WO2016084590A1 - 回転電機ユニットの配置構造及び回転電機ユニット - Google Patents

回転電機ユニットの配置構造及び回転電機ユニット Download PDF

Info

Publication number
WO2016084590A1
WO2016084590A1 PCT/JP2015/081465 JP2015081465W WO2016084590A1 WO 2016084590 A1 WO2016084590 A1 WO 2016084590A1 JP 2015081465 W JP2015081465 W JP 2015081465W WO 2016084590 A1 WO2016084590 A1 WO 2016084590A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
unit
rotating electrical
electrical machine
motor
Prior art date
Application number
PCT/JP2015/081465
Other languages
English (en)
French (fr)
Inventor
野末 裕
萩村 将巳
雅樹 金井
伊藤 秀明
素哉 河西
康幸 打矢
雅昭 長谷川
徹 引頭
Original Assignee
株式会社ミツバ
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015061362A external-priority patent/JP6143803B2/ja
Application filed by 株式会社ミツバ, 新電元工業株式会社 filed Critical 株式会社ミツバ
Publication of WO2016084590A1 publication Critical patent/WO2016084590A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits

Definitions

  • the present invention relates to a rotating electrical machine unit arrangement structure and a rotating electrical machine unit.
  • the present application claims priority based on Japanese Patent Application No. 2014-241655 filed in Japan on November 28, 2014 and Japanese Patent Application No. 2015-061362 filed in Japan on March 24, 2015. The contents are incorporated here.
  • This type of rotating electrical machine unit includes a motor unit including a stator and a rotor, and a control unit that controls energization of the stator.
  • the control unit is separated from the motor unit and is disposed, for example, under the seat of the vehicle.
  • the control unit may approach the motor unit and the like, and it is necessary to consider the cooling performance of the control unit.
  • the present invention provides a rotating electrical machine unit arrangement structure and a rotating electrical machine unit capable of ensuring the cooling performance of the control unit after the control unit is integrally provided in the motor unit.
  • the rotating electrical machine unit arrangement structure includes a stator around which a coil is wound, and a motor unit having a rotor that faces the stator and is fixed to a rotation drive shaft of an internal combustion engine; A rotating electric machine unit arrangement structure used for driving the internal combustion engine, wherein the control unit is arranged in a cooling air passage of the internal combustion engine.
  • the space for arranging the control unit is ensured by utilizing the inside of the cooling air passage of the internal combustion engine, and the cooling air is positively blown against the control unit. Can be secured.
  • the motor section and the control section are provided integrally.
  • control unit can be arranged in the cooling air passage without requiring a separate member for attaching the control unit in the cooling air passage. Further, the rotating electrical machine unit can be reduced in size.
  • the rotating electrical machine unit arrangement structure according to the second aspect of the present invention has a thermal resistance structure between the motor unit and the control unit.
  • the control unit is a cylinder included in the internal combustion engine. It is arranged on the side.
  • control unit can be arranged using the space on the side of the cylinder, and the control unit can be cooled using cooling air for cooling the cylinder.
  • the internal combustion engine and the control unit are separated from each other. Arranged.
  • a stator having a coil wound thereon, a motor unit having a rotor that faces the stator and is fixed to a rotation drive shaft of an internal combustion engine, and the stator
  • a rotating electrical machine unit that is used for driving the internal combustion engine comprising: a control unit that controls energization; and a base unit that supports the motor unit and the control unit separately or integrally.
  • the control unit is disposed in the cooling air passage of the internal combustion engine.
  • the space for arranging the control unit is ensured by utilizing the inside of the cooling air passage of the internal combustion engine, and the cooling air is positively blown against the control unit. Can be secured.
  • the rotating electrical machine unit according to the sixth aspect of the present invention has a thermal resistance structure between the motor section and the control section.
  • the thermal resistance structure is formed from at least one of a hole, a groove, and a recess formed in the base portion. Become.
  • the heat resistance structure can be advantageously obtained in terms of cost by the holes, grooves, and recesses that can be easily formed in the base portion.
  • the thermal resistance structure is a hole formed in the base portion, and the base portion includes the hole. Further, a wind introduction wall for guiding the cooling air in the cooling air passage is provided.
  • cooling air can be actively passed through the holes. For this reason, the heat generated from the heating element on the motor part side is cooled at the location where the hole of the base part is formed, and the heat generated from the heating element propagates to the control part side via the base part. It is possible to reliably suppress the occurrence.
  • the control unit has a control unit case, and the control The part case is integrally formed with the base part.
  • the heat generation component of the control unit is propagated to the base unit through the control unit case and radiated, thereby ensuring the cooling performance of the control unit.
  • a heat is provided between the motor unit and the control unit. Has a resistor.
  • the thermal resistor is provided between the base portion and the control unit, and the thermal resistor Has a thermal resistor vent formed so as to penetrate the thermal resistor in the thickness direction, and the thermal resistor vent and the vent formed in the base portion communicate with each other.
  • the cooling air flows through the base portion and the thermal resistor, and the heat dissipation of the heat insulating material can be improved. For this reason, it can suppress reliably that the heat emitted from the heat generating body which exists in the motor part side propagates to a control part.
  • the thermal resistor is provided between the base portion and the control portion, and the thermal resistor Has a ventilation groove formed along the surface direction of the thermal resistor.
  • the base portion is integrated with the casing of the internal combustion engine. Attached to.
  • the motor unit and the control unit are: It is supported by a separate base part, and the base part on the motor part side and the base part on the control part side are connected via the thermal resistor.
  • the coil is drawn from the stator and directly Connected to the control unit.
  • Structuring the rotating electrical machine unit can be simplified by configuring as described above.
  • control unit is secured by using the inside of the cooling air passage of the internal combustion engine and the cooling air is positively blown against the control unit.
  • the cooling property can be ensured.
  • FIG. 3 is a view taken in the direction of arrow III in FIG. 2. It is a disassembled perspective view of the said rotary electric machine unit. It is an arrow line view equivalent to FIG. 2 of the rotary electric machine unit in 2nd embodiment of this invention. It is the top view which looked at the rotary electric machine unit in 3rd embodiment of this invention from the axial direction.
  • FIG. 7 is an arrow view corresponding to FIG. 3 in FIG. 6. It is the top view which looked at the rotary electric machine unit in 4th embodiment of this invention from the axial direction.
  • FIG. 9 is an arrow view corresponding to FIG. 3 in FIG. 8. It is the top view which looked at the modification of the rotary electric machine unit in 4th embodiment of this invention from the axial direction. It is the top view which looked at the other modification of the rotary electric machine unit in 4th embodiment of this invention from the axial direction. It is an arrow line view equivalent to FIG. 3 of the rotary electric machine unit in 5th embodiment of this invention. It is an arrow line view equivalent to FIG. 3 of the rotary electric machine unit in 6th embodiment of this invention. It is an arrow line view equivalent to FIG. 3 of the rotary electric machine unit in 7th embodiment of this invention. It is explanatory drawing which shows the arrangement structure of the rotary electric machine unit in 8th embodiment of this invention. It is a disassembled perspective view of the rotary electric machine unit in 9th embodiment of this invention.
  • FIG. 1 is an explanatory diagram showing an arrangement structure of the rotating electrical machine unit 1 in the first embodiment of the present invention.
  • the rotating electrical machine unit 1 includes a stator 12 around which a coil 11 is wound and fixed to a crankcase 51 of an engine 50, and a rotor 13 that faces the stator 12 and is fixed to a crankshaft 52 of the engine 50.
  • a control unit 30 that controls energization of the stator 12, and a base unit 40 that integrally supports the motor unit 10 and the control unit 30.
  • the line C1 in the figure indicates the rotation center axis of the crankshaft 52.
  • the motor unit 10 is used in a vehicle such as a motorcycle, for example, and is an outer rotor type that functions as a starter motor when the engine 50 is started and functions as a generator after the engine 50 is started.
  • the engine 50 has a crankshaft 52 rotatably in a crankcase 51.
  • a cylinder 53 is connected to the crankcase 51, and a piston (not shown) is accommodated in the cylinder 53.
  • the piston is connected to the crankshaft 52 through a connecting rod (not shown).
  • the engine 50 has an engine cover 54 that covers the crankcase 51, the cylinder 53, and the rotating electrical machine unit 1.
  • the engine cover 54 is provided with a cooling air intake 56 for cooling the cylinder 53.
  • the cooling air inlet 56 opposes the cooling swirl blade 55 attached to the axial end portion of the crankshaft 52 together with the rotor 13 in the axial direction.
  • the swirl blade 55 is a sirocco fan, for example, and rotates with the rotation of the crankshaft 52 and introduces air into the engine cover 54 from the cooling air intake 56.
  • the air introduced into the engine cover 54 flows through the cooling air passage A extending from the cooling air intake 56 to the periphery of the cylinder 53, and is then exhausted outside the engine cover 54 through an exhaust port (not shown).
  • the stator 12 includes a stator iron core 14 formed by laminating electromagnetic steel plates, and a plurality of coils 11 wound around the stator iron core 14 via an insulator (not shown).
  • the stator iron core 14 has a main body 15 formed in an annular shape and a plurality of teeth 16 projecting radially outward from the outer peripheral surface of the main body 15.
  • the teeth 16 are formed in a substantially T shape in an axial plan view of the stator 12, and extend along the radial direction of the stator 12, and the coil 11 is wound around the teeth 16.
  • the rotor 13 includes a rotor yoke 17 made of a magnetic material formed in a bottomed cylindrical shape so as to cover the stator 12 from the outside, and a boss portion 18 provided at the bottom of the rotor yoke 17.
  • a crankshaft 52 of the engine 50 is coupled to the boss portion 18 so as to be integrally rotatable.
  • a plurality of magnets 19 are attached to the inner peripheral surface of the rotor 13 at equal intervals along the circumferential direction.
  • the inner surfaces of these magnets 19 are magnetized to either the N pole or the S pole.
  • the coil 11 is wound around the stator core 14 with a predetermined wire diameter and a predetermined number of turns, and is collected into three systems, drawn out from the stator 12, and electrically connected to the control unit 30.
  • the control unit 30 incorporates various electronic elements (not shown) in a hollow rectangular parallelepiped control unit case 31.
  • the control unit 30 rotates the rotor 13 and the crankshaft 52 by controlling energization of the coil 11 at a predetermined timing when the engine 50 is started.
  • the control unit 30 charges the generated electric power accompanying the rotation of the rotor 13 to an auxiliary device such as a battery (not shown) or directly uses it for a lighting device such as a light.
