WO2016084685A1 - Work apparatus using parallel link mechanism - Google Patents

Work apparatus using parallel link mechanism Download PDF

Info

Publication number
WO2016084685A1
WO2016084685A1 PCT/JP2015/082474 JP2015082474W WO2016084685A1 WO 2016084685 A1 WO2016084685 A1 WO 2016084685A1 JP 2015082474 W JP2015082474 W JP 2015082474W WO 2016084685 A1 WO2016084685 A1 WO 2016084685A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
end side
hub
link hub
work body
Prior art date
Application number
PCT/JP2015/082474
Other languages
French (fr)
Japanese (ja)
Inventor
浩 磯部
山田 裕之
清悟 坂田
直哉 小長井
賢蔵 野瀬
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015025344A external-priority patent/JP6563658B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016084685A1 publication Critical patent/WO2016084685A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/46Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/08Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion
    • F16H25/12Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion with reciprocation along the axis of rotation, e.g. gearings with helical grooves and automatic reversal or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members

Definitions

  • the present invention relates to a working apparatus using a parallel link mechanism used for equipment that requires a wide operating range with high speed, high accuracy, such as medical equipment and industrial equipment.
  • Patent Documents 1 and 2 propose a parallel link mechanism and a link actuating device used for various working devices such as medical equipment and industrial equipment.
  • the parallel link mechanism of Patent Document 1 has a relatively simple configuration, but the operating angle of each link is small. Therefore, if the operating range of the traveling plate is set large, there is a problem that the link length becomes long, thereby increasing the overall size of the mechanism and increasing the size of the apparatus. There is also a problem that the rigidity of the whole mechanism is low and the weight of the tool mounted on the traveling plate, that is, the weight of the traveling plate is limited to a small weight.
  • the link actuating device disclosed in Patent Document 2 has a parallel link mechanism in which a distal end side link hub is connected to a proximal end side link hub via three or more sets of four-link chains so that the posture can be changed. Is used. Thereby, it is possible to operate in a wide range of operation with high speed and high accuracy while being compact.
  • An object of the present invention is to provide a working device using a parallel link mechanism that can perform high-speed and high-accuracy work and can work on a relatively large work object from a plurality of directions while realizing compactness. Is to provide.
  • a working device using the parallel link mechanism according to the present invention is a working device that performs work in a contact state or non-contact state with a work body with respect to the work body, and supports the work body in a posture changeable manner.
  • a link hub on the distal end side is connected to a link hub on the proximal end side through three or more sets of link mechanisms in such a manner that the posture can be changed.
  • End link members at the proximal end and the distal end one end of which is rotatably connected to the link hub and the distal link hub, and both ends rotated at the other ends of the proximal and distal end link members.
  • a central link member connected in a possible manner.
  • the attitude control actuator is provided in two or more sets of link mechanisms of the three or more sets of link mechanisms so as to arbitrarily change the attitude of the distal end side link hub with respect to the proximal end side link hub. .
  • the orthogonal biaxial linear movement mechanism moves the working body in parallel with a plane orthogonal to the central axis of the link hub on the base end side.
  • the “center axis of the link hub” is a point at which the center axes of the rotation pairs of the link hub and the end link member and the rotation pairs of the end link member and the center link member intersect with each other.
  • the spherical link center of the link hub it refers to a straight line passing through the spherical link center and perpendicular to the central axis of the rotational pair of the link hub and the end link member.
  • the work piece is installed on the distal end side link hub so as to be positioned in an internal space between the distal end side link hub and the proximal end side link hub.
  • the parallel link mechanism includes a proximal-side link hub, a distal-end side link hub, and three or more sets of link mechanisms.
  • the distal-side link hub rotates about two orthogonal axes with respect to the proximal-side link hub.
  • a flexible two-degree-of-freedom mechanism is configured. Although this two-degree-of-freedom mechanism is compact, the movable range of the link hub on the distal end side can be widened.
  • the maximum bending angle between the central axis of the link hub on the proximal end side and the central axis of the link hub on the distal end side is about ⁇ 90 °
  • the swivel angle of the link hub on the distal end side with respect to the link hub on the proximal end side is It can be set in the range of 0 ° to 360 °.
  • the working device using this parallel link mechanism has a total of 4 degrees of freedom with 2 degrees of freedom of the parallel link mechanism and 2 degrees of freedom of the orthogonal two-axis linear motion mechanism.
  • the parallel link mechanism is actuated by the posture control actuator to change the posture of the work body installed on the link hub on the distal end side, and the work body is moved by the orthogonal two-axis linear motion mechanism.
  • this configuration is excellent for non-contact work that does not require adjustment of the distance between the work body and the work body. Since the posture of the work body can be changed with high speed and high accuracy by the parallel link mechanism, high speed and high accuracy work is possible.
  • the parallel link mechanism when the parallel link mechanism is tilted to the right side, the right side surface of the work body faces the work body side.
  • the work can be performed on the right side surface of the work body by moving the work body in the right direction by the orthogonal two-axis linear motion mechanism.
  • the parallel link mechanism is tilted to the left side, the left side surface of the work body faces the work body side.
  • the work can be performed on the left side surface of the work body by moving the work body to the left by the orthogonal two-axis linear motion mechanism.
  • the parallel link mechanism by tilting the parallel link mechanism back and forth and moving the work body in the front-rear direction by the orthogonal two-axis linear motion mechanism, the work can be performed on the front and back side surfaces of the work body.
  • the orbital circle of the central link member moves to the tilt side of the parallel link mechanism as the parallel link mechanism tilts.
  • the orbital circle of the central link member is a circle that connects the central portions of the central link members. That is, a space is created in the movement trace of the central link member. For this reason, even if the work body is moved to the tilt side of the parallel link mechanism, the work body and the central link member are unlikely to interfere with each other. Therefore, the operating range of the parallel link mechanism can be widened, and the working range for the work body is widened. In addition, it is possible to work on a relatively large work object from a plurality of directions while realizing compactness.
  • the orthogonal two-axis linear motion mechanism is installed on a member integral with the base end side link hub, and is attached to the work body along a plane perpendicular to the central axis of the base end side link hub.
  • the relational expression for calculating the positions of the work body and the work body becomes a relatively simple form, and control of the attitude control actuator and the orthogonal two-axis linear motion mechanism is facilitated.
  • the parallel link mechanism is installed so that the link hub on the tip side faces downward, and the orthogonal two-axis linear motion mechanism is disposed above the parallel link mechanism.
  • control devices such as the posture control actuator and the orthogonal two-axis linear motion mechanism and the work body are not disposed below the work body. Therefore, it is possible to prevent chips generated from the work body, grease, paint, and the like attached to the work body from adhering to the control device and the work body and adversely affecting them.
  • a Z-axis linear motion mechanism that moves the work body parallel to the central axis of the link hub on the base end side with respect to the work body.
  • the distance from the spherical link center of the distal end side link hub to the position farthest in the direction of the central axis of the distal end side link hub from the spherical link center of the work body is T
  • the proximal end side The distance between the spherical link center of the link hub and the spherical link center of the distal end side link hub is L
  • the distance from the center of the spherical link on the distal end side or the proximal end side to the intersection of the center axes of the link hub on the distal end side or the proximal end side is L / (2cos ( ⁇ max / 2)). If the distance T is set to L / (2cos ( ⁇ max / 2)) or more, the side of the work piece and the center of the link hub on the proximal end side as the bending angle ⁇ increases within the maximum bending angle ⁇ max operating range. The distance from the axis approaches. Therefore, the stroke of the orthogonal two-axis linear motion mechanism can be reduced, and a compact configuration can be realized.
  • the maximum distance from the central axis of the link hub on the distal end side to the outer peripheral surface of the work body is M
  • the inner surface track circle of the central link member is a circle connecting the central portions of the inner surfaces of the central link members.
  • the maximum bending angle which is an angle formed by the central axis of the base-side link hub and the central axis of the distal-side link hub in a state where the mechanism is operated to the maximum range of the operable range, is ⁇ max, R ⁇ T ⁇ sin ( ⁇ max / 2) + M It is good if the relationship is established.
  • the “inner surface” of the central link member is a surface facing the midpoint of a straight line connecting the spherical link centers on the proximal end side and the distal end side.
  • each link mechanism of the parallel link mechanism it is possible to avoid the work body and the work body from interfering with the central link member. Thereby, the movable range and work range of the parallel link mechanism can be widened.
  • a rotation mechanism for rotating the work body around an axis orthogonal to the central axis of the link hub on the distal end side may be provided. According to this configuration, the work can be performed on the entire circumferential surface of the work body by rotating the work body by the rotation mechanism.
  • the rotation mechanism When the rotation mechanism is provided, the rotation mechanism is installed at the other end of the rotation mechanism fixing member whose one end is fixed to the link hub on the front end side and the other end extends to the external space of the parallel link mechanism.
  • a workpiece fixing member is installed on the output shaft, and the tip of the workpiece fixing member is inserted into the internal space through two adjacent link mechanisms of the three or more link mechanisms.
  • the work body may be installed at the tip of the work body fixing member.
  • FIG. 6A It is sectional drawing of the link hub by the side of the base end of the link action
  • FIG. 12A It is a top view of the to-be-worked object different from FIG. 12A. It is explanatory drawing which shows the operation
  • FIGS. 1 and 2 are front views showing different states of the working device.
  • the work device 1 is a device that performs work on the work body 2 with the work body 3.
  • a horizontal base member 6 is supported by a plurality of support columns 5 built on the base 4, and a link actuating device 7 and an orthogonal two-axis linear motion mechanism 8 are installed on the base member 6.
  • the link actuating device 7 includes a parallel link mechanism 9 that supports the work body 2 so that the posture can be changed, and an attitude control actuator 10 that operates the parallel link mechanism 9.
  • the orthogonal biaxial linear motion mechanism 8 is a mechanism that moves the work body 3 in the orthogonal biaxial direction with respect to the work body 2.
  • FIG. 3 is a front view of the link actuator
  • FIGS. 4 and 5 are perspective views showing different states of the link actuator. 3 to 5 are shown upside down with respect to FIGS.
  • the parallel link mechanism 9 of the link actuating device 7 is formed by connecting a distal end side link hub 13 to a proximal end side link hub 12 via three sets of link mechanisms 14 so that the posture can be changed. In FIG. 3, only one set of link mechanisms 14 is shown. The number of link mechanisms 14 may be four or more.
  • Each link mechanism 14 includes a base end side end link member 15, a front end side end link member 16, and a central link member 17, and forms a four-joint link mechanism including four rotating pairs.
  • the end link members 15 and 16 on the proximal end side and the distal end side are L-shaped, and one ends thereof are rotatably connected to the link hub 12 on the proximal end side and the link hub 13 on the distal end side, respectively.
  • the central link member 17 is connected to both ends of the end link members 15 and 16 on the proximal end side and the distal end side so as to be rotatable.
  • the parallel link mechanism 9 has a structure in which two spherical link mechanisms are combined, and each rotation pair of the base end side link hub 12 and the base end side end link member 15 and the base end side end link member. 15 and the central axis of each rotational pair of the central link member 17 intersect at the spherical link center PA (FIG. 3) on the base end side. Similarly, the center axis of each rotation pair of the link hub 13 on the front end side and the end link member 16 on the front end side, and the rotation pair of the end link member 16 on the front end side and the central link member 17 are spherical surfaces on the front end side. It intersects at the link center PB (FIG. 3).
  • each rotation pair of the link hub 12 on the base end side and the end link member 15 on the base end side and the spherical link center PA on the base end side is the same, and the end link member 15 on the base end side is the same.
  • the distance between each rotation pair of the central link member 17 and the spherical link center PA on the base end side is also the same.
  • the distance between each rotation pair of the link hub 13 on the distal end side and the end link member 16 on the distal end side and the spherical link center PB on the distal end side is the same, and the end link member 16 on the distal end side and the center link are the same.
  • each rotation pair of the member 17 and the spherical link center PB on the tip side is also the same.
  • the central axis of each rotational pair of the end link members 15 and 16 on the proximal end side and the distal end side and the central link member 17 may have a certain crossing angle ⁇ (FIG. 3) or may be parallel. Good.
  • 6A and 6B are sectional views of the link hub 12 on the base end side, the end link member 15 on the base end side, and the like. 6A and 6B show the relationship between the center axis O1 of each rotation pair of the base end side link hub 12 and the base end side end link member 15 and the base end side spherical link center PA. . The shapes and positional relationships of the distal end side link hub 13 and the distal end side end link member 16 are also the same as in FIGS. 6A and 6B (not shown). In FIG.
  • the central axis O1 of each rotation pair of the base end side link hub 12 and the base end side end link member 15 and each rotation of the base end side end link member 15 and the central link member 17 The angle ⁇ formed by the paired central axis O2 is 90 °. However, the angle ⁇ may be other than 90 °.
  • the three sets of link mechanisms 14 have the same geometric shape.
  • the geometrically identical shape is represented by a geometric model in which each link member 15, 16, and 17 is represented by a straight line, that is, each rotational pair and a straight line connecting these rotational pairs.
  • a model says that the base end side part and front end side part with respect to the center part of the center link member 17 are symmetrical shapes.
  • FIG. 7 is a diagram in which a set of link mechanisms 14 is expressed by a straight line.
  • the parallel link mechanism 9 of this embodiment is a rotationally symmetric type, and includes a proximal end side link hub 12 and a proximal end side end link member 15, a distal end side link hub 13 and a distal end side end link member 16. The positional relationship is such that the positional relationship is rotationally symmetric with respect to the center line C of the central link member 17.
  • the central portion of each central link member 17 is located on a common orbit circle D.
  • the link hub 13 on the distal end side can rotate about two orthogonal axes with respect to the link hub 12 on the proximal end side.
  • a degree mechanism is configured. In other words, it is a mechanism that can freely change the posture of the link hub 13 on the distal end side with respect to the link hub 12 on the proximal end side with two degrees of freedom of rotation. Although this two-degree-of-freedom mechanism is compact, the movable range of the link hub 13 on the distal end side with respect to the link hub 12 on the proximal end side can be widened.
  • each rotation pair of the link hubs 12 and 13 on the base end side and the tip end side and the end link members 15 and 16 on the base end side and the tip end side passes through the spherical link centers PA and PB on the base end side and the tip end side.
  • the straight lines intersecting the central axis O1 (FIG. 6A) at right angles are the central axes QA and QB of the link hubs 12 and 13 on the proximal end side and the distal end side
  • the maximum value of the bending angle ⁇ (FIG. 7) with respect to the center axis QB of the link hub 13 can be about ⁇ 90 °.
  • the turning angle ⁇ (FIG. 7) of the distal end side link hub 13 with respect to the proximal end side link hub 12 can be set in a range of 0 ° to 360 °.
  • the bending angle ⁇ is a vertical angle at which the central axis QB of the distal link hub 13 is inclined with respect to the central axis QA of the proximal link hub 12.
  • the turning angle ⁇ is a horizontal angle at which the central axis QB of the distal link hub 13 is inclined with respect to the central axis QA of the proximal link hub 12.
  • the posture change of the link hub 13 on the distal end side with respect to the link hub 12 on the proximal end side is performed with the intersection O between the center axis QA of the link hub 12 on the proximal end side and the center axis QB of the link hub 13 on the distal end side as a rotation center.
  • Is called. 4 shows a state in which the central axis QA of the proximal-side link hub 12 and the central axis QB of the distal-side link hub 13 are on the same line
  • FIG. 5 shows the central axis QA of the proximal-side link hub 12.
  • a state in which the central axis QB of the link hub 13 on the distal end side takes a certain operating angle is shown. Even if the posture changes, the distance L (FIG. 7) between the spherical link centers PA and PB on the proximal end side and the distal end side does not change.
  • the central link member 17 and the proximal end and distal end end link members 15 and 16 are arranged with respect to the symmetry plane of the central link member 17. If the angular positional relationship is the same between the proximal end side and the distal end side, the proximal end side link hub 12 and the proximal end side end link member 15, the distal end side link hub 13 and the distal end side are geometrically symmetric. The end link member 16 on the side moves in the same way.
  • the link hub 12 on the proximal end side includes the base member 6 and three rotating shaft connecting members 21 provided integrally with the base member 6.
  • the base member 6 has a circular through hole 6a (FIG. 6A) at the center, and three rotary shaft connecting members 21 are arranged at equal intervals in the circumferential direction around the through hole 6a.
  • the center of the through hole 6a is located on the link hub central axis QA on the base end side.
