickness of 20 μm and having an area of 1 cm 2 , and the sample is electrically measured at a predetermined temperature. A value measured by a resistance measuring device. The humidity is set to 60% RH.
 また、荷重を加えたときの抵抗値については、圧力ゲージを用いて上記センサ素子に荷重を1cmあたり0Nから30Nまで15秒かけて徐々に加える。そして、1cmあたり30Nの荷重を加えたセンサ素子の抵抗値を上記と同様に測定する。 As for the resistance value when a load is applied, a load is gradually applied to the sensor element from 0 N to 30 N per cm 2 over 15 seconds using a pressure gauge. And the resistance value of the sensor element which added the load of 30N per cm < 2 > is measured similarly to the above.
 また、応答性の観点から、120N/minの昇圧速度で30N/cmまで加圧したときの圧力xにおける抵抗値をCx、30N/cmから120N/minの降圧速度で除圧していったときの圧力xにおける抵抗値をDxとしたときに、下記式(7)を満たすことが好ましい。
0.6≦Cx/Dx≦1.4   (7)
Also, from the viewpoint of responsiveness, the resistance value at the pressure x when the pressure was increased to 30 N / cm 2 at a pressure increase rate of 120 N / min was depressurized at a pressure decrease rate of Cx, 30 N / cm 2 to 120 N / min. When the resistance value at the time pressure x is Dx, it is preferable to satisfy the following formula (7).
0.6 ≦ Cx / Dx ≦ 1.4 (7)
 本実施形態においては、圧力xが10N/cm未満での抵抗値Cx及びDxが上記式(7)を満たすことが好ましく、圧力xが0N/cmでの抵抗値Cx及びDxが上記式(7)を満たすことがより好ましい。 In the present embodiment, the resistance values Cx and Dx when the pressure x is less than 10 N / cm 2 preferably satisfy the above formula (7), and the resistance values Cx and Dx when the pressure x is 0 N / cm 2 are the above formula. It is more preferable to satisfy (7).
 更に、80℃における無負荷時抵抗値をA80、80℃における30N/cmの荷重を加えたときの抵抗値をB80としたときに、下記式(4)、下記式(5)及び下記式(6)を満たすことが好ましい。
80≧1kΩ   (4)
1000kΩ≧B80≧0.01kΩ   (5)
80/B80≧10   (6)
Furthermore, when the no-load resistance value at 80 ° C. is A 80 and the resistance value when a load of 30 N / cm 2 at 80 ° C. is applied is B 80 , the following formula (4), the following formula (5) and It is preferable to satisfy the following formula (6).
A 80 ≧ 1kΩ (4)
1000 kΩ ≧ B 80 ≧ 0.01 kΩ (5)
A 80 / B 80 ≧ 10 (6)
 本実施形態の抵抗型感圧センサアレイは、図5に示される、導電性樹脂材料からなるフィルム30Cと、フィルム30Cの片面に設けられた電極10とを有するストライプ状センサシート13を使用して、図6に示されるようにストライプ状センサシートをクロス状に配置して、作製することができる。更に、図7に示されるようにマトリクス状の構成にすることで、加圧時の圧力強弱のみならず、押圧位置も検出可能となる。 The resistance-type pressure-sensitive sensor array of this embodiment uses a striped sensor sheet 13 having a film 30C made of a conductive resin material and an electrode 10 provided on one side of the film 30C shown in FIG. As shown in FIG. 6, stripe sensor sheets can be arranged in a cross shape. Further, by adopting a matrix configuration as shown in FIG. 7, it is possible to detect not only the pressure level at the time of pressurization but also the pressed position.
 図7に示される抵抗型感圧センサアレイは、ストライプ状の第1のセンサシート11とストライプ状の第2のセンサシート22に形成され、複数のストライプ状の第1のセンサシート11と複数のストライプ状の第2のセンサシート22の両センサシートの電極形成面とは反対側の導電樹脂面同士が接触するようにクロス状に重ね合わせ、ストライプ状の第1のセンサシート11とストライプ状の第2のセンサシート22がマトリクス状に構成されている。 The resistance-type pressure-sensitive sensor array shown in FIG. 7 is formed on a striped first sensor sheet 11 and a striped second sensor sheet 22, and includes a plurality of striped first sensor sheets 11 and a plurality of striped first sensor sheets 11. The striped second sensor sheet 22 is overlapped in a cross shape so that the conductive resin surfaces opposite to the electrode forming surfaces of both sensor sheets are in contact with each other, and the striped first sensor sheet 11 and the striped second sensor sheet 22 are striped. The second sensor sheet 22 is configured in a matrix.
 上記抵抗型感圧センサアレイは、並んで配置されている複数のストライプ状の前記第1のセンサシートと、該第1のセンサシートと交差する方向に並んで配置されている複数のストライプ状の前記第2のセンサシートとを有し、複数の第1のセンサシートのフィルムと複数の前記第2のセンサシートのフィルムとがマトリックス状に接触している構成を有しており、マトリクスの圧力変化を検知し、押圧の強弱、押圧位置を検出することができる。なお、上記のマトリックス状に接触しているとは、第1のセンサシートのフィルムと第2のセンサシートのフィルムとが重ね合わされている部分が、マトリックス状に配置されていることを意味する。 The resistance-type pressure-sensitive sensor array includes a plurality of stripe-shaped first sensor sheets arranged side by side, and a plurality of stripe-shaped arrangements arranged side by side in a direction intersecting the first sensor sheet. The second sensor sheet has a configuration in which a plurality of first sensor sheet films and a plurality of second sensor sheet films are in contact with each other in a matrix, and the matrix pressure It is possible to detect a change and detect the strength of the press and the press position. The contact with the matrix means that the portion where the film of the first sensor sheet and the film of the second sensor sheet are superposed is arranged in a matrix.
 本実施形態の抵抗型感圧センサアレイにおいては、上記マトリクス状センサシートのストライプ幅を狭くし、電極密度を増やすことで、押圧検出精度を高くすることができる。 In the resistance-type pressure-sensitive sensor array of the present embodiment, the pressure detection accuracy can be increased by narrowing the stripe width of the matrix sensor sheet and increasing the electrode density.
 図7及び8は、本実施形態に係る抵抗型感圧センサアレイを備える感圧センサ計測システム構成の一実施形態を示す概略図である。図7に示されるように、本実施形態に係る感圧センサ計測システムは、図7に示されるように、感圧センサマトリックスとして機能する本実施形態に係る抵抗型感圧センサアレイと、インターフェース回路と、制御マイコンと、制御PCとを備えている。 7 and 8 are schematic views showing an embodiment of the configuration of a pressure-sensitive sensor measurement system including the resistance-type pressure-sensitive sensor array according to the present embodiment. As shown in FIG. 7, the pressure-sensitive sensor measurement system according to this embodiment includes a resistance-type pressure-sensitive sensor array according to this embodiment that functions as a pressure-sensitive sensor matrix and an interface circuit as shown in FIG. And a control microcomputer and a control PC.
 図8には、5行5列の25個の感圧センサを有する抵抗型感圧センサアレイを備える感圧センサ計測システムの例が示されている。この感圧センサ計測システムにおいては、D0~D4をスキャンして電圧を印加し、その際の抵抗をAD0~AD4の検出回路で検出することで、どのセンサに圧力が加えられたか検出することができる。図7に示される制御PCにより制御マイコンを制御し、インターフェース回路を通し、D0~D4を順次スキャンし、それに同期させ検出回路でAD0~AD4の抵抗を検出し、どの感圧センサに荷重が加わったか検知する。その検知情報を制御PCに伝達し、検知情報に基づいて情報を処理する。クロスしたマトリクスの導電性樹脂フィルム面の面積によるが、2mm角である場合、無負荷の場合、25KΩ/2mm角(=1KΩ/0.2cm×0.2cm)以上の抵抗であり、荷重時の場合、0.25KΩ/2mm角~25KΩ/2mm角の抵抗を示す。 FIG. 8 shows an example of a pressure sensor measuring system including a resistance type pressure sensor array having 25 pressure sensors in 5 rows and 5 columns. In this pressure-sensitive sensor measurement system, D0 to D4 are scanned and a voltage is applied, and the resistance at that time is detected by the detection circuit of AD0 to AD4, thereby detecting which sensor is applied with pressure. it can. The control microcomputer shown in FIG. 7 controls the control microcomputer, passes through the interface circuit, sequentially scans D0 to D4, synchronizes with it, detects the resistance of AD0 to AD4 by the detection circuit, and loads are applied to which pressure sensitive sensor. Detect. The detection information is transmitted to the control PC, and the information is processed based on the detection information. Depending on the area of the conductive resin film surface of the crossed matrix, the resistance is 25 KΩ / 2 mm square (= 1 KΩ / 0.2 cm × 0.2 cm) or more when there is no load when it is 2 mm square, In this case, a resistance of 0.25 KΩ / 2 mm square to 25 KΩ / 2 mm square is shown.
