WO2016084140A1 - 緊急遮断装置及びこれを備える緊急遮断システム - Google Patents

緊急遮断装置及びこれを備える緊急遮断システム Download PDF

Info

Publication number
WO2016084140A1
WO2016084140A1 PCT/JP2014/081142 JP2014081142W WO2016084140A1 WO 2016084140 A1 WO2016084140 A1 WO 2016084140A1 JP 2014081142 W JP2014081142 W JP 2014081142W WO 2016084140 A1 WO2016084140 A1 WO 2016084140A1
Authority
WO
WIPO (PCT)
Prior art keywords
ttv
control oil
outlet
valve
space
Prior art date
Application number
PCT/JP2014/081142
Other languages
English (en)
French (fr)
Inventor
隆 新山
賢 西谷
広和 河島
アベイ ジェイン
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to JP2016561121A priority Critical patent/JP6351191B2/ja
Priority to US15/528,954 priority patent/US10443513B2/en
Priority to EP14906984.1A priority patent/EP3211185B1/en
Priority to PCT/JP2014/081142 priority patent/WO2016084140A1/ja
Publication of WO2016084140A1 publication Critical patent/WO2016084140A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • F01D17/22Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical
    • F01D17/26Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical fluid, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/46Emergency fuel control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/16Trip gear
    • F01D21/18Trip gear involving hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/20Checking operation of shut-down devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L31/00Valve drive, valve adjustment during operation, or other valve control, not provided for in groups F01L15/00 - F01L29/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/36Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
    • F16K17/363Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position the closure members being rotatable or pivoting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/83Testing, e.g. methods, components or tools therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0402Valve members; Fluid interconnections therefor for linearly sliding valves, e.g. spool valves

