WO2016084555A1 - Magnetic separation device and raw water treatment device - Google Patents

Magnetic separation device and raw water treatment device Download PDF

Info

Publication number
WO2016084555A1
WO2016084555A1 PCT/JP2015/080890 JP2015080890W WO2016084555A1 WO 2016084555 A1 WO2016084555 A1 WO 2016084555A1 JP 2015080890 W JP2015080890 W JP 2015080890W WO 2016084555 A1 WO2016084555 A1 WO 2016084555A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw water
magnetic
flow rate
supply path
water supply
Prior art date
Application number
PCT/JP2015/080890
Other languages
French (fr)
Japanese (ja)
Inventor
照井 茂樹
磯上 尚志
恵星 林田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016084555A1 publication Critical patent/WO2016084555A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D3/00Differential sedimentation
    • B03D3/02Coagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil

Definitions

  • the present invention relates to a magnetic separation device and a raw water treatment device.
  • Patent Document 1 JP-A-62-65757
  • a device for cleaning a fouling liquid containing magnetic particles which is mounted substantially rotating around a horizontal axis and has a substantially cylindrical drum having a magnetic outer peripheral surface, and magnetic particles on the outer surface of the drum. And a device for forming a fouling liquid flow path around the lower surface of the drum for collection. The flow path has an inlet end on one side of the drum, and a device for supplying the fouling liquid to the inlet end of the liquid path.
  • an elongate weir extending substantially horizontally along the outer surface of the drum is provided as the position of the inlet end of the liquid path, and the weir is immersed in the stored liquid of the contaminated liquid and cooperates with the drum to remove the liquid from the stored liquid.
  • the interval between the drum and the weir is defined, and the device is attached to the weir and rotated up and down with respect to the drum around the axis of equilibrium with respect to the axis of the drum.
  • the position of the pivot axis of the weir is When the fouling liquid pressure in the stored liquid increases or decreases, the weir is rotated up and down to It is described as the magnetic separation device ", characterized in that make it possible to decrease (see claim 1).
  • the raw water treatment apparatus that performs the coagulation magnetic separation treatment includes a rapid stirring tank (not shown), a slow stirring tank (not shown), a magnetic separation apparatus 210 (FIG. 11), and the like.
  • raw water treatment equipment first, raw water containing suspended solids, oil, heavy metals, etc. is treated in a rapid stirring tank to produce micro flocs in the raw water, and further, the raw water is treated in a slow stirring tank to agglomerate.
  • Flock 231 (FIG. 11) is generated in the raw water.
  • FIG. 11 is a longitudinal sectional view (a) of a magnetic separation device 210 as a comparative example, and an EE sectional view (b) of (a).
  • the magnetic separation device 210 is a separation tank in which the longitudinal cross-sectional shape in the short side direction (the left-right direction in FIG. 11A) is a semicircular arc, and raw water is supplied from the slow stirring tank through the raw water supply path 221. 222 and a rotating shaft direction (perpendicular to the paper surface of FIG. 11A) as a horizontal direction, the lower side is submerged in the raw water in the separation tank 222 and is rotated by driving a motor (not shown). And a magnetic drum 224.
  • the magnetic drum 224 is provided with a large number of magnets on the outer peripheral surface thereof.
  • Raw water is supplied into the separation tank 222 from the raw water supply path 221, passes between the outer surface of the magnetic drum 224 and the inner surface of the semicircular arc-shaped separation tank 222, and is discharged from the treated water discharge path 227.
  • the magnetic drum 224 rotates while the lower side is immersed in the raw water in the separation tank 222
  • the aggregated floc 231 in the raw water is adsorbed on the surface of the magnetic drum 224 by the magnetic force of the magnet of the magnetic drum 224.
  • the coagulation floc 231 adsorbed on the surface of the magnetic drum 224 as the magnetic drum 224 rotates is exposed on the surface of the raw water in the separation tank 222.
  • a scraper 225 that scrapes the aggregated floc 231 on the magnetic drum 224 is in contact with the surface of the magnetic drum 224 that is not immersed in the raw water.
  • the aggregated floc 231 is scraped off by the scraper 225 and discharged by the aggregated floc discharge unit 226.
  • the treated water which is the water after the aggregated floc 231 is removed from the raw water, is discharged from the treated water discharge path 227.
  • the raw water flowing through the magnetic drum 224 has a large flow rate at the outlet position that reaches the shortest distance from the inlet position of the raw water supply path 221, for example, the central portion 224 a in the rotation axis direction of the magnetic drum 224 shown in FIG.
  • the both ends 224b there is a problem in that the amount of raw water treated is uneven due to the portion of the magnetic drum 224 in the direction of the rotation axis.
  • the magnetic powder contained in the coagulation floc 231 has a large specific gravity and a high settling speed, the coagulation floc 231 settles and accumulates in the raw water supply path 221 connecting the slow stirring tank and the magnetic separation device 210 (aggregation floc). 231a state).
  • the present invention solves the above-mentioned problems, suppresses the uneven flow rate of each part in the direction of the rotation axis for the raw water supplied from the raw water supply path to the magnetic drum, and the magnetic powder is contained in the raw water supply path. It is an object of the present invention to provide a magnetic separation device and a raw water treatment device that do not settle and accumulate.
  • an embodiment of the present invention provides a separation tank to which raw water containing agglomerated flocs is supplied and a separation tank that is provided in the separation tank and rotates to rotate the aggregation flocs in the raw water with a magnetic force.
  • a magnetic separation device comprising: a flow rate adjusting unit that suppresses a non-uniform flow rate of the raw water for each site in the rotation axis direction.
  • Another embodiment of the present invention includes a separation tank to which raw water containing agglomerated flocs is supplied, and a magnetic drum that is provided in the separation tank and rotates to adsorb the flocs in the raw water by magnetic force.
  • a scraper that scrapes off the aggregated floc adsorbed on the surface of the magnetic drum, a raw water supply path that is connected to the separation tank and supplies the raw water to the separation tank, and the magnetic drum in the raw water supply path
  • the flow rate adjusting means suppresses the non-uniform flow rate of the raw water for each part in the direction of the rotation axis, and the flow rate adjustment means includes a width of the raw water supply path and a width of the separation tank in the rotation axis direction of the magnetic drum. Are the same dimensions to suppress the non-uniform flow rate.
  • natural water processing apparatus which can equalize the processing amount of the raw
  • FIG. 1 is a diagram showing a schematic configuration of a raw water treatment apparatus according to Examples 1 to 3 of the present invention.
  • FIG. 2 is a longitudinal sectional view of the magnetic separation device according to Embodiment 1 of the present invention.
  • FIG. 3 is an explanatory view of the weir of the magnetic separation device according to Embodiment 1 of the present invention, and FIGS. 3A to 3C show different examples.
  • 4A and 4B are explanatory views of Embodiment 2 of the present invention, in which FIG. 4A is a plan view of the aggregating device and the magnetic separation device, and FIG. 4B is a side view thereof.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG. 4B, and FIGS.
  • FIG. 6A and 6B are explanatory views of Embodiment 3 of the present invention.
  • FIG. 6A is a plan view of the aggregating device and the magnetic separation device
  • FIG. 6B is a side view thereof.
  • FIG. 7 is an explanatory diagram of a modification of the third embodiment of the present invention.
  • FIG. 6 (a) is a plan view of the aggregating device and the magnetic separation device
  • FIG. 6 (b) is a side view thereof.
  • FIG. 8 is an explanatory diagram of a modification of the first embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of a modification of the first embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of a modification of the first embodiment of the present invention.
  • FIG. 11A and 11B are explanatory diagrams of a magnetic separation device as a comparative example.
  • FIG. 11A is a longitudinal sectional view of the magnetic separation device
  • FIG. 11B is a cross-sectional view taken along line EE in FIG. FIG.
  • FIG. 1 is a diagram illustrating a schematic configuration of a raw water treatment apparatus 100 according to the first embodiment.
  • a raw water tank 110 In the raw water treatment apparatus 100, a raw water tank 110, a rapid stirring tank 120, a slow stirring tank 130, and a magnetic separation device 10 are arranged from the upstream side to the downstream side of the raw water treatment system.
  • Raw water (raw water containing suspended solids, oil, heavy metal, etc.) to be treated is first fed from the raw water tank 110 to the rapid stirring tank 120 by the raw water pump 140.
  • an inorganic flocculant tank 121 such as PAC (polyaluminum chloride), ferric sulfate, ferric chloride, Aluminum sulfate or the like is added.
  • magnetic powder such as magnetite is added to the raw water from the magnetic powder tank 122 by a magnetic powder injection pump (not shown), and stirring is performed rapidly.
  • many small lumps called micro flocs are formed by the effect of the flocculant while the collision frequency of suspended solids, oil particles and magnetic powder is increased by rapid stirring.
  • the raw water containing the micro floc exits the rapid stirring tank 120 and then flows into the slow stirring tank 130.
  • the polymer (polymer flocculant) is injected from the polymer polymer tank 131 into the slow stirring tank 130 by a pump (not shown), and stirred at a low speed in the slow stirring tank 130 for aggregation.
  • the high molecular polymer is preferably anionic, and for example, polyacrylamide is suitable.
  • polyacrylamide it may be stored in powder form, dissolved in water, and then poured into a polymer polymer tank 131 with a pump (not shown) and stirred.
  • the rapid stirring tank 120, the slow stirring tank 130, and the like constitute a flocculating device 150 that generates flocculated flocs in the raw water by adding and stirring the flocculant and magnetic powder.
  • the agglomerated floc formed as described above is fed from the slow stirring tank 130 to the magnetic separation device 10, where the raw water is separated into the agglomerated floc and treated water.
  • the above is the flow of raw water treatment by the raw water treatment apparatus 100.
  • FIG. 2 is a longitudinal sectional view of the magnetic separation device 10.
  • the magnetic separation device 10 has a longitudinal cross-sectional shape in the short side direction (left-right direction in FIG. 2) that is a semicircular arc, and a separation tank 22 that is supplied with raw water from the coagulation device 150 via the raw water supply path 21 and rotates.
  • a cylindrical or columnar shape that is installed so that about half of the lower side is submerged in the raw water in the separation tank 22 with the axial direction (perpendicular to the paper surface of FIG. 2) as a horizontal direction, and is rotated by driving a motor (not shown).
  • a magnetic drum 24 is provided with a large number of magnets along its inner peripheral surface.
  • the raw water containing the coagulated floc 31 is supplied from the raw water supply path 21 into the separation tank 22, and the magnetic drum 24 rotates in a state where the lower half is immersed in the raw water in the separation tank 22.
  • the aggregated floc 31 in the raw water is attracted to the surface of the magnetic drum 24 by the magnetic force of the magnet of the magnetic drum 24.
  • the aggregation floc 31 adsorbed on the surface of the magnetic drum 24 as the magnetic drum 24 rotates is exposed on the surface of the raw water in the separation tank 22.
  • a scraper 25 that scrapes the aggregated floc 31 on the magnetic drum 24 is in contact with the surface of the magnetic drum 24 that is not immersed in the raw water.
  • the aggregated floc 31 is scraped off by the scraper 25 and is discharged by the aggregated floc discharge unit 26.
  • the treated water which is the water after the aggregated floc 31 is removed from the raw water, is discharged from the treated water discharge path 27 (see FIG. 2).
  • the raw water is supplied from the raw water supply path 21 to the magnetic drum 24.
  • the flow rate becomes uneven, the raw water slowly passes through the separation tank 22 at the part where the flow rate is low, so that the separation performance of the coagulation floc is improved.
  • the raw water passes through the separation tank 22 quickly at the part where the flow rate is high. , The separation performance decreases. As a result, the separation performance becomes unstable as a whole. That is, in the comparative example of FIG.
  • the flow rate of the raw water in the raw water supply path 221 (the central portion 224a in the rotation axis direction of the magnetic drum 224) is relatively high, but the flow rate of the raw water on both ends 224b is slow. Therefore, a large amount of raw water flows toward the central portion 224a side of the magnetic drum 224 in the rotational axis direction, and the amount of treatment in the central portion 224a of the magnetic drum 224 increases, so that the rotational direction of the magnetic drum 224 in the rotational axis direction is increased. Only a small amount of raw water flows into the both end portions 224b, and the amount of processing of the magnetic drum 224 at the both end portions 224b decreases. Therefore, in the present embodiment, the following measures are taken in order to make the amount of raw water treated as uniform as possible in each part of the magnetic drum 224 in the rotation axis direction.
  • FIG. 3 is a view of the weir 41 seen from the AA direction of FIG.
  • a plurality of weirs 41 in FIG. 3A are arranged side by side in the direction of the rotation axis of the magnetic drum 24 (perpendicular to the plane of FIG. 2, left and right in FIG. 3) on the separation tank 22 side of the raw water supply path 21. .
  • each weir 41 can adjust an upper end position to an up-down direction by adjusting attachment height.
  • Each weir 41 adjusts the flow rate of raw water flowing into the separation tank 22 beyond the respective weirs 41 depending on the height difference of the upper end positions of the plurality of weirs 41. Thereby, it is suppressed that the flow rate of the raw water flowing into the separation tank 22 from the raw water supply path 21 becomes uneven for each part of the magnetic drum 24 in the rotation axis direction.
  • FIG. 3A a configuration example of the flow rate adjusting means when the flow rate of the raw water on the side close to the walls 23 a and 23 b of the raw water supply path 21 is small and the flow rate of the raw water in the central part is large is shown.