 以下、実施例及び比較例によって、本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
<ポリイミド樹脂の合成>
(ポリイミドA)
 温度計、攪拌機、冷却管、及び窒素流入管を装着した300mLフラスコ中に、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(信越化学工業株式会社製、商品名:LP-7100)12.42g、ポリオキシプロピレンジアミン(BASF株式会社製、商品名:D400、分子量:452.4)22.62g、及び、N-メチル-2-ピロリドン140gを仕込んで攪拌して、反応液を調製した。ジアミンが溶解した後、フラスコを氷浴中で冷却しながら、予め無水酢酸からの再結晶により精製した4,4’-オキシジフタル酸二無水物32.62gを反応液に少量ずつ添加した。室温(25℃)で8時間反応させた後、キシレン80.5gを加え、窒素ガスを吹き込みながら180℃で加熱することにより、水と共にキシレンを共沸除去してポリイミド樹脂(ポリイミドA)を含むワニスを得た。得られたポリイミド樹脂(ポリイミドA)の分子量をGPCにより測定したところ、ポリスチレン換算で、数平均分子量Mn=14000、重量平均分子量Mw=35000であった。また、得られたポリイミド樹脂(ポリイミドA)のTgは45℃、25℃での貯蔵弾性率は1500MPaであった。
<Synthesis of polyimide resin>
(Polyimide A)
1,3-bis (3-aminopropyl) tetramethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: LP-7100) in a 300 mL flask equipped with a thermometer, stirrer, condenser, and nitrogen inlet pipe 12.42 g, 22.62 g of polyoxypropylenediamine (trade name: D400, molecular weight: 452.4) manufactured by BASF Corporation, and 140 g of N-methyl-2-pyrrolidone were charged and stirred to prepare a reaction solution. did. After the diamine was dissolved, 32.62 g of 4,4′-oxydiphthalic dianhydride previously purified by recrystallization from acetic anhydride was added to the reaction solution little by little while the flask was cooled in an ice bath. After reacting at room temperature (25 ° C.) for 8 hours, 80.5 g of xylene is added and heated at 180 ° C. while blowing nitrogen gas to azeotropically remove xylene together with water to contain a polyimide resin (polyimide A). A varnish was obtained. When the molecular weight of the obtained polyimide resin (polyimide A) was measured by GPC, it was number average molecular weight Mn = 14000 and weight average molecular weight Mw = 35000 in terms of polystyrene. Moreover, Tg of the obtained polyimide resin (polyimide A) was 45 ° C., and the storage elastic modulus at 25 ° C. was 1500 MPa.
 なお、ポリイミド樹脂の分子量は、N,N-ジメチルホルムアミド(DMF)を溶媒としたゲルパーミエーションクロマトグラフィーを使用して測定し、下記の装置及び測定条件を用いて標準ポリスチレンの検量線を使用して換算することによって決定した値である。
装置:株式会社島津製作所製、商品名C-R4A型高速液体クロマトグラフィー(検出器:示差屈折計)
使用溶媒:N,N-ジメチルホルムアミド(DMF)
カラム:G6000HXL+G4000HXL+G2000HXL (東ソー株式会社製)
測定温度:40℃
流量:1.0mL/分
溶離液:LiBr0.03Mmol/L及びリン酸0.06Mmol/LのDMF溶液
試料濃度:10mg/DMF5mL
注入量:20μL
The molecular weight of the polyimide resin was measured using gel permeation chromatography using N, N-dimethylformamide (DMF) as a solvent, and a standard polystyrene calibration curve was used using the following equipment and measurement conditions. It is a value determined by conversion.
Instrument: Shimadzu Corporation, trade name C-R4A type high performance liquid chromatography (detector: differential refractometer)
Solvent: N, N-dimethylformamide (DMF)
Column: G6000HXL + G4000HXL + G2000HXL (manufactured by Tosoh Corporation)
Measurement temperature: 40 ° C
Flow rate: 1.0 mL / min Eluent: LiBr 0.03 Mmol / L and phosphoric acid 0.06 Mmol / L DMF solution Sample concentration: 10 mg / DMF 5 mL
Injection volume: 20 μL
(ポリイミドB)
 温度計、攪拌機、冷却管、及び窒素流入管を装着した300mLフラスコ中に、2,2-ビス(4-アミノフェノキシフェニル)プロパン20.52g、4,9-ジオキサデカン-1,12-ジアミン10.20g、及び、N-メチル-2-ピロリドン193.5gを仕込んで撹拌することにより、有機溶媒であるN-メチル-2-ピロリドン中に上記各ジアミンが溶解した反応液を得た。この反応液に1,10-(デカメチレン)ビス(トリメリテート二無水物)52.20gを少量ずつ添加すると共に、窒素ガスを吹き込みながら180℃で5時間加熱して反応を進行させた。このとき発生する水を系外に除去することにより、ポリイミド樹脂(ポリイミドB)を含むワニスを得た。得られたポリイミド樹脂(ポリイミドB)の分子量をGPCにより測定したところ、ポリスチレン換算で、数平均分子量Mn=28900、重量平均分子量Mw=88600であった。また、得られたポリイミド樹脂(ポリイミドB)のTgは73℃、25℃での貯蔵弾性率は2000MPaであった。
(Polyimide B)
In a 300 mL flask equipped with a thermometer, stirrer, condenser, and nitrogen inlet tube, 20.52 g of 2,2-bis (4-aminophenoxyphenyl) propane, 4,9-dioxadecane-1,12-diamine. 20 g and 193.5 g of N-methyl-2-pyrrolidone were charged and stirred to obtain a reaction solution in which each diamine was dissolved in N-methyl-2-pyrrolidone, which is an organic solvent. To this reaction solution, 52.20 g of 1,10- (decamethylene) bis (trimellitate dianhydride) was added little by little and the reaction was allowed to proceed by heating at 180 ° C. for 5 hours while blowing nitrogen gas. The water generated at this time was removed from the system to obtain a varnish containing a polyimide resin (polyimide B). When the molecular weight of the obtained polyimide resin (polyimide B) was measured by GPC, it was number average molecular weight Mn = 28900 and weight average molecular weight Mw = 88600 in terms of polystyrene. Moreover, Tg of the obtained polyimide resin (polyimide B) was 73 ° C., and the storage elastic modulus at 25 ° C. was 2000 MPa.
(ポリイミドC)
 温度計、攪拌機、冷却管、及び窒素流入管を備えた300mlフラスコに、2,2-ビス(4-アミノフェノキシフェニル)プロパン13.67g(0.1mol)、及びN-メチル-2-ピロリドン124gを仕込み攪拌した。ジアミンの溶解後、フラスコを氷浴中で冷却しながら、予め無水酢酸で再結晶精製したデカメチレンビストリメリテート二無水物17.40g(0.1mol)を少量ずつ添加した。室温(25℃)で8時間反応させたのち、キシレン83gを加え、窒素ガスを吹き込みながら180℃で加熱し、水と共にキシレンを共沸除去した。その反応液を大量の水中に注ぎ、沈澱したポリマーを濾過により採り、乾燥してポリイミド樹脂(ポリイミドC)を得た。得られたポリイミド樹脂(ポリイミドC)のGPCを測定した結果、ポリスチレン換算で、Mw=121000、Mn=22800であった。また、得られたポリイミド樹脂(ポリイミドC)のTgは120℃、25℃での貯蔵弾性率は4000MPaであった。
(Polyimide C)
In a 300 ml flask equipped with a thermometer, stirrer, condenser, and nitrogen inlet tube, 13.67 g (0.1 mol) of 2,2-bis (4-aminophenoxyphenyl) propane and 124 g of N-methyl-2-pyrrolidone Were stirred. After dissolution of the diamine, 17.40 g (0.1 mol) of decamethylene bistrimellitate dianhydride recrystallized and purified in advance with acetic anhydride was added little by little while the flask was cooled in an ice bath. After reacting at room temperature (25 ° C.) for 8 hours, 83 g of xylene was added and heated at 180 ° C. while blowing nitrogen gas, and xylene was removed azeotropically with water. The reaction solution was poured into a large amount of water, and the precipitated polymer was collected by filtration and dried to obtain a polyimide resin (Polyimide C). As a result of measuring GPC of the obtained polyimide resin (polyimide C), it was Mw = 121000 and Mn = 22800 in terms of polystyrene. Moreover, Tg of the obtained polyimide resin (polyimide C) was 120 ° C., and the storage elastic modulus at 25 ° C. was 4000 MPa.
<感圧センサ素子の作製>
(実施例A-1~14、比較例A-1~20)
 表1~5に示される樹脂成分及び導電フィラーを、導電フィラーの配合量(体積%)が樹脂成分及び導電フィラーの合計体積を基準として表に示される割合となるように、溶剤であるシクロヘキサノンに添加し、混練脱泡機で混合し、樹脂組成物を得た。
<Production of pressure-sensitive sensor element>
(Examples A-1 to 14 and Comparative Examples A-1 to 20)
The resin component and the conductive filler shown in Tables 1 to 5 are added to the solvent cyclohexanone so that the blending amount (volume%) of the conductive filler is the ratio shown in the table based on the total volume of the resin component and the conductive filler. The mixture was added and mixed with a kneading deaerator to obtain a resin composition.