  • the rotating electrical machine unit 1 includes a three-phase position detection sensor 47 (see FIG. 4).
  • the position detection sensor 47 is disposed at a predetermined position of the stator 12 and detects the rotational position of the rotor 13.
  • the rotational position signal of the rotor 13 detected by the position detection sensor 47 is taken into the control unit 30, and the control unit 30 controls the ignition timing of the engine 50 and the commutation timing of the coil 11.
  • the base portion 40 is a member formed in a plate shape with a predetermined thickness made of, for example, an aluminum alloy, and closes a hole portion 57 through which the crankshaft 52 in the crankcase 51 of the engine 50 is inserted, for example. So as to be integrated.
  • the base portion 40 has a shaft insertion hole 41 for allowing the crankshaft 52 to be inserted, and has a control portion fixing portion 42 at a position away from the shaft insertion hole 41 along the surface of the base portion 40.
  • the base portion 40 is not limited to the configuration in which the crankcase 51 is closed, and the base portion 40 may be attached to the outer wall of the closed crankcase 51.
  • control unit fixing unit 42 side on the base unit 40 is fixed to a bracket 153 extending on the engine cover 54.
  • the bracket 153 is formed so as not to obstruct the flow of the cooling air flowing through the cooling air passage A.
  • control part 30 is attached to the control part fixing
  • the heat insulating material 60 is a member formed in a plate shape similar to the base portion 40 using, for example, a thermosetting resin such as a phenol resin that can withstand 150 to 170 ° C.
  • the heat insulating material 60 is thermally connected to the crankcase 51 of the engine 50 and the control unit case 31 of the control unit 30.
  • the control unit case 31 is made of, for example, the same aluminum alloy as the base unit 40.
  • control unit 30 is disposed in the cooling air passage A of the engine 50, and the cooling air flowing through the cooling air passage A of the engine 50 is positively blown against the control unit 30. Further, the control unit 30 is arranged on the side of the cylinder 53 of the engine 50, and it is easy to secure a space for arranging the control unit 30. Furthermore, since the control unit 30 is separated from the engine 50 (cylinder 53) and forms a space S between the control unit 30 and the engine 50 (cylinder 53), the control unit 30 can be provided with a sufficient space, and the space The controller 30 does not directly receive the heat generation component of the engine 50 due to S. In the present embodiment, the entire control unit 30 is arranged and cooled in the cooling air passage A, but a configuration may be adopted in which a part of the control unit 30 is arranged in the cooling air passage A and is cooled.
  • FIG. 2 is a plan view of the rotating electrical machine unit 1 as viewed from the axial direction
  • FIG. 3 is a view taken along the line III in FIG. 2
  • FIG. 4 is an exploded perspective view of the rotating electrical machine unit 1.
  • the control unit case 31 of the control unit 30 opens to the heat insulating material 60 side, and has a plurality of attachment portions 32 around the opening. Screws 33 are inserted into the mounting portions 32, and these screws 33 penetrate the heat insulating material 60 and are screwed into the base portion 40, so that the control portion case 31, and thus the control portion 30 and the heat insulating material 60 are attached to the base portion 40. It is fixed mechanically.
  • the base portion 40 has a base portion vent hole 43 formed therein.
  • the base portion vent hole 43 is, for example, a round hole, and is formed through the base portion 40 in the thickness direction from the surface on the heat insulating material 60 side to the back surface opposite to the heat insulating material 60.
  • the base portion vent hole 43 is disposed between the motor unit 10 and the control unit 30 in a plan view and opens into the space S on the back surface of the base unit 40.
  • a heat insulating material ventilation hole 61 is formed in the heat insulating material 60 as a thermal resistor.
  • the heat insulating material ventilation hole 61 is, for example, a round hole, and is formed through the heat insulating material 60 in the thickness direction from the surface on the heat insulating material 60 opposite to the base portion 40 to the back surface on the base portion 40 side.
  • the heat insulating material vent 61 is disposed so as to overlap the base portion vent hole 43 in plan view, and is provided so as to communicate with the base portion vent hole 43.
  • the base portion vent hole 43 and the heat insulating material vent hole 61 are provided so as to penetrate from the surface of the heat insulating material 60 to the back surface of the base portion 40, the cooling air is supplied between the motor unit 10 and the control unit 30 side and the space S. Can be circulated, the heat insulating material 60 and the base portion 40 can be cooled, and the cooling performance of the control unit 30 can be improved. Moreover, if the base part ventilation hole 43 and the heat insulating material ventilation hole 61 face the control part 30, the cooling property of the control part 30 can be improved directly.
  • a heat insulating material ventilation groove 62 is formed on at least one of the front surface and the back surface of the heat insulating material 60 as a thermal resistor.
  • the heat insulating material ventilation groove 62 is, for example, a V groove, and is formed along the surface direction from the motor unit 10 side to the opposite side of the motor unit 10 on the surface of the heat insulating material 60.
  • the both ends of the heat insulating material ventilation groove 62 reach the outer peripheral edge of the heat insulating material 60 so that the cooling air can flow.
  • the heat insulating material ventilation groove 62 communicates with the heat insulating material ventilation hole 61 to improve the flow of the cooling air.
  • the heat insulating material ventilation groove 62 is formed from the motor unit 10 side to the opposite side of the motor unit 10 and circulates cooling air, the heat insulating material 60 can be cooled and the cooling performance of the base unit 40 can be improved. As a result, it is possible to reliably suppress the heat generated from the crankcase 51 of the engine 50 from being transmitted to the control unit 30 via the base unit 40. Moreover, if the heat insulating material ventilation groove 62 faces the control part 30, the cooling property of the control part 30 can be improved directly.
  • an O-ring mounting seat 58 is integrally formed on the base portion 40 along the periphery of the hole portion 57 provided in the crankcase 51 of the engine 50.
  • the O-ring mounting seat 58 is formed to project toward the crankcase 51 side.
  • An O-ring groove 58a is formed on the surface of the O-ring mounting seat 58 on the crankcase 51 side, and an O-ring 59 is attached to the O-ring groove 58a. Thereby, the sealing performance between the crankcase 51 and the base part 40 is ensured.
  • three bus bars 44 are independently embedded in the base portion 40.
  • a coil connection part 45 provided at one end on the motor part 10 side is formed to protrude on the heat insulating material 60
  • a control part connection part 46 provided on the other end part on the control part 30 side is provided on one end side.
  • the projection is formed on the heat insulating material 60.
  • Each of the three bus bars 44 is electrically connected to a predetermined winding of the three-phase coil 11.
  • the motor unit 10 and the control unit 30 can be easily connected without using lead wires. it can.
  • the bus bar 44 and the coil 11 are not limited to be welded to each other, but may be configured to be detachably connected to each other via a connector or the like.
  • reference numeral 41 a indicates a stator support boss that is provided coaxially with the shaft insertion hole 41 on the surface of the base portion 40
  • reference numeral 47 a indicates wiring embedded in the base portion 40 for the position detection sensor 47.
  • a pair of wind guide walls 34 may be provided on both sides of the control unit case 31.
  • Each wind guide wall 34 is formed to be inclined so as to be separated from each other from the control unit 30 side toward the motor unit 10 side (in FIG. 2, curved so as to form a substantially concentric arc with the rotor 13). . Therefore, the cooling air introduced into the engine cover 54 by the swirl vanes 55 can be actively concentrated toward the control unit case 31 and blown to the control unit case 31.
  • At least a part of the control unit 30 provided integrally with the motor unit 10 is arranged in the cooling air passage A of the engine 50. .
  • the cooling air is positively blown against the control unit 30 using the inside of the cooling air passage A of the engine 50, whereby the control unit 30. Coolability can be ensured.
  • positioning structure of said rotary electric machine unit 1 by having the heat insulating material 60 as a thermal resistor between the motor part 10 and the control part 30, the motor part 10 with respect to the control part 30 is provided. The propagation of heat from can be suppressed.
  • control unit 30 is arranged on the side of the cylinder 53 of the engine 50. Accordingly, the control unit 30 can be arranged using the space S on the side of the cylinder 53, and the control unit 30 can be cooled using the cooling air for cooling the cylinder 53.
  • the engine 50 and the control unit 30 are arranged apart from each other. Thereby, it is easy to secure the arrangement space of the control unit 30, and the heat generation component of the engine 50 can be prevented from being directly given to the control unit by the space S secured between the engine 50 and the control unit 30.
  • cooling air is positively blown against the control unit 30 using the inside of the cooling air passage A of the engine 50. Thereby, the cooling property of the control part 30 is securable.
  • a heat insulating material 60 as a thermal resistor is provided between the motor unit 10 and the control unit 30. Thereby, it is possible to reliably suppress the heat generated from the crankcase 51 of the engine 50 by the heat insulating material 60 from being transmitted to the control unit 30 via the base unit 40.
  • the thermal resistor is the heat insulating material 60, the transfer of heat from the base unit 40 to the control unit 30 can be suppressed.
  • the base portion 40 is integrally attached to the crankcase 51 of the engine 50. Therefore, even if the heat generating component of the engine 50 is transmitted to the base unit 40, heat transfer from the base unit 40 to the control unit 30 can be suppressed by the thermal resistor between the base unit 40 and the control unit 30.
  • a plurality of bus bars 44 are embedded in the heat insulating material 60, and the windings of the coils 11 are electrically connected to the bus bars 44.
  • the configuration is not limited to the configuration in which the bus bar 44 or the like is embedded only in the base portion 40, but may be any configuration as long as the bus bar 44 or the like is embedded in at least one of the base portion 40 and the heat insulating material 60.
  • FIG. 5 is an arrow view corresponding to FIG. 3 of the rotating electrical machine unit 2 in the second embodiment of the present invention.
  • the second embodiment is different from the first embodiment in that the base portion 72 integrally formed with the control unit case 71 is provided and the heat insulating material 60 is eliminated, and the others are substantially the same.
  • symbol is attached
  • the rotating electrical machine unit 2 includes a control unit 70 in which a control unit case 71 is integrally formed with a base unit 72.
  • the control unit case 71 is formed of, for example, an aluminum alloy as in the case of the base unit 72 and has a single configuration including the base unit 72.
  • the base part 72 integrally supports the motor part 10 and the control part 70.
  • the heat generation component of the control unit 70 is transmitted through the control unit case 71 to the base unit 72 integrated with the control unit case 71 and is radiated. Thereby, the cooling property of the control part 70 is securable.
  • FIG. 6 is a plan view of the rotating electrical machine unit 3 according to the third embodiment of the present invention viewed from the axial direction.