  • the height of the weir 41 at the center is higher than the height of the weir 41 on the left and right walls 23a, 23b.
  • the weir 41 in FIG. 3B is an example in which the weir 41 on the side of the walls 23a and 23b in the example of FIG.
  • the weir 41 in FIG. 3C calculates the height of the weir 41 necessary for equalizing the flow rate of the raw water in each part from the vicinity of the walls 23a and 23b to the central portion through experiments and simulations.
  • This is an example in which a single weir 41 created so as to have the calculated height for each part is installed.
  • This example is suitable when the processing amount of the raw water, that is, the flow rate of the raw water to the separation tank 22 does not fluctuate.
  • the basic configuration and basic operation of the raw water treatment apparatus 100 of this embodiment are the same as those of the first embodiment described above with reference to FIG. Further, the basic configuration of the magnetic separation apparatus 200 of the present embodiment is the same as that of the magnetic separation apparatus 10 of the first embodiment.
  • different points will be mainly described, and the same reference numerals are attached to the drawings for common points in detail. The detailed explanation is omitted.
  • FIG. 4A is a plan view of the aggregating device 150 and the magnetic separation device 200
  • FIG. 4B is a side view of the same.
  • the length of the magnetic drum 24 in the direction of the rotation axis is increased in order to improve the separation performance of the aggregated floc from the raw water. Therefore, as apparent from FIG. 4A, the dimensions of the raw water supply path 21 on the side connected to the magnetic separation apparatus 200 are several times larger than the dimensions of the raw water supply path 21 on the side connected to the coagulation apparatus 150. It is getting bigger. Accordingly, the portion 21 a in the middle of the raw water supply path 21 is configured so that the width gradually increases in correspondence with the rotation axis direction of the magnetic drum 24 as it approaches the separation tank 22.
  • the flow rate of the raw water supply path 221 is the center of the flow (magnetic It is presumed that the longitudinal center portion 224a) of the drum 224 is fast and slows toward both ends 224b, and a vortex is formed at both ends 224b.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG. 4 (b), and FIGS. 5 (a) to 5 (d) show different examples of the raw water supply path provided with the flow rate adjusting means.
  • the raw water supply passage 21 rotates between the raw water inlet 21e and the portion 21f which is the raw water outlet as the magnetic drum 24 rotates as it approaches the separation tank 22. It has the site
  • the part 21c and the part 21d are flat plates from the inlet 21e of the said raw
  • the left and right walls 21c and 21d are formed of flat plates, so that the direction of the rotation axis of the magnetic drum 24 is increased. Even in the vicinity of the left and right walls 21c and 21d, the flow of raw water becomes smooth to some extent. That is, the flow of raw water does not greatly stagnate in the vicinity of the left and right walls 21c or 21d.
  • FIGS. 5A, 5B, 1B, and 2D of this embodiment all or part of the route from the site 21e to the site 21 in the raw water supply channel 21 is magnetically connected.
  • a partition member 61 that partitions the width of the drum 24 in the rotation axis direction is provided.
  • the partition member 61 partitions the inside of the raw water supply path 21 into a plurality of sections 21 b in the direction of the rotation axis of the magnetic drum 24.
  • the flow rate adjusting means of the present embodiment is composed of a portion 21c, a portion 21d and a partition member 61 shown in FIGS. 5 (a), (b-1), (b-2) and (d).
  • FIG. 5 (a), (b-1), (b-2) and (d) In the example of FIG.
  • the raw water supply path 21 is equally divided into four sections 21b by the three partition members 61 in the rotation axis direction of the magnetic drum 24.
  • Each partition member 61 is formed from the inlet 21e on the flocculating device 150 side of the raw water supply path 21 to the position of the terminal end 21f where the width of the portion 21a ends.
  • each partition member 61 is not formed on the inlet 21e side of the raw water supply path 21 on the side of the aggregating device 150, and the position of the terminal end 21f where the width of the region 21a ends is increased. It is an example formed only in the vicinity. In the raw water supply path 21 in which the partition member 61 is installed, the partition member 61 equally partitions the width of the magnetic drum 24 in the rotation axis direction. In the example of FIG. 5B-2, each partition member 61 is formed only on the inlet 21 e side on the coagulation device 150 side in the raw water supply path 21. The configuration in which the width is equally divided by the partition member 61 is the same as that in FIG. FIG.
  • FIG. 5C is an example in which the partition member 61 is not formed in the raw water supply path 21 at all.
  • FIG. 5D is an example in which the center positions of the inlet 21e that is the raw water inlet and the portion 21f that is the raw water outlet are eccentric.
  • the part 21c is arranged vertically, and the part 21d is inclined to increase the width of the magnetic drum 24 in the rotation axis direction as it approaches the separation tank 22.
  • the raw water supply path 21 is partitioned into three sections 21b by the two partition members 61. In each example of FIGS. 5A to 5D, the flow of raw water is indicated by a broken line.
  • each partition member 61 is continuously formed from the inlet 21e of the raw water supply path 21 on the side of the aggregating device 150 to the position of the end 21f where the width of the region 21a ends.
  • each partition member 61 in FIG. 5 (b-1) is formed only in the vicinity of the position of the terminal end 21f where the expansion of the width of the part 21a ends, the raw water flowing from the part 21e is separated from the part 21c and the partition member. 61, between the partition member 61 and the partition member 61, and between the partition member 61 and the portion 21d, and the flow velocity is smoothly decelerated as the width increases and flows out of the portion 21f.
  • natural water supply path becomes smooth.
  • the flow rate of the raw water in the raw water supply path 21 is increased with an increase in the width dimension formed between the left and right walls 21c and 21d. Although the speed is reduced, the flow of raw water in the raw water supply path is smooth, although not as much as in the examples of FIGS. 5 (a), (b-1), and (b-2). 5D, the flow rate of the raw water in the raw water supply path 21 is equal to that of the left and right walls 21c, 21d, and the partition, even in the example where the positions of the part 21a and the terminal end 21f are shifted between the wall 21c side and the wall 21d. As the width formed between the members 61 is increased, the flow velocity is reduced, and a smooth flow is formed from the inlet 21e to the end 21f.
  • the flocs 31 do not settle and accumulate in the raw water supply path 21 connecting the slow stirring tank 130 and the magnetic separation device 10. It is necessary to maintain the raw water flow rate.
  • the width of the raw water supply passage 21 gradually increases in correspondence with the rotation axis direction of the magnetic drum 24 as it approaches the separation tank 22. It has a portion 21a.
  • the raw water that has flowed from the inlet 21e in the raw water supply path 21 reaches the position of the terminal 21f where the expansion of the width of the portion 21a ends.
  • the flow velocity gradually decreases. For example, when the settling speed of the aggregated floc is about 0.01 m / s, if the flow rate is set to a flow rate exceeding the settling speed of the aggregated floc at the terminal end 21f where the flow rate of the raw water is the slowest in the raw water supply passage 21, Sedimentation can be avoided.
  • the flow velocity of the part 21a is larger than 0.02 m / s.
  • the rotational axis direction of the magnetic drum 24 is the same.
  • the flow velocity of the part 21a can be reduced to about 0.03 m / s to 0.1 m / s. In this case, the flow velocity decrease can be further moderated in the raw water supply path 21.
  • the flow velocity adjusting means is realized by the left and right walls 21c and 21d formed by flat plates gradually increasing in width corresponding to the rotation axis direction of the magnetic drum 24 as approaching the separation tank 22. .
  • the raw water flowing in from the inlet 21e in the raw water supply path 21 gradually decreases in flow rate as it approaches the separation tank 22 to the position of the terminal end 21f where the expansion of the width of the portion 21a ends.
  • the raw water supply path 21 provided with the flow velocity adjusting means as described above since the raw water supply path 21 provided with the flow velocity adjusting means as described above is provided, the flow of the raw water in the raw water supply path 21 including the vicinity of the left and right walls 21c and 21d can be smoothly decelerated. . As a result, the flow rate of the raw water in the raw water supply channel 21 is maintained at a flow rate equal to or higher than the settling speed of the coagulated flocs, so that settling and accumulation of the coagulated flocs can be prevented.
  • the flow rate difference of the raw water at each position in the rotation axis direction of the magnetic drum 24 is different from the conventional water. It can be made much smaller.
  • the fluctuation range of the flow rate for each part flowing into the separation tank 22 can be made within ⁇ 20%, and the entire magnetic drum 24 can be provided.
  • the amount of raw water treated can be made relatively uniform. Even if the length of the magnetic drum 24 is increased to increase the throughput of raw water, there is no significant difference in the throughput of raw water depending on the portion of the magnetic drum 24, and the processing performance of the magnetic separation device 10 is satisfied. I was able to.
  • the flow rate of the raw water is maintained so that the aggregated floc 31 does not settle and accumulate in the raw water supply path 21. Can do.
  • the flow rate of the raw water flowing into the separation tank 22 is suppressed by the configuration in the raw water supply path 21, but the weir 41 used in the first embodiment may be used together, or used in combination. In this case, the fluctuation range of the flow rate can be further reduced.
  • the basic configuration and basic operation of the raw water treatment apparatus 100 of this embodiment are the same as those of the first embodiment described above with reference to FIG. Further, the basic configuration of the magnetic separation device 300 of the present embodiment is the same as that of the magnetic separation device 10 of the first embodiment.
  • different points will be mainly described, and the common points are denoted by the same reference numerals in detail. The detailed explanation is omitted.
  • FIG. 6A is a plan view of the aggregation device 150 and the magnetic separation device 300
  • FIG. 6B is a side view thereof.
  • the width of the portion 21a and the end 21f of the raw water supply channel 21 are the same, and as shown in FIG.
  • the raw water supply path 21 shown in FIG. 5 may not be provided, and the width of the raw water supply path 21 (the vertical width in FIG. 6A) is substantially the same in any position in the direction in which the raw water flows. It constitutes a flow rate non-uniformity suppressing part. Therefore, the treatment amount of the raw water can be made relatively uniform over the entire magnetic drum 24, and there is no difference in the treatment amount of the raw water depending on the portion of the magnetic drum 24.
  • FIG. 7 shows a modification of the third embodiment.
  • FIG. 7A is a plan view of the aggregation device 150 and the magnetic separation device 300
  • FIG. 7B is a side view thereof.
  • This modification is different from the example of FIG. 6 in that the raw water supply path 21 is not provided and the aggregating device 150 and the magnetic separation device 300 are directly connected, and the aggregating device 150 in FIG.
  • FIG. 7 shows an open structure.
  • the width of the slow stirring tank 130 (the vertical width in FIG. 7A) and the width of the separation tank 22 in the direction of the rotation axis of the magnetic drum 24 are the same size. Therefore, the turbulent flow of the raw water as in the example of FIG. 5C is unlikely to occur, and the flow rate difference of the raw water in each portion of the raw water supply passage 21 in the direction of the rotation axis of the magnetic drum 24 is suppressed. It becomes possible. Therefore, the treatment amount of the raw water can be made relatively uniform over the entire magnetic drum 24, and there is no significant difference in the treatment amount of the raw water depending on the part of the magnetic drum 24.
  • FIG. 8 is an example in which a weir 52 as shown in FIG. 3 is provided also on the treated water discharge path 27 side of the overflow section 51 between the separation tank 22 and the treated water discharge path 27.
  • FIG. 3 is also a view of the weir 52 seen from the BB direction of FIG. 8 (the reference numerals are given in parentheses in FIG. 3).
  • the flow of treated water is adjusted by adjusting the height of each weir 52, and the effective contact that is the range in which the surface of the magnetic drum 24 is in contact with the raw water (or treated water) indicated by a thick line on the surface of the magnetic drum 24
  • the length of the portion 53 (shown by a non-illustrated line) is set to be a predetermined value or more.
  • the length of the effective contact portion 53 is adjusted so that the upper end 53a of the effective contact portion 53 is positioned at an angle ⁇ upward from the horizontal direction of the rotating shaft 54 of the magnetic drum 24.
  • the flow rate for each part flowing into the separation tank 22 is adjusted by the weir 52 so that the fluctuation range of the flow rate for each part in the separation tank 22 is within ⁇ 20%. Thereby, the separation performance of the aggregation floc 31 of the magnetic separation apparatus 10 and the quality of treated water can be determined.
  • the raw water does not flow into the separation tank 22 beyond the weir 41 as in the example of FIG. 2, but the flow rate is reduced from between the lower end of the weir 41 and the overflow portion 28 as shown in FIG.
  • the generated raw water may flow into the separation tank 22.
  • weirs 41 and 52 may be provided in the regions C and D of FIGS. 6 and 7, respectively, as in the examples of FIGS.
  • the present invention is not limited to the above-described embodiments, and includes various modifications other than the above.
  • the shape of the member provided with the magnet of the magnetic separation device 10 (in the above example, the magnetic drum 24) is not limited to the drum shape, and the aggregated floc 31 may be formed in a disk shape or other shapes. Any device having a function of separating may be used.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Magnetic separator 21 Raw water supply path (flow rate adjusting means) 21c, 21d wall (flow rate adjusting means) 22 Separation tank 24 Magnetic drum 25 Scraper 41 Weir (flow rate adjusting means) 51 Partition member (flow rate adjusting means) 100 Raw water treatment device 150 Coagulation device 200 Magnetic separation device 300 Magnetic separation device