 上記の樹脂組成物を、厚み20μmの銅箔上に塗工し、120℃で20分間の条件で乾燥することにより、厚み50μmの樹脂フィルムを形成した。作製したフィルムに厚み20μmの銅箔を貼り付け、これを縦1cm×横1cmの大きさに裁断し、感圧センサ素子を得た。 The above resin composition was coated on a copper foil having a thickness of 20 μm and dried at 120 ° C. for 20 minutes to form a resin film having a thickness of 50 μm. A copper foil having a thickness of 20 μm was attached to the produced film, and this was cut into a size of 1 cm in length × 1 cm in width to obtain a pressure-sensitive sensor element.
 なお、表中の樹脂成分及び導電フィラーは以下のとおりである。
アクリルゴムA:ナガセケムテックス株式会社製、商品名HTR-3CSP(重量平均分子量=80万、Tg=20℃、25℃での貯蔵弾性率=300MPa)
アクリルゴムB:ナガセケムテックス株式会社製、商品名SG-280-EK23(重量平均分子量=90万、Tg=-30℃、25℃での貯蔵弾性率=0.1MPa)
アクリルゴムC:ナガセケムテックス株式会社製、商品名SG-708-6(重量平均分子量=70万、Tg=0℃、25℃弾性率での貯蔵弾性率=0.5MPa)
ポリイミドA:上記の方法で合成したものである。
ポリイミドB:上記の方法で合成したものである。
ポリイミドC:上記の方法で合成したものである。
ポリビニルブチラールA:株式会社クラレ製、商品名Mowital B16H(重量平均分子量=2万、Tg=70℃、25℃での貯蔵弾性率=2000MPa)
カーボンナノファイバーA:昭和電工製、商品名VGCF-H(カーボンナノファイバー、150nm径)
ニッケルフィラー:Inco社製、#123(平均粒径10μm)
カーボンブラック:三菱化学株式会社製、#2650(平均粒径13μm)
In addition, the resin component and electrically conductive filler in a table | surface are as follows.
Acrylic rubber A: manufactured by Nagase ChemteX Corporation, trade name HTR-3CSP (weight average molecular weight = 800,000, Tg = 20 ° C., storage elastic modulus at 25 ° C. = 300 MPa)
Acrylic rubber B: manufactured by Nagase ChemteX Corporation, trade name SG-280-EK23 (weight average molecular weight = 900,000, Tg = −30 ° C., storage elastic modulus at 25 ° C. = 0.1 MPa)
Acrylic rubber C: manufactured by Nagase ChemteX Corporation, trade name SG-708-6 (weight average molecular weight = 700,000, Tg = 0 ° C., storage elastic modulus at 25 ° C. elastic modulus = 0.5 MPa)
Polyimide A: synthesized by the above method.
Polyimide B: synthesized by the above method.
Polyimide C: synthesized by the above method.
Polyvinyl butyral A: Kuraray Co., Ltd., trade name Mowital B16H (weight average molecular weight = 20,000, Tg = 70 ° C., storage elastic modulus at 25 ° C. = 2000 MPa)
Carbon nanofiber A: Showa Denko, trade name VGCF-H (carbon nanofiber, 150 nm diameter)
Nickel filler: manufactured by Inco, # 123 (average particle size 10 μm)
Carbon black: # 2650 (average particle size 13 μm) manufactured by Mitsubishi Chemical Corporation
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<感圧センサ素子の評価>
 上記実施例及び比較例で得られた厚み50μmの樹脂層を備える感圧センサ素子について以下の評価を行った。得られた結果を表1~5に示す。
<Evaluation of pressure-sensitive sensor element>
The following evaluation was performed about the pressure-sensitive sensor element provided with the resin layer of 50 micrometers in thickness obtained by the said Example and comparative example. The results obtained are shown in Tables 1-5.
(無負荷時抵抗値の測定)
 25℃又は80℃の温度で、圧力ゲージ及び電気抵抗測定装置を用いて感圧センサ素子の樹脂層の抵抗値を測定した。なお、湿度については60%で一定にした。
(Measurement of resistance value at no load)
At a temperature of 25 ° C. or 80 ° C., the resistance value of the resin layer of the pressure sensitive sensor element was measured using a pressure gauge and an electric resistance measuring device. The humidity was fixed at 60%.
(30N/cm負荷時の抵抗値の測定)
 圧力ゲージを用いて感圧センサ素子に荷重を1cmあたり0Nから30Nまで15秒かけて徐々に加えた。30N/cmの負荷を加えた状態で、25℃又は80℃の温度で、電気抵抗測定装置を用いて感圧センサ素子の樹脂層の抵抗値を測定した。なお、湿度については60%で一定にした。
(Measurement of resistance value at 30 N / cm 2 load)
A load was gradually applied from 0 N to 30 N per cm 2 over 15 seconds using a pressure gauge. With a load of 30 N / cm 2 applied, the resistance value of the resin layer of the pressure-sensitive sensor element was measured using an electric resistance measuring device at a temperature of 25 ° C. or 80 ° C. The humidity was fixed at 60%.
(抵抗値(25℃)の評価)
 樹脂層の25℃における無負荷時抵抗値をA25、25℃における30N/cmの荷重を加えたときの抵抗値をB25としたときに、下記式(1)、下記式(2)及び下記式(3)について、条件を満たす場合を「○」で示し、条件を満たさない場合を「×」で示した。
25≧1kΩ   (1)
1000kΩ≧B25≧0.01kΩ   (2)
25/B25≧10   (3)
(Evaluation of resistance value (25 ° C))
When the no-load resistance value at 25 ° C. of the resin layer is A 25 and the resistance value when a load of 30 N / cm 2 at 25 ° C. is applied is B 25 , the following formula (1) and the following formula (2) In the following formula (3), a case where the condition is satisfied is indicated by “◯”, and a case where the condition is not satisfied is indicated by “x”.
A 25 ≧ 1 kΩ (1)
1000 kΩ ≧ B 25 ≧ 0.01 kΩ (2)
A 25 / B 25 ≧ 10 (3)
(抵抗値(80℃)の評価)
 樹脂層の80℃における無負荷時抵抗値をA80、80℃における30N/cmの荷重を加えたときの抵抗値をB80としたときに、下記式(4)、下記式(5)及び下記式(6)について、条件を満たす場合を「○」で示し、条件を満たさない場合を「×」で示した。
80≧1kΩ   (4)
1000kΩ≧B80≧0.01kΩ   (5)
80/B80≧10   (6)
(Evaluation of resistance value (80 ° C))
When the no-load resistance value at 80 ° C. of the resin layer is A 80 and the resistance value when a load of 30 N / cm 2 at 80 ° C. is applied is B 80 , the following formula (4) and the following formula (5) In the following formula (6), a case where the condition is satisfied is indicated by “◯”, and a case where the condition is not satisfied is indicated by “x”.
A 80 ≧ 1kΩ (4)
1000 kΩ ≧ B 80 ≧ 0.01 kΩ (5)
A 80 / B 80 ≧ 10 (6)
<感圧センサ素子の作製>
(実施例B-1~9、参考例B-1~8、比較例B-1~11)
 表6~8に示される樹脂成分及び導電フィラーを、導電フィラーの配合量(体積%)が樹脂成分及び導電フィラーの合計体積を基準として表に示される割合となるように、溶剤であるシクロヘキサノンに添加し、混練脱泡機で混合し、樹脂組成物を得た。
<Production of pressure-sensitive sensor element>
(Examples B-1 to 9, Reference Examples B-1 to 8, Comparative Examples B-1 to 11)
The resin component and the conductive filler shown in Tables 6 to 8 were added to the solvent cyclohexanone so that the blending amount (volume%) of the conductive filler was the ratio shown in the table based on the total volume of the resin component and the conductive filler. The mixture was added and mixed with a kneading deaerator to obtain a resin composition.
 なお、表中の樹脂成分及び導電フィラーは上記と同様である。 The resin components and conductive fillers in the table are the same as above.
<抵抗型感圧センサ素子の評価>
 上記実施例、参考例及び比較例で得られた厚み50μmの樹脂層を備える感圧センサ素子について以下の評価を行った。得られた結果を表6~8に示した。
<Evaluation of resistive pressure sensor element>
The following evaluation was performed about the pressure sensitive sensor element provided with the resin layer of 50 micrometers thickness obtained by the said Example, reference example, and the comparative example. The results obtained are shown in Tables 6-8.
(無負荷時抵抗値の測定)
 25℃で、圧力ゲージおよび電気抵抗測定装置を用いて抵抗型感圧センサ素子の樹脂層の抵抗値を測定した。なお、湿度については60%RHで一定にした。
(Measurement of resistance value at no load)
At 25 ° C., the resistance value of the resin layer of the resistance type pressure sensitive sensor element was measured using a pressure gauge and an electric resistance measuring device. The humidity was constant at 60% RH.
