WO2016086347A1 - 一种电动麻醉呼吸装置 - Google Patents

一种电动麻醉呼吸装置 Download PDF

Info

Publication number
WO2016086347A1
WO2016086347A1 PCT/CN2014/092733 CN2014092733W WO2016086347A1 WO 2016086347 A1 WO2016086347 A1 WO 2016086347A1 CN 2014092733 W CN2014092733 W CN 2014092733W WO 2016086347 A1 WO2016086347 A1 WO 2016086347A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
electric
breathing
driving
anesthetic
Prior art date
Application number
PCT/CN2014/092733
Other languages
English (en)
French (fr)
Inventor
蔡琨
陈培涛
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2014/092733 priority Critical patent/WO2016086347A1/zh
Priority to CN201480017307.0A priority patent/CN105517613A/zh
Publication of WO2016086347A1 publication Critical patent/WO2016086347A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/01Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes specially adapted for anaesthetising

Definitions

  • the invention relates to the field of anesthesia machines, and in particular to an electric anesthesia breathing apparatus.
  • An anesthesia machine is a device primarily used to provide oxygen, anesthesia, and respiratory support during a patient's surgery.
  • the anesthesia machine has both electric and pneumatic structures in the field of mechanical ventilation, and has a corresponding respiratory system for use with them, such as the rebreathing system.
  • part of the gas exhaled by the patient will be repeatedly inhaled as inhaled gas, which is beneficial to maintain the temperature and humidity of the patient's inhaled gas; at the same time, the anesthetic is retained as a relatively expensive gas component for reducing the environment. Pollution and cost savings play a very important role.
  • both manual and automatic ventilation are available. Medical professionals can select manual ventilation by manual and automatic selection switches for different stages of anesthesia treatment and clinical needs.
  • the electric ventilation control mode of the anesthesia breathing apparatus has obvious advantages in gas saving and ease of use compared with the pneumatic method.
  • the electric ventilation control of the existing electric anesthesia breathing apparatus mainly adopts a structure of a piston, a turbine and the like, and mainly has the following problems: since the piston and the turbine are placed in the anesthetic breathing system, the impeller, the rotating shaft and the impeller casing of the turbine are all combined with the anesthetic gas and the patient. Exhaled gas is in direct contact, and disinfection and maintenance operations are cumbersome.
  • the turbine is a precision device, the presence and corrosion of impurities directly affects the performance of the turbine and the control accuracy of the machine.
  • One existing method is to add a filter after the breathing port and the absorption tank to reduce the degree of contamination of the turbine components, but the difference between long-term use and actual use causes cleaning and maintenance problems to be completely avoided, and maintenance costs are high. And will affect customer satisfaction.
  • the technical problem to be solved by the present invention is to provide an electric anesthesia breathing apparatus capable of providing a continuous airflow to an anesthetic breathing system to ensure continuity of ventilation; further reducing the cleaning and maintenance cost of the electric supercharging device.
  • an embodiment of the present invention provides an electric anesthesia breathing apparatus comprising: a gas input port for inputting oxygen and an anesthetic; a breathing port for exhaling and inhaling a patient; respectively connected to a first gas passage between the gas input port and the breathing port, the first gas passage being connected to the suction check valve; respectively connected between the gas input port and the breathing port a gas passage, a second gas passage is connected to the exhalation check valve, and an absorption device for absorbing carbon dioxide is connected between the gas input port and the exhalation check valve;
  • the electric anesthesia breathing device further comprises: for anesthesia respiratory system a booster pump that provides driving power; a reflecting device connected to the booster pump, the reflecting device includes a driving gas inlet and a driving gas outlet, the boosting pump is connected to the driving gas inlet, and an exhaust valve is connected to the driving gas inlet The drive gas outlet is connected between the absorption device and the exhalation check valve.
  • the booster pump is a turbine.
  • the radiation device is a volume reflector.
  • the volume reflector comprises a small conduit for isolating the driving gas propelled from the booster pump into the volume reflector and the gas in the anesthetic breathing system.
  • the electric anesthesia breathing apparatus further comprises an exhalation valve connected to the second gas passage for measuring a peep value of the exhaled gas.