Abstract

In the present invention, raw water flows from the lower side to the upper side in a raw water supply path (21) and goes over an overflow part (28) between the raw water supply path (21) and a separation tank (22), with the raw water flowing into the separation tank (22). A plurality of dams (41) forming flow rate differential control parts are provided on the raw water supply path (21) side of the overflow part (28). The plurality of dams (41) are provided in an arrangement in the direction of the rotational axis of a magnetic drum (24) on the separation tank (22) side of the raw water supply path (21). The upper end position of each dam (41) can be adjusted in the vertical direction by a prescribed adjustment mechanism.

Description

磁気分離装置、及び原水処理装置Magnetic separation device and raw water treatment device
 本発明は、磁気分離装置、及び原水処理装置に関する。 The present invention relates to a magnetic separation device and a raw water treatment device.
 本技術分野の背景技術として、特開昭62-65757号公報(特許文献1)がある。この公報には、「磁性粒子を含む汚損液を清浄にする装置であって、ほぼ水平軸線を中心として回転する取付とし磁性外周面を有するほぼ円筒形のドラムと、ドラムの外面に磁性粒子の収集のためにドラム下面を廻る汚損液流路を形成する装置とを設け、該流路はドラムの一側に入口端を有し、汚損液を液路の入口端に供給する装置を設けた場合に、液路の入口端の位置としてドラムの外面に沿ってほぼ水平に延長する細長の堰を備え、上記堰は汚損液の貯留液内に浸漬しドラムと共働して貯留液からの液をドラムと堰との間を通す間隔を画成させ、堰に取付けてドラムの軸線に平衡の軸線を中心としてドラムに対して上下回動させる装置を備え、堰の枢支軸線の位置は貯留液内の汚損液圧力が増減した時に堰を上下に回動させて上記間隔巾を増減させることを可能にすることを特徴とする磁気分離装置」と記載されている(請求項1参照)。 As background art in this technical field, there is JP-A-62-65757 (Patent Document 1). In this publication, “a device for cleaning a fouling liquid containing magnetic particles, which is mounted substantially rotating around a horizontal axis and has a substantially cylindrical drum having a magnetic outer peripheral surface, and magnetic particles on the outer surface of the drum. And a device for forming a fouling liquid flow path around the lower surface of the drum for collection. The flow path has an inlet end on one side of the drum, and a device for supplying the fouling liquid to the inlet end of the liquid path. In this case, an elongate weir extending substantially horizontally along the outer surface of the drum is provided as the position of the inlet end of the liquid path, and the weir is immersed in the stored liquid of the contaminated liquid and cooperates with the drum to remove the liquid from the stored liquid. The interval between the drum and the weir is defined, and the device is attached to the weir and rotated up and down with respect to the drum around the axis of equilibrium with respect to the axis of the drum. The position of the pivot axis of the weir is When the fouling liquid pressure in the stored liquid increases or decreases, the weir is rotated up and down to It is described as the magnetic separation device ", characterized in that make it possible to decrease (see claim 1).
特開昭62-65757号公報JP-A-62-65757
 凝集磁気分離処理を行う原水処理装置は、急速攪拌槽(図示せず)、緩速攪拌槽(図示せず)、磁気分離装置210(図11)などから構成される。原水処理装置においては、まず、浮遊固形物、油、重金属などを含有する原水を急速攪拌槽で処理して原水中にマイクロフロックを生成し、さらに、原水を緩速攪拌槽で処理して凝集フロック231(図11)を原水中に生成する。 The raw water treatment apparatus that performs the coagulation magnetic separation treatment includes a rapid stirring tank (not shown), a slow stirring tank (not shown), a magnetic separation apparatus 210 (FIG. 11), and the like. In raw water treatment equipment, first, raw water containing suspended solids, oil, heavy metals, etc. is treated in a rapid stirring tank to produce micro flocs in the raw water, and further, the raw water is treated in a slow stirring tank to agglomerate. Flock 231 (FIG. 11) is generated in the raw water.
 図11は、比較例となる磁気分離装置210の縦断面図(a)と、(a)のE-E断面図(b)である。磁気分離装置210は、短手方向(図11(a)の左右方向)の縦断面形状が半円弧状であって、緩速攪拌槽から原水供給路221を介して原水が供給される分離槽222と、回転軸方向(図11(a)の紙面に垂直方向)を水平方向として下側が分離槽222内の原水に水没していて、図示しないモータの駆動により回転する円筒状又は円柱状の磁気ドラム224とを備えている。磁気ドラム224は、その外周面に多数の磁石が設けられている。 FIG. 11 is a longitudinal sectional view (a) of a magnetic separation device 210 as a comparative example, and an EE sectional view (b) of (a). The magnetic separation device 210 is a separation tank in which the longitudinal cross-sectional shape in the short side direction (the left-right direction in FIG. 11A) is a semicircular arc, and raw water is supplied from the slow stirring tank through the raw water supply path 221. 222 and a rotating shaft direction (perpendicular to the paper surface of FIG. 11A) as a horizontal direction, the lower side is submerged in the raw water in the separation tank 222 and is rotated by driving a motor (not shown). And a magnetic drum 224. The magnetic drum 224 is provided with a large number of magnets on the outer peripheral surface thereof.
 原水供給路221からは分離槽222内に原水が供給され、磁気ドラム224の外面と半円弧状の分離槽222の内面との間を通過して処理水排出路227から排水される。磁気ドラム224は当該分離槽222内の原水に下側が浸かった状態で回転する際、磁気ドラム224の磁石の磁力により、磁気ドラム224の表面には原水中の凝集フロック231が吸着される。そして、磁気ドラム224の回転とともに磁気ドラム224の表面に吸着されている凝集フロック231は、分離槽222内の原水の水面上に露出する。磁気ドラム224の上側の原水に浸からない位置の表面には、当該磁気ドラム224上の凝集フロック231を掻き取るスクレーパ225が接触している。この凝集フロック231は、スクレーパ225で掻き取られ、凝集フロック排出部226により排出される。このように原水から凝集フロック231が除去された後の水である処理水は、処理水排出路227から排出される。 Raw water is supplied into the separation tank 222 from the raw water supply path 221, passes between the outer surface of the magnetic drum 224 and the inner surface of the semicircular arc-shaped separation tank 222, and is discharged from the treated water discharge path 227. When the magnetic drum 224 rotates while the lower side is immersed in the raw water in the separation tank 222, the aggregated floc 231 in the raw water is adsorbed on the surface of the magnetic drum 224 by the magnetic force of the magnet of the magnetic drum 224. The coagulation floc 231 adsorbed on the surface of the magnetic drum 224 as the magnetic drum 224 rotates is exposed on the surface of the raw water in the separation tank 222. A scraper 225 that scrapes the aggregated floc 231 on the magnetic drum 224 is in contact with the surface of the magnetic drum 224 that is not immersed in the raw water. The aggregated floc 231 is scraped off by the scraper 225 and discharged by the aggregated floc discharge unit 226. Thus, the treated water, which is the water after the aggregated floc 231 is removed from the raw water, is discharged from the treated water discharge path 227.
 しかし、磁気ドラム224に流れる原水は、原水供給路221の入口位置から最短で到達する出口位置、例えば、図11(b)に示す磁気ドラム224の回転軸方向の中央部224aで流量が多く、両端部224b側で少なくなる傾向があり、磁気ドラム224の回転軸方向の部位により原水の処理量に不均一が生じるという課題がある。
 また、凝集フロック231中に含まれる磁性粉は比重が大きく沈降速度が速いため、緩速攪拌槽と磁気分離装置210とを接続する原水供給路221内で凝集フロック231が沈降、堆積(凝集フロック231aの状態)するという課題もある。
However, the raw water flowing through the magnetic drum 224 has a large flow rate at the outlet position that reaches the shortest distance from the inlet position of the raw water supply path 221, for example, the central portion 224 a in the rotation axis direction of the magnetic drum 224 shown in FIG. There is a tendency for the both ends 224b to decrease, and there is a problem in that the amount of raw water treated is uneven due to the portion of the magnetic drum 224 in the direction of the rotation axis.
Further, since the magnetic powder contained in the coagulation floc 231 has a large specific gravity and a high settling speed, the coagulation floc 231 settles and accumulates in the raw water supply path 221 connecting the slow stirring tank and the magnetic separation device 210 (aggregation floc). 231a state).
 そこで、本発明は、前記課題を解決し、原水供給路から磁気ドラムに供給される原水に対し、回転軸方向の部位ごとの流量不均一を抑制し、また、原水供給路内で磁性粉が沈降、堆積することがない磁気分離装置、及び原水処理装置を提供することを目的とする。 Therefore, the present invention solves the above-mentioned problems, suppresses the uneven flow rate of each part in the direction of the rotation axis for the raw water supplied from the raw water supply path to the magnetic drum, and the magnetic powder is contained in the raw water supply path. It is an object of the present invention to provide a magnetic separation device and a raw water treatment device that do not settle and accumulate.
 上記課題を解決するため、本発明の一形態は、凝集した凝集フロックを含有する原水が供給される分離槽と、前記分離槽内に設けられ、回転して前記原水内の凝集フロックを磁力で吸着する磁気ドラムと、前記磁気ドラムの表面に吸着されている前記凝集フロックを掻き取るスクレーパと、前記分離槽に接続され、当該分離槽に前記原水を供給する原水供給路と、前記磁気ドラムの回転軸方向の部位ごとの前記原水の流量不均一を抑制する流量調整手段とを備えたことを特徴とする磁気分離装置である。
 本発明の別の一形態は、凝集した凝集フロックを含有する原水が供給される分離槽と、前記分離槽内に設けられ、回転して前記原水内の凝集フロックを磁力で吸着する磁気ドラムと、前記磁気ドラムの表面に吸着されている前記凝集フロックを掻き取るスクレーパと、前記分離槽に接続され、当該分離槽に前記原水を供給する原水供給路と、前記原水供給路内の前記磁気ドラムの回転軸方向の部位ごとの前記原水の流量不均一を抑制する流量調整手段とを備え、前記流量調整手段は、前記原水供給路の幅と前記分離槽の前記磁気ドラムの回転軸方向の幅とを同寸法にして前記流量不均一の抑制を図ることを特徴とする磁気分離装置である。
In order to solve the above-described problems, an embodiment of the present invention provides a separation tank to which raw water containing agglomerated flocs is supplied and a separation tank that is provided in the separation tank and rotates to rotate the aggregation flocs in the raw water with a magnetic force. An adsorbing magnetic drum, a scraper that scrapes off the flocs adhering to the surface of the magnetic drum, a raw water supply path connected to the separation tank and supplying the raw water to the separation tank, and a magnetic drum A magnetic separation device comprising: a flow rate adjusting unit that suppresses a non-uniform flow rate of the raw water for each site in the rotation axis direction.
Another embodiment of the present invention includes a separation tank to which raw water containing agglomerated flocs is supplied, and a magnetic drum that is provided in the separation tank and rotates to adsorb the flocs in the raw water by magnetic force. A scraper that scrapes off the aggregated floc adsorbed on the surface of the magnetic drum, a raw water supply path that is connected to the separation tank and supplies the raw water to the separation tank, and the magnetic drum in the raw water supply path The flow rate adjusting means suppresses the non-uniform flow rate of the raw water for each part in the direction of the rotation axis, and the flow rate adjustment means includes a width of the raw water supply path and a width of the separation tank in the rotation axis direction of the magnetic drum. Are the same dimensions to suppress the non-uniform flow rate.
 本発明によれば、磁気ドラムの回転軸方向の部位ごとの原水の処理量を均一化できる磁気分離装置、及び原水処理装置を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
ADVANTAGE OF THE INVENTION According to this invention, the magnetic separation apparatus and raw | natural water processing apparatus which can equalize the processing amount of the raw | natural water for every site | part of the rotating shaft direction of a magnetic drum can be provided.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
図1は、本発明の実施例1~3にかかる原水処理装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a raw water treatment apparatus according to Examples 1 to 3 of the present invention. 図2は、本発明の実施例1にかかる磁気分離装置の縦断面図である。FIG. 2 is a longitudinal sectional view of the magnetic separation device according to Embodiment 1 of the present invention. 図3は、本発明の実施例1にかかる磁気分離装置の堰の説明図であり、図3(a)~(c)は、それぞれ異なる例を示している。FIG. 3 is an explanatory view of the weir of the magnetic separation device according to Embodiment 1 of the present invention, and FIGS. 3A to 3C show different examples. 図4は、本発明の実施例2の説明図であって、図4(a)は、凝集装置、及び磁気分離装置の平面図、図4(b)は、同側面図である。4A and 4B are explanatory views of Embodiment 2 of the present invention, in which FIG. 4A is a plan view of the aggregating device and the magnetic separation device, and FIG. 4B is a side view thereof. 図5は、図4(b)のA-A断面図であり、図5(a)~(d)は、それぞれ異なる例を示している。FIG. 5 is a cross-sectional view taken along the line AA in FIG. 4B, and FIGS. 5A to 5D show different examples. 図6は、本発明の実施例3の説明図であって、図6(a)は、凝集装置、及び磁気分離装置の平面図、図6(b)は、同側面図である。6A and 6B are explanatory views of Embodiment 3 of the present invention. FIG. 6A is a plan view of the aggregating device and the magnetic separation device, and FIG. 6B is a side view thereof. 図7は、本発明の実施例3の変形例の説明図であって、図6(a)は、凝集装置、及び磁気分離装置の平面図、図6(b)は、同側面図である。FIG. 7 is an explanatory diagram of a modification of the third embodiment of the present invention. FIG. 6 (a) is a plan view of the aggregating device and the magnetic separation device, and FIG. 6 (b) is a side view thereof. . 図8は、本発明の実施例1の変形例についての説明図である。FIG. 8 is an explanatory diagram of a modification of the first embodiment of the present invention. 図9は、本発明の実施例1の変形例についての説明図である。FIG. 9 is an explanatory diagram of a modification of the first embodiment of the present invention. 図10は、本発明の実施例1の変形例についての説明図である。FIG. 10 is an explanatory diagram of a modification of the first embodiment of the present invention. 図11は、比較例となる磁気分離装置の説明図であって、図11(a)は、磁気分離装置の縦断面図、図11(b)は、図11(a)のE-E断面図である。11A and 11B are explanatory diagrams of a magnetic separation device as a comparative example. FIG. 11A is a longitudinal sectional view of the magnetic separation device, and FIG. 11B is a cross-sectional view taken along line EE in FIG. FIG.