  • Each rotary shaft connecting member 21 is rotatably connected to a rotary shaft 22 whose axis intersects with the link hub central axis QA on the proximal end side.
  • One end of the end link member 15 on the proximal end side is connected to the rotation shaft 22.
  • the rotating shaft 22 constitutes a rotating pair of the link hub 12 on the base end side and the end link member 15 on the base end side.
  • the rotary shaft 22 has a large diameter portion 22a, a small diameter portion 22b, and a male screw portion 22c.
  • the portion 22b is rotatably supported by the rotary shaft connecting member 21 via two bearings 23.
  • the bearing 23 is a ball bearing such as a deep groove ball bearing or an angular ball bearing. These bearings 23 are installed in an inner diameter groove 24 provided in the rotary shaft connecting member 21 in a fitted state, and are fixed by a method such as press-fitting, adhesion, and caulking. The same applies to the types and installation methods of the bearings provided in other rotating pairs.
  • the rotary shaft 22 is coaxially disposed on an output shaft 52a of a reduction mechanism 52 described later at a large diameter portion 22a. Details of the arrangement structure will be described later.
  • a notch portion 25 is formed at one end of the end link member 15 on the base end side, and both side portions of the notch portion 25 constitute a pair of inner and outer rotating shaft support portions 26 and 27. Through-holes 26a and 27a are formed in the rotary shaft support portions 26 and 27, respectively. Further, one end of the end link member 15 on the base end side is connected to the rotation shaft 22 so as to rotate integrally with the rotation shaft 22.
  • the rotating shaft connecting member 21 is disposed in the notch 25 of the end link member 15 on the base end side, and the small diameter portion 22b of the rotating shaft 22 is formed on the through holes 26a and 27a and the inner ring of the bearing 23. It is inserted.
  • a spacer 28 is fitted to the outer periphery of the large-diameter portion 22 a of the rotary shaft 22, and the end link member 15 on the base end side and the output shaft 52 a of the speed reduction mechanism 52 are fixed by a bolt 29 via the spacer 28. . Further, the male screw portion 22c of the rotary shaft 22 protrudes from the inner rotary shaft support portion 27, and a nut 30 is screwed to the male screw portion 22c. Spacers 31 and 32 are interposed between the inner ring of the bearing 23 and the pair of rotating shaft support portions 26 and 27, and a preload is applied to the bearing 23 when the nut 30 is screwed.
  • the other end of the end link member 15 on the base end side is connected to a rotating shaft 35 that is rotatably connected to one end of the central link member 17.
  • the rotation shaft 35 of the central link member 17 has a large diameter portion 35a, a small diameter portion 35b, and a male screw portion 35c, similar to the rotation shaft 22 of the link hub 12 on the proximal end side, and two small diameter portions 32b.
  • the bearing 36 is rotatably supported at one end of the central link member 17.
  • a notch portion 37 is formed at the other end of the base end side end link member 15, and both side portions of the notch portion 37 constitute a pair of inner and outer rotating shaft support portions 38 and 39.
  • Through-holes 38a and 39a are formed in the pair of rotating shaft support portions 38 and 39, respectively.
  • One end of the central link member 17 is disposed in the notch 37 at the other end of the end link member 15 on the base end side, and the small diameter portion 35b of the rotating shaft 35 is formed on the through holes 38a and 39a and the inner ring of the bearing 36. It is inserted.
  • the male screw portion 35c of the rotary shaft 35 protrudes from the inner rotary shaft support portion 39, and a nut 40 is screwed to the male screw portion 35c.
  • Spacers 41 and 42 are interposed between the inner ring of the bearing 36 and the pair of rotating shaft support portions 38 and 39, and preload is applied to the bearing 36 when the nut 40 is screwed.
  • the link hub 13 on the distal end side includes a flat plate-shaped distal end member 40 having a circular through hole 40 a at the center, and a circumferential direction around the through hole 40 a of the distal end member 40. It is comprised with the three rotating shaft connection members 41 provided by equal distribution.
  • the center of the through hole 40a is located on the central axis QB of the link hub 13 on the distal end side. 3 to 5, the through hole 40a is omitted.
  • Each rotating shaft connecting member 41 is rotatably connected to a rotating shaft 43 whose axis intersects the central axis QB of the link hub 13 on the distal end side.
  • One end of the end-side end link member 16 is connected to the rotation shaft 43 of the front-end side link hub 13.
  • a rotating shaft 45 that is rotatably connected to the other end of the central link member 17 is connected to the other end of the end link member 16 on the front end side.
  • the rotary shaft 43 of the link hub 13 on the distal end side and the rotary shaft 45 of the central link member 17 have the same shape as the rotary shaft 35, and the rotary shaft coupling member 41 and two via two bearings (not shown).
  • the other end of the central link member 17 is rotatably connected to each other.
  • the attitude control actuator 10 of the link actuating device 7 is a rotary actuator provided with a speed reduction mechanism 52, and is installed coaxially with the rotary shaft 22 on the upper surface of the base member 6 of the link hub 12 on the proximal end side. .
  • the attitude control actuator 10 and the speed reduction mechanism 52 are provided integrally, and the speed reduction mechanism 52 is fixed to the base member 6 by a motor fixing member 53.
  • the posture control actuator 10 is provided in all of the three sets of link mechanisms 14. However, if the posture control actuators 10 are provided in at least two of the three sets of link mechanisms 14, the posture of the distal link hub 13 relative to the proximal link hub 12 can be determined.
  • the speed reduction mechanism 52 is a flange output and has a large-diameter output shaft 52a.
  • the front end surface of the output shaft 52a is a flat flange surface 54 orthogonal to the center line of the output shaft 52a.
  • the output shaft 52 a is connected to the rotary shaft support portion 26 of the end link member 15 on the base end side by the bolt 29 via the spacer 28.
  • the large-diameter portion 22 a of the rotating shaft 22 is fitted in an inner diameter groove 57 provided in the output shaft 52 a of the speed reduction mechanism 52.
  • the orthogonal biaxial linear motion mechanism 8 is movable in the Y-axis direction with the X-axis linear motion mechanism 61 having the X-axis moving body 61a movable in the X-axis direction. And a Y-axis linear motion mechanism 63 having a Y-axis moving body 63a.
  • the X-axis linear motion mechanism 61 is installed on the base member 6, and the Y-axis linear motion mechanism 63 is installed on a bracket 62 fixed to the X-axis moving body 61a.
  • the X-axis linear motion mechanism 61 has a motor 61b that is a drive source that moves the X-axis moving body 61a
  • the Y-axis linear motion mechanism 63 has a motor 63b that is a drive source that moves the Y-axis mobile body 63a. is doing.
  • a front body L-shaped work body installation member 64 is attached to the Y-axis moving body 63a.
  • the work body installation member 64 extends through the through hole 6a of the base member 6 and extends below the base member 6, and a work body fixing member 65 is attached to the lower end thereof.
  • the work body 3 is fixed to the work body fixing member 65.
  • the work body 2 of this embodiment has a rectangular parallelepiped shape, for example, and is placed on the upper surface of a work body fixing member 67 installed on the front end member 40 of the link hub 13 on the front end side. Yes.
  • the workpiece fixing member 67 is inserted into the through hole 40a of the tip member 40 from below, and the flange portion 67a is fixed to the tip member 40 by bolting, welding, or the like.
  • the work body 2 placed on the upper surface of the work body fixing member 67 is located in the internal space S1 between the link hub 13 on the distal end side and the link hub 12 on the proximal end side.
  • the work body 3 performs the work without contact with the work body 2.
  • the working body 3 is, for example, a grease applicator, a laser inspection machine, a spray coating machine, a welding machine or the like, and is held by the working body fixing member 65 with the working portion 3a such as a grease nozzle facing downward.
  • a work body 3 that performs work in contact with the work body 2 can also be used.
  • the working device 1 using this parallel link mechanism has a total of 4 degrees of freedom, including 2 degrees of freedom of the parallel link mechanism 9 and 2 degrees of freedom of the orthogonal two-axis linear motion mechanism 8. For this reason, the posture of the work body 2 installed on the link hub 13 on the distal end side is changed by operating the link operating device 7 and the work body 3 is moved in the orthogonal biaxial direction by the orthogonal biaxial linear motion mechanism 8. By doing so, the work body 3 can perform non-contact work on each surface of the work body 2.
  • the attitude control actuator 10 and the linear motion mechanism 8 are controlled to operate in conjunction with each other. Since the posture of the work body 2 can be changed at high speed and high accuracy by the link actuator 7, high speed and high accuracy work is possible.
  • the parallel link mechanism 9 is operated by the attitude control actuator 10 from the state where the proximal-side link hub central axis QA and the distal-side link hub central axis QB shown in FIG.
  • the distal end side link hub 13 is tilted to the left side with respect to the proximal end side link hub 12 as described above, the left side surface of the work body 2 installed on the distal end side link hub 13 faces the work body 3 side.
  • the work body 3 can be moved leftward by the X-axis linear motion mechanism 61 of the orthogonal two-axis linear motion mechanism 8, so that the work can be performed on the left side surface of the work subject 2.
  • the distal end side link hub 13 is tilted to the right side with respect to the proximal end side link hub 12, the right side surface of the work body 2 faces the side of the work body 3.
  • work can be performed on the right side surface of the work body 2 by moving the work body 3 in the right direction by the orthogonal two-axis linear motion mechanism 8.
  • the front and rear side surfaces of the work body 2 face the work body 3 side.
  • the work body 3 can be moved in the front-rear direction by the Y-axis linear movement mechanism 63 of the orthogonal two-axis linear movement mechanism 8, so that the work can be performed on the front and rear side surfaces of the work body 2.
  • the orbit circle D (FIG. 7) of the central link member moves to the tilt side of the parallel link mechanism 9 as the parallel link mechanism 9 tilts.
  • the orbital circle D (FIG. 7) of the central link member is a circle that connects the central portions of the central link members 17. That is, a space is created in the movement trace of the central link member 17. For this reason, even if the working body 3 is moved to the tilt side of the parallel link mechanism 9, the working body 3 and the central link member 17 are unlikely to interfere with each other. As a result, the operating range of the parallel link mechanism 9 can be widened, and the working range for the work body 3 is widened. In addition, it is possible to perform work from a plurality of directions even on a relatively large workpiece 2 while realizing compactness.
  • the work body 3 when the work body 3 is moved along a plane orthogonal to the center axis QA of the link hub on the base end side by the orthogonal biaxial linear movement mechanism 8, the work body 3 or the work body 2 is moved.
  • the relational expression for calculating the position of becomes a relatively simple form. Therefore, it is easy to control the attitude control actuator 10 and the orthogonal two-axis linear motion mechanism 8.
  • the parallel link mechanism 9 is installed so that the distal end side link hub 13 faces downward, and the orthogonal two-axis linear motion mechanism 8 is disposed above the parallel link mechanism 9. That is, control devices such as the posture control actuator 10 and the orthogonal two-axis linear motion mechanism 8 and the work body 3 are not arranged below the work body 2. As a result, it is possible to prevent grease, paint, and the like generated from the working body 3 from adhering to the control device and the working body 3 and adversely affecting them.
  • FIGS. 9 and 10 show a second embodiment of the present invention.
  • the working body 3 is moved relative to the work body 2 in the Z-axis direction, that is, in parallel with the central axis QA of the link hub on the base end side.
  • a Z-axis linear motion mechanism 70 is provided.
  • the link actuator 7 has the same configuration as that of the first embodiment described above.
  • the work body 3 is a cutting machine, a paint applicator, or the like that performs work while being in contact with the work body 2.
  • the Z-axis linear motion mechanism 70 is installed on the Y-axis moving body 63 a of the Y-axis linear motion mechanism 63 of the orthogonal two-axis linear motion mechanism 8 via the bracket 71.
  • the Z-axis moving body 70a is movable in the Z-axis direction.
  • the drive source of the Z-axis linear motion mechanism 70 is a motor 70b.
  • a work body installation member 64 is attached to the Z-axis moving body 70a, and the work body 3 is held via a work body fixing member 65 at the lower end of the work body installation member 64.
  • This working device 1 has a configuration of five degrees of freedom by adding one degree of freedom by the Z-axis linear motion mechanism 70 to the configuration of four degrees of freedom of the first embodiment described above.
  • the work body 2 is relatively large, it is difficult to adjust the distance between the work body 3 and the work body 2 with the configuration of 4 degrees of freedom, but when the work body 2 is configured with 5 degrees of freedom, The distance to the work body 2 can be controlled. Therefore, as shown in FIGS. 13A to 13C, the contact operation can be performed without difficulty.
  • FIG. 13A shows a state in which the bending angle ⁇ between the central axis QA of the link hub on the proximal end side and the central axis QB of the link hub on the distal end side is 0 °
  • FIG. 13C shows the work body 2 until the bending angle ⁇ reaches the maximum.
  • 13B shows an intermediate state between FIG. 13A and FIG. 13C.
  • the installation position of the work body 2 with respect to the link hub 12 on the base end side is preferably determined as follows. That is, the distance from the spherical link center PB of the link hub 13 on the distal end side to the position farthest from the spherical link center PB on the work body 2 in the direction of the link hub central axis QB is T, and the link hub 12 of the proximal end side is connected.
  • the distance T is L / (2cos ( ⁇ max / 2)).
  • the distance T is set to L / (2 cos ( ⁇ max / 2)) or more, the side surface of the work piece 2 and the link hub 12 on the proximal end side become larger as the bending angle ⁇ increases within the operating range of the maximum bending angle ⁇ max.
  • the maximum distance from the central axis QB of the link hub 13 on the distal end side to the outer peripheral surface of the work body 2 is M
  • the radius of the track circle D on the inner surface of each central link member 17 is R
  • the link hub 13 on the distal end side is
  • the maximum bending angle is ⁇ max, R ⁇ T ⁇ sin ( ⁇ max / 2) + M It is good if the relationship is established.
  • the maximum distance M is a radius.
  • the maximum distance M is a distance from the center of the rectangle to the corner.
  • each link mechanism 14 of the parallel link mechanism 9 it is possible to avoid the work body 2 and the work body 3 from interfering with the central link member 17. Thereby, the movable range of the parallel link mechanism 9 and the work range of the link operating device 7 can be widened.
  • FIG. 14 shows a third embodiment of the present invention.
  • the Z-axis linear motion mechanism 70 uses a ball screw mechanism. That is, an elevator 82 is guided to a plurality of shafts 80 extending upward from the base member 6 via a linear bush 81 so that the orthogonal biaxial linear motion mechanism 8 is installed on the lower surface of the elevator 82. .
  • a screw shaft 83 extends upward from the base member 6 in parallel with the shaft 80, and a nut 84 provided on the lifting platform 82 is screwed to the screw shaft 83. When the screw shaft 83 is rotated by the motor 85, the elevator 82 moves up and down.
  • the orthogonal two-axis linear motion mechanism 8 is arranged such that the X-axis linear motion mechanism 61 is on the upper side and the Y-axis linear motion mechanism 63 is on the lower side, and the upper X-axis linear motion mechanism 61 is fixed to the lifting platform 82.
  • the work body installation member 64 is attached to the Y-axis moving body 63a of the lower Y-axis linear motion mechanism 63, and the work body 3 is fixed by the work body fixing member 65 attached to the lower end of the work body installation member 64. Yes.
  • the Z-axis linear motion mechanism 70 By operating the Z-axis linear motion mechanism 70, the work body 3 moves along with the orthogonal biaxial linear motion mechanism 8 along the central axis QA of the link hub 12 on the proximal end side.
  • the Z-axis linear motion mechanism 70 using this ball screw mechanism has a simple configuration and can reduce the height position. There is an advantage.
  • FIGS. 15 and 16 has a configuration with five degrees of freedom by providing a rotation mechanism 90 with respect to the working device 1 with the configuration of four degrees of freedom of the first embodiment shown in FIGS. Is. 1 and FIG. 2 shows that the work body 1 is installed on the upper surface of the work body fixing member 67 installed on the front end member 40 of the link hub 13 on the front end side.
  • the work body 2 is installed on the link hub 13 on the distal end side as follows.
  • the rotation mechanism fixing member 91 is fixed to the outer peripheral edge of the tip member 40 of the link hub 13 on the tip side.
  • the rotation mechanism fixing member 91 extends toward the base end side link hub 12 in parallel with the central axis QB of the front end side link hub 13, and the other end is located in the external space S 2 of the parallel link mechanism 9.
  • a rotation mechanism 90 is installed at the other end of the rotation mechanism fixing member 91.
  • the rotation mechanism 90 is, for example, a motor.
  • the output shaft 90a of the rotation mechanism 90 protrudes toward the internal space S1 along the axis 92 orthogonal to the central axis QB of the link hub 13 on the distal end side.
  • a workpiece fixing member 93 extending coaxially is fixed to the output shaft 90a.
  • the work-body fixing member 93 is inserted into the internal space S ⁇ b> 1 through the gap between two adjacent link mechanisms 14 of the three or more sets of link mechanisms 14.
  • the workpiece 2 is installed at the tip of the workpiece fixing member 93.
  • the work body 2 has, for example, a cylindrical shape having a shaft 92 as a central axis.
  • the work body 2 may have other shapes such as a cube, a rectangular parallelepiped, a sphere, and the like.
  • the work body 2 can be rotated around the shaft 92 by the rotation mechanism 90 so that the work can be performed on the entire circumferential surface of the work body 2. Since the rotation mechanism 90 is disposed in the external space S2 of the parallel link mechanism 9 with sufficient space, the link mechanisms 14 and the rotation mechanism 90 are prevented from interfering with each other, and a wider operation range can be realized.
  • the working device 1 of the fifth embodiment shown in FIGS. 17 and 18 is provided with a rotation mechanism 90 and has six freedoms compared to the working device 1 having the five-degree-of-freedom configuration of the second embodiment shown in FIGS. The composition of the degree.
  • the rotation mechanism 90 and the work body 2 are installed on the link hub 13 on the distal end side, similarly to the work device 1 of the fourth embodiment shown in FIGS. 15 and 16. Thereby, the effect
  • the working device 1 of the sixth embodiment shown in FIG. 19 has a configuration of 6 degrees of freedom by providing a rotation mechanism 90 with respect to the working device 1 of the third embodiment shown in FIG. It is.
  • the rotation mechanism 90 and the work body 2 are installed on the link hub 13 on the distal end side, similarly to the work device 1 of the fourth embodiment shown in FIGS. 15 and 16. Thereby, the effect

