WO2016080450A1 - Vapor phase growth method - Google Patents

Vapor phase growth method Download PDF

Info

Publication number
WO2016080450A1
WO2016080450A1 PCT/JP2015/082425 JP2015082425W WO2016080450A1 WO 2016080450 A1 WO2016080450 A1 WO 2016080450A1 JP 2015082425 W JP2015082425 W JP 2015082425W WO 2016080450 A1 WO2016080450 A1 WO 2016080450A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
gas
film
wafer
vapor phase
Prior art date
Application number
PCT/JP2015/082425
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 裕輔
拓未 山田
英志 高橋
Original Assignee
株式会社ニューフレアテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニューフレアテクノロジー filed Critical 株式会社ニューフレアテクノロジー
Publication of WO2016080450A1 publication Critical patent/WO2016080450A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a vapor phase growth method for forming a film by supplying a gas.
  • a method of forming a high-quality semiconductor film there is an epitaxial growth technique in which a single crystal film is grown on a wafer by vapor phase growth.
  • a vapor phase growth apparatus using an epitaxial growth technique a wafer is placed on a support in a reaction chamber that is maintained at normal pressure or reduced pressure. Then, while heating the wafer, a process gas such as a source gas, which is a raw material for film formation, is supplied to the wafer surface from, for example, a shower plate above the reaction chamber. A thermal reaction of the source gas occurs on the wafer surface, and an epitaxial single crystal film is formed on the wafer surface.
  • a process gas such as a source gas, which is a raw material for film formation
  • Patent Document 1 describes a method of forming an AlN (aluminum nitride) buffer layer on a Si wafer and a method of desorbing hydrogen atoms on the surface of the Si wafer before forming GaN.
  • Patent Document 2 describes a method of flowing chlorine gas in order to remove deposits from chamber components in the process of forming a GaN-based semiconductor film using MOCVD.
  • a support portion 12 is provided in the reaction chamber 10 below the shower plate 11 and on which, for example, a wafer W, which is a semiconductor substrate, can be placed.
  • the support unit 12 may be, for example, an annular holder having an opening at the center as shown in FIG. 1 or a susceptor having a structure in contact with almost the entire back surface of the wafer W.
  • the rotating body unit 14 which rotates by arrange
  • the rotating body unit 14 has a rotating shaft 18 connected to a rotation driving mechanism 20 positioned below.
  • the rotation drive mechanism 20 can rotate the wafer W around the center of rotation, for example, at 50 rpm or more and 1000 rpm or less.
  • the diameter of the cylindrical rotating body unit 14 is substantially the same as the outer diameter of the support portion 12.
  • the rotating shaft 18 is rotatably provided at the bottom of the reaction chamber 10 via a vacuum seal member.
  • a wafer inlet / outlet and a gate valve (not shown) for loading / unloading a wafer are provided at the side wall portion of the reaction chamber 10.
  • the wafer W is configured to be transferred by a handling arm (not shown) between, for example, a load lock chamber (not shown) and the reaction chamber 10 connected by the gate valve.
  • a handling arm formed of synthetic quartz can be inserted into the space between the shower plate 100 and the support portion 12.
  • FIG. 2 is a process flow diagram of the vapor phase growth method of the present embodiment.
  • the vapor phase growth method of this embodiment is performed using the single wafer type epitaxial growth apparatus shown in FIG.
  • the vapor phase growth method of the present embodiment includes a first substrate carry-in step (S10), an AlN film formation step (S11), a GaN film formation step (S12), a first substrate carry-out step (S14), and a cleaning step (S16). ), A second substrate carry-in step (S18), an AlN film formation step (S20), a GaN film formation step (S22), and a second substrate carry-out step (S24).
  • a first substrate for example, a first wafer W1, which is a (111) -plane Si wafer
  • a first wafer W1 which is a (111) -plane Si wafer
  • a gate valve at the wafer entrance / exit of the reaction chamber 10 is opened, and the first wafer W1 in the load lock chamber is transferred into the reaction chamber 10 by a handling arm (not shown).
  • baking for example, hydrogen gas is supplied to the reaction chamber 10 through the gas supply unit 13. After baking for a predetermined time, for example, the heating output of the heating unit 16 is lowered to set the first wafer W1 to an epitaxial growth temperature, for example, 1000 ° C. or higher and 1100 ° C. or lower.
  • process gas is supplied from the gas supply unit 13 into the reaction chamber 10 via the shower plate 11.
  • AlN aluminum nitride
  • the process gas is, for example, trimethylaluminum (TMA), ammonia (NH 3 ), and hydrogen gas (H 2 ) as a carrier gas.
  • TMA trimethylaluminum
  • NH 3 ammonia
  • H 2 hydrogen gas
  • Trimethylaluminum (TMA) is a source gas of aluminum (Al)
  • ammonia (NH 3 ) is a source gas of nitrogen (N).
  • process gas is supplied from the gas supply unit 13 into the reaction chamber 10 via the shower plate 11.
  • a GaN (gallium nitride) film as the first film is formed on the surface of the AlN film of the first wafer W1 by epitaxial growth (S12).
  • the process gas includes a source gas containing gallium (Ga).
  • the process gas is, for example, trimethylgallium (TMG), ammonia (NH 3 ), and hydrogen gas (H 2 ) as a carrier gas.
  • TMG trimethylgallium
  • NH 3 ammonia
  • H 2 hydrogen gas
  • Trimethylgallium (TMG) is a gallium (Ga) source gas
  • ammonia (NH 3 ) is a nitrogen (N) source gas.
  • the reaction product adheres to the portions other than the first wafer W1 in the reaction chamber 10 as deposits.
  • a large amount of deposits adhere to the region of the support portion 12 where the reaction is promoted at a high temperature that is not covered with the wafer.
  • the deposit is, for example, GaN.
  • the film formed as the first film is not limited to GaN as long as the film is formed by supplying a source gas containing gallium (Ga).
  • Ga gallium
  • InGaN indium gallium nitride
  • AlGaN aluminum gallium nitride
  • GaAs gallium arsenide
  • the supply of the source gas from the gas supply unit 13 is stopped, the supply of the source gas onto the first wafer W1 is shut off, and only the hydrogen gas (H 2 ) of the carrier gas flows, The growth of the crystal film is finished.
  • the temperature of the first wafer W1 starts to be lowered.
  • the first wafer W1 on which the GaN single crystal film is formed is placed on the support unit 12, and the heating output of the heating unit 16 is stopped and lowered to a predetermined temperature.
  • the rotation of the rotating body unit 14 is stopped.
  • the push-up pins are raised to detach the first wafer W1 from the support portion 12.
  • the gate valve is opened again, and the handling arm is inserted between the shower plate 11 and the support portion 12.
  • the push-up pin is lowered and the first wafer W1 is placed on the handling arm.
  • the first wafer W1 which is the first substrate, is carried out of the reaction chamber 10 (S14).
  • cleaning is performed by supplying a cleaning gas containing chlorine atoms into the reaction chamber 10 (S16). By the cleaning, the deposits attached to the support portion 12 are removed.
  • a dummy wafer may be placed on the support portion 12.
  • the support portion 12 is an annular holder having an opening at the center as shown in FIG. 1, it is desirable to place a dummy wafer in order to protect the heating portion 16 and the like from the cleaning gas.
  • a second wafer having a silicon (Si) surface different from the first wafer W1 is carried into the reaction chamber 10 (S18).
  • the second wafer is, for example, a second wafer W2 that is a Si wafer having a (111) surface.
  • the second wafer W2 is loaded into the reaction chamber 10 in the same manner as the first wafer W1.
  • a vacuum pump (not shown) is operated to exhaust the gas in the reaction chamber 10 from the gas discharge unit 26 through a pressure adjusting valve (not shown) to a predetermined pressure.
  • the second wafer W ⁇ b> 2 placed on the support unit 12 is heated by the heating unit 16.
  • the heating output of the heating unit 16 is increased to raise the temperature of the second wafer W2 to a predetermined temperature, for example, a temperature of 1150 ° C. or higher and 1250 ° C. or lower.
  • baking for example, hydrogen gas is supplied to the reaction chamber 10 through the gas supply unit 13. After baking for a predetermined time, for example, the heating output of the heating unit 16 is lowered to set the second wafer W2 to an epitaxial growth temperature, for example, 1000 ° C. or higher and 1100 ° C. or lower.
  • the process gas is, for example, trimethylaluminum (TMA), ammonia (NH 3 ), and hydrogen gas (H 2 ) as a carrier gas.
  • TMA trimethylaluminum
  • NH 3 ammonia
  • H 2 hydrogen gas
  • Trimethylaluminum (TMA) is a source gas of aluminum (Al)
  • ammonia (NH 3 ) is a source gas of nitrogen (N).
  • the film formed as the second film is not limited to AlN.
  • any film that does not hinder the growth may be used.
  • thin SiN silicon nitride
  • SiN silicon nitride
  • a third film for example, a GaN single crystal film is grown on the AlN film (second film) (S22).
  • a process gas for forming the GaN film is supplied from the gas supply unit 13.
  • the temperature of the second wafer W2 is, for example, not less than 1000 ° C. and not more than 1100 ° C.
  • the process gas includes a source gas containing gallium (Ga).
  • the process gas is, for example, trimethylgallium (TMG), ammonia (NH 3 ), and hydrogen gas (H 2 ) as a carrier gas.
  • TMG trimethylgallium
  • NH 3 ammonia
  • H 2 hydrogen gas
  • Trimethylgallium (TMG) is a gallium (Ga) source gas
  • ammonia (NH 3 ) is a nitrogen (N) source gas.
  • the film formed as the third film is not limited to GaN.
  • InGaN indium gallium nitride
  • AlGaN aluminum gallium nitride
  • GaAs gallium arsenide
  • the supply of the source gas from the gas supply unit 13 is stopped, the supply of the source gas onto the second wafer W2 is shut off, and the growth of the GaN single crystal film is completed.
  • the temperature of the second wafer W2 starts to be lowered.
  • the second wafer W2 on which the GaN single crystal film is formed is placed on the support unit 12, and the heating output of the heating unit 16 is stopped and adjusted so as to decrease to a predetermined temperature.
  • the second wafer W2 which is the second substrate, is unloaded from the reaction chamber 10 (S24).
  • the first wafer W1 is unloaded and the vapor phase growth apparatus is used. Cleaning is performed while heating the support 12. That is, the cleaning is performed in a state where there is no wafer or only a dummy wafer in which no film is formed in the reaction chamber 10.
  • deposits attached to the support portion 12 are removed particularly during the film formation of the first wafer W1. It can be considered that this deposit contains Ga (gallium) that is flowed as a process gas when the first wafer W1 is formed.
  • the present embodiment by removing the deposit containing Ga, the Ga that has been present as the deposit when the second film is formed on the second wafer W2 after the cleaning is removed from the second wafer W2.
  • the reaction with Si on the surface of the wafer W2 is avoided. Therefore, it is possible to form a high quality film on the second wafer W2. That is, according to the present embodiment, it is possible to provide a vapor phase growth method for forming a high-quality film on Si in the same reaction chamber in which a gas containing Ga is supplied. After the film containing Ga is formed on the second wafer W2, cleaning can be performed in the same manner, and a high-quality film can be similarly formed on the wafer whose surface is Si.
  • FIG. 3 is a process flow diagram of the vapor phase growth method of the present embodiment.
  • the vapor phase growth method of this embodiment is performed using the single wafer type epitaxial growth apparatus shown in FIG.
  • hydrogen baking is performed after cleaning (S16).
  • the hydrogen baking is performed by supplying hydrogen gas (H 2 ) as a baking gas into the reaction chamber 10 and performing a heat treatment.
  • the heating output of the heating unit 16 is decreased while the hydrogen gas from the gas supply unit 13 is being supplied, and the temperature of the support unit 12 is decreased.
  • Hydrogen gas has the effect of etching GaN. According to the present embodiment, by performing hydrogen baking in addition to cleaning, it is possible to improve the effect of removing deposits such as GaN adhering to the support portion 12. Therefore, a higher quality film can be formed on the second wafer W2.
  • hydrogen baking is performed at a higher temperature than cleaning. By performing the cleaning at a higher temperature than the cleaning, the desorption of the gas adsorbed on the inner wall of the reaction chamber 10 or the members in the reaction chamber 10 is promoted.
  • the temperature of hydrogen baking is preferably 1100 ° C. or higher and 1250 ° C. or lower, and more preferably 1150 ° C. or higher and 1200 ° C. or lower. It is because it will become difficult to improve the removal effect of the deposit
  • the temperature of hydrogen baking be higher than the film formation temperature when forming the second film and the third film on the second wafer.
  • FIG. 4 is a process flow diagram of the vapor phase growth method of the present embodiment.
  • the vapor phase growth method of this embodiment is performed using the single wafer type epitaxial growth apparatus shown in FIG.
  • the cleaning (S16) is omitted from the process flow of the vapor phase growth method of the second embodiment shown in FIG.
  • FIG. 5 is a process flow diagram of the vapor phase growth method of the present embodiment.
  • the vapor phase growth method of this embodiment is performed using the single wafer type epitaxial growth apparatus shown in FIG.
  • cleaning gas discharge (S28) and ammonia supply (S30) are performed after cleaning (S16).
  • the process up to cleaning (S16) is the same as in the first embodiment.
  • supply of the cleaning gas from the gas supply unit 13 is stopped.
  • the craning gas in the reaction chamber 10 is discharged by evacuation (S28).
  • ammonia is supplied from the gas supply unit 13 (S30). After supplying ammonia for a predetermined time, the supply of ammonia is stopped.
  • the chlorine atoms contained in the cleaning gas may remain on the inner surface of the reaction chamber 10 or in the piping. Then, when the chlorine atoms later form an AlN film or the like, there is a possibility that the chlorine atoms aggregate at the interface between the wafer and the AlN film or the like.
  • chlorine atoms are present at the interface, the quality of the AlN film or GaN film formed on the wafer may be deteriorated. Further, when a device is manufactured using a wafer on which an AlN film, a GaN film, or the like is formed, chlorine atoms may deteriorate characteristics with the device.
  • the cleaning gas discharge (S28) instead of evacuation, or before or after that, only supply of the cleaning gas is stopped, and hydrogen gas (H 2 ), nitrogen gas (N 2 ), argon gas (Ar) Alternatively, the cleaning gas may be purged by flowing only an inert gas such as the above or a mixed gas thereof.
  • FIG. 6 is a process flow diagram of the vapor phase growth method of the present embodiment.
  • the vapor phase growth method of this embodiment is performed using the single wafer type epitaxial growth apparatus shown in FIG.
  • the process up to hydrogen baking (S17) is the same as in the second embodiment. After the hydrogen baking is completed, for example, ammonia is supplied from the gas supply unit 13 (S30). After supplying ammonia for a predetermined time, the supply of ammonia is stopped.
  • the chlorine atoms contained in the cleaning gas may remain on the inner surface of the reaction chamber 10 or in the piping. Then, when the chlorine atoms later form an AlN film or the like, there is a possibility that the chlorine atoms aggregate at the interface between the wafer and the AlN film or the like.
  • chlorine atoms are present at the interface, the quality of the AlN film or GaN film formed on the wafer may be deteriorated. Further, when a semiconductor device is manufactured using a wafer on which an AlN film, a GaN film, or the like is formed, chlorine atoms may deteriorate characteristics with the semiconductor device.
  • a film was formed by the same process as in the second embodiment.
  • a (111) -plane Si wafer (first wafer) on which an AlN film is formed under a condition of 200 nm thickness is applied to a GaN film under a condition of a thickness of 3000 nm in a reaction chamber of a vertical single wafer type epitaxial apparatus.
  • a gas obtained by diluting TMG with hydrogen gas and ammonia were used as a source gas.
  • the Si wafer was unloaded from the reaction chamber.
  • a SiC dummy wafer was carried into the reaction chamber and heated to 1000 ° C. At this time, the temperature of the support portion is also heated to about 1000 ° C. Then, cleaning gas obtained by diluting hydrochloric acid gas with hydrogen gas to 10% by volume was supplied to the reaction chamber, and cleaning was performed for 5 minutes.
  • the dummy wafer and the support were heated to 1150 ° C. And 100 volume% hydrogen gas was supplied to the reaction chamber, and hydrogen baking was performed for 5 minutes. Thereafter, the dummy wafer was unloaded from the reaction chamber.
  • an AlN film having a thickness of 200 nm and a GaN film having a thickness of 3000 nm were epitaxially grown.
  • the temperature during the formation of the AlN film and the GaN film was 1000 ° C.
  • the Si wafer (second wafer) was carried out of the reaction chamber.
  • FIG. 7 is an optical photograph of the wafer surface of the example and the comparative example.
  • FIG. 7A shows an example
  • FIG. 7B shows a comparative example.
  • the wafer surface was a mirror surface, and it was confirmed that the AlN film and the GaN film were well formed.
  • the surface was uneven, and a clouded area was seen in the center of the wafer. In a region that was clouded by cross-sectional observation with an electron microscope, the Si wafer was etched to form holes.
  • a vertical single-wafer epitaxial apparatus for forming a film for each wafer has been described as an example.
  • the vapor phase growth apparatus is not limited to a single-wafer epitaxial apparatus.
  • the present invention can be applied to a planetary epitaxial apparatus that forms films on a plurality of wafers that revolve and revolves simultaneously, a lateral epitaxial apparatus, and the like. Further, a vapor phase growth apparatus other than the epitaxial apparatus may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A vapor phase growth method according to an embodiment of the present application: supplies a source gas containing gallium (Ga) to a reaction chamber; forms a first film on a first substrate placed on a support part in the reaction chamber; carries out the first substrate from the reaction chamber; heats the support part after carrying out the first substrate from the reaction chamber to remove an attachment attached to the support part; carries, in the reaction chamber, a second substrate which is different from the first substrate and has a silicon (Si) surface, after removing the attachment; and forms a second film on the second substrate placed on the support part.