Definitions

  • the present invention relates to an emergency cutoff device and an emergency cutoff system including the same.
  • An emergency shut-off device that performs such a turbine trip is described as a turbine emergency device in Patent Document 1, for example.
  • the turbine emergency device described in Patent Document 1 has a plurality of solenoid valves and master trip valves that control the supply of control oil to the steam stop valve that is the main steam stop valve.
  • the spool valve that constitutes the master trip valve the spool is constituted so that the unused closed port and the hydraulic pressure supply port are always in communication during normal operation.
  • the emergency shut-off device as described above has a spool type valve structure for switching control oil as in Patent Document 1.
  • the emergency shut-off device has an internal flow path so as to supply control oil to the main steam stop valve.
  • the main steam blocking valve is opened, and steam can be supplied to the steam turbine.
  • the emergency shut-off device closes the main steam stop valve by switching the internal flow path so as to cut off the supply of control oil.
  • the emergency shut-off device can perform the shut-off operation only under limited conditions, such as during an emergency stop or a plant stop.
  • the emergency shut-off device must be operated at an emergency stop even if it is used infrequently, and if an operation test for confirming whether the shut-off operation can be carried out reliably can be performed periodically during operation. The reliability of the emergency shut-off device can be improved.
  • the emergency shut-off device needs to continue to supply the control oil during normal operation, and it is necessary to carry out the supply of the control oil so as not to stop when performing the operation test. Therefore, it is necessary to take measures to prevent the supply of control oil from being stopped, such as by installing multiple devices connected by piping, etc., and bypassing and supplying control oil. difficult.
  • the present invention provides an emergency shut-off device that can easily perform an operation test and an emergency shut-off system including the same.
  • the emergency shut-off device includes a housing in which an inflow port through which control oil flows into a space provided therein and a plurality of outflow ports through which the control oil flows out from the space are formed. And a switching unit that changes a relative position with the plurality of outlets by sliding on an inner peripheral surface of the housing forming the space, and switches a flow state of the control oil in the space.
  • the casing includes, as the plurality of outflow ports, a first outflow port that causes the control oil that has flowed into the space from the inflow port to flow out and reversely flows the control oil into the space, and the inflow port.
  • the switching unit circulates the control oil from the inflow port to the first outflow port, circulates the control oil from the inflow port to the second outflow port, and A second circulation state in which the control oil flowing backward from the first outlet is circulated to the discharge port, and an open / close state of the test outlet is switched while the control oil is circulated from the inlet to the first outlet.
  • the distribution state is switched to three distribution states.
  • the open / close state of the test outlet can be switched by switching the first distribution state to the third distribution state by the switching unit when performing the operation test.
  • the control oil is circulated from the inflow port to the first outflow port, so that the control oil can be maintained in the space. Therefore, it is possible to easily perform an operation test while maintaining the flow state during normal operation without stopping the emergency shut-off device.
  • the emergency shutoff device is the emergency shutoff device according to the first aspect, wherein the first outlet shuts off the supply of steam to the steam turbine by discharging the control oil filled therein.
  • the second outlet is connected to an adjustment valve communication pipe connected to an adjustment valve that adjusts the amount of steam supplied to the steam turbine, and the discharge port is connected to the stop valve communication pipe connected to the stop valve.
  • the switch is connected to a casing discharge pipe for discharging the control oil in the space to the outside, and the switching unit switches from the first circulation state to the second circulation state when the steam turbine is urgently stopped.
  • the first distribution state may be switched to the third distribution state.
  • the steam turbine is urgently stopped by connecting the first outlet to the closing valve communication pipe connected to the closing valve and connecting the second outlet to the adjustment valve communication pipe connecting to the adjustment valve. It can be used as a mechanical trip device that urgently shuts off the closing valve and adjusting valve.
  • the emergency shutoff device is the emergency shutoff device according to the first aspect, wherein the first outlet shuts off the supply of steam to the steam turbine by discharging the control oil filled therein.
  • the second outlet is connected to a housing discharge pipe for discharging the control oil in the space to the outside, and the discharge port is
  • the switching unit is connected to a shut-off valve discharge pipe that discharges the control oil inside an oil cylinder of the shut-off valve to the outside. Switch to the distribution state. When performing the operation test, the first distribution state may be switched to the third distribution state.
  • the first outflow port is connected to the internal communication pipe communicating with the inside of the blocking valve, and the second outflow port is connected to the housing discharge pipe, thereby controlling (driving) from the inside of the blocking valve. ) It can be used as a TTV trip device that discharges oil urgently.
  • An emergency shutoff system includes a shutoff valve that shuts off the supply of steam to the steam turbine by discharging the control oil filled therein, and the steam to the steam turbine.
  • An adjustment valve for adjusting the supply amount and the emergency shutoff device according to the second aspect of the present invention are provided.
  • the emergency shutoff system according to the fifth aspect of the present invention may include the emergency shutoff device according to the second aspect of the present invention in the third aspect of the present invention.
  • the emergency shut-off system can be easily configured by the emergency shut-off device formed with a simple structure that only switches the switching unit with respect to the housing.
  • the emergency shutoff system according to the sixth aspect of the present invention may be provided with a plurality of emergency shutoff devices according to the second aspect of the present invention arranged in parallel.
  • the emergency shutoff system according to the seventh aspect of the present invention may be provided with a plurality of emergency shutoff devices according to the third aspect of the present invention arranged in parallel.
  • redundancy can be provided by arranging a plurality in parallel. Therefore, even when one emergency shut-off device fails, the control oil can be supplied via another emergency shut-off device that is not faulty. In an emergency, the turbine can be tripped through an emergency shut-off device that has not failed. Thereby, a steam turbine can be operated stably, without stopping a steam turbine by failure of an emergency interception system.
  • the control oil is circulated from the inlet to the first outlet, and the open / close state of the test outlet can be switched easily. An operational test can be performed.
  • FIG. 1 is a schematic diagram showing an emergency shutoff system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a trip device during normal operation in the embodiment of the present invention.
  • Drawing 3 is a mimetic diagram showing the mechanical trip device at the time of emergency stop in the embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a mechanical trip device during an operation test in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a TTV trip device during normal operation in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a TTV trip device during an emergency stop according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a TTV trip device during an operation test in the embodiment of the present invention.
  • the emergency shutoff system 2 emergency shuts off the supply of the steam S to the steam turbine 1.
  • the emergency shut-off system 2 the state in which the steam S is continuously supplied in order to cause the steam turbine 1 to operate normally is assumed to be during normal operation.
  • the emergency shut-off system 2 when an abnormality in a rotating body such as excessive shaft vibration or rotor overspeed or an abnormality in plant equipment occurs, the steam turbine 1 and the plant need to be stopped urgently.
  • the state in which the supply of the steam S is shut off in order to stop is defined as an emergency stop.
  • a rotor (not shown) is rotationally driven by the steam S supplied to the upstream side via the closing valve 30 and the regulating valve 10.
  • the steam turbine 1 rotates a driven machine such as a compressor or a generator by the rotation of the rotor.
  • the emergency shut-off system 2 adjusts the flow of control (drive) oil supplied to various control devices that control the supply of the steam S to the steam turbine 1.
  • the emergency shutoff system 2 of the present embodiment includes a regulating valve 10 (GV: Governing Valve) that adjusts the supply amount of steam S to the steam turbine 1, and steam to the steam turbine 1 during an emergency stop.
  • a shutoff valve 30 (MSV: Main Stop Valve or TTV: Trip and Throttle Valve) that shuts off the supply of S and a plurality of mechanical trip devices 20 that send control oil supplied from a supply source (not shown) to the shutoff valve 30 And.
  • the regulating valve 10, the closing valve 30, and the mechanical trip device 20 are connected by a plurality of pipes through which control oil flows.
  • the adjusting valve 10 adjusts the supply amount of the steam S supplied to the upstream side of the steam turbine 1 by adjusting the valve opening degree.
  • the adjustment valve 10 adjusts the opening degree of the oil cylinder that operates with the supplied control oil, thereby adjusting the valve opening degree to increase or decrease the supply amount of the steam S, and adjust the output and the rotational speed.
  • a supply pipe 91 connected to a control oil supply source (not shown) is branched and connected.
  • the regulating valve 10 is connected to a plurality of mechanical trip devices 20 via an regulating valve communication pipe 92 that is one of piping.
  • control valve 10 is supplied with control oil from a supply source via a supply pipe 91 that is one of the pipes.
  • the control valve 10 is supplied with control oil not only from the supply pipe 91 but also from the mechanical trip device 20 through the adjustment valve communication pipe 92, and is guided in the closing direction of the oil cylinder of the adjustment valve 10. 10 is cut off.
  • the mechanical trip device 20 is an emergency shut-off device that supplies control oil to the adjustment valve 10 during an emergency stop and shuts off the supply of control oil to the closing valve 30.
  • Two mechanical trip devices 20 of the present embodiment are arranged in parallel with respect to the regulating valve 10 and the closing valve 30.
  • the mechanical trip device 20 includes a casing 21 that flows control oil into a space A1 provided therein, and a switching unit 24 that switches a flow state of the control oil in the space A1. ing.
  • the two mechanical trip devices 20 arranged in parallel have the supply pipe 91 branched and connected, and the control oil is supplied from the same control oil supply source.
  • the adjustment valve communication pipe 92 connected to the adjustment valve 10 is branched and connected, and the control oil is supplied to the same adjustment valve 10 at the time of emergency stop.
  • the two mechanical trip devices 20 arranged in parallel are branched and connected to one blocking valve communication pipe 93 connected to the blocking valve 30, and supply control oil to the same blocking valve 30.
  • the mechanical trip device 20 is independently arranged outside the steam turbine 1 so as to be operable from the outside.
  • the housing 21 extends in a rectangular tube shape with the axis O1 as the center.
  • the casing 21 of the present embodiment is formed with a plurality of inflow ports 22 through which control oil flows into the internal space A1 and a plurality of outflow ports 23 through which control oil flows out of the space A1.
  • Two inflow ports 22 are formed through one wall portion of the casing 21 with the axis O1 interposed therebetween.
  • the inlet 22 of the present embodiment has a first inlet 221 to which the supply pipe 91 is branched and connected, and a second inlet 222 to which the supply pipe 91 connected to the first inlet 221 is further branched and connected. .
  • the first inlet 221 is formed near the center of the housing 21.
  • a supply-side orifice OR1 that restricts the flow rate of the control oil flowing inside to a constant amount is arranged in the connected supply pipe 91.
  • the second inlet 222 is formed near the end of the housing 21.
  • the end on the side where the second inlet 222 is not formed with respect to the first inlet 221 is referred to as a first end E1, and the end on which the second inlet 222 is formed.
  • the edge part be the 2nd edge part E2.
  • the plurality of outlets 23 are formed so as to penetrate through the wall portion facing the wall portion where the inlet port 22 is formed with the axis O1 of the housing 21 interposed therebetween.
  • the outlet 23 of the present embodiment includes a first outlet 231, a second outlet 232, a first outlet 233, a second outlet 234, a third outlet 235, and a test outlet 236. .
  • the first outlet 231 is connected to a blocking valve communication pipe 93 that is connected to the blocking valve 30.
  • the block valve communication pipe 93 connected to the first outlet 231 is provided with a first outflow valve V1 for switching the control oil flowing inside in order to perform an operation test of the emergency shut-off device.
  • the first outlet 231 causes the control oil that has flowed into the space A1 from the first inlet 221 during normal operation to flow into the closing valve communication pipe 93 and the control oil that has flowed from the closing valve communication pipe 93 during an emergency stop into the space. Reflux to A1.
  • the first outlet 231 is formed near the center of the casing 21 and at a position shifted from the first inlet 221 toward the second end E2 in the axial direction.
  • the first outflow valve V1 is opened during normal operation, and can be changed in its open / closed state by being manually closed as necessary for performing an operation test of the emergency shut-off device or the like.
  • the second outlet 232 is connected to a regulating valve communication pipe 92 that is connected to the regulating valve 10.
  • the adjustment valve communication pipe 92 connected to the second outlet 232 is provided with a second outflow valve V2 for switching the control oil flowing inside in order to perform an operation test of the emergency shutoff device.
  • the second outlet 232 causes the control oil that has flowed into the space A1 from the first inlet 221 during an emergency stop to flow out to the adjustment valve communication pipe 92.
  • the second outlet 232 is formed at a position near the center of the housing 21 and shifted to the first end E1 side, which is the opposite side of the first outlet 231 across the first inlet 221. ing.
  • the second outflow valve V2 is opened during normal operation, and can be changed in its open / closed state by being manually closed as required for performing an operation test of the emergency shut-off device.
  • the first discharge port 233 is connected to a casing discharge pipe 94 that discharges control oil to the outside of the emergency shutoff system 2.
  • the first discharge port 233 discharges the control oil that has flowed back from the first outlet 231 to the space A1 to the housing discharge pipe 94 during an emergency stop without flowing control oil during normal operation.
  • the first discharge port 233 is formed near the center of the housing 21 and in the axial direction on the second end E2 side with respect to the first outlet 231.
  • the second discharge port 234 is connected to a casing discharge pipe 94 that discharges control oil to the outside, like the first discharge port 233.
  • the control oil does not flow through the second outlet 234 during normal operation or emergency stop.
  • the second discharge port 234 discharges the control oil leaking from the switching unit 24.
  • the second discharge port 234 is near the center of the housing 21, and the position in the axial direction is formed closer to the first end E ⁇ b> 1 than the second outlet 232.
  • the third discharge port 235 is connected to a trip outflow pipe 95 that discharges the control oil in the casing 21 at the time of emergency stop in order to operate the switching unit 24.
  • the third discharge port 235 discharges the control oil from the space A1 to the control oil trip outflow pipe 95 at the time of emergency stop because the control oil does not flow during normal operation.
  • the third discharge port 235 is formed at a position facing the second inflow port 222 on the second end E2 side of the first discharge port 233 in the axial direction.
  • the trip outflow pipe 95 is branched downstream into a manual trip outflow pipe 951 provided with a manual valve (manual trip device) V3 and an automatic trip outflow pipe 952 provided with a solenoid valve V4.
  • the manual valve (manual trip device) V3 and the solenoid valve V4 are closed during normal operation, and at least one of the manual valve (manual trip device) V3 and the solenoid valve V4 is opened during an emergency stop, the trip outflow piping.
  • the control oil is circulated in 95.
  • the test outlet 236 is connected to a test outflow pipe 96 for confirming the flow state of the control oil when performing an operation test.
  • the test outlet 236 is switched between open and closed states by the switching unit 24 when performing an operation test.
  • the test outlet 236 of the present embodiment is open during normal operation and can discharge the control oil that has flowed into the space A1, and is closed during the operation test so that the control oil does not flow.
  • the test outlet 236 is formed at a position sandwiched between the third outlet 235 and the first outlet 233 on the second end E2 side of the first outlet 233.
  • the test outflow pipe 96 is provided with a test valve V5 used in the partial stroke test of the emergency shutoff device for the control oil.
  • the test valve V ⁇ b> 5 is closed during normal operation, and is opened during the operation test to discharge control oil into the test outflow pipe 96.