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、実施例1にかかる原水処理装置100の概略構成を示す図である。この原水処理装置100は、原水の処理系統の上流側から下流側に向けて原水タンク110、急速攪拌槽120、緩速攪拌槽130、及び磁気分離装置10が配置されている。 FIG. 1 is a diagram illustrating a schematic configuration of a raw water treatment apparatus 100 according to the first embodiment. In the raw water treatment apparatus 100, a raw water tank 110, a rapid stirring tank 120, a slow stirring tank 130, and a magnetic separation device 10 are arranged from the upstream side to the downstream side of the raw water treatment system.
 処理対象となる原水(浮遊固形物、油、重金属などを含有する原水)は、まず、原水タンク110から、原水ポンプ140により急速攪拌槽120に送水される。次に、急速攪拌槽120では、無機凝集剤注入ポンプ(図示せず)によって無機凝集剤槽121から、無機の凝集剤、例えばPAC(ポリ塩化アルミニウム)、硫酸第二鉄、塩化第二鉄、硫酸アルミニウム等が添加される。また、磁性粉注入ポンプ(図示せず)により磁性粉槽122からマグネタイト等の磁性粉が原水に添加され、急速に攪拌が行われる。ここで、急速の攪拌によって浮遊物質や油粒子及び磁性粉の衝突頻度が高まる中で凝集剤の効果によってマイクロフロックと呼ばれる多数の小さな塊が形成される。そして、前記マイクロフロックを含む原水は、急速攪拌槽120を出た後、緩速攪拌槽130に流入する。ここで、高分子ポリマー(高分子凝集剤)を、ポンプ(図示せず)により、高分子ポリマータンク131から緩速攪拌槽130に注入し、緩速攪拌槽130内で低速で攪拌して凝集フロックを成長させる。この場合の高分子ポリマーはアニオン系が望ましく、例えばポリアクリルアミドが適している。ポリアクリルアミドの場合は粉末で保管しておき、水で溶解した後に、水溶液をポンプ(図示せず)で高分子ポリマータンク131から注入して攪拌する構造が考えられる。また、上記例は、無機凝集剤とアニオン系高分子ポリマーを使用する例を示したが、無機凝集剤を使用せずにカチオン系の高分子ポリマーのみを使用する場合でも以下の効果は同様となる。このように、急速攪拌槽120及び緩速攪拌槽130などは、凝集剤及び磁性粉を添加して撹拌することにより原水中に凝集フロックを生成する凝集装置150を構成する。上記のように形成された凝集フロックは、緩速攪拌槽130から磁気分離装置10に送水され、ここで原水は凝集フロックと処理水とに分離される。以上が原水処理装置100による原水処理の流れである。 Raw water (raw water containing suspended solids, oil, heavy metal, etc.) to be treated is first fed from the raw water tank 110 to the rapid stirring tank 120 by the raw water pump 140. Next, in the rapid agitation tank 120, an inorganic flocculant tank 121, such as PAC (polyaluminum chloride), ferric sulfate, ferric chloride, Aluminum sulfate or the like is added. Further, magnetic powder such as magnetite is added to the raw water from the magnetic powder tank 122 by a magnetic powder injection pump (not shown), and stirring is performed rapidly. Here, many small lumps called micro flocs are formed by the effect of the flocculant while the collision frequency of suspended solids, oil particles and magnetic powder is increased by rapid stirring. The raw water containing the micro floc exits the rapid stirring tank 120 and then flows into the slow stirring tank 130. Here, the polymer (polymer flocculant) is injected from the polymer polymer tank 131 into the slow stirring tank 130 by a pump (not shown), and stirred at a low speed in the slow stirring tank 130 for aggregation. Growing frock. In this case, the high molecular polymer is preferably anionic, and for example, polyacrylamide is suitable. In the case of polyacrylamide, it may be stored in powder form, dissolved in water, and then poured into a polymer polymer tank 131 with a pump (not shown) and stirred. Moreover, although the above example showed an example using an inorganic flocculant and an anionic polymer, the following effects are the same even when using only a cationic polymer without using an inorganic flocculant. Become. Thus, the rapid stirring tank 120, the slow stirring tank 130, and the like constitute a flocculating device 150 that generates flocculated flocs in the raw water by adding and stirring the flocculant and magnetic powder. The agglomerated floc formed as described above is fed from the slow stirring tank 130 to the magnetic separation device 10, where the raw water is separated into the agglomerated floc and treated water. The above is the flow of raw water treatment by the raw water treatment apparatus 100.
 次に、磁気分離装置10について説明する。図2は、磁気分離装置10の縦断面図である。磁気分離装置10は、短手方向(図2の左右方向)の縦断面形状が半円弧状であって、凝集装置150から原水供給路21を介して原水が供給される分離槽22と、回転軸方向(図2の紙面に垂直方向)を水平方向として下側約半分が分離槽22内の原水に水没するように設置されていて、図示しないモータの駆動により回転する円筒状又は円柱状の磁気ドラム24とを備えている。磁気ドラム24は、その内周面にそって多数の磁石が設けられている。 Next, the magnetic separation device 10 will be described. FIG. 2 is a longitudinal sectional view of the magnetic separation device 10. The magnetic separation device 10 has a longitudinal cross-sectional shape in the short side direction (left-right direction in FIG. 2) that is a semicircular arc, and a separation tank 22 that is supplied with raw water from the coagulation device 150 via the raw water supply path 21 and rotates. A cylindrical or columnar shape that is installed so that about half of the lower side is submerged in the raw water in the separation tank 22 with the axial direction (perpendicular to the paper surface of FIG. 2) as a horizontal direction, and is rotated by driving a motor (not shown). And a magnetic drum 24. The magnetic drum 24 is provided with a large number of magnets along its inner peripheral surface.
 原水供給路21からは分離槽22内に凝集フロック31を含む原水が供給され、磁気ドラム24は当該分離槽22内の原水に下側約半分が浸かった状態で回転する。この際、磁気ドラム24の磁石の磁力により、磁気ドラム24の表面には原水中の凝集フロック31が吸着する。そして、磁気ドラム24の回転とともに磁気ドラム24の表面に吸着した凝集フロック31は、分離槽22内の原水の水面上に露出する。磁気ドラム24の上側の原水に浸からない位置の表面には、当該磁気ドラム24上の凝集フロック31を掻き取るスクレーパ25が接触している。この凝集フロック31は、スクレーパ25で掻き取られ、凝集フロック排出部26により排出される。このように原水から凝集フロック31が除去された後の水である処理水は、処理水排出路27から排出される(図2参照)。 The raw water containing the coagulated floc 31 is supplied from the raw water supply path 21 into the separation tank 22, and the magnetic drum 24 rotates in a state where the lower half is immersed in the raw water in the separation tank 22. At this time, the aggregated floc 31 in the raw water is attracted to the surface of the magnetic drum 24 by the magnetic force of the magnet of the magnetic drum 24. The aggregation floc 31 adsorbed on the surface of the magnetic drum 24 as the magnetic drum 24 rotates is exposed on the surface of the raw water in the separation tank 22. A scraper 25 that scrapes the aggregated floc 31 on the magnetic drum 24 is in contact with the surface of the magnetic drum 24 that is not immersed in the raw water. The aggregated floc 31 is scraped off by the scraper 25 and is discharged by the aggregated floc discharge unit 26. Thus, the treated water, which is the water after the aggregated floc 31 is removed from the raw water, is discharged from the treated water discharge path 27 (see FIG. 2).
 ところで、原水は原水供給路21から磁気ドラム24に供給されるが、処理性能を均一化する観点から、磁気ドラム24の回転軸方向の各部位で原水の流量をなるべく均等にするのが望ましい。流量が不均一になった場合、流量が少ない部位では原水が分離槽22をゆっくり通過するため凝集フロックの分離性能が高くなるが、流量が多い部分では原水が分離槽22を早く通過してしまい、分離性能が低下する。この結果全体として分離性能が安定しない結果となる。すなわち、図11の比較例では、原水供給路221の原水の流れの中央部(磁気ドラム224の回転軸方向の中央部224a)は比較的流速が速いが、両端部側224bの原水の流速は遅い。そのため、磁気ドラム224の回転軸方向の中央部224a側に向かっては、大量の原水が流入して磁気ドラム224の当該中央部224aでの処理量が多くなり、磁気ドラム224の回転軸方向の両端部224b側に向かっては、少量の原水しか流入せずに当該両端部224bでの磁気ドラム224の処理量が少なくなる。そこで、磁気ドラム224の回転軸方向の各部位において、原水の処理量が極力均等になるようにするために、本実施例では以下のような工夫を行っている。 By the way, the raw water is supplied from the raw water supply path 21 to the magnetic drum 24. From the viewpoint of uniforming the processing performance, it is desirable to make the flow rate of the raw water as uniform as possible in each part of the magnetic drum 24 in the rotation axis direction. When the flow rate becomes uneven, the raw water slowly passes through the separation tank 22 at the part where the flow rate is low, so that the separation performance of the coagulation floc is improved. However, the raw water passes through the separation tank 22 quickly at the part where the flow rate is high. , The separation performance decreases. As a result, the separation performance becomes unstable as a whole. That is, in the comparative example of FIG. 11, the flow rate of the raw water in the raw water supply path 221 (the central portion 224a in the rotation axis direction of the magnetic drum 224) is relatively high, but the flow rate of the raw water on both ends 224b is slow. Therefore, a large amount of raw water flows toward the central portion 224a side of the magnetic drum 224 in the rotational axis direction, and the amount of treatment in the central portion 224a of the magnetic drum 224 increases, so that the rotational direction of the magnetic drum 224 in the rotational axis direction is increased. Only a small amount of raw water flows into the both end portions 224b, and the amount of processing of the magnetic drum 224 at the both end portions 224b decreases. Therefore, in the present embodiment, the following measures are taken in order to make the amount of raw water treated as uniform as possible in each part of the magnetic drum 224 in the rotation axis direction.
 すなわち、図2の例で、原水供給路21では、下側から上側に原水が流れ、原水供給路21と分離槽22との間の越流部28を越えて、原水が分離槽22に流入する。この越流部28には、流量調整手段として単数又は複数の堰41が設けられている。
 図3は、堰41を図2のA-A方向から見た図である。図3(a)の堰41は、原水供給路21の分離槽22側で磁気ドラム24の回転軸方向(図2の紙面に垂直方向、図3の左右方向)に複数個並べて設けられている。そして、各堰41は、取付け高さを調節することにより上端位置を上下方向に調節可能である。
 各堰41は、当該複数個の堰41の上端位置の高さの違いにより、当該各堰41を越えて分離槽22に流れ込む原水の流量を調整する。これにより、原水供給路21から分離槽22に流入する原水の流量が磁気ドラム24の回転軸方向の部位ごとに不均一になることを抑制する。
That is, in the example of FIG. 2, in the raw water supply path 21, raw water flows from the lower side to the upper side, and the raw water flows into the separation tank 22 through the overflow section 28 between the raw water supply path 21 and the separation tank 22. To do. The overflow section 28 is provided with one or a plurality of weirs 41 as flow rate adjusting means.
FIG. 3 is a view of the weir 41 seen from the AA direction of FIG. A plurality of weirs 41 in FIG. 3A are arranged side by side in the direction of the rotation axis of the magnetic drum 24 (perpendicular to the plane of FIG. 2, left and right in FIG. 3) on the separation tank 22 side of the raw water supply path 21. . And each weir 41 can adjust an upper end position to an up-down direction by adjusting attachment height.
Each weir 41 adjusts the flow rate of raw water flowing into the separation tank 22 beyond the respective weirs 41 depending on the height difference of the upper end positions of the plurality of weirs 41. Thereby, it is suppressed that the flow rate of the raw water flowing into the separation tank 22 from the raw water supply path 21 becomes uneven for each part of the magnetic drum 24 in the rotation axis direction.
 図3(a)の例では、原水供給路21の壁23a,23b側に近い側の原水の流量が少なく、中央部の原水の流量が多い場合の流量調整手段の構成例を示したもので、図3(a)のように当該中央部の堰41の高さを左右の壁23a,23b側の堰41の高さより高くしている。これにより、当該中央部からは原水が分離槽22側に流入し難くなり、左右の壁23a,23b側に近い側からは原水が分離槽22側に流入し易くなる。これにより、分離槽22内における磁気ドラム24の回転軸方向の部位ごとの原水の流量差が大きくならないように抑制することが可能となる。そのため、磁気ドラム24の回転軸方向の全体に亘って原水の処理量を均一に近くすることができる。 In the example of FIG. 3A, a configuration example of the flow rate adjusting means when the flow rate of the raw water on the side close to the walls 23 a and 23 b of the raw water supply path 21 is small and the flow rate of the raw water in the central part is large is shown. As shown in FIG. 3A, the height of the weir 41 at the center is higher than the height of the weir 41 on the left and right walls 23a, 23b. Thereby, it becomes difficult for raw water to flow into the separation tank 22 side from the said center part, and raw water becomes easy to flow into the separation tank 22 side from the side close | similar to the left and right walls 23a and 23b side. Thereby, it becomes possible to suppress the flow rate difference of the raw water for each part in the rotation axis direction of the magnetic drum 24 in the separation tank 22 from becoming large. Therefore, the amount of raw water treated can be made nearly uniform over the entire rotation axis direction of the magnetic drum 24.
 図3(b)の堰41は、図3(a)の例における壁23a,23b側の堰41を無くし、中央の3枚のみを設置した例である。原水の流量が多くなる中央部のみに堰41を設置することで中央部の流量を抑制し、磁気ドラム24の回転軸方向で流量が均等化するようにしたもので、この例では堰41の数量を削減できる効果がある。 The weir 41 in FIG. 3B is an example in which the weir 41 on the side of the walls 23a and 23b in the example of FIG. By installing the weir 41 only in the central part where the flow rate of the raw water increases, the flow rate in the central part is suppressed, and the flow rate is made uniform in the direction of the rotation axis of the magnetic drum 24. There is an effect that the quantity can be reduced.
 また、図3(c)の堰41は、壁23a,23b近傍から中央部までの各部位において、原水の流量を均等化するために必要な堰41の高さを予め実験やシミュレーションで算定し、部位ごとに当該算定した高さとなるように作成した単数の堰41を設置した例である。この例は、原水の処理量、すなわち分離槽22への原水の流量が変動しない場合に好適である。
 このように図3(a)~(c)の堰41を設置することで、磁気ドラム24の回転軸方向の部位ごとの原水の流量差が±20%以内となり、磁気分離装置10の処理性能を満足することができた。
In addition, the weir 41 in FIG. 3C calculates the height of the weir 41 necessary for equalizing the flow rate of the raw water in each part from the vicinity of the walls 23a and 23b to the central portion through experiments and simulations. This is an example in which a single weir 41 created so as to have the calculated height for each part is installed. This example is suitable when the processing amount of the raw water, that is, the flow rate of the raw water to the separation tank 22 does not fluctuate.
By installing the weir 41 in FIGS. 3A to 3C in this way, the flow rate difference of the raw water for each part of the magnetic drum 24 in the rotation axis direction is within ± 20%, and the processing performance of the magnetic separation device 10 Could be satisfied.