Description

気相成長方法Vapor growth method
 本発明は、ガスを供給して成膜を行う気相成長方法に関する。 The present invention relates to a vapor phase growth method for forming a film by supplying a gas.
 高品質な半導体膜を成膜する方法として、ウエハに気相成長により単結晶膜を成長させるエピタキシャル成長技術がある。エピタキシャル成長技術を用いる気相成長装置では、常圧または減圧に保持された反応室内の支持部にウエハを載置する。そして、このウエハを加熱しながら、成膜の原料となるソースガス等のプロセスガスを、反応室上部の、例えば、シャワープレートからウエハ表面に供給する。ウエハ表面ではソースガスの熱反応等が生じ、ウエハ表面にエピタキシャル単結晶膜が成膜される。 As a method of forming a high-quality semiconductor film, there is an epitaxial growth technique in which a single crystal film is grown on a wafer by vapor phase growth. In a vapor phase growth apparatus using an epitaxial growth technique, a wafer is placed on a support in a reaction chamber that is maintained at normal pressure or reduced pressure. Then, while heating the wafer, a process gas such as a source gas, which is a raw material for film formation, is supplied to the wafer surface from, for example, a shower plate above the reaction chamber. A thermal reaction of the source gas occurs on the wafer surface, and an epitaxial single crystal film is formed on the wafer surface.
 近年、発光デバイスやパワーデバイスの材料として、GaN(窒化ガリウム)系の半導体デバイスが注目されている。GaN系の半導体を成膜するエピタキシャル成長技術として、有機金属気相成長法(MOCVD法)がある。有機金属気相成長法では、ソースガスとして、例えば、トリメチルガリウム(TMG)、トリメチルインジウム(TMI)、トリメチルアルミニウム(TMA)等の有機金属や、アンモニア(NH)等が用いられる。また、キャリアガスとして水素ガス(H)、窒素ガス(N2)等やそれらの混合ガスが用いられる場合もある。 In recent years, GaN (gallium nitride) -based semiconductor devices have attracted attention as materials for light-emitting devices and power devices. As an epitaxial growth technique for forming a GaN-based semiconductor, there is a metal organic chemical vapor deposition method (MOCVD method). In the metal organic vapor phase epitaxy, an organic metal such as trimethylgallium (TMG), trimethylindium (TMI), trimethylaluminum (TMA), ammonia (NH 3 ), or the like is used as a source gas. In some cases, hydrogen gas (H 2 ), nitrogen gas (N 2 ), or a mixed gas thereof is used as the carrier gas.
 Si(シリコン)ウエハ上にGaN系の半導体膜を形成する場合、良質な単結晶膜の成長が困難であることが知られている。特許文献1には、この問題を解決するために、AlN(窒化アルミニウム)のバッファ層をSiウエハ上に形成する方法、GaNの成膜前にSiウエハ表面の水素原子を脱離する方法が記載されている。また、特許文献2には、MOCVD法を用いたGaN系の半導体膜の形成プロセスにおいて、チャンバー構成部品から堆積物を除去するために、塩素ガスを流す方法が記載されている。 It is known that when a GaN-based semiconductor film is formed on a Si (silicon) wafer, it is difficult to grow a high-quality single crystal film. In order to solve this problem, Patent Document 1 describes a method of forming an AlN (aluminum nitride) buffer layer on a Si wafer and a method of desorbing hydrogen atoms on the surface of the Si wafer before forming GaN. Has been. Patent Document 2 describes a method of flowing chlorine gas in order to remove deposits from chamber components in the process of forming a GaN-based semiconductor film using MOCVD.
特開2006-261476号公報JP 2006-261476 A 特表2012-525708号公報Special table 2012-525708 gazette
 本発明は、Gaを含有するガスを供給したと同一の反応室内で、Siウエハ上に良質な膜を形成する気相成長方法を提供することを課題とする。 An object of the present invention is to provide a vapor phase growth method for forming a high-quality film on a Si wafer in the same reaction chamber in which a gas containing Ga is supplied.
 本発明の一態様の気相成長方法は、反応室にガリウム(Ga)を含有するソースガスを供給し、上記反応室内の支持部上に載置される第1の基板に第1の膜を形成し、上記第1の基板を上記反応室から搬出し、上記第1の基板を上記反応室から搬出した後に、上記支持部を加熱して、上記支持部に付着した付着物を除去し、上記付着物を除去した後に、上記反応室に、上記第1の基板と異なる表面がシリコン(Si)の第2の基板を搬入し、上記支持部上に載置される上記第2の基板に第2の膜を形成することを特徴とする。 In a vapor phase growth method of one embodiment of the present invention, a source gas containing gallium (Ga) is supplied to a reaction chamber, and a first film is formed over a first substrate placed over a support portion in the reaction chamber. Forming and unloading the first substrate from the reaction chamber, unloading the first substrate from the reaction chamber, and heating the support portion to remove deposits attached to the support portion; After removing the deposit, the second substrate having a surface different from that of the first substrate is loaded into the reaction chamber, and the second substrate placed on the support portion is loaded on the second substrate. A second film is formed.
 本発明によれば、Gaを含有するガスを供給したと同一の反応室内で、Siウエハ上に良質な膜を形成する気相成長方法を提供することが可能となる。 According to the present invention, it is possible to provide a vapor phase growth method for forming a high-quality film on a Si wafer in the same reaction chamber in which a gas containing Ga is supplied.
第1の実施形態の気相成長方法で使用される気相成長装置の模式断面図である。It is a schematic cross section of the vapor phase growth apparatus used with the vapor phase growth method of a 1st embodiment. 第1の実施形態の気相成長方法のプロセスフロー図である。It is a process flow figure of the vapor phase growth method of a 1st embodiment. 第2の実施形態の気相成長方法のプロセスフロー図である。It is a process flow figure of the vapor phase growth method of a 2nd embodiment. 第3の実施形態の気相成長方法のプロセスフロー図である。It is a process flow figure of the vapor phase growth method of a 3rd embodiment. 第4の実施形態の気相成長方法のプロセスフロー図である。It is a process flow figure of the vapor phase growth method of a 4th embodiment. 第5の実施形態の気相成長方法のプロセスフロー図である。It is a process flow figure of the vapor phase growth method of a 5th embodiment. 実施例および比較例のウエハ表面の光学写真である。It is an optical photograph of the wafer surface of an Example and a comparative example.
 以下、本発明の実施形態について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 なお、本明細書中では、気相成長装置が成膜可能に設置された状態での重力方向を「下」と定義し、その逆方向を「上」と定義する。 In this specification, the gravity direction in a state where the vapor phase growth apparatus is installed so as to be capable of film formation is defined as “down”, and the opposite direction is defined as “up”.
 また、本明細書中、「プロセスガス」とは、基板上への成膜のために用いられるガスの総称であり、例えば、ソースガス、キャリアガス等を含む概念とする。 In addition, in this specification, “process gas” is a general term for gases used for film formation on a substrate, and includes, for example, a concept including a source gas, a carrier gas, and the like.
 また、本明細書中、「窒素ガス」は、「不活性ガス」に含まれるものとする。 In this specification, “nitrogen gas” is included in “inert gas”.
(第1の実施形態)
 本実施形態の気相成長方法は、反応室にガリウム(Ga)を含有するソースガスを供給し、反応室内の支持部上に載置される第1の基板に第1の膜を形成し、第1の基板を反応室から搬出し、第1の基板を反応室から搬出した後に、支持部を加熱して、支持部に付着した付着物を除去し、付着物を除去した後に、反応室に、第1の基板と異なる表面がシリコン(Si)の第2の基板を搬入し、支持部上に載置される第2の基板に第2の膜を形成する。
(First embodiment)
In the vapor phase growth method of this embodiment, a source gas containing gallium (Ga) is supplied to a reaction chamber, a first film is formed on a first substrate placed on a support in the reaction chamber, After unloading the first substrate from the reaction chamber and unloading the first substrate from the reaction chamber, the support portion is heated to remove the deposits attached to the support portion, and the deposits are removed. In addition, a second substrate whose surface is different from that of the first substrate is carried in, and a second film is formed on the second substrate placed on the support portion.
 図1は、本実施形態の本実施形態の気相成長方法で使用される気相成長装置の模式断面図である。本実施形態の気相成長装置は、MOCVD法(有機金属気相成長法)を用いる縦型で枚葉型のエピタキシャル成長装置である。 FIG. 1 is a schematic cross-sectional view of a vapor phase growth apparatus used in the vapor phase growth method of the present embodiment of the present embodiment. The vapor phase growth apparatus of the present embodiment is a vertical and single wafer type epitaxial growth apparatus that uses MOCVD (metal organic chemical vapor deposition).
 気相成長装置は、例えば、ステンレス製で円筒状中空体の反応室10を備えている。そして、この反応室10上部に配置され、反応室10内に、プロセスガスを供給するシャワープレート11を備えている。シャワープレート11の上部には、プロセスガスやクリーニングガス等を反応室10内に供給するためのガス供給部13を備えている。 The vapor phase growth apparatus includes, for example, a reaction chamber 10 made of stainless steel and having a cylindrical hollow body. A shower plate 11 for supplying a process gas is provided in the reaction chamber 10. A gas supply unit 13 for supplying process gas, cleaning gas, and the like into the reaction chamber 10 is provided on the upper portion of the shower plate 11.
 また、反応室10内の、シャワープレート11下方に設けられ、例えば半導体基板であるウエハWを載置可能な支持部12を備えている。支持部12は、例えば、図1のように中心部に開口部が設けられる環状ホルダーであっても、ウエハW裏面のほぼ全面に接する構造のサセプタであってもかまわない。 Further, a support portion 12 is provided in the reaction chamber 10 below the shower plate 11 and on which, for example, a wafer W, which is a semiconductor substrate, can be placed. The support unit 12 may be, for example, an annular holder having an opening at the center as shown in FIG. 1 or a susceptor having a structure in contact with almost the entire back surface of the wafer W.
 また、支持部12をその上面に配置し回転する回転体ユニット14を備えている。また、支持部12に載置されたウエハWを加熱する加熱部16としてヒーターを、支持部12下方に備えている。
ここで、回転体ユニット14は、その回転軸18が、下方に位置する回転駆動機構20に接続される。そして、回転駆動機構20により、ウエハWをその中心を回転中心として、例えば、50rpm以上1000rpm以下で回転させることが可能となっている。
Moreover, the rotating body unit 14 which rotates by arrange | positioning the support part 12 on the upper surface is provided. Further, a heater is provided below the support unit 12 as the heating unit 16 that heats the wafer W placed on the support unit 12.
Here, the rotating body unit 14 has a rotating shaft 18 connected to a rotation driving mechanism 20 positioned below. The rotation drive mechanism 20 can rotate the wafer W around the center of rotation, for example, at 50 rpm or more and 1000 rpm or less.
 円筒状の回転体ユニット14の径は、支持部12の外周径とほぼ同じにしてあることが望ましい。なお、回転軸18は、反応室10の底部に真空シール部材を介して回転自在に設けられている。 It is desirable that the diameter of the cylindrical rotating body unit 14 is substantially the same as the outer diameter of the support portion 12. The rotating shaft 18 is rotatably provided at the bottom of the reaction chamber 10 via a vacuum seal member.
 そして、加熱部16は、回転軸18の内部に貫通する支持軸22に固定される支持台24上に固定して設けられる。加熱部16には、図示しない電流導入端子と電極により、電力が供給される。この支持台24にはウエハWを環状ホルダー18から脱着させるための、例えば突き上げピン(図示せず)が設けられている。 The heating unit 16 is fixedly provided on a support base 24 fixed to a support shaft 22 that penetrates the rotary shaft 18. Electric power is supplied to the heating unit 16 by a current introduction terminal and an electrode (not shown). The support base 24 is provided with, for example, push-up pins (not shown) for detaching the wafer W from the annular holder 18.