  • the switching unit 24 switches the flow state of the control oil in the space A1 by sliding on the inner peripheral surface of the casing 21 forming the space A1 and changing the relative position with the plurality of outlets 23.
  • the switching unit 24 of the present embodiment includes a shaft portion 241 extending in the axial direction, a biasing portion 242 that biases the shaft portion 241 in the axial direction, a plurality of partition portions 243 fixed to the shaft portion 241, and a space A1. And a positioning portion 244 for determining the position of the partition portion 243 inside.
  • the shaft portion 241 extends in a columnar shape about the axis O ⁇ b> 1 that is the central axis of the housing 21.
  • the shaft portion 241 has a length that can move in the axial direction within the space A1.
  • the urging portion 242 urges the shaft portion 241 from the first end portion E1 in the axial direction toward the second end portion E2.
  • the urging portion 242 is fixed to the inner peripheral surface on the first end E1 side of the inner peripheral surface forming the space A1 of the housing 21 and the end surface on the first end E1 side of the shaft portion 241. ing.
  • a coil spring is used as the urging portion 242, for example.
  • the partition portion 243 is formed so that the entire periphery contacts the inner peripheral surface of the housing 21. That is, the partition part 243 partitions the space A1 into a plurality.
  • the partition part 243 moves in the axial direction together with the shaft part 241.
  • the partition part 243 of the present embodiment has a rectangular shape in which a cross section orthogonal to the axial direction is in sliding contact with the inner peripheral surface of the housing 21, and the shaft part 241 is inserted and fixed therein.
  • the four partition portions 243 of the present embodiment are provided in the order of the first partition portion 243a, the second partition portion 243b, the third partition portion 243c, and the fourth partition portion 243d from the second end E2 side in the axial direction. Yes.
  • the first partition portion 243a is fixed to the end surface of the shaft portion 241 on the second end portion E2 side.
  • the first partition 243a is disposed between the test outlet 236 and the first outlet 233 during normal operation.
  • the first partition 243a is disposed between the third outlet 235 and the test outlet 236 during an emergency stop.
  • the first partition 243a is disposed on the test outlet 236 during the operation test, and closes the test outlet 236.
  • the second partition portion 243b is fixed to the shaft portion 241 on the first end E1 side with respect to the first partition portion 243a.
  • the second partition 243b is disposed between the first outlet 233 and the first outlet 231 during normal operation.
  • the second partition 243b is disposed between the test outlet 236 and the first outlet 233 during an emergency stop.
  • the second partition 243b is disposed between the first outlet 233 and the first outlet 231 in a state slightly shifted from that during normal operation during the operation test.
  • the third partition portion 243c is fixed to the shaft portion 241 on the first end E1 side with respect to the second partition portion 243b.
  • the third partition 243c is disposed between the first inlet 221 and the second outlet 232 during normal operation.
  • the third partition 243c is disposed between the first outlet 231 and the first inlet 221 during an emergency stop.
  • the third partition 243c is disposed between the first inlet 221 and the second outlet 232 in a state slightly shifted from that during normal operation during the operation test.
  • the fourth partition portion 243d is fixed to the shaft portion 241 on the first end E1 side with respect to the third partition portion 243c and on the second end E2 side with respect to the end surface on the first end portion E1 side of the shaft portion 241.
  • the fourth partition 243d is disposed closer to the first end E1 than the second outlet 234 during normal operation.
  • the fourth partition 243d is arranged between the second outlet 232 and the second outlet 234 at the time of emergency stop.
  • the fourth partition portion 243d is disposed closer to the first end E1 than the second discharge port 234 in a state slightly shifted from that during normal operation during the operation test.
  • the positioning part 244 regulates the movement of the shaft part 241 in the space A1.
  • the positioning portion 244 of the present embodiment includes a first positioning portion 244b that restricts the movement of the shaft portion 241 to the first end E1 side, and a second that restricts the movement of the shaft portion 241 to the second end E2 side. Positioning part 244a.
  • the first positioning portion 244b is formed to protrude inward from the inner peripheral surface of the casing 21 between the test outlet 236 and the first outlet 233.
  • the first positioning portion 244b of the present embodiment regulates the movement of the shaft portion 241 in the axial direction toward the first end portion E1 side by contacting the surface of the first partition portion 243a facing the first end portion E1 side. To do.
  • the first positioning portion 244b is formed so that the first partition portion 243a is disposed at a position where the test outlet 236 is not closed during normal operation.
  • the second positioning portion 244a is formed to protrude inward from the inner peripheral surface of the housing 21 between the third outlet 235 and the test outlet 236.
  • the 2nd positioning part 244a of this embodiment controls the movement of the axial direction to the 2nd end part E2 side of the axial part 241 by contacting the surface which faces the 2nd end part E2 side of the 1st partition part 243a. To do.
  • the second positioning portion 244a is formed such that the first partition portion 243a is disposed at a position where the third outlet 235 and the second inlet 222 are not closed during an emergency stop.
  • the switching unit 24 switches the flow state of the control oil in the space A1 by moving the partition unit 243 that divides the space A1 into a plurality of portions in the axial direction as the shaft unit 241 moves.
  • the distribution state during normal operation and the distribution state in which the control oil is circulated from the first inflow port 221 to the first outflow port 231 is defined as the first distribution state.
  • the control oil is circulated from the first inflow port 221 to the second outflow port 232 in the distribution state at the time of emergency stop, and the control oil that has flowed back from the first outflow port 231 is passed to the first discharge port 233.
  • the distribution state to be distributed is the second distribution state.
  • the flow state during the operation test is the third flow state in which the open / close state of the test outlet 236 is switched while the control oil is passed from the first inlet 221 to the first outlet 231.
  • the shutoff valve 30 shuts off the steam S to the steam turbine 1 when the supply of control oil from the mechanical trip device 20 is stopped or reversely flowed.
  • the blocking valve 30 is brought into an open state that allows supply of the steam S to the steam turbine 1 by supplying control oil during normal operation.
  • the closing valve 30 is in a closed state in which the supply of the steam S to the steam turbine 1 is stopped by discharging the control oil during an emergency stop.
  • the blocking valve 30 of the present embodiment is connected to the mechanical trip device 20 via a blocking valve communication pipe 93 that allows control oil to flow therethrough.
  • the blocking valve 30 of the present embodiment includes a blocking valve main body 31 and a plurality of TTV trip devices 40 that adjust the supply of control oil to the blocking valve main body 31.
  • the block valve main body 31 opens a valve (not shown) that shuts off the supply of the steam S to the steam turbine 1 when the control oil is filled therein, and the control oil is discharged to the steam turbine 1.
  • the valve that shuts off the supply of steam S is closed.
  • the blocking valve body 31 of the present embodiment includes a storage chamber 311 that is a space inside the oil cylinder of the blocking valve body 31, a blocking valve inlet 312 that allows control oil to flow into the storage chamber 311, and the storage chamber 311. It has the valve body 313 which is arrange
  • the storage chamber 311 is formed inside the oil cylinder of the shut-off valve body 31 so that the supplied control oil is accumulated.
  • Two closing valve inlets 312 are formed so as to sandwich the storage chamber 311. The two closing valve inlets 312 are connected to different TTV trip devices 40, respectively.
  • the valve body 313 is slidable in the storage chamber 311 in a state where the storage chamber 311 is partitioned.
  • the valve body 313 rises while gradually sliding in the storage chamber 311.
  • the valve body 313 moves a valve provided also on the upstream side of the steam turbine 1 so as to supply the steam S to the steam turbine 1 by storing a predetermined amount of control oil in the storage chamber 311.
  • the valve body 313 causes the control oil to flow from below to above the valve body 313 through a flow hole 313 a formed inside.
  • the closing valve discharge port 314 communicates with a space above the valve body 313 of the storage chamber 311.
  • the blocking valve discharge port 314 is connected to the blocking valve discharge pipe 99.
  • the blocking valve discharge port 314 discharges the control oil that has flowed upward from below the storage chamber 311 through the flow hole 313 a of the valve body 313 to the outside of the blocking valve main body 31 from the blocking valve discharge pipe 99.
  • the stop valve discharge pipe 99 is connected to a casing discharge pipe 94 of the TTV trip device 40 described later, and discharges control oil flowing through the inside to the outside of the emergency shut-off system 2.
  • the TTV trip device 40 is an emergency shut-off device that adjusts the flow of the control oil to the block valve main body 31 so as to urgently discharge the control oil from the oil cylinder of the block valve main body 31.
  • two TTV trip devices 40 of the present embodiment are arranged in parallel with respect to one closing valve main body 31.
  • the TTV trip device 40 includes a TTV casing 41 that flows control oil into a TTV space A2 provided therein, and a TTV switching unit 44 that switches a distribution state of the control oil in the TTV space A2. And.
  • the blocking valve communication pipe 93 is branched and connected, and the control oils supplied together from the two mechanical trip devices 20 are separately supplied again.
  • the two TTV trip devices 40 arranged in parallel are connected to different internal communication pipes 97 and connected to different closing valve inlets 312, and supply control oil into the storage chamber 311.
  • the TTV trip device 40 is independently arranged outside the steam turbine 1 so as to be operable from the outside.
  • the TTV casing 41 extends in a rectangular cylinder shape with the axis O2 as the center.
  • the TTV casing 41 is formed with a plurality of TTV inlets 42 for flowing control oil into the TTV space A2 and a plurality of TTV outlets 43 for flowing control oil from the TTV space A2.
  • TTV inlets 42 are formed on one wall of the TTV casing 41 with the axis O2 interposed therebetween.
  • a TTV first inlet 421 to which the blocking valve communication pipe 93 is connected and a TTV second to which the blocking valve communication pipe 93 connected to the TTV first inlet 421 is branched and connected.
  • the TTV first inlet 421 is provided with a TTV supply-side orifice OR2 that restricts the flow rate of the control oil flowing inside to a fixed amount in the connected stop valve communication pipe 93.
  • the TTV first inlet 421 is formed near the center of the TTV casing 41.
  • the TTV second inlet 422 is formed near the end of the TTV casing 41.
  • TTV first end E3 the end on the side where the TTV second inflow port 422 is not formed with respect to the TTV first inflow port 421
  • TTV second inflow port 422 is formed.
  • the end portion on the side that is set is referred to as a TTV second end portion E4.
  • the plurality of TTV outlets 43 are formed on a wall portion facing the wall portion on which the TTV inlet 42 is formed across the axis O2 of the TTV casing 41.
  • the TTV outlet 43 of the present embodiment includes a TTV first outlet 431, a TTV second outlet 432, a TTV outlet 433, and a TTV test outlet 434.
  • the TTV first outlet 431 is connected to an internal communication pipe 97 that communicates with the storage chamber 311 via the closing valve inlet 312.
  • An internal communication pipe 97 connected to the TTV first outlet 431 is provided with a TTV first outflow valve V6.
  • the TTV first outlet 431 causes the control oil that has flowed into the TTV space A2 from the TTV first inlet 421 during normal operation to flow out, and also causes the control oil that has flowed from the internal communication pipe 97 to flow back into the TTV space A2 during an emergency stop.
  • the TTV first outlet 431 is formed near the center of the TTV casing 41 and at a position shifted from the TTV first inlet 421 toward the TTV second end E4 side in the axial direction.
  • the TTV first outflow valve V6 is opened during normal operation, and can be changed in its open / closed state by being manually closed as required for an operation test of the TTV trip device 40 or the like.
  • the TTV second outlet 432 is connected to the casing discharge pipe 94.
  • the TTV second outlet 432 causes the control oil in the TTV space A2 to flow out during an emergency stop without flowing control oil during normal operation.
  • the TTV second outlet 432 is located near the center of the TTV casing 41 and is shifted to the TTV first end E3 side, which is opposite to the TTV first outlet 431 in the axial direction with the TTV first inlet 421 interposed therebetween. It is formed in the position.
  • the TTV discharge port 433 is connected to the housing discharge pipe 94.
  • the TTV discharge port 433 discharges the control oil that has flowed back from the TTV first outlet 431 to the TTV space A2 during an emergency stop without flowing the control oil during normal operation.
  • the TTV discharge port 433 is formed near the center of the TTV casing 41 and in the axial direction on the TTV second end E4 side with respect to the TTV first inflow port 421.
  • the TTV test outlet 434 is connected to a TTV test outflow pipe 98 for confirming the flow state of the control oil when performing the operation test.
  • the open / close state of the TTV test outlet 434 is switched by the TTV switching unit 44 when performing an operation test.
  • the TTV test outlet 434 of the present embodiment is opened during normal operation before the operation test and can discharge the control oil flowing into the TTV space A2, and is closed during the operation test so that the control oil does not flow. Yes.
  • the TTV test outlet 434 is formed on the TTV second end E4 side from the TTV outlet 433.
  • the TTV test outflow pipe 98 is provided with a control oil TTV test valve V7.
  • the TTV test valve V7 is closed during normal operation, and is opened during the operation test, thereby allowing control oil to flow through the TTV test outflow pipe 98.
  • the TTV switching unit 44 slides on the inner peripheral surface of the TTV casing 41 that forms the TTV space A2, and changes the relative position with the plurality of outlets 23, whereby the control oil flows in the TTV space A2. Switch state.
  • the TTV switching unit 44 according to the present embodiment includes a TTV shaft portion 441 extending in the axial direction, a TTV biasing portion 442 that biases the TTV shaft portion 441 in the axial direction, and a plurality of TTV partitions fixed to the TTV shaft portion 441. Part 443 and a TTV positioning part 444 that determines the position of the TTV partitioning part 443 in the TTV space A2.
  • the TTV shaft portion 441 extends in a columnar shape around the axis O ⁇ b> 2 that is the central axis of the TTV casing 41.
  • the TTV shaft portion 441 is formed with a length that can move in the axial direction within the TTV space A2.
  • the TTV biasing portion 442 biases the TTV shaft portion 441 from the TTV first end portion E3 toward the TTV second end portion E4 in the axial direction.
  • the TTV biasing portion 442 includes an inner peripheral surface on the TTV first end portion E3 side of an inner peripheral surface forming the TTV space A2 of the TTV casing 41, and a TTV first end portion E3 side of the TTV shaft portion 441. It is fixed to the end face.
  • a coil spring is used as the TTV urging unit 442, for example.
  • the TTV partitioning portion 443 is formed so that the entire circumference contacts the inner circumferential surface of the TTV casing 41. That is, the TTV partition 443 divides the TTV space A2 into a plurality.
  • the TTV partition 443 moves in the axial direction together with the TTV shaft 441.
  • the TTV partitioning portion 443 of the present embodiment has a rectangular shape in which a cross section perpendicular to the axial direction is in sliding contact with the inner peripheral surface of the TTV casing 41, and the TTV shaft portion 441 is inserted and fixed therein.
  • four TTV partitions 443 are provided in the order of the TTV first partition 443a, the TTV second partition 443b, and the TTV third partition 443c from the TTV second end E4 side in the axial direction. .
  • the TTV first partition portion 443a is fixed to the end surface of the TTV shaft portion 441 on the TTV second end portion E4 side.
  • the TTV first partition 443a is disposed between the TTV test outlet 434 and the TTV outlet 433 during normal operation.
  • the TTV first partitioning portion 443a is disposed closer to the TTV second end portion E4 than the TTV test outlet 434 during an emergency stop.
  • the TTV first partition 443a is arranged on the TTV test outlet 434 during the operation test, and closes the TTV test outlet 434.
  • the TTV second partition portion 443b is fixed to the TTV shaft portion 441 on the TTV first end E3 side with respect to the TTV first partition portion 443a.
  • the TTV second partition 443b is disposed between the TTV outlet 433 and the TTV first outlet 431 during normal operation.
  • the TTV second partitioning portion 443b is disposed between the TTV test outlet 434 and the TTV outlet 433 during an emergency stop.
  • the TTV second partition 443b is disposed between the TTV outlet 433 and the TTV first outlet 431 in a state slightly shifted from that during normal operation during the operation test.
  • the TTV third partition 443c is closer to the TTV first end E3 than the TTV second partition 443b, and is closer to the TTV second end E4 than the end surface of the TTV shaft 441 on the TTV first end E3 side. It is fixed to the TTV shaft portion 441.
  • the TTV third partition 443c is disposed between the TTV first inlet 421 and the TTV second outlet 432 during normal operation.
  • the TTV third partition 443c is arranged between the TTV first outlet 431 and the TTV first inlet 421 at the time of emergency stop.