  • FIG. 7 is an arrow view corresponding to FIG. 3 in FIG.
  • the third embodiment is different from the second embodiment in that the base portion 80 is provided with a through hole 81 that is a vertical hole constituting the heat resistance structure, and the other is substantially the same.
  • symbol is attached
  • a plurality of through holes 81 of the base portion 80 are arranged so as to be orthogonal to the direction from the motor portion 10 toward the control portion 30.
  • the base unit 80 integrally supports the motor unit 10 and the control unit 30.
  • the through hole 81 is, for example, a round hole, and is formed to penetrate from the upper surface to the lower surface of the base portion 80. Therefore, the heat transfer path from the motor unit 10 to the control unit 30 is reduced by the through-hole 81, so that the heat generation component from the motor unit 10 is difficult to be transmitted to the control unit 30. In addition, when the cooling air is circulated through the through hole 81, the portion where the through hole 81 is formed is actively cooled.
  • FIG. 8 is a plan view of the rotating electrical machine unit 4 in the fourth embodiment of the present invention as seen from the axial direction.
  • the fourth embodiment is different from the third embodiment in that a base portion 100 having a recess 101 constituting a heat resistance structure is provided in place of the through-hole 81, and the others are substantially the same.
  • symbol is attached
  • the recess 101 is formed in an elliptical shape in plan view so as to be elongated along the direction from the motor unit 10 toward the control unit 30.
  • a plurality of recesses 101 are arranged in a direction orthogonal to the direction from the motor unit 10 toward the control unit 30.
  • the base unit 100 integrally supports the motor unit 10 and the control unit 30.
  • the heat transfer path from the motor unit 10 to the control unit 30 is reduced by the recess 101, so that heat generated from the crankcase 51 of the engine 50 is transmitted to the control unit 30 via the base unit 100. Propagation can be suppressed.
  • FIG. 9 is a plan view of a modification example of the rotating electrical machine unit 4 according to the fourth embodiment of the present invention viewed from the axial direction.
  • FIG. 10 is an arrow view corresponding to FIG. 3 in FIG. This modification is particularly different from FIG. 8 in that it includes a base portion 90 provided with a rib 92 in a recess 91 that constitutes a heat resistance structure, and the others are substantially the same.
  • symbol is attached
  • the concave portion 91 is formed in an elliptical shape in plan view so as to be elongated along the direction from the motor unit 10 toward the control unit 30.
  • a plurality of recesses 91 are arranged side by side in a direction orthogonal to the direction from the motor unit 10 toward the control unit 30.
  • the base unit 90 integrally supports the motor unit 10 and the control unit 30.
  • the recess 91 has a rib 92 at the center. Therefore, the rib 92 suppresses a decrease in the overall rigidity of the base portion 90.
  • the concave portion 91 can suppress the heat generated from the crankcase 51 of the engine 50 from being transmitted to the control unit 30 via the base unit 90.
  • FIG. 11 is the top view which looked at the other modification of the rotary electric machine unit 4 in 4th embodiment of this invention from the axial direction.
  • This modified example is different from FIG. 8 in that it is provided in a base part 110 having a recess 111 that constitutes a thermal resistance structure, and the others are substantially the same.
  • symbol is attached
  • the recess 111 is formed in a rectangular shape in plan view so as to be elongated along the direction from the motor unit 10 toward the control unit 30.
  • a plurality of recesses 111 are arranged side by side in a direction perpendicular to the direction from the motor unit 10 toward the control unit 30.
  • the base unit 110 integrally supports the motor unit 10 and the control unit 30.
  • the recess 111 can suppress the heat generated from the crankcase 51 of the engine 50 from being transmitted to the control unit 30 via the base unit 110.
  • FIG. 12 is an arrow view corresponding to FIG. 3 of the rotating electrical machine unit 5 according to the fifth embodiment of the present invention.
  • the fifth embodiment replaces the recess 91 and constitutes a heat resistance structure.
  • the base portion 120 includes an upper plate 121, a lower plate 122, and a through hole 123 for guiding cooling air. It differs especially in the point provided with, and others are substantially the same. Moreover, the same code
  • the base unit 120 integrally supports the motor unit 10 and the control unit 30.
  • the upper plate 121 has a predetermined height dimension on the upper surface of the base portion 120 and is formed to project in an L shape in a longitudinal sectional view. A plurality are arranged so as to be orthogonal to the direction in which they face. The L shape is bent so as to induce cooling air to the through hole 123 (see arrow Y1 in FIG. 12).
  • the lower plate 122 has a predetermined height dimension on the lower surface corresponding to the upper plate 121 and is formed to protrude in an I shape in a longitudinal section, and is orthogonal to the direction from the motor unit 10 toward the control unit 30. A plurality of them are arranged.
  • the through-hole 123 is, for example, a round hole, and is formed to penetrate from the upper surface to the lower surface of the base portion 120 at a position close to the motor unit 10 from the upper plate 121, and in a direction from the motor unit 10 to the control unit 30. A plurality of them are arranged so as to be orthogonal to each other.
  • the cooling air is actively passed through the through hole 123 by the upper plate 121 and the lower plate 122, so that the base portion 120 can be efficiently cooled.
  • the base portion 120 can be efficiently cooled.
  • FIG. 13 is an arrow view corresponding to FIG. 3 of the rotating electrical machine unit 6 in the sixth embodiment of the present invention.
  • 6th Embodiment has connected the motor part side base part 132 and the control part side base part 133 via the board member 131 which comprises a thermal resistance body with respect to 5th Embodiment.
  • the motor unit 10 mounted on the motor unit side base unit 132 and the control unit 30 mounted on the control unit side base unit 133 are supported separately.
  • the plate member 131 is a member that is difficult to transmit heat, such as a rubber member or a resin member, and is coupled to the end of the motor unit side base unit 132 on the control unit 30 side by a fastening member 134.
  • the end of the control unit side base unit 133 on the motor unit 10 side is coupled by a fastening member 135.
  • the fastening members 134 and 135 mean, for example, a combination of a bolt and a nut or a rivet.
  • the plate member 131 is not thermally connected to the motor unit side base unit 132 and the control unit side base unit 133.
  • the heat generation component of the motor unit 10 is on the control unit 30 side. Propagation to can be suppressed.
  • the motor unit 10 and the control unit 30 are supported by separate base units 132 and 133, the motor unit 10 and the control unit 30 are thermally disconnected. Thereby, the heat transfer of the heat component from the motor part 10 side to the control part 30 side can be suppressed.
  • FIG. 14 is an arrow view corresponding to FIG. 3 of the rotating electrical machine unit 7 in the seventh embodiment of the present invention.
  • 7th Embodiment has connected the motor part side base part 142 and the control part side base part 143 via the connection member 141 which comprises a thermal resistance body with respect to 6th Embodiment.
  • the motor unit 10 mounted on the motor unit side base unit 142 and the control unit 30 mounted on the control unit side base unit 143 are supported separately.
  • the connecting member 141 is made of a highly rigid metal.
  • the connecting member 141 is connected to the end of the motor unit side base unit 142 on the control unit 30 side and the motor of the control unit side base unit 143 via a cylindrical collar member 144 made of a material that is difficult to pass heat.
  • the fastening member 145 is coupled to the end on the part 10 side.
  • a collar member 146 is mounted at a location corresponding to the connecting member 141 of the control unit base portion 143, and the connecting member 141 is inserted into the collar member 146.
  • the connecting member 141 is not thermally connected to the control unit side base part 143 by the collar member 146.
  • the motor part side base part 142 and the control part side base part 143 are connected via the collar member 144, and the connecting member 141 and the control part side base part 143 connect the color member 146. Are connected through. For this reason, it can suppress that the heat emitted from the crankcase 51 of the engine 50 is propagated to the control part side base part 143 via the motor part side base part 142.
  • FIG. 15 is an explanatory view showing an arrangement structure of the rotating electrical machine unit 8 in the eighth embodiment of the present invention.
  • the motor unit side base unit 151 on which the motor unit 10 is mounted and the control unit side base unit 152 on which the control unit 30 is mounted are supported without being connected to the seventh embodiment. ing.
  • the control unit side base unit 152 is fixed to a bracket 153 that extends to the engine cover 54.
  • the bracket 153 is formed so as not to obstruct the flow of the cooling air flowing through the cooling air passage A.
  • a wiring 154 drawn from the motor unit 10 is electrically connected to the control unit 30 through a connector 155 included in the control unit 30.
  • the wiring 154 may be a coil 11 wound around the stator 12 as it is, or a wiring 47a connected to the position detection sensor 47 (see FIG. 4) as it is. It may be.
  • the rotating electrical machine unit 8 since the motor unit side base unit 151 and the control unit side base unit 152 are arranged to be thermally cut off, heat generated from the crankcase 51 of the engine 50 is generated. It is possible to reliably suppress the propagation to the control unit 30.
  • the wiring 154 drawn from the motor unit 10 is electrically connected to the control unit 30 through a connector 155 included in the control unit 30. That is, since the wiring 154 is directly connected to the control unit 30, the structure of the rotating electrical machine unit 8 can be simplified as compared with the case where the bus bar 44 (see FIG. 4) is used.
  • FIG. 16 is an exploded perspective view of the rotating electrical machine unit 9 according to the ninth embodiment of the present invention.
  • the ninth embodiment includes a motor unit side connector 161 connected to the bus bar 44 and a control unit side connector 162 connected to the position detection sensor 47.
  • the motor unit side connector 161 and the control unit side connector 162 are waterproof couplers.
  • the number of assembly steps can be reduced by mechanically connecting the motor unit side connector 161 to the motor unit 10 and mechanically connecting the control unit side connector 162 to the position detection sensor 47.
  • the motor part 10 and the control part 30 are interrupted
  • the present invention is not limited to the above-described embodiment.
  • Various modifications can be made without departing from the scope of the present invention.
  • the structure which formed the ventilation hole in each of a base part and a heat insulating material and formed the ventilation groove in the heat insulating material was demonstrated.
  • a configuration in which either one of the vent hole and the vent groove is formed or a configuration in which neither is formed may be used.
  • the ventilation hole, the ventilation groove, and the heat insulating material, which are heat resistance structures are not limited to the configuration that cools the entire control unit, but may be any configuration that cools at least a part of the control unit.
  • control unit is secured by using the inside of the cooling air passage of the internal combustion engine and the cooling air is positively blown against the control unit.
  • the cooling property can be ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