(30N/cm(300kPa)負荷時の抵抗値の測定)
 圧力ゲージを用いて感圧センサ素子に荷重を1cmあたり0Nから30Nまで15秒かけて徐々に加えた。30N/cmの負荷を加えた状態で、25℃で、電気抵抗測定装置を用いて抵抗型感圧センサ素子の樹脂層の抵抗値を測定した。なお、湿度については60%RHで一定にした。
(Measurement of resistance value under load of 30 N / cm 2 (300 kPa))
A load was gradually applied from 0 N to 30 N per cm 2 over 15 seconds using a pressure gauge. With the load of 30 N / cm 2 applied, the resistance value of the resin layer of the resistance type pressure sensitive sensor element was measured at 25 ° C. using an electric resistance measuring device. The humidity was constant at 60% RH.
(抵抗値(25℃)、応答性の評価)
 樹脂層の25℃における無負荷時抵抗値をA25、25℃における30N/cmの荷重を加えたときの抵抗値をB25としたときに、下記式(1)、下記式(2)及び下記式(3)について、条件を満たす場合を「○」で示し、条件を満たさない場合を「×」で示した。また、0N/cmから30N/cmまで15秒かけて荷重を徐々に加え、25℃で、電気抵抗測定装置を用いて抵抗型感圧センサ素子の樹脂層の抵抗値を測定した。このとき得られた圧力と抵抗値との関係から圧力0N/cmでの抵抗値Cを求めた。また、25℃で、30N/cmから0N/cmまで15秒かけて徐々に荷重を除圧したときの樹脂層の抵抗値を測定し、このとき得られた圧力と抵抗値との関係から圧力0N/cmでの抵抗値Dを求めた。そして、下記式(7)の応答性を満たす場合を「○」で示し、条件を満たさない場合を「×」で示した。
   A25≧1kΩ              (1)
   1000kΩ≧B25≧0.01kΩ    (2)
   A25/B25≧10           (3)
   0.6≦C/D≦1.4       (7)
(Resistance value (25 ° C), response evaluation)
When the no-load resistance value at 25 ° C. of the resin layer is A 25 and the resistance value when a load of 30 N / cm 2 at 25 ° C. is applied is B 25 , the following formula (1) and the following formula (2) In the following formula (3), a case where the condition is satisfied is indicated by “◯”, and a case where the condition is not satisfied is indicated by “x”. Further, a load was gradually applied from 0 N / cm 2 to 30 N / cm 2 over 15 seconds, and the resistance value of the resin layer of the resistance type pressure sensitive sensor element was measured at 25 ° C. using an electric resistance measuring device. A resistance value C 0 at a pressure of 0 N / cm 2 was determined from the relationship between the pressure and the resistance value obtained at this time. Also, at 25 ° C., to measure the resistance of the resin layer when pressure gradually dividing the load over 15 seconds 30 N / cm 2 to 0N / cm 2, the relationship between the resistance value obtained at this time pressure The resistance value D 0 at a pressure of 0 N / cm 2 was determined. A case where the responsiveness of the following formula (7) is satisfied is indicated by “◯”, and a case where the condition is not satisfied is indicated by “x”.
A 25 ≧ 1 kΩ (1)
1000 kΩ ≧ B 25 ≧ 0.01 kΩ (2)
A 25 / B 25 ≧ 10 (3)
0.6 ≦ C 0 / D 0 ≦ 1.4 (7)
(平均表面粗さ(算術平均粗さ(Ra))
 上記で作製した銅箔上に厚み50μmの樹脂フィルムを形成した樹脂材料表面の平均表面粗さ(表面粗さ)をAFM(原子間力顕微鏡、Atomic Force Microscope)で測定した。AFMとして走査型プローブ顕微鏡(株式会社日立ハイテクノロジーズ製のSPA400-DFM)を用いて、樹脂材料表面を測定領域1μm角で測定した。
(Average surface roughness (arithmetic average roughness (Ra))
The average surface roughness (surface roughness) of the surface of the resin material in which the resin film having a thickness of 50 μm was formed on the copper foil produced above was measured with an AFM (Atomic Force Microscope). Using a scanning probe microscope (SPA400-DFM manufactured by Hitachi High-Technologies Corporation) as an AFM, the surface of the resin material was measured in a measurement area of 1 μm square.
(静摩擦係数測定方法)
 樹脂表面に厚み18μmの銅箔を設置し、さらに銅箔の上に1kgの錘りを乗せ、錘りを銅箔に固定した。この錘を、横からフォースゲージを備えた金属棒でせん断方向に力を加え、銅箔に固定された錘りが動き始めたときの力を測定した。測定値を下記式に代入し、得られた値を静摩擦係数μとした。
  μ=F/9.8(N)
  μ:静摩擦係数 F:錘が動き始めたときの力
(Static friction coefficient measurement method)
A copper foil having a thickness of 18 μm was placed on the resin surface, and a 1 kg weight was placed on the copper foil, and the weight was fixed to the copper foil. A force was applied to the weight from the side with a metal rod equipped with a force gauge in the shearing direction, and the force when the weight fixed to the copper foil started to move was measured. The measured value was substituted into the following equation, and the obtained value was defined as the static friction coefficient μ.
μ = F / 9.8 (N)
μ: Coefficient of static friction F: Force when the weight starts to move
(タック値測定方法)
 タック力は、JIS Z0237-1991(粘着テープ・粘着シート試験方法)に準じたプローブタック試験で評価した。株式会社レスカ製タックテスタを用い、プローブ直径:5.1mm、接触速さ:2mm/sec、引き剥がし速さ10mm/secの条件で引き剥がし強度を測定し、タック力とした。接触条件は、接触荷重:0.98N/cm、接触時間:1sec、測定温度:25℃を標準とした。
(Tack value measurement method)
The tack force was evaluated by a probe tack test according to JIS Z0237-1991 (adhesive tape / adhesive sheet test method). Using a tack tester manufactured by Reska Co., Ltd., the peel strength was measured under the conditions of the probe diameter: 5.1 mm, the contact speed: 2 mm / sec, and the peel speed 10 mm / sec. The standard contact conditions were contact load: 0.98 N / cm 2 , contact time: 1 sec, and measurement temperature: 25 ° C.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明の抵抗型感圧センサ用導電性樹脂組成物では、導電性樹脂層の厚みが1~1000μmで、樹脂成分のTgが15~250℃、導電フィラーは、カーボンナノチューブまたは、カーボンナノファイバーが好ましく、その配合量は5~55質量%、導電性樹脂層の表面粗さRaが8.0nm以下、静摩擦係数が4.0以下が好ましいものである。 In the conductive resin composition for resistance type pressure sensitive sensor of the present invention, the thickness of the conductive resin layer is 1 to 1000 μm, the Tg of the resin component is 15 to 250 ° C., and the conductive filler is carbon nanotube or carbon nanofiber. The blending amount is preferably 5 to 55% by mass, the surface roughness Ra of the conductive resin layer is 8.0 nm or less, and the static friction coefficient is 4.0 or less.
 樹脂成分のTgが、-30℃のアクリルゴムB(参考例B-3~5)、0℃のアクリルゴムC(参考例B-6~8)を用いた抵抗型感圧センサ用導電性樹脂組成物では、応答性に関する式(4)でいずれも劣り、表面粗さRaで8.0nm、静摩擦係数で4.0を超えることが多く平滑性にも劣る。 Resistive pressure-sensitive sensor conductive resin using acrylic rubber B (reference examples B-3 to 5) having a Tg of −30 ° C. and acrylic rubber C (reference examples B-6 to 8) having a Tg of −30 ° C. In the composition, all are inferior in the formula (4) regarding the responsiveness, the surface roughness Ra is more than 8.0 nm, the static friction coefficient is more than 4.0, and the smoothness is also inferior.
 これに対し、Tgが70℃のポリビニルブチラールA(実施例B-1~3)、73℃のポリイミドB(実施例4~6)、120℃のポリイミドC(実施例B-7~9)では、式(1)~(4)を満たし、表面粗さRaが小さく、静摩擦係数も低く、タック値も小さく良好な特性を示す。 In contrast, polyvinyl butyral A (Examples B-1 to 3) having a Tg of 70 ° C., polyimide B (Examples 4 to 6) at 73 ° C., and polyimide C (Examples B-7 to 9) at 120 ° C. The formulas (1) to (4) are satisfied, the surface roughness Ra is small, the static friction coefficient is low, the tack value is small, and good characteristics are exhibited.
 Tgが15~250℃でも、導電フィラーの配合量が5~55質量%をはずれて、5質量%未満の比較例B-4(0質量%)、B-5(3質量%)(Tg=70℃、ポリビニルブチラールA)、比較例B-6(0質量%)、B-7(3質量%)(Tg=73℃、ポリイミドB)、比較例B-8(0質量%)、B-9(3質量%)(Tg=120℃、ポリイミドC)では、いずれも式(2)~(4)を満たさない。
 また、導電フィラーにニッケルフィラーを用いた比較例B-10、カーボンブラックを用いた比較例B-11は、式(2)、式(3)を満たさない。
Even when Tg is 15 to 250 ° C., the blending amount of the conductive filler deviates from 5 to 55% by mass, and Comparative Examples B-4 (0% by mass) and B-5 (3% by mass) (Tg = 70 ° C., polyvinyl butyral A), comparative example B-6 (0 mass%), B-7 (3 mass%) (Tg = 73 ° C., polyimide B), comparative example B-8 (0 mass%), B— 9 (3 mass%) (Tg = 120 ° C., polyimide C) does not satisfy the formulas (2) to (4).