  • the TTV third partition 443c is disposed between the TTV first inlet 421 and the TTV second outlet 432 in a state slightly shifted from that during normal operation during the operation test.
  • the TTV positioning unit 444 regulates the movement of the TTV shaft unit 441 in the TTV space A2.
  • the TTV positioning unit 444 of the present embodiment regulates the movement of the TTV shaft unit 441 toward the TTV second end E4 side.
  • the TTV positioning portion 444 is formed to protrude inward from the inner peripheral surface of the housing 21 between the TTV second inlet 422 and the TTV test outlet 434.
  • the TTV positioning portion 444 of the present embodiment is in contact with the surface of the TTV first partitioning portion 443a facing the TTV second end portion E4 side, whereby the TTV shaft portion 441 extends in the axial direction toward the TTV first end portion E3. Restrict movement.
  • the TTV positioning portion 444 is formed so that the TTV first partitioning portion 443a is disposed at a position where the TTV second inlet 422 is not closed during an emergency stop.
  • the TTV switching unit 44 switches the flow state of the control oil in the TTV space A2 by moving the TTV partitioning unit 443 in the axial direction along with the movement of the TTV shaft unit 441 as described above.
  • the distribution state during normal operation and the distribution state in which the control oil is circulated from the TTV first inlet 421 to the TTV first outlet 431 is referred to as a TTV first distribution state.
  • the control oil is circulated from the TTV first inlet 421 to the TTV second outlet 432 in the distribution state at the time of emergency stop, and the control oil that flows backward from the TTV first outlet 431 is discharged to the TTV outlet.
  • the distribution state that circulates up to 433 is the second distribution state.
  • the distribution state at the time of the operation test in which the open / close state of the TTV test outlet 434 is switched while the control oil is distributed from the TTV first inlet 421 to the TTV first outlet 431. Is the third distribution state.
  • the control oil is supplied from the supply source via the supply pipe 91 to the adjustment valve 10 and the supply pipe 91 in order to make the steam S 1 supplied to the steam turbine 1 open during normal operation. It is supplied to the mechanical trip device 20.
  • the adjusting valve 10 supplies the steam S to the steam turbine 1 by adjusting the valve opening degree by supplying the control oil.
  • the flow state of the control oil in the space A1 is switched to the first flow state by the switching unit 24. That is, as shown in FIG. 2, in the mechanical trip device 20 during normal operation, the first partition portion 243a is disposed between the first outlet 233 and the test outlet 236 as the first circulation state, and the second The partition 243b is disposed between the first outlet 233 and the first outlet 231; the third partition 243c is disposed between the first inlet 221 and the second outlet 232; and the fourth partition 243d is It arrange
  • control oil supplied from the supply pipe 91 to the mechanical trip device 20 flows into the space A1 from the first inlet 221.
  • the control oil that has flowed into the space A ⁇ b> 1 from the first inlet 221 is sent from the first outlet 231 to the stop valve communication pipe 93. Since the first outflow valve V ⁇ b> 1 is opened during normal operation, the control oil that has flowed into the closing valve communication pipe 93 is sent to the closing valve 30.
  • control oil supplied from the supply pipe 91 to the mechanical trip device 20 flows into the space A1 from the second inlet 222 while the flow rate is limited by the supply side orifice OR1.
  • the control oil that has flowed into the space A ⁇ b> 1 from the second inlet 222 flows from the third outlet 235 to the trip outlet pipe 95 and from the test outlet 236 to the test outlet pipe 96.
  • the manual valve (manual trip device) V3 and the solenoid valve V4 are closed, so that control oil does not flow in the trip outflow pipe 95.
  • test valve V5 since the test valve V5 is closed, the control oil does not flow in the test outflow pipe 96.
  • control oil stays in the space A1 between the second inlet 222, the third outlet 235, and the test outlet 236.
  • the retained control oil pushes the first partition 243a toward the first end E1 in the axial direction against the urging force of the urging unit 242, so that the position of the shaft 241 during normal operation is the first position. It is held so as to keep one distribution state.
  • the control oil that has flowed into the blocking valve 30 from the blocking valve communication pipe 93 is supplied from the internal communication pipe 97 to the blocking valve main body 31 via the TTV trip device 40.
  • the distribution state of the control oil in the TTV space A2 is switched to the TTV first distribution state by the TTV switching unit 44. That is, as shown in FIG.
  • the TTV first partitioning portion 443a is arranged between the TTV test outlet 434 and the TTV outlet 433 as the TTV first distribution state
  • the TTV second partition 443b is disposed between the TTV outlet 433 and the TTV first outlet 431
  • the TTV third partition 443c is disposed between the TTV first inlet 421 and the TTV second outlet 432.
  • the control oil supplied from the blocking valve communication pipe 93 to the TTV trip device 40 flows into the TTV space A2 from the TTV first inlet 421 while the flow rate is limited by the TTV supply side orifice OR2.
  • the control oil flowing into the TTV space A2 from the TTV first inlet 421 is sent to the internal communication pipe 97 from the TTV first outlet 431. Since the TTV first outflow valve V6 is opened during normal operation, the control oil flowing into the internal communication pipe 97 is sent to the closing valve main body 31.
  • the control oil supplied to the closing valve main body 31 flows into the storage chamber 311 from the closing valve inlet 312.
  • the valve body 313 rises when a predetermined amount of control oil accumulates, so that the closing valve 30 is opened and the steam S can be supplied to the steam turbine 1.
  • the control oil that has flowed into the storage chamber 311 flows from the bottom of the valve body 313 upward through the inflow hole.
  • the control oil exceeding a predetermined amount is discharged from the block valve discharge port 314 to the outside of the block valve main body 31.
  • the control oil discharged from the stop valve discharge port 314 is discharged from the stop valve discharge pipe 99 to the outside of the emergency shutoff system 2 through the housing discharge pipe 94.
  • control oil supplied to the TTV trip device 40 from the blocking valve communication pipe 93 also flows into the TTV space A2 from the TTV second inlet 422.
  • the control oil flowing into the TTV space A2 from the TTV second inlet 422 flows from the TTV test outlet 434 to the TTV test outlet pipe 98.
  • the control oil does not flow in the TTV test outflow pipe 98 because the TTV test valve V7 is closed.
  • the control oil stays in the TTV space A2 between the TTV second inlet 422 and the TTV test outlet 434.
  • the staying control oil pushes the TTV first partition 443a toward the TTV first end E3 side in the axial direction against the urging force of the TTV urging unit 442, so that the TTV shaft part during normal operation can be obtained.
  • the position of 441 is held so as to maintain the TTV first distribution state.
  • control oil in the block valve main body 31 is discharged at the time of emergency stop for emergency stop of the steam turbine 1 when an abnormality such as excessive shaft vibration of the steam turbine 1 occurs.
  • the control oil is discharged from the storage chamber 311.
  • the emergency shutoff system 2 of the present embodiment at the time of an emergency stop, at least one of the manual valve (manual trip device) V3 and the solenoid valve V4 is opened. Thereby, the control oil is circulated in the trip outflow pipe 95, and the control oil in the space A1 is discharged from the third discharge port 235. Since the flow rate of the control oil flowing from the supply pipe 91 is restricted by the supply-side orifice OR1, the flow rate of the control oil discharged from the third discharge port 235 exceeds the flow rate of the second inflow port 222. Therefore, the amount of control oil in the space A1 on the second end E2 side than the first partition 243a is reduced. Therefore, as shown in FIG.
  • the first partition 243a is disposed between the third outlet 235 and the test outlet 236, and the second partition 243b is the test flow.
  • the third partition 243c is disposed between the first outlet 231 and the first inlet 221 and the fourth partition 243d is disposed between the second outlet 232 and the first outlet 233. It arrange
  • the control oil that has flowed into the space A1 from the first inlet 221 is sent from the second outlet 232 to the regulating valve communication pipe 92. Therefore, the control oil supplied directly from the supply source via the supply pipe 91 and the control oil supplied from the mechanical trip device 20 via the adjustment valve communication pipe 92 flow into the adjustment valve 10.
  • the regulating valve 10 is blocked by the control oil flowing in through the regulating valve communication pipe 92 in the closing direction of the oil cylinder of the regulating valve 10, and stops the supply of the steam S to the steam turbine 1.
  • the first outlet 231 and the first outlet 233 communicate with each other in the space A1.
  • the control oil flowing through the blocking valve communication pipe 93 flows backward and flows into the space A1 from the first outlet 231 and is discharged from the first outlet 233 to the outside through the housing outlet pipe 94.
  • the control oil flowing through the blocking valve communication pipe 93 flows backward, the control oil in the TTV space A2 on the TTV second end E4 side of the TTV first partitioning portion 443a of the TTV trip device 40 becomes the TTV second. It flows out from the inflow port 422 to the stop valve communication pipe 93. Thereby, the amount of control oil in the TTV space A2 between the inner peripheral surface on the TTV second end E4 side in the TTV space A2 and the TTV first partition 443a is reduced. Therefore, as shown in FIG.
  • the force pushing the TTV first partitioning portion 443a toward the TTV first end portion E3 side in the axial direction is reduced, and the TTV shaft portion 441 is moved to the TTV by the biasing force of the TTV biasing portion 442.
  • the first partition portion 443a is moved to a position where it contacts the TTV positioning portion 444.
  • the TTV first partition 443a is arranged on the TTV second end E4 side from the TTV test outlet 434, and the TTV second partition 443b is disposed between the TTV test outlet 434 and the TTV outlet 433, and the TTV third partition 443c is disposed between the TTV first outlet 431 and the TTV first inlet 421.
  • the TTV first inlet 421 is connected to the closing valve communication pipe 93 via the TTV supply side orifice OR2. Therefore, in the TTV second distribution state, the control oil in the TTV space A2 closer to the TTV first end E3 than the TTV third partition 443c is not supplied from the TTV first inlet 421 but from the TTV second outlet 432. It is discharged to the outside through the body discharge pipe 94.
  • the TTV first outlet 431 and the TTV outlet 433 communicate with each other.
  • the control oil flowing through the internal communication pipe 97 flows backward and flows into the TTV space A2 from the TTV first outlet 431, and is discharged to the outside through the casing discharge pipe 94 from the TTV outlet 433. Further, the control oil flowing through the internal communication pipe 97 flows backward, so that the control oil accumulated in the storage chamber 311 of the block valve main body 31 flows out from the block valve inlet 312 to the internal communication pipe 97.
  • the control oil that has flowed out from the closing valve inlet 312 to the internal communication pipe 97 is also discharged to the outside from the TTV discharge port 433 through the casing discharge pipe 94.
  • the control oil in the storage chamber 311 is discharged, and the valve body 313 moves downward.
  • the closing valve 30 is closed and shuts off the supply of the steam S to the steam turbine 1.
  • the emergency cutoff system 2 of this embodiment it is for confirming whether the switching part 24 and the TTV switching part 44 operate
  • the test valve V5 used during the partial stroke test of the emergency shut-off device is opened during normal operation.
  • the control oil can flow in the test outflow pipe 96.
  • the control oil flows out from the space A1 through the test outlet 236.
  • the mechanical trip device 20 switches the flow state of the control oil in the space A1 from the first flow state to the third flow state by the switching unit 24 for the operation test.
  • the first partition 243 a is arranged on the test outlet 236 and the second partition 243 b is connected to the first outlet 233 and the The third partition 243 c is disposed between the first outlet 231, the third partition 243 c is disposed between the first inlet 221 and the second outlet 232, and the fourth partition 243 d is the first end portion than the second outlet 234.
  • the TTV test valve V7 When performing the operation test with the TTV trip device 40, the TTV test valve V7 is opened during normal operation. By opening the TTV test valve V7, the control oil can flow in the TTV test outflow pipe 98. As a result, as shown in FIG. 5, when the TTV first circulation state is set, the control oil flows out from the TTV space A2 through the TTV test outlet 434. Accordingly, it is confirmed in advance before the start of the operation test that the position of the TTV first partitioning portion 443a is at the position of the TTV first distribution state.
  • the TTV trip device 40 switches the control oil distribution state in the TTV space A2 from the TTV first distribution state to the TTV third distribution state by the TTV switching unit 44 for the operation test.
  • the TTV first partition 443a is disposed on the test outlet 236 as the TTV third distribution state
  • the TTV second partition 443b is disposed on the TTV outlet 433.
  • the TTV first outlet 431, and the TTV third partition 443 c is arranged between the TTV first inlet 421 and the TTV second outlet 432.
  • the TTV switching unit 44 operates normally and switches from the TTV first distribution state to the TTV third distribution state depending on whether or not the control oil outflow from the TTV test outflow pipe 98 decreases. It is possible to determine whether or not
  • the switching unit 24 switches from the first flow state to the third flow state, thereby closing the opened test outlet 236 and opening / closing state.
  • the TTV trip device 40 when the operation test is performed, even if the TTV first distribution state is switched to the TTV third distribution state, the TTV first flow from the TTV first inlet 421 is used in the TTV casing 41. Since the control oil is circulating at the outlet 431, the distribution state of the control oil in the TTV space A2 can be maintained. Therefore, it is possible to easily perform the operation test while maintaining the flow state during the normal operation without stopping the steam turbine 1.
  • the steam outlet 1 is urgently connected by connecting the first outlet 231 to the closing valve communication pipe 93 connected to the closing valve 30 and connecting the second outlet 232 to the adjustment valve communication pipe 92 connected to the adjustment valve 10.
  • the mechanical trip device 20 which is an emergency shut-off device that shuts off the closing valve 30 and the adjusting valve 10 urgently.
  • the mechanical trip device 20 of the present embodiment it is possible to easily perform an operation test while maintaining a flow state during normal operation, thereby suppressing the shaft portion 241 and the partition portion 243 from being fixed to the housing 21. it can. Thereby, the reliability of the operation
  • the TTV first outlet 431 is connected to the internal communication pipe 97 that communicates with the storage chamber 311, and the TTV second outlet 432 is connected to the casing discharge pipe 94, so that an emergency shut-off device that emergency discharges from the storage chamber 311 It can be used as a TTV trip device 40.
  • the TTV shaft portion 441 and the TTV partition portion 443 are fixed to the TTV casing 41 because the operation test can be easily performed while maintaining the distribution state during the normal operation. This can be suppressed. Thereby, the reliability of the operation
  • the mechanical trip device 20 and the TTV trip device 40 are independently arranged outside the steam turbine 1, the shaft portion 241 and the TTV shaft portion 441 are operated in the steam turbine 1 when performing an operation test. Regardless of the situation, it can be moved easily by operating from the outside.
  • the mechanical trip device 20 formed with a simple structure that only switches the switching unit 24 configured by the shaft portion 241 and the partition portion 243 with respect to the housing 21,
  • the emergency shutdown system 2 can be configured easily.
  • the TTV trip device 40 formed with a simple structure that simply switches the TTV switching unit 44 including the TTV shaft unit 441 and the TTV partition unit 443 with respect to the TTV casing 41 is used.
  • the emergency cutoff system 2 can be configured easily.
  • redundancy can be provided by arranging two mechanical trip devices 20 and TTV trip devices 40 in parallel. Therefore, even if any one of the mechanical trip device 20 and the TTV trip device 40 breaks down, by switching the open / close state of the first outflow valve V1 and the second outflow valve V2, the mechanical device on the non-failed side Control oil can be supplied via the trip device 20 or the TTV trip device 40.
  • the turbine In an emergency, the turbine can be tripped through an emergency shut-off device that has not failed. Thereby, the steam turbine 1 can be operated stably without stopping the steam turbine 1 due to a failure of the emergency shutoff system.
  • two closing valve inlets 312 are provided for the storage chamber 311, and the control oil is discharged at the time of emergency stop by the two mechanical trip devices 20 and the TTV trip device 40 arranged in parallel.
  • the control oil accumulated in the storage chamber 311 can be quickly discharged, and the steam turbine 1 can be quickly brought to an emergency stop.
  • two mechanical trip devices 20 and TTV trip devices 40 are arranged in parallel, but the number is not limited to two. For example, three or more may be arranged, or only one may be arranged.
  • the casing 21 of the mechanical trip device 20 and the TTV casing 41 of the TTV trip device 40 are not limited to the rectangular cylindrical shape, and may have other shapes.
  • the casing 21 and the TTV casing 41 may have a cylindrical shape.
  • control section is switched from the inlet 22 to the first outlet 231 by switching to the third distribution state by the switching unit 24, and the open / close state of the test outlet 236 is easily switched. An operational test can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Turbines (AREA)
  • Multiple-Way Valves (AREA)