 コイル(11)を有し内燃機関(50)のケーシング(51)に固定されるステータ(12)、及びステータ(12)に対向し内燃機関(50)の回転駆動軸(52)に固定されるロータ(13)を備えるモータ部(10)と、ステータ(12)の通電を制御する制御部(30)と、を一体的に備える回転電機ユニット(1)の配置構造であって、制御部(30)は、少なくとも一部が内燃機関(50)の冷却風通路(A)内に配置される。

Description

回転電機ユニットの配置構造及び回転電機ユニット
 本発明は、回転電機ユニットの配置構造及び回転電機ユニットに関する。
 本願は、2014年11月28日に、日本に出願された特願2014-241655号及び2015年3月24日に、日本に出願された特願2015-061362号に基づき優先権を主張し、その内容をここに援用する。
 従来から、自動二輪車等の車両に用いられる回転電機として、エンジン始動機能と回生エネルギーによる回生発電機能との2つの機能を備えたものが知られている。この種の回転電機ユニットは、ステータ及びロータを備えるモータ部と、ステータへの通電を制御する制御部と、を備えている。制御部は、モータ部と離間し、例えば車両のシート下等に配置されている。
特開2011-223856号公報 特開2014-082863号公報
 ところで、モータ部と制御部とを一体的に設けてユニット化することも考えられるが、制御部がモータ部等に近付くこともあり、制御部の冷却性を考慮する必要がある。
 本発明は、モータ部に制御部を一体的に設けた上で制御部の冷却性を確保することができる回転電機ユニットの配置構造及び回転電機ユニットを提供する。
 本発明の第一の態様によれば、回転電機ユニットの配置構造は、コイルが巻回されたステータ、及び前記ステータに対向し内燃機関の回転駆動軸に固定されるロータを有するモータ部と、前記ステータの通電を制御する制御部と、を備え、前記内燃機関の駆動用として用いられる回転電機ユニットの配置構造であって、前記制御部は、前記内燃機関の冷却風通路内に配置される。
 上記のように構成することで、内燃機関の冷却風通路内を利用して制御部の配置スペースを確保するとともに、制御部に対して冷却風が積極的に吹き付けられるために制御部の冷却性を確保することができる。
 本発明の第二の態様によれば、本発明の第一の態様に係る回転電機ユニットの配置構造では、前記モータ部と前記制御部とが一体的に設けられている。
 上記のように構成することで、冷却風通路内に制御部を取り付けるための別部材を必要とすることなく、冷却風通路内に制御部を配置できる。また、回転電機ユニットの小型を図ることができる。
 本発明の第三の態様によれば、本発明の第二の態様に係る回転電機ユニットの配置構造では、前記モータ部と前記制御部との間に、熱抵抗構造を有する。
 上記のように構成することで、熱抵抗構造によってモータ部側に存在する発熱体から発せられた熱が制御部側へと伝播してしまうことを抑制できる。
 本発明の第四の態様によれば、本発明の第一の態様から第三の態様の何れか一の態様に係る回転電機ユニットの配置構造では、前記制御部は、前記内燃機関に有するシリンダの側方に配置される。
 上記のように構成することで、シリンダの側方の空間を利用して制御部を配置できるとともに、シリンダを冷却するための冷却風を利用して制御部を冷却できる。
 本発明の第五の態様によれば、本発明の第一の態様から第四の態様の何れか一の態様に係る回転電機ユニットの配置構造では、前記内燃機関と前記制御部とが互いに離間して配置される。
 上記のように構成することで、制御部の配置スペースを確保し易く、かつ内燃機関と制御部との間に確保された空間によって内燃機関の発熱成分を制御部に直接的に与えないようにできる。
 本発明の第六の態様によれば、回転電機ユニットでは、コイルが巻回されたステータ、及び前記ステータに対向し内燃機関の回転駆動軸に固定されるロータを有するモータ部と、前記ステータの通電を制御する制御部と、前記モータ部と前記制御部とをそれぞれ別々にまたは一体的に支持するベース部と、を備え、前記内燃機関の駆動用として用いられる回転電機ユニットであって、前記制御部は、前記内燃機関の冷却風通路内に配置される。
 上記のように構成することで、内燃機関の冷却風通路内を利用して制御部の配置スペースを確保するとともに、制御部に対して冷却風が積極的に吹き付けられるために制御部の冷却性を確保することができる。
 本発明の第七の態様によれば、本発明の第六の態様に係る回転電機ユニットでは、前記モータ部と前記制御部との間に、熱抵抗構造を有する。
 上記のように構成することで、熱抵抗構造によってモータ部側に存在する発熱体から発せられた熱が制御部側へと伝播してしまうことを抑制できる。
 本発明の第八の態様によれば、本発明の第七の態様に係る回転電機ユニットでは、前記熱抵抗構造は、前記ベース部に形成された孔、溝及び凹部の少なくとも何れか1つからなる。
 上記のように、ベース部に簡単に形成できる孔や溝や凹部によって、コスト面で有利に熱抵抗構造を得ることができる。
 本発明の第九の態様によれば、本発明の第十の態様に係る回転電機ユニットでは、前記熱抵抗構造は、前記ベース部に形成された孔であり、前記ベース部には、前記孔に、前記冷却風通路内の冷却風を導くための風導入壁が設けられている。
 上記のように構成することで、孔に積極的に冷却風を通すことができる。このため、モータ部側に存在する発熱体から発せられた熱がベース部の孔が形成されている箇所で冷却され、発熱体から発せられた熱がベース部を介して制御部側へと伝播されてしまうことを確実に抑制できる。
 本発明の第十の態様によれば、本発明の第六の態様から第九の態様の何れか一の態様に係る回転電機ユニットでは、前記制御部は、制御部ケースを有し、前記制御部ケースは、前記ベース部と一体形成される。
 上記のように構成することで、制御部の発熱成分は、制御部ケースを通じてベース部へ伝播されて放熱され、制御部の冷却性を確保することができる。
 本発明の第十一の態様によれば、本発明の第六の態様から第九の態様の何れか一の態様に係る回転電機ユニットでは、前記モータ部と前記制御部との間に、熱抵抗体を有する。
 上記のように構成することで、熱抵抗体によってモータ部側に存在する発熱体から発せられた熱が制御部へと伝播してしまうことを抑制できる。
 本発明の第十二の態様によれば、本発明の第十一の態様に係る回転電機ユニットでは、前記ベース部と前記制御部との間に、前記熱抵抗体を設け、前記熱抵抗体は、該熱抵抗体を厚さ方向に貫通するように形成された熱抵抗体通気孔を有し、該熱抵抗体通気孔と前記ベース部に形成された通気孔とが互いに連通する。
 上記のように構成することで、ベース部と熱抵抗体とに渡って冷却風が流通し、断熱材の放熱性を高めることができる。このため、モータ部側に存在する発熱体から発せられた熱が制御部へと伝播してしまうことを確実に抑制できる。
 本発明の第十三の態様によれば、本発明の第十一の態様に係る回転電機ユニットでは、前記ベース部と前記制御部との間に、前記熱抵抗体を設け、前記熱抵抗体は、該熱抵抗体の面方向に沿うように形成された通気溝を有する。
 上記のように構成することで、熱抵抗体の放熱性を面方向に広い範囲で高め易くすることができる。このため、モータ部側に存在する発熱体から発せられた熱が制御部へと伝播してしまうことをより確実に抑制できる。
 本発明の第十四の態様によれば、本発明の第六の態様から第十三の態様の何れか一の態様に係る回転電機ユニットでは、前記ベース部は、内燃機関のケーシングに一体的に取り付けられる。
 上記のように構成することで、ベース部に内燃機関の熱が伝わっても、ベース部と制御部との間の熱抵抗構造によりベース部から制御部への伝熱を抑えることができる。
 本発明の第十五の態様によれば、本発明の第十一の態様から第十三の態様の何れか一の態様に係る回転電機ユニットでは、前記モータ部と、前記制御部とは、別体のベース部に支持されており、前記モータ部側の前記ベース部と、前記制御部側の前記ベース部とを前記熱抵抗体を介して連結した。
 上記のように構成することで、モータ部と、制御部とが熱的に遮断されるために、モータ部側から制御部側への熱成分の伝熱を抑制することができる。
 本発明の第十六の態様によれば、本発明の第六の態様から第十三の態様の何れか一の態様に係る回転電機ユニットでは、前記コイルは、前記ステータから引き出されて直接前記制御部に接続されている。
 上記のように構成することで、回転電機ユニットの構造を簡素化できる。
 上記の回転電機ユニットの配置構造によれば、内燃機関の冷却風通路内を利用して制御部の配置スペースを確保するとともに、制御部に対して冷却風が積極的に吹き付けられるために制御部の冷却性を確保することができる。
本発明の第一実施形態における回転電機ユニットの配置構造を示す説明図である。 上記回転電機ユニットを軸方向から見た平面図である。 図2のIII矢視図である。 上記回転電機ユニットの分解斜視図である。 本発明の第二実施形態における回転電機ユニットの図2に相当する矢視図である。 本発明の第三実施形態における回転電機ユニットを軸方向から見た平面図である。 図6の図3相当の矢視図である。 本発明の第四実施形態における回転電機ユニットを軸方向から見た平面図である。 図8の図3相当の矢視図である。 本発明の第四実施形態における回転電機ユニットの一変形例を軸方向から見た平面図である。 本発明の第四実施形態における回転電機ユニットの他の変形例を軸方向から見た平面図である。 本発明の第五実施形態における回転電機ユニットの図3相当の当矢視図である。 本発明の第六実施形態における回転電機ユニットの図3相当の矢視図である。 本発明の第七実施形態における回転電機ユニットの図3相当の矢視図である。 本発明の第八実施形態における回転電機ユニットの配置構造を示す説明図である。 本発明の第九実施形態における回転電機ユニットの分解斜視図である。