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Transmission Devices (AREA)

Abstract

A work apparatus (1) is provided with a parallel link mechanism (9), an attitude control actuator (10), and an orthogonal biaxial direct-acting mechanism (8). The parallel link mechanism (9) links a distal end-side link hub (13) to a base end-side link hub (12) via three or more sets of link mechanisms (14) so that the attitude of the distal end-side link hub can be changed. The attitude control actuator (10) optionally changes the attitude of the distal end-side link hub (13) in relation to the base end-side link hub (12). The orthogonal biaxial direct-acting mechanism (8) moves a work object (3) in parallel to the plane that is orthogonal to the central axis (QA) of the base end-side link hub (12). An object to be worked (2) is installed on the distal end-side link hub (13) so as to be positioned in the interior space (S1) between the distal end-side link hub (13) and the base end-side link hub (12).

Description

パラレルリンク機構を用いた作業装置Work device using parallel link mechanism 関連出願Related applications
 この出願は、2014年11月28日出願の特願2014-241298および2015年2月12日出願の特願2015-025344の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2014-241298 filed on November 28, 2014 and Japanese Patent Application No. 2015-025344 filed on February 12, 2015, which is incorporated herein by reference in its entirety. Cited as what constitutes
 この発明は、医療機器や産業機器のような、高速、高精度で、広範な作動範囲を必要とする機器に用いられるパラレルリンク機構を用いた作業装置に関する。 The present invention relates to a working apparatus using a parallel link mechanism used for equipment that requires a wide operating range with high speed, high accuracy, such as medical equipment and industrial equipment.
 医療機器や産業機器等の各種作業装置に用いられるパラレルリンク機構およびリンク作動装置が、特許文献1、2に提案されている。 Patent Documents 1 and 2 propose a parallel link mechanism and a link actuating device used for various working devices such as medical equipment and industrial equipment.
特開2000-094245号公報JP 2000-094245 A 米国特許第5,893,296号明細書US Pat. No. 5,893,296
 特許文献1のパラレルリンク機構は、構成が比較的簡単であるが、各リンクの作動角が小さい。そのため、トラベリングプレートの作動範囲を大きく設定すると、リンク長が長くなることにより、機構全体の寸法が大きくなって装置の大形化を招くという問題がある。また、機構全体の剛性が低く、トラベリングプレートに搭載されるツールの重量、つまりトラベリングプレートにおける可搬重量が小さいものに制限されるという問題もある。 The parallel link mechanism of Patent Document 1 has a relatively simple configuration, but the operating angle of each link is small. Therefore, if the operating range of the traveling plate is set large, there is a problem that the link length becomes long, thereby increasing the overall size of the mechanism and increasing the size of the apparatus. There is also a problem that the rigidity of the whole mechanism is low and the weight of the tool mounted on the traveling plate, that is, the weight of the traveling plate is limited to a small weight.
 特許文献2のリンク作動装置は、基端側のリンクハブに対し先端側のリンクハブを、4節連鎖の3組以上のリンク機構を介して姿勢を変更可能に連結した構成としたパラレルリンク機構を用いている。これにより、コンパクトでありながら、高速、高精度で、広範な作動範囲の動作が可能である。 The link actuating device disclosed in Patent Document 2 has a parallel link mechanism in which a distal end side link hub is connected to a proximal end side link hub via three or more sets of four-link chains so that the posture can be changed. Is used. Thereby, it is possible to operate in a wide range of operation with high speed and high accuracy while being compact.
 しかしながら、特許文献2のリンク作動装置は、他の機構を組み合わせてリンク作動装置の内部空間に配置した被作業体に対して作業を行う場合、被作業体や作業体がパラレルリンク機構の一部の部材と干渉する恐れがある。このため、作業範囲が狭くなり、比較的大きな被作業体に対して作業できないといった課題がある。 However, when the link actuating device disclosed in Patent Document 2 performs a work on a work body disposed in the internal space of the link actuating device by combining other mechanisms, the work body and the work body are part of the parallel link mechanism. There is a risk of interference with other members. For this reason, the work range becomes narrow, and there is a problem that work cannot be performed on a relatively large work object.
 この発明の目的は、高速、高精度の作業が可能で、コンパクト化を実現しつつ、比較的大きな被作業体に対しても複数方向から作業を行うことができるパラレルリンク機構を用いた作業装置を提供することである。 An object of the present invention is to provide a working device using a parallel link mechanism that can perform high-speed and high-accuracy work and can work on a relatively large work object from a plurality of directions while realizing compactness. Is to provide.
 この発明のパラレルリンク機構を用いた作業装置は、被作業体に対して作業体で接触状態または非接触状態で作業を行う作業装置であって、前記被作業体を姿勢変更可能に支持するパラレルリンク機構と、このパラレルリンク機構を作動させる姿勢制御用アクチュエータと、前記パラレルリンク機構に対して前記作業体を直交2軸方向に移動させる直交2軸直動機構とを備える。 A working device using the parallel link mechanism according to the present invention is a working device that performs work in a contact state or non-contact state with a work body with respect to the work body, and supports the work body in a posture changeable manner. A link mechanism; an attitude control actuator that operates the parallel link mechanism; and an orthogonal biaxial linear motion mechanism that moves the work body in the orthogonal biaxial direction with respect to the parallel link mechanism.
 前記パラレルリンク機構は、基端側のリンクハブに対し先端側のリンクハブを、3組以上のリンク機構を介して姿勢を変更可能に連結し、前記各リンク機構は、それぞれ前記基端側のリンクハブおよび先端側のリンクハブに一端が回転可能に連結された基端側および先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを有する。 In the parallel link mechanism, a link hub on the distal end side is connected to a link hub on the proximal end side through three or more sets of link mechanisms in such a manner that the posture can be changed. End link members at the proximal end and the distal end, one end of which is rotatably connected to the link hub and the distal link hub, and both ends rotated at the other ends of the proximal and distal end link members. A central link member connected in a possible manner.
 前記姿勢制御用アクチュエータは、前記基端側のリンクハブに対する前記先端側のリンクハブの姿勢を任意に変更するように、前記3組以上のリンク機構のうちの2組以上のリンク機構に設けられる。 The attitude control actuator is provided in two or more sets of link mechanisms of the three or more sets of link mechanisms so as to arbitrarily change the attitude of the distal end side link hub with respect to the proximal end side link hub. .
 前記直交2軸直動機構は、前記基端側のリンクハブの中心軸と直交する平面と平行に前記作業体を移動させるものである。なお、「リンクハブの中心軸」とは、前記リンクハブと前記端部リンク部材の各回転対偶、および、前記端部リンク部材と前記中央リンク部材の各回転対偶の中心軸がそれぞれ交差する点を前記リンクハブの球面リンク中心と称する場合、この球面リンク中心を通り前記リンクハブと前記端部リンク部材の回転対偶の中心軸と直角に交わる直線を指す。
 前記先端側のリンクハブに、この先端側のリンクハブと前記基端側のリンクハブとの間の内部空間に位置するように前記被作業体を設置する。
The orthogonal biaxial linear movement mechanism moves the working body in parallel with a plane orthogonal to the central axis of the link hub on the base end side. The “center axis of the link hub” is a point at which the center axes of the rotation pairs of the link hub and the end link member and the rotation pairs of the end link member and the center link member intersect with each other. Is referred to as the spherical link center of the link hub, it refers to a straight line passing through the spherical link center and perpendicular to the central axis of the rotational pair of the link hub and the end link member.
The work piece is installed on the distal end side link hub so as to be positioned in an internal space between the distal end side link hub and the proximal end side link hub.
 前記パラレルリンク機構は、基端側のリンクハブと、先端側のリンクハブと、3組以上のリンク機構とで、基端側のリンクハブに対し先端側のリンクハブが直交2軸周りに回転自在な2自由度機構を構成する。この2自由度機構は、コンパクトでありながら、先端側のリンクハブの可動範囲を広くとれる。例えば、基端側のリンクハブの中心軸と先端側のリンクハブの中心軸の折れ角の最大値は約±90°であり、基端側のリンクハブに対する先端側のリンクハブの旋回角を0°~360°の範囲に設定できる。 The parallel link mechanism includes a proximal-side link hub, a distal-end side link hub, and three or more sets of link mechanisms. The distal-side link hub rotates about two orthogonal axes with respect to the proximal-side link hub. A flexible two-degree-of-freedom mechanism is configured. Although this two-degree-of-freedom mechanism is compact, the movable range of the link hub on the distal end side can be widened. For example, the maximum bending angle between the central axis of the link hub on the proximal end side and the central axis of the link hub on the distal end side is about ± 90 °, and the swivel angle of the link hub on the distal end side with respect to the link hub on the proximal end side is It can be set in the range of 0 ° to 360 °.
 このパラレルリンク機構を用いた作業装置は、パラレルリンク機構の2自由度と直交2軸直動機構の2自由度とで計4自由度の構成となる。4自由度の構成であると、姿勢制御用アクチュエータによりパラレルリンク機構を作動させて、先端側のリンクハブに設置された被作業体の姿勢を変更すると共に、直交2軸直動機構により作業体を直交2軸方向に移動させることで、被作業体の各面に対して作業体で作業を行うことができる。作業体を被作業体に接触させて行う作業、および作業体を被作業体に対して一定に間隔を開けて非接触で行う作業のいずれも可能である。特に、本構成は作業体と被作業体との距離の調整が不要な非接触で行う作業に優れる。パラレルリンク機構により被作業体の姿勢変更を高速、高精度で行えるため、高速、高精度の作業が可能である。 The working device using this parallel link mechanism has a total of 4 degrees of freedom with 2 degrees of freedom of the parallel link mechanism and 2 degrees of freedom of the orthogonal two-axis linear motion mechanism. With the four-degree-of-freedom configuration, the parallel link mechanism is actuated by the posture control actuator to change the posture of the work body installed on the link hub on the distal end side, and the work body is moved by the orthogonal two-axis linear motion mechanism. Can be operated with the work body on each surface of the work body. Both the work performed by bringing the work body into contact with the work body and the work performed without contact with the work body spaced apart from the work body by a constant distance are possible. In particular, this configuration is excellent for non-contact work that does not require adjustment of the distance between the work body and the work body. Since the posture of the work body can be changed with high speed and high accuracy by the parallel link mechanism, high speed and high accuracy work is possible.
 例えば、パラレルリンク機構を右側に傾けると、被作業体の右側面が作業体の側を向く。この場合、直交2軸直動機構により作業体を右方向に移動させることで、被作業体の右側面に対して作業を行うことができる。また、パラレルリンク機構を左側に傾けると、被作業体の左側面が作業体の側を向く。この場合、直交2軸直動機構により作業体を左方向に移動させることで、被作業体の左側面に対して作業を行うことができる。同様に、パラレルリンク機構を前後に傾け、直交2軸直動機構により作業体を前後方向に移動させることで、被作業体の前後の側面に対して作業を行うことができる。 For example, when the parallel link mechanism is tilted to the right side, the right side surface of the work body faces the work body side. In this case, the work can be performed on the right side surface of the work body by moving the work body in the right direction by the orthogonal two-axis linear motion mechanism. When the parallel link mechanism is tilted to the left side, the left side surface of the work body faces the work body side. In this case, the work can be performed on the left side surface of the work body by moving the work body to the left by the orthogonal two-axis linear motion mechanism. Similarly, by tilting the parallel link mechanism back and forth and moving the work body in the front-rear direction by the orthogonal two-axis linear motion mechanism, the work can be performed on the front and back side surfaces of the work body.
 パラレルリンク機構の特性上、上記パラレルリンク機構の傾き動作に伴い、中央リンク部材の軌道円もパラレルリンク機構の傾き側に移動する。中央リンク部材の軌道円は、各中央リンク部材の中央部を結ぶ円である。つまり、中央リンク部材の移動跡にスペースができる。このため、パラレルリンク機構の傾き側へ作業体を移動させても、作業体と中央リンク部材とが干渉し難い。このことから、パラレルリンク機構の作動範囲を広くとれ、作業体に対する作業範囲が広くなる。また、コンパクト化を実現しつつ、比較的大きな被作業体に対しても複数方向から作業を行うことができる。 Due to the characteristics of the parallel link mechanism, the orbital circle of the central link member moves to the tilt side of the parallel link mechanism as the parallel link mechanism tilts. The orbital circle of the central link member is a circle that connects the central portions of the central link members. That is, a space is created in the movement trace of the central link member. For this reason, even if the work body is moved to the tilt side of the parallel link mechanism, the work body and the central link member are unlikely to interfere with each other. Therefore, the operating range of the parallel link mechanism can be widened, and the working range for the work body is widened. In addition, it is possible to work on a relatively large work object from a plurality of directions while realizing compactness.
 この発明において、前記直交2軸直動機構は、前記基端側のリンクハブと一体の部材に設置され、前記基端側のリンクハブの中心軸と直交する平面に沿って前記被作業体に対して前記作業体を直交2軸方向に移動させると良い。この構成によれば、作業体や被作業体の位置を計算する関係式が比較的簡単な形となり、姿勢制御用アクチュエータおよび直交2軸直動機構の制御が容易になる。 In this invention, the orthogonal two-axis linear motion mechanism is installed on a member integral with the base end side link hub, and is attached to the work body along a plane perpendicular to the central axis of the base end side link hub. On the other hand, it is preferable to move the working body in two orthogonal axes. According to this configuration, the relational expression for calculating the positions of the work body and the work body becomes a relatively simple form, and control of the attitude control actuator and the orthogonal two-axis linear motion mechanism is facilitated.
 この発明において、前記パラレルリンク機構を前記先端側のリンクハブが下向きとなるように設置し、前記直交2軸直動機構を前記パラレルリンク機構の上方に配置すると良い。
 この構成によれば、姿勢制御用アクチュエータ、直交2軸直動機構等の制御用機器や作業体が被作業体の下方に配置されない。したがって、作業体から発生する切粉や作業体に付着させるグリース、塗料等が制御用機器や作業体に付着して、これらに悪影響を与えることを防止できる。
In this invention, it is preferable that the parallel link mechanism is installed so that the link hub on the tip side faces downward, and the orthogonal two-axis linear motion mechanism is disposed above the parallel link mechanism.
According to this configuration, control devices such as the posture control actuator and the orthogonal two-axis linear motion mechanism and the work body are not disposed below the work body. Therefore, it is possible to prevent chips generated from the work body, grease, paint, and the like attached to the work body from adhering to the control device and the work body and adversely affecting them.
 この発明において、前記直交2軸直動機構とは別に、前記被作業体に対して前記作業体を前記基端側のリンクハブの中心軸と平行に移動させるZ軸直動機構を設けると良い。この構成によれば、前記4自由度の構成にZ軸直動機構による1自由度を加えることで、5自由度の構成となる。被作業体が比較的大きい場合、4自由度の構成では、作業体と被作業体との距離を調整することが難しいが、5自由度の構成であると、作業体と被作業体との距離を制御できるため、接触しての作業も無理なく行える。 In this invention, apart from the orthogonal two-axis linear motion mechanism, it is preferable to provide a Z-axis linear motion mechanism that moves the work body parallel to the central axis of the link hub on the base end side with respect to the work body. . According to this configuration, by adding one degree of freedom by the Z-axis linear motion mechanism to the four-degree-of-freedom configuration, a five-degree-of-freedom configuration is obtained. When the work body is relatively large, it is difficult to adjust the distance between the work body and the work body in the configuration of 4 degrees of freedom, but in the structure of 5 degrees of freedom, Because the distance can be controlled, the contact work can be done without difficulty.
 この発明において、前記先端側のリンクハブの球面リンク中心から前記被作業体における前記球面リンク中心から先端側のリンクハブの中心軸の方向に最も離れた位置までの距離をT、前記基端側のリンクハブの球面リンク中心と前記先端側のリンクハブの球面リンク中心間の距離をL、前記パラレルリンク機構が作動可能範囲の最大域まで作動した状態における前記基端側のリンクハブの中心軸と前記先端側のリンクハブの中心軸とが成す角度である最大折れ角をθmaxとした場合、
 T≧L/(2cos(θmax/2))
の関係が成り立つと良い。
In this invention, the distance from the spherical link center of the distal end side link hub to the position farthest in the direction of the central axis of the distal end side link hub from the spherical link center of the work body is T, the proximal end side The distance between the spherical link center of the link hub and the spherical link center of the distal end side link hub is L, and the central axis of the proximal link hub in the state where the parallel link mechanism is operated to the maximum operating range. When the maximum bending angle that is an angle formed by the central axis of the link hub on the tip side is θmax,
T ≧ L / (2cos (θmax / 2))
It is good if the relationship is established.
 パラレルリンク機構が作動可能範囲の最大域まで作動した場合、先端側または基端側の球面リンク中心から先端側または基端側のリンクハブの中心軸の交点までの距離がL/(2cos(θmax/2))となる。距離TをL/(2cos(θmax/2))以上とすれば、最大折れ角θmaxの作動範囲内において、折れ角θが大きくなるにつれて、被作業体の側面と基端側のリンクハブの中心軸との距離が近づく。そのため、直交2軸直動機構のストロークを小さくでき、コンパクトな構成を実現できる。 When the parallel link mechanism operates to the maximum range of the operable range, the distance from the center of the spherical link on the distal end side or the proximal end side to the intersection of the center axes of the link hub on the distal end side or the proximal end side is L / (2cos (θmax / 2)). If the distance T is set to L / (2cos (θmax / 2)) or more, the side of the work piece and the center of the link hub on the proximal end side as the bending angle θ increases within the maximum bending angle θmax operating range. The distance from the axis approaches. Therefore, the stroke of the orthogonal two-axis linear motion mechanism can be reduced, and a compact configuration can be realized.
 この発明において、前記先端側のリンクハブの中心軸から前記被作業体の外周面までの最大距離をM、前記各中央リンク部材の内面の中央部を結ぶ円である中央リンク部材の内面軌道円の半径をR、前記先端側のリンクハブの球面リンク中心から前記被作業体における前記球面リンク中心から先端側のリンクハブの中心軸の方向に最も離れた位置までの距離をT,前記パラレルリンク機構が作動可能範囲の最大域まで作動した状態における前記基端側のリンクハブの中心軸と前記先端側のリンクハブの中心軸とが成す角度である最大折れ角をθmaxとした場合、
 R≧T・sin(θmax/2)+M
の関係が成り立つと良い。ここで、中央リンク部材の「内面」とは、基端側と先端側の球面リンク中心を結ぶ直線の中点に対し対向する面のことである。
In this invention, the maximum distance from the central axis of the link hub on the distal end side to the outer peripheral surface of the work body is M, and the inner surface track circle of the central link member is a circle connecting the central portions of the inner surfaces of the central link members. , R, and T, the distance from the spherical link center of the link hub on the distal end side to the position farthest from the spherical link center on the work body in the direction of the central axis of the link hub on the distal end side, T When the maximum bending angle, which is an angle formed by the central axis of the base-side link hub and the central axis of the distal-side link hub in a state where the mechanism is operated to the maximum range of the operable range, is θmax,
R ≧ T · sin (θmax / 2) + M