Abstract

 緊急遮断装置は、内部に設けられた空間(A1)に制御油を流入させる流入口(22)と空間(A1)から前記制御油を流出させる複数の流出口(23)とが形成されている筐体(21)と、空間(A1)を形成する筐体(21)の内周面に摺動することで前記複数の流出口(23)との相対位置を変化させて、空間(A1)内での前記制御油の流通状態を切り替える切替部(24)と、を備える。切替部(24)は、第一流入口(221)から第一流出口(231)まで前記制御油を流通させる第一流通状態と、第一流入口(221)から第一流出口(231)まで前記制御油を流通させながら、試験流出口(236)の開閉状態が切り替えられる第三流通状態とに、前記流通状態を切り替える。

Description

緊急遮断装置及びこれを備える緊急遮断システム
 本発明は、緊急遮断装置及びこれを備える緊急遮断システムに関する。
 原子力発電プラントや火力発電プラント等の発電プラント及び石油精製、石油化学プラント、LNGプラントでは、蒸気タービンにプラントプロセスで発生した蒸気を供給して蒸気タービンのロータに連結された発電機や圧縮機等を回転駆動して発電もしくは圧縮機の動力源としている。この蒸気タービンでは、回転体やプラント機器が安全に運転することが困難な緊急時に、蒸気タービンの回転を急速に止めるタービントリップが行われ、機器を保護する。タービントリップは、蒸気タービンに蒸気を供給する供給路に設けられている主蒸気塞止弁を閉塞し、蒸気タービンへの蒸気の供給を断つことで実施される。
 このようなタービントリップを行う緊急遮断装置が、例えば、特許文献1にタービン非常装置として記載されている。特許文献1に記載のタービン非常装置は、主蒸気塞止弁である蒸気止め弁への制御油の供給を制御する電磁弁とマスタートリップ弁とを複数有している。このタービン非常装置は、マスタートリップ弁を構成するスプール弁において、通常運転時に不使用の閉止ポートと油圧供給ポートとを常時連通するようにスプールを構成している。
特開平10-131711号公報
 ところで、上述したような緊急遮断装置は、特許文献1のように制御油を切り替えるスプール式の弁構造を有している。通常運転時には、緊急遮断装置は、主蒸気塞止弁へ制御油を供給するように内部の流路が設定されている。緊急遮断装置から制御油が供給されることで、主蒸気塞止弁は弁が開放状態とされて蒸気を蒸気タービンへ供給可能とされている。緊急停止時には、緊急遮断装置は、制御油の供給を断つように内部の流路を切り替えることで主蒸気塞止弁を閉塞している。
 したがって、緊急遮断装置は、緊急停止時やプラント停止時のように、限られた状況下でしか遮断動作が実施されることがない。ところが、緊急遮断装置は、使用頻度が低くとも、緊急停止時には必ず動作させる必要があり、遮断動作が確実に実施できるか否か確認を行う動作試験を運転中に定期的に行う事が出来れば緊急遮断装置の信頼性を向上させることができる。
 しかしながら、緊急遮断装置は、通常運転時に制御油を供給し続ける必要があり、動作試験を実施する際にも、制御油の供給を停止しないように実施する必要がある。そのために、複数の装置を配管等で接続して設置し、制御油を迂回させて供給するなど制御油の供給を停止しないための対策を行う必要があり、動作試験を実施することが非常に難しい。
 本発明は、容易に動作試験を実施することが可能な緊急遮断装置及びこれを備える緊急遮断システムを提供する。
 本発明の第一の態様に係る緊急遮断装置は、内部に設けられた空間に制御油を流入させる流入口と前記空間から前記制御油を流出させる複数の流出口とが形成されている筐体と、前記空間を形成する前記筐体の内周面に摺動することで前記複数の流出口との相対位置を変化させて、前記空間内での前記制御油の流通状態を切り替える切替部と、を備え、前記筐体は、前記複数の流出口として、前記流入口から前記空間に流入した前記制御油を流出させると共に前記制御油を前記空間に逆流させる第一流出口と、前記流入口から前記空間に流入した前記制御油を流出させる第二流出口と、前記第一流出口から前記空間に逆流した前記制御油を排出させる排出口と、動作試験を行う際に、前記切替部によって開閉状態が切り替えられる試験流出口と、を有し、前記切替部は、前記流入口から前記第一流出口まで前記制御油を流通させる第一流通状態と、前記流入口から前記第二流出口まで前記制御油を流通させ、前記第一流出口から逆流した前記制御油を前記排出口まで流通させる第二流通状態と、前記流入口から前記第一流出口まで前記制御油を流通させながら、前記試験流出口の開閉状態が切り替えられる第三流通状態とに、前記流通状態を切り替える。
 このような構成によれば、動作試験を行う際に、切替部によって第一流通状態から第三流通状態に切り替えることで、試験流出口の開閉状態を切り替えることができる。筐体内では、第一流通状態から第三流通状態に切り替えても、流入口から第一流出口まで制御油が流通しているため、空間内の制御油の流通状態を維持することができる。したがって、緊急遮断装置を停止させることなく、通常運転時の流通状態を維持しながら、容易に動作試験を実施することができる。
 本発明の第二の態様に係る緊急遮断装置は、前記第一の態様において、前記第一流出口は、内部に満たされた前記制御油が排出されることで蒸気タービンへの蒸気の供給を遮断する塞止弁に繋がる塞止弁連通管に接続され、前記第二流出口は、前記蒸気タービンへの蒸気の供給量を調整する調整弁に繋がる調整弁連通管に接続され、前記排出口は、前記空間内の前記制御油を外部に排出する筐体排出管に接続され、前記切替部は、前記蒸気タービンを緊急停止させる際に、前記第一流通状態から前記第二流通状態へと切り替えられ、前記動作試験を行う際に、前記第一流通状態から前記第三流通状態へと切り替えられてもよい。
 このよう構成によれば、第一流出口を塞止弁に繋がる塞止弁連通管に接続し、第二流出口を調整弁に繋がる調整弁連通管に接続することで、蒸気タービンを緊急停止させる際に塞止弁や調整弁を緊急遮断させるメカニカルトリップ装置として用いることができる。
 本発明の第三の態様に係る緊急遮断装置は、前記第一の態様において、前記第一流出口は、内部に満たされた前記制御油が排出されることで蒸気タービンへの蒸気の供給を遮断する塞止弁の油筒内部に連通する内部連通管に接続され、前記第二流出口は、前記空間内の前記制御油を外部に排出する筐体排出管に接続され、前記排出口は、前記塞止弁の油筒内部の前記制御油を外部に排出する塞止弁排出管に接続され、前記切替部は、前記蒸気タービンを緊急停止させる際に、前記第一流通状態から前記第二流通状態へと切り替えられる。前記動作試験を行う際に、前記第一流通状態から前記第三流通状態へと切り替えられてもよい。
 このよう構成によれば、第一流出口を塞止弁の内部に連通する内部連通管に接続し、第二流出口を筐体排出管に接続することで、塞止弁の内部から制御(駆動)油を緊急排出するTTVトリップ装置として用いることができる。
 本発明の第四の態様に係る緊急遮断システムは、内部に満たされた前記制御油が排出されることで蒸気タービンへの蒸気の供給を遮断する塞止弁と、前記蒸気タービンへの蒸気の供給量を調整する調整弁と、本発明の第二の態様の緊急遮断装置とを備える。
 本発明の第五の態様に係る緊急遮断システムは、本発明の第三の態様において、本発明の第二の態様の緊急遮断装置を備えていてもよい。
 このよう構成によれば、筐体に対して切替部を切り替えるだけの簡易な構造で形成された緊急遮断装置によって、簡易に緊急遮断システムを構成できる。
 本発明の第六の態様に係る緊急遮断システムは、本発明の第四の態様において、本発明の第二の態様の緊急遮断装置が並列に複数配置されていてもよい。
 本発明の第七の態様に係る緊急遮断システムは、本発明の第五の態様において、本発明の第三の態様の緊急遮断装置が並列に複数配置されてもよい。
 このよう構成によれば、並列に複数配置することで、冗長性を持たせることができる。そのため、一つの緊急遮断装置が故障した場合であっても、故障していない他の緊急遮断装置を介して制御油を供給することができる。また、緊急時には故障していない緊急遮断装置を介してタービンをトリップさせる事ができる。これにより、緊急遮断システムの故障により蒸気タービンを停止することなく、安定して蒸気タービンを運転することができる。
 上記した緊急遮断装置によれば、動作試験時に切替部によって第三流通状態に切り替えることで、流入口から第一流出口まで制御油を流通させながら、試験流出口の開閉状態を切り替えて、容易に動作試験を実施することができる。
本発明の実施形態における緊急遮断システムを示す模式図である。 本発明の実施形態における通常運転時のトリップ装置を示す模式図である。 本発明の実施形態における緊急停止時のメカニカルトリップ装置を示す模式図である。 本発明の実施形態における動作試験時のメカニカルトリップ装置を示す模式図である。 本発明の実施形態における通常運転時のTTVトリップ装置を示す模式図である。 本発明の実施形態における緊急停止時のTTVトリップ装置を示す模式図である。 本発明の実施形態における動作試験時のTTVトリップ装置を示す模式図である。
 以下、本発明における実施形態について図1から図7を参照して説明する。
 図1は、本発明の実施形態における緊急遮断システムを示す模式図である。図2は、本発明の実施形態における通常運転時のトリップ装置を示す模式図である。図3は、本発明の実施形態における緊急停止時のメカニカルトリップ装置を示す模式図である。図4は、本発明の実施形態における動作試験時のメカニカルトリップ装置を示す模式図である。図5は、本発明の実施形態における通常運転時のTTVトリップ装置を示す模式図である。図6は、本発明の実施形態における緊急停止時のTTVトリップ装置を示す模式図である。図7は、本発明の実施形態における動作試験時のTTVトリップ装置を示す模式図である。
 緊急遮断システム2は、蒸気タービン1への蒸気Sの供給を緊急遮断する。本実施形態では、緊急遮断システム2において、蒸気タービン1を定常運転させるために蒸気Sを供給し続けている状態を通常運転時とする。本実施形態では、緊急遮断システム2において、軸振動過大やロータ過速度などの回転体異常やプラント機器の異常が生じて蒸気タービン1及びプラントの緊急停止が必要な場合に、蒸気タービン1を緊急停止するために蒸気Sの供給を遮断している状態を緊急停止時とする。
 緊急遮断システム2が用いられる蒸気タービン1は、塞止弁30及び調整弁10を介して上流側に供給される蒸気Sによってロータ(不図示)が回転駆動される。蒸気タービン1は、このロータの回転により、圧縮機や発電機等の被駆動機を回転駆動させる。
 緊急遮断システム2は、蒸気タービン1への蒸気Sの供給を制御する各種制御装置に供給する制御(駆動)油の流れを調整する。本実施形態の緊急遮断システム2は、図1に示すように、蒸気タービン1への蒸気Sの供給量を調整する調整弁10(GV:Governing Valve)と、緊急停止時に蒸気タービン1への蒸気Sの供給を遮断する塞止弁30(MSV:Main Stop ValveもしくはTTV:Trip and Throttle Valve)と、不図示の供給源から供給される制御油を塞止弁30に送る複数のメカニカルトリップ装置20と、を備えている。緊急遮断システム2では、調整弁10、塞止弁30、及びメカニカルトリップ装置20が、内部に制御油が流通する複数の配管によって接続されている。
 調整弁10は、弁開度を調整することで、蒸気タービン1の上流側に供給する蒸気Sの供給量を調整する。調整弁10は、供給される制御油にて動作する油筒開度を調整することで、弁開度を調整して蒸気Sの供給量を増加、減少させ、出力や回転数を調整する。本実施形態の調整弁10は、制御油の供給源(不図示)に繋がれた供給配管91が分岐して繋がっている。調整弁10は、複数のメカニカルトリップ装置20に対して配管の一つである調整弁連通管92を介して繋がれている。
 通常運転時に、調整弁10は、供給源から配管の一つである供給配管91を介して制御油が供給される。緊急停止時に、調整弁10は、供給配管91だけでなく、調整弁連通管92を介してメカニカルトリップ装置20からも制御油が供給され、調整弁10の油筒の閉方向に導かれ調整弁10を遮断する。
 メカニカルトリップ装置20は、緊急停止時に調整弁10に制御油を供給するとともに、塞止弁30への制御油の供給を遮断する緊急遮断装置である。本実施形態のメカニカルトリップ装置20は、調整弁10及び塞止弁30に対して並列して二つ配置されている。図2に示すように、メカニカルトリップ装置20は、内部に設けられた空間A1に制御油を流入する筐体21と、空間A1内での制御油の流通状態を切り替える切替部24と、を備えている。
 並列配置された二つのメカニカルトリップ装置20は、供給配管91が分岐して繋がれており、同じ制御油の供給源から制御油が供給される。並列配置された二つのメカニカルトリップ装置20は、調整弁10に繋がる調整弁連通管92が分岐して繋がっており、緊急停止時に同じ調整弁10へ制御油を供給する。並列配置された二つのメカニカルトリップ装置20は、塞止弁30に繋がる一つの塞止弁連通管93に分岐して繋がっており、同じ塞止弁30へ制御油を供給する。メカニカルトリップ装置20は、外部から操作可能なように、蒸気タービン1の外部に独立して配置されている。
 筐体21は、軸線O1を中心として矩形筒状をなして延びている。本実施形態の筐体21は、内部の空間A1に制御油を流入する複数の流入口22と、空間A1から制御油を流出する複数の流出口23と、が形成されている。
 流入口22は、軸線O1を挟んで筐体21の片方の壁部を貫通して二つ形成されている。本実施形態の流入口22は、供給配管91が分岐して接続される第一流入口221と、第一流入口221に繋がる供給配管91がさらに分岐して接続される第二流入口222とを有する。
 第一流入口221は、筐体21の中心付近に形成されている。
 第二流入口222は、接続されている供給配管91に、内部を流れる制御油の流量を一定量に制限する供給側オリフィスOR1が配置されている。第二流入口222は、筐体21の端部付近に形成されている。
 ここで、筐体21において、第一流入口221に対して、第二流入口222が形成されていない側の端部を第一端部E1とし、第二流入口222が形成されている側の端部を第二端部E2とする。
 複数の流出口23は、筐体21の軸線O1を挟んで流入口22が形成されている壁部と向かい合う壁部に貫通して形成されている。本実施形態の流出口23は、第一流出口231と、第二流出口232と、第一排出口233と、第二排出口234と、第三排出口235と、試験流出口236とを有する。
 第一流出口231は、塞止弁30に繋がる塞止弁連通管93に接続されている。第一流出口231に繋がる塞止弁連通管93には、緊急遮断装置の作動試験を実施するために、内部を流れる制御油の切り替えを行うための第一流出弁V1が設けられている。第一流出口231は、通常運転時に第一流入口221から空間A1に流入した制御油を塞止弁連通管93に流出させると共に、緊急停止時に塞止弁連通管93から流れてきた制御油を空間A1に逆流させる。第一流出口231は、筐体21の中心付近であって、第一流入口221よりも軸線方向の第二端部E2側にずれた位置に形成されている。
 第一流出弁V1は、通常運転時には開放されており、緊急遮断装置の作動試験実施等の必要に応じて手動で閉塞されることで開閉状態を変更可能とされている。
 第二流出口232は、調整弁10に繋がる調整弁連通管92に接続されている。第二流出口232に繋がる調整弁連通管92には、緊急遮断装置の作動試験を実施するために、内部を流れる制御油の切り替えを行うための第二流出弁V2が設けられている。第二流出口232は、緊急停止時に第一流入口221から空間A1に流入した制御油を調整弁連通管92に流出させる。第二流出口232は、筐体21の中心付近であって、第一流入口221を挟んで第一流出口231とは軸線方向の反対側である第一端部E1側にずれた位置に形成されている。
 第二流出弁V2は、通常運転時には開放されており、緊急遮断装置の作動試験実施等の必要に応じて手動で閉塞されることで開閉状態を変更可能とされている。
 第一排出口233は、緊急遮断システム2の外部に制御油を排出する筐体排出管94に接続されている。第一排出口233は、通常運転時は制御油が流通せずに、緊急停止時に第一流出口231から空間A1に逆流した制御油を筐体排出管94に排出する。第一排出口233は、筐体21の中心付近であって、軸線方向の位置が第一流出口231よりも第二端部E2側に形成されている。
 第二排出口234は、第一排出口233と同様に、外部に制御油を排出する筐体排出管94に接続されている。第二排出口234は、通常運転時、緊急停止時に制御油が流通しない。第二排出口234は、切替部24から漏れ出た制御油を排出する。第二排出口234は、筐体21の中心付近であって、軸線方向の位置が第二流出口232よりも第一端部E1側に形成されている。
 第三排出口235は、切替部24を動作させるために、緊急停止時に筐体21内の制御油を排出するトリップ流出配管95に接続されている。第三排出口235は、通常運転時に制御油が流通しておらず、緊急停止時に空間A1から制御油トリップ流出配管95に排出する。第三排出口235は、軸線方向の位置が第一排出口233よりも第二端部E2側であって、第二流入口222と対向する位置に形成されている。
 トリップ流出配管95は、マニュアルバルブ(手動トリップ装置)V3が設けられた手動トリップ流出配管951と、ソレノイドバルブV4が設けられた自動トリップ流出配管952とに下流側に分岐している。
 マニュアルバルブ(手動トリップ装置)V3及びソレノイドバルブV4は、通常運転時には閉塞されており、緊急停止時にマニュアルバルブ(手動トリップ装置)V3及びソレノイドバルブV4の少なくとも一方が開放されることで、トリップ流出配管95内に制御油を流通させる。
 試験流出口236は、動作試験を行う際に、制御油の流通状態を確認するための試験用流出配管96に接続されている。試験流出口236は、動作試験を行う際に、切替部24によって開閉状態が切り替えられる。本実施形態の試験流出口236は、通常運転時に開放されて空間A1に流入した制御油を排出可能とされ、動作試験時に閉塞されて制御油が流通しないようにされている。試験流出口236は、第一排出口233よりも第二端部E2側で、第三排出口235と第一排出口233とに挟まれた位置に形成されている。
 試験用流出配管96は、制御油の緊急遮断装置のパーシャルストローク試験時に使用される試験用弁V5が設けられている。
 試験用弁V5は、通常運転時には閉塞されており、動作試験時に開放されることで、試験用流出配管96内に制御油を排出させる。
 切替部24は、空間A1を形成する筐体21の内周面に摺動して複数の流出口23との相対位置が変化することで、空間A1内での制御油の流通状態を切り替える。本実施形態の切替部24は、軸線方向に伸びる軸部241と、軸部241を軸線方向に付勢する付勢部242と、軸部241に固定された複数の仕切部243と、空間A1内での仕切部243の位置を定める位置決め部244とを有する。
 軸部241は、筐体21の中心軸である軸線O1を中心に円柱状をなして延在している。軸部241は、空間A1内で軸線方向に移動可能な長さで形成されている。