  • an electric anesthesia breathing apparatus comprising: an anesthetic breathing system, the electric anesthesia breathing apparatus further comprising: an electric supercharging device for providing driving power to the anesthetic breathing system a reflecting device connected to the electric charging device for transmitting and applying driving power to the anesthetic breathing system, the reflecting device comprising a driving gas inlet and a driving gas outlet, the electric charging device being connected to the driving gas inlet, and the driving gas outlet connected
  • the electric boosting device comprises: a booster pump connected to the driving gas inlet.
  • the booster pump is a turbine.
  • the reflecting device is a volume reflector, a folding capsule or other diaphragm device.
  • the volume reflector comprises a small conduit for isolating the driving gas propelled from the booster pump into the volume reflector and the gas in the anesthetic breathing system.
  • the anesthetic respiratory system includes: a gas input port for inputting oxygen and an anesthetic; a breathing port for exhaling and inhaling the patient; and a first gas passage connected between the gas input port and the breathing port, respectively a gas passage is connected to the suction check valve; respectively connected to the second gas passage between the gas input port and the breathing port, and the second gas passage is connected to the exhalation check valve, the gas input port and the exhalation one-way An absorption device for absorbing carbon dioxide is connected between the valves.
  • the driving gas outlet is connected between the absorption device and the exhalation check valve.
  • the electric anesthesia breathing apparatus further comprises an access to the second gas passage for measuring the exhalation Exhalation valve with gas peep value.
  • the electric anesthesia breathing apparatus further comprises an exhalation valve connected between the exhaust valve and the driving gas inlet for measuring the peep value of the exhaled gas.
  • the electric supercharging device comprises: an exhaust valve connected to the driving gas inlet for measuring the peep value of the exhaled gas.
  • the electric anesthesia breathing apparatus has the following beneficial effects: an electric supercharging device that provides driving power for an anesthetic breathing system is placed outside the anesthetic breathing system, and a driving gas is supplied to the anesthetic breathing machine in a pneumatic manner compared with the conventional method.
  • the method is more gas-saving and more convenient to use. At the same time, it can also avoid cleaning and maintenance of the booster pump such as the turbine, which can reduce the maintenance cost of the device.
  • FIG. 1 is a block diagram showing the structure of an electric anesthesia breathing apparatus according to an embodiment of the present invention.
  • FIG. 1 there is shown a first embodiment of the electric anesthesia breathing apparatus of the present invention.
  • the electric anesthesia breathing apparatus in this embodiment comprises: an anesthetic breathing system, a volume reflector 2 and an electric charging device 3, wherein the volume reflector 2 comprises a driving gas inlet 21 and a driving gas outlet 22, and the electric charging device 3 is connected At one end of the drive gas inlet 21, one end of the drive gas outlet 22 is connected to the anesthetic breathing system.
  • the electric supercharging device 3 connects the anesthesia breathing system through the volume reflector 2 and provides driving power to the anesthesia breathing system.
  • the anesthetic breathing system in this embodiment includes: a gas input port for inputting oxygen and an anesthetic 11.
  • a breathing port 12 for exhaling and inhaling the patient ;
  • the first gas passage 13 and the second gas passage 15 are respectively disposed, and the suction check valve 14 is disposed in the first gas passage 13, and the exhalation check valve 16 is disposed in the second gas passage 15, in order to establish
  • the patient passes through the breathing port 12 to perform a gas passage independent of each other during inhalation or exhalation.
  • the gas exhaled by the patient can be collected and used as a part of the inhaled gas when the patient inhales, and the other is beneficial. Keeping the temperature and humidity of the patient's inhaled gas can also preserve the more expensive anesthetic components, which can play an important role in reducing environmental pollution and saving costs.
  • the input oxygen and the anesthetic are input through the gas input port 11, and the gas input port 11 is connected to the first gas passage 13 and the second gas passage 15, respectively.
  • the first gas passage 13 is connected to the suction check valve 14 and then connected to the breathing port 12; in the second gas passage 15, the absorption device for absorbing carbon dioxide and the driving gas outlet 22 are sequentially connected for determining
  • the exhalation valve 4 exhaling the gas peep value and the exhalation check valve 16 are connected to the breathing port 12.
  • the absorption device may use a carbon dioxide absorption tank 17 or other device having the ability to adsorb a single gas or multiple gases.
  • the absorption tank 17 can absorb carbon dioxide passing through its gas, including the case where the gas is absorbed bidirectionally through the apparatus from top to bottom or from bottom to top as shown.