 本実施例の原水処理装置100の基本構成や基本動作は、図1を参照して前記した実施例1のものと共通であり、説明を省略する。また、本実施例の磁気分離装置200の基本構成は実施例1の磁気分離装置10と同様であり、以下では異なる点を中心に説明し、共通点については同一符号を図面に付して詳細な説明は省略する。 The basic configuration and basic operation of the raw water treatment apparatus 100 of this embodiment are the same as those of the first embodiment described above with reference to FIG. Further, the basic configuration of the magnetic separation apparatus 200 of the present embodiment is the same as that of the magnetic separation apparatus 10 of the first embodiment. Hereinafter, different points will be mainly described, and the same reference numerals are attached to the drawings for common points in detail. The detailed explanation is omitted.
 図4(a)は、凝集装置150、及び磁気分離装置200の平面図、図4(b)は、同側面図である。この磁気分離装置200では、原水からの凝集フロックの分離性能を高めるため、磁気ドラム24の回転軸方向の長さを長くしている。そのため、図4(a)に明らかなように、凝集装置150と接続される側の原水供給路21の寸法に比べ、磁気分離装置200と接続される側の原水供給路21の寸法は数倍大きくなっている。これに伴い、原水供給路21の途中の部位21aにおいては、分離槽22に近づくにつれて磁気ドラム24の回転軸方向に対応して漸次幅が拡大するように構成されている。
 ここで、図11の比較例では、原水供給路221の途中の部位221aにおいては、分離槽222に向かって末広がりに構成されているため、原水供給路221の流速は、流れの中央部(磁気ドラム224の長手方向中央部224a)においては速く、両端部224b側ほど遅くなり、両端部224b側で渦流が形成されると推測される。
4A is a plan view of the aggregating device 150 and the magnetic separation device 200, and FIG. 4B is a side view of the same. In this magnetic separation device 200, the length of the magnetic drum 24 in the direction of the rotation axis is increased in order to improve the separation performance of the aggregated floc from the raw water. Therefore, as apparent from FIG. 4A, the dimensions of the raw water supply path 21 on the side connected to the magnetic separation apparatus 200 are several times larger than the dimensions of the raw water supply path 21 on the side connected to the coagulation apparatus 150. It is getting bigger. Accordingly, the portion 21 a in the middle of the raw water supply path 21 is configured so that the width gradually increases in correspondence with the rotation axis direction of the magnetic drum 24 as it approaches the separation tank 22.
Here, in the comparative example of FIG. 11, since the part 221a in the middle of the raw water supply path 221 is configured to expand toward the separation tank 222, the flow rate of the raw water supply path 221 is the center of the flow (magnetic It is presumed that the longitudinal center portion 224a) of the drum 224 is fast and slows toward both ends 224b, and a vortex is formed at both ends 224b.
 図5は、図4(b)のA-A断面図であり、図5(a)~(d)は、流速調整手段を備えた原水供給路のそれぞれ異なる例を示している。図5(a)~(d)にそれぞれ示すように、原水供給路21は、原水入口である入口21eから原水出口である部位21fまでの間で、分離槽22に近づくにつれて磁気ドラム24の回転軸方向の幅を拡大するための部位21c及び部位21dを有している。そして、部位21c及び部位21dは、原水供給路21内で原水供給路21の入口21eから部位21aの終端21fまで続くルートでは、当該原水供給路21の入口21eから当該部位21aの終端まで、平板で構成されている。 FIG. 5 is a cross-sectional view taken along the line AA in FIG. 4 (b), and FIGS. 5 (a) to 5 (d) show different examples of the raw water supply path provided with the flow rate adjusting means. As shown in FIGS. 5A to 5D, the raw water supply passage 21 rotates between the raw water inlet 21e and the portion 21f which is the raw water outlet as the magnetic drum 24 rotates as it approaches the separation tank 22. It has the site | part 21c and the site | part 21d for enlarging the width | variety of an axial direction. And in the route | root which continues from the inlet 21e of the raw | natural water supply path 21 to the terminal end 21f of the part 21a in the raw | natural water supply path 21, the part 21c and the part 21d are flat plates from the inlet 21e of the said raw | natural water supply path 21 to the terminal end of the said part 21a. It consists of
 このように、磁気ドラム24の回転軸方向に対応して漸次幅が拡大している部位21aがあっても、左右の壁21c,21dを平板で構成することで、磁気ドラム24の回転軸方向の左右の壁21c,21dの近傍でも、原水の流れがある程度スムーズになる。すなわち、左右の壁21c又は21dの近傍で、原水の流れが大きく滞ってしまうことがない。 Thus, even if there is a portion 21a whose width gradually increases corresponding to the direction of the rotation axis of the magnetic drum 24, the left and right walls 21c and 21d are formed of flat plates, so that the direction of the rotation axis of the magnetic drum 24 is increased. Even in the vicinity of the left and right walls 21c and 21d, the flow of raw water becomes smooth to some extent. That is, the flow of raw water does not greatly stagnate in the vicinity of the left and right walls 21c or 21d.
 また、本実施例の図5(a)(b‐1)(b‐2)(d)の例では、原水供給路21内に部位21eから部位21まで続くルートの全て又は一部に、磁気ドラム24の回転軸方向の幅を仕切る仕切部材61を設けている。この仕切部材61は、(a)(d)においては、原水供給路21内を磁気ドラム24の回転軸方向に複数の区画21bに仕切るものである。
 本実施例の流速調整手段は、図5(a)(b‐1)(b‐2)(d)に示す部位21c及び部位21d並びに仕切部材61で構成される。
 図5(a)の例では、3枚の仕切部材61により、原水供給路21内を磁気ドラム24の回転軸方向の幅を均等に4つの区画21bに仕切っている。各仕切部材61は、原水供給路21の凝集装置150側の入口21eから部位21aの幅の拡大が終了する終端21fの位置まで形成されている。
Further, in the example of FIGS. 5A, 5B, 1B, and 2D of this embodiment, all or part of the route from the site 21e to the site 21 in the raw water supply channel 21 is magnetically connected. A partition member 61 that partitions the width of the drum 24 in the rotation axis direction is provided. In (a) and (d), the partition member 61 partitions the inside of the raw water supply path 21 into a plurality of sections 21 b in the direction of the rotation axis of the magnetic drum 24.
The flow rate adjusting means of the present embodiment is composed of a portion 21c, a portion 21d and a partition member 61 shown in FIGS. 5 (a), (b-1), (b-2) and (d).
In the example of FIG. 5A, the raw water supply path 21 is equally divided into four sections 21b by the three partition members 61 in the rotation axis direction of the magnetic drum 24. Each partition member 61 is formed from the inlet 21e on the flocculating device 150 side of the raw water supply path 21 to the position of the terminal end 21f where the width of the portion 21a ends.
 図5(b‐1)の例では、各仕切部材61が原水供給路21における凝集装置150側の入口21e側には形成されておらず、部位21aの幅の拡大が終了する終端21fの位置の近傍にのみ形成されている例である。仕切部材61を設置した原水供給路21内では、仕切部材61で磁気ドラム24の回転軸方向の幅が均等に仕切られている。図5(b‐2)の例では、各仕切部材61が原水供給路21における凝集装置150側の入口21e側のみに形成された例である。仕切部材61により幅が均等に仕切られている構成は図5(b-1)と同様である。図5(c)は、仕切部材61が原水供給路21に全く形成されていない例である。図5(d)は、原水入口である入口21eと原水出口である部位21fの中心位置が偏芯している例である。この構成では、部位21cが鉛直に配設され、部位21dが分離槽22に近づくにつれて磁気ドラム24の回転軸方向の幅を拡大すべく傾斜している。そして、2枚の仕切部材61により、原水供給路21内を3つの区画21bに仕切っている。図5(a)~(d)の各例においては、原水の流れを破線で示している。 In the example of FIG. 5 (b-1), each partition member 61 is not formed on the inlet 21e side of the raw water supply path 21 on the side of the aggregating device 150, and the position of the terminal end 21f where the width of the region 21a ends is increased. It is an example formed only in the vicinity. In the raw water supply path 21 in which the partition member 61 is installed, the partition member 61 equally partitions the width of the magnetic drum 24 in the rotation axis direction. In the example of FIG. 5B-2, each partition member 61 is formed only on the inlet 21 e side on the coagulation device 150 side in the raw water supply path 21. The configuration in which the width is equally divided by the partition member 61 is the same as that in FIG. FIG. 5C is an example in which the partition member 61 is not formed in the raw water supply path 21 at all. FIG. 5D is an example in which the center positions of the inlet 21e that is the raw water inlet and the portion 21f that is the raw water outlet are eccentric. In this configuration, the part 21c is arranged vertically, and the part 21d is inclined to increase the width of the magnetic drum 24 in the rotation axis direction as it approaches the separation tank 22. The raw water supply path 21 is partitioned into three sections 21b by the two partition members 61. In each example of FIGS. 5A to 5D, the flow of raw water is indicated by a broken line.
 図5(a)の例では、各仕切部材61は、原水供給路21の凝集装置150側の入口21eから部位21aの幅の拡大が終了する終端21fの位置まで連続的に形成されている。このようにすることで、部位21eから流入した原水は、部位21cと仕切部材61との間、仕切部材61と仕切部材61との間、仕切部材61と部位21dとの間に4分割され、且つ幅の拡大に伴って流速がスムーズに減速されて部位21fから流出される。これによって原水供給路内の原水の流れは極めてスムーズになる。 In the example of FIG. 5A, each partition member 61 is continuously formed from the inlet 21e of the raw water supply path 21 on the side of the aggregating device 150 to the position of the end 21f where the width of the region 21a ends. By doing in this way, raw | natural water which flowed in from the site | part 21e is divided into 4 between the site | part 21c and the partition member 61, between the partition member 61 and the partition member 61, and between the partition member 61 and the site | part 21d, In addition, the flow velocity is smoothly decelerated as the width increases, and flows out from the portion 21f. As a result, the flow of raw water in the raw water supply path becomes extremely smooth.
 図5(b‐1)の各仕切部材61が部位21aの幅の拡大が終了する終端21fの位置の近傍にのみ形成されている例では、部位21eから流入した原水は、部位21cと仕切部材61との間、仕切部材61と仕切部材61との間、仕切部材61と部位21dとの間にほぼ4分割され、且つ幅の拡大に伴って流速がスムーズに減速されて部位21fから流出される。これによって、図5(a)の例ほどではないが、原水供給路内の原水の流れはスムーズになる。
 図5(b‐2)の各仕切部材61が入口21eの位置の近傍にのみ形成されている例では、部位21eから流入した原水は、部位21cと仕切部材61との間、仕切部材61と仕切部材61との間、仕切部材61と部位21dとの間に4分割され、且つ幅の拡大に伴って流速がスムーズに減速されて部位21fから流出される。これによって、図5(a)の例ほどではないが、原水供給路内の原水の流れはスムーズになる。
In the example in which each partition member 61 in FIG. 5 (b-1) is formed only in the vicinity of the position of the terminal end 21f where the expansion of the width of the part 21a ends, the raw water flowing from the part 21e is separated from the part 21c and the partition member. 61, between the partition member 61 and the partition member 61, and between the partition member 61 and the portion 21d, and the flow velocity is smoothly decelerated as the width increases and flows out of the portion 21f. The Thereby, although not as much as the example of Fig.5 (a), the flow of the raw | natural water in a raw | natural water supply path becomes smooth.
In the example in which each partition member 61 in FIG. 5B-2 is formed only in the vicinity of the position of the inlet 21e, the raw water flowing from the portion 21e is separated between the portion 21c and the partition member 61, It is divided into four parts between the partition member 61 and between the partition member 61 and the part 21d, and the flow velocity is smoothly decelerated as the width increases and flows out from the part 21f. Thereby, although not as much as the example of Fig.5 (a), the flow of the raw | natural water in a raw | natural water supply path becomes smooth.
 図5(c)の仕切部材61が全く設けられていない例では、原水供給路21内における原水の流速は、左右の壁21cと壁21dとの間で形成される幅寸法の拡大に伴って減速され、図5(a)(b‐1)(b‐2)の例ほどではないが、原水供給路内の原水の流れはスムーズである。
 また、図5(d)の部位21aと終端21fの位置が壁21c側と壁21dとでずれている例でも、原水供給路21内における原水の流速は、左右の壁21cと壁21d及び仕切部材61との間で形成される幅寸法の拡大に伴って流速が減速され、入口21eから終端21fの位置までスムーズな流れが形成されている。
In the example in which the partition member 61 of FIG. 5C is not provided at all, the flow rate of the raw water in the raw water supply path 21 is increased with an increase in the width dimension formed between the left and right walls 21c and 21d. Although the speed is reduced, the flow of raw water in the raw water supply path is smooth, although not as much as in the examples of FIGS. 5 (a), (b-1), and (b-2).
5D, the flow rate of the raw water in the raw water supply path 21 is equal to that of the left and right walls 21c, 21d, and the partition, even in the example where the positions of the part 21a and the terminal end 21f are shifted between the wall 21c side and the wall 21d. As the width formed between the members 61 is increased, the flow velocity is reduced, and a smooth flow is formed from the inlet 21e to the end 21f.
 ところで、凝集フロック31中に含まれる磁性粉は比重が大きく沈降速度が速いため、緩速攪拌槽130と磁気分離装置10とを接続する原水供給路21内で凝集フロック31が沈降、堆積しないような原水の流速を維持することが必要である。
 この点で、前記の図5(a)~(d)にそれぞれ示すように、原水供給路21内は、分離槽22に近づくにつれて磁気ドラム24の回転軸方向に対応して漸次幅が拡大している部位21aを有している。
By the way, since the magnetic powder contained in the flocs floc 31 has a large specific gravity and a fast sedimentation speed, the flocs 31 do not settle and accumulate in the raw water supply path 21 connecting the slow stirring tank 130 and the magnetic separation device 10. It is necessary to maintain the raw water flow rate.
In this regard, as shown in FIGS. 5A to 5D, the width of the raw water supply passage 21 gradually increases in correspondence with the rotation axis direction of the magnetic drum 24 as it approaches the separation tank 22. It has a portion 21a.
 このように、分離槽22に近づくにつれて原水供給路21内が拡大するため、原水供給路21内の入口21eから流入した原水は、部位21aの幅の拡大が終了する終端21fの位置まで分離槽22に近づくにつれて漸次緩やかに流速が低下する。例えば凝集フロックの沈降速度が0.01m/s程度であった場合、原水供給路21内において原水の流速が最も遅くなる終端21fにおいて流速を凝集フロックの沈降速度を超える流速にすれば凝集フロックの沈降を回避することができる。実施例では、終端21fの流速を0.02m/s以上に設定することで、凝集フロックが原水供給路21内で沈降、堆積しないような流速に維持することができた。なお、部位21aは通常は終端21fと比べて開口面積が小さいため、部位21aの流速は0.02m/sと比べて大きくなるが、部位21aの開口寸法のうち磁気ドラム24の回転軸方向と直交する方向を大きくすることで、部位21aの流速を0.03m/s~0.1m/s程度に小さくすることもできる。この場合は、原水供給路21内で流速低下を更に穏やかにすることができる。
 すなわち、平板で構成される左右の壁21c,21dによって、分離槽22に近づくにつれて磁気ドラム24の回転軸方向に対応して漸次幅が拡大していることで、流速調整手段を実現している。この流速調整手段により、原水供給路21内において、入口21eから流入した原水は、部位21aの幅の拡大が終了する終端21fの位置まで分離槽22に近づくにつれて漸次緩やかに流速が低下する。