 付勢部242は、軸部241を軸線方向の第一端部E1から第二端部E2に向かって付勢している。付勢部242は、筐体21の空間A1を形成する内周面のうちの第一端部E1側の内周面と、軸部241の第一端部E1側の端面と、に固定されている。付勢部242としては、例えば、コイル状バネが用いられる。
 仕切部243は、筐体21の内周面に対して全周が接触するように形成されている。つまり、仕切部243は、空間A1を複数に区画している。仕切部243は、軸部241と共に軸線方向に移動する。本実施形態の仕切部243は、軸線方向と直交する断面が筐体21の内周面と摺接するような矩形状をなし、内部に軸部241が挿通して固定されている。本実施形態の仕切部243は、軸線方向の第二端部E2側から、第一仕切部243a、第二仕切部243b、第三仕切部243c、第四仕切部243dの順に四つ設けられている。
 第一仕切部243aは、第二端部E2側の軸部241の端面に固定されている。第一仕切部243aは、通常運転時に試験流出口236と第一排出口233との間に配置されている。第一仕切部243aは、緊急停止時に第三排出口235と試験流出口236との間に配置されている。第一仕切部243aは、動作試験時に試験流出口236上に配置されて、試験流出口236を閉塞する。
 第二仕切部243bは、第一仕切部243aよりも第一端部E1側で、軸部241に固定されている。第二仕切部243bは、通常運転時に第一排出口233と第一流出口231との間に配置されている。第二仕切部243bは、緊急停止時に試験流出口236と第一排出口233との間に配置されている。第二仕切部243bは、動作試験時に、通常運転時とは僅かにずれた状態で第一排出口233と第一流出口231との間に配置されている。
 第三仕切部243cは、第二仕切部243bよりも第一端部E1側で軸部241に固定されている。第三仕切部243cは、通常運転時に第一流入口221と第二流出口232との間に配置されている。第三仕切部243cは、緊急停止時に第一流出口231と第一流入口221との間に配置されている。第三仕切部243cは、動作試験時に、通常運転時とは僅かにずれた状態で第一流入口221と第二流出口232との間に配置されている。
 第四仕切部243dは、第三仕切部243cよりも第一端部E1側であって、軸部241の第一端部E1側の端面よりも第二端部E2側で軸部241に固定されている。第四仕切部243dは、通常運転時に第二排出口234よりも第一端部E1側に配置されている。第四仕切部243dは、緊急停止時に第二流出口232と第二排出口234との間に配置されている。第四仕切部243dは、動作試験時に、通常運転時とは僅かにずれた状態で第二排出口234よりも第一端部E1側に配置されている。
 位置決め部244は、空間A1での軸部241の移動を規制する。本実施形態の位置決め部244は、軸部241の第一端部E1側への移動を規制する第一位置決め部244bと、軸部241の第二端部E2側への移動を規制する第二位置決め部244aと、を有する。
 第一位置決め部244bは、試験流出口236と第一排出口233との間で、筐体21の内周面から内側に突出して形成されている。本実施形態の第一位置決め部244bは、第一仕切部243aの第一端部E1側を向く面と接触することで、軸部241の第一端部E1側への軸線方向の移動を規制する。第一位置決め部244bは、通常運転時に第一仕切部243aが試験流出口236を閉塞しない位置に配置されるように形成されている。
 第二位置決め部244aは、第三排出口235と試験流出口236との間で、筐体21の内周面から内側に突出して形成されている。本実施形態の第二位置決め部244aは、第一仕切部243aの第二端部E2側を向く面と接触することで、軸部241の第二端部E2側への軸線方向の移動を規制する。第二位置決め部244aは、緊急停止時に第一仕切部243aが第三排出口235及び第二流入口222を閉塞しない位置に配置されるように形成されている。
 切替部24は、上記のように軸部241の移動に伴って、空間A1を複数に区分けする仕切部243を軸線方向に移動させることで、空間A1内での制御油の流通状態を切り替える。本実施形態では、図2に示すように、通常運転時の流通状態であって、第一流入口221から第一流出口231まで制御油を流通させる流通状態を第一流通状態とする。図3に示すように、緊急停止時の流通状態であって、第一流入口221から第二流出口232まで制御油を流通させ、第一流出口231から逆流した制御油を第一排出口233まで流通させる流通状態を第二流通状態とする。図4に示すように、動作試験時の流通状態であって、第一流入口221から第一流出口231まで制御油を流通させながら、試験流出口236の開閉状態が切り替えられた流通状態を第三流通状態とする。
 塞止弁30は、メカニカルトリップ装置20からの制御油の供給が停止または逆流されることで蒸気タービン1への蒸気Sを遮断する。塞止弁30は、通常運転時に制御油が供給されることで、蒸気タービン1への蒸気Sの供給を可能とする開状態にされる。逆に、塞止弁30は、緊急停止時に制御油が排出されることで、蒸気タービン1への蒸気Sの供給を停止する閉状態とされる。本実施形態の塞止弁30は、図1に示すように、内部に制御油を流通させる塞止弁連通管93を介してメカニカルトリップ装置20に接続されている。図5に示すように、本実施形態の塞止弁30は、塞止弁本体31と、塞止弁本体31への制御油の供給を調整する複数のTTVトリップ装置40とを有する。
 塞止弁本体31は、内部に制御油が満たされることで蒸気タービン1への蒸気Sの供給を遮断する弁(不図示)を開放し、制御油が排出されることで蒸気タービン1への蒸気Sの供給を遮断する弁を閉塞する。本実施形態の塞止弁本体31は、塞止弁本体31の油筒内部の空間である貯蔵室311と、貯蔵室311に制御油を流入させる塞止弁流入口312と、貯蔵室311を仕切るように配置されて貯蔵室311内を摺動する弁体313と、貯蔵室311から制御油を排出させる塞止弁排出口314とを有している。
 貯蔵室311は、供給された制御油が溜まるように塞止弁本体31の油筒内部に形成される。
 塞止弁流入口312は、貯蔵室311を挟み込むように二カ所形成されている。二つの塞止弁流入口312は、それぞれ別のTTVトリップ装置40と接続されている。
 弁体313は、貯蔵室311を区画した状態で、貯蔵室311内で摺動可能とされている。弁体313は、貯蔵室311に制御油が溜まると徐々に貯蔵室311内を摺動しながら上昇する。弁体313は、貯蔵室311に所定量の制御油が溜まることで、蒸気タービン1への蒸気Sの供給するよう蒸気タービン1の上流側にも設けられた弁を動かす。弁体313は、所定量以上の制御油を貯蔵室311に溜まると、内部に形成された流通孔313aから弁体313の下方から上方に制御油を流通させる。
 塞止弁排出口314は、貯蔵室311の弁体313よりも上方のスペースに連通している。塞止弁排出口314は、塞止弁排出管99に接続されている。塞止弁排出口314は、弁体313の流通孔313aを介して貯蔵室311の下方から上方に流通してきた制御油を塞止弁本体31の外部へ塞止弁排出管99から排出する。塞止弁排出管99は、後述するTTVトリップ装置40の筐体排出管94に接続されており、内部を流通する制御油を緊急遮断システム2の外部に排出する。
 TTVトリップ装置40は、塞止弁本体31の油筒内部から制御油を緊急排出するように、塞止弁本体31への制御油の流通を調整する緊急遮断装置である。本実施形態のTTVトリップ装置40は、図1に示すように、一つの塞止弁本体31に対して並列して二つ配置されている。図5に示すように、TTVトリップ装置40は、内部に設けられたTTV空間A2に制御油を流入するTTV筐体41と、TTV空間A2内での制御油の流通状態を切り替えるTTV切替部44と、を備えている。
 並列配置された二つのTTVトリップ装置40は、塞止弁連通管93が分岐して繋がれており、二つのメカニカルトリップ装置20からまとめて供給された制御油が再び分かれて供給される。並列配置された二つのTTVトリップ装置40は、それぞれ別の内部連通管97に繋がれて異なる塞止弁流入口312に接続されており、貯蔵室311内へ制御油を供給する。TTVトリップ装置40は、外部から操作可能なように、蒸気タービン1の外部に独立して配置されている。
 TTV筐体41は、軸線O2を中心として矩形筒状をなして延びている。TTV筐体41は、TTV空間A2に制御油を流入する複数のTTV流入口42と、TTV空間A2から制御油を流出する複数のTTV流出口43と、が形成されている。
 TTV流入口42は、軸線O2を挟んでTTV筐体41の片方の壁部に二つ形成されている。本実施形態のTTV流入口42は、塞止弁連通管93が接続されるTTV第一流入口421と、TTV第一流入口421に繋がる塞止弁連通管93が分岐して接続されるTTV第二流入口422とを有する。
 TTV第一流入口421は、接続されている塞止弁連通管93に、内部を流れる制御油の流量を一定量に制限するTTV供給側オリフィスOR2が配置されている。TTV第一流入口421は、TTV筐体41の中心付近に形成されている。
 TTV第二流入口422は、TTV筐体41の端部付近に形成されている。
 ここで、TTV筐体41において、TTV第一流入口421に対して、TTV第二流入口422が形成されていない側の端部をTTV第一端部E3とし、TTV第二流入口422が形成されている側の端部をTTV第二端部E4とする。
 複数のTTV流出口43は、TTV筐体41の軸線O2を挟んでTTV流入口42が形成されている壁部と向かい合う壁部に形成されている。本実施形態のTTV流出口43は、TTV第一流出口431と、TTV第二流出口432と、TTV排出口433と、TTV試験流出口434とを有する。
 TTV第一流出口431は、塞止弁流入口312を介して貯蔵室311に連通する内部連通管97に接続されている。TTV第一流出口431に繋がる内部連通管97には、TTV第一流出弁V6が設けられている。TTV第一流出口431は、通常運転時にTTV第一流入口421からTTV空間A2に流入した制御油を流出させると共に、緊急停止時に内部連通管97から流れてきた制御油をTTV空間A2に逆流させる。TTV第一流出口431は、TTV筐体41の中心付近であって、TTV第一流入口421よりも軸線方向のTTV第二端部E4側にずれた位置に形成されている。
 TTV第一流出弁V6は、通常運転時には開放されており、TTVトリップ装置40の作動試験等の必要に応じて手動で閉塞されることで開閉状態を変更可能とされている。
 TTV第二流出口432は、筐体排出管94に接続されている。TTV第二流出口432は、通常運転時は制御油が流通せずに、緊急停止時にTTV空間A2の制御油を流出させる。TTV第二流出口432は、TTV筐体41の中心付近であって、TTV第一流入口421を挟んでTTV第一流出口431とは軸線方向の反対側であるTTV第一端部E3側にずれた位置に形成されている。
 TTV排出口433は、筐体排出管94に接続されている。TTV排出口433は、通常運転時は制御油が流通せずに、緊急停止時にTTV第一流出口431からTTV空間A2に逆流した制御油を排出する。TTV排出口433は、TTV筐体41の中心付近であって、軸線方向の位置がTTV第一流入口421よりもTTV第二端部E4側に形成されている。
 TTV試験流出口434は、動作試験を行う際に、制御油の流通状態を確認するためのTTV試験用流出配管98に接続されている。TTV試験流出口434は、動作試験を行う際に、TTV切替部44によって開閉状態が切り替えられる。本実施形態のTTV試験流出口434は、動作試験前の通常運転時に開放されてTTV空間A2に流入した制御油を排出可能とされ、動作試験時に閉塞されて制御油が流通しないようにされている。TTV試験流出口434は、TTV排出口433よりTTV第二端部E4側に形成されている。
 TTV試験用流出配管98は、制御油のTTV試験用弁V7が設けられている。TTV試験用弁V7は、通常運転時には閉塞されており、動作試験時に開放されることで、TTV試験用流出配管98内に制御油を流通させている。
 TTV切替部44は、TTV空間A2を形成するTTV筐体41の内周面に摺動して複数の流出口23との相対位置が変化することで、TTV空間A2内での制御油の流通状態を切り替える。本実施形態のTTV切替部44は、軸線方向に伸びるTTV軸部441と、TTV軸部441を軸線方向に付勢するTTV付勢部442と、TTV軸部441に固定された複数のTTV仕切部443と、TTV空間A2内でのTTV仕切部443の位置を定めるTTV位置決め部444とを有する。
 TTV軸部441は、TTV筐体41の中心軸である軸線O2を中心に円柱状をなして延在している。TTV軸部441は、TTV空間A2内で軸線方向に移動可能な長さで形成されている。
 TTV付勢部442は、TTV軸部441を軸線方向のTTV第一端部E3からTTV第二端部E4に向かって付勢している。TTV付勢部442は、TTV筐体41のTTV空間A2を形成する内周面のうちのTTV第一端部E3側の内周面と、TTV軸部441のTTV第一端部E3側の端面と、に固定されている。TTV付勢部442としては、例えば、コイル状バネが用いられる。
 TTV仕切部443は、TTV筐体41の内周面に対して全周が接触するように形成されている。つまり、TTV仕切部443は、TTV空間A2を複数に区画している。TTV仕切部443は、TTV軸部441と共に軸線方向に移動する。本実施形態のTTV仕切部443は、軸線方向と直交する断面がTTV筐体41の内周面と摺接するような矩形状をなし、内部にTTV軸部441が挿通して固定されている。本実施形態のTTV仕切部443は、軸線方向のTTV第二端部E4側から、TTV第一仕切部443a、TTV第二仕切部443b、TTV第三仕切部443cの順に四つ設けられている。
 TTV第一仕切部443aは、TTV第二端部E4側のTTV軸部441の端面に固定されている。TTV第一仕切部443aは、通常運転時にTTV試験流出口434とTTV排出口433との間に配置されている。TTV第一仕切部443aは、緊急停止時にTTV試験流出口434よりもTTV第二端部E4側に配置されている。TTV第一仕切部443aは、動作試験時にTTV試験流出口434上に配置されて、TTV試験流出口434を閉塞する。
 TTV第二仕切部443bは、TTV第一仕切部443aよりもTTV第一端部E3側でTTV軸部441に固定されている。TTV第二仕切部443bは、通常運転時にTTV排出口433とTTV第一流出口431との間に配置されている。TTV第二仕切部443bは、緊急停止時にTTV試験流出口434とTTV排出口433との間に配置されている。TTV第二仕切部443bは、動作試験時に、通常運転時とは僅かにずれた状態でTTV排出口433とTTV第一流出口431との間に配置されている。
 TTV第三仕切部443cは、TTV第二仕切部443bよりもTTV第一端部E3側であって、TTV軸部441のTTV第一端部E3側の端面よりもTTV第二端部E4側でTTV軸部441に固定されている。TTV第三仕切部443cは、通常運転時にTTV第一流入口421とTTV第二流出口432との間に配置されている。TTV第三仕切部443cは、緊急停止時にTTV第一流出口431とTTV第一流入口421との間に配置されている。TTV第三仕切部443cは、動作試験時に、通常運転時とは僅かにずれた状態でTTV第一流入口421とTTV第二流出口432との間に配置されている。
 TTV位置決め部444は、TTV空間A2でのTTV軸部441の移動を規制する。本実施形態のTTV位置決め部444は、TTV軸部441のTTV第二端部E4側への移動を規制する。TTV位置決め部444は、TTV第二流入口422とTTV試験流出口434との間で、筐体21の内周面から内側に突出して形成されている。本実施形態のTTV位置決め部444は、TTV第一仕切部443aのTTV第二端部E4側を向く面と接触することで、TTV軸部441のTTV第一端部E3側への軸線方向の移動を規制する。TTV位置決め部444は、緊急停止時にTTV第一仕切部443aがTTV第二流入口422を閉塞しない位置に配置されるように形成されている。
 TTV切替部44は、上記のようにTTV軸部441の移動に伴ってTTV仕切部443を軸線方向に移動させることで、TTV空間A2内での制御油の流通状態を切り替える。本実施形態では、図5に示すように、通常運転時の流通状態であって、TTV第一流入口421からTTV第一流出口431まで制御油を流通させる流通状態をTTV第一流通状態とする。図6に示すように、緊急停止時の流通状態であって、TTV第一流入口421からTTV第二流出口432まで制御油を流通させ、TTV第一流出口431から逆流した制御油をTTV排出口433まで流通させる流通状態を第二流通状態とする。図7に示すように、動作試験時の流通状態であって、TTV第一流入口421からTTV第一流出口431まで制御油を流通させながら、TTV試験流出口434の開閉状態が切り替えられた流通状態を第三流通状態とする。
 次に、上記構成の緊急遮断システム2の動作について説明する。
 上記のような緊急遮断システム2では、通常運転時に、蒸気タービン1への蒸気Sの供給を可能する開状態とするために、供給源から供給配管91を介して制御油は、調整弁10及びメカニカルトリップ装置20に供給される。
 調整弁10は、制御油が供給されることで、弁開度が調整されて蒸気タービン1に蒸気Sを供給する。
 メカニカルトリップ装置20では、通常運転時であるために、空間A1内での制御油の流通状態が切替部24によって第一流通状態に切り替えられている。つまり、図2に示すように、通常運転時のメカニカルトリップ装置20では、第一流通状態として、第一仕切部243aが第一排出口233と試験流出口236との間に配置され、第二仕切部243bが第一排出口233と第一流出口231との間に配置され、第三仕切部243cが第一流入口221と第二流出口232との間に配置され、第四仕切部243dが第二排出口234よりも第一端部E1側に配置されている。
 また、供給配管91からメカニカルトリップ装置20に供給された制御油は、第一流入口221から空間A1内に流入する。第一流入口221から空間A1に流入した制御油は、第一流出口231から塞止弁連通管93に送られる。第一流出弁V1が通常運転時には開放されているために、塞止弁連通管93に流入した制御油は塞止弁30に送られる。
 また、供給配管91からメカニカルトリップ装置20に供給された制御油は、供給側オリフィスOR1によって流量が制限されながら、第二流入口222からも空間A1内に流入する。第二流入口222から空間A1に流入した制御油は、第三排出口235からトリップ流出配管95に流れるとともに、試験流出口236から試験用流出配管96に流れる。ここで、通常運転時には、マニュアルバルブ(手動トリップ装置)V3及びソレノイドバルブV4が閉塞されているために、トリップ流出配管95内で制御油は流通しない。同様に、通常運転時には、試験用弁V5が閉塞されているために、試験用流出配管96内で制御油は流通しない。その結果、第二流入口222と、第三排出口235及び試験流出口236との間の空間A1に制御油が滞留する。滞留した制御油は、第一仕切部243aを軸線方向の第一端部E1側に向かって付勢部242の付勢力に抗して押すことで、通常運転時の軸部241の位置が第一流通状態を保つように保持される。