  • the exhalation valve 4 may not be provided, or it may be set at other positions of the electric anesthesia breathing apparatus to measure the peep value of the exhaled gas, for example, the exhalation valve 4 may be disposed at the position of the driving gas inlet 21, without affecting Implementation.
  • the volume reflector 2 is mainly composed of a small pipe in the present embodiment, and includes a driving gas inlet 21 and a driving gas outlet 22, the driving gas inlet 21 is connected to the electric charging device 3, and the driving gas outlet 22 is connected to the anesthetic breathing. Between the above-described absorption device 17 of the system and the expiratory check valve 16.
  • the function of setting the volume reflector 2 as a small pipe is that it can be operated by the electric supercharging device 3
  • the driving gas propelled into the volume reflector 2 is isolated from the gas in the anesthetic breathing system to prevent the loss of the anesthetic.
  • the volume reflector 2 can also provide a continuous airflow to the patient to avoid interruption of ventilation.
  • the volume of the volume reflector 2 needs to be larger than the tidal volume required by the patient, that is, it can satisfy the patient's inhaled volume, and it can also maximize the amount of anesthetic use.
  • the volume reflector 2 can also be replaced by other reflecting means, such as a folding capsule or a diaphragm reflecting device, which can store a certain amount of gas containing an anesthetic component during patient inhalation and exhalation switching.
  • the electric supercharging device 3 is for supplying driving power to the anesthetic breathing system, which in the present embodiment includes a booster pump 31 and an exhaust valve 32 which are respectively connected to the driving gas inlet 21.
  • the booster pump 31 may be provided as a device such as a turbine that can suck in gas from the outside and pressurize it.
  • the booster pump 31 is connected to the driving gas inlet 21, and is capable of supercharging after the booster pump 31 draws in gas from the outside air, and passes the gas containing the anesthetic component in the volume reflector 2 through the volume reflector 2 together with the gas inlet port.
  • the 11 input breathing gas is pushed to the breathing port 12 for the patient to inhale.
  • An exhaust valve 32 is coupled to the drive gas inlet 21 for effecting that excess gas in the volume reflector 2 will exit through the exhaust valve 32 as the patient exhales gas through the volume reflector 2. It should be noted that when the above-mentioned volume reflector 2 is replaced by a folding capsule, the exhaust valve 32 is also correspondingly set as a bursting valve, and when there is excess gas to bring the folded capsule to the top end, the gas in the anesthetic breathing system will be blasted. The valve is discharged. At the same time, the use of the volume reflector 2 with respect to the solution using the folding capsule makes the interface of the volume reflector 2 simpler and easier to replace and maintain.
  • the patient inhales through the breathing port 12, the boosting pump 31 draws in gas from the outside air and pressurizes, and the pressurized gas enters the volume reflector 2 from the driving gas inlet 21 and is pressurized therein.
  • the gas is pushed, and since the volume reflector 2 is composed of small tubes, it can provide a continuous air flow, avoid interruption of ventilation, and effectively isolate the gas in the driving gas and the anesthetic breathing system.
  • the drive gas outlet 22 is interposed between the absorption device 17 and the expiratory check valve 16, the exhalation check valve 16 can prevent gas from entering the breathing port 12 from that side.
  • the inhalation check valve 14 blocks the exhaled gas from entering the first A gas passage 13 through which the exhaled gas passes through the exhalation check valve 16 and the exhalation valve 4 enters the volume reflector 2.
  • fresh gas containing oxygen, anesthetic, etc., input from the gas inlet port 11 can also enter the volume reflector 2 via the absorption device 17, and the excess gas in the volume reflector 2 will be discharged through the exhaust valve 32.
  • the exhalation valve 4 can determine the peep value of the patient's exhaled gas.
  • the exhalation valve 4 may be disposed at the driving gas inlet 21, and at this time, the exhaust valve 32 may not be provided. At the same time, it is also possible to use other gas boosting devices other than the turbine, without affecting the implementation.
  • the electric supercharging device that provides driving power for the anesthesia breathing system is placed outside the anesthetic breathing system, which is more gas-saving and more convenient to use than the conventional pneumatically supplying the driving gas to the anesthetic breathing machine; It is not necessary to clean and maintain the booster pump such as the turbine, which can reduce the maintenance cost of the device.
  • the electric supercharging device provides a continuous airflow to the anesthetic breathing system through the volume reflector, which ensures continuity of ventilation and can avoid interruption of ventilation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