It is good if the relationship is established. Here, the “inner surface” of the central link member is a surface facing the midpoint of a straight line connecting the spherical link centers on the proximal end side and the distal end side.
 このようにパラレルリンク機構の各リンク機構を構成することで、被作業体や作業体が中央リンク部材と干渉することを回避できる。それにより、パラレルリンク機構の可動範囲と作業範囲を広くとれるようになる。 Thus, by configuring each link mechanism of the parallel link mechanism, it is possible to avoid the work body and the work body from interfering with the central link member. Thereby, the movable range and work range of the parallel link mechanism can be widened.
 この発明において、前記被作業体を前記先端側のリンクハブの中心軸に対して直交する軸回りに回転させる回転機構を設けても良い。この構成によれば、回転機構により被作業体を回転させることで、被作業体の全周面に対して作業を行うことができるようになる。 In the present invention, a rotation mechanism for rotating the work body around an axis orthogonal to the central axis of the link hub on the distal end side may be provided. According to this configuration, the work can be performed on the entire circumferential surface of the work body by rotating the work body by the rotation mechanism.
 回転機構を設ける場合、一端が前記先端側のリンクハブに固定され他端が前記パラレルリンク機構の外部空間へ延びた回転機構固定部材の前記他端に、前記回転機構を設置し、この回転機構の出力軸に被作業体固定部材を設置し、この被作業体固定部材の先端を前記3組以上のリンク機構のうちの隣り合う2組のリンク機構の間を通って前記内部空間に挿入し、この被作業体固定部材の前記先端に前記被作業体を設置すると良い。このように、回転機構をスペースに余裕のあるパラレルリンク機構の外部空間に配置することで、各リンク機構と回転機構とが干渉することを防止でき、より広い作動範囲を実現できる。 When the rotation mechanism is provided, the rotation mechanism is installed at the other end of the rotation mechanism fixing member whose one end is fixed to the link hub on the front end side and the other end extends to the external space of the parallel link mechanism. A workpiece fixing member is installed on the output shaft, and the tip of the workpiece fixing member is inserted into the internal space through two adjacent link mechanisms of the three or more link mechanisms. The work body may be installed at the tip of the work body fixing member. As described above, by arranging the rotation mechanism in the external space of the parallel link mechanism having a sufficient space, it is possible to prevent the link mechanisms and the rotation mechanism from interfering with each other, thereby realizing a wider operating range.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の第1実施形態にかかる作業装置の一状態の正面図である。 同作業装置の異なる状態の正面図である。 同作業装置のリンク作動装置の一部を省略した正面図である。 同リンク作動装置の一状態の斜視図である。 同リンク作動装置の異なる状態の斜視図である。 同リンク作動装置の基端側のリンクハブ、基端側の端部リンク部材等の断面図である。 図6Aの部分拡大図である。 同パラレルリンク機構の1つのリンク機構を直線で表現した図である。 同作業装置の直交2軸直動機構の平面図である。 この発明の第2実施形態にかかる作業装置の一状態の正面図である。 同作業装置の異なる状態の正面図である。 同作業装置の直交2軸直動機構の平面図である。 同作業装置の被作業体の平面図である。 図12Aとは異なる被作業体の平面図である。 同作業装置の作業動作を示す説明図である。 同作業装置の異なる作業動作を示す説明図である。 同作業装置のさらに異なる作業動作を示す説明図である。 この発明の第3実施形態にかかる作業装置の一状態の正面図である。 この発明の第4実施形態にかかる作業装置の一状態の正面図である。 同作業装置の異なる状態の正面図である。 この発明の第5実施形態にかかる作業装置の一状態の正面図である。 同作業装置の異なる状態の正面図である。 この発明の第6実施形態にかかる作業装置の一状態の正面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same part numbers in a plurality of drawings indicate the same or corresponding parts.
It is a front view of one state of the working device concerning a 1st embodiment of this invention. It is a front view of a different state of the working device. It is the front view which abbreviate | omitted some link actuating devices of the working device. It is a perspective view of one state of the link actuator. It is a perspective view of a different state of the link actuator. It is sectional drawing of the link hub by the side of the base end of the link action | operation apparatus, the edge part link member by the side of a base end, etc. It is the elements on larger scale of FIG. 6A. It is the figure which expressed one link mechanism of the parallel link mechanism with a straight line. It is a top view of the orthogonal 2-axis linear motion mechanism of the working device. It is a front view of one state of the working device concerning a 2nd embodiment of this invention. It is a front view of a different state of the working device. It is a top view of the orthogonal 2-axis linear motion mechanism of the working device. It is a top view of the to-be-worked body of the working device. It is a top view of the to-be-worked object different from FIG. 12A. It is explanatory drawing which shows the operation | work operation | movement of the work apparatus. It is explanatory drawing which shows the different operation | movement operation | work of the work apparatus. It is explanatory drawing which shows the further different operation | movement operation | work of the work apparatus. It is a front view of one state of the working device concerning a 3rd embodiment of this invention. It is a front view of one state of the working device concerning a 4th embodiment of this invention. It is a front view of a different state of the working device. It is a front view of one state of the working device concerning a 5th embodiment of this invention. It is a front view of a different state of the working device. It is a front view of one state of the working device concerning a 6th embodiment of this invention.
 この発明の第1実施形態に係るパラレルリンク機構を用いた作業装置を図1~図8と共に説明する。図1、図2はこの作業装置の互いに異なる状態を示す正面図である。作業装置1は、被作業体2に対して作業体3で作業を行う装置である。土台4の上に建てられて複数本の支柱5によって水平状のベース部材6が支持され、このベース部材6に、リンク作動装置7および直交2軸直動機構8が設置されている。リンク作動装置7は、被作業体2を姿勢変更可能に支持するパラレルリンク機構9と、このパラレルリンク機構9を作動させる姿勢制御用アクチュエータ10とで構成される。直交2軸直動機構8は、被作業体2に対して作業体3を直交2軸方向に移動させる機構である。 A working apparatus using the parallel link mechanism according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2 are front views showing different states of the working device. The work device 1 is a device that performs work on the work body 2 with the work body 3. A horizontal base member 6 is supported by a plurality of support columns 5 built on the base 4, and a link actuating device 7 and an orthogonal two-axis linear motion mechanism 8 are installed on the base member 6. The link actuating device 7 includes a parallel link mechanism 9 that supports the work body 2 so that the posture can be changed, and an attitude control actuator 10 that operates the parallel link mechanism 9. The orthogonal biaxial linear motion mechanism 8 is a mechanism that moves the work body 3 in the orthogonal biaxial direction with respect to the work body 2.
 図3はリンク作動装置の正面図、図4、図5はリンク作動装置の互いに異なる状態を示す斜視図である。これらの図3~5は、図1、図2に対して上下反転して表されている。リンク作動装置7のパラレルリンク機構9は、基端側のリンクハブ12に対し先端側のリンクハブ13を3組のリンク機構14を介して姿勢変更可能に連結したものである。なお、図3では、1組のリンク機構14のみが示されている。リンク機構14の数は、4組以上であっても良い。 FIG. 3 is a front view of the link actuator, and FIGS. 4 and 5 are perspective views showing different states of the link actuator. 3 to 5 are shown upside down with respect to FIGS. The parallel link mechanism 9 of the link actuating device 7 is formed by connecting a distal end side link hub 13 to a proximal end side link hub 12 via three sets of link mechanisms 14 so that the posture can be changed. In FIG. 3, only one set of link mechanisms 14 is shown. The number of link mechanisms 14 may be four or more.
 各リンク機構14は、基端側の端部リンク部材15、先端側の端部リンク部材16、および中央リンク部材17で構成され、4つの回転対偶からなる4節連鎖のリンク機構をなす。基端側および先端側の端部リンク部材15,16はL字形状であり、一端がそれぞれ基端側のリンクハブ12および先端側のリンクハブ13に回転自在に連結されている。中央リンク部材17は、両端に基端側および先端側の端部リンク部材15,16の他端がそれぞれ回転自在に連結されている。 Each link mechanism 14 includes a base end side end link member 15, a front end side end link member 16, and a central link member 17, and forms a four-joint link mechanism including four rotating pairs. The end link members 15 and 16 on the proximal end side and the distal end side are L-shaped, and one ends thereof are rotatably connected to the link hub 12 on the proximal end side and the link hub 13 on the distal end side, respectively. The central link member 17 is connected to both ends of the end link members 15 and 16 on the proximal end side and the distal end side so as to be rotatable.
 パラレルリンク機構9は、2つの球面リンク機構を組み合わせた構造であって、基端側のリンクハブ12と基端側の端部リンク部材15の各回転対偶、および基端側の端部リンク部材15と中央リンク部材17の各回転対偶の中心軸が、基端側の球面リンク中心PA(図3)で交差している。同様に、先端側のリンクハブ13と先端側の端部リンク部材16の各回転対偶、および先端側の端部リンク部材16と中央リンク部材17の各回転対偶の中心軸が、先端側の球面リンク中心PB(図3)で交差している。 The parallel link mechanism 9 has a structure in which two spherical link mechanisms are combined, and each rotation pair of the base end side link hub 12 and the base end side end link member 15 and the base end side end link member. 15 and the central axis of each rotational pair of the central link member 17 intersect at the spherical link center PA (FIG. 3) on the base end side. Similarly, the center axis of each rotation pair of the link hub 13 on the front end side and the end link member 16 on the front end side, and the rotation pair of the end link member 16 on the front end side and the central link member 17 are spherical surfaces on the front end side. It intersects at the link center PB (FIG. 3).
 また、基端側のリンクハブ12と基端側の端部リンク部材15の各回転対偶と基端側の球面リンク中心PAとの距離は互いに同じであり、基端側の端部リンク部材15と中央リンク部材17の各回転対偶と基端側の球面リンク中心PAとの距離も互いに同じである。同様に、先端側のリンクハブ13と先端側の端部リンク部材16の各回転対偶と先端側の球面リンク中心PBとの距離は互いに同じであり、先端側の端部リンク部材16と中央リンク部材17の各回転対偶と先端側の球面リンク中心PBとの距離も互いに同じである。基端側および先端側の端部リンク部材15,16と中央リンク部材17との各回転対偶の中心軸は、ある交差角γ(図3)を持っていてもよいし、平行であってもよい。 In addition, the distance between each rotation pair of the link hub 12 on the base end side and the end link member 15 on the base end side and the spherical link center PA on the base end side is the same, and the end link member 15 on the base end side is the same. The distance between each rotation pair of the central link member 17 and the spherical link center PA on the base end side is also the same. Similarly, the distance between each rotation pair of the link hub 13 on the distal end side and the end link member 16 on the distal end side and the spherical link center PB on the distal end side is the same, and the end link member 16 on the distal end side and the center link are the same. The distance between each rotation pair of the member 17 and the spherical link center PB on the tip side is also the same. The central axis of each rotational pair of the end link members 15 and 16 on the proximal end side and the distal end side and the central link member 17 may have a certain crossing angle γ (FIG. 3) or may be parallel. Good.
 図6Aおよび図6Bは、基端側のリンクハブ12、基端側の端部リンク部材15等の断面図である。図6Aおよび図6Bに、基端側のリンクハブ12と基端側の端部リンク部材15の各回転対偶の中心軸O1と、基端側の球面リンク中心PAとの関係が示されている。先端側のリンクハブ13および先端側の端部リンク部材16の形状ならびに位置関係も図6Aおよび図6Bと同様である(図示せず)。図6Aでは、基端側のリンクハブ12と基端側の端部リンク部材15との各回転対偶の中心軸O1と、基端側の端部リンク部材15と中央リンク部材17との各回転対偶の中心軸O2とが成す角度αが90°となっている。ただし、前記角度αは90°以外であっても良い。 6A and 6B are sectional views of the link hub 12 on the base end side, the end link member 15 on the base end side, and the like. 6A and 6B show the relationship between the center axis O1 of each rotation pair of the base end side link hub 12 and the base end side end link member 15 and the base end side spherical link center PA. . The shapes and positional relationships of the distal end side link hub 13 and the distal end side end link member 16 are also the same as in FIGS. 6A and 6B (not shown). In FIG. 6A, the central axis O1 of each rotation pair of the base end side link hub 12 and the base end side end link member 15 and each rotation of the base end side end link member 15 and the central link member 17 The angle α formed by the paired central axis O2 is 90 °. However, the angle α may be other than 90 °.
 3組のリンク機構14は、幾何学的に同一形状をなす。幾何学的に同一形状とは、図7に示すように、各リンク部材15,16,17を直線で表現した幾何学モデル、すなわち各回転対偶と、これら回転対偶間を結ぶ直線とで表現したモデルが、中央リンク部材17の中央部に対する基端側部分と先端側部分が対称を成す形状であることを言う。図7は、一組のリンク機構14を直線で表現した図である。この実施形態のパラレルリンク機構9は回転対称タイプで、基端側のリンクハブ12および基端側の端部リンク部材15と、先端側のリンクハブ13および先端側の端部リンク部材16との位置関係が、中央リンク部材17の中心線Cに対して回転対称となる位置構成になっている。各中央リンク部材17の中央部は、共通の軌道円D上に位置している。 The three sets of link mechanisms 14 have the same geometric shape. As shown in FIG. 7, the geometrically identical shape is represented by a geometric model in which each link member 15, 16, and 17 is represented by a straight line, that is, each rotational pair and a straight line connecting these rotational pairs. A model says that the base end side part and front end side part with respect to the center part of the center link member 17 are symmetrical shapes. FIG. 7 is a diagram in which a set of link mechanisms 14 is expressed by a straight line. The parallel link mechanism 9 of this embodiment is a rotationally symmetric type, and includes a proximal end side link hub 12 and a proximal end side end link member 15, a distal end side link hub 13 and a distal end side end link member 16. The positional relationship is such that the positional relationship is rotationally symmetric with respect to the center line C of the central link member 17. The central portion of each central link member 17 is located on a common orbit circle D.
 基端側のリンクハブ12と先端側のリンクハブ13と3組のリンク機構14とで、基端側のリンクハブ12に対し先端側のリンクハブ13が直交2軸周りに回転自在な2自由度機構が構成される。言い換えると、基端側のリンクハブ12に対して先端側のリンクハブ13を、回転が2自由度で姿勢変更自在な機構である。この2自由度機構は、コンパクトでありながら、基端側のリンクハブ12に対する先端側のリンクハブ13の可動範囲を広くとれる。 With the link hub 12 on the proximal end side, the link hub 13 on the distal end side, and the three sets of link mechanisms 14, the link hub 13 on the distal end side can rotate about two orthogonal axes with respect to the link hub 12 on the proximal end side. A degree mechanism is configured. In other words, it is a mechanism that can freely change the posture of the link hub 13 on the distal end side with respect to the link hub 12 on the proximal end side with two degrees of freedom of rotation. Although this two-degree-of-freedom mechanism is compact, the movable range of the link hub 13 on the distal end side with respect to the link hub 12 on the proximal end side can be widened.
 例えば、基端側および先端側の球面リンク中心PA,PBを通り、基端側および先端側のリンクハブ12,13と基端側および先端側の端部リンク部材15,16の各回転対偶の中心軸O1(図6A)と直角に交わる直線を基端側および先端側のリンクハブ12,13の中心軸QA,QBとした場合、基端側のリンクハブ12の中心軸QAと先端側のリンクハブ13の中心軸QBとの折れ角θ(図7)の最大値を約±90°とすることができる。また、基端側のリンクハブ12に対する先端側のリンクハブ13の旋回角φ(図7)を0°~360°の範囲に設定できる。折れ角θは、基端側のリンクハブ12の中心軸QAに対して先端側のリンクハブ13の中心軸QBが傾斜した垂直角度のことである。一方、旋回角φは、基端側のリンクハブ12の中心軸QAに対して先端側のリンクハブ13の中心軸QBが傾斜した水平角度のことである。 For example, each rotation pair of the link hubs 12 and 13 on the base end side and the tip end side and the end link members 15 and 16 on the base end side and the tip end side passes through the spherical link centers PA and PB on the base end side and the tip end side. When the straight lines intersecting the central axis O1 (FIG. 6A) at right angles are the central axes QA and QB of the link hubs 12 and 13 on the proximal end side and the distal end side, the central axis QA of the link hub 12 on the proximal end side and the distal end side The maximum value of the bending angle θ (FIG. 7) with respect to the center axis QB of the link hub 13 can be about ± 90 °. Further, the turning angle φ (FIG. 7) of the distal end side link hub 13 with respect to the proximal end side link hub 12 can be set in a range of 0 ° to 360 °. The bending angle θ is a vertical angle at which the central axis QB of the distal link hub 13 is inclined with respect to the central axis QA of the proximal link hub 12. On the other hand, the turning angle φ is a horizontal angle at which the central axis QB of the distal link hub 13 is inclined with respect to the central axis QA of the proximal link hub 12.
 基端側のリンクハブ12に対する先端側のリンクハブ13の姿勢変更は、基端側のリンクハブ12の中心軸QAと先端側のリンクハブ13の中心軸QBとの交点Oを回転中心として行われる。図4は、基端側のリンクハブ12の中心軸QAと先端側のリンクハブ13の中心軸QBが同一線上にある状態を示し、図5は、基端側のリンクハブ12の中心軸QAに対して先端側のリンクハブ13の中心軸QBが或る作動角をとった状態を示す。姿勢が変化しても、基端側と先端側の球面リンク中心PA,PB間の距離L(図7)は変化しない。 The posture change of the link hub 13 on the distal end side with respect to the link hub 12 on the proximal end side is performed with the intersection O between the center axis QA of the link hub 12 on the proximal end side and the center axis QB of the link hub 13 on the distal end side as a rotation center. Is called. 4 shows a state in which the central axis QA of the proximal-side link hub 12 and the central axis QB of the distal-side link hub 13 are on the same line, and FIG. 5 shows the central axis QA of the proximal-side link hub 12. In contrast, a state in which the central axis QB of the link hub 13 on the distal end side takes a certain operating angle is shown. Even if the posture changes, the distance L (FIG. 7) between the spherical link centers PA and PB on the proximal end side and the distal end side does not change.
 このパラレルリンク機構9において、以下の条件1~4をすべて満たすとき、中央リンク部材17の対称面に対して、中央リンク部材17と基端側および先端側の端部リンク部材15,16との角度位置関係を基端側と先端側とで同じにすれば、幾何学的対称性から基端側のリンクハブ12および基端側の端部リンク部材15と、先端側のリンクハブ13および先端側の端部リンク部材16とは同じに動く。 In the parallel link mechanism 9, when all of the following conditions 1 to 4 are satisfied, the central link member 17 and the proximal end and distal end end link members 15 and 16 are arranged with respect to the symmetry plane of the central link member 17. If the angular positional relationship is the same between the proximal end side and the distal end side, the proximal end side link hub 12 and the proximal end side end link member 15, the distal end side link hub 13 and the distal end side are geometrically symmetric. The end link member 16 on the side moves in the same way.
(条件1)各リンク機構14における基端側および先端側のリンクハブ12,13と基端側および先端側の端部リンク部材15,16の回転対偶の中心軸O1の角度および基端側および先端側の球面リンク中心PA,PBからの長さが互いに等しい。
(条件2)各リンク機構14の基端側および先端側のリンクハブ12,13と基端側および先端側の端部リンク部材15,16の回転対偶の中心軸O1、および、基端側および先端側の端部リンク部材15,16と中央リンク7の回転対偶の中心軸O2が、基端側および先端側において基端側および先端側の球面リンク中心PA,PBと交差する。
(条件3)基端側の端部リンク部材15と先端側の端部リンク部材16の幾何学的形状が等しい。
(条件4)中央リンク部材17についても基端側の先端側とで形状が等しい。
(Condition 1) The angle and the base end side of the central axis O1 of the rotational pair of the link hubs 12 and 13 on the base end side and the tip end side and the end link members 15 and 16 on the base end side and the tip end side in each link mechanism 14 and The lengths from the spherical link centers PA and PB on the front end side are equal to each other.