 さらに、ウエハW表面等でソースガスが反応した後の反応生成物および反応室10の残留ガスを反応室10外部に排出するガス排出部26を、反応室10底部に備える。なお、ガス排出部26は真空ポンプ(図示せず)に接続してある。ガス排出部26は真空ポンプの間には、圧力調整バルブ(図示せず)が設けられ、反応室10に接続された圧力計(図示せず)の値を一定に保つように圧力制御を行うことが可能になっている。 Furthermore, a gas discharge part 26 for discharging the reaction product after the source gas has reacted on the surface of the wafer W and the like and the residual gas in the reaction chamber 10 to the outside of the reaction chamber 10 is provided at the bottom of the reaction chamber 10. The gas discharge unit 26 is connected to a vacuum pump (not shown). The gas discharge unit 26 is provided with a pressure adjustment valve (not shown) between the vacuum pumps, and performs pressure control so as to keep the value of a pressure gauge (not shown) connected to the reaction chamber 10 constant. It is possible.
 なお、図1に示した枚葉型エピタキシャル成長装置では、反応室10の側壁箇所において、ウエハを出し入れするための図示しないウエハ出入口およびゲートバルブ(図示せず)が設けられている。そして、このゲートバルブで連結する例えばロードロック室(図示せず)と反応室10との間において、ハンドリングアーム(図示せず)によりウエハWを搬送できるように構成される。ここで、例えば合成石英で形成されるハンドリングアームは、シャワープレート100と支持部12とのスペースに挿入可能となっている。 In the single-wafer epitaxial growth apparatus shown in FIG. 1, a wafer inlet / outlet and a gate valve (not shown) for loading / unloading a wafer are provided at the side wall portion of the reaction chamber 10. The wafer W is configured to be transferred by a handling arm (not shown) between, for example, a load lock chamber (not shown) and the reaction chamber 10 connected by the gate valve. Here, for example, a handling arm formed of synthetic quartz can be inserted into the space between the shower plate 100 and the support portion 12.
 図2は、本実施形態の気相成長方法のプロセスフロー図である。本実施形態の気相成長方法は、図1に示した枚葉型エピタキシャル成長装置を用いて行う。 FIG. 2 is a process flow diagram of the vapor phase growth method of the present embodiment. The vapor phase growth method of this embodiment is performed using the single wafer type epitaxial growth apparatus shown in FIG.
 本実施形態の気相成長方法は、第1の基板搬入ステップ(S10)、AlN膜形成ステップ(S11)、GaN膜形成ステップ(S12)、第1の基板搬出ステップ(S14)、クリーニングステップ(S16)、第2の基板搬入ステップ(S18)、AlN膜形成ステップ(S20)、GaN膜形成ステップ(S22)、第2の基板搬出ステップ(S24)を備えている。 The vapor phase growth method of the present embodiment includes a first substrate carry-in step (S10), an AlN film formation step (S11), a GaN film formation step (S12), a first substrate carry-out step (S14), and a cleaning step (S16). ), A second substrate carry-in step (S18), an AlN film formation step (S20), a GaN film formation step (S22), and a second substrate carry-out step (S24).
 まず、第1の基板、例えば、(111)面のSiウエハである第1のウエハW1が反応室10内に搬入される(S10)。ここで、例えば、反応室10のウエハ出入口のゲートバルブ(図示せず)を開きハンドリングアーム(図示せず)により、ロードロック室内の第1のウエハW1を反応室10内に搬送する。 First, a first substrate, for example, a first wafer W1, which is a (111) -plane Si wafer, is carried into the reaction chamber 10 (S10). Here, for example, a gate valve (not shown) at the wafer entrance / exit of the reaction chamber 10 is opened, and the first wafer W1 in the load lock chamber is transferred into the reaction chamber 10 by a handling arm (not shown).
 そして、第1のウエハW1は例えば突き上げピン(図示せず)を介して支持部12に載置される。ハンドリングアームはロードロック室に戻され、ゲートバルブは閉じられる。 Then, the first wafer W1 is placed on the support unit 12 via, for example, push-up pins (not shown). The handling arm is returned to the load lock chamber and the gate valve is closed.
 そして、図示しない真空ポンプをにより反応室10内のガスをガス排出部26から圧力調整バルブ(図示せず)を介して排気して所定の圧力にする。この際、加熱部16の加熱出力を上げて第1のウエハW1を昇温する。その後、加熱部16の加熱出力を上げて第1のウエハW1を所定の温度、例えば、1000℃以上1100℃以下に昇温させる。 Then, a gas in the reaction chamber 10 is exhausted from the gas discharge unit 26 through a pressure adjusting valve (not shown) by a vacuum pump (not shown) to a predetermined pressure. At this time, the heating output of the heating unit 16 is increased to raise the temperature of the first wafer W1. Thereafter, the heating output of the heating unit 16 is increased to raise the temperature of the first wafer W1 to a predetermined temperature, for example, 1000 ° C. or higher and 1100 ° C. or lower.
 そして、上記真空ポンプによる排気を続行すると共に、回転体ユニット14を所要の速度で回転させながら、成膜前のベークを行う。このベークにより、第1のウエハW1上の自然酸化膜が除去され、表面にSiが露出する。 Then, the evacuation by the vacuum pump is continued, and baking before film formation is performed while rotating the rotator unit 14 at a required speed. By this baking, the natural oxide film on the first wafer W1 is removed, and Si is exposed on the surface.
 ベークの際には、例えば、水素ガスがガス供給部13を通って、反応室10に供給される。所定の時間、ベークを行った後に、例えば、加熱部16の加熱出力を下げて第1のウエハW1をエピタキシャル成長温度、例えば、1000℃以上1100℃以下に設定する。 In baking, for example, hydrogen gas is supplied to the reaction chamber 10 through the gas supply unit 13. After baking for a predetermined time, for example, the heating output of the heating unit 16 is lowered to set the first wafer W1 to an epitaxial growth temperature, for example, 1000 ° C. or higher and 1100 ° C. or lower.
 そして、ガス供給部13からプロセスガスがシャワープレート11を介して反応室10内に供給する。これにより、AlN(窒化アルミニウム)膜を、第1のウエハW1のSi表面にエピタキシャル成長により形成する(S11)。 Then, process gas is supplied from the gas supply unit 13 into the reaction chamber 10 via the shower plate 11. Thus, an AlN (aluminum nitride) film is formed on the Si surface of the first wafer W1 by epitaxial growth (S11).
 プロセスガスは、例えば、トリメチルアルミニウム(TMA)と、アンモニア(NH)とキャリアガスの水素ガス(H)である。トリメチルアルミニウム(TMA)はアルミニウム(Al)のソースガスであり、アンモニア(NH)は窒素(N)のソースガスである。 The process gas is, for example, trimethylaluminum (TMA), ammonia (NH 3 ), and hydrogen gas (H 2 ) as a carrier gas. Trimethylaluminum (TMA) is a source gas of aluminum (Al), and ammonia (NH 3 ) is a source gas of nitrogen (N).
 次に、ガス供給部13からプロセスガスを、シャワープレート11を介して反応室10内に供給する。これにより、第1の膜であるGaN(窒化ガリウム)膜を、第1のウエハW1のAlN膜表面にエピタキシャル成長により形成する(S12)。 Next, process gas is supplied from the gas supply unit 13 into the reaction chamber 10 via the shower plate 11. Thereby, a GaN (gallium nitride) film as the first film is formed on the surface of the AlN film of the first wafer W1 by epitaxial growth (S12).
 プロセスガスには、ガリウム(Ga)を含有するソースガスが含まれる。プロセスガスは、例えば、トリメチルガリウム(TMG)と、アンモニア(NH)とキャリアガスの水素ガス(H)である。トリメチルガリウム(TMG)はガリウム(Ga)のソースガスであり、アンモニア(NH)は窒素(N)のソースガスである。 The process gas includes a source gas containing gallium (Ga). The process gas is, for example, trimethylgallium (TMG), ammonia (NH 3 ), and hydrogen gas (H 2 ) as a carrier gas. Trimethylgallium (TMG) is a gallium (Ga) source gas, and ammonia (NH 3 ) is a nitrogen (N) source gas.
 第1のウエハW1にGaN膜を形成する際に、反応室10の第1のウエハW1以外の部分にも反応生成物が付着物として付着する。特に、高温で反応が促進される支持部12のウエハで覆われていない領域上に多くの付着物が付着する。付着物は、例えば、GaNである。 When forming the GaN film on the first wafer W1, the reaction product adheres to the portions other than the first wafer W1 in the reaction chamber 10 as deposits. In particular, a large amount of deposits adhere to the region of the support portion 12 where the reaction is promoted at a high temperature that is not covered with the wafer. The deposit is, for example, GaN.
 なお、第1の膜として成膜される膜は、ガリウム(Ga)を含有するソースガスを供給して形成される膜であれば、GaNに限定されるものではない。例えば、InGaN(窒化インジウムガリウム)、AlGaN(窒化アルミニウムガリウム)、GaAs(ガリウムヒ素)等であってもかまわない。 Note that the film formed as the first film is not limited to GaN as long as the film is formed by supplying a source gas containing gallium (Ga). For example, InGaN (indium gallium nitride), AlGaN (aluminum gallium nitride), GaAs (gallium arsenide), or the like may be used.
 そして、エピタキシャル成長終了時には、ガス供給部13からのソースガス供給を停止し、第1のウエハW1上へのソースガスの供給が遮断され、キャリアガスの水素ガス(H)のみが流れ、GaN単結晶膜の成長が終了される。 At the end of the epitaxial growth, the supply of the source gas from the gas supply unit 13 is stopped, the supply of the source gas onto the first wafer W1 is shut off, and only the hydrogen gas (H 2 ) of the carrier gas flows, The growth of the crystal film is finished.
 成膜後は、第1のウエハW1の降温を始める。GaN単結晶膜が形成された第1のウエハW1を支持部12に載置したままにして、加熱部16の加熱出力を停止し、所定の温度まで低下させる。 After the film formation, the temperature of the first wafer W1 starts to be lowered. The first wafer W1 on which the GaN single crystal film is formed is placed on the support unit 12, and the heating output of the heating unit 16 is stopped and lowered to a predetermined temperature.
 第1のウエハW1が所定の温度まで低下した後、回転体ユニット14の回転を停止する。突き上げピンを上昇させ第1のウエハW1を支持部12から脱着させる。そして、再びゲートバルブを開いてハンドリングアームをシャワープレート11および支持部12の間に挿入する。突き上げピンを下降させ、ハンドリングアームの上に第1のウエハW1を載せる。そして、第1のウエハW1を載せたハンドリングアームをロードロック室に戻すことにより、第1の基板である第1のウエハW1が反応室10外へ搬出される(S14)。 After the first wafer W1 is lowered to a predetermined temperature, the rotation of the rotating body unit 14 is stopped. The push-up pins are raised to detach the first wafer W1 from the support portion 12. Then, the gate valve is opened again, and the handling arm is inserted between the shower plate 11 and the support portion 12. The push-up pin is lowered and the first wafer W1 is placed on the handling arm. Then, by returning the handling arm on which the first wafer W1 is placed to the load lock chamber, the first wafer W1, which is the first substrate, is carried out of the reaction chamber 10 (S14).
 次に、反応室10内に塩素原子を含有するクリーニングガスを供給してクリーニングを行う(S16)。クリーニングにより、支持部12に付着した付着物が除去される。 Next, cleaning is performed by supplying a cleaning gas containing chlorine atoms into the reaction chamber 10 (S16). By the cleaning, the deposits attached to the support portion 12 are removed.
 塩素原子を含有するクリーニングガスは、例えば、水素ガス(H)で希釈された塩酸ガス(塩化水素:HCl)である。また、塩素原子を含有するクリーニングガスは、例えば、水素ガス(H)で希釈された塩素ガス(Cl)等その他のガスであってもかまわない。 The cleaning gas containing chlorine atoms is, for example, hydrochloric acid gas (hydrogen chloride: HCl) diluted with hydrogen gas (H 2 ). The cleaning gas containing chlorine atoms may be other gases such as chlorine gas (Cl 2 ) diluted with hydrogen gas (H 2 ).
 クリーニングの際、支持部12を加熱する。支持部12は、加熱部16の加熱出力を上げることにより加熱される。支持部12は800℃以上1100℃以下の温度に加熱されることが望ましく、950℃以上1050℃以下であることがより望ましい。 During the cleaning, the support part 12 is heated. The support unit 12 is heated by increasing the heating output of the heating unit 16. The support 12 is preferably heated to a temperature of 800 ° C. or higher and 1100 ° C. or lower, and more preferably 950 ° C. or higher and 1050 ° C. or lower.
 上記範囲を下回ると、付着物が十分除去できないおそれがある。また、上記範囲を上回ると、反応室10の内壁や部材表面がクリーニングガスにより損傷するおそれがある。 If it is below the above range, the deposits may not be removed sufficiently. Moreover, when it exceeds the said range, there exists a possibility that the inner wall and member surface of the reaction chamber 10 may be damaged by cleaning gas.