一种电动麻醉呼吸装置,包括:麻醉呼吸***,还包括:用以向麻醉呼吸***提供驱动动力的电动增压装置(3);连接在电动增压装置(3)上用以向麻醉呼吸***提供持续气流的反射装置(2),反射装置(2)包括驱动气体入口(21)和驱动气体出口(22),电动增压装置(3)连接在驱动气体入口(21)上,驱动气体出口(22)连接在麻醉呼吸***上,其中:电动增压装置(3)包括:连接在驱动气体入口(21)上的增压泵(31)。

Description

一种电动麻醉呼吸装置 技术领域
本发明涉及麻醉机领域,尤其涉及一种电动麻醉呼吸装置。
背景技术
麻醉机是主要用于在病人手术期间给其提供氧气、麻醉及呼吸支持的设备。麻醉机在机械通气领域存在电动和气动两种结构,并有相应的呼吸***与它们配合使用,例如:循环再呼吸***。在循环再呼吸***中,病人呼出的部分气体将作为吸入气体被重复吸入,这样有利于保持病人吸入气体的温度和湿度;同时,麻药作为一种比较昂贵的气体成分被保留下来,对于减少环境污染和节约成本起到非常重要的作用。应该注意的是,在多数的麻醉呼吸设备中,都提供手动和自动通气两种方式,医疗专业人员针对麻醉治疗的不同阶段和临床需要可以通过手动和自动选择开关,选择手动的通气方式。
麻醉呼吸装置的电动通气控制方式相较于气动方式在节省气体跟使用方便性上具有明显的优势。现有电动麻醉呼吸装置的电动通气控制主要采用活塞、涡轮等结构,其主要存在如下问题:由于活塞、涡轮置于麻醉呼吸***当中,涡轮的叶轮、转轴和叶轮壳体都与麻醉气体和病人呼出气体直接接触,消毒和维护作业繁琐。此外,由于涡轮属于精密器件,杂质的存在和腐蚀会直接影响到涡轮的工作性能和机器的控制精度。现有的一种方式是在呼吸端口和吸收罐之后增加过滤器,以减轻涡轮部件被污染的程度,但长时间使用和实际使用的差异导致清洁和维护的问题无法完全避免,维护成本较高,且会影响客户的满意度。
发明内容
本发明所要解决的技术问题在于,提供一种用于电动麻醉呼吸装置,能够向麻醉呼吸***提供连续气流,保证通气的连续性;进一步降低对电动增压装置的清洁维护成本。
为了解决上述技术问题,本发明的实施例提供了一种电动麻醉呼吸装置,包括:用以输入氧气和麻醉剂的气体输入口;用以供病人进行呼气和吸气的呼吸端口;分别连接在气体输入口和呼吸端口之间的第一气体通道,第一气体通道中接入吸气单向阀;分别连接在气体输入口和呼吸端口之间的第 二气体通道,第二气体通道中接入呼气单向阀,气体输入口和呼气单向阀之间接入用以吸收二氧化碳的吸收装置;电动麻醉呼吸装置还包括:用以向麻醉呼吸***提供驱动动力的增压泵;连接在增压泵上的反射装置,反射装置包括驱动气体入口和驱动气体出口,增压泵连接在驱动气体入口上,在驱动气体入口上还连接有一排气阀;驱动气体出口接入在吸收装置和呼气单向阀之间。
其中,增压泵为涡轮。
其中,放射装置为容量反射器。
其中,容量反射器包括细小管路,用以对由增压泵推进至容量反射器中的驱动气体和麻醉呼吸***中的气体进行隔离。
其中,所述电动麻醉呼吸装置还包括接入在所述第二气体通道中的用以测定呼出气体peep值的呼气阀。
为解决上述技术问题,本发明还提供的一种技术方案:一种电动麻醉呼吸装置,包括:麻醉呼吸***,电动麻醉呼吸装置还包括:用以向麻醉呼吸***提供驱动动力的电动增压装置;连接在电动增压装置上用以向麻醉呼吸***传递和施加驱动动力的反射装置,反射装置包括驱动气体入口和驱动气体出口,电动增压装置连接在驱动气体入口上,驱动气体出口连接在麻醉呼吸***上,其中:电动增压装置包括:连接在驱动气体入口上的增压泵。
其中,增压泵为涡轮。
其中,反射装置为容量反射器、折叠囊或其它隔膜装置。
其中,容量反射器包括细小管路,用以对由增压泵推进至容量反射器中的驱动气体和麻醉呼吸***中的气体进行隔离。
其中,麻醉呼吸***包括:用以输入氧气和麻醉剂的气体输入口;用以供病人进行呼气和吸气的呼吸端口;分别连接在气体输入口和呼吸端口之间的第一气体通道,第一气体通道中接入吸气单向阀;分别连接在气体输入口和呼吸端口之间的第二气体通道,第二气体通道中接入呼气单向阀,气体输入口和呼气单向阀之间接入用以吸收二氧化碳的吸收装置。
其中,驱动气体出口接入在吸收装置和呼气单向阀之间。
其中,电动麻醉呼吸装置还包括接入在第二气体通道中的用以测定呼出 气体peep值的呼气阀。
其中,电动麻醉呼吸装置还包括接入连接在排气阀和驱动气体入口之间的用以测定呼出气体peep值的呼气阀。
其中,电动增压装置包括:连接在驱动气体入口上的用以测定呼出气体peep值的排气阀。
实施本发明所提供的电动麻醉呼吸装置,具有如下有益效果:将为麻醉呼吸***提供驱动动力的电动增压装置放置在麻醉呼吸***的外部,相对于传统以气动方式向麻醉呼吸机提供驱动气体的方式更加节省气体、使用也更为方便;同时,也可以免于对涡轮等增压泵进行清洁维护,可以降低装置的维护成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例电动麻醉呼吸装置的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,为本发明电动麻醉呼吸装置的实施例一。
本实施例中的电动麻醉呼吸装置,包括:麻醉呼吸***、容量反射器2以及电动增压装置3,其中:容量反射器2包括驱动气体入口21和驱动气体出口22,电动增压装置3连接在驱动气体入口21的一端,驱动气体出口22的一端接入连接在麻醉呼吸***中。电动增压装置3通过容量反射器2连接麻醉呼吸***,并向麻醉呼吸***提供驱动动力。
本实施例中的麻醉呼吸***包括:用以输入氧气和麻醉剂的气体输入口 11、用以供病人进行呼气和吸气的呼吸端口12;分别连接在气体输入口11和呼吸端口12之间的第一气体通道13,第一气体通道13中接入吸气单向阀14;
分别连接在气体输入口11和呼吸端口12之间的第二气体通道15,第二气体通道15中接入呼气单向阀16,气体输入口11和呼气单向阀16之间接入用以吸收二氧化碳的吸收装置17。
其中:分别设置第一气体通道13和第二气体通道15,且在第一气体通道13中设置吸气单向阀14,在第二气体通道15中设置呼气单向阀16,是为了建立病人通过呼吸端口12进行吸气或呼气时相互独立的气体通道,一方面可对病人呼出的气体进行收集,将其作为病人吸气时吸气气体的一部分被重复吸入,另一方面有利于保持病人吸入气体的温度和湿度,也可以将较为昂贵的麻药成分保留下来,其可以对减小环境污染和节约成本起到重要的作用。
进一步的,输入氧气和麻醉剂由气体输入口11输入,气体输入口11分别连接第一气体通道13和第二气体通道15。其中,在第一气体通道13中接入吸气单向阀14后连至呼吸端口12;在第二气体通道15中依次接入用以吸收二氧化碳的吸收装置、驱动气体出口22、用以测定呼出气体peep值的呼气阀4以及呼气单向阀16后连至呼吸端口12。具体实施时,吸收装置可以使用二氧化碳吸收罐17或其它具有吸附某单一气体或多种气体能力的装置。吸收罐17可以对通过其气体中的二氧化碳进行吸收,包括如图所示气体由上至下通过该装置或由下至上通过该装置双向进行吸收的情况。当然,也可以不设置呼气阀4,或将其设置在电动麻醉呼吸装置的其它位置对呼出气体的peep值进行测定,例如呼气阀4可以设置在驱动气体入口21的位置,并不影响实施。
容量反射器2在本实施例中主要是由细小管路组成的设备,其包括驱动气体入口21和驱动气体出口22,驱动气体入口21连接电动增压装置3,驱动气体出口22连接在麻醉呼吸***的上述吸收装置17和呼气单向阀16之间。
将容量反射器2设置为细小管路的作用是:其可以对由电动增压装置3 推进至容量反射器2中的驱动气体和麻醉呼吸***中的气体进行隔离,防止麻药的损失。同时,容量反射器2也可以给病人提供持续的气流,避免通气中断。
可以理解的是:容量反射器2的容积需要大于病人所需的潮气量,也就是能够满足病人的吸入气量,其也能够最大程度的节省麻药的使用量。同时,容量反射器2也可以被其它反射装置进行替代,例如折叠囊或隔膜反射装置等,其能够在病人吸气和呼气转换时,将一定量含有麻药成分的气体进行储存。
电动增压装置3用以向麻醉呼吸***提供驱动动力,其在本实施例中包括分别连接在驱动气体入口21上的增压泵31和排气阀32。具体地,增压泵31可以设置为涡轮等能够从外界吸入气体并对其进行增压的设备。增压泵31连接驱动气体入口21,在当增压泵31从外界空气中吸入气体后能够进行增压,并通过容量反射器2将容量反射器2中含有麻药成分的气体连同由气体输入口11输入的呼吸气体推动至呼吸端口12供病人吸气使用。排气阀32连接在驱动气体入口21上,其作用是当病人呼出气体通过容量反射器2中时,容量反射器2中的多余气体将通过排气阀32排出。需要说明的是:当上述容量反射器2由折叠囊进行替换时,排气阀32也相应的设为***阀,当有多余气体使折叠囊达到顶端时,麻醉呼吸***中的气体会通过***阀排出。同时,使用容量反射器2相对于使用折叠囊的技术方案,容量反射器2的接口更简单,在更换和维护上更显简便。
本发明的电动麻醉呼吸装置在具体实施时,病人通过呼吸端口12吸气,增压泵31从外界空气吸入气体并增压,增压气体由驱动气体入口21进入容量反射器2并对其中的气体进行推动,由于容量反射器2由细小管路组成,其可以提供持续的气流,能够避免通气中断,还可有效隔离驱动气体和麻醉呼吸***中的气体。由于驱动气体出口22接入在吸收装置17和呼气单向阀16之间,呼气单向阀16能够阻止气体由该侧进入呼吸端口12。由驱动气体出口22排出的气体经吸收装置17的吸收后,去除其中的二氧化碳与由气体输入口11输入的含有氧气和麻醉剂等的新鲜气体汇合,通过吸气单向阀14后达到呼吸端口12处。当病人呼气时,吸气单向阀14阻止呼出气体进入第 一气体通道13,呼出气体通过呼气单向阀16以及呼气阀4后进入容量反射器2。在此过程中,由气体输入口11输入的含有氧气和麻醉剂等的新鲜气体也可经吸收装置17进入容量反射器2,容量反射器2中的多余气体将通过排气阀32排出。呼气阀4可以测定病人呼出气体的peep值。
实施本发明的电动麻醉呼吸装置的其它实施方式中,呼气阀4还可以设置在驱动气体入口21,此时,可以不设置排气阀32。同时,也可以使用除涡轮外的其它气体增压设备,并不影响实施。
实施本发明的电动麻醉呼吸装置,具有如下有益效果:
将为麻醉呼吸***提供驱动动力的电动增压装置放置在麻醉呼吸***的外部,相对于传统以气动方式向麻醉呼吸机提供驱动气体的方式更加节省气体、使用也更为方便;同时,也可以免于对涡轮等增压泵进行清洁维护,可以降低装置的维护成本。
进一步地,电动增压装置通过容量反射器向麻醉呼吸***提供连续的气流,可以保证通气的连续性,能够避免通气中断。

Claims (13)

  1. 一种电动麻醉呼吸装置,其中,包括:
    用以输入氧气和麻醉剂的气体输入口;
    用以供病人进行呼气和吸气的呼吸端口;
    分别连接在所述气体输入口和所述呼吸端口之间的第一气体通道,所述第一气体通道中接入吸气单向阀;以及
    分别连接在所述气体输入口和所述呼吸端口之间的第二气体通道,所述第二气体通道中接入呼气单向阀,所述气体输入口和所述呼气单向阀之间接入用以吸收二氧化碳的吸收装置;
    所述电动麻醉呼吸装置还包括:
    用以向所述麻醉呼吸***提供驱动动力的增压泵;
    连接在所述增压泵上的反射装置所述放射装置包括驱动气体入口和驱动气体出口,所述增压泵连接在所述驱动气体入口上,在驱动气体入口上还连接有一排气阀;
    所述驱动气体出口接入在所述吸收装置和所述呼气单向阀之间。
  2. 如权利要求1所述的电动麻醉呼吸装置,其中,所述增压泵为涡轮。
  3. 如权利要求1所述的电动麻醉呼吸装置,其中,所述放射装置为容量反射器。
  4. 如权利要求3所述的电动麻醉呼吸装置,其中,所述容量反射器包括细小管路,用以对由所述增压泵推进至所述容量反射器中的驱动气体和所述麻醉呼吸***中的气体进行隔离。
  5. 如权利要求1所述的电动麻醉呼吸装置,其中,所述电动麻醉呼吸装置还包括接入在所述第二气体通道中的用以测定呼出气体peep值的呼气阀。
  6. 一种电动麻醉呼吸装置,包括:麻醉呼吸***,其中,所述电动麻醉呼吸装置还包括:
    用以向所述麻醉呼吸***提供驱动动力的电动增压装置;
    连接在所述电动增压装置上用以向所述麻醉呼吸***传递和施加驱动动力的反射装置,所述反射装置包括驱动气体入口和驱动气体出口,所述电 动增压装置连接在所述驱动气体入口上,所述驱动气体出口连接在所述麻醉呼吸***上,其中:
    所述电动增压装置包括:连接在所述驱动气体入口上的增压泵。
  7. 如权利要求6所述的电动麻醉呼吸装置,其中,所述增压泵为涡轮。
  8. 如权利要求6所述的电动麻醉呼吸装置,其中,所述反射装置为容量反射器、折叠囊或隔膜反射装置。
  9. 如权利要求8所述的电动麻醉呼吸装置,其中,所述容量反射器包括细小管路,用以对由所述增压泵推进至所述容量反射器中的驱动气体和所述麻醉呼吸***中的气体进行隔离。
  10. 如权利要求6-9任一项所述的电动麻醉呼吸装置,其中,所述麻醉呼吸***包括:
    用以输入氧气和麻醉剂的气体输入口;
    用以供病人进行呼气和吸气的呼吸端口;
    分别连接在所述气体输入口和所述呼吸端口之间的第一气体通道,所述第一气体通道中接入吸气单向阀;
    分别连接在所述气体输入口和所述呼吸端口之间的第二气体通道,所述第二气体通道中接入呼气单向阀,所述气体输入口和所述呼气单向阀之间接入用以吸收二氧化碳的吸收装置。
  11. 如权利要求10所述的电动麻醉呼吸装置,其中,所述驱动气体出口接入在吸收装置和所述呼气单向阀之间。
  12. 如权利要求10所述的电动麻醉呼吸装置,其中,所述电动麻醉呼吸装置还包括接入在所述第二气体通道中的用以测定呼出气体peep值的呼气阀。
  13. 如权利要求8所述的电动麻醉呼吸装置,其中,所述电动增压装置包括:连接在所述驱动气体入口上的用以测定呼出气体peep值的呼气阀。
PCT/CN2014/092733 2014-12-02 2014-12-02 一种电动麻醉呼吸装置 WO2016086347A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/092733 WO2016086347A1 (zh) 2014-12-02 2014-12-02 一种电动麻醉呼吸装置
CN201480017307.0A CN105517613A (zh) 2014-12-02 2014-12-02 一种电动麻醉呼吸装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092733 WO2016086347A1 (zh) 2014-12-02 2014-12-02 一种电动麻醉呼吸装置

Publications (1)

Publication Number Publication Date
WO2016086347A1 true WO2016086347A1 (zh) 2016-06-09

Family

ID=55724948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092733 WO2016086347A1 (zh) 2014-12-02 2014-12-02 一种电动麻醉呼吸装置

Country Status (2)

Country Link
CN (1) CN105517613A (zh)
WO (1) WO2016086347A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087397A1 (zh) 2018-10-31 2020-05-07 深圳迈瑞生物医疗电子股份有限公司 一种麻醉呼吸装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479608B (zh) * 2017-12-15 2024-05-24 马奎特紧急护理公司 呼吸***部件以及用于制造呼吸***部件的方法
CN113018617A (zh) * 2019-12-24 2021-06-25 中国人民解放军第四军医大学 小儿呼吸麻醉装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989597A (en) * 1987-03-09 1991-02-05 Olof Werner Apparatus for administration of at least two gases to a patient
CN100998902A (zh) * 2006-01-13 2007-07-18 深圳迈瑞生物医疗电子股份有限公司 流量监测与控制的方法及装置
CN101288791A (zh) * 2007-04-18 2008-10-22 深圳迈瑞生物医疗电子股份有限公司 一种麻醉机呼吸装置及其流量传感器的标定方法
US20100258117A1 (en) * 2007-09-10 2010-10-14 Stefan Hargasser Anaesthesia Breathing System
CN101896216A (zh) * 2007-11-14 2010-11-24 马奎特紧急护理公司 带有可变患者回路容量的患者盒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989597A (en) * 1987-03-09 1991-02-05 Olof Werner Apparatus for administration of at least two gases to a patient
CN100998902A (zh) * 2006-01-13 2007-07-18 深圳迈瑞生物医疗电子股份有限公司 流量监测与控制的方法及装置
CN101288791A (zh) * 2007-04-18 2008-10-22 深圳迈瑞生物医疗电子股份有限公司 一种麻醉机呼吸装置及其流量传感器的标定方法
US20100258117A1 (en) * 2007-09-10 2010-10-14 Stefan Hargasser Anaesthesia Breathing System
CN101896216A (zh) * 2007-11-14 2010-11-24 马奎特紧急护理公司 带有可变患者回路容量的患者盒

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087397A1 (zh) 2018-10-31 2020-05-07 深圳迈瑞生物医疗电子股份有限公司 一种麻醉呼吸装置及方法
EP3875135A4 (en) * 2018-10-31 2021-11-24 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. ANESTHESIA VENTILATION DEVICE AND PROCEDURE

Also Published As

Publication number Publication date
CN105517613A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN105899249B (zh) 用于确定患者特定的通气需求的方法和布置
CN105517612B (zh) 麻醉机呼吸***及麻醉机
CN102366647B (zh) 一种带双气源的cpap给氧仪
JP2009533199A5 (zh)
CN202777378U (zh) 一种呼吸阀
JP2006518617A (ja) 制御式、および自発式換気時の心拍出量をより簡単に測定するための呼吸回路
CN102872517A (zh) 用于麻醉设备的人工呼吸***
US20230310778A1 (en) Improvements in or relating to patient care
WO2016086347A1 (zh) 一种电动麻醉呼吸装置
WO2019205295A1 (zh) 一种提高双气压呼吸机性能的呼吸阀及其呼吸装置
CN105517615B (zh) 麻醉机及其麻醉机呼吸***
WO2020103281A1 (zh) 呼出气体检测设备及检测方法
CN105169539A (zh) 一种急救呼吸机
CN105597210B (zh) 兼容上升式和下降式风箱呼吸回路的麻醉***
CN103585707A (zh) 一种完全液体通气呼吸机
CN104014063B (zh) 无创一氧化氮自主呼吸供给***
US20080184997A1 (en) Anaesthetic apparatus with circulation of respiratory gases
JP6944621B1 (ja) 漏れ試験用閉鎖プラグおよび麻酔器並びに循環式呼吸回路の漏れ試験方法
CN202289142U (zh) 一种麻醉呼吸机的气路结构
CN204699187U (zh) 数字化复合杂交手术室麻醉废气排放监控***
CN208823714U (zh) 一种提高双气压呼吸机性能的呼吸阀和呼吸装置
CN202909243U (zh) 一种具有压力控制功能的麻醉呼吸机气路
JP7165113B2 (ja) 酸素濃縮装置
CN105879171B (zh) 一种正负压呼吸机
CN110681013A (zh) 非线性气阻、冲洗模块及呼吸机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/12/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14907353

Country of ref document: EP

Kind code of ref document: A1