 以下、本発明の実施形態を図面に基づいて説明する。
<第一実施形態>
 図1は、本発明の第一実施形態における回転電機ユニット1の配置構造を示す説明図である。
 図1に示すように、回転電機ユニット1は、コイル11が巻回されエンジン50のクランクケース51に固定されるステータ12、及びステータ12に対向しエンジン50のクランクシャフト52に固定されるロータ13を備えるモータ部10と、ステータ12の通電を制御する制御部30と、モータ部10及び制御部30を一体に支持するベース部40と、を備える。図中線C1はクランクシャフト52の回転中心軸線を示す。
 モータ部10は、例えば自動二輪車等の車両に用いられ、エンジン50の始動時においてはスタータモータとして機能し、エンジン50の始動後においては発電機として機能するアウターロータ型である。
 エンジン50は、クランクケース51内にクランクシャフト52を回転自在に有する。
クランクケース51にはシリンダ53が接続され、シリンダ53には不図示のピストンが収容される。ピストンは、同じく不図示のコンロッドを介してクランクシャフト52に連結される。
 エンジン50は、クランクケース51、シリンダ53及び回転電機ユニット1を覆うエンジンカバー54を有する。エンジンカバー54には、シリンダ53冷却用の冷却風取入口56が設けられる。冷却風取入口56は、ロータ13とともにクランクシャフト52の軸端部に取り付けられた冷却用の旋回翼55と軸方向で対向する。
 旋回翼55は、例えばシロッコファンであり、クランクシャフト52の回転に伴って回転し、冷却風取入口56からエンジンカバー54内に空気を導入する。エンジンカバー54内に導入された空気は、冷却風取入口56からシリンダ53の周囲に至る冷却風通路Aを流通し、その後に不図示の排気口よりエンジンカバー54外に排気される。
 ステータ12は、電磁鋼板を積層して成るステータ鉄心14と、ステータ鉄心14に不図示のインシュレータを介して巻回される複数のコイル11と、を備えている。ステータ鉄心14は、円環状に形成された本体部15と、この本体部15の外周面から径方向外側に向かって放射状に突出する複数のティース16とを有している。ティース16はステータ12の軸方向平面視で略T字状に形成されたものであって、ステータ12の径方向に沿って延在されてコイル11が巻回されている。
 ロータ13は、ステータ12を外側から覆うよう有底円筒状に形成された磁性材料からなるロータヨーク17と、このロータヨーク17の底部に有するボス部18と、を備える。ボス部18には、エンジン50のクランクシャフト52が一体回転可能に結合される。
 ロータ13の内周面には、複数のマグネット19が周方向に沿って等間隔に取り付けられている。これらマグネット19は、内側面がN極とS極のいずれかに着磁されている。
 コイル11は、所定の線径及び所定の巻き数でステータ鉄心14に巻回されており、3系統に纏められてステータ12から引き出されて制御部30にそれぞれ電気的に接続される。
 制御部30は、中空直方体状の制御部ケース31内に不図示の各種電子素子を内蔵する。制御部30は、エンジン50の始動時には、所定のタイミングでコイル11の通電を制御することによってロータ13とクランクシャフト52とを回転させる。これとは異なり、制御部30は、エンジン50の始動後には、ロータ13の回転に伴う発電電力を図示しないバッテリ等の補機に充電し、若しくは、ライト等の点灯機器に直接使用する。
 回転電機ユニット1は、3相の位置検出センサ47(図4参照)を備える。位置検出センサ47は、ステータ12のあらかじめ定められた位置に配置され、ロータ13の回転位置を検出する。位置検出センサ47によって検出されたロータ13の回転位置信号は、制御部30に取り込まれ、この制御部30によってエンジン50の点火タイミングを制御したり、コイル11の転流タイミングを制御したりする。
 ベース部40は、例えばアルミニウム合金を素材としてあらかじめ定められた厚みを有して板形状に形成された部材であって、例えばエンジン50のクランクケース51におけるクランクシャフト52を挿通する孔部57を閉塞するように一体的に取り付けられている。ベース部40は、クランクシャフト52を挿通させるために軸挿通孔41を有し、軸挿通孔41からベース部40の面沿いに離れた位置に制御部固定部42を有する。なお、ベース部40がクランクケース51を閉塞する構成に限らず、閉塞したクランクケース51の外壁にベース部40が取り付けられる構成でもよい。
 また、ベース部40上の制御部固定部42側は、エンジンカバー54に延設されているブラケット153に固定されている。ブラケット153は、冷却風通路Aを流通する冷却風の流れを阻害しないように形成されている。さらに、制御部固定部42に、熱抵抗体としての断熱材60を介して制御部30が取り付けられている。断熱材60は、例えば、150℃~170℃に耐えうるフェノール樹脂等の熱硬化性樹脂を素材としてベース部40に相似する板形状に形成された部材である。断熱材60は、エンジン50のクランクケース51及び制御部30の制御部ケース31に熱的に接続される。制御部ケース31は例えばベース部40と同様のアルミニウム合金製とされる。
 ここで、制御部30は、エンジン50の冷却風通路A内に配置されており、エンジン50の冷却風通路A内を流通する冷却風が制御部30に対して積極的に吹き付けられる。また、制御部30は、エンジン50のシリンダ53の側方に配置されており、制御部30の配置スペースを確保し易い。さらに、制御部30は、エンジン50(シリンダ53)に対して互いに離間し、エンジン50(シリンダ53)との間に空間Sを形成するので、制御部30の配置スペースに余裕ができるとともに、空間Sによってエンジン50の発熱成分を制御部30が直接受けることがない。なお、本実施形態では制御部30の全体が冷却風通路A内に配置されて冷却されるが、制御部30の一部が冷却風通路A内に配置されて冷却される構成でもよい。
 図2は回転電機ユニット1を軸方向から見た平面図、図3は図2のIII矢視図、図4は回転電機ユニット1の分解斜視図である。
 制御部30の制御部ケース31は、断熱材60側に開口し、その開口の周囲に複数の取付部32を有する。各取付部32にはネジ33が挿通され、これらのネジ33が断熱材60を貫通してベース部40にねじ込まれることにより、制御部ケース31ひいては制御部30及び断熱材60がベース部40に機械的に固定されている。
 ベース部40には、ベース部通気孔43が形成されている。ベース部通気孔43は、例えば丸孔であって、ベース部40における断熱材60側の表面から断熱材60と反対側の裏面まで、ベース部40の厚さ方向で貫通形成されている。ベース部通気孔43は、平面視でモータ部10と制御部30との間に配置され、ベース部40の裏面で空間Sに開口する。
 また、熱抵抗体としての断熱材60には、断熱材通気孔61が形成されている。断熱材通気孔61は、例えば丸孔であって、断熱材60におけるベース部40と反対側の表面からベース部40側の裏面まで、断熱材60の厚さ方向で貫通形成されている。断熱材通気孔61は、平面視でベース部通気孔43と重なるように配置され、ベース部通気孔43と連通するように設けられる。
 ベース部通気孔43及び断熱材通気孔61は、断熱材60の表面からベース部40の裏面まで貫通するように設けられるので、モータ部10及び制御部30側と空間Sとの間で冷却風を流通させ、断熱材60及びベース部40を冷却し、ひいては制御部30の冷却性を高めることができる。また、ベース部通気孔43及び断熱材通気孔61が制御部30に面していれば、制御部30の冷却性を直接的に高めることができる。
 また、熱抵抗体としての断熱材60の表面及び裏面の少なくとも一方には、断熱材通気溝62が形成されている。断熱材通気溝62は、例えばV溝であって、断熱材60の表面においてモータ部10側からモータ部10と反対側まで面方向に沿って形成されている。断熱材通気溝62は、その両端が断熱材60の外周縁に至り、冷却風を流通可能とする。断熱材通気溝62は、断熱材通気孔61と連通することで、冷却風の流れをよりよくできる。
 断熱材通気溝62は、モータ部10側からモータ部10と反対側まで形成されて冷却風を流通させるので、断熱材60を冷却し、ベース部40の冷却性を高めることができる。この結果、エンジン50のクランクケース51から発せられる熱が、ベース部40を介して制御部30へと伝播されてしまうことを確実に抑制できる。また、断熱材通気溝62が制御部30に面していれば、制御部30の冷却性を直接的に高めることができる。
 ここで、ベース部40には、エンジン50のクランクケース51に有する孔部57の周縁に沿うように、Oリング取付座58が一体成形されている。このOリング取付座58は、クランクケース51側に向かって突出形成されている。Oリング取付座58のクランクケース51側の面にはOリング溝58aが形成されており、このOリング溝58aにOリング59が取り付けられている。これにより、クランクケース51とベース部40との間のシール性が確保されている。