 クリーニングの際、支持部12上にダミーウエハを載置してもかまわない。特に、支持部12が図1のように、中心部に開口部が設けられる環状ホルダーの場合は、加熱部16等をクリーニングガスから保護するために、ダミーウエハを載置することが望ましい。 During cleaning, a dummy wafer may be placed on the support portion 12. In particular, when the support portion 12 is an annular holder having an opening at the center as shown in FIG. 1, it is desirable to place a dummy wafer in order to protect the heating portion 16 and the like from the cleaning gas.
 クリーニングの終了時には、ガス供給部13からのクリーニングガスの供給を停止し、水素ガス(H)のみを供給する。そして、加熱部16の加熱出力を低下させ、支持部12の温度を低下させる。 At the end of cleaning, supply of the cleaning gas from the gas supply unit 13 is stopped, and only hydrogen gas (H 2 ) is supplied. And the heating output of the heating part 16 is reduced and the temperature of the support part 12 is reduced.
 その後、支持部12にダミーウエハを載置している場合には、上記第1のウエハW1と同様の手順でダミーウエハを反応室10外へ搬出する。 Thereafter, when a dummy wafer is placed on the support portion 12, the dummy wafer is unloaded from the reaction chamber 10 in the same procedure as the first wafer W1.
 支持部12に付着した付着物を除去するクリーニング後、反応室10に、第1のウエハW1と異なる、表面がシリコン(Si)の第2のウエハを搬入する(S18)。第2のウエハは、例えば、表面が(111)面のSiウエハである第2のウエハW2である。第2のウエハW2は、上記第1のウエハW1と同様の方法にて、反応室10に搬入される。 After cleaning to remove the deposits adhering to the support unit 12, a second wafer having a silicon (Si) surface different from the first wafer W1 is carried into the reaction chamber 10 (S18). The second wafer is, for example, a second wafer W2 that is a Si wafer having a (111) surface. The second wafer W2 is loaded into the reaction chamber 10 in the same manner as the first wafer W1.
 そして、図示しない真空ポンプを作動して反応室10内のガスをガス排出部26から圧力調整バルブ(図示せず)を介して排気して所定の圧力にする。支持部12に載置した第2のウエハW2は、加熱部16により加熱する。 Then, a vacuum pump (not shown) is operated to exhaust the gas in the reaction chamber 10 from the gas discharge unit 26 through a pressure adjusting valve (not shown) to a predetermined pressure. The second wafer W <b> 2 placed on the support unit 12 is heated by the heating unit 16.
 さらに、加熱部16の加熱出力を上げて第2のウエハW2を所定の温度、例えば、1150℃以上1250℃以下の温度に昇温させる。 Further, the heating output of the heating unit 16 is increased to raise the temperature of the second wafer W2 to a predetermined temperature, for example, a temperature of 1150 ° C. or higher and 1250 ° C. or lower.
 そして、上記真空ポンプによる排気を続行すると共に、回転体ユニット14を所要の速度で回転させながら、成膜前のベークを行う。このベークにより、例えば、第2のウエハW2上の自然酸化膜が除去され、表面にSiが露出する。 Then, the evacuation by the vacuum pump is continued, and baking before film formation is performed while rotating the rotator unit 14 at a required speed. By this baking, for example, the natural oxide film on the second wafer W2 is removed, and Si is exposed on the surface.
 ベークの際には、例えば、水素ガスがガス供給部13を通って、反応室10に供給される。所定の時間、ベークを行った後に、例えば、加熱部16の加熱出力を下げて第2のウエハW2をエピタキシャル成長温度、例えば、1000℃以上1100℃以下に設定する。 In baking, for example, hydrogen gas is supplied to the reaction chamber 10 through the gas supply unit 13. After baking for a predetermined time, for example, the heating output of the heating unit 16 is lowered to set the second wafer W2 to an epitaxial growth temperature, for example, 1000 ° C. or higher and 1100 ° C. or lower.
 そして、ガス供給部13からプロセスガスがシャワープレート11を介して反応室10内に供給する。これにより、第2の膜であるAlN(窒化アルミニウム)膜を、第2のウエハW2のSi表面にエピタキシャル成長により形成する(S20)。 Then, process gas is supplied from the gas supply unit 13 into the reaction chamber 10 via the shower plate 11. Thereby, an AlN (aluminum nitride) film as the second film is formed on the Si surface of the second wafer W2 by epitaxial growth (S20).
 プロセスガスは、例えば、トリメチルアルミニウム(TMA)と、アンモニア(NH)とキャリアガスの水素ガス(H)である。トリメチルアルミニウム(TMA)はアルミニウム(Al)のソースガスであり、アンモニア(NH)は窒素(N)のソースガスである。 The process gas is, for example, trimethylaluminum (TMA), ammonia (NH 3 ), and hydrogen gas (H 2 ) as a carrier gas. Trimethylaluminum (TMA) is a source gas of aluminum (Al), and ammonia (NH 3 ) is a source gas of nitrogen (N).
 なお、第2の膜として成膜される膜は、AlNに限定されるものではない。第2の膜上に、GaN系の第3の膜のエピタキシャル成長で形成する場合、その成長を妨げない膜であればかまわない。例えば、薄いSiN(窒化シリコン)等であってもかまわない。 Note that the film formed as the second film is not limited to AlN. When the GaN-based third film is formed on the second film by epitaxial growth, any film that does not hinder the growth may be used. For example, thin SiN (silicon nitride) may be used.
 そして、AlN単結晶膜の成長終了時には、ガス供給部13からのソースガス供給を停止し、第2のウエハW2上へのソースガスの供給が遮断され、AlN単結晶膜の成長が終了される。 Then, at the end of the growth of the AlN single crystal film, the supply of the source gas from the gas supply unit 13 is stopped, the supply of the source gas onto the second wafer W2 is shut off, and the growth of the AlN single crystal film is completed. .
 次に、AlN膜(第2の膜)上に、第3の膜、例えば、GaN単結晶膜を成長させる(S22)。GaN膜を形成するためのプロセスガスをガス供給部13から供給する。第2のウエハW2の温度は、例えば、1000℃以上1100℃以下とする。 Next, a third film, for example, a GaN single crystal film is grown on the AlN film (second film) (S22). A process gas for forming the GaN film is supplied from the gas supply unit 13. The temperature of the second wafer W2 is, for example, not less than 1000 ° C. and not more than 1100 ° C.
 プロセスガスには、ガリウム(Ga)を含有するソースガスが含まれる。プロセスガスは、例えば、トリメチルガリウム(TMG)と、アンモニア(NH)とキャリアガスの水素ガス(H)である。トリメチルガリウム(TMG)はガリウム(Ga)のソースガスであり、アンモニア(NH)は窒素(N)のソースガスである。 The process gas includes a source gas containing gallium (Ga). The process gas is, for example, trimethylgallium (TMG), ammonia (NH 3 ), and hydrogen gas (H 2 ) as a carrier gas. Trimethylgallium (TMG) is a gallium (Ga) source gas, and ammonia (NH 3 ) is a nitrogen (N) source gas.
 なお、第3の膜として成膜される膜は、GaNに限定されるものではない。例えば、InGaN(窒化インジウムガリウム)、AlGaN(窒化アルミニウムガリウム)、GaAs(ガリウムヒ素)等であってもかまわない。 Note that the film formed as the third film is not limited to GaN. For example, InGaN (indium gallium nitride), AlGaN (aluminum gallium nitride), GaAs (gallium arsenide), or the like may be used.
 そして、エピタキシャル成長終了時には、ガス供給部13からのソースガス供給を停止し、第2のウエハW2上へのソースガスの供給が遮断され、GaN単結晶膜の成長が終了される。 At the end of epitaxial growth, the supply of the source gas from the gas supply unit 13 is stopped, the supply of the source gas onto the second wafer W2 is shut off, and the growth of the GaN single crystal film is completed.
 成膜後は、第2のウエハW2の降温を始める。GaN単結晶膜が形成された第2のウエハW2を支持部12に載置したままにして、加熱部16の加熱出力を停止し、所定の温度に低下するよう調整する。 After the film formation, the temperature of the second wafer W2 starts to be lowered. The second wafer W2 on which the GaN single crystal film is formed is placed on the support unit 12, and the heating output of the heating unit 16 is stopped and adjusted so as to decrease to a predetermined temperature.
 その後、上述した第1のウエハW1の場合と同様にして、第2の基板である第2のウエハW2が反応室10外へ搬出される(S24)。 Thereafter, similarly to the case of the first wafer W1 described above, the second wafer W2, which is the second substrate, is unloaded from the reaction chamber 10 (S24).
 本実施形態では、反応室にガリウム(Ga)を含有するソースガスを供給して第1のウエハW1に成膜を行った後に、第1のウエハW1を搬出した状態で、気相成長装置の支持部12を加熱しながらクリーニングを行う。すなわち、クリーニングは、反応室10内に、ウエハが無い状態または成膜を行わないダミーウエハのみがある状態で行われる。 In the present embodiment, after a source gas containing gallium (Ga) is supplied to the reaction chamber to form a film on the first wafer W1, the first wafer W1 is unloaded and the vapor phase growth apparatus is used. Cleaning is performed while heating the support 12. That is, the cleaning is performed in a state where there is no wafer or only a dummy wafer in which no film is formed in the reaction chamber 10.
 このクリーニングを行うことにより、第1のウエハW1の成膜時に、特に支持部12に付着した付着物が除去される。この付着物には、第1のウエハW1の成膜時に、プロセスガスとして流したGa(ガリウム)が含まれると考えらえる。 By performing this cleaning, deposits attached to the support portion 12 are removed particularly during the film formation of the first wafer W1. It can be considered that this deposit contains Ga (gallium) that is flowed as a process gas when the first wafer W1 is formed.
 支持部12にGaが含有される付着物が付着していると、反応室10での次の膜の成膜の昇温過程で、ウエハのSiと、GaまたはGa化合物が反応することにより、ウエハ上に凹凸や穴が形成される。そうすると、ウエハ上に良質な膜を形成することが困難となる。 When an adhering substance containing Ga is attached to the support part 12, the Si of the wafer reacts with Ga or the Ga compound in the temperature rising process of the next film formation in the reaction chamber 10. Irregularities and holes are formed on the wafer. As a result, it becomes difficult to form a high-quality film on the wafer.
 本実施形態によれば、Gaを含む付着物を除去することにより、クリーニング後に、第2のウエハW2上に第2の膜を成膜する際、付着物として存在していたGaが、第2のウエハW2表面のSiと反応することが回避される。したがって、第2のウエハW2上に、良質の膜を成膜することが可能となる。すなわち、本実施形態によれば、Gaを含有するガスを供給したと同一の反応室内で、Si上に良質な膜を形成する気相成長方法を提供することができる。第2のウエハW2にGaを含む膜を成膜した後は、同様にクリーニングを行い、表面がSiであるウエハに同様に良質の膜を成膜することが可能である。 According to the present embodiment, by removing the deposit containing Ga, the Ga that has been present as the deposit when the second film is formed on the second wafer W2 after the cleaning is removed from the second wafer W2. The reaction with Si on the surface of the wafer W2 is avoided. Therefore, it is possible to form a high quality film on the second wafer W2. That is, according to the present embodiment, it is possible to provide a vapor phase growth method for forming a high-quality film on Si in the same reaction chamber in which a gas containing Ga is supplied. After the film containing Ga is formed on the second wafer W2, cleaning can be performed in the same manner, and a high-quality film can be similarly formed on the wafer whose surface is Si.
(第2の実施形態)
 本実施形態の気相成長方法は、支持部の付着物を除去する際に、反応室内に塩素原子を含有するクリーニングガスを供給した後、反応室内に水素ガスまたは不活性ガスを含有するベーキングガスをさらに供給する点で、第1の実施形態と異なっている。以下、第1の実施形態と重複する内容については記述を省略する。
(Second Embodiment)
In the vapor phase growth method of this embodiment, when removing deposits on the support, a cleaning gas containing chlorine atoms is supplied into the reaction chamber, and then a baking gas containing hydrogen gas or inert gas is contained in the reaction chamber. This is different from the first embodiment in that it is further supplied. Hereinafter, the description overlapping with the first embodiment will be omitted.
 図3は、本実施形態の気相成長方法のプロセスフロー図である。本実施形態の気相成長方法は、図1に示した枚葉型エピタキシャル成長装置を用いて行う。 FIG. 3 is a process flow diagram of the vapor phase growth method of the present embodiment. The vapor phase growth method of this embodiment is performed using the single wafer type epitaxial growth apparatus shown in FIG.
 図2で示した第1の実施形態の気相成長方法のプロセスフローに加えて、クリーニング(S16)の後に、水素ベーク(S17)を行う。水素ベークは、反応室10内にベーキングガスとして水素ガス(H)を供給して熱処理することにより行う。 In addition to the process flow of the vapor phase growth method of the first embodiment shown in FIG. 2, hydrogen baking (S17) is performed after cleaning (S16). The hydrogen baking is performed by supplying hydrogen gas (H 2 ) as a baking gas into the reaction chamber 10 and performing a heat treatment.