Further, Comparative Example B-10 using nickel filler as the conductive filler and Comparative Example B-11 using carbon black do not satisfy the expressions (2) and (3).
 更に、樹脂成分としてTgが15~250℃で、導電フィラーは、カーボンナノファイバーでその配合量が5~55質量%でも、参考例B-1~2、比較例B-1~3に示したように、式(3)または式(4)を満たさなく、表面粗さ、静摩擦係数やタック値が大きい場合があるので、各式や特性を満たすように用いる樹脂、導電フィラーを選択することが好ましい。 Further, even when the resin component has a Tg of 15 to 250 ° C. and the conductive filler is carbon nanofiber and the blending amount is 5 to 55% by mass, it is shown in Reference Examples B-1 and B-1 and Comparative Examples B-1 to B-3. As described above, since the surface roughness, the static friction coefficient, and the tack value may not be satisfied without satisfying the formula (3) or the formula (4), it is possible to select a resin and a conductive filler to be used so as to satisfy each formula and characteristics. preferable.
 式(1)~(4)を満たす実施例B-1~9は、表面粗さ、静摩擦係数、タック値のいずれの値も小さく、抵抗型感圧センサとして十分な感度を有し、応答性に優れる。 In Examples B-1 to 9 satisfying the expressions (1) to (4), the surface roughness, the static friction coefficient, and the tack value are all small, have sufficient sensitivity as a resistance-type pressure-sensitive sensor, and are responsive. Excellent.
<感圧センサ素子の作製>
(実施例C-1~9、参考例C-1~8、比較例C-1~11)
 表9~11に示される樹脂成分及び導電フィラーを、導電フィラーの配合量(質量%)が樹脂成分及び導電フィラーの合計重量を基準として表に示される割合となるように、溶剤シクロヘキサノンに添加し、混練脱泡機で混合し、樹脂組成物を得た。
<Production of pressure-sensitive sensor element>
(Examples C-1 to 9, Reference Examples C-1 to 8, Comparative Examples C-1 to 11)
Add the resin component and conductive filler shown in Tables 9 to 11 to the solvent cyclohexanone so that the blending amount (% by mass) of the conductive filler is the ratio shown in the table based on the total weight of the resin component and conductive filler. And mixing with a kneading deaerator to obtain a resin composition.
 上記の樹脂組成物を、厚み20μmの銅箔上に塗工し、120℃、20分の条件で乾燥することにより、厚み50μmの銅箔付き導電樹脂フィルムを得た。前記銅箔付き導電樹脂フィルムを縦1cm、横1cmの大きさに裁断し、この試験片の樹脂面同士が接触するように重ねて感圧センサ素子を得た。 The above resin composition was applied onto a copper foil having a thickness of 20 μm, and dried at 120 ° C. for 20 minutes to obtain a conductive resin film with a copper foil having a thickness of 50 μm. The conductive resin film with copper foil was cut into a size of 1 cm in length and 1 cm in width, and was stacked so that the resin surfaces of the test pieces were in contact with each other to obtain a pressure-sensitive sensor element.
 なお、表中の樹脂成分及び導電フィラーは上記と同様である。 The resin components and conductive fillers in the table are the same as above.
<感圧センサ素子の評価>
 上記実施例及び比較例で得られた厚み50μmの導電樹脂フィルムを使用した感圧センサ素子について以下の評価を行った。得られた評価結果を表9~11に示した。
<Evaluation of pressure-sensitive sensor element>
The following evaluation was performed about the pressure-sensitive sensor element using the conductive resin film of 50 micrometers thickness obtained by the said Example and comparative example. The obtained evaluation results are shown in Tables 9 to 11.
(無負荷時抵抗値(A)の測定)
 25℃で、圧力ゲージ及び電気抵抗測定装置を用いて感圧センサ素子の樹脂層の抵抗値を測定した。なお、湿度については60%RHで一定にした。
(Measurement of resistance value (A) at no load)
The resistance value of the resin layer of the pressure-sensitive sensor element was measured at 25 ° C. using a pressure gauge and an electric resistance measuring device. The humidity was constant at 60% RH.
(30N/cm負荷時の抵抗値(B)の測定)
 圧力ゲージを用いて感圧センサ素子に荷重を1cmあたり0Nから30Nまで15秒かけて徐々に加えた。30N/cmの負荷を加えた状態で、25℃で、電気抵抗測定装置を用いて感圧センサ素子の樹脂層の抵抗値を測定した。なお、湿度については60%RHで一定にした。
(Measurement of resistance value (B) at 30 N / cm 2 load)
A load was gradually applied from 0 N to 30 N per cm 2 over 15 seconds using a pressure gauge. With a load of 30 N / cm 2 applied, the resistance value of the resin layer of the pressure-sensitive sensor element was measured at 25 ° C. using an electric resistance measuring device. The humidity was constant at 60% RH.
(抵抗値(25℃)の評価)
 樹脂層の25℃における無負荷時抵抗値をA25、25℃における30N/cmの荷重を加えたときの抵抗値をB25としたときに、下記式(1)、下記式(2)、及び下記式(3)について、条件を満たす場合を「○」で示し、条件を満たさない場合を「×」で示した。また、0N/cmから30N/cmまで15秒かけて荷重を徐々に加え、25℃で、電気抵抗測定装置を用いて抵抗型感圧センサ素子の樹脂層の抵抗値を測定した。このとき得られた圧力と抵抗値との関係から圧力0N/cmでの抵抗値Cを求めた。また、25℃で、30N/cmから0N/cmまで15秒かけて徐々に荷重を除圧したときの樹脂層の抵抗値を測定し、このとき得られた圧力と抵抗値との関係から圧力0N/cmでの抵抗値Dを求めた。そして、下記式(7)の応答性を満たす場合を「○」で示し、条件を満たさない場合を「×」で示した。
   A25≧1kΩ             (1)
   1000kΩ≧B25≧0.01kΩ   (2)
   A25/B25≧10            (3)
   0.6≦C/D≦1.4     (7)
(Evaluation of resistance value (25 ° C))
When the no-load resistance value at 25 ° C. of the resin layer is A 25 and the resistance value when a load of 30 N / cm 2 at 25 ° C. is applied is B 25 , the following formula (1) and the following formula (2) , And the following formula (3), a case where the condition is satisfied is indicated by “◯”, and a case where the condition is not satisfied is indicated by “×”. Further, a load was gradually applied from 0 N / cm 2 to 30 N / cm 2 over 15 seconds, and the resistance value of the resin layer of the resistance type pressure sensitive sensor element was measured at 25 ° C. using an electric resistance measuring device. A resistance value C 0 at a pressure of 0 N / cm 2 was determined from the relationship between the pressure and the resistance value obtained at this time. Also, at 25 ° C., to measure the resistance of the resin layer when pressure gradually dividing the load over 15 seconds 30 N / cm 2 to 0N / cm 2, the relationship between the resistance value obtained at this time pressure The resistance value D 0 at a pressure of 0 N / cm 2 was determined. A case where the responsiveness of the following formula (7) is satisfied is indicated by “◯”, and a case where the condition is not satisfied is indicated by “x”.
A 25 ≧ 1 kΩ (1)
1000 kΩ ≧ B 25 ≧ 0.01 kΩ (2)
A 25 / B 25 ≧ 10 (3)
0.6 ≦ C 0 / D 0 ≦ 1.4 (7)
(表面粗さ(算術平均粗さ(Ra)))
 導電樹脂フィルムの表面粗さをAFM(原子間力顕微鏡、Atomic Force Microscope)で測定した。AFMとして走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー株式会社(現 株式会社日立ハイテクサイエンス)製のSPA400-DFM)を用いて、樹脂材料表面を測定領域1μm角で測定した。
(Surface roughness (arithmetic mean roughness (Ra)))
The surface roughness of the conductive resin film was measured with an AFM (Atomic Force Microscope). A scanning probe microscope (SPA400-DFM manufactured by SII Nano Technology Co., Ltd. (currently Hitachi High-Tech Science Co., Ltd.)) was used as the AFM, and the surface of the resin material was measured in a measurement area of 1 μm square.
(タック力)
 タック力は、株式会社レスカ製タックテスタを用い、プローブ径:5.1mm、接触速さ:2mm/sec、引き剥がし速さ10mm/secの条件で引き剥がし強度を測定し、タック力とした。接触条件は、接触荷重:0.98N/cm、接触時間:1sec、測定温度:25℃を標準とした。
(Tack power)
The tack force was determined by using a tack tester manufactured by Reska Co., Ltd., measuring the peel strength under the conditions of probe diameter: 5.1 mm, contact speed: 2 mm / sec, and peel speed of 10 mm / sec. The standard contact conditions were contact load: 0.98 N / cm 2 , contact time: 1 sec, and measurement temperature: 25 ° C.