 図4に示すように、ベース部40には、3個のバスバー44が独立して埋め込まれている。これらバスバー44は、モータ部10側の一端部に有するコイル接続部45が断熱材60上に突出形成されているとともに、制御部30側の他端部に有する制御部接続部46が一端部側と同様に断熱材60上に突出形成されている。3個のバスバー44には、あらかじめ定められた3相のコイル11の巻線のそれぞれが電気的に接続される。
 ベース部40に埋設したバスバー44を通じて、モータ部10と制御部30との間を電気的に接続するために、モータ部10及び制御部30の接続をリード線を用いずに容易に行うことができる。なお、バスバー44とコイル11とを互いに溶着する構成に限らず、これらをコネクタ等を介して互いに着脱可能に接続する構成であってもよい。図中符号41aはベース部40の表面で軸挿通孔41と同軸に突設されるステータ支持ボス、符号47aは位置検出センサ47用にベース部40に埋設した配線をそれぞれ示す。
 ここで、図2を参照し、回転電機ユニット1の変形例として、制御部ケース31の両側部に、一対の風誘導壁34を設けることもできる。各風誘導壁34は、制御部30側からモータ部10側に向けて互いに離間するように傾斜して(図2ではロータ13と略同心の円弧をなすように湾曲して)形成されている。そのため、旋回翼55によってエンジンカバー54内に導入された冷却風を制御部ケース31に向けて積極的に集中させて制御部ケース31に吹き付けることができる。
 以上説明したように、回転電機ユニット1の配置構造の第一実施形態では、モータ部10に一体的に設けた制御部30の少なくとも一部が、エンジン50の冷却風通路A内に配置される。これにより、エンジン50の冷却風通路Aを利用して制御部の配置スペースを確保するとともに、制御部30に対して冷却風が積極的に吹き付けられるために制御部30の冷却性を確保することができる。
 また、上記の回転電機ユニット1の配置構造の第一実施形態では、エンジン50の冷却風通路A内を利用して制御部30に対して冷却風が積極的に吹き付けられることにより制御部30の冷却性を確保することができる。
 また、上記の回転電機ユニット1の配置構造の第一実施形態では、モータ部10と制御部30との間に、熱抵抗体としての断熱材60を有することにより、制御部30に対するモータ部10からの熱の伝播を抑制することができる。
 また、上記の回転電機ユニット1の配置構造の第一実施形態では、制御部30がエンジン50のシリンダ53の側方に配置される。これにより、シリンダ53の側方の空間Sを利用して制御部30を配置できるとともに、シリンダ53を冷却するための冷却風を利用して制御部30を冷却できる。
 また、上記の回転電機ユニット1の配置構造の第一実施形態では、エンジン50と制御部30とが互いに離間して配置される。これにより、制御部30の配置スペースを確保し易く、かつエンジン50と制御部30との間に確保された空間Sによってエンジン50の発熱成分を制御部に直接的に与えないようにできる。
 また、上記の回転電機ユニット1の第一実施形態では、エンジン50の冷却風通路A内を利用して制御部30に対して冷却風が積極的に吹き付けられる。これにより、制御部30の冷却性を確保することができる。
 また、上記の回転電機ユニット1の第一実施形態では、モータ部10と制御部30との間に、熱抵抗体としての断熱材60を備える。これにより、断熱材60によってエンジン50のクランクケース51から発せられる熱が、ベース部40を介して制御部30へと伝播されてしまうことを確実に抑制できる。
 また、上記の回転電機ユニット1の第一実施形態では、熱抵抗体が、断熱材60であるために、ベース部40から制御部30への熱の伝達を抑制できる。
 また、上記の回転電機ユニット1の第一実施形態では、ベース部40は、エンジン50のクランクケース51に一体的に取り付けられる。これにより、ベース部40にエンジン50の発熱成分が伝わっても、ベース部40と制御部30との間の熱抵抗体によりベース部40から制御部30への伝熱を抑えることができる。
 また、上記の回転電機ユニット1の第一実施形態では、断熱材60に複数のバスバー44を埋め込み、バスバー44に、コイル11の巻線を電気的に接続した。これにより、モータ部10と制御部30との配策をリード線を用いずに容易にすることができる。なお、ベース部40のみにバスバー44等を埋め込む構成に限らず、ベース部40及び断熱材60の少なくとも一方にバスバー44等を埋め込む構成であればよい。
<第二実施形態>
 図5は、本発明の第二実施形態における回転電機ユニット2の図3に相当する矢視図である。
 第二実施形態は、第一実施形態に対して、制御部ケース71を一体形成したベース部72を備えるとともに断熱材60を無くした点で特に異なり、その他は略同一である。また、第一実施形態と同一構成には同一符号を付して詳細説明は省略する。
 図5に示すように、回転電機ユニット2は、制御部ケース71をベース部72と一体形成した制御部70を備える。制御部ケース71は、ベース部72と同様に例えばアルミニウム合金を素材として形成されており、ベース部72を含んで単一の構成になっている。ベース部72は、モータ部10及び制御部70を一体に支持する。
 回転電機ユニット2では、制御部70の発熱成分は、制御部ケース71を通じて制御部ケース71と一体のベース部72へ伝播されて放熱される。これにより、制御部70の冷却性を確保することができる。
<第三実施形態>
 図6は、本発明の第三実施形態における回転電機ユニット3を軸方向から見た平面図である。図7は、図6の図3相当の矢視図である。
 第三実施形態は、第二実施形態に対して、熱抵抗構造を構成する縦孔である貫通孔81をベース部80に備える点で特に異なり、その他は略同一である。また、第一実施形態と同一構成には同一符号を付して詳細説明は省略する。
 図6に示すように、回転電機ユニット3は、ベース部80の貫通孔81をモータ部10から制御部30に向く方向に対して直交するように複数個配置している。ベース部80は、モータ部10及び制御部30を一体に支持する。
 図7に示すように、貫通孔81は、例えば丸孔であって、ベース部80の上面から下面に貫通形成されている。そのため、貫通孔81によって、モータ部10から制御部30に至る熱伝達路が小さくなることにより、モータ部10からの発熱成分が制御部30に伝わりにくくなる。また、貫通孔81を通じて冷却風が流通されることにより、貫通孔81が形成されている箇所が積極的に冷却される。
 回転電機ユニット3では、貫通孔81によって、モータ部10から制御部30に発熱成分を伝えにくくできるとともに、冷却風を流通させることにより、エンジン50のクランクケース51から発せられる熱が、ベース部80を介して制御部30へと伝播されてしまうことを確実に抑制できる。
<第四実施形態>
 図8は、本発明の第四実施形態における回転電機ユニット4を軸方向から見た平面図である。
 第四実施形態は、第三実施形態に対して、貫通孔81に代えて、熱抵抗構造を構成する凹部101を有するベース部100を備える点で特に異なり、その他は略同一である。また、第一実施形態と同一構成には同一符号を付して詳細説明は省略する。
 図8に示すように、凹部101は、モータ部10から制御部30に向く方向に沿って長くなるように平面視楕円形状に形成されている。また、凹部101は、モータ部10から制御部30に向く方向に対して直交する方向に複数個並んで配置されている。ベース部100は、モータ部10及び制御部30を一体に支持する。
 本変形例では、凹部101によって、モータ部10から制御部30に至る熱伝達路が小さくなることにより、エンジン50のクランクケース51から発せられる熱が、ベース部100を介して制御部30へと伝播されてしまうことを抑制できる。
 図9は、本発明の第四実施形態における回転電機ユニット4の一変形例を軸方向から見た平面図である。図10は、図9の図3相当の矢視図である。
 本変形例は、図8に対して、熱抵抗構造を構成する凹部91にリブ92を設けたベース部90を備える点で特に異なり、その他は略同一である。また、第一実施形態と同一構成には同一符号を付して詳細説明は省略する。
 図9に示すように、凹部91は、モータ部10から制御部30に向く方向に沿って長くなるように平面視楕円形状に形成されている。また、凹部91は、モータ部10から制御部30に向く方向に対して直交する方向に複数個並んで配置されている。ベース部90は、モータ部10及び制御部30を一体に支持する。
 図9、図10に示すように、凹部91は、中央部にリブ92を有する。そのため、リブ92によって、ベース部90の全体の剛性の低下を抑制する。
 回転電機ユニット4では、凹部91によって、エンジン50のクランクケース51から発せられる熱が、ベース部90を介して制御部30へと伝播されてしまうことを抑制できる。
 図11は、本発明の第四実施形態における回転電機ユニット4の他の変形例を軸方向から見た平面図である。
 本変形例は、図8に対して、熱抵抗構造を構成する凹部111を有するベース部110に備える点で特に異なり、その他は略同一である。また、第一実施形態と同一構成には同一符号を付して詳細説明は省略する。
 図11に示すように、凹部111は、モータ部10から制御部30に向く方向に沿って長くなるように平面視長方形状に形成されている。また、凹部111は、モータ部10から制御部30に向く方向に対して直交する方向に複数個並んで配置されている。ベース部110は、モータ部10及び制御部30を一体に支持する。