 クリーニング(S16)までのプロセスは、第1の実施形態と同様である。クリーニングの終了時には、ガス供給部13からのクリーニングガスの供給を停止する。そして、例えば、加熱部16の加熱出力を上昇させ、支持部12を水素ベークの温度、例えば、1100℃以上の温度に昇温する。 The process up to cleaning (S16) is the same as in the first embodiment. At the end of cleaning, the supply of the cleaning gas from the gas supply unit 13 is stopped. Then, for example, the heating output of the heating unit 16 is increased, and the temperature of the support unit 12 is increased to a temperature of hydrogen baking, for example, 1100 ° C. or higher.
 そして、ガス供給部13から水素ガス(H)を供給する。水素ガスは100体積%であっても、窒素ガス等の不活性ガスと混合したガスであってもかまわない。 Then, hydrogen gas (H 2 ) is supplied from the gas supply unit 13. The hydrogen gas may be 100% by volume or a gas mixed with an inert gas such as nitrogen gas.
 水素ベークの終了時には、ガス供給部13からの水素ガスを供給したまま、加熱部16の加熱出力を低下させ、支持部12の温度を低下させる。 At the end of the hydrogen baking, the heating output of the heating unit 16 is decreased while the hydrogen gas from the gas supply unit 13 is being supplied, and the temperature of the support unit 12 is decreased.
 その後、第2の基板上に第2の膜および第3の膜を成膜するプロセスについては、第1の実施形態と同様である。 Thereafter, the process of forming the second film and the third film on the second substrate is the same as in the first embodiment.
 水素ガスには、GaNをエッチングする作用がある。本実施形態によれば、クリーニングに加えて、水素ベークを行うことにより、支持部12に付着したGaN等の付着物の除去効果を向上させることが可能となる。したがって、第2のウエハW2上に、より良質の膜を成膜することが可能となる。 Hydrogen gas has the effect of etching GaN. According to the present embodiment, by performing hydrogen baking in addition to cleaning, it is possible to improve the effect of removing deposits such as GaN adhering to the support portion 12. Therefore, a higher quality film can be formed on the second wafer W2.
 また、水素ベークを行うことにより、クリーニング後に反応室10内に残留した塩素系の付着物を除去することが可能となる。したがって、反応室10の内壁や反応室10内の部材の塩素による腐食を抑制することが可能となる。 Further, by performing hydrogen baking, it is possible to remove chlorine-based deposits remaining in the reaction chamber 10 after cleaning. Therefore, corrosion by chlorine on the inner wall of the reaction chamber 10 and the members in the reaction chamber 10 can be suppressed.
 なお、水素ベークは、クリーニングより高い温度で行われる。クリーニングより高い温度で行うことにより、反応室10の内壁や反応室10内の部材に吸着しているガスの脱離を促進させる。水素ベークの温度は、1100℃以上1250℃以下であることが望ましく、1150℃以上1200℃以下であることがより望ましい。上記範囲を下回ると、支持部12に付着した付着物の除去効果を向上させることが困難となるからである。また、上記範囲を上回ると、反応室内の部材等の熱劣化が懸念されるからである。 Note that hydrogen baking is performed at a higher temperature than cleaning. By performing the cleaning at a higher temperature than the cleaning, the desorption of the gas adsorbed on the inner wall of the reaction chamber 10 or the members in the reaction chamber 10 is promoted. The temperature of hydrogen baking is preferably 1100 ° C. or higher and 1250 ° C. or lower, and more preferably 1150 ° C. or higher and 1200 ° C. or lower. It is because it will become difficult to improve the removal effect of the deposit | attachment adhering to the support part 12 if it is less than the said range. Moreover, it is because there exists a concern about thermal degradation of the member etc. in a reaction chamber when it exceeds the said range.
 また、水素ベークの温度は、第2のウエハに、第2の膜および第3の膜を成膜する際の、成膜温度よりも高くすることが望ましい。第2の膜および第3の膜を成膜する温度を水素ベークよりも低温とすることで、支持部12に付着した付着物が、成膜時に反応室10の雰囲気中に出ることを抑制することが可能となるからである。 Also, it is desirable that the temperature of hydrogen baking be higher than the film formation temperature when forming the second film and the third film on the second wafer. By setting the temperature for forming the second film and the third film to be lower than that for hydrogen baking, it is possible to suppress the deposits attached to the support portion 12 from coming out into the atmosphere of the reaction chamber 10 during film formation. Because it becomes possible.
 また、本実施形態では、ベーキングガスとして水素ガスを用いる場合を例に説明したが、ベーキングガスとして水素ガスを用いず、窒素ガス(N)、アルゴンガス(Ar)等の不活性ガスを適用することも可能である。 In this embodiment, the case where hydrogen gas is used as the baking gas has been described as an example. However, an inert gas such as nitrogen gas (N 2 ) or argon gas (Ar) is used without using hydrogen gas as the baking gas. It is also possible to do.
(第3の実施形態)
 本実施形態の気相成長方法は、支持部の付着物を除去する際に、塩素ガスクリーニングを行わない点で、第2の実施形態と異なっている。以下、第1または第2の実施形態と重複する内容については記述を省略する。
(Third embodiment)
The vapor phase growth method of this embodiment is different from that of the second embodiment in that chlorine gas cleaning is not performed when removing deposits on the support portion. Hereinafter, the description overlapping with the first or second embodiment will be omitted.
 図4は、本実施形態の気相成長方法のプロセスフロー図である。本実施形態の気相成長方法は、図1に示した枚葉型エピタキシャル成長装置を用いて行う。 FIG. 4 is a process flow diagram of the vapor phase growth method of the present embodiment. The vapor phase growth method of this embodiment is performed using the single wafer type epitaxial growth apparatus shown in FIG.
 図3で示した第2の実施形態の気相成長方法のプロセスフローから、クリーニング(S16)が省略されている。 The cleaning (S16) is omitted from the process flow of the vapor phase growth method of the second embodiment shown in FIG.
 第1のウエハW1を搬出した後に、支持部12に付着した付着物を除去する際に、水素ベーク(S17)を行う。水素ベークは、反応室10内にベーキングガスとして水素ガス(H)を供給して熱処理することにより行う。水素ベーク(S17)の詳細は、第2の実施形態と同様である。 After removing the first wafer W <b> 1, hydrogen bake (S <b> 17) is performed when removing deposits attached to the support unit 12. The hydrogen baking is performed by supplying hydrogen gas (H 2 ) as a baking gas into the reaction chamber 10 and performing a heat treatment. The details of the hydrogen bake (S17) are the same as in the second embodiment.
 本実施形態によれば、水素ベークのみで、支持部12に付着した付着物の除去を行う。したがって、第2の実施形態に比較して、より簡便なプロセスで、第2のウエハW2上に良質の膜を成膜することが可能となる。 According to this embodiment, the deposits attached to the support portion 12 are removed only by hydrogen baking. Therefore, it is possible to form a high-quality film on the second wafer W2 by a simpler process compared to the second embodiment.
 また、塩素原子を含有するガスを用いないため、反応室10の内壁や、反応室内の部材の塩素による腐食を抑制することが可能となる。 Moreover, since no gas containing chlorine atoms is used, corrosion by chlorine on the inner wall of the reaction chamber 10 and members in the reaction chamber can be suppressed.
(第4の実施形態)
 本実施形態の気相成長方法は、支持部の付着物を除去する際に、反応室内に塩素原子を含有するクリーニングガスを供給した後、反応室内にアンモニア(NH)を、さらに供給する点で、第1の実施形態と異なっている。以下、第1の実施形態と重複する内容については記述を省略する。
(Fourth embodiment)
In the vapor phase growth method of this embodiment, when removing the deposits on the support portion, after supplying a cleaning gas containing chlorine atoms into the reaction chamber, ammonia (NH 3 ) is further supplied into the reaction chamber. This is different from the first embodiment. Hereinafter, the description overlapping with the first embodiment will be omitted.
 図5は、本実施形態の気相成長方法のプロセスフロー図である。本実施形態の気相成長方法は、図1に示した枚葉型エピタキシャル成長装置を用いて行う。 FIG. 5 is a process flow diagram of the vapor phase growth method of the present embodiment. The vapor phase growth method of this embodiment is performed using the single wafer type epitaxial growth apparatus shown in FIG.
 図2で示した第1の実施形態の気相成長方法のプロセスフローに加えて、クリーニング(S16)の後に、クリーニングガス排出(S28)およびアンモニア供給(S30)を行う。 In addition to the process flow of the vapor phase growth method according to the first embodiment shown in FIG. 2, cleaning gas discharge (S28) and ammonia supply (S30) are performed after cleaning (S16).
 クリーニング(S16)までのプロセスは、第1の実施形態と同様である。クリーニングの終了時には、ガス供給部13からのクリーニングガス供給を停止する。そして、例えば、真空引きにより、反応室10内のクレーニングガスを排出する(S28)。その後、ガス供給部13からアンモニアを供給する(S30)。所定の時間、アンモニアを供給した後、アンモニアの供給を停止する。 The process up to cleaning (S16) is the same as in the first embodiment. At the end of cleaning, supply of the cleaning gas from the gas supply unit 13 is stopped. Then, for example, the craning gas in the reaction chamber 10 is discharged by evacuation (S28). Thereafter, ammonia is supplied from the gas supply unit 13 (S30). After supplying ammonia for a predetermined time, the supply of ammonia is stopped.
 その後、第2の基板上に第2の膜および第3の膜を成膜するプロセスについては、第1の実施形態と同様である。 Thereafter, the process of forming the second film and the third film on the second substrate is the same as in the first embodiment.
 塩素原子を含有するクリーニングガスを用いて反応室10をクリーニングした場合、クリーニングガスに含有される塩素原子が、反応室10の内面や配管内に残留するおそれがある。そして、この塩素原子が、後にAlN膜等を成膜する際、ウエハとAlN膜等の界面に凝集するおそれがある。 When the reaction chamber 10 is cleaned using a cleaning gas containing chlorine atoms, the chlorine atoms contained in the cleaning gas may remain on the inner surface of the reaction chamber 10 or in the piping. Then, when the chlorine atoms later form an AlN film or the like, there is a possibility that the chlorine atoms aggregate at the interface between the wafer and the AlN film or the like.
 塩素原子が界面に存在すると、ウエハ上に形成される、AlN膜やGaN膜等の膜質が劣化するおそれがある。また、AlN膜やGaN膜等が成膜されたウエハを用いてデバイスを製造する場合、塩素原子がデバイスとの特性を劣化させるおそれがある。 If chlorine atoms are present at the interface, the quality of the AlN film or GaN film formed on the wafer may be deteriorated. Further, when a device is manufactured using a wafer on which an AlN film, a GaN film, or the like is formed, chlorine atoms may deteriorate characteristics with the device.
 本実施形態によれば、反応室10にアンモニアを供給することで、反応室10の内面や配管内に残留する塩素原子を除去することが可能となる。したがって、ウエハ上に良質な膜を形成することが可能となる。なお、クリーニングガス排出(S28)において、真空引きの代わりに、又はその前若しくは後に、クリーニングガスの供給のみを停止し、水素ガス(H)もしくは窒素ガス(N)、アルゴンガス(Ar)等の不活性ガスもしくは、それらの混合ガスのみを流し、クリーニングガスをパージしてもよい。 According to this embodiment, by supplying ammonia to the reaction chamber 10, it becomes possible to remove chlorine atoms remaining on the inner surface of the reaction chamber 10 and in the piping. Therefore, it is possible to form a high quality film on the wafer. In the cleaning gas discharge (S28), instead of evacuation, or before or after that, only supply of the cleaning gas is stopped, and hydrogen gas (H 2 ), nitrogen gas (N 2 ), argon gas (Ar) Alternatively, the cleaning gas may be purged by flowing only an inert gas such as the above or a mixed gas thereof.
(第5の実施形態)
 本実施形態の気相成長方法は、支持部の付着物を除去する際に、反応室内に塩素原子を含有するクリーニングガスを供給し、その後、前記反応室内に水素ガスまたは不活性ガスを含有するベーキングガスを供給した後、反応室内にアンモニア(NH)を、さらに供給する点で、第2の実施形態と異なっている。以下、第2の実施形態と重複する内容については記述を省略する。
(Fifth embodiment)