Thus, since the inside of the raw water supply path 21 expands as it approaches the separation tank 22, the raw water that has flowed from the inlet 21e in the raw water supply path 21 reaches the position of the terminal 21f where the expansion of the width of the portion 21a ends. As the value approaches 22, the flow velocity gradually decreases. For example, when the settling speed of the aggregated floc is about 0.01 m / s, if the flow rate is set to a flow rate exceeding the settling speed of the aggregated floc at the terminal end 21f where the flow rate of the raw water is the slowest in the raw water supply passage 21, Sedimentation can be avoided. In the example, by setting the flow rate of the terminal end 21f to 0.02 m / s or more, it was possible to maintain the flow rate so that the flocs did not settle and accumulate in the raw water supply channel 21. Since the part 21a usually has a smaller opening area than the terminal end 21f, the flow velocity of the part 21a is larger than 0.02 m / s. However, among the opening dimensions of the part 21a, the rotational axis direction of the magnetic drum 24 is the same. By increasing the orthogonal direction, the flow velocity of the part 21a can be reduced to about 0.03 m / s to 0.1 m / s. In this case, the flow velocity decrease can be further moderated in the raw water supply path 21.
That is, the flow velocity adjusting means is realized by the left and right walls 21c and 21d formed by flat plates gradually increasing in width corresponding to the rotation axis direction of the magnetic drum 24 as approaching the separation tank 22. . By this flow rate adjusting means, the raw water flowing in from the inlet 21e in the raw water supply path 21 gradually decreases in flow rate as it approaches the separation tank 22 to the position of the terminal end 21f where the expansion of the width of the portion 21a ends.
 本実施例によれば、前記のような流速調整手段を備えた原水供給路21を設けたため、左右の壁21c,21dの近傍を含めて原水供給路21内の原水の流れをスムーズに減速できる。これによって、原水供給路21内における原水の流速は凝集フロックの沈降速度以上の流速が維持されるため、凝集フロックの沈降、堆積を防止できる。更に、原水供給路21の終端21fから分離槽22に流れ込む原水は、原水供給路21内でスムーズに減速されているため、磁気ドラム24の回転軸方向の位置ごとの原水の流量差は従来と比べ大幅に小さくすることができる。本実施例の流速調整手段を備えた原水供給路21を設けることにより、分離槽22内に流入する部位ごとの流量の変動幅を±20%以内にすることができ、磁気ドラム24の全体に亘って原水の処理量を比較的均一に近くすることができた。そして、磁気ドラム24を長尺化して原水の処理量を増大させても、磁気ドラム24の部位によって原水の処理量に大きな差が生じることがなくなり、磁気分離装置10の処理性能を満足することができた。 According to the present embodiment, since the raw water supply path 21 provided with the flow velocity adjusting means as described above is provided, the flow of the raw water in the raw water supply path 21 including the vicinity of the left and right walls 21c and 21d can be smoothly decelerated. . As a result, the flow rate of the raw water in the raw water supply channel 21 is maintained at a flow rate equal to or higher than the settling speed of the coagulated flocs, so that settling and accumulation of the coagulated flocs can be prevented. Further, since the raw water flowing into the separation tank 22 from the terminal end 21f of the raw water supply path 21 is smoothly decelerated in the raw water supply path 21, the flow rate difference of the raw water at each position in the rotation axis direction of the magnetic drum 24 is different from the conventional water. It can be made much smaller. By providing the raw water supply path 21 having the flow rate adjusting means of the present embodiment, the fluctuation range of the flow rate for each part flowing into the separation tank 22 can be made within ± 20%, and the entire magnetic drum 24 can be provided. The amount of raw water treated can be made relatively uniform. Even if the length of the magnetic drum 24 is increased to increase the throughput of raw water, there is no significant difference in the throughput of raw water depending on the portion of the magnetic drum 24, and the processing performance of the magnetic separation device 10 is satisfied. I was able to.
 また、本実施例によれば、前記のような流速調整手段を備えた原水供給路21を設けたため、原水供給路21内で凝集フロック31が沈降、堆積しないような原水の流速を維持することができる。
 前記のように、本実施例では原水供給路21内の構成によって分離槽22に流入する原水の流量不均一を抑制したが、実施例1で用いた堰41を併用してもよく、併用した場合、流量の変動幅を更に小さくすることができる。
Moreover, according to the present embodiment, since the raw water supply path 21 provided with the flow rate adjusting means as described above is provided, the flow rate of the raw water is maintained so that the aggregated floc 31 does not settle and accumulate in the raw water supply path 21. Can do.
As described above, in the present embodiment, the flow rate of the raw water flowing into the separation tank 22 is suppressed by the configuration in the raw water supply path 21, but the weir 41 used in the first embodiment may be used together, or used in combination. In this case, the fluctuation range of the flow rate can be further reduced.
 本実施例の原水処理装置100の基本構成や基本動作は、図1を参照して前記した実施例1のものと共通であり、説明を省略する。また、本実施例の磁気分離装置300の基本構成は実施例1の磁気分離装置10と同様であり、以下では異なる点を中心に説明し、共通点については同一符号を図面に付して詳細な説明は省略する。 The basic configuration and basic operation of the raw water treatment apparatus 100 of this embodiment are the same as those of the first embodiment described above with reference to FIG. Further, the basic configuration of the magnetic separation device 300 of the present embodiment is the same as that of the magnetic separation device 10 of the first embodiment. Hereinafter, different points will be mainly described, and the common points are denoted by the same reference numerals in detail. The detailed explanation is omitted.
 図6(a)は、凝集装置150、及び磁気分離装置300の平面図、図6(b)は、同側面図である。この磁気分離装置300では、緩速攪拌槽130の横幅(図6(a)の上下方向の幅)と、磁気ドラム24の回転軸方向の幅とが略同等な例である。この場合、原水供給路21の部位21aと終端21fと横幅は同じ大きさになり、図6(a)に示すように、部位21aと終端21fの位置を合わせて設置される。この実施例では図5に示す原水供給路21がなくてもよく、原水供給路21の横幅(図6(a)の上下方向の幅)は、その原水の流れる方向のどの位置でも略同等となっていて、流量不均一抑制部を構成する。
 そのため、磁気ドラム24の全体に亘って原水の処理量を比較的均一に近くすることができ、磁気ドラム24の部位によって原水の処理量に差が生じることがなくなる。
FIG. 6A is a plan view of the aggregation device 150 and the magnetic separation device 300, and FIG. 6B is a side view thereof. In this magnetic separation device 300, the lateral width of the slow stirring tank 130 (the vertical width in FIG. 6A) and the width in the rotation axis direction of the magnetic drum 24 are substantially equivalent examples. In this case, the width of the portion 21a and the end 21f of the raw water supply channel 21 are the same, and as shown in FIG. In this embodiment, the raw water supply path 21 shown in FIG. 5 may not be provided, and the width of the raw water supply path 21 (the vertical width in FIG. 6A) is substantially the same in any position in the direction in which the raw water flows. It constitutes a flow rate non-uniformity suppressing part.
Therefore, the treatment amount of the raw water can be made relatively uniform over the entire magnetic drum 24, and there is no difference in the treatment amount of the raw water depending on the portion of the magnetic drum 24.
 図7は、実施例3の変形例を示している。図7(a)は、凝集装置150、及び磁気分離装置300の平面図、図7(b)は、同側面図である。この変形例が図6の例と異なるのは、原水供給路21を備えておらず凝集装置150と磁気分離装置300とが直接的に接続されていること、及び、図6の凝集装置150が密閉型構造であるのに対して、図7の方はオープン型構造であることである。 FIG. 7 shows a modification of the third embodiment. FIG. 7A is a plan view of the aggregation device 150 and the magnetic separation device 300, and FIG. 7B is a side view thereof. This modification is different from the example of FIG. 6 in that the raw water supply path 21 is not provided and the aggregating device 150 and the magnetic separation device 300 are directly connected, and the aggregating device 150 in FIG. In contrast to the sealed structure, FIG. 7 shows an open structure.
 この例でも、緩速攪拌槽130の横幅(図7(a)の上下方向の幅)と、分離槽22の磁気ドラム24の回転軸方向の幅とが同寸法である。そのため、前記図5(c)の例のような原水の流れの乱れは生じにくく、原水供給路21内における磁気ドラム24の回転軸方向の部位ごとの原水の流速差が大きくならないように抑制することが可能となる。そのため、磁気ドラム24の全体に亘って原水の処理量を比較的均一に近くすることができ、磁気ドラム24の部位によって原水の処理量に大きな差が生じることがなくなる。 Also in this example, the width of the slow stirring tank 130 (the vertical width in FIG. 7A) and the width of the separation tank 22 in the direction of the rotation axis of the magnetic drum 24 are the same size. Therefore, the turbulent flow of the raw water as in the example of FIG. 5C is unlikely to occur, and the flow rate difference of the raw water in each portion of the raw water supply passage 21 in the direction of the rotation axis of the magnetic drum 24 is suppressed. It becomes possible. Therefore, the treatment amount of the raw water can be made relatively uniform over the entire magnetic drum 24, and there is no significant difference in the treatment amount of the raw water depending on the part of the magnetic drum 24.
 次に、実施例1等の変形例を複数例説明する。
 図8の例は、分離槽22と処理水排出路27との間の越流部51の処理水排出路27側にも、図3に示すような堰52を設ける例である。この場合は、図3は、図8のB-B方向から堰52を見た図ともなる(図3にカッコ書きで符号を付している)。この例では、各堰52の高さ調節により処理水の流れを調節し、磁気ドラム24の表面に太線で示す、磁気ドラム24の表面が原水(又は処理水)に接触する範囲である有効接触部53(不図線で示す)の長さが所定の値以上となるようにする。この例では、有効接触部53の上端53aが磁気ドラム24の回転軸54の水平方向から上側に角度αの位置となるように有効接触部53の長さを調節している。また、分離槽22内に流入する部位ごとの流量を堰52により調整して、分離槽22内の部位ごとの当該流量の変動幅を±20%以内となるようにしている。
 これにより、磁気分離装置10の凝集フロック31の分離性能、処理水の水質を決定することができる。
Next, a plurality of modifications of the first embodiment will be described.
The example of FIG. 8 is an example in which a weir 52 as shown in FIG. 3 is provided also on the treated water discharge path 27 side of the overflow section 51 between the separation tank 22 and the treated water discharge path 27. In this case, FIG. 3 is also a view of the weir 52 seen from the BB direction of FIG. 8 (the reference numerals are given in parentheses in FIG. 3). In this example, the flow of treated water is adjusted by adjusting the height of each weir 52, and the effective contact that is the range in which the surface of the magnetic drum 24 is in contact with the raw water (or treated water) indicated by a thick line on the surface of the magnetic drum 24 The length of the portion 53 (shown by a non-illustrated line) is set to be a predetermined value or more. In this example, the length of the effective contact portion 53 is adjusted so that the upper end 53a of the effective contact portion 53 is positioned at an angle α upward from the horizontal direction of the rotating shaft 54 of the magnetic drum 24. Further, the flow rate for each part flowing into the separation tank 22 is adjusted by the weir 52 so that the fluctuation range of the flow rate for each part in the separation tank 22 is within ± 20%.
Thereby, the separation performance of the aggregation floc 31 of the magnetic separation apparatus 10 and the quality of treated water can be determined.
 なお、この場合に、水量増減に基づく水位変動による磁気分離装置10の凝集フロック31の分離性能、処理水の水質の変動を小さくするため、図9に示すように、堰41,52をVノッチタイプとしてもよい。
 また、図2の例のように堰41を越えて原水が分離槽22内に流入するのではなく、図10に示すように、堰41の下端と越流部28との間から流量が絞られた原水が分離槽22内に流入するようにしてもよい。
 さらに、図6、図7の領域C,Dに、図8、図10の例のように、それぞれ堰41、堰52を設けるようにしてもよい。
In this case, in order to reduce fluctuations in the separation performance of the coagulation floc 31 of the magnetic separation device 10 and the quality of the treated water due to fluctuations in the water level based on fluctuations in the amount of water, as shown in FIG. It is good also as a type.
Further, the raw water does not flow into the separation tank 22 beyond the weir 41 as in the example of FIG. 2, but the flow rate is reduced from between the lower end of the weir 41 and the overflow portion 28 as shown in FIG. The generated raw water may flow into the separation tank 22.
Furthermore, weirs 41 and 52 may be provided in the regions C and D of FIGS. 6 and 7, respectively, as in the examples of FIGS.
 なお、本発明は上記した実施例に限定されるものではなく、上記以外にも様々な変形例が含まれる。例えば、磁気分離装置10の磁石が設けられた部材(前記の例では磁気ドラム24)の形状はドラム状に限定されるものではなく、ディスク状又はその他の形状であっても、凝集フロック31を分離する機能を持つものであればよい。また、例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。 Note that the present invention is not limited to the above-described embodiments, and includes various modifications other than the above. For example, the shape of the member provided with the magnet of the magnetic separation device 10 (in the above example, the magnetic drum 24) is not limited to the drum shape, and the aggregated floc 31 may be formed in a disk shape or other shapes. Any device having a function of separating may be used. Further, for example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 10  磁気分離装置
 21  原水供給路(流量調整手段)
 21c,21d  壁(流速調整手段)
 22  分離槽
 24  磁気ドラム
 25  スクレーパ
 41  堰(流量調整手段)
 51  仕切部材(流速調整手段)
 100 原水処理装置
 150 凝集装置
 200 磁気分離装置
 300 磁気分離装置
10 Magnetic separator 21 Raw water supply path (flow rate adjusting means)
21c, 21d wall (flow rate adjusting means)
22 Separation tank 24 Magnetic drum 25 Scraper 41 Weir (flow rate adjusting means)
51 Partition member (flow rate adjusting means)
100 Raw water treatment device 150 Coagulation device 200 Magnetic separation device 300 Magnetic separation device