(25℃での貯蔵弾性率、Tg)
 粘弾性アナライザー(レオメトリック社製RSA-2)を用い、昇温速度:5℃/分、周波数:1Hz、測定温度範囲:-50~300℃の条件で、樹脂フィルムの貯蔵弾性率及びtanδの温度依存性を測定し、25℃における貯蔵弾性率を評価した。また、tanδのピークトップをTgとした。
(Storage elastic modulus at 25 ° C., Tg)
Using a viscoelasticity analyzer (RSA-2 manufactured by Rheometric Co., Ltd.), the rate of temperature rise: 5 ° C./min, frequency: 1 Hz, measurement temperature range: −50 to 300 ° C. The temperature dependence was measured and the storage elastic modulus at 25 ° C. was evaluated. Further, the peak top of tan δ was defined as Tg.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 抵抗型感圧センサは、無負荷時は抵抗が高く(式(1)、≧1KΩ/cm)、負荷時には、抵抗が低く(式(2)、0.01KΩ/cm~1000KΩ/cm)、その比(無負荷/負荷)が10以上(式(3))で、昇圧時の抵抗Cxと降圧時の抵抗Dyの比が0.6≦Cx/Dy≦1.4(式(7))であることが好ましい。 Resistive pressure sensor is at no load high resistance (Equation (1), ≧ 1KΩ / cm 2), when the load is low resistance (Equation (2), 0.01KΩ / cm 2 ~ 1000KΩ / cm 2 ), The ratio (no load / load) is 10 or more (formula (3)), and the ratio of the resistance Cx during boosting to the resistance Dy during step-down is 0.6 ≦ Cx / Dy ≦ 1.4 (formula (7) )).
 導電フィラーの配合量が0~3質量%と少ない比較例C-4~9では、負荷時の抵抗が高く式(2)を満たさない。導電樹脂材料の樹脂成分の貯蔵弾性率(25℃)が、500MPa未満であるアクリルゴムA(25℃の貯蔵弾性率300MPa)を用いた参考例C-1、2ではタック値が高く応答性の式(4)を満たさない。また、アクリルゴムB(25℃の貯蔵弾性率0.1MPa)を用いた参考例C-3~5では、表面粗さが8nmを超え、また、タック値が300mNを超え、応答性の式(4)を満たさない。さらに、アクリルゴムC(25℃の貯蔵弾性率0.5MPa)を用いた参考例C-6~8でも、表面粗さが8nmを超え、また、タック値が300mNを超え、応答性の式(4)を満たさない。 In Comparative Examples C-4 to 9 where the blending amount of the conductive filler is as small as 0 to 3% by mass, the resistance at the time of loading is high and the formula (2) is not satisfied. In Reference Examples C-1 and C-2 using acrylic rubber A (storage elastic modulus at 25 ° C. of 300 MPa) whose storage elastic modulus (25 ° C.) of the resin component of the conductive resin material is less than 500 MPa, the tack value is high and responsive. Formula (4) is not satisfied. In Reference Examples C-3 to C-5 using acrylic rubber B (storage elastic modulus at 25 ° C. of 0.1 MPa), the surface roughness exceeds 8 nm, the tack value exceeds 300 mN, and the response formula ( Does not satisfy 4). Further, in Reference Examples C-6 to 8 using acrylic rubber C (storage elastic modulus at 25 ° C. of 0.5 MPa), the surface roughness exceeds 8 nm, the tack value exceeds 300 mN, and the response formula ( Does not satisfy 4).
 これに対し、導電樹脂材料の樹脂成分の貯蔵弾性率(25℃)が、500MPa以上であるポリビニルブチラールA(実施例C-1~3、25℃の貯蔵弾性率2000MPa)、ポリイミドB(実施例C-4~6、25℃の貯蔵弾性率2000MPa)、ポリイミドC(実施例C-7~9、25℃の貯蔵弾性率4000MPa)は、表面粗さが8nm以下で、また、タック値が300mN以下であり、式(1)~式(4)をすべて満たし抵抗型感圧センサとして好適であった。 In contrast, polyvinyl butyral A (Examples C-1 to 3, storage modulus of 2000 MPa at 25 ° C.) having a storage elastic modulus (25 ° C.) of the resin component of the conductive resin material of 500 MPa or more, polyimide B (Example C-4-6, storage modulus of 2000 MPa at 25 ° C.) and polyimide C (Examples C-7-9, storage modulus of 4000 MPa at 25 ° C.) have a surface roughness of 8 nm or less and a tack value of 300 mN. The following conditions were satisfied and all of the formulas (1) to (4) were satisfied, and it was suitable as a resistance type pressure sensitive sensor.
 比較例C-10、11は、導電フィラーにニッケルフィラー(比較例C-10)、カーボンブラック(比較例C-11)を用いた場合であり、表面粗さが8nm以下で、また、タック値が300mN以下であるが、式(2)~式(3)を満たさない。導電フィラーは、粒径の小さいカーボンナノファイバーAを用いると好ましい。 Comparative Examples C-10 and 11 are cases where nickel filler (Comparative Example C-10) and carbon black (Comparative Example C-11) were used as the conductive filler, the surface roughness was 8 nm or less, and the tack value was Is 300 mN or less, but does not satisfy the expressions (2) to (3). The conductive filler is preferably carbon nanofiber A having a small particle size.
 1…抵抗型感圧センサ、10,20…電極、11…第1のセンサシート、12…第2のセンサシート、13…ストライプ状センサシート、30…導電性樹脂層、30A,30B,30C…フィルム(スペーサ)、32…樹脂成分、34…導電フィラー。 DESCRIPTION OF SYMBOLS 1 ... Resistance type pressure sensor, 10, 20 ... Electrode, 11 ... 1st sensor sheet, 12 ... 2nd sensor sheet, 13 ... Striped sensor sheet, 30 ... Conductive resin layer, 30A, 30B, 30C ... Film (spacer), 32 ... resin component, 34 ... conductive filler.

Claims (25)

  1.  樹脂成分及び導電フィラーを含有する抵抗型感圧センサ用導電性樹脂組成物であって、
     前記導電性樹脂組成物から形成される導電性樹脂層の25℃における無負荷時抵抗値をA25、25℃における30N/cmの荷重を加えたときの抵抗値をB25としたときに、下記式(1)、下記式(2)及び下記式(3)を満たす、抵抗型感圧センサ用導電性樹脂組成物。
    25≧1kΩ   (1)
    1000kΩ≧B25≧0.01kΩ   (2)
    25/B25≧10   (3)
    A conductive resin composition for a resistance-type pressure-sensitive sensor containing a resin component and a conductive filler,
    When the no-load resistance value at 25 ° C. of the conductive resin layer formed from the conductive resin composition is A 25 and the resistance value when a load of 30 N / cm 2 at 25 ° C. is applied is B 25 The conductive resin composition for resistance type pressure-sensitive sensors satisfying the following formula (1), the following formula (2), and the following formula (3).
    A 25 ≧ 1 kΩ (1)
    1000 kΩ ≧ B 25 ≧ 0.01 kΩ (2)
    A 25 / B 25 ≧ 10 (3)
  2.  前記導電性樹脂組成物から形成される導電性樹脂層の80℃における無負荷時抵抗値をA80、80℃における30N/cmの荷重を加えたときの抵抗値をB80としたときに、下記式(4)、下記式(5)及び下記式(6)を満たす、請求項1に記載の抵抗型感圧センサ用導電性樹脂組成物。
    80≧1kΩ   (4)
    1000kΩ≧B80≧0.01kΩ   (5)
    80/B80≧10   (6)
    When the resistance value at 80 ° C. under no load of the conductive resin layer formed from the conductive resin composition is A 80 and the resistance value when a load of 30 N / cm 2 at 80 ° C. is applied is B 80 The conductive resin composition for a resistance-type pressure-sensitive sensor according to claim 1, wherein the following formula (4), the following formula (5), and the following formula (6) are satisfied.
    A 80 ≧ 1kΩ (4)
    1000 kΩ ≧ B 80 ≧ 0.01 kΩ (5)
    A 80 / B 80 ≧ 10 (6)
  3.  前記導電性樹脂組成物から形成される導電性樹脂層の120N/minの昇圧速度で30N/cmまで加圧したときの圧力xにおける抵抗値をCx、30N/cmから120N/minの降圧速度で除圧していったときの圧力xにおける抵抗値をDxとしたときに、下記式(7)を満たす、請求項1又は2に記載の抵抗型感圧センサ用導電性樹脂組成物。
    0.6≦Cx/Dx≦1.4   (7)
    When the conductive resin layer formed from the conductive resin composition is pressurized to 30 N / cm 2 at a pressure increase rate of 120 N / min, the resistance value at the pressure x is Cx, and the pressure drop is 30 N / cm 2 to 120 N / min. The conductive resin composition for resistance-type pressure-sensitive sensors according to claim 1 or 2, which satisfies the following formula (7), where Dx is a resistance value at pressure x when pressure is released at a speed.
    0.6 ≦ Cx / Dx ≦ 1.4 (7)
  4.  前記導電性樹脂組成物から形成される導電性樹脂層の静摩擦係数が4.0以下である、請求項1~3のいずれか一項に記載の抵抗型感圧センサ用導電性樹脂組成物。 4. The conductive resin composition for a resistance type pressure sensitive sensor according to claim 1, wherein the coefficient of static friction of the conductive resin layer formed from the conductive resin composition is 4.0 or less.
  5.  前記樹脂成分がポリビニルブチラール樹脂を含む、請求項1~4のいずれか一項に記載の抵抗型感圧センサ用導電性樹脂組成物。 The conductive resin composition for a resistance-type pressure-sensitive sensor according to any one of claims 1 to 4, wherein the resin component includes a polyvinyl butyral resin.
  6.  前記樹脂成分の25℃における貯蔵弾性率が500MPa以上である、請求項1~5のいずれか一項に記載の抵抗型感圧センサ用導電性樹脂組成物。 The conductive resin composition for a resistance-type pressure-sensitive sensor according to any one of claims 1 to 5, wherein the resin component has a storage elastic modulus at 25 ° C of 500 MPa or more.
  7.  前記導電フィラーがカーボン系導電フィラーである、請求項1~6のいずれか一項に記載の抵抗型感圧センサ用導電性樹脂組成物。 The conductive resin composition for resistance-type pressure sensitive sensors according to any one of claims 1 to 6, wherein the conductive filler is a carbon-based conductive filler.
  8.  前記導電フィラーの含有量が、前記樹脂成分及び前記導電フィラーの合計100質量部に対し、5~55質量部である、請求項1~7のいずれか一項に記載の抵抗型感圧センサ用導電性樹脂組成物。 The resistance type pressure sensitive sensor according to any one of claims 1 to 7, wherein a content of the conductive filler is 5 to 55 parts by mass with respect to 100 parts by mass in total of the resin component and the conductive filler. Conductive resin composition.
  9.  樹脂成分及び導電フィラーを含有する抵抗型感圧センサ用導電性樹脂組成物であって、
     前記樹脂成分がポリビニルブチラール樹脂を含む、抵抗型感圧センサ用導電性樹脂組成物。
    A conductive resin composition for a resistance-type pressure-sensitive sensor containing a resin component and a conductive filler,
    A conductive resin composition for a resistance-type pressure sensitive sensor, wherein the resin component includes a polyvinyl butyral resin.
  10.  一対の電極と、該電極間に設けられた、樹脂成分及び導電フィラーを含有する導電性樹脂層と、を備え、
     前記導電性樹脂層の25℃における無負荷時抵抗値をA25、25℃における30N/cmの荷重を加えたときの抵抗値をB25としたときに、下記式(1)、下記式(2)及び下記式(3)を満たす、抵抗型感圧センサ。
    25≧1kΩ   (1)
    1000kΩ≧B25≧0.01kΩ   (2)
    25/B25≧10   (3)
    A pair of electrodes, and a conductive resin layer containing a resin component and a conductive filler provided between the electrodes,
    When the no-load resistance value at 25 ° C. of the conductive resin layer is A 25 and the resistance value when a load of 30 N / cm 2 at 25 ° C. is applied is B 25 , the following formula (1) and the following formula A resistance type pressure sensitive sensor satisfying (2) and the following formula (3).
    A 25 ≧ 1 kΩ (1)
    1000 kΩ ≧ B 25 ≧ 0.01 kΩ (2)
    A 25 / B 25 ≧ 10 (3)
  11.  前記導電性樹脂層の80℃における無負荷時抵抗値をA80、80℃における30N/cmの荷重を加えたときの抵抗値をB80としたときに、下記式(4)、下記式(5)及び下記式(6)を満たす、請求項10に記載の抵抗型感圧センサ。
    80≧1kΩ   (4)
    1000kΩ≧B80≧0.01kΩ   (5)
    80/B80≧10   (6)
    When the no-load resistance value at 80 ° C. of the conductive resin layer is A 80 and the resistance value when a load of 30 N / cm 2 at 80 ° C. is applied is B 80 , the following formula (4) and the following formula The resistance-type pressure-sensitive sensor according to claim 10, wherein (5) and the following formula (6) are satisfied.
    A 80 ≧ 1kΩ (4)
    1000 kΩ ≧ B 80 ≧ 0.01 kΩ (5)
    A 80 / B 80 ≧ 10 (6)
  12.  前記導電性樹脂層の、120N/minの昇圧速度で30N/cmまで加圧したときの圧力xにおける抵抗値をCx、30N/cmから120N/minの降圧速度で除圧していったときの圧力xにおける抵抗値をDxとしたときに、下記式(7)を満たす、請求項10又は11に記載の抵抗型感圧センサ。
    0.6≦Cx/Dx≦1.4   (7)
    When the resistance value at the pressure x when the conductive resin layer is pressurized to 30 N / cm 2 at a pressure increase rate of 120 N / min is depressurized at a pressure reduction rate of Cx, 30 N / cm 2 to 120 N / min. The resistance-type pressure-sensitive sensor according to claim 10 or 11, wherein the following equation (7) is satisfied, where Dx is a resistance value at the pressure x.
    0.6 ≦ Cx / Dx ≦ 1.4 (7)
  13.  一対の電極と、該電極間に設けられた、樹脂成分及び導電フィラーを含有する導電性樹脂層と、を備え、
     前記樹脂成分がポリビニルブチラール樹脂を含む、抵抗型感圧センサ。
    A pair of electrodes, and a conductive resin layer containing a resin component and a conductive filler provided between the electrodes,
    A resistance-type pressure-sensitive sensor, wherein the resin component includes a polyvinyl butyral resin.
  14.  導電性樹脂材料からなる第1のフィルム及び該第1のフィルムの片面に設けられた第1の電極を備える第1のセンサシートと、導電性樹脂材料からなる第2のフィルム及び該第2のフィルムの片面に設けられた第2の電極とを備える第2のセンサシートとが、それぞれのフィルムの、電極が設けられている面とは反対側の面同士が接触するように配置され、
     25℃における無負荷時抵抗値をA25、25℃における30N/cmの荷重を加えたときの抵抗値をB25としたときに、下記式(1)、下記式(2)及び下記式(3)を満たす、抵抗型感圧センサアレイ。
    25≧1kΩ   (1)
    1000kΩ≧B25≧0.01kΩ   (2)
    25/B25≧10   (3)
    A first sensor sheet comprising a first film made of a conductive resin material and a first electrode provided on one side of the first film, a second film made of a conductive resin material, and the second film A second sensor sheet provided with a second electrode provided on one side of the film is disposed such that the surfaces of the respective films on the opposite side of the surface on which the electrode is provided are in contact with each other.
    When the no-load resistance value at 25 ° C. is A 25 and the resistance value when a load of 30 N / cm 2 at 25 ° C. is applied is B 25 , the following formula (1), the following formula (2), and the following formula A resistance-type pressure-sensitive sensor array that satisfies (3).
    A 25 ≧ 1 kΩ (1)
    1000 kΩ ≧ B 25 ≧ 0.01 kΩ (2)
    A 25 / B 25 ≧ 10 (3)
  15.  80℃における無負荷時抵抗値をA80、80℃における30N/cmの荷重を加えたときの抵抗値をB80としたときに、下記式(4)、下記式(5)及び下記式(6)を満たす、請求項14に記載の抵抗型感圧センサアレイ。
    80≧1kΩ   (4)
    1000kΩ≧B80≧0.01kΩ   (5)
    80/B80≧10   (6)
    When the resistance value at no load at 80 ° C. is A 80 and the resistance value when a load of 30 N / cm 2 at 80 ° C. is applied is B 80 , the following formula (4), the following formula (5), and the following formula The resistance-type pressure-sensitive sensor array according to claim 14, which satisfies (6).
    A 80 ≧ 1kΩ (4)
    1000 kΩ ≧ B 80 ≧ 0.01 kΩ (5)
    A 80 / B 80 ≧ 10 (6)
  16.  120N/minの昇圧速度で30N/cmまで加圧したときの圧力xにおける抵抗値をCx、30N/cmから120N/minの降圧速度で除圧していったときの圧力xにおける抵抗値をDxとしたときに、下記式(7)を満たす、請求項14又は15に記載の抵抗型感圧センサアレイ。
    0.6≦Cx/Dx≦1.4   (7)
    120 N / min resistance value Cx at a pressure x when pressurized to 30 N / cm 2 at a rate of rise of the resistance value in the pressure x time went depressurized from 30 N / cm 2 at a step-down rate of 120 N / min The resistance-type pressure-sensitive sensor array according to claim 14 or 15, which satisfies the following formula (7) when Dx is set.
    0.6 ≦ Cx / Dx ≦ 1.4 (7)
  17.  前記第1及び第2のフィルムの表面タック力が300mN以下である、請求項14~16のいずれか一項に記載の抵抗型感圧センサアレイ。 The resistance-type pressure-sensitive sensor array according to any one of claims 14 to 16, wherein a surface tack force of the first and second films is 300 mN or less.
  18.  前記第1及び第2のフィルムの表面粗さRaが8.0nm以下である、請求項14~17のいずれか一項に記載の抵抗型感圧センサアレイ。 The resistance-type pressure-sensitive sensor array according to any one of claims 14 to 17, wherein the first and second films have a surface roughness Ra of 8.0 nm or less.
  19.  前記第1及び第2のフィルムの静摩擦係数が4.0以下である、請求項14~18のいずれか一項に記載の抵抗型感圧センサアレイ。 The resistance-type pressure-sensitive sensor array according to any one of claims 14 to 18, wherein a static friction coefficient of the first and second films is 4.0 or less.
  20.  前記導電性樹脂材料が樹脂成分及び導電フィラーを含む、請求項14~18のいずれか一項に記載の抵抗型感圧センサアレイ。 The resistance-type pressure-sensitive sensor array according to any one of claims 14 to 18, wherein the conductive resin material includes a resin component and a conductive filler.
  21.  前記樹脂成分がポリビニルブチラール樹脂を含む、請求項20に記載の抵抗型感圧センサアレイ。 The resistance-type pressure-sensitive sensor array according to claim 20, wherein the resin component includes a polyvinyl butyral resin.
  22.  前記導電フィラーがカーボン系導電フィラーである、請求項20又は21に記載の抵抗型感圧センサアレイ。 The resistance-type pressure-sensitive sensor array according to claim 20 or 21, wherein the conductive filler is a carbon-based conductive filler.
  23.  前記導電フィラーの含有量が、前記樹脂成分及び前記導電フィラーの合計100質量部に対し、5~55質量部である、請求項20~22のいずれか一項に記載の抵抗型感圧センサアレイ。 The resistance-type pressure-sensitive sensor array according to any one of claims 20 to 22, wherein a content of the conductive filler is 5 to 55 parts by mass with respect to 100 parts by mass in total of the resin component and the conductive filler. .
  24.  前記樹脂成分の25℃における貯蔵弾性率が500MPa以上である、請求項20~23のいずれか一項に記載の抵抗型感圧センサアレイ。 The resistance-type pressure-sensitive sensor array according to any one of claims 20 to 23, wherein a storage elastic modulus of the resin component at 25 ° C is 500 MPa or more.
  25.  請求項14~24のいずれか一項に記載の抵抗型感圧センサアレイを備え、
     前記抵抗型感圧センサアレイは、並んで配置されている複数のストライプ状の前記第1のセンサシートと、該第1のセンサシートと交差する方向に並んで配置されている複数のストライプ状の前記第2のセンサシートとを有し、
     複数の前記第1のセンサシートの前記フィルムと複数の前記第2のセンサシートの前記フィルムとがマトリックス状に接触している、感圧センサ計測システム。
    A resistance-type pressure-sensitive sensor array according to any one of claims 14 to 24,
    The resistance-type pressure-sensitive sensor array includes a plurality of stripe-shaped first sensor sheets arranged side by side and a plurality of stripe-shaped arrangements arranged side by side in a direction crossing the first sensor sheet. The second sensor sheet,
    The pressure-sensitive sensor measurement system in which the film of the plurality of first sensor sheets and the film of the plurality of second sensor sheets are in contact with each other in a matrix.
PCT/JP2015/077098 2014-12-03 2015-09-25 Electrically conductive resin composition for resistance-type pressure sensor, resistance-type pressure sensor, resistance-type pressure sensor array, and pressure-sensor measurement system WO2016088436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016562331A JPWO2016088436A1 (en) 2014-12-03 2015-09-25 Conductive resin composition for resistance type pressure sensor, resistance type pressure sensor, resistance type pressure sensor array, and pressure sensor measurement system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-244901 2014-12-03
JP2014244901 2014-12-03
JP2015-155027 2015-08-05
JP2015155027 2015-08-05

Publications (1)

Publication Number Publication Date
WO2016088436A1 true WO2016088436A1 (en) 2016-06-09

Family

ID=56091393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077098 WO2016088436A1 (en) 2014-12-03 2015-09-25 Electrically conductive resin composition for resistance-type pressure sensor, resistance-type pressure sensor, resistance-type pressure sensor array, and pressure-sensor measurement system

Country Status (3)

Country Link
JP (1) JPWO2016088436A1 (en)
TW (1) TW201621288A (en)
WO (1) WO2016088436A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595491A (en) * 2020-05-18 2020-08-28 重庆大学 Low-crosstalk matrix type touch sensing unit capable of being infinitely subdivided
CN113024741A (en) * 2021-03-16 2021-06-25 扬州工业职业技术学院 High and low temperature resistant resin composition for preparing oil tank

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208734A (en) * 1987-02-25 1988-08-30 Daikin Ind Ltd Piezoelectric tactile sensor
JPH04198271A (en) * 1990-11-27 1992-07-17 Mitsui Mining Co Ltd Conductive paste composition
JP2001165788A (en) * 1999-12-06 2001-06-22 Alps Electric Co Ltd Pressure-sesitive device
JP2003272453A (en) * 2002-03-13 2003-09-26 Kanegafuchi Chem Ind Co Ltd Semiconductive inorganic filler and manufacturing method thereof, and semiconductive resin composition
JP2015169617A (en) * 2014-03-10 2015-09-28 日立化成株式会社 Conductive resin composition for resistance type pressure-sensitive sensor, and resistance type pressure-sensitive sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208734A (en) * 1987-02-25 1988-08-30 Daikin Ind Ltd Piezoelectric tactile sensor
JPH04198271A (en) * 1990-11-27 1992-07-17 Mitsui Mining Co Ltd Conductive paste composition
JP2001165788A (en) * 1999-12-06 2001-06-22 Alps Electric Co Ltd Pressure-sesitive device
JP2003272453A (en) * 2002-03-13 2003-09-26 Kanegafuchi Chem Ind Co Ltd Semiconductive inorganic filler and manufacturing method thereof, and semiconductive resin composition
JP2015169617A (en) * 2014-03-10 2015-09-28 日立化成株式会社 Conductive resin composition for resistance type pressure-sensitive sensor, and resistance type pressure-sensitive sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595491A (en) * 2020-05-18 2020-08-28 重庆大学 Low-crosstalk matrix type touch sensing unit capable of being infinitely subdivided
CN113024741A (en) * 2021-03-16 2021-06-25 扬州工业职业技术学院 High and low temperature resistant resin composition for preparing oil tank
CN113024741B (en) * 2021-03-16 2023-07-04 扬州工业职业技术学院 High-low temperature resistant resin composition for preparing oil tank

Also Published As

Publication number Publication date
JPWO2016088436A1 (en) 2017-09-14
TW201621288A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
US20190110361A1 (en) Sheet-shaped stretchable structure, and resin composition for stretchable resin sheet and stretchable resin sheet used for the structure
KR101294647B1 (en) Adhesive composition for semiconductor, semiconductor device making use of the same and process for producing semiconductor device
JP2006528366A (en) High temperature pressure sensing device and method
WO2015080098A1 (en) Semiconductor resin composition, semiconductor resin film, and semiconductor device using same
JP2008542691A (en) Polymer strain sensor
CN105017980B (en) Constituent, anisotropic conductive film and the semiconductor device of anisotropic conductive film
JP6273920B2 (en) Conductive resin composition for resistance type pressure sensor and resistance type pressure sensor
JPWO2015178416A1 (en) Insulating high thermal conductive sheet with adhesive properties
US20140291870A1 (en) Resin composition, resin composition sheet, semiconductor device and production method therefor
WO2016088436A1 (en) Electrically conductive resin composition for resistance-type pressure sensor, resistance-type pressure sensor, resistance-type pressure sensor array, and pressure-sensor measurement system
US20160083537A1 (en) Resin composition, resin sheet, and production method for semiconductor device
WO2014058058A1 (en) Adhesive composition and film-shaped adhesive
JP6715926B2 (en) Adhesive composition and adhesive sheet
US20150072477A1 (en) Adhesive sheet for production of semiconductor device with bump electrode, and method for production of semiconductor device
TW200908821A (en) Metallic foil-clad laminate plate and printed wiring board
JP2002327162A (en) Anisotropically conductive adhesive composition, method for connecting circuit terminal and connection structure of the circuit terminal
US20160001528A1 (en) Electrical component
JP2008283167A (en) Printed wiring board and electronic apparatus
Subramanya et al. Realization of a micro composite based pressure sensor: Its performance study for linearity, hysteresis and sensitivity
JP2013093244A (en) Anisotropic conductive material and connection structure
JP7327700B1 (en) Rolled conductive bonding sheet, wiring board with metal reinforcing plate, and electronic device
JP2018203991A (en) Curable resin composition, cured product, adhesive, and adhesive film
JP4639988B2 (en) Resin film for end mark and adhesive tape with end mark
JP2011102374A (en) Adhesive composition, circuit connecting member and circuit member connecting structure
JP7226621B1 (en) Conductive composition, conductive sheet, metal reinforcing plate, wiring board with metal reinforcing plate, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865439

Country of ref document: EP

Kind code of ref document: A1