In the vapor phase growth method of this embodiment, when removing deposits on the support, a cleaning gas containing chlorine atoms is supplied into the reaction chamber, and then hydrogen gas or an inert gas is contained in the reaction chamber. This is different from the second embodiment in that ammonia (NH 3 ) is further supplied into the reaction chamber after the baking gas is supplied. Hereinafter, the description overlapping with the second embodiment is omitted.
 図6は、本実施形態の気相成長方法のプロセスフロー図である。本実施形態の気相成長方法は、図1に示した枚葉型エピタキシャル成長装置を用いて行う。 FIG. 6 is a process flow diagram of the vapor phase growth method of the present embodiment. The vapor phase growth method of this embodiment is performed using the single wafer type epitaxial growth apparatus shown in FIG.
 図3で示した第2の実施形態の気相成長方法のプロセスフローに加えて、水素ベーク(S17)の後に、アンモニア供給(S30)を行う。 In addition to the process flow of the vapor phase growth method of the second embodiment shown in FIG. 3, ammonia supply (S30) is performed after hydrogen baking (S17).
 水素ベーク(S17)までのプロセスは、第2の実施形態と同様である。水素ベークの終了後、例えば、ガス供給部13からアンモニアを供給する(S30)。所定の時間、アンモニアを供給した後、アンモニアの供給を停止する。 The process up to hydrogen baking (S17) is the same as in the second embodiment. After the hydrogen baking is completed, for example, ammonia is supplied from the gas supply unit 13 (S30). After supplying ammonia for a predetermined time, the supply of ammonia is stopped.
 その後、第2の基板上に第2の膜および第3の膜を成膜するプロセスについては、第1の実施形態と同様である。 Thereafter, the process of forming the second film and the third film on the second substrate is the same as in the first embodiment.
 塩素原子を含有するクリーニングガスを用いて反応室10をクリーニングした場合、クリーニングガスに含有される塩素原子が、反応室10の内面や配管内に残留するおそれがある。そして、この塩素原子が、後にAlN膜等を成膜する際、ウエハとAlN膜等の界面に凝集するおそれがある。 When the reaction chamber 10 is cleaned using a cleaning gas containing chlorine atoms, the chlorine atoms contained in the cleaning gas may remain on the inner surface of the reaction chamber 10 or in the piping. Then, when the chlorine atoms later form an AlN film or the like, there is a possibility that the chlorine atoms aggregate at the interface between the wafer and the AlN film or the like.
 塩素原子が界面に存在すると、ウエハ上に形成される、AlN膜やGaN膜等の膜質が劣化するおそれがある。また、AlN膜やGaN膜等が成膜されたウエハを用いて半導体デバイスを製造する場合、塩素原子が半導体デバイスとの特性を劣化させるおそれがある。 If chlorine atoms are present at the interface, the quality of the AlN film or GaN film formed on the wafer may be deteriorated. Further, when a semiconductor device is manufactured using a wafer on which an AlN film, a GaN film, or the like is formed, chlorine atoms may deteriorate characteristics with the semiconductor device.
 本実施形態によれば、反応室10にアンモニアを供給することで、反応室10の内面や配管内に残留する塩素原子を除去することが可能となる。したがって、ウエハ上に良質な膜を形成することが可能となる。 According to this embodiment, by supplying ammonia to the reaction chamber 10, it becomes possible to remove chlorine atoms remaining on the inner surface of the reaction chamber 10 and in the piping. Therefore, it is possible to form a high quality film on the wafer.
 以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.
(実施例)
 第2の実施形態と同様のプロセスで成膜した。膜厚200nmの条件でAlN膜が成膜された(111)面のSiウエハ(第1のウエハ)に、縦型の枚葉型のエピタキシャル装置の反応室で、膜厚3000nmの条件でGaN膜をエピタキシャル成長させた。ソースガスとしてTMGを水素ガスで希釈したガスと、アンモニアを用いた。GaN膜の形成後にSiウエハを反応室から搬出した。
(Example)
A film was formed by the same process as in the second embodiment. A (111) -plane Si wafer (first wafer) on which an AlN film is formed under a condition of 200 nm thickness is applied to a GaN film under a condition of a thickness of 3000 nm in a reaction chamber of a vertical single wafer type epitaxial apparatus. Was epitaxially grown. A gas obtained by diluting TMG with hydrogen gas and ammonia were used as a source gas. After forming the GaN film, the Si wafer was unloaded from the reaction chamber.
 次に、反応室内にSiCのダミーウエハを搬入し、1000℃に加熱した。この際、支持部の温度もはぼ1000℃に加熱される。そして、塩酸ガスを水素ガスで10体積%に希釈したクリーニングガスを反応室に供給し、5分間のクリーニングを行った。 Next, a SiC dummy wafer was carried into the reaction chamber and heated to 1000 ° C. At this time, the temperature of the support portion is also heated to about 1000 ° C. Then, cleaning gas obtained by diluting hydrochloric acid gas with hydrogen gas to 10% by volume was supplied to the reaction chamber, and cleaning was performed for 5 minutes.
 クリーニングの後に、ダミーウエハおよび支持部を1150℃に加熱した。そして、100体積%の水素ガスを反応室に供給し、5分間の水素ベークを行った。その後、ダミーウエハを反応室から搬出した。 After cleaning, the dummy wafer and the support were heated to 1150 ° C. And 100 volume% hydrogen gas was supplied to the reaction chamber, and hydrogen baking was performed for 5 minutes. Thereafter, the dummy wafer was unloaded from the reaction chamber.
 次に、クリーニング前に成膜したSiウエハとは別の、表面にシリコンが露出した状態の(111)面のSiウエハ(第2のウエハ)を、反応室内に搬入した。このSiウエハ上に、膜厚200nmの条件のAlN膜と、膜厚3000nmの条件のGaN膜をエピタキシャル成長させた。AlN膜およびGaN膜形成時の温度は、1000℃とした。 Next, a (111) -plane Si wafer (second wafer) with silicon exposed on the surface, different from the Si wafer formed before cleaning, was carried into the reaction chamber. On this Si wafer, an AlN film having a thickness of 200 nm and a GaN film having a thickness of 3000 nm were epitaxially grown. The temperature during the formation of the AlN film and the GaN film was 1000 ° C.
 AlN膜およびGaN膜を形成した後、Siウエハ(第2のウエハ)を反応室外に搬出した。 After forming the AlN film and the GaN film, the Si wafer (second wafer) was carried out of the reaction chamber.
(比較例)
 クリーニングおよび水素ベークを行わない以外は、実施例と同様のプロセスで、Siウエハ(第2のウエハ)上にAlN膜およびGaN膜を形成した。
(Comparative example)
An AlN film and a GaN film were formed on the Si wafer (second wafer) by the same process as in the example except that cleaning and hydrogen baking were not performed.
 実施例および比較例についてAlN膜およびGaN膜の成膜状態を確認した。図7は、実施例および比較例のウエハ表面の光学写真である。図7(a)が実施例、図7(b)が比較例である。 The film formation state of the AlN film and the GaN film was confirmed for the examples and comparative examples. FIG. 7 is an optical photograph of the wafer surface of the example and the comparative example. FIG. 7A shows an example, and FIG. 7B shows a comparative example.
 実施例の場合、ウエハ表面は鏡面となっており、AlN膜およびGaN膜が良好に成膜されていることが確認された。一方、比較例では表面に凹凸があり、ウエハ中心部に白濁した領域がみられた。電子顕微鏡による断面観察により白濁した領域では、Siウエハがエッチングされ穴が形成されていた。 In the case of the example, the wafer surface was a mirror surface, and it was confirmed that the AlN film and the GaN film were well formed. On the other hand, in the comparative example, the surface was uneven, and a clouded area was seen in the center of the wafer. In a region that was clouded by cross-sectional observation with an electron microscope, the Si wafer was etched to form holes.
 比較例の場合、第1のウエハへのGaN膜成長の際に支持部についたGaを含む付着物が、第2のウエハの昇温時や、AlN膜形成時に反応室の雰囲気中に出て、下地のSiと反応し、良質なAlN膜が形成されなかったことが考えられる。このため、AlN膜上へのGaN膜の成長の際に、AlN膜が十分にGaとSiとの反応を十分抑制できず、Siウエハのエッチングが進行したと考えられる。 In the case of the comparative example, deposits containing Ga on the support during the growth of the GaN film on the first wafer come out into the reaction chamber atmosphere when the temperature of the second wafer is increased or when the AlN film is formed. It is considered that a good quality AlN film was not formed by reacting with the underlying Si. For this reason, when the GaN film is grown on the AlN film, the AlN film cannot sufficiently suppress the reaction between Ga and Si, and the etching of the Si wafer is considered to have progressed.
 実施例により、ガリウム(Ga)を含有するソースガスを用いた成膜の後に、反応室内の基板支持部の付着物を除去することで、続く成膜が良好に行われることが確認された。 According to the example, it was confirmed that the subsequent film formation was performed satisfactorily by removing the deposit on the substrate support in the reaction chamber after the film formation using the source gas containing gallium (Ga).
 以上、具体例を参照しつつ本発明の実施形態について説明した。上記、実施形態はあくまで、例として挙げられているだけであり、本発明を限定するものではない。また、各実施形態の構成要素を適宜組み合わせてもかまわない。 The embodiments of the present invention have been described above with reference to specific examples. The above embodiment is merely given as an example and does not limit the present invention. Moreover, you may combine the component of each embodiment suitably.
 実施形態では、ガリウム(Ga)を含有するソースガスを用いた成膜の後に、反応室内の支持部の付着物を除去した後に成膜される膜を、AlN膜とGaN膜を例に説明した。しかし、これらの膜に限らず、Si表面に形成される膜であれば、その他のいかなる膜であってもかまわない。支持部に付着したGaを含有する付着物は、Si上に成膜する膜種に関わらず、支持部の加熱によって反応室雰囲気に出て、Si表面と反応するおそれがあるからである。 In the embodiment, the film formed after the deposition using the source gas containing gallium (Ga) and after removing the deposit on the support in the reaction chamber has been described by taking the AlN film and the GaN film as examples. . However, the present invention is not limited to these films, and any other film may be used as long as it is a film formed on the Si surface. This is because the deposit containing Ga adhering to the support part may come out to the reaction chamber atmosphere by the heating of the support part and react with the Si surface regardless of the type of film deposited on Si.
 また、実施形態では、ウエハ1枚毎に成膜する縦型の枚葉式のエピタキシャル装置を例に説明したが、気相成長装置は、枚葉式のエピタキシャル装置に限られるものではない。例えば、自公転する複数のウエハに同時に成膜するプラネタリー方式のエピタキシャル装置や、横型のエピタキシャル装置等にも、本発明を適用することが可能である。また、エピタキシャル装置以外の気相成長装置であってもかまわない。 In the embodiment, a vertical single-wafer epitaxial apparatus for forming a film for each wafer has been described as an example. However, the vapor phase growth apparatus is not limited to a single-wafer epitaxial apparatus. For example, the present invention can be applied to a planetary epitaxial apparatus that forms films on a plurality of wafers that revolve and revolves simultaneously, a lateral epitaxial apparatus, and the like. Further, a vapor phase growth apparatus other than the epitaxial apparatus may be used.
 実施形態では、装置構成や製造方法等、本発明の説明に直接必要としない部分等については記載を省略したが、必要とされる装置構成や製造方法等を適宜選択して用いることができる。その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての気相成長方法は、本発明の範囲に包含される。本発明の範囲は、特許請求の範囲およびその均等物の範囲によって定義されるものである。 In the embodiment, the description of the apparatus configuration, the manufacturing method, and the like that are not directly required for the description of the present invention is omitted, but the required apparatus configuration, the manufacturing method, and the like can be appropriately selected and used. In addition, all vapor phase growth methods that include elements of the present invention and that can be appropriately modified by those skilled in the art are included in the scope of the present invention. The scope of the present invention is defined by the appended claims and equivalents thereof.