Claims (7)

  1.  凝集した凝集フロックを含有する原水が供給される分離槽と、
     前記分離槽内に設けられ、回転して前記原水内の凝集フロックを磁力で吸着する磁気ドラムと、
     前記磁気ドラムの表面に吸着されている前記凝集フロックを掻き取るスクレーパと、
     前記分離槽に接続され、当該分離槽に前記原水を供給する原水供給路と、
     前記磁気ドラムの回転軸方向の部位ごとの前記原水の流量不均一を抑制する流量調整手段とを備えたことを特徴とする磁気分離装置。
    A separation tank supplied with raw water containing agglomerated flocs,
    A magnetic drum that is provided in the separation tank and rotates to adsorb the aggregated flocs in the raw water with a magnetic force;
    A scraper that scrapes off the aggregated floc adsorbed on the surface of the magnetic drum;
    A raw water supply path connected to the separation tank and supplying the raw water to the separation tank;
    A magnetic separation apparatus comprising: a flow rate adjusting unit that suppresses non-uniform flow rate of the raw water for each portion of the magnetic drum in the rotation axis direction.
  2.  前記流量調整手段は、前記原水供給路、及び前記磁気ドラムで凝集フロックを除去された原水を前記分離槽から排出する処理水排出路の少なくとも一方の前記分離槽側で前記磁気ドラムの回転軸方向に並べられ上下方向に調節可能な単数又は複数の堰を備え、当該複数個の堰の高さの違いにより前記原水供給路から前記分離槽に流れ込む前記原水の流量を調整することにより前記流量不均一を抑制することを特徴とする請求項1に記載の磁気分離装置。 The flow rate adjusting means is arranged in the direction of the axis of rotation of the magnetic drum on the separation tank side of at least one of the raw water supply path and the treated water discharge path for discharging the raw water from which the aggregation floc has been removed by the magnetic drum from the separation tank. One or a plurality of weirs that can be adjusted in the vertical direction, and the flow rate is controlled by adjusting the flow rate of the raw water flowing into the separation tank from the raw water supply path according to the height difference of the plurality of weirs. The magnetic separation device according to claim 1, wherein uniformity is suppressed.
  3.  前記原水供給路には前記分離槽に近づくにつれて前記原水の流速が漸次低下するように流速調整する流速調整手段を備えたことを特徴とする請求項1又は2に記載の磁気分離装置。 3. The magnetic separation device according to claim 1, wherein the raw water supply path is provided with a flow rate adjusting means for adjusting a flow rate so that the flow rate of the raw water gradually decreases as it approaches the separation tank.
  4.  前記流速調整手段は、前記原水供給路内の幅が、前記分離槽に近づくにつれて前記磁気ドラムの回転軸方向に対応して漸次幅が拡大している部位を有しており、
     前記幅が拡大している部位は、前記原水供給路の入口から当該部位の終端まで、平板で構成されていることを特徴とする請求項3に記載の磁気分離装置。
    The flow rate adjusting means has a portion where the width in the raw water supply path gradually increases corresponding to the rotation axis direction of the magnetic drum as it approaches the separation tank,
    The magnetic separation device according to claim 3, wherein the portion where the width is enlarged is configured by a flat plate from the inlet of the raw water supply path to the end of the portion.
  5.  前記流速調整手段は、前記原水供給路内を前記原水供給路の入口から当該部位の終端までの全部又は一部を前記磁気ドラムの回転軸方向に仕切る仕切部材を備えることを特徴とする請求項4に記載の磁気分離装置。 The flow rate adjusting means includes a partition member that partitions all or part of the raw water supply path from an inlet of the raw water supply path to a terminal end of the portion in the direction of the rotation axis of the magnetic drum. 5. The magnetic separation device according to 4.
  6.  凝集した凝集フロックを含有する原水が供給される分離槽と、
     前記分離槽内に設けられ、回転して前記原水内の凝集フロックを磁力で吸着する磁気ドラムと、
     前記磁気ドラムの表面に吸着されている前記凝集フロックを掻き取るスクレーパと、
     前記分離槽に接続され、当該分離槽に前記原水を供給する原水供給路と、
     前記原水供給路内の前記磁気ドラムの回転軸方向の部位ごとの前記原水の流量不均一を抑制する流量調整手段とを備え、
     前記流量調整手段は、前記原水供給路の幅と前記分離槽の前記磁気ドラムの回転軸方向の幅とを同寸法にして前記流量不均一の抑制を図ることを特徴とする磁気分離装置。
    A separation tank supplied with raw water containing agglomerated flocs,
    A magnetic drum that is provided in the separation tank and rotates to adsorb the aggregated flocs in the raw water with a magnetic force;
    A scraper that scrapes off the aggregated floc adsorbed on the surface of the magnetic drum;
    A raw water supply path connected to the separation tank and supplying the raw water to the separation tank;
    A flow rate adjusting means for suppressing non-uniform flow rate of the raw water for each part in the direction of the rotation axis of the magnetic drum in the raw water supply path,
    The magnetic flow separation device is characterized in that the flow rate adjusting means suppresses the non-uniform flow rate by making the width of the raw water supply path and the width of the separation tank in the direction of the rotation axis of the magnetic drum the same size.
  7.  原水に凝集剤及び磁性粉を添加して撹拌することにより当該原水中に凝集フロックを生成する凝集装置と、
     前記凝集装置と前記原水供給路で接続され、前記凝集フロックが生成された原水を処理する請求項1~6のいずれかの一項に記載の磁気分離装置とを備えることを特徴とする原水処理装置。
    A flocculation apparatus that generates a flocculent floc in the raw water by adding and stirring the flocculant and magnetic powder to the raw water;
    The raw water treatment comprising the magnetic separation device according to any one of claims 1 to 6, which is connected to the flocculation device through the raw water supply path and processes the raw water in which the flocculation floc is generated. apparatus.
PCT/JP2015/080890 2014-11-27 2015-11-02 Magnetic separation device and raw water treatment device WO2016084555A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014239754A JP2016101539A (en) 2014-11-27 2014-11-27 Magnetic separator and raw water treatment facility
JP2014-239754 2014-11-27