(Condition 2) The central axis O1 of the rotational pair of the link hubs 12 and 13 on the proximal end side and the distal end side of each link mechanism 14 and the end link members 15 and 16 on the proximal end side and the distal end side, and the proximal end side and The center axis O2 of the rotational pair of the end link members 15 and 16 and the center link 7 on the distal end intersects the spherical link centers PA and PB on the proximal and distal ends on the proximal and distal ends.
(Condition 3) The geometric shapes of the end link member 15 on the proximal end side and the end link member 16 on the distal end side are equal.
(Condition 4) The shape of the central link member 17 is also equal on the proximal end side.
 図1~図6Bに示すように、基端側のリンクハブ12は、前記ベース部材6と、このベース部材6と一体に設けられた3個の回転軸連結部材21とで構成される。ベース部材6は中央部に円形の貫通孔6a(図6A)を有し、この貫通孔6aの周囲に3個の回転軸連結部材21が円周方向に等間隔で配置されている。貫通孔6aの中心は、基端側のリンクハブ中心軸QA上に位置する。各回転軸連結部材21には、軸心が基端側のリンクハブ中心軸QAと交差する回転軸22が回転自在に連結されている。この回転軸22に、基端側の端部リンク部材15の一端が連結される。回転軸22は、基端側のリンクハブ12と基端側の端部リンク部材15の回転対偶部を構成する。 As shown in FIGS. 1 to 6B, the link hub 12 on the proximal end side includes the base member 6 and three rotating shaft connecting members 21 provided integrally with the base member 6. The base member 6 has a circular through hole 6a (FIG. 6A) at the center, and three rotary shaft connecting members 21 are arranged at equal intervals in the circumferential direction around the through hole 6a. The center of the through hole 6a is located on the link hub central axis QA on the base end side. Each rotary shaft connecting member 21 is rotatably connected to a rotary shaft 22 whose axis intersects with the link hub central axis QA on the proximal end side. One end of the end link member 15 on the proximal end side is connected to the rotation shaft 22. The rotating shaft 22 constitutes a rotating pair of the link hub 12 on the base end side and the end link member 15 on the base end side.
 1つの基端側の端部リンク部材15およびその両端周辺部を拡大した図6Bに示すように、前記回転軸22は、大径部22a、小径部22b、および雄ねじ部22cを有し、小径部22bで2個の軸受23を介して回転軸連結部材21に回転自在に支持されている。軸受23は、例えば深溝玉軸受、アンギュラ玉軸受等の玉軸受である。これらの軸受23は、回転軸連結部材21に設けられた内径溝24に嵌合状態で設置され、圧入、接着、加締め等の方法で固定されている。他の回転対偶部に設けられる軸受の種類および設置方法も同様である。 As shown in FIG. 6B in which the end link member 15 on one base end side and the peripheral portions at both ends thereof are enlarged, the rotary shaft 22 has a large diameter portion 22a, a small diameter portion 22b, and a male screw portion 22c. The portion 22b is rotatably supported by the rotary shaft connecting member 21 via two bearings 23. The bearing 23 is a ball bearing such as a deep groove ball bearing or an angular ball bearing. These bearings 23 are installed in an inner diameter groove 24 provided in the rotary shaft connecting member 21 in a fitted state, and are fixed by a method such as press-fitting, adhesion, and caulking. The same applies to the types and installation methods of the bearings provided in other rotating pairs.
 回転軸22は、大径部22aで後述の減速機構52の出力軸52aに同軸上に配置される。その配置構造の詳細は後述する。基端側の端部リンク部材15の一端に切欠き部25が形成され、この切欠き部25の両側部分が内外一対の回転軸支持部26,27を構成している。この回転軸支持部26,27に、貫通孔26a,27aがそれぞれ形成されている。また、回転軸22には、この回転軸22と一体に回転するように、基端側の端部リンク部材15の一端が連結されている。すなわち、基端側の端部リンク部材15の前記切欠き部25内に回転軸連結部材21が配置され、回転軸22の小径部22bが、前記貫通孔26a,27a、および軸受23の内輪に挿通されている。 The rotary shaft 22 is coaxially disposed on an output shaft 52a of a reduction mechanism 52 described later at a large diameter portion 22a. Details of the arrangement structure will be described later. A notch portion 25 is formed at one end of the end link member 15 on the base end side, and both side portions of the notch portion 25 constitute a pair of inner and outer rotating shaft support portions 26 and 27. Through- holes 26a and 27a are formed in the rotary shaft support portions 26 and 27, respectively. Further, one end of the end link member 15 on the base end side is connected to the rotation shaft 22 so as to rotate integrally with the rotation shaft 22. That is, the rotating shaft connecting member 21 is disposed in the notch 25 of the end link member 15 on the base end side, and the small diameter portion 22b of the rotating shaft 22 is formed on the through holes 26a and 27a and the inner ring of the bearing 23. It is inserted.
 回転軸22の大径部22aの外周にスペーサ28が嵌合され、このスペーサ28を介して基端側の端部リンク部材15と減速機構52の出力軸52aとがボルト29で固定されている。さらに、回転軸22の雄ねじ部22cは、内側の回転軸支持部27よりも突出しており、この雄ねじ部22cにナット30が螺着されている。軸受23の内輪と一対の回転軸支持部26,27との間に、スペーサ31,32が介在されており、ナット30の螺着時に軸受23に予圧が付与される。 A spacer 28 is fitted to the outer periphery of the large-diameter portion 22 a of the rotary shaft 22, and the end link member 15 on the base end side and the output shaft 52 a of the speed reduction mechanism 52 are fixed by a bolt 29 via the spacer 28. . Further, the male screw portion 22c of the rotary shaft 22 protrudes from the inner rotary shaft support portion 27, and a nut 30 is screwed to the male screw portion 22c. Spacers 31 and 32 are interposed between the inner ring of the bearing 23 and the pair of rotating shaft support portions 26 and 27, and a preload is applied to the bearing 23 when the nut 30 is screwed.
 基端側の端部リンク部材15の他端には、中央リンク部材17の一端に回転自在に連結された回転軸35が連結されている。この中央リンク部材17の回転軸35は、基端側のリンクハブ12の回転軸22と同様に、大径部35a、小径部35b、および雄ねじ部35cを有し、小径部32bで2個の軸受36を介して中央リンク部材17の一端に回転自在に支持されている。基端側の端部リンク部材15の他端に、切欠き部37が形成され、この切欠き部37の両側部分が内外一対の回転軸支持部38,39を構成している。これら一対の回転軸支持部38,39に貫通孔38a,39aがそれぞれ形成されている。 The other end of the end link member 15 on the base end side is connected to a rotating shaft 35 that is rotatably connected to one end of the central link member 17. The rotation shaft 35 of the central link member 17 has a large diameter portion 35a, a small diameter portion 35b, and a male screw portion 35c, similar to the rotation shaft 22 of the link hub 12 on the proximal end side, and two small diameter portions 32b. The bearing 36 is rotatably supported at one end of the central link member 17. A notch portion 37 is formed at the other end of the base end side end link member 15, and both side portions of the notch portion 37 constitute a pair of inner and outer rotating shaft support portions 38 and 39. Through- holes 38a and 39a are formed in the pair of rotating shaft support portions 38 and 39, respectively.
 基端側の端部リンク部材15の他端の切欠き部37内に中央リンク部材17の一端が配置され、回転軸35の小径部35bが前記貫通孔38a,39a、および軸受36の内輪に挿通されている。回転軸35の雄ねじ部35cは内側の回転軸支持部39よりも突出しており、この雄ねじ部35cにナット40を螺着されている。軸受36の内輪と一対の回転軸支持部38,39との間にスペーサ41,42が介在されており、ナット40の螺着時に軸受36に予圧が付与される。 One end of the central link member 17 is disposed in the notch 37 at the other end of the end link member 15 on the base end side, and the small diameter portion 35b of the rotating shaft 35 is formed on the through holes 38a and 39a and the inner ring of the bearing 36. It is inserted. The male screw portion 35c of the rotary shaft 35 protrudes from the inner rotary shaft support portion 39, and a nut 40 is screwed to the male screw portion 35c. Spacers 41 and 42 are interposed between the inner ring of the bearing 36 and the pair of rotating shaft support portions 38 and 39, and preload is applied to the bearing 36 when the nut 40 is screwed.
 図1~図5に示すように、先端側のリンクハブ13は、中央部に円形の貫通孔40aを有する平板状の先端部材40と、この先端部材40の貫通孔40aの周囲に円周方向等配で設けられた3個の回転軸連結部材41とで構成されている。貫通孔40aの中心は、先端側のリンクハブ13の中心軸QB上に位置する。なお、図3~5では、貫通孔40aは省略されている。各回転軸連結部材41は、軸心が先端側のリンクハブ13の中心軸QBと交差する回転軸43が回転自在に連結されている。この先端側のリンクハブ13の回転軸43に、先端側の端部リンク部材16の一端が連結される。 As shown in FIGS. 1 to 5, the link hub 13 on the distal end side includes a flat plate-shaped distal end member 40 having a circular through hole 40 a at the center, and a circumferential direction around the through hole 40 a of the distal end member 40. It is comprised with the three rotating shaft connection members 41 provided by equal distribution. The center of the through hole 40a is located on the central axis QB of the link hub 13 on the distal end side. 3 to 5, the through hole 40a is omitted. Each rotating shaft connecting member 41 is rotatably connected to a rotating shaft 43 whose axis intersects the central axis QB of the link hub 13 on the distal end side. One end of the end-side end link member 16 is connected to the rotation shaft 43 of the front-end side link hub 13.
 先端側の端部リンク部材16の他端には、中央リンク部材17の他端に回転自在に連結された回転軸45が連結されている。先端側のリンクハブ13の回転軸43および中央リンク部材17の回転軸45も、前記回転軸35と同じ形状であり、かつ2個の軸受(図示せず)を介して回転軸連結部材41および中央リンク部材17の他端にそれぞれ回転自在に連結されている。 A rotating shaft 45 that is rotatably connected to the other end of the central link member 17 is connected to the other end of the end link member 16 on the front end side. The rotary shaft 43 of the link hub 13 on the distal end side and the rotary shaft 45 of the central link member 17 have the same shape as the rotary shaft 35, and the rotary shaft coupling member 41 and two via two bearings (not shown). The other end of the central link member 17 is rotatably connected to each other.
 リンク作動装置7の姿勢制御用アクチュエータ10は、減速機構52を備えたロータリアクチュエータであり、基端側のリンクハブ12のベース部材6の上面に、前記回転軸22と同軸上に設置されている。姿勢制御用アクチュエータ10と減速機構52は一体に設けられ、モータ固定部材53により減速機構52がベース部材6に固定されている。この実施形態では、3組のリンク機構14のすべてに姿勢制御用アクチュエータ10が設けられている。ただし、3組のリンク機構14のうち少なくとも2組に姿勢制御用アクチュエータ10を設ければ、基端側のリンクハブ12に対する先端側のリンクハブ13の姿勢を確定することができる。 The attitude control actuator 10 of the link actuating device 7 is a rotary actuator provided with a speed reduction mechanism 52, and is installed coaxially with the rotary shaft 22 on the upper surface of the base member 6 of the link hub 12 on the proximal end side. . The attitude control actuator 10 and the speed reduction mechanism 52 are provided integrally, and the speed reduction mechanism 52 is fixed to the base member 6 by a motor fixing member 53. In this embodiment, the posture control actuator 10 is provided in all of the three sets of link mechanisms 14. However, if the posture control actuators 10 are provided in at least two of the three sets of link mechanisms 14, the posture of the distal link hub 13 relative to the proximal link hub 12 can be determined.
 図6Bに示すように、減速機構52はフランジ出力であって、大径の出力軸52aを有する。出力軸52aの先端面は、出力軸52aの中心線と直交する平面状のフランジ面54となっている。出力軸52aは、前記スペーサ28を介して、基端側の端部リンク部材15の回転軸支持部26にボルト29で接続されている。前記回転軸22の大径部22aが、減速機構52の出力軸52aに設けられた内径溝57に嵌っている。 As shown in FIG. 6B, the speed reduction mechanism 52 is a flange output and has a large-diameter output shaft 52a. The front end surface of the output shaft 52a is a flat flange surface 54 orthogonal to the center line of the output shaft 52a. The output shaft 52 a is connected to the rotary shaft support portion 26 of the end link member 15 on the base end side by the bolt 29 via the spacer 28. The large-diameter portion 22 a of the rotating shaft 22 is fitted in an inner diameter groove 57 provided in the output shaft 52 a of the speed reduction mechanism 52.
 直交2軸直動機構8は、図1、図2、図8に示すように、X軸方向に移動可能なX軸移動体61aを有するX軸直動機構61と、Y軸方向に移動可能なY軸移動体63aを有するY軸直動機構63とで構成されている。X軸直動機構61は、ベース部材6の上に設置され、Y軸直動機構63は、X軸移動体61aに固定されたブラケット62に設置されている。X軸直動機構61は、X軸移動体61aを移動させる駆動源であるモータ61bを有し、Y軸直動機構63は、Y軸移動体63aを移動させる駆動源であるモータ63bを有している。 As shown in FIGS. 1, 2, and 8, the orthogonal biaxial linear motion mechanism 8 is movable in the Y-axis direction with the X-axis linear motion mechanism 61 having the X-axis moving body 61a movable in the X-axis direction. And a Y-axis linear motion mechanism 63 having a Y-axis moving body 63a. The X-axis linear motion mechanism 61 is installed on the base member 6, and the Y-axis linear motion mechanism 63 is installed on a bracket 62 fixed to the X-axis moving body 61a. The X-axis linear motion mechanism 61 has a motor 61b that is a drive source that moves the X-axis moving body 61a, and the Y-axis linear motion mechanism 63 has a motor 63b that is a drive source that moves the Y-axis mobile body 63a. is doing.
 前記Y軸移動体63aには、正面形状L形の作業体設置部材64が取り付けられている。この作業体設置部材64は、ベース部材6の貫通孔6aを貫通してベース部材6の下方へ延びており、その下端に作業体固定部材65が取り付けられている。この作業体固定部材65に作業体3が固定されている。直交2軸直動機構8のX軸直動機構61およびY軸直動機構63を駆動することで、作業体3が水平面、すなわち基端側のリンクハブ12の中心軸QAと直交する平面に沿って直交2軸方向に移動する。 A front body L-shaped work body installation member 64 is attached to the Y-axis moving body 63a. The work body installation member 64 extends through the through hole 6a of the base member 6 and extends below the base member 6, and a work body fixing member 65 is attached to the lower end thereof. The work body 3 is fixed to the work body fixing member 65. By driving the X-axis linear motion mechanism 61 and the Y-axis linear motion mechanism 63 of the orthogonal two-axis linear motion mechanism 8, the work body 3 becomes a horizontal plane, that is, a plane orthogonal to the central axis QA of the link hub 12 on the proximal end side. Along the two orthogonal axes.
 図1、図2において、この実施形態の被作業体2は、例えば直方体形状であって、先端側のリンクハブ13の先端部材40に設置した被作業体固定部材67の上面に載置されている。被作業体固定部材67は、先端部材40の貫通孔40aに下方から挿入され、フランジ部67aがボルト接合、溶接等により先端部材40に固定されている。被作業体固定部材67の上面に載置された被作業体2は、先端側のリンクハブ13と基端側のリンクハブ12との間の内部空間S1に位置する。 1 and 2, the work body 2 of this embodiment has a rectangular parallelepiped shape, for example, and is placed on the upper surface of a work body fixing member 67 installed on the front end member 40 of the link hub 13 on the front end side. Yes. The workpiece fixing member 67 is inserted into the through hole 40a of the tip member 40 from below, and the flange portion 67a is fixed to the tip member 40 by bolting, welding, or the like. The work body 2 placed on the upper surface of the work body fixing member 67 is located in the internal space S1 between the link hub 13 on the distal end side and the link hub 12 on the proximal end side.
 また、この実施形態では、作業体3は被作業体2に対して非接触で作業を行うものとされている。作業体3は、例えばグリース塗布機、レーザ検査機、スプレー式塗装機、溶接機等であり、グリースノズルのような作業部3aを下向きにして前記作業体固定部材65に保持されている。被作業体2に対して接触して作業を行う作業体3も使用することができる。 Further, in this embodiment, the work body 3 performs the work without contact with the work body 2. The working body 3 is, for example, a grease applicator, a laser inspection machine, a spray coating machine, a welding machine or the like, and is held by the working body fixing member 65 with the working portion 3a such as a grease nozzle facing downward. A work body 3 that performs work in contact with the work body 2 can also be used.
 このパラレルリンク機構を用いた作業装置1は、パラレルリンク機構9の2自由度と直交2軸直動機構8の2自由度とで計4自由度の構成である。このため、リンク作動装置7を作動させて先端側のリンクハブ13に設置された被作業体2の姿勢を変更すると共に、直交2軸直動機構8により作業体3を直交2軸方向に移動させることで、被作業体2の各面に対して作業体3で非接触作業を行うことができる。姿勢制御用アクチュエータ10および直動機構8は、互いに連係して動作するように制御される。リンク作動装置7により被作業体2の姿勢変更を高速、高精度で行えるため、高速、高精度の作業が可能である。 The working device 1 using this parallel link mechanism has a total of 4 degrees of freedom, including 2 degrees of freedom of the parallel link mechanism 9 and 2 degrees of freedom of the orthogonal two-axis linear motion mechanism 8. For this reason, the posture of the work body 2 installed on the link hub 13 on the distal end side is changed by operating the link operating device 7 and the work body 3 is moved in the orthogonal biaxial direction by the orthogonal biaxial linear motion mechanism 8. By doing so, the work body 3 can perform non-contact work on each surface of the work body 2. The attitude control actuator 10 and the linear motion mechanism 8 are controlled to operate in conjunction with each other. Since the posture of the work body 2 can be changed at high speed and high accuracy by the link actuator 7, high speed and high accuracy work is possible.
 例えば、図1に示す基端側のリンクハブ中心軸QAと先端側のリンクハブ中心軸QBとが同一線上にある状態から、姿勢制御用アクチュエータ10によりパラレルリンク機構9を作動させて、図2のように基端側のリンクハブ12に対して先端側のリンクハブ13を左側に傾けると、先端側のリンクハブ13に設置された被作業体2の左側面が作業体3の側を向く。この場合、直交2軸直動機構8のX軸直動機構61により作業体3を左方向に移動させることで、被作業体2の左側面に対して作業を行うことができる。 For example, the parallel link mechanism 9 is operated by the attitude control actuator 10 from the state where the proximal-side link hub central axis QA and the distal-side link hub central axis QB shown in FIG. When the distal end side link hub 13 is tilted to the left side with respect to the proximal end side link hub 12 as described above, the left side surface of the work body 2 installed on the distal end side link hub 13 faces the work body 3 side. . In this case, the work body 3 can be moved leftward by the X-axis linear motion mechanism 61 of the orthogonal two-axis linear motion mechanism 8, so that the work can be performed on the left side surface of the work subject 2.
 また、基端側のリンクハブ12に対して先端側のリンクハブ13を右側に傾けると、被作業体2の右側面が作業体3の側を向く。この場合、直交2軸直動機構8により作業体3を右方向に移動させることで、被作業体2の右側面に対して作業を行うことができる。 Further, when the distal end side link hub 13 is tilted to the right side with respect to the proximal end side link hub 12, the right side surface of the work body 2 faces the side of the work body 3. In this case, work can be performed on the right side surface of the work body 2 by moving the work body 3 in the right direction by the orthogonal two-axis linear motion mechanism 8.
 同様に、基端側のリンクハブ12に対して先端側のリンクハブ13を前後に傾けると、被作業体2の前後の側面が作業体3の側を向く。この場合、直交2軸直動機構8のY軸直動機構63により作業体3を前後方向に移動させることで、被作業体2の前後の側面に対して作業を行うことができる。 Similarly, when the distal end side link hub 13 is tilted back and forth with respect to the proximal end side link hub 12, the front and rear side surfaces of the work body 2 face the work body 3 side. In this case, the work body 3 can be moved in the front-rear direction by the Y-axis linear movement mechanism 63 of the orthogonal two-axis linear movement mechanism 8, so that the work can be performed on the front and rear side surfaces of the work body 2.