Claims (11)

  1.  反応室にガリウム(Ga)を含有するソースガスを供給し、前記反応室内の支持部上に載置される第1の基板に第1の膜を形成し、
     前記第1の基板を前記反応室から搬出し、
     前記第1の基板を前記反応室から搬出した後に、前記支持部を加熱して、前記支持部に付着した付着物を除去し、
     前記付着物を除去した後に、前記反応室に、前記第1の基板と異なる、表面がシリコン(Si)の第2の基板を搬入し、
     前記支持部上に載置される前記第2の基板に第2の膜を形成することを特徴とする気相成長方法。
    A source gas containing gallium (Ga) is supplied to the reaction chamber, and a first film is formed on a first substrate placed on the support in the reaction chamber,
    Unloading the first substrate from the reaction chamber;
    After unloading the first substrate from the reaction chamber, the support part is heated to remove deposits attached to the support part,
    After removing the deposit, a second substrate having a surface of silicon (Si) different from the first substrate is carried into the reaction chamber,
    A vapor deposition method, comprising: forming a second film on the second substrate placed on the support portion.
  2.  前記付着物を除去する際に、前記反応室内に塩素原子を含有するクリーニングガスを供給することを特徴とする請求項1記載の気相成長方法。 The vapor phase growth method according to claim 1, wherein a cleaning gas containing chlorine atoms is supplied into the reaction chamber when removing the deposit.
  3.  前記付着物を除去する際に、前記反応室内に水素ガスまたは不活性ガスを含有するベーキングガスを供給することを特徴とする請求項1記載の気相成長方法。 2. The vapor phase growth method according to claim 1, wherein a baking gas containing hydrogen gas or inert gas is supplied into the reaction chamber when removing the deposit.
  4.  前記付着物を除去する際に、前記反応室内に塩素原子を含有するクリーニングガスを供給し、その後、前記反応室内に水素ガスまたは不活性ガスを含有するベーキングガスを供給することを特徴とする請求項2記載の気相成長方法。 When removing the deposit, a cleaning gas containing chlorine atoms is supplied into the reaction chamber, and then a baking gas containing hydrogen gas or an inert gas is supplied into the reaction chamber. Item 3. The vapor phase growth method according to Item 2.
  5.  前記反応室内に塩素原子を含有するクリーニングガスを供給する際に、前記支持部を800℃以上1100℃以下に加熱し、前記反応室内に水素ガスまたは不活性ガスを含有するベーキングガスを供給する際に、前記支持部を1150℃以上1250℃以下に加熱することを特徴とする請求項4記載の気相成長方法。 When supplying the cleaning gas containing chlorine atoms into the reaction chamber, the support is heated to 800 ° C. or higher and 1100 ° C. or lower, and the baking gas containing hydrogen gas or inert gas is supplied into the reaction chamber. 5. The vapor phase growth method according to claim 4, wherein the support portion is heated to 1150 ° C. or higher and 1250 ° C. or lower.
  6.  前記クリーニングガスを供給した後に、前記反応室内にアンモニアを供給することを特徴とする請求項2記載の気相成長方法。 3. The vapor phase growth method according to claim 2, wherein ammonia is supplied into the reaction chamber after the cleaning gas is supplied.
  7.  前記ベーキングガスを供給した後に、前記反応室内にアンモニアを供給することを特徴とする請求項4記載の気相成長方法。 5. The vapor phase growth method according to claim 4, wherein ammonia is supplied into the reaction chamber after supplying the baking gas.
  8.  前記クリーニングガスをパージした後、前記反応室内にアンモニアを供給することを特徴とする請求項2記載の気相成長方法。 3. The vapor phase growth method according to claim 2, wherein ammonia is supplied into the reaction chamber after purging the cleaning gas.
  9.  前記クリーニングガスが、塩酸ガスまたは塩素ガスを含むことを特徴とする請求項2記載の気相成長方法。 3. The vapor phase growth method according to claim 2, wherein the cleaning gas contains hydrochloric acid gas or chlorine gas.
  10.  前記第2の膜は、窒化アルミニウム膜又は窒化シリコン膜であることを特徴とする請求項1記載の気相成長方法。 2. The vapor phase growth method according to claim 1, wherein the second film is an aluminum nitride film or a silicon nitride film.
  11.  前記第2の膜上に、ガリウム(Ga)を含有する第3の膜を形成することを特徴とする請求項1記載の気相成長方法。
     
    The vapor deposition method according to claim 1, wherein a third film containing gallium (Ga) is formed on the second film.
PCT/JP2015/082425 2014-11-20 2015-11-18 Vapor phase growth method WO2016080450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014235259 2014-11-20
JP2014-235259 2014-11-20

Publications (1)

Publication Number Publication Date
WO2016080450A1 true WO2016080450A1 (en) 2016-05-26

Family

ID=56013984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082425 WO2016080450A1 (en) 2014-11-20 2015-11-18 Vapor phase growth method

Country Status (3)

Country Link
JP (1) JP2016105471A (en)
TW (1) TW201630053A (en)
WO (1) WO2016080450A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439774B2 (en) * 2016-11-21 2018-12-19 トヨタ自動車株式会社 Manufacturing method of semiconductor device
JP7188256B2 (en) * 2019-04-18 2022-12-13 株式会社Sumco Vapor deposition method and vapor deposition apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109928A (en) * 2005-10-14 2007-04-26 Taiyo Nippon Sanso Corp Cleaning method and cleaning apparatus for component of apparatus for manufacturing nitride semiconductor
JP2012525708A (en) * 2009-04-28 2012-10-22 アプライド マテリアルズ インコーポレイテッド MOCVD single chamber split process for LED manufacturing
JP2013012719A (en) * 2011-05-31 2013-01-17 Hitachi Kokusai Electric Inc Substrate processing apparatus and substrate processing method
JP2013062342A (en) * 2011-09-13 2013-04-04 Toshiba Corp Cleaning method of film forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109928A (en) * 2005-10-14 2007-04-26 Taiyo Nippon Sanso Corp Cleaning method and cleaning apparatus for component of apparatus for manufacturing nitride semiconductor
JP2012525708A (en) * 2009-04-28 2012-10-22 アプライド マテリアルズ インコーポレイテッド MOCVD single chamber split process for LED manufacturing
JP2013012719A (en) * 2011-05-31 2013-01-17 Hitachi Kokusai Electric Inc Substrate processing apparatus and substrate processing method
JP2013062342A (en) * 2011-09-13 2013-04-04 Toshiba Corp Cleaning method of film forming device

Also Published As

Publication number Publication date
JP2016105471A (en) 2016-06-09
TW201630053A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
JP6339066B2 (en) PVD buffer layer for LED manufacturing
US10109481B2 (en) Aluminum-nitride buffer and active layers by physical vapor deposition
US20120305026A1 (en) Substrate Processing Apparatus and Substrate Processing Method
JP5439771B2 (en) Deposition equipment
JP2010251705A (en) Coating apparatus and coating method
KR20140128250A (en) Cleaning method for film deposition apparatus and film deposition apparatus
JP6499493B2 (en) Vapor growth method
WO2016080450A1 (en) Vapor phase growth method
US8497192B2 (en) Method of manufacturing a semiconductor device and substrate processing apparatus
US20180179662A1 (en) Method for controlling vapor phase growth apparatus
JP2010087361A (en) Production process of semiconductor device
JP5267361B2 (en) Epitaxial growth method
KR101704305B1 (en) Vapor phase growing method
US20210310118A1 (en) Vapor phase growth method
JP5759690B2 (en) Film forming method, semiconductor device manufacturing method, and substrate processing apparatus
JP2007073628A (en) Method and device for manufacturing semiconductor
US20240052483A1 (en) Film forming method and film forming apparatus
JP2017135170A (en) Vapor-phase growth apparatus and vapor phase growth method
KR20120134049A (en) Substrate processing apparatus and method of processing substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860604

Country of ref document: EP

Kind code of ref document: A1