Publications (1)

Publication Number Publication Date
WO2016084555A1 true WO2016084555A1 (en) 2016-06-02

Family

ID=56074128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080890 WO2016084555A1 (en) 2014-11-27 2015-11-02 Magnetic separation device and raw water treatment device

Country Status (2)

Country Link
JP (1) JP2016101539A (en)
WO (1) WO2016084555A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746135B1 (en) * 2016-08-23 2017-06-12 주식회사 포스코건설 Water treating apparatus and method using magnetite
JP7065530B2 (en) * 2019-11-14 2022-05-12 株式会社Ambitious Technologies A coagulation magnetic separation device, a marine plastic / microplastic and ballast water purification system equipped with the coagulation magnetic separation device, a ship equipped with the coagulation magnetic separation device, and an operation method of the ship.
CN115282648B (en) * 2022-09-07 2024-01-16 南通华新环保科技股份有限公司 Accurate water distribution equipment for secondary sedimentation tank

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441502A (en) * 1967-02-20 1969-04-29 Carlos A Tenorio Method and apparatus for the removal and disposal of scale
JPS4965902A (en) * 1972-10-30 1974-06-26
JPS53128015A (en) * 1977-04-15 1978-11-08 Matsushita Electric Works Ltd Liquid-body distributing method
JPS6265757A (en) * 1985-07-24 1987-03-25 バ−ネス・ドリル・カンパニ− Magnetic separator
JPH0253906A (en) * 1988-08-19 1990-02-22 Teijin Ltd Spinning block for melt spinning
JP2008238056A (en) * 2007-03-27 2008-10-09 Hitachi Ltd Magnetic separation/filtration purifying apparatus
JP2010234327A (en) * 2009-03-31 2010-10-21 Hitachi Plant Technologies Ltd Coagulation separation apparatus for treatment water
JP2011183271A (en) * 2010-03-05 2011-09-22 Hitachi Plant Technologies Ltd Magnetic separation apparatus and wastewater treatment apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441502A (en) * 1967-02-20 1969-04-29 Carlos A Tenorio Method and apparatus for the removal and disposal of scale
JPS4965902A (en) * 1972-10-30 1974-06-26
JPS53128015A (en) * 1977-04-15 1978-11-08 Matsushita Electric Works Ltd Liquid-body distributing method
JPS6265757A (en) * 1985-07-24 1987-03-25 バ−ネス・ドリル・カンパニ− Magnetic separator
JPH0253906A (en) * 1988-08-19 1990-02-22 Teijin Ltd Spinning block for melt spinning
JP2008238056A (en) * 2007-03-27 2008-10-09 Hitachi Ltd Magnetic separation/filtration purifying apparatus
JP2010234327A (en) * 2009-03-31 2010-10-21 Hitachi Plant Technologies Ltd Coagulation separation apparatus for treatment water
JP2011183271A (en) * 2010-03-05 2011-09-22 Hitachi Plant Technologies Ltd Magnetic separation apparatus and wastewater treatment apparatus

Also Published As

Publication number Publication date
JP2016101539A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
WO2016084555A1 (en) Magnetic separation device and raw water treatment device
JP5485750B2 (en) Magnetic separation device and wastewater treatment device
JP6183525B1 (en) Coagulation sedimentation equipment
JPWO2009025141A1 (en) Coagulation precipitation treatment method
US8808548B2 (en) Magnetic separation apparatus and magnetic separation method, and wastewater treatment apparatus and wastewater treatment method
JP2018134619A (en) Coagulation sedimentation equipment
JP5851827B2 (en) Coagulation sedimentation equipment
JP2013078730A (en) Method and apparatus for treatment of coagulation precipitation
JP2012179579A (en) Flocculation reaction device and flocculation reaction method
WO2011030485A1 (en) Flocculation precipitation treatment method
JP2019150767A (en) Inflow part unit and settling tank
JP6457791B2 (en) Magnetic separation device and raw water treatment device
JP7052184B2 (en) Solid-liquid separator
JP2011083709A (en) Solid-liquid separation system
JP2013188695A (en) Coagulation-sedimentation apparatus
JP2021171694A (en) Sedimentation treatment device and determination method of number of distributors
JP5444031B2 (en) Solid-liquid separator
JP7137419B2 (en) Water treatment device and water treatment method
WO2018173772A1 (en) Sludge blanket type sludge condensing device, method for operating sludge blanket type sludge condensing device, and flow straightener
JP6826336B2 (en) Coagulation sedimentation processing equipment
JP5166587B2 (en) Solid-liquid separation system
JP6779812B2 (en) Coagulation sedimentation device
JP2016077960A (en) Deposition tank and deposition processing method
WO2023058339A1 (en) Mixing and turbidity-removing device, and method for forming flocs in mixing and turbidity-removing device
JP7026570B2 (en) Water treatment method and water treatment equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863163

Country of ref document: EP

Kind code of ref document: A1