 パラレルリンク機構9の特性上、パラレルリンク機構9の傾き動作に伴い、中央リンク部材の軌道円D(図7)もパラレルリンク機構9の傾き側に移動する。中央リンク部材の軌道円D(図7)は、各中央リンク部材17の中央部を結ぶ円である。つまり、中央リンク部材17の移動跡にスペースができる。このため、パラレルリンク機構9の傾き側へ作業体3を移動させても、作業体3と中央リンク部材17とが干渉し難い。その結果、パラレルリンク機構9の作動範囲を広くとれ、作業体3に対する作業範囲が広くなる。また、コンパクト化を実現しつつ、比較的大きな被作業体2に対しても複数方向から作業を行うことができる。 Due to the characteristics of the parallel link mechanism 9, the orbit circle D (FIG. 7) of the central link member moves to the tilt side of the parallel link mechanism 9 as the parallel link mechanism 9 tilts. The orbital circle D (FIG. 7) of the central link member is a circle that connects the central portions of the central link members 17. That is, a space is created in the movement trace of the central link member 17. For this reason, even if the working body 3 is moved to the tilt side of the parallel link mechanism 9, the working body 3 and the central link member 17 are unlikely to interfere with each other. As a result, the operating range of the parallel link mechanism 9 can be widened, and the working range for the work body 3 is widened. In addition, it is possible to perform work from a plurality of directions even on a relatively large workpiece 2 while realizing compactness.
 また、この実施形態のように、直交2軸直動機構8により基端側のリンクハブの中心軸QAと直交する平面に沿って作業体3を移動させると、作業体3や被作業体2の位置を計算する関係式が比較的簡単な形となる。したがって、姿勢制御用アクチュエータ10および直交2軸直動機構8の制御が容易である。 Further, as in this embodiment, when the work body 3 is moved along a plane orthogonal to the center axis QA of the link hub on the base end side by the orthogonal biaxial linear movement mechanism 8, the work body 3 or the work body 2 is moved. The relational expression for calculating the position of becomes a relatively simple form. Therefore, it is easy to control the attitude control actuator 10 and the orthogonal two-axis linear motion mechanism 8.
 さらに、パラレルリンク機構9が、先端側のリンクハブ13が下向きとなるように設置され、直交2軸直動機構8がパラレルリンク機構9の上方に配置されている。つまり、姿勢制御用アクチュエータ10、直交2軸直動機構8等の制御用機器や作業体3が被作業体2の下方に配置されていない。これにより、作業体3から発生するグリース、塗料等が制御用機器や作業体3に付着して、これらに悪影響を与えることを防止できる。 Furthermore, the parallel link mechanism 9 is installed so that the distal end side link hub 13 faces downward, and the orthogonal two-axis linear motion mechanism 8 is disposed above the parallel link mechanism 9. That is, control devices such as the posture control actuator 10 and the orthogonal two-axis linear motion mechanism 8 and the work body 3 are not arranged below the work body 2. As a result, it is possible to prevent grease, paint, and the like generated from the working body 3 from adhering to the control device and the working body 3 and adversely affecting them.
 図9、図10は、この発明の第2実施形態を示す。この作業装置1には、前記直交2軸直動機構8とは別に、被作業体2に対して作業体3をZ軸方向、すなわち基端側のリンクハブの中心軸QAと平行に移動させるZ軸直動機構70が設けられている。リンク作動装置7は、前述の第1実施形態のものと同じ構成である。作業体3は、被作業体2に接触させて作業を行う切削加工機、塗料塗布機等である。 9 and 10 show a second embodiment of the present invention. In this working device 1, apart from the orthogonal biaxial linear motion mechanism 8, the working body 3 is moved relative to the work body 2 in the Z-axis direction, that is, in parallel with the central axis QA of the link hub on the base end side. A Z-axis linear motion mechanism 70 is provided. The link actuator 7 has the same configuration as that of the first embodiment described above. The work body 3 is a cutting machine, a paint applicator, or the like that performs work while being in contact with the work body 2.
 図9、図10、図11に示すように、Z軸直動機構70は、直交2軸直動機構8のY軸直動機構63のY軸移動体63aにブラケット71を介して設置され、Z軸方向に移動可能なZ軸移動体70aを有する。Z軸直動機構70の駆動源はモータ70bである。Z軸移動体70aに作業体設置部材64が取り付けられ、この作業体設置部材64の下端に作業体固定部材65を介して作業体3が保持されている。 As shown in FIGS. 9, 10, and 11, the Z-axis linear motion mechanism 70 is installed on the Y-axis moving body 63 a of the Y-axis linear motion mechanism 63 of the orthogonal two-axis linear motion mechanism 8 via the bracket 71. The Z-axis moving body 70a is movable in the Z-axis direction. The drive source of the Z-axis linear motion mechanism 70 is a motor 70b. A work body installation member 64 is attached to the Z-axis moving body 70a, and the work body 3 is held via a work body fixing member 65 at the lower end of the work body installation member 64.
 この作業装置1は、前述の第1実施形態の4自由度の構成にZ軸直動機構70による1自由度を加えることで、5自由度の構成となる。被作業体2が比較的大きい場合、4自由度の構成では、作業体3と被作業体2との距離を調整することが難しいが、5自由度の構成であると、作業体3と被作業体2との距離を制御できる。したがって、図13A~13Cに示すように、接触しての作業を無理なく行える。図13Aは基端側のリンクハブの中心軸QAと先端側のリンクハブの中心軸QBとの折れ角θが0°である状態、図13Cは折れ角θが最大となるまで被作業体2が傾斜した状態、図13Bは図13Aと図13Cの中間の状態を示す。 This working device 1 has a configuration of five degrees of freedom by adding one degree of freedom by the Z-axis linear motion mechanism 70 to the configuration of four degrees of freedom of the first embodiment described above. When the work body 2 is relatively large, it is difficult to adjust the distance between the work body 3 and the work body 2 with the configuration of 4 degrees of freedom, but when the work body 2 is configured with 5 degrees of freedom, The distance to the work body 2 can be controlled. Therefore, as shown in FIGS. 13A to 13C, the contact operation can be performed without difficulty. FIG. 13A shows a state in which the bending angle θ between the central axis QA of the link hub on the proximal end side and the central axis QB of the link hub on the distal end side is 0 °, and FIG. 13C shows the work body 2 until the bending angle θ reaches the maximum. 13B shows an intermediate state between FIG. 13A and FIG. 13C.
 上記5自由度の構成では、作業装置1のコンパクト化を図るために、基端側のリンクハブ12に対する被作業体2の設置位置は、以下のように定めると良い。すなわち、先端側のリンクハブ13の球面リンク中心PBから被作業体2における球面リンク中心PBからリンクハブ中心軸QBの方向に最も離れた位置までの距離をT、基端側のリンクハブ12の球面リンク中心PAと先端側のリンクハブ13の球面リンク中心PB間の距離をL、パラレルリンク機構9の最大折れ角をθmaxとした場合、
 T≧L/(2cos(θmax/2))
の関係が成り立つようにする。
In the configuration with the five degrees of freedom, in order to reduce the size of the working device 1, the installation position of the work body 2 with respect to the link hub 12 on the base end side is preferably determined as follows. That is, the distance from the spherical link center PB of the link hub 13 on the distal end side to the position farthest from the spherical link center PB on the work body 2 in the direction of the link hub central axis QB is T, and the link hub 12 of the proximal end side is connected. When the distance between the spherical link center PA and the spherical link center PB of the link hub 13 on the distal end side is L, and the maximum bending angle of the parallel link mechanism 9 is θmax,
T ≧ L / (2cos (θmax / 2))
The relationship is established.
 パラレルリンク機構9が作動可能範囲の最大域まで作動した場合、先端側または基端側の球面リンク中心PA,PBから先端側または基端側のリンクハブの中心軸QA,QBの交点Oまでの距離TはL/(2cos(θmax/2))となる。距離TをL/(2cos(θmax/2))以上とすれば、最大折れ角θmaxの作動範囲内において、折れ角θが大きくなるにつれて、被作業体2の側面と基端側のリンクハブ12の中心軸QAとの距離が近づく。そのため、直交2軸直動機構8のX軸直動機構61およびY軸直動機構63のストロークを小さくでき、コンパクトな構成を実現できる。 When the parallel link mechanism 9 operates to the maximum range of the operable range, from the spherical link centers PA and PB on the distal end side or the proximal end side to the intersection O of the center axes QA and QB of the link hub on the distal end side or the proximal end side The distance T is L / (2cos (θmax / 2)). When the distance T is set to L / (2 cos (θmax / 2)) or more, the side surface of the work piece 2 and the link hub 12 on the proximal end side become larger as the bending angle θ increases within the operating range of the maximum bending angle θmax. The distance from the central axis QA of the Therefore, the strokes of the X-axis linear motion mechanism 61 and the Y-axis linear motion mechanism 63 of the orthogonal two-axis linear motion mechanism 8 can be reduced, and a compact configuration can be realized.
 また、先端側のリンクハブ13の中心軸QBから被作業体2の外周面までの最大距離をM、各中央リンク部材17の内面の軌道円Dの半径をR、先端側のリンクハブ13の球面リンク中心PBから被作業体2における球面リンク中心PBからリンクハブ中心軸QBの方向に最も離れた位置までの距離をT、最大折れ角をθmaxとした場合、
 R≧T・sin(θmax/2)+M
の関係が成り立つと良い。なお、図12Aのように被作業体2の平面形状が円形である場合、前記最大距離Mは半径となる。一方、図12Bのように被作業体2の平面形状が矩形である場合、前記最大距離Mは矩形の中心から角までの距離となる。
The maximum distance from the central axis QB of the link hub 13 on the distal end side to the outer peripheral surface of the work body 2 is M, the radius of the track circle D on the inner surface of each central link member 17 is R, and the link hub 13 on the distal end side is When the distance from the spherical link center PB to the position farthest from the spherical link center PB in the work body 2 in the direction of the link hub central axis QB is T, and the maximum bending angle is θmax,
R ≧ T · sin (θmax / 2) + M
It is good if the relationship is established. In addition, when the planar shape of the workpiece 2 is circular as shown in FIG. 12A, the maximum distance M is a radius. On the other hand, when the planar shape of the workpiece 2 is a rectangle as shown in FIG. 12B, the maximum distance M is a distance from the center of the rectangle to the corner.
 このようにパラレルリンク機構9の各リンク機構14を構成することで、被作業体2や作業体3が中央リンク部材17と干渉することを回避できる。これにより、パラレルリンク機構9の可動範囲およびリンク作動装置7の作業範囲を広くとれる。 Thus, by configuring each link mechanism 14 of the parallel link mechanism 9, it is possible to avoid the work body 2 and the work body 3 from interfering with the central link member 17. Thereby, the movable range of the parallel link mechanism 9 and the work range of the link operating device 7 can be widened.
 図14は、この発明の第3実施形態を示す。この作業装置1は、Z軸直動機構70がボールねじ機構を用いた構成となっている。すなわち、ベース部材6から上方に延びる複数のシャフト80に、リニアブッシュ81を介して昇降台82が昇降可能に案内され、この昇降台82の下面に直交2軸直動機構8が設置されている。ベース部材6からねじ軸83が前記シャフト80と平行に上方に延びており、このねじ軸83に、昇降台82に設けたナット84が螺合している。モータ85でねじ軸83を回転させると、昇降台82が昇降する。 FIG. 14 shows a third embodiment of the present invention. In this working device 1, the Z-axis linear motion mechanism 70 uses a ball screw mechanism. That is, an elevator 82 is guided to a plurality of shafts 80 extending upward from the base member 6 via a linear bush 81 so that the orthogonal biaxial linear motion mechanism 8 is installed on the lower surface of the elevator 82. . A screw shaft 83 extends upward from the base member 6 in parallel with the shaft 80, and a nut 84 provided on the lifting platform 82 is screwed to the screw shaft 83. When the screw shaft 83 is rotated by the motor 85, the elevator 82 moves up and down.
 直交2軸直動機構8は、X軸直動機構61が上側、かつY軸直動機構63が下側となるように配置され、上側のX軸直動機構61が前記昇降台82に固定されている。下側のY軸直動機構63のY軸移動体63aに作業体設置部材64が取り付けられ、この作業体設置部材64の下端に取り付けられた作業体固定部材65により作業体3が固定されている。Z軸直動機構70を作動させることで、直交2軸直動機構8と共に作業体3が基端側のリンクハブ12の中心軸QAに沿って移動する。このボールねじ機構を用いたZ軸直動機構70は、図9、図10の第2実施形態のZ軸直動機構70と比較して、構成が簡単であると共に、高さ位置を低くできるという利点がある。 The orthogonal two-axis linear motion mechanism 8 is arranged such that the X-axis linear motion mechanism 61 is on the upper side and the Y-axis linear motion mechanism 63 is on the lower side, and the upper X-axis linear motion mechanism 61 is fixed to the lifting platform 82. Has been. The work body installation member 64 is attached to the Y-axis moving body 63a of the lower Y-axis linear motion mechanism 63, and the work body 3 is fixed by the work body fixing member 65 attached to the lower end of the work body installation member 64. Yes. By operating the Z-axis linear motion mechanism 70, the work body 3 moves along with the orthogonal biaxial linear motion mechanism 8 along the central axis QA of the link hub 12 on the proximal end side. Compared with the Z-axis linear motion mechanism 70 of the second embodiment of FIGS. 9 and 10, the Z-axis linear motion mechanism 70 using this ball screw mechanism has a simple configuration and can reduce the height position. There is an advantage.
 つぎに、被作業体2を先端側のリンクハブ13の中心軸QBに対して直交する軸回りに回転させる回転機構90を設けた第4実施形態について説明する。図15、図16に示す作業装置1は、図1、図2に示す第1実施形態の4自由度の構成の作業装置1に対して、回転機構90を設けて5自由度の構成としたものである。図1、図2に示す第1実施形態の作業装置1が、先端側のリンクハブ13の先端部材40に設置した被作業体固定部材67の上面に被作業体2が設置されるのに対し、図15、図16に示す第4実施形態の作業装置1は、以下のように先端側のリンクハブ13に被作業体2が設置される。 Next, a description will be given of a fourth embodiment in which a rotation mechanism 90 that rotates the work body 2 about an axis orthogonal to the central axis QB of the link hub 13 on the distal end side is described. The working device 1 shown in FIGS. 15 and 16 has a configuration with five degrees of freedom by providing a rotation mechanism 90 with respect to the working device 1 with the configuration of four degrees of freedom of the first embodiment shown in FIGS. Is. 1 and FIG. 2 shows that the work body 1 is installed on the upper surface of the work body fixing member 67 installed on the front end member 40 of the link hub 13 on the front end side. In the working device 1 according to the fourth embodiment shown in FIGS. 15 and 16, the work body 2 is installed on the link hub 13 on the distal end side as follows.
 すなわち、先端側のリンクハブ13の先端部材40の外周縁に、回転機構固定部材91の一端が固定されている。この回転機構固定部材91は、先端側のリンクハブ13の中心軸QBと平行に基端側のリンクハブ12側に延びており、他端がパラレルリンク機構9の外部空間S2に位置する。この回転機構固定部材91の他端に、回転機構90が設置されている。回転機構90は例えばモータである。 That is, one end of the rotation mechanism fixing member 91 is fixed to the outer peripheral edge of the tip member 40 of the link hub 13 on the tip side. The rotation mechanism fixing member 91 extends toward the base end side link hub 12 in parallel with the central axis QB of the front end side link hub 13, and the other end is located in the external space S 2 of the parallel link mechanism 9. A rotation mechanism 90 is installed at the other end of the rotation mechanism fixing member 91. The rotation mechanism 90 is, for example, a motor.
 回転機構90の出力軸90aが、先端側のリンクハブ13の中心軸QBに直交する軸92に沿って内部空間S1の側に突出している。この出力軸90aに、同軸上に延びる被作業体固定部材93が固定されている。被作業体固定部材93は、その先端が3組以上のリンク機構14のうちの隣り合う2組のリンク機構14の間を通って内部空間S1に挿入されている。この被作業体固定部材93の先端に被作業体2が設置されている。被作業体2は、例えば軸92を中心軸とする円柱形である。被作業体2は他の形状、例えば立方体、直方体、球体等であっても良い。 The output shaft 90a of the rotation mechanism 90 protrudes toward the internal space S1 along the axis 92 orthogonal to the central axis QB of the link hub 13 on the distal end side. A workpiece fixing member 93 extending coaxially is fixed to the output shaft 90a. The work-body fixing member 93 is inserted into the internal space S <b> 1 through the gap between two adjacent link mechanisms 14 of the three or more sets of link mechanisms 14. The workpiece 2 is installed at the tip of the workpiece fixing member 93. The work body 2 has, for example, a cylindrical shape having a shaft 92 as a central axis. The work body 2 may have other shapes such as a cube, a rectangular parallelepiped, a sphere, and the like.
 この構成によると、回転機構90により被作業体2を軸92の回りに回転させることで、被作業体2の全周面に対して作業を行うことができる。回転機構90がスペースに余裕のあるパラレルリンク機構9の外部空間S2に配置されているので、各リンク機構14と回転機構90とが干渉することが防止され、より広い作動範囲を実現できる。 According to this configuration, the work body 2 can be rotated around the shaft 92 by the rotation mechanism 90 so that the work can be performed on the entire circumferential surface of the work body 2. Since the rotation mechanism 90 is disposed in the external space S2 of the parallel link mechanism 9 with sufficient space, the link mechanisms 14 and the rotation mechanism 90 are prevented from interfering with each other, and a wider operation range can be realized.
 図17、図18に示す第5実施形態の作業装置1は、図9、図10に示す第2実施形態の5自由度の構成の作業装置1に対して、回転機構90を設けて6自由度の構成としたものである。回転機構90および被作業体2は、図15、図16に示す第4実施形態の作業装置1と同様に、先端側のリンクハブ13に設置されている。これにより、図15、図16に示す第4実施形態の作業装置1と同様の作用、効果が得られる。 The working device 1 of the fifth embodiment shown in FIGS. 17 and 18 is provided with a rotation mechanism 90 and has six freedoms compared to the working device 1 having the five-degree-of-freedom configuration of the second embodiment shown in FIGS. The composition of the degree. The rotation mechanism 90 and the work body 2 are installed on the link hub 13 on the distal end side, similarly to the work device 1 of the fourth embodiment shown in FIGS. 15 and 16. Thereby, the effect | action and effect similar to the working apparatus 1 of 4th Embodiment shown in FIG. 15, FIG. 16 are acquired.
 図19に示す第6実施形態の作業装置1は、図14に示す第3実施形態の5自由度の構成の作業装置1に対して、回転機構90を設けて6自由度の構成としたものである。回転機構90および被作業体2は、図15、図16に示す第4実施形態の作業装置1と同様に、先端側のリンクハブ13に設置される。これにより、図15、図16に示す第4実施形態の作業装置1と同様の作用、効果が得られる。 The working device 1 of the sixth embodiment shown in FIG. 19 has a configuration of 6 degrees of freedom by providing a rotation mechanism 90 with respect to the working device 1 of the third embodiment shown in FIG. It is. The rotation mechanism 90 and the work body 2 are installed on the link hub 13 on the distal end side, similarly to the work device 1 of the fourth embodiment shown in FIGS. 15 and 16. Thereby, the effect | action and effect similar to the working apparatus 1 of 4th Embodiment shown in FIG. 15, FIG. 16 are acquired.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の特許請求の範囲から定まるこの発明の範囲内またはこれと均等の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications should be construed as being within the scope of the present invention as defined by the appended claims or within the scope equivalent thereto.
1 作業装置
2 被作業体
3 作業体
6 ベース部材(基端側のリンクハブと一体の部材)
8 直交2軸直動機構
9 パラレルリンク機構
10 姿勢制御用アクチュエータ
12 基端側のリンクハブ
13 先端側のリンクハブ
14 リンク機構
15 基端側の端部リンク部材
16 先端側の端部リンク部材
17 中央リンク部材
70 Z軸直動機構
90 回転機構
90a 出力軸
91 回転機構固定部材
92 軸
93 被作業体固定部材
O1 リンクハブと端部リンク部材の回転対偶の中心軸
O2 端部リンク部材と中央リンク部材の回転対偶の中心軸
PA,PB 球面リンク中心
QA,QB リンクハブの中心軸
S1 内部空間
S2 外部空間
DESCRIPTION OF SYMBOLS 1 Work apparatus 2 Work body 3 Work body 6 Base member (member integrated with the link hub on the base end side)
8 Orthogonal 2-Axis Linear Motion Mechanism 9 Parallel Link Mechanism 10 Posture Control Actuator 12 Proximal Link Hub 13 Proximal Link Hub 14 Link Mechanism 15 Proximal End Link Member 16 Proximal End Link Member 17 Center link member 70 Z-axis linear motion mechanism 90 Rotation mechanism 90a Output shaft 91 Rotation mechanism fixing member 92 Axis 93 Workpiece body fixing member O1 Center axis O2 of rotation pair of link hub and end link member End link member and center link Center axis PA, PB of rotating pair of members Spherical link center QA, QB Link hub center axis S1 Internal space S2 External space