 塞止弁連通管93から塞止弁30に流入した制御油は、TTVトリップ装置40を介して内部連通管97から塞止弁本体31に供給される。
 TTVトリップ装置40では、通常運転時であるために、TTV空間A2内での制御油の流通状態がTTV切替部44によってTTV第一流通状態に切り替えられている。つまり、図5に示すように、通常運転時のTTVトリップ装置40では、TTV第一流通状態として、TTV第一仕切部443aがTTV試験流出口434とTTV排出口433との間に配置され、TTV第二仕切部443bがTTV排出口433とTTV第一流出口431との間に配置され、TTV第三仕切部443cがTTV第一流入口421とTTV第二流出口432との間に配置されている。
 したがって、塞止弁連通管93からTTVトリップ装置40に供給された制御油は、TTV供給側オリフィスOR2によって流量が制限されながら、TTV第一流入口421からTTV空間A2内に流入する。TTV第一流入口421からTTV空間A2に流入した制御油は、TTV第一流出口431から内部連通管97に送られる。TTV第一流出弁V6が通常運転時には開放されているために、内部連通管97に流入した制御油は塞止弁本体31に送られる。
 塞止弁本体31に供給された制御油は、塞止弁流入口312から貯蔵室311に流入する。貯蔵室311では、所定量の制御油が溜まることで弁体313が上昇することで、塞止弁30を開状態とし、蒸気タービン1への蒸気Sの供給を可能としている。弁体313が上昇した後に、貯蔵室311に流入した制御油は弁体313の下方から上方に向かって流入孔を介して流通する。これにより、所定量を超える制御油は、塞止弁排出口314から塞止弁本体31の外部に排出される。塞止弁排出口314から排出された制御油は、塞止弁排出管99から筐体排出管94を介して緊急遮断システム2の外部に排出される。
 また、塞止弁連通管93からTTVトリップ装置40に供給された制御油は、TTV第二流入口422からもTTV空間A2内に流入する。TTV第二流入口422からTTV空間A2に流入した制御油は、TTV試験流出口434からTTV試験用流出配管98に流れる。ここで、通常運転時には、TTV試験用弁V7が閉塞されているために、TTV試験用流出配管98内で制御油は流通しない。その結果、TTV第二流入口422と、TTV試験流出口434との間のTTV空間A2に制御油が滞留する。滞留した制御油は、TTV第一仕切部443aを軸線方向のTTV第一端部E3側に向かって、TTV付勢部442の付勢力に抗して押すことで、通常運転時のTTV軸部441の位置がTTV第一流通状態を保つように保持される。
 また、本実施形態の緊急遮断システム2では、蒸気タービン1の軸振動過大等の異常が生じた際に蒸気タービン1を緊急停止させる緊急停止時に、塞止弁本体31内の制御油を排出して塞止弁30を閉状態とするために、貯蔵室311から制御油を排出する。
 具体的には、本実施形態の緊急遮断システム2では、緊急停止時にマニュアルバルブ(手動トリップ装置)V3及びソレノイドバルブV4の少なくとも一方を開放する。これにより、トリップ流出配管95内で制御油を流通し、第三排出口235から空間A1内の制御油が排出される。第二流入口222は、供給側オリフィスOR1によって供給配管91から流入する制御油の流量が制限されているため、第三排出口235から排出される制御油の流量が流入する流量を上回る。そのため、第一仕切部243aよりも第二端部E2側の空間A1内の制御油の量が減少する。したがって、図3に示すように、第一仕切部243aを軸線方向の第一端部E1側に向かって押す力が小さくなり、付勢部242の付勢力によって軸部241が第一仕切部243aを第二位置決め部244aに接触する位置まで移動する。その結果、メカニカルトリップ装置20では、空間A1内での制御油の流通状態が第一流通状態から第二流通状態に切り替わる。
 第二流通状態に切り替わることで、緊急停止時のメカニカルトリップ装置20では、第一仕切部243aが第三排出口235と試験流出口236との間に配置され、第二仕切部243bが試験流出口236と第一排出口233との間に配置され、第三仕切部243cが第一流出口231と第一流入口221との間に配置され、第四仕切部243dが第二流出口232と第二排出口234との間に配置される。
 第二流通状態において、第一流入口221から空間A1内に流入した制御油は、第二流出口232から調整弁連通管92に送られる。したがって、調整弁10には、供給配管91を介して供給源から直接供給される制御油と、調整弁連通管92を介してメカニカルトリップ装置20から供給される制御油が流入する。調整弁10は、調整弁連通管92を介し、流入する制御油が調整弁10の油筒の閉方向に導かれて閉塞され、蒸気タービン1への蒸気Sの供給を停止する。
 同時に、第二流通状態において、空間A1において第一流出口231と第一排出口233とが連通する。これにより、塞止弁連通管93を流通する制御油が逆流して第一流出口231から空間A1内に流入し、第一排出口233から筐体排出管94を介して外部に排出される。
 塞止弁連通管93を流通する制御油が逆流することで、TTVトリップ装置40のTTV第一仕切部443aよりもTTV第二端部E4側のTTV空間A2内の制御油は、TTV第二流入口422から塞止弁連通管93に流出する。これにより、TTV空間A2内のTTV第二端部E4側の内周面とTTV第一仕切部443aとの間のTTV空間A2内の制御油の量が減少する。したがって、図6に示すように、TTV第一仕切部443aを軸線方向のTTV第一端部E3側に向かって押す力が小さくなり、TTV付勢部442の付勢力によってTTV軸部441がTTV第一仕切部443aをTTV位置決め部444に接触する位置まで移動する。その結果、TTVトリップ装置40では、TTV空間A2内での制御油の流通状態がTTV第一流通状態からTTV第二流通状態に切り替わる。
 TTV第二流通状態に切り替わることで、緊急停止時のTTVトリップ装置40では、TTV第一仕切部443aがTTV試験流出口434よりもTTV第二端部E4側に配置され、TTV第二仕切部443bがTTV試験流出口434とTTV排出口433との間に配置され、TTV第三仕切部443cがTTV第一流出口431とTTV第一流入口421との間に配置される。
 TTV第一流入口421は、TTV供給側オリフィスOR2を介して塞止弁連通管93に接続されている。そのため、TTV第二流通状態において、TTV第三仕切部443cよりもTTV第一端部E3側のTTV空間A2内の制御油は、TTV第一流入口421ではなく、TTV第二流出口432から筐体排出管94を介して外部に排出される。
 同時に、TTV第二流通状態において、TTV第一流出口431とTTV排出口433とが連通する。これにより、内部連通管97を流通する制御油が逆流してTTV第一流出口431からTTV空間A2内に流入し、TTV排出口433から筐体排出管94を介して外部に排出される。さらに、内部連通管97を流通する制御油が逆流することで、塞止弁本体31の貯蔵室311に溜まっていた制御油は、塞止弁流入口312から内部連通管97に流出する。塞止弁流入口312から内部連通管97に流出した制御油も、TTV排出口433から筐体排出管94を介して外部に排出される。その結果、貯蔵室311内の制御油が排出されて弁体313が下方に移動する。これにより、塞止弁30は、閉状態となり、蒸気タービン1への蒸気Sの供給を遮断する。
 また、本実施形態の緊急遮断システム2では、通常運転時に定期的にメカニカルトリップ装置20やTTVトリップ装置40に対して切替部24やTTV切替部44が正しく動作するか否かを確認するための動作試験が実施される。
 メカニカルトリップ装置20で、動作試験を実施する際には、通常運転時に、緊急遮断装置のパーシャルストローク試験時に使用される試験用弁V5を開放させる。試験用弁V5が開放されることで、試験用流出配管96内では、制御油が流通可能となる。その結果、図2に示すように、第一流通状態となっている場合には、空間A1から試験流出口236を介して制御油を流出する。これにより、第一流通状態の位置に第一仕切部243aの位置があることを動作試験の開始前に予め確認する。
 この状態で、メカニカルトリップ装置20では、動作試験のために、空間A1内での制御油の流通状態を切替部24によって第一流通状態から第三流通状態に切り替える。これにより、図4に示すように、メカニカルトリップ装置20では、第三流通状態として、第一仕切部243aが試験流出口236上に配置され、第二仕切部243bが第一排出口233と第一流出口231との間に配置され、第三仕切部243cが第一流入口221と第二流出口232との間に配置され、第四仕切部243dが第二排出口234よりも第一端部E1側に配置される。
 軸部241が正常に移動して第一仕切部243aが試験流出口236を閉塞する位置に移動すると、試験用流出配管96からの制御油の流出が減少する。逆に、軸部241が移動せずに第一仕切部243aが試験流出口236を閉塞する位置まで移動していないと、試験用流出配管96から制御油が流出し続ける。したがって、試験用流出配管96からの制御油の流出が減少するか否かにより、切替部24が正常に動作して、第一流通状態から第三流通状態への切り替えを行うことができるか否かを判断することができる。
 TTVトリップ装置40で、動作試験を実施する際には、通常運転時に、TTV試験用弁V7を開放させる。TTV試験用弁V7が開放されることで、TTV試験用流出配管98内では、制御油が流通可能となる。その結果、図5に示し様に、TTV第一流通状態となっている場合には、TTV空間A2からTTV試験流出口434を介して制御油を流出する。これにより、TTV第一流通状態の位置にTTV第一仕切部443aの位置があることを動作試験の開始前に予め確認する。
 この状態で、TTVトリップ装置40では、動作試験のために、TTV空間A2内での制御油の流通状態をTTV切替部44によってTTV第一流通状態からTTV第三流通状態に切り替える。これにより、図7に示すように、TTVトリップ装置40では、TTV第三流通状態として、TTV第一仕切部443aが試験流出口236上に配置され、TTV第二仕切部443bがTTV排出口433とTTV第一流出口431との間に配置され、TTV第三仕切部443cがTTV第一流入口421とTTV第二流出口432との間に配置される。
 TTV軸部441が正常に移動してTTV第一仕切部443aがTTV試験流出口434を閉塞する位置に移動すると、TTV試験用流出配管98からの制御油の流出が減少する。逆に、TTV軸部441が移動せずにTTV第一仕切部443aがTTV試験流出口434を閉塞する位置まで移動していないと、TTV試験用流出配管98から制御油が流出し続ける。したがって、TTV試験用流出配管98からの制御油の流出が減少するか否かにより、TTV切替部44が正常に動作して、TTV第一流通状態からTTV第三流通状態への切り替えを行うことができるか否かを判断することができる。
 上記のようなメカニカルトリップ装置20によれば、動作試験を行う際に、切替部24によって第一流通状態から第三流通状態に切り替えることで、開放された試験流出口236を閉塞して開閉状態に切り替えることができる。筐体21内では、第一流通状態から第三流通状態に切り替えても、第一流入口221から第一流出口231まで制御油が流通しているため、空間A1内での制御油の流通状態を維持することができる。したがって、蒸気タービン1を停止させることなく、通常運転時の流通状態を維持しながら動作試験を容易に実施することができる。
 同様に、TTVトリップ装置40によれば、動作試験を行う際に、TTV第一流通状態からTTV第三流通状態に切り替えても、TTV筐体41内では、TTV第一流入口421からTTV第一流出口431で制御油が流通しているため、TTV空間A2内での制御油の流通状態を維持することができる。したがって、蒸気タービン1を停止させることなく、通常運転時の流通状態を維持しながら容易に動作試験を実施することができる。
 また、第一流出口231を塞止弁30に繋がる塞止弁連通管93に接続し、第二流出口232を調整弁10に繋がる調整弁連通管92に接続することで、蒸気タービン1を緊急停止させる際に塞止弁30や調整弁10を緊急遮断させる緊急遮断装置であるメカニカルトリップ装置20として用いることができる。本実施形態のメカニカルトリップ装置20では、通常運転時の流通状態を維持しながら動作試験を容易に実施できることで、筐体21に対して軸部241や仕切部243が固着してしまうことを抑制できる。これにより、メカニカルトリップ装置20としての緊急停止時の動作の信頼性の向上させることができる。
 また、TTV第一流出口431を貯蔵室311に連通する内部連通管97に接続し、TTV第二流出口432を筐体排出管94に接続することで、貯蔵室311から緊急排出する緊急遮断装置であるTTVトリップ装置40として用いることができる。本実施形態のTTVトリップ装置40では、通常運転時の流通状態を維持しながら動作試験を容易に実施できることで、TTV筐体41に対してTTV軸部441やTTV仕切部443が固着してしまうことを抑制できる。これにより、TTVトリップ装置40としての緊急停止時の動作の信頼性の向上させることができる。
 また、メカニカルトリップ装置20及びTTVトリップ装置40が蒸気タービン1の外部に独立して配置されていることで、動作試験を実施する際に、軸部241やTTV軸部441を蒸気タービン1の運転状況に関わらず、外部から操作して容易に移動させることができる。
 また、本実施形態の緊急遮断システム2では、筐体21に対して軸部241や仕切部243等で構成された切替部24を切り替えるだけの簡易な構造で形成されたメカニカルトリップ装置20によって、簡易に緊急遮断システム2を構成できる。同様に、緊急遮断システム2では、TTV筐体41に対してTTV軸部441やTTV仕切部443等で構成されたTTV切替部44を切り替えるだけの簡易な構造で形成されたTTVトリップ装置40によって、簡易に緊急遮断システム2を構成できる。
 また、メカニカルトリップ装置20やTTVトリップ装置40を並列して二つ配置していることで、冗長性を持たせることができる。そのため、いずれか一方のメカニカルトリップ装置20やTTVトリップ装置40が故障した場合であっても、第一流出弁V1や第二流出弁V2の開閉状態を切り替えることで、故障していない側のメカニカルトリップ装置20やTTVトリップ装置40を介して制御油を供給することができる。また、緊急時には故障していない緊急遮断装置を介してタービンをトリップさせることができる。これにより、緊急遮断システムの故障により蒸気タービン1を停止することなく、安定して蒸気タービン1を運転することができる。
 また、貯蔵室311に対して二つの塞止弁流入口312を設けて、並列して配置した二つのメカニカルトリップ装置20及びTTVトリップ装置40で、緊急停止時に制御油を排出させている。これにより、貯蔵室311に溜まった制御油を素早く排出することができ、蒸気タービン1を迅速に緊急停止させることができる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 なお、本実施形態では、メカニカルトリップ装置20やTTVトリップ装置40を並列して二つ配置したが、二つに限定されるものではない。例えば、三つ以上は配置されていてもよく、一つのみが配置されていてもよい。
 また、メカニカルトリップ装置20の筐体21やTTVトリップ装置40のTTV筐体41は、矩形筒状をなしていることに限定されるものではなく、他の形状であってもよい。例えば、筐体21やTTV筐体41は円筒状をなしていてもよい。
 上記した緊急遮断装置によれば、切替部24によって第三流通状態に切り替えることで流入口22から第一流出口231まで制御油を流通させながら、試験流出口236の開閉状態を切り替えて、容易に動作試験を実施することができる。
1            蒸気タービン
S            蒸気
2            緊急遮断システム
10          調整弁
20          メカニカルトリップ装置
21          筐体
O1          軸線
A1          空間
22          流入口
221        第一流入口
222        第二流入口
OR1        供給側オリフィス
E1          第一端部
E2          第二端部
23          流出口
231        第一流出口
232        第二流出口
233        第一排出口
234        第二排出口
235        第三排出口
236        試験流出口
24          切替部
241        軸部
242        付勢部
243        仕切部
243a      第一仕切部
243b      第二仕切部
243c      第三仕切部
243d      第四仕切部
244        位置決め部
244a      第二位置決め部
244b      第一位置決め部
30          塞止弁
31          塞止弁本体
311        貯蔵室
312        塞止弁流入口
313        弁体
313a      流通孔
314        塞止弁排出口
40          TTVトリップ装置
41          TTV筐体
O2          軸線
A2          TTV空間
42          TTV流入口
421        TTV第一流入口
422        TTV第二流入口
OR2        TTV供給側オリフィス
E3          TTV第一端部
E4          TTV第二端部
43          TTV流出口
431        TTV第一流出口
432        TTV第二流出口
433        TTV排出口
434        TTV試験流出口
44          TTV切替部
441        TTV軸部
442        TTV付勢部
443        TTV仕切部
443a      TTV第一仕切部
443b      TTV第二仕切部
443c      TTV第三仕切部
444        TTV位置決め部
91          供給配管
92          調整弁連通管
93          塞止弁連通管
94          筐体排出管
95          トリップ流出配管
951        手動トリップ流出配管
952        自動トリップ流出配管
96          試験用流出配管
97          内部連通管
98          TTV試験用流出配管
99          塞止弁排出管
V1          第一流出弁
V2          第二流出弁
V3          マニュアルバルブ(手動トリップ装置)
V4          ソレノイドバルブ
V5          試験用弁
V6          TTV第一流出弁
V7          TTV試験用弁