 本変形例では、凹部111によって、エンジン50のクランクケース51から発せられる熱が、ベース部110を介して制御部30へと伝播されてしまうことを抑制できる。
<第五実施形態>
 図12は、本発明の第五実施形態における回転電機ユニット5の図3相当の矢視図である。
 第五実施形態は、第四実施形態に対して、凹部91に代えて、熱抵抗構造を構成するものとして、冷却風誘導用の上板121、下板122及び貫通孔123を有するベース部120を備える点で特に異なり、その他は略同一である。また、第一実施形態と同一構成には同一符号を付して詳細説明は省略する。ベース部120は、モータ部10及び制御部30を一体に支持する。
 図12に示すように、上板121は、ベース部120の上面に予め定められた高さ寸法を有して縦断面視L字形状に突出形成されており、モータ部10から制御部30に向く方向に対して直交するように複数個配置している。このL字形状は、貫通孔123に対して冷却風を誘導する(図12における矢印Y1参照)ように折曲されている。
 下板122は、上板121に対応する下面に予め定められた高さ寸法を有して縦断面視I字形状に突出形成されおり、モータ部10から制御部30に向く方向に対して直交するように複数個配置している。
 貫通孔123は、例えば丸孔であって、上板121からモータ部10に寄った位置において、ベース部120の上面から下面に貫通形成されており、モータ部10から制御部30に向く方向に対して直交するように複数個配置している。
 回転電機ユニット5では、上板121及び下板122によって、貫通孔123に冷却風が積極的に通るので、ベース部120を効率よく冷却することができる。この結果、エンジン50のクランクケース51から発せられる熱が、ベース部80を介して制御部30へと伝播されてしまうことを確実に抑制できる。
<第六実施形態>
 図13は、本発明の第六実施形態における回転電機ユニット6の図3相当の矢視図である。
 第六実施形態は、第五実施形態に対して、熱抵抗体を構成する板部材131を介してモータ部側ベース部132と制御部側ベース部133とを連結している。モータ部側ベース部132に搭載されるモータ部10と、制御部側ベース部133に搭載される制御部30とは、別体に支持される。
 板部材131は、熱を通しにくい、例えばゴム部材等や樹脂部材等などの部材であって、モータ部側ベース部132の制御部30側の端部に締結部材134によって結合されている。制御部側ベース部133のモータ部10側の端部に締結部材135によって結合されている。ここで、締結部材134,135とは、例えばボルトとナットとの組み合わせやリベットを意味する。板部材131は、モータ部側ベース部132及び制御部側ベース部133に熱的に接続されていない。
 回転電機ユニット6では、モータ部側ベース部132と制御部側ベース部133とが、熱抵抗体の板部材131を介して連結されているために、モータ部10の発熱成分が制御部30側に伝播されるのを抑制できる。
 また、回転電機ユニット6では、モータ部10と、制御部30とが、別体のベース部132,133に支持されるために、モータ部10と、制御部30とが熱的に遮断されることにより、モータ部10側から制御部30側への熱成分の伝熱を抑制することができる。
<第七実施形態>
 図14は、本発明の第七実施形態における回転電機ユニット7の図3相当の矢視図である。
 第七実施形態は、第六実施形態に対して、熱抵抗体を構成する連結部材141を介してモータ部側ベース部142と制御部側ベース部143とを連結している。モータ部側ベース部142に搭載されるモータ部10と、制御部側ベース部143に搭載される制御部30とは、別体に支持される。
 連結部材141は、剛性の高い金属により構成されている。また、連結部材141は、熱を通しにくい部材から構成されている筒形状のカラー部材144を介し、モータ部側ベース部142の制御部30側の端部と、制御部側ベース部143のモータ部10側の端部と、に締結部材145によって結合されている。
 さらに、制御部ベース部143の連結部材141に対応する箇所には、カラー部材146が装着されており、このカラー部材146に連結部材141が挿入されている。カラー部材146によって、連結部材141は、制御部側ベース部143に熱的に接続されていない。
 回転電機ユニット7では、モータ部側ベース部142と制御部側ベース部143とが、カラー部材144を介して連結されているとともに、連結部材141と制御部側ベース部143とがカラー部材146を介して連結されている。このため、エンジン50のクランクケース51から発せられる熱が、モータ部側ベース部142を介して制御部側ベース部143へと伝播されてしまうことを抑制できる。
 なお、連結部材141を熱抵抗体として、この連結部材141を介してモータ部側ベース部142側の熱が制御部側ベース部143側へと伝播されてしまうことを抑制することも可能である。この場合、制御部側ベース部143に設けたカラー146を排除することも可能である。
<第八実施形態>
 図15は、本発明の第八実施形態における回転電機ユニット8の配置構造を示す説明図である。
 第八実施形態は、第七実施形態に対して、モータ部10を搭載しているモータ部側ベース部151と制御部30を搭載している制御部側ベース部152とが非連結で支持されている。
 制御部側ベース部152は、エンジンカバー54に延設されているブラケット153に固定されている。ブラケット153は、冷却風通路Aを流通する冷却風の流れを阻害しないように形成されている。
 そして、モータ部10から引き出された配線154が、制御部30に有するコネクタ155を通じて制御部30内に電気的に接続されている。なお、配線154は、ステータ12に巻回されているコイル11がそのまま引き出されたものであってもよいし、位置検出センサ47(図4参照)に接続される配線47aがそのまま引き出されたものであってもよい。
 このように、回転電機ユニット8では、モータ部側ベース部151と制御部側ベース部152とが、熱的に遮断されて配置されているために、エンジン50のクランクケース51から発せられる熱が、制御部30へと伝播されてしまうことを確実に抑制できる。
 また、モータ部10から引き出された配線154が、制御部30に有するコネクタ155を通じて制御部30内に電気的に接続されている。すなわち、配線154を直接制御部30に接続するように構成しているので、バスバー44(図4参照)を用いる場合と比較して回転電機ユニット8の構造を簡素化できる。
<第九実施形態>
 図16は、本発明の第九実施形態における回転電機ユニット9の分解斜視図である。
 第九実施形態は、図4に示した構造において、バスバー44に接続されるモータ部側コネクタ161と、位置検出センサ47に接続される制御部側コネクタ162と、を備える。モータ部側コネクタ161及び制御部側コネクタ162は、防水カプラである。
 回転電機ユニット9では、モータ部側コネクタ161をモータ部10に機械的に接続し、制御部側コネクタ162を位置検出センサ47に機械的に接続することにより、組立工数を減少することができる。もちろん、モータ部10と制御部30とは、熱的に遮断されているために、モータ部10の発熱成分が制御部30側に伝播されるのを抑制できる。
 なお、本発明は上記実施形態に限られるものではなく、例えば、熱抵抗構造としての通気孔及び通気溝の数及び配置、ベース部、制御部ケース及び断熱材の素材及び形状、等は本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 また、上記実施形態では、ベース部及び断熱材のそれぞれに通気孔を形成し、かつ断熱材に通気溝を形成した構成について説明した。しかしながら、通気孔及び通気溝の何れか一方を形成した構成、又は何れも形成しない構成であってもよい。また、熱抵抗構造である通気孔、通気溝及び断熱材が制御部の全体を冷却する構成に限らず、制御部の少なくとも一部を冷却する構成であればよい。
 また、複数の実施形態を、第一実施形態から第九実施形態に分けて説明したが、これら実施形態を選択的に適宜組み合わせることも可能である。
 上記の回転電機ユニットの配置構造によれば、内燃機関の冷却風通路内を利用して制御部の配置スペースを確保するとともに、制御部に対して冷却風が積極的に吹き付けられるために制御部の冷却性を確保することができる。
1,2,3,4,5,6,7,8, 回転電機ユニット
10 モータ部
11 コイル
12 ステータ
13 ロータ
30,70 制御部
31,71 制御部ケース
40,72,80,90,100,110,120 ベース部
43 ベース部通気孔(熱抵抗構造)
50 エンジン(内燃機関)
51 クランクケース(ケーシング)
52 クランクシャフト(回転駆動軸)
53 シリンダ
60 断熱材(熱抵抗体)
61 断熱材通気孔(熱抵抗体通気孔)
62 断熱材通気溝(通気溝)
81 貫通孔(熱抵抗構造)
91,101,111 凹部(熱抵抗構造)
121 上板(風導入壁)
122 下板(風導入壁)
123 貫通孔(熱抵抗構造)
131 板部材(熱抵抗体)
132,142,151 モータ部側ベース部(モータ部側のベース部)
133,143,152 制御部側ベース部(制御部側のベース部)
141 連結部材(熱抵抗体)
A 冷却風通路
S 空間

Claims (16)

  1.  コイルが巻回されたステータ、及び前記ステータに対向し内燃機関の回転駆動軸に固定されるロータを有するモータ部と、
     前記ステータの通電を制御する制御部と、を備え、
     前記内燃機関の駆動用として用いられる回転電機ユニットの配置構造であって、
     前記制御部は、前記内燃機関の冷却風通路内に配置される回転電機ユニットの配置構造。
  2.  前記モータ部と前記制御部とが一体的に設けられている請求項1に記載の回転電機ユニットの配置構造。
  3.  前記モータ部と前記制御部との間に、熱抵抗構造を有する請求項2に記載の回転電機ユニットの配置構造。
  4.  前記制御部は、前記内燃機関に有するシリンダの側方に配置される請求項1~請求項3の何れか1項に記載の回転電機ユニットの配置構造。
  5.  前記内燃機関と前記制御部とが互いに離間して配置される請求項1~請求項4の何れか1項に記載の回転電機ユニットの配置構造。
  6.  コイルが巻回されたステータ、及び前記ステータに対向し内燃機関の回転駆動軸に固定されるロータを有するモータ部と、
     前記ステータの通電を制御する制御部と、
     前記モータ部と前記制御部とをそれぞれ別々にまたは一体的に支持するベース部と、
    を備え、
     前記内燃機関の駆動用として用いられる回転電機ユニットであって、
     前記制御部は、前記内燃機関の冷却風通路内に配置される回転電機ユニット。
  7.  前記モータ部と前記制御部との間に、熱抵抗構造を有する請求項6に記載の回転電機ユニット。
  8.  前記熱抵抗構造は、前記ベース部に形成された孔、溝及び凹部の少なくとも何れか1つからなる請求項7に記載の回転電機ユニット。
  9.  前記熱抵抗構造は、前記ベース部に形成された孔であり、
     前記ベース部には、前記孔に、前記冷却風通路内の冷却風を導くための風導入壁が設けられている請求項8に記載の回転電機ユニット。
  10.  前記制御部は、制御部ケースを有し、前記制御部ケースは、前記ベース部と一体形成される請求項6~請求項9の何れか1項に記載の回転電機ユニット。
  11.  前記モータ部と前記制御部との間に、熱抵抗体を有する請求項6~請求項9の何れか1項に記載の回転電機ユニット。
  12.  前記ベース部と前記制御部との間に、前記熱抵抗体を設け、
     前記熱抵抗体は、該熱抵抗体を厚さ方向に貫通するように形成された熱抵抗体通気孔を有し、該熱抵抗体通気孔と前記ベース部に形成された通気孔とが互いに連通する請求項11に記載の回転電機ユニット。
  13.  前記ベース部と前記制御部との間に、前記熱抵抗体を設け、
     前記熱抵抗体は、該熱抵抗体の面方向に沿うように形成された通気溝を有する請求項11に記載の回転電機ユニット。
  14.  前記ベース部は、前記内燃機関のケーシングに一体的に取り付けられる請求項6~請求項13の何れか1項に記載の回転電機ユニット。
  15.  前記モータ部と、前記制御部とは、別体のベース部に支持されており、前記モータ部側の前記ベース部と、前記制御部側の前記ベース部とを前記熱抵抗体を介して連結した請求項11~請求項13の何れか1項に記載の回転電機ユニット。
  16.  前記コイルは、前記ステータから引き出されて直接前記制御部に接続されている請求項6~請求項15の何れか1項に記載の回転電機ユニット。
PCT/JP2015/081465 2014-11-28 2015-11-09 回転電機ユニットの配置構造及び回転電機ユニット WO2016084590A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014241655 2014-11-28
JP2014-241655 2014-11-28
JP2015061362A JP6143803B2 (ja) 2014-11-28 2015-03-24 回転電機ユニットの配置構造及び回転電機ユニット
JP2015-061362 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016084590A1 true WO2016084590A1 (ja) 2016-06-02

Family

ID=56074160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081465 WO2016084590A1 (ja) 2014-11-28 2015-11-09 回転電機ユニットの配置構造及び回転電機ユニット

Country Status (1)

Country Link
WO (1) WO2016084590A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3624313A4 (en) * 2017-05-10 2020-12-30 Mitsuba Corporation DYNAMO-ELECTRIC MACHINE UNIT

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149876U (ja) * 1989-05-24 1990-12-21
JP2003333867A (ja) * 2002-05-10 2003-11-21 Toyota Motor Corp 車輌用駆動装置
JP2008206252A (ja) * 2007-02-19 2008-09-04 Fuji Electric Systems Co Ltd 半導体電力変換装置
JP2009079763A (ja) * 2007-09-25 2009-04-16 Magna Powertrain Ag & Co Kg トランスミッションユニット
JP2014093854A (ja) * 2012-11-02 2014-05-19 Asmo Co Ltd 車両用モータユニット
JP2014140276A (ja) * 2013-01-21 2014-07-31 Mitsubishi Electric Corp 液冷式回転電機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149876U (ja) * 1989-05-24 1990-12-21
JP2003333867A (ja) * 2002-05-10 2003-11-21 Toyota Motor Corp 車輌用駆動装置
JP2008206252A (ja) * 2007-02-19 2008-09-04 Fuji Electric Systems Co Ltd 半導体電力変換装置
JP2009079763A (ja) * 2007-09-25 2009-04-16 Magna Powertrain Ag & Co Kg トランスミッションユニット
JP2014093854A (ja) * 2012-11-02 2014-05-19 Asmo Co Ltd 車両用モータユニット
JP2014140276A (ja) * 2013-01-21 2014-07-31 Mitsubishi Electric Corp 液冷式回転電機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3624313A4 (en) * 2017-05-10 2020-12-30 Mitsuba Corporation DYNAMO-ELECTRIC MACHINE UNIT

Similar Documents

Publication Publication Date Title
KR100770103B1 (ko) 차량용 회전 전기기계 장치
US10630136B2 (en) Air-conditioning blower motor unit
JP5014445B2 (ja) 電力供給ユニット一体型回転電機
JP2009278751A (ja) スタータジェネレータ
JP5591778B2 (ja) 車両
JP2010268541A (ja) 回転電機
KR100874317B1 (ko) 차량용 교류 발전기
JP4861836B2 (ja) ラジエータ冷却用の車両用電動ファン装置
JP6007951B2 (ja) 回転電機
JP6143803B2 (ja) 回転電機ユニットの配置構造及び回転電機ユニット
WO2016084590A1 (ja) 回転電機ユニットの配置構造及び回転電機ユニット
JP2008187853A (ja) 回転電機装置
JP2019503644A (ja) 冷却フィンを有する回転電気機械
JP2011234555A (ja) 車両用交流発電機の配設構造
JP5742921B2 (ja) 車両用ブラシレス交流発電機
WO2020016911A1 (ja) 回転電機
JP6351857B2 (ja) 車両用回転電機
WO2016204116A1 (ja) 二輪車用内燃機関冷却装置
JP6890651B1 (ja) 回転電機
JP6069684B2 (ja) 回転電機ユニット
JP6912269B2 (ja) 回転電機ユニット
JP2019503645A (ja) 放熱器に少なくとも1つの通気開口を有する回転電気機械
JP6398019B1 (ja) 回転電機ユニット
JP7086238B1 (ja) 制御装置一体型回転電機
US20220158526A1 (en) Permanent magnet alternator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862212

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862212

Country of ref document: EP

Kind code of ref document: A1