Claims (8)

  1.  被作業体に対して作業体で接触状態または非接触状態で作業を行う作業装置であって、
     前記被作業体を姿勢変更可能に支持するパラレルリンク機構と、このパラレルリンク機構を作動させる姿勢制御用アクチュエータと、前記パラレルリンク機構に対して前記作業体を直交2軸方向に移動させる直交2軸直動機構とを備え、
     前記パラレルリンク機構は、基端側のリンクハブに対し先端側のリンクハブを、3組以上のリンク機構を介して姿勢を変更可能に連結し、
     前記各リンク機構は、それぞれ前記基端側のリンクハブおよび先端側のリンクハブに一端が回転可能に連結された基端側および先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを有し、
     前記姿勢制御用アクチュエータは、前記基端側のリンクハブに対する前記先端側のリンクハブの姿勢を任意に変更するように、前記3組以上のリンク機構のうちの2組以上のリンク機構に設けられ、
     前記直交2軸直動機構は、前記基端側および先端側のリンクハブと前記基端側および先端側の端部リンク部材の各回転対偶、および、前記基端側および先端側の端部リンク部材と前記中央リンク部材の各回転対偶の中心軸がそれぞれ交差する点を前記基端側および先端側のリンクハブの球面リンク中心と称し、この球面リンク中心を通り前記基端側および先端側のリンクハブと前記基端側および先端側の端部リンク部材の回転対偶の中心軸と直角に交わる直線を基端側および先端側のリンクハブの中心軸と称する場合、前記基端側のリンクハブの中心軸と直交する平面と平行に前記作業体を移動させるものであり、
     前記先端側のリンクハブに、この先端側のリンクハブと前記基端側のリンクハブとの間の内部空間に位置するように前記被作業体を設置したパラレルリンク機構を用いた作業装置。
    A working device that performs work in a contact state or non-contact state with a work body on a work body,
    A parallel link mechanism that supports the work body so that the posture can be changed, an attitude control actuator that operates the parallel link mechanism, and an orthogonal biaxial that moves the work body in two orthogonal directions relative to the parallel link mechanism With a linear motion mechanism,
    The parallel link mechanism is configured to connect the link hub on the distal end side to the link hub on the proximal end side so that the posture can be changed via three or more sets of link mechanisms,
    Each of the link mechanisms includes a base end side and a front end side end link member, one end of which is rotatably connected to the base end side link hub and the front end side link hub, and the base end side and the front end side of the link mechanism. A central link member having both ends rotatably coupled to the other end of the end link member,
    The attitude control actuator is provided in two or more sets of link mechanisms of the three or more sets of link mechanisms so as to arbitrarily change the attitude of the distal end side link hub with respect to the proximal end side link hub. ,
    The orthogonal two-axis linear motion mechanism includes a rotation hub of the link hub on the base end side and the tip end side, an end link member on the base end side and the tip end side, and end links on the base end side and the tip end side. The point where the central axis of each rotation pair of the member and the central link member intersects is called the spherical link center of the link hub on the proximal end side and the distal end side, and passes through the spherical link center and on the proximal end side and the distal end side. When a straight line that intersects with the central axis of the rotation pair of the link hub and the proximal and distal end end link members at right angles is referred to as the central axis of the proximal and distal link hubs, the proximal link hub Moving the working body parallel to a plane perpendicular to the central axis of
    A working apparatus using a parallel link mechanism in which the work body is installed on the distal link hub so as to be positioned in an internal space between the distal link hub and the proximal link hub.
  2.  請求項1に記載のパラレルリンク機構を用いた作業装置において、前記直交2軸直動機構は、前記基端側のリンクハブと一体の部材に設置され、前記基端側のリンクハブの中心軸と直交する平面に沿って前記被作業体に対して前記作業体を直交2軸方向に移動させるパラレルリンク機構を用いた作業装置。 The working device using the parallel link mechanism according to claim 1, wherein the orthogonal two-axis linear motion mechanism is installed on a member integrated with the base end side link hub, and the central axis of the base end side link hub A working apparatus using a parallel link mechanism that moves the working body in two orthogonal directions with respect to the work body along a plane orthogonal to the workpiece.
  3.  請求項1または請求項2に記載のパラレルリンク機構を用いた作業装置において、前記パラレルリンク機構を前記先端側のリンクハブが下向きとなるように設置し、前記直交2軸直動機構を前記パラレルリンク機構の上方に配置したパラレルリンク機構を用いた作業装置。 3. The working apparatus using the parallel link mechanism according to claim 1 or 2, wherein the parallel link mechanism is installed so that the link hub on the front end side faces downward, and the orthogonal biaxial linear motion mechanism is set to the parallel link mechanism. A working device using a parallel link mechanism disposed above the link mechanism.
  4.  請求項1ないし請求項3のいずれか1項に記載のパラレルリンク機構を用いた作業装置において、前記直交2軸直動機構とは別に、前記被作業体に対して前記作業体を前記基端側のリンクハブの中心軸と平行に移動させるZ軸直動機構を設けたパラレルリンク機構を用いた作業装置。 4. The work device using the parallel link mechanism according to claim 1, wherein the work body is placed on the base end with respect to the work body separately from the orthogonal two-axis linear motion mechanism. Working device using a parallel link mechanism provided with a Z-axis linear motion mechanism that moves parallel to the central axis of the link hub on the side.
  5.  請求項1ないし請求項4のいずれか1項に記載のパラレルリンク機構を用いた作業装置において、前記先端側のリンクハブの球面リンク中心から前記被作業体における前記先端側の球面リンク中心から前記基端側のリンクハブの中心軸の方向に最も離れた位置までの距離をT、前記基端側のリンクハブの球面リンク中心と前記先端側のリンクハブの球面リンク中心間の距離をL、前記パラレルリンク機構が作動可能範囲の最大域まで作動した状態における前記基端側のリンクハブの中心軸と前記先端側のリンクハブの中心軸とが成す角度である最大折れ角をθmaxとした場合、
     T≧L/(2cos(θmax/2))
    の関係が成り立つパラレルリンク機構を用いた作業装置。
    5. The working apparatus using the parallel link mechanism according to claim 1, wherein the spherical link center of the distal end side from the spherical link center of the workpiece and the spherical link center of the distal end side of the work body is used. T is the distance to the position farthest away in the direction of the central axis of the link hub on the base end side, and L is the distance between the spherical link center of the link hub on the base end side and the spherical link center of the link hub on the front end side. When the maximum bending angle, which is an angle formed by the central axis of the base-side link hub and the central axis of the distal-side link hub in a state in which the parallel link mechanism is operated up to the maximum operable range, is θmax. ,
    T ≧ L / (2cos (θmax / 2))
    A working device using a parallel link mechanism that satisfies this relationship.
  6.  請求項1ないし請求項5に記載のいずれか1項に記載のパラレルリンク機構を用いた作業装置において、前記先端側のリンクハブの中心軸から前記被作業体の外周面までの最大距離をM、前記各中央リンク部材の内面の中央部を結ぶ円である中央リンク部材の内面軌道円の半径をR、前記先端側のリンクハブの球面リンク中心から前記被作業体における前記先端側の球面リンク中心から前記基端側のリンクハブの中心軸の方向に最も離れた位置までの距離をT,前記パラレルリンク機構が作動可能範囲の最大域まで作動した状態における前記基端側のリンクハブの中心軸と前記先端側のリンクハブの中心軸とが成す角度である最大折れ角をθmaxとした場合、
     R≧T・sin(θmax/2)+M
    の関係が成り立つパラレルリンク機構を用いた作業装置。
    6. The working device using the parallel link mechanism according to claim 1, wherein a maximum distance from a central axis of the link hub on the distal end side to an outer peripheral surface of the work body is defined as M. The radius of the inner surface track circle of the central link member, which is a circle connecting the central portions of the inner surfaces of the central link members, is R, the spherical link on the distal end side of the work body from the spherical link center of the link hub on the distal end side The distance from the center to the position farthest in the direction of the central axis of the link hub on the base end side is T, and the center of the link hub on the base end side in the state where the parallel link mechanism is operated to the maximum range of the operable range When the maximum bending angle, which is the angle formed by the shaft and the central axis of the link hub on the tip side, is θmax,
    R ≧ T · sin (θmax / 2) + M
    A working device using a parallel link mechanism that satisfies this relationship.
  7.  請求項1ないし請求項6のいずれか1項に記載のパラレルリンク機構を用いた作業装置において、前記被作業体を前記先端側のリンクハブの中心軸に対して直交する軸回りに回転させる回転機構を設けたパラレルリンク機構を用いた作業装置。 The work device using the parallel link mechanism according to any one of claims 1 to 6, wherein the work body is rotated about an axis orthogonal to a central axis of the link hub on the distal end side. A working device using a parallel link mechanism provided with a mechanism.
  8.  請求項7に記載のパラレルリンク機構を用いた作業装置において、一端が前記先端側のリンクハブに固定され他端が前記パラレルリンク機構の外部空間へ延びた回転機構固定部材の前記他端に前記回転機構を設置し、この回転機構の出力軸に被作業体固定部材を設置し、この被作業体固定部材の先端を前記3組以上のリンク機構のうちの隣り合う2組のリンク機構の間を通って前記内部空間に挿入し、この被作業体固定部材の前記先端に前記被作業体を設置するパラレルリンク機構を用いた作業装置。 8. The working device using the parallel link mechanism according to claim 7, wherein one end is fixed to the link hub on the distal end side and the other end is extended to the other end of the rotating mechanism fixing member extending to an external space of the parallel link mechanism. A rotating mechanism is installed, a work fixing member is installed on the output shaft of the rotating mechanism, and the tip of the work fixing member is placed between two adjacent link mechanisms of the three or more sets of link mechanisms. A working apparatus using a parallel link mechanism that is inserted into the internal space through the work body and installs the work body at the tip of the work body fixing member.
PCT/JP2015/082474 2014-11-28 2015-11-18 Work apparatus using parallel link mechanism WO2016084685A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014241298 2014-11-28
JP2014-241298 2014-11-28
JP2015025344A JP6563658B2 (en) 2014-11-28 2015-02-12 Work device using parallel link mechanism
JP2015-025344 2015-02-12

Publications (1)

Publication Number Publication Date
WO2016084685A1 true WO2016084685A1 (en) 2016-06-02

Family

ID=56074252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082474 WO2016084685A1 (en) 2014-11-28 2015-11-18 Work apparatus using parallel link mechanism

Country Status (1)

Country Link
WO (1) WO2016084685A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003443U (en) * 2015-03-28 2016-10-06 쑤저우 롱웨이 인더스트리 & 트레이드 씨오., 엘티디. A two-way transfer robot with two rods by parallel principle
JP6466536B1 (en) * 2017-09-08 2019-02-06 Ntn株式会社 Work device using parallel link mechanism
WO2019049972A1 (en) * 2017-09-08 2019-03-14 Ntn株式会社 Work device using parallel link mechanism
EP3473389A4 (en) * 2016-06-15 2020-01-15 NTN Corporation Work device and dual-arm work device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334313A (en) * 1995-04-28 1996-12-17 Giddings & Lewis Inc Measuring device for machine tool
JP2000218451A (en) * 1999-02-01 2000-08-08 Ind Technol Res Inst Mixing mechanism-type multi-spindle machine tool
JP2014005926A (en) * 2012-06-27 2014-01-16 Ntn Corp Link operation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334313A (en) * 1995-04-28 1996-12-17 Giddings & Lewis Inc Measuring device for machine tool
JP2000218451A (en) * 1999-02-01 2000-08-08 Ind Technol Res Inst Mixing mechanism-type multi-spindle machine tool
JP2014005926A (en) * 2012-06-27 2014-01-16 Ntn Corp Link operation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003443U (en) * 2015-03-28 2016-10-06 쑤저우 롱웨이 인더스트리 & 트레이드 씨오., 엘티디. A two-way transfer robot with two rods by parallel principle
KR200484533Y1 (en) 2015-03-28 2017-09-18 쑤저우 롱웨이 인더스트리 & 트레이드 씨오., 엘티디. A two-way transfer robot with two rods by parallel principle
EP3473389A4 (en) * 2016-06-15 2020-01-15 NTN Corporation Work device and dual-arm work device
US11247329B2 (en) 2016-06-15 2022-02-15 Ntn Corportion Work device and dual-arm work device
JP6466536B1 (en) * 2017-09-08 2019-02-06 Ntn株式会社 Work device using parallel link mechanism
WO2019049972A1 (en) * 2017-09-08 2019-03-14 Ntn株式会社 Work device using parallel link mechanism
JP2019048343A (en) * 2017-09-08 2019-03-28 Ntn株式会社 Operation device using parallel link mechanism
US11247333B2 (en) 2017-09-08 2022-02-15 Ntn Corporation Work device using parallel link mechanism

Similar Documents

Publication Publication Date Title
JP6324033B2 (en) Link actuator
JP6502115B2 (en) Articulated Robot with Link Actuator
CN107949459B (en) Combined working device using connecting rod operating device
WO2017183505A1 (en) Work device and dual-arm work device
JP6602620B2 (en) Combined link actuator
US20160361816A1 (en) Device and method for controlling link actuation device
WO2016021099A1 (en) Parallel link robot and parallel link structure
WO2017026468A1 (en) Work machine provided with parallel link mechanism
JP6765221B2 (en) Work equipment using a parallel link mechanism
WO2016084685A1 (en) Work apparatus using parallel link mechanism
JP6472854B1 (en) Work equipment
JP6576646B2 (en) Articulated robot using link actuator
JP6883073B2 (en) Articulated robot using link operating device
WO2018088445A1 (en) Working device and double-arm type working device
JP6692626B2 (en) Working device using parallel link mechanism
JP6563658B2 (en) Work device using parallel link mechanism
WO2016080472A1 (en) Work device using parallel link mechanism
JP2019171506A (en) Complex working device using link operation device
JP7260987B2 (en) Dual-arm work device
US11697204B2 (en) Control device for link operation device
JP6585763B2 (en) Link actuator
JP2018167365A (en) Robot arm
WO2019189198A1 (en) Combined work apparatus using linked operation devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863800

Country of ref document: EP

Kind code of ref document: A1