Claims (7)

  1.  内部に設けられた空間に制御油を流入させる流入口と前記空間から前記制御油を流出させる複数の流出口とが形成されている筐体と、
     前記空間を形成する前記筐体の内周面に摺動することで前記複数の流出口との相対位置を変化させて、前記空間内での前記制御油の流通状態を切り替える切替部と、を備え、
     前記筐体は、前記複数の流出口として、
     前記流入口から前記空間に流入した前記制御油を流出させると共に前記制御油を前記空間に逆流させる第一流出口と、
     前記流入口から前記空間に流入した前記制御油を流出させる第二流出口と、
     前記第一流出口から前記空間に逆流した前記制御油を排出させる排出口と、
     動作試験を行う際に、前記切替部によって開閉状態が切り替えられる試験流出口と、を有し、
     前記切替部は、
     前記流入口から前記第一流出口まで前記制御油を流通させる第一流通状態と、
     前記流入口から前記第二流出口まで前記制御油を流通させ、前記第一流出口から逆流した前記制御油を前記排出口まで流通させる第二流通状態と、
     前記流入口から前記第一流出口まで前記制御油を流通させながら、前記試験流出口の開閉状態が切り替えられる第三流通状態とに、前記流通状態を切り替える緊急遮断装置。
  2.  前記第一流出口は、内部に満たされた前記制御油が排出されることで蒸気タービンへの蒸気の供給を遮断する塞止弁に繋がる塞止弁連通管に接続され、
     前記第二流出口は、前記蒸気タービンへの蒸気の供給量を調整する調整弁に繋がる調整弁連通管に接続され、
     前記排出口は、前記空間内の前記制御油を外部に排出する筐体排出管に接続され、
     前記切替部は、
     前記蒸気タービンを緊急停止させる際に、前記第一流通状態から前記第二流通状態へと切り替えられ、
     前記動作試験を行う際に、前記第一流通状態から前記第三流通状態へと切り替えられる請求項1に記載の緊急遮断装置。
  3.  前記第一流出口は、内部に満たされた前記制御油が排出されることで蒸気タービンへの蒸気の供給を遮断する塞止弁の油筒内部に連通する内部連通管に接続され、
     前記第二流出口は、前記空間内の前記制御油を外部に排出する筐体排出管に接続され、
     前記排出口は、前記塞止弁の油筒内部の前記制御油を外部に排出する塞止弁排出管に接続され、
     前記切替部は、
     前記蒸気タービンを緊急停止させる際に、前記第一流通状態から前記第二流通状態へと切り替えられ、
     前記動作試験を行う際に、前記第一流通状態から前記第三流通状態へと切り替えられる請求項1に記載の緊急遮断装置。
  4.  内部に満たされた前記制御油が排出されることで蒸気タービンへの蒸気の供給を遮断する塞止弁と、
     前記蒸気タービンへの蒸気の供給量を調整する調整弁と、
     請求項2に記載の緊急遮断装置とを備える緊急遮断システム。
  5.  請求項4に記載の緊急遮断システムにおいて、
     請求項3に記載の緊急遮断装置を備える緊急遮断システム。
  6.  請求項4に記載の緊急遮断システムにおいて、
     請求項2に記載の緊急遮断装置が並列に複数配置されている緊急遮断システム。
  7.  請求項5に記載の緊急遮断システムにおいて、
     請求項3に記載の緊急遮断装置が並列に複数配置されている緊急遮断システム。
PCT/JP2014/081142 2014-11-26 2014-11-26 緊急遮断装置及びこれを備える緊急遮断システム WO2016084140A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016561121A JP6351191B2 (ja) 2014-11-26 2014-11-26 緊急遮断装置及びこれを備える緊急遮断システム
US15/528,954 US10443513B2 (en) 2014-11-26 2014-11-26 Emergency shutoff device and emergency shutoff system provided with same
EP14906984.1A EP3211185B1 (en) 2014-11-26 2014-11-26 Emergency shutoff device and emergency shutoff system provided with same
PCT/JP2014/081142 WO2016084140A1 (ja) 2014-11-26 2014-11-26 緊急遮断装置及びこれを備える緊急遮断システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081142 WO2016084140A1 (ja) 2014-11-26 2014-11-26 緊急遮断装置及びこれを備える緊急遮断システム

Publications (1)

Publication Number Publication Date
WO2016084140A1 true WO2016084140A1 (ja) 2016-06-02

Family

ID=56073764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081142 WO2016084140A1 (ja) 2014-11-26 2014-11-26 緊急遮断装置及びこれを備える緊急遮断システム

Country Status (4)

Country Link
US (1) US10443513B2 (ja)
EP (1) EP3211185B1 (ja)
JP (1) JP6351191B2 (ja)
WO (1) WO2016084140A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042745A (ja) * 2019-09-13 2021-03-18 日本ムーグ株式会社 蒸気タービン向け電動油圧アクチュエータシステムの油圧回路、及びそれを含む蒸気タービンシステム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104036A1 (ja) * 2015-12-17 2017-06-22 三菱重工コンプレッサ株式会社 蒸気タービンのトリップシステム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119905A (ja) * 1984-07-06 1986-01-28 Toshiba Corp タ−ビン制御装置
JPS6153408A (ja) * 1984-08-23 1986-03-17 Toshiba Corp タ−ビン非常停止装置
JPH03264708A (ja) * 1990-03-15 1991-11-26 Toshiba Corp 蒸気タービンの保安装置
JPH06117203A (ja) * 1992-10-05 1994-04-26 Toshiba Corp 蒸気タ−ビンの蒸気弁駆動装置
JPH07145705A (ja) * 1993-11-24 1995-06-06 Toshiba Corp タービン非常装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926680A (en) * 1957-04-26 1960-03-01 Gen Electric Emergency governing system for a steam turbine
DE1123875B (de) * 1960-06-21 1962-02-15 Forkardt Paul Kg Druckmittelbetriebener Steuerschieber
US4188974A (en) * 1976-10-21 1980-02-19 Harry Roger Bypass valve assembly and system
JPS5825601U (ja) * 1981-08-14 1983-02-18 三菱重工業株式会社 蒸気調速弁のステムフリ−テスト装置
JP2986148B2 (ja) 1996-10-29 1999-12-06 株式会社東芝 タービン非常装置
US6763791B2 (en) * 2001-08-14 2004-07-20 Borgwarner Inc. Cam phaser for engines having two check valves in rotor between chambers and spool valve
US7856999B2 (en) * 2005-03-17 2010-12-28 Borgwarner Inc. Automatic transmission having hydraulic valves with flow force compensation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119905A (ja) * 1984-07-06 1986-01-28 Toshiba Corp タ−ビン制御装置
JPS6153408A (ja) * 1984-08-23 1986-03-17 Toshiba Corp タ−ビン非常停止装置
JPH03264708A (ja) * 1990-03-15 1991-11-26 Toshiba Corp 蒸気タービンの保安装置
JPH06117203A (ja) * 1992-10-05 1994-04-26 Toshiba Corp 蒸気タ−ビンの蒸気弁駆動装置
JPH07145705A (ja) * 1993-11-24 1995-06-06 Toshiba Corp タービン非常装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042745A (ja) * 2019-09-13 2021-03-18 日本ムーグ株式会社 蒸気タービン向け電動油圧アクチュエータシステムの油圧回路、及びそれを含む蒸気タービンシステム
JP7297617B2 (ja) 2019-09-13 2023-06-26 日本ムーグ株式会社 電動油圧アクチュエータシステム、電動油圧アクチュエータシステムの油圧回路、及びそれを含む蒸気タービンシステム

Also Published As

Publication number Publication date
EP3211185B1 (en) 2018-09-19
JP6351191B2 (ja) 2018-07-04
US10443513B2 (en) 2019-10-15
US20170268432A1 (en) 2017-09-21
EP3211185A1 (en) 2017-08-30
EP3211185A4 (en) 2017-12-13
JPWO2016084140A1 (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
CN108374696B (zh) 蒸汽涡轮阀驱动装置
JP2015523528A (ja) 動的シールを備えた油圧システム
JP6351191B2 (ja) 緊急遮断装置及びこれを備える緊急遮断システム
BRPI0608360A2 (pt) dispositivo de alimentação em combustìves de um motor de turbina a gás com vazão de combustìvel regulada
US20070295402A1 (en) Pressurized gas supply and control system for actuation of active seals in turbomachinery
KR102453016B1 (ko) 연소장치
US10494947B2 (en) Operation method for steam turbine, and steam turbine
KR20100121375A (ko) 캐비테이션 손상이 감소된 스풀 밸브
WO2016061079A1 (en) Hydraulic actuator lockout
US7300060B2 (en) Seal staging system
WO2017145353A1 (ja) 弁システム及び蒸気タービン
US11333044B2 (en) Steam turbine, partition member, and method for operating steam turbine
US11933183B2 (en) Steam turbine valve abnormality monitoring system, steam turbine valve drive device, steam turbine valve device, and steam turbine plant
JP5937466B2 (ja) リリーフ弁装置
JP5823167B2 (ja) 蒸気弁装置
KR20150101694A (ko) 발전소 터빈 밸브용 유압 액츄에이터
JP2986148B2 (ja) タービン非常装置
EP3690205B1 (en) Steam turbine system
JP7267879B2 (ja) 蒸気タービン弁駆動装置
JP7053418B2 (ja) 組み合わせ中間弁装置およびタービン発電設備
JP2006183496A (ja) 流体供給用ポンプの運転方法
JP2015218762A (ja) 調圧弁
KR0165318B1 (ko) 이온 주입 장치의 진공 펌프용 냉각 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906984

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014906984

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15528954

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016561121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE