WO2016086477A1 - 一种于硅基片上直接生长石墨烯膜的方法 - Google Patents

一种于硅基片上直接生长石墨烯膜的方法 Download PDF

Info

Publication number
WO2016086477A1
WO2016086477A1 PCT/CN2014/095114 CN2014095114W WO2016086477A1 WO 2016086477 A1 WO2016086477 A1 WO 2016086477A1 CN 2014095114 W CN2014095114 W CN 2014095114W WO 2016086477 A1 WO2016086477 A1 WO 2016086477A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon substrate
graphene film
gas
directly
directly growing
Prior art date
Application number
PCT/CN2014/095114
Other languages
English (en)
French (fr)
Inventor
连丽君
Original Assignee
连丽君
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 连丽君 filed Critical 连丽君
Publication of WO2016086477A1 publication Critical patent/WO2016086477A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite

Definitions

  • the invention relates to the field of preparing new graphene materials, in particular to a method for directly growing a graphene film material on a silicon substrate, which is suitable for the growth preparation of a large-area graphene film material without transfer, and is a silicon substrate-graphite.
  • the manufacture of olefinic devices provides materials.
  • Graphene refers to a single layer of carbon atoms that are closely packed into a two-dimensional honeycomb lattice structure. It is the basic unit for constructing other dimensional carbon materials (zero-dimensional fullerene, one-dimensional carbon nanotubes, three-dimensional graphite). . Graphene material is the lightest and thinnest material known at present. The single layer is only atomic in thickness, and it has extremely excellent physicochemical properties. For example, graphene is a zero-bandgap semiconductor in which electrons move at speeds up to 1 speed of light.
  • graphene has such excellent properties, there are still many key problems to be solved in the preparation of graphene.
  • the international mainstream is to prepare graphene materials by epitaxial growth method. This method is based on transition metal catalyzed CVD method. It needs to be filled with carbon source gas (methane, ethane, acetylene, etc.) at high temperature, and the gas is decomposed and on the substrate.
  • carbon source gas methane, ethane, acetylene, etc.
  • the formation of graphene requires a high temperature of 1000 degrees or more, and requires hydrogen as a reducing gas.
  • the production conditions are strict, the reaction time is long, the yield is low, and the use of a large amount of dangerous gas increases the production cost and limits the graphene. Further application.
  • Si is a wide bandgap material with good electrical and thermal properties and can be used to prepare power devices, frequency devices, and the like.
  • the critical dimensions of silicon (Si) groups have reached the theoretical and technical limits, and quantum effects have become the main limiting mechanism.
  • Si silicon
  • the quality of contact with the silicon substrate provides a monolithic material for the silicon-graphene structure device.
  • the whole material is directly used to manufacture various devices, which improves the optical characteristics, reliability, repeatability, operability, cost and complexity of device manufacturing, and directly grows graphene film on silicon substrate.
  • the method will have important industrial significance and scientific research value.
  • the object of the present invention is to overcome the above disadvantages and provide a super-large area with high operation area, high controllability, high transmittance and high light transmittance in a non-hydrogen environment.
  • a method of preparing a silicon-graphene thin film device is to overcome the above disadvantages and provide a super-large area with high operation area, high controllability, high transmittance and high light transmittance in a non-hydrogen environment.
  • the silicon substrate is used as a substrate. After reasonable pretreatment, the substrate is placed in a mixture of a metal phthalocyanine compound and an inorganic salt. Under a certain atmosphere and temperature, the metal phthalocyanine compound is thermally cracked, and finally on the silicon substrate. Direct growth yields a highly oriented graphene film.
  • the silicon substrate pretreatment method is as follows: firstly, the silicon substrate of a certain size obtained by cutting is sequentially placed in acetone, ethanol, deionized water for ultrasonic cleaning, each time for 10 to 20 minutes, and then from deionized water. The substrate is taken out and dried with high-purity nitrogen gas; then the silicon substrate is immediately intruded into a mixed solution of concentrated sulfuric acid and hydrogen peroxide, and boiled for 30 to 50 minutes, and the ratio of concentrated sulfuric acid to hydrogen peroxide is a volume ratio of 7:3 to 9:1. between. Finally, the silicon substrate was taken out and dried with high-purity nitrogen gas, and directly placed in a mixture of a metal phthalocyanine compound and an inorganic salt.
  • the treated silicon substrate is laid flat or side-mounted, and is buried in a mixture of a salt and a phthalocyanine.
  • the phthalocyanine-based substance includes a non-metal phthalocyanine substance, a metal phthalocyanine substance, a metal oxide phthalocyanine substance, a polymer containing a phthalocyanine ring structure, and a porphyrin group containing a phthalocyanine ring-like structure. polymer.
  • the inorganic salt reaction bed is filled with an inorganic salt for a high temperature resistant container;
  • the inorganic salt is a mixture of one or more of a sodium salt, a potassium salt, a sulfate salt, a hydrochloride salt, and a nitrate salt.
  • the mass ratio of the inorganic salt to the phthalocyanine-based substance is from 1 to 99%.
  • the inorganic salt and the reaction raw material are uniformly mixed by uniformly mixing the phthalocyanine substance and the inorganic salt before the temperature rise or after the inorganic salt is melted, and uniformly adding the phthalocyanine substance to the inorganic salt reaction bed.
  • the shielding gas is one of nitrogen gas, argon gas, argon/hydrogen gas mixture, argon gas/ammonia gas mixture gas, nitrogen/hydrogen gas mixture gas, nitrogen/ammonia gas mixture gas, and the shielding gas flow rate is controlled at 10- 50cm 3 ⁇ min -1 between.
  • the mixed gas volume ratio is from 0.1:9.9 to 1:9.
  • the cleavage temperature is 600-1000 ° C
  • the cleavage time is 4-24 h.
  • the cleavage reaction can be carried out in the absence of a catalyst or a metal catalyst, which is a copper foil, a copper mesh, a nickel foil, a nickel foam, a copper alloy or a nickel alloy.
  • a catalyst or a metal catalyst which is a copper foil, a copper mesh, a nickel foil, a nickel foam, a copper alloy or a nickel alloy.
  • the conductivity of the device is improved, and the square resistance test reaches 1 ⁇ -1 , which is equivalent to the conductivity of copper.
  • the invention is obtained in a non-hydrogen environment, does not require a metal as a catalyst, and the method is safe, environmentally friendly and simple; the thickness, structure and size of the obtained graphene film are easy to control and have high planar orientation; the grown graphene does not need a transfer process It can be directly used to manufacture various devices, improve the electrical characteristics, reliability, and reduce the complexity of device manufacturing, and is expected to achieve industrial production.
  • FIG. 1 is a sample of a silicon substrate device deposited with a graphene film according to an embodiment of the present invention
  • TEM 2 is a transmission electron microscope (TEM) spectrum of a graphene film on a silicon substrate according to an embodiment of the present invention (baking temperature: 800 ° C, raw material is copper phthalocyanine);
  • FIG 3 is a Raman diagram of a graphene film on a silicon substrate according to an embodiment of the present invention (a calcination temperature of 800 ° C, a raw material of copper phthalocyanine);
  • FIG. 4 is a Raman spectrum of a graphene film on a silicon substrate according to an embodiment of the present invention (a calcination temperature of 800 ° C, a raw material of nickel phthalocyanine);
  • FIG. 5 is a Raman spectrum of a graphene film on a silicon substrate according to an embodiment of the present invention (a calcination temperature of 800 ° C, and the raw material is a non-metal phthalocyanine).
  • a silicon substrate is used as a substrate, and after reasonable pretreatment, the substrate is placed in a mixture of a phthalocyanine compound and sodium chloride, wherein a mixing ratio of the phthalocyanine compound to sodium chloride is qualitative. The ratio is 1:99 to 10:90.
  • a temperature-programming technique it is calcined in an inert atmosphere at 600 to 1000 ° C for 4 to 10 hours, and finally grown directly on a silicon substrate to obtain a highly oriented graphene film.
  • the pretreatment method of the silicon substrate is as follows: firstly, the silicon substrate of a certain size obtained by cutting is sequentially placed in acetone, ethanol and deionized water for ultrasonic cleaning for 10 to 20 minutes each time, and then the substrate is taken out from the deionized water. After drying with high-purity nitrogen gas, the silicon substrate is immediately intruded into a mixed solution of concentrated sulfuric acid and hydrogen peroxide, and boiled for 30 to 50 minutes, and the ratio of concentrated sulfuric acid to hydrogen peroxide is between 7:3 and 9:1 by volume. Finally, the silicon substrate was taken out and dried with high-purity nitrogen gas, and directly placed in a mixture of a metal phthalocyanine compound and an inorganic salt.
  • Example 1 The embodiment is as follows. After the treatment, the silicon substrate is placed in a mixture of copper phthalocyanine and sodium chloride salt, and the mass ratio of the mixture is 1:99, and the mixture is baked at 800 ° C for 4 hours under an argon atmosphere, and finally Direct growth on a silicon substrate yields a highly oriented graphene film.
  • the appearance sample of the device is shown in Fig. 1 of the specification, and the transmission electron microscope pattern of the graphene film deposited on the silicon substrate is as shown in Fig. 1 of the specification.
  • the Raman spectrum of the device is shown in Fig. 3 of the accompanying drawings.
  • Embodiment 2 The embodiment is as follows. After the treatment, the silicon substrate is placed in a mixture of copper phthalocyanine and sodium chloride salt, and the mass ratio of the mixture is 1:99, and the mixture is baked at 600 ° C for 4 hours under an argon atmosphere, and finally Direct growth on a silicon substrate yields a highly oriented graphene film.
  • Embodiment 3 The embodiment is as follows. After the treatment, the silicon substrate is placed in a raw material of nickel phthalocyanine and chlorine. The mixture of sodium salts was mixed at a mass ratio of 1:99, and calcined at 800 ° C for 4 hours under an argon atmosphere, and finally grown directly on a silicon substrate to obtain a highly oriented graphene film. The Raman spectrum of this device is shown in Figure 4 of the specification.
  • Embodiments are as follows. After the treatment, the silicon substrate is placed in a mixture of nickel phthalocyanine and sodium chloride as a raw material, and the mass ratio of the mixture is 1:99, and calcined at 600 ° C for 4 hours under an argon atmosphere, and finally Direct growth on a silicon substrate yields a highly oriented graphene film.
  • Embodiments are as follows. After the treatment, the silicon substrate is placed in a mixture of a non-metal phthalocyanine and a sodium chloride salt, and the mass ratio of the mixture is 1:99, and calcined at 800 ° C for 4 hours under an argon atmosphere, and finally Direct growth on a silicon substrate yields a highly oriented graphene film.
  • the Raman spectrum of this device is shown in Figure 5 of the specification.
  • Embodiments are as follows. After the treatment, the silicon substrate is placed in a mixture of a non-metal phthalocyanine and a sodium chloride salt, and the mass ratio of the mixture is 1:99, and calcined at 600 ° C for 4 hours under an argon atmosphere, and finally Direct growth on a silicon substrate yields a highly oriented graphene film.

Abstract

本发明公开了一种于硅基片上直接生长石墨烯膜的方法,以半导体硅基片作为衬底,在对硅基片进行合理预处理后,以酞菁类化合物为固体碳源,通过固相热裂解技术,在一定气氛条件下,调节反应温度、气氛种类、流速等条件,在硅基片上直接生长得到石墨烯膜,沉积有石墨烯膜的硅基片器件样片如摘要附图所示。且硅基片由于表面均匀覆盖石墨烯膜后,方阻测试达到1Ω·□-1与铜导电性相当。本发明于非氢环境得到,无需金属作为催化剂,方法安全、环保、简单;得到石墨烯膜的厚度、结构、尺寸容易控制,且具有高度平面取向性;生长的石墨烯无需转移过程,便可直接用于制造各种器件,提高了器件的电学特性,可靠性,降低器件制造复杂性,有望实现工业化生产。

Description

一种于硅基片上直接生长石墨烯膜的方法 技术领域
本发明涉及石墨烯新材料制备领域,特别涉及一种在硅基片上直接生长得到石墨烯膜材料的方法,适用于无需转移的大面积石墨烯膜材料的生长制备,并为硅基片-石墨烯器件的制造提供材料。
背景技术
石墨烯(graphene)是指紧密堆积成二维蜂窝状晶格结构的单层碳原子,他是构建其他维数炭材料(零维富勒烯、一维纳米碳管、三维石墨)的基本单元。石墨烯材料是目前已知最轻最薄的材料,单层仅原子厚度,它具有极其优异的物理化学性质,比如石墨烯是一种零带隙半导体,电子在其中运动速度可达光速的1/300;石墨烯载流子迁移速率高达2×105cm2·V-1·S-1,是Si的数百倍;超强的机械性能,杨氏模量约1000GPa;极高的比表面积和极好的气敏性;极高的透明性和柔韧性,而且它与衬底不存在失配问题,可以与Si基器件工艺完全兼容,具有突出的产业优势。因此石墨烯的出现为产业界和科学界带来曙光,它是最被看好的替代Si成为下一代基础半导体材料的新材料。同时由于石墨烯独特的结构及优异的电学、热学和力学性能,可望在高功能纳电子器件、复合材料、催化材料、电池材料、场发射 材料、气体传感器及气体存储等领域获得广泛应用。
尽管石墨烯具有如此优异的性质,但是目前在石墨烯的制备方面仍然存在很多亟待解决的关键问题。目前国际主流是以外延生长法制备石墨烯材料,这种方法是基于过渡金属催化的CVD法,需要在高温下,充入碳源气体(甲烷、乙烷、乙炔等),气体分解并在基底形成石墨烯,该方法需要1000度以上的高温,且需要氢气作为还原性气体,对生产条件要求严格,反应时间长,产率低下,且大量危险气体的使用增加了生产成本也限制了石墨烯的进一步应用。且石墨烯从基底(如铜、镍、碳化硅等衬底)上剥离也十分困难,往往采用强酸腐蚀、高温气化等极端方法,不仅成本高、环境污染大、也损伤了石墨烯成品。如发明专利CN102903616、CN102891074、CN101285175A等。因此必须突破现有技术的限制,从工艺上探索新的合成石墨烯器件方法,实现无转移的大面积洁净石墨烯薄膜的生长方法。
Si是一种宽禁带材料,具有良好的电学和热学性能,可用于制备功率器件,频率器件等。目前硅(Si)基的关键尺寸已经达到理论和技术极限,量子效应已经成为主要限制机制。石墨烯发现之后,如果能够使其在硅基片上直接生长得到大面积,质量高的石墨烯膜,这必将减小晶格失配,避免转移过程中残胶引起的性能退化,提高石墨烯 和硅衬底接触质量,为硅-石墨烯结构器件提供整体材料。同时整体材料直接用于制造各种器件,提高了器件的光学特性、可靠性、可重复性、可操作性、降低了器件制造的成本和复杂性,硅基片上直接生长得到石墨烯膜的技术方法必将具有重要的产业意义和科学研究价值。
发明内容
本发明的目的在于克服上述缺点,提供一种操作简单、易于控制、成本低、非氢环境下,在硅基片上直接生长得到面积大、导电率高、透光率高的超大面积高质量的硅-石墨烯薄膜器件的制备方法。
为实现上述目的,本发明采用的技术方案是:
采用硅基片作为衬底,经过合理预处理后将基片放入金属酞菁化合物与无机盐的混合物中,在一定的气氛,温度条件下,金属酞菁化合物热裂解,最终在硅基片上直接生长得到具有高度取向的石墨烯膜。
进一步地,硅基片预处理方式为:首先将切割得到的一定尺寸大小的硅基片依次放入丙酮、乙醇、去离子水中进行超声清洗,每次时间10~20分钟,之后从去离子水中取出基片,用高纯氮气吹干;之后将硅基片立即侵入浓硫酸和双氧水的混合溶液中,煮沸30~50分钟,浓硫酸与双氧水的比例为体积比7:3~9:1之间。最后取出硅基片用高纯氮气吹干,直接放入金属酞菁化合物与无机盐的混合物中。
进一步地,处理后的硅基片平放或者侧放,掩埋于盐类与酞菁类物质混合物中。
进一步地,所述酞菁类物质包括非金属酞菁类物质、金属酞菁类物质、金属氧化物酞菁类物质、含有酞菁环结构的高分子和含类酞菁环结构的卟啉类聚合物。
进一步地,所述无机盐反应床为耐高温的容器装填无机盐;所述无机盐为钠盐、钾盐、硫酸盐、盐酸盐、硝酸盐的一种或几种的混合。
进一步地,无机盐与酞菁类物质的质量比为1-99%。
进一步地,所述将无机盐与反应原料混合均匀,方法为:酞菁类物质与无机盐在升温前混合均匀或在无机盐熔融后,将酞菁类物质均匀加入无机盐反应床中。
进一步地,所述保护气体为氮气、氩气、氩气/氢气混合气、氩气/氨气混合气、氮气/氢气混合气、氮气/氨气混合气之一,保护气体流速控制在10-50cm3·min-1之间。
进一步地,所述混合气体积比为0.1:9.9-1:9。
进一步地,所述裂解温度为600-1000℃,裂解时间为4-24h。
进一步地,裂解反应可在无催化剂或有金属催化剂条件下进行,所述金属催化剂为铜箔、铜网、镍箔、泡沫镍、铜合金或镍合金。
半导体的硅基片由于表面均匀覆盖导电石墨烯膜后,器件导电性提高,方阻测试达到1Ω·□-1,与铜导电性相当。本发明是在非氢环 境中得到,无需金属作为催化剂,方法安全、环保、简单;所得到石墨烯膜的厚度、结构、尺寸容易控制,且具有高度平面取向性;生长的石墨烯无需转移过程,便可以直接用于制造各种器件,提高了器件的电学特性,可靠性,降低了器件制造复杂性,有望实现工业化生产。
附图说明
图1为本发明实施例提供的沉积有石墨烯膜的硅基片器件样片;
图2为本发明实施例提供的硅基片上石墨烯膜的透射电镜(TEM)图谱(焙烧温度800℃,原料为酞菁铜);
图3为本发明实施例提供的硅基片上石墨烯膜的拉曼(Raman)图谱(焙烧温度800℃,原料为酞菁铜);
图4为本发明实施例提供的硅基片上石墨烯膜的拉曼(Raman)图谱(焙烧温度800℃,原料为酞菁镍);
图5为本发明实施例提供的硅基片上石墨烯膜的拉曼(Raman)图谱(焙烧温度800℃,原料为非金属酞菁)。
具体实施方式
采用硅基片作为衬底,经过合理预处理后将基片放入酞菁类化合物与氯化钠的混合物中,其中酞菁类化合物与氯化钠的混合比例为质 量比1:99~10:90。采用程序升温技术,于600~1000℃惰性气氛下,焙烧4~10小时,最终在硅基片上直接生长得到具有高度取向的石墨烯膜。
硅基片预处理方式为:首先将切割得到的一定尺寸大小的硅基片依次放入丙酮、乙醇、去离子水中进行超声清洗,每次时间10~20分钟,之后从去离子水中取出基片,用高纯氮气吹干;之后将硅基片立即侵入浓硫酸和双氧水的混合溶液中,煮沸30~50分钟,浓硫酸与双氧水的比例为体积比7:3~9:1之间。最后取出硅基片用高纯氮气吹干,直接放入金属酞菁化合物与无机盐的混合物中。
实施例一:实施方式如上,处理后硅基片放入原料为酞菁铜与氯化钠盐的混合物中,混合物质量比例为1:99,于800℃氩气气氛下焙烧4小时,最终在硅基片上直接生长得到具有高度取向的石墨烯膜。此器件的外观样片如说明书附图1所示,硅基片沉积石墨烯膜的透射电镜图谱如说明书附图1所示,此器件的拉曼图谱如说明书附图附图3所示。
实施例二:实施方式如上,处理后硅基片放入原料为酞菁铜与氯化钠盐的混合物中,混合物质量比例为1:99,于600℃氩气气氛下焙烧4小时,最终在硅基片上直接生长得到具有高度取向的石墨烯膜。
实施例三:实施方式如上,处理后硅基片放入原料为酞菁镍与氯 化钠盐的混合物中,混合物质量比例为1:99,于800℃氩气气氛下焙烧4小时,最终在硅基片上直接生长得到具有高度取向的石墨烯膜。此器件的拉曼图谱如说明书附图4所示。
实施例四:实施方式如上,处理后硅基片放入原料为酞菁镍与氯化钠盐的混合物中,混合物质量比例为1:99,于600℃氩气气氛下焙烧4小时,最终在硅基片上直接生长得到具有高度取向的石墨烯膜。
实施例五:实施方式如上,处理后硅基片放入原料为非金属酞菁与氯化钠盐的混合物中,混合物质量比例为1:99,于800℃氩气气氛下焙烧4小时,最终在硅基片上直接生长得到具有高度取向的石墨烯膜。此器件的拉曼图谱如说明书附图5所示。
实施例六:实施方式如上,处理后硅基片放入原料为非金属酞菁与氯化钠盐的混合物中,混合物质量比例为1:99,于600℃氩气气氛下焙烧4小时,最终在硅基片上直接生长得到具有高度取向的石墨烯膜。

Claims (9)

  1. 一种于硅基片上直接生长石墨烯膜的方法,其特征在于:采用硅基片作为衬底,经过合理预处理后将基片放入金属酞菁化合物与无机盐的混合物中,在一定的气氛,温度条件下,金属酞菁化合物热裂解,最终在硅基片上直接生长得到具有高度取向的石墨烯膜。
  2. 如权利要求1所述的于硅基片上直接生长石墨烯膜的方法,其特征在于:所述酞菁类物质包括非金属酞菁类化合物、金属酞菁类化合物、金属氧化物酞菁类化合物、含有酞菁环结构的高分子和含类酞菁环结构的卟啉类聚合物。
  3. 如权利要求1所述的于硅基片上直接生长石墨烯膜的方法,其特征在于:所述无机盐为为钠盐、钾盐、硫酸盐、盐酸盐、硝酸盐的一种或几种的混合。
  4. 如权利要求1所述的于硅基片上直接生长石墨烯膜的方法,其特征在于:硅基片预处理方式为:首先将切割得到的一定尺寸大小的硅基片依次放入丙酮、乙醇、去离子水中进行超声清洗,每次时间10~20分钟,之后从去离子水中取出基片,用高纯氮气吹干;之后将硅基片立即侵入浓硫酸和双氧水的混合溶液中,煮沸30~50分钟,浓硫酸与双氧水的比例为体积比7:3,最后取出硅基片用高纯氮气吹干,直接放入金属酞菁化合物与无机盐的混合物中。
  5. 如权利要求1所述的于硅基片上直接生长石墨烯膜的方法,其特征在于:所述保护气体为氮气、氩气、氩气/氢气混合气、氩气/氨气混合气、氮气/氢气混合气、氮气/氨气混合气之一,保护气体流速控制在10~50cm3·min-1之间。
  6. 如权利要求1所述的于硅基片上直接生长石墨烯膜的方法,其特征在于:所述混合气体积比为0.1:9.9~1:9。
  7. 如权利要求1所述的于硅基片上直接生长石墨烯膜的方法,其特征在于:所述裂解温度为600~1000℃。
  8. 如权利要求1所述的于硅基片上直接生长石墨烯膜的方法,其特征在于:所述裂解时间为4~24小时。
  9. 如权利要求1所述的于硅基片上直接生长石墨烯膜的方法,其特征在于:裂解反应可在无催化剂或有金属催化剂条件下进行,所述金属催化剂为铜箔、铜网、镍箔、泡沫镍、铜合金或镍合金。
PCT/CN2014/095114 2014-12-03 2014-12-26 一种于硅基片上直接生长石墨烯膜的方法 WO2016086477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410727526.XA CN104477889A (zh) 2014-12-03 2014-12-03 一种于硅基片上直接生长石墨烯膜的方法
CN201410727526.X 2014-12-03

Publications (1)

Publication Number Publication Date
WO2016086477A1 true WO2016086477A1 (zh) 2016-06-09

Family

ID=52752534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095114 WO2016086477A1 (zh) 2014-12-03 2014-12-26 一种于硅基片上直接生长石墨烯膜的方法

Country Status (2)

Country Link
CN (1) CN104477889A (zh)
WO (1) WO2016086477A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148993A (zh) * 2021-04-20 2021-07-23 中国航发北京航空材料研究院 一种氮掺杂石墨烯水系浆料的制备方法
CN109136842B (zh) * 2018-08-22 2021-07-27 中国科学院宁波材料技术与工程研究所 石墨烯薄膜及其制备方法
CN113651356A (zh) * 2021-08-16 2021-11-16 电子科技大学 核壳空腔结构二氧化钛石墨烯复合体制备方法及其应用
CN114774856A (zh) * 2022-04-28 2022-07-22 常州二维碳素科技股份有限公司 石墨烯导热膜制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106927453B (zh) * 2017-02-16 2018-12-04 北京大学 一种在pecvd中实现纵向及横向石墨烯可控制备的方法
CN108862189B (zh) * 2018-07-10 2020-06-16 浙江大学 一种光催化制氢器件
CN109712742B (zh) * 2018-12-17 2021-01-01 中国科学院合肥物质科学研究院 一种具有高导电能力的石墨烯晶体薄膜及其制备方法
CN110002427B (zh) * 2019-05-05 2020-11-17 深圳第三代半导体研究院 一种高导热碳膜及其制备方法
CN110323127B (zh) * 2019-06-04 2021-07-06 浙江大学 一种利用peald在硅衬底上生长石墨烯的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090314350A1 (en) * 2008-06-18 2009-12-24 Korea Advanced Institute Of Science And Technology Organic solar cells and method of manufacturing the same
CN101844760A (zh) * 2010-04-29 2010-09-29 中国科学院化学研究所 一种还原氧化石墨烯的制备方法与应用
CN102134067A (zh) * 2011-04-18 2011-07-27 北京大学 一种制备单层石墨烯的方法
CN103352249A (zh) * 2013-06-14 2013-10-16 中国科学院上海微***与信息技术研究所 增大化学气相沉积石墨烯单晶晶畴尺寸的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285175B (zh) * 2008-05-29 2010-07-21 中国科学院化学研究所 化学气相沉积法制备石墨烯的方法
CN103663441B (zh) * 2013-12-04 2016-03-23 四川环碳科技有限公司 一种固相裂解法制备氮杂石墨烯和纳米金属石墨烯的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090314350A1 (en) * 2008-06-18 2009-12-24 Korea Advanced Institute Of Science And Technology Organic solar cells and method of manufacturing the same
CN101844760A (zh) * 2010-04-29 2010-09-29 中国科学院化学研究所 一种还原氧化石墨烯的制备方法与应用
CN102134067A (zh) * 2011-04-18 2011-07-27 北京大学 一种制备单层石墨烯的方法
CN103352249A (zh) * 2013-06-14 2013-10-16 中国科学院上海微***与信息技术研究所 增大化学气相沉积石墨烯单晶晶畴尺寸的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136842B (zh) * 2018-08-22 2021-07-27 中国科学院宁波材料技术与工程研究所 石墨烯薄膜及其制备方法
CN113148993A (zh) * 2021-04-20 2021-07-23 中国航发北京航空材料研究院 一种氮掺杂石墨烯水系浆料的制备方法
CN113651356A (zh) * 2021-08-16 2021-11-16 电子科技大学 核壳空腔结构二氧化钛石墨烯复合体制备方法及其应用
CN113651356B (zh) * 2021-08-16 2022-04-29 电子科技大学 核壳空腔结构二氧化钛石墨烯复合体制备方法及其应用
CN114774856A (zh) * 2022-04-28 2022-07-22 常州二维碳素科技股份有限公司 石墨烯导热膜制备方法

Also Published As

Publication number Publication date
CN104477889A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2016086477A1 (zh) 一种于硅基片上直接生长石墨烯膜的方法
Geng et al. Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides
Wang et al. A review of graphene synthesisatlow temperatures by CVD methods
Zhang et al. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis
Huang et al. Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates
Yu et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition
Tan et al. Structure, preparation, and applications of 2D material‐based metal–semiconductor heterostructures
Huan et al. Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications
Wang et al. Direct CVD graphene growth on semiconductors and dielectrics for transfer‐free device fabrication
Wu et al. A review of graphene synthesis by indirect and direct deposition methods
CN102229426B (zh) 一种单层、有序排布的等角六边形石墨烯的制备方法
Yeh et al. Single-step growth of graphene and graphene-based nanostructures by plasma-enhanced chemical vapor deposition
Geng et al. Controlled growth of single-crystal twelve-pointed graphene grains on a liquid Cu surface
Yang et al. Large single crystal SnS2 flakes synthesized from coevaporation of Sn and S
Chand et al. Borophene and boron‐based nanosheets: recent advances in synthesis strategies and applications in the field of environment and energy
Wang et al. Two-dimensional wide band-gap nitride semiconductor GaN and AlN materials: properties, fabrication and applications
Ma et al. Tuning the doping types in graphene sheets by N monoelement
CN102583337A (zh) 多孔结构石墨烯材料的制备方法
US9249026B2 (en) Method for preparing graphene from biomass-derived carbonaceous mesophase
CN104876217A (zh) 一种石墨烯的制备方法
CN103183344A (zh) 一种低温高效制备大尺寸石墨烯的方法
TWI526559B (zh) 藉由物理氣相沉積法在基板上成長碳薄膜或無機材料薄膜的方法
Huet et al. Pressure-controlled chemical vapor deposition of single-layer graphene with millimeter-size domains on thin copper film
CN103011136A (zh) 一种合成石墨烯薄膜的方法
CN103194795A (zh) 一种低成本制备大尺寸单晶石墨烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907215

Country of ref document: EP

Kind code of ref document: A1