WO2016080356A1 - Alignment film - Google Patents

Alignment film Download PDF

Info

Publication number
WO2016080356A1
WO2016080356A1 PCT/JP2015/082141 JP2015082141W WO2016080356A1 WO 2016080356 A1 WO2016080356 A1 WO 2016080356A1 JP 2015082141 W JP2015082141 W JP 2015082141W WO 2016080356 A1 WO2016080356 A1 WO 2016080356A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
less
oriented film
temperature
Prior art date
Application number
PCT/JP2015/082141
Other languages
French (fr)
Japanese (ja)
Inventor
中西 貴之
正紀 羽田
吉田 哲男
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2016560215A priority Critical patent/JP6346301B2/en
Priority to CN201580062749.1A priority patent/CN107001661B/en
Publication of WO2016080356A1 publication Critical patent/WO2016080356A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides

Definitions

  • the present invention relates to an oriented film made of a styrene polymer having a syndiotactic structure. More specifically, the present invention relates to an oriented film made of a styrene-based polymer having a syndiotactic structure in which generation of heat loss due to wrinkles during heat treatment at a high temperature such as an evaporation process is suppressed.
  • a film capacitor is manufactured by a method in which a film such as a biaxially oriented polyethylene terephthalate film or a biaxially oriented polypropylene film and a metal thin film such as an aluminum foil are overlapped and wound or laminated.
  • film capacitors have also been miniaturized and mounted, and further heat resistance has been demanded in addition to electrical characteristics.
  • the range of use extends not only in the cab, but also in the engine room.
  • film capacitors that are suitable for environments with higher temperatures and higher humidity are required. Yes.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-143851
  • Patent Document 2 Japanese Patent Laid-Open No. 3-124750
  • Patent Document 3 Japanese Patent Laid-Open No. 5-200788
  • Patent Document 4 International JP 2008/156210 pamphlet proposes a method using an ultrathin syndiotactic polystyrene film excellent in heat resistance and electrical properties.
  • JP 2011-1111592 A discloses a thermoplastic amorphous resin having a glass transition temperature of 130 ° C. or higher in order to improve the heat resistance of the syndiotactic polystyrene film and further improve the film forming property. It has been proposed to be used in combination.
  • Japanese Patent Laid-Open No. 2-143851 Japanese Patent Laid-Open No. 3-124750 Japanese Patent Laid-Open No. 5-200858 International Publication No. 2008/156210 Pamphlet JP 2011-1111592 A
  • the present invention has been made in view of the above-described background art, and an object thereof is to provide an alignment film of a syndiotactic polystyrene resin that is excellent in suppressing generation of heat loss due to wrinkles during high-temperature heat treatment.
  • the inventors of the present invention conducted intensive research to achieve the above-mentioned object, and conventionally, the heat yield at 200 ° C. was preferably less than 6% due to the occurrence of wrinkles and flatness.
  • the film-forming conditions are shifted to a higher temperature side in accordance with the improvement in heat resistance. It was found that the breaking strength is lowered when the properties are improved.
  • the inventors have found that by increasing the heat shrinkage rate at 200 ° C., the occurrence of heat loss due to shrinkage can be suppressed and the breaking strength can be improved, and the present invention has been achieved.
  • a resin composition containing a thermoplastic amorphous resin having a syndiotactic styrene polymer as a main resin component and having a glass transition temperature of 130 ° C. or higher, and at 130 ° C. for 30 minutes.
  • a thermoplastic amorphous resin having a syndiotactic styrene polymer as a main resin component and having a glass transition temperature of 130 ° C. or higher, and at 130 ° C. for 30 minutes.
  • an oriented film having a heat shrinkage rate in the in-plane direction of 5.0% or less when treated and a heat shrinkage rate in at least one direction in the in-plane direction of 6.5% or more when heat-treated at 200 ° C. for 10 minutes. Is done.
  • the peak temperature of the loss elastic modulus (E ′′) at a vibration frequency of 10 Hz is 125 ° C. or higher and the breaking strength is 90 MPa or higher.
  • the average value of the heat shrinkage rate in the film forming direction and the width direction when the heat treatment is performed is 6.5% or more and 15.0% or less, and the heat shrinkage rate in the in-plane direction when heat treatment is performed at 130 ° C. for 30 minutes. It is at least one of 0.0% or more and 5.0% or less, that the thermoplastic amorphous resin is polyphenylene ether, that the film thickness is 0.3 to 30 ⁇ m, or that it is used for vapor deposition processing. An oriented film comprising one is also provided.
  • the oriented film of the present invention suppresses generation of heat loss due to wrinkles during heat treatment at a high temperature such as a vapor deposition process, while using a polystyrene polymer having a syndiotactic structure excellent in electrical characteristics and heat resistance. Can do.
  • the dielectric breakdown voltage is high, flatness can be secured even after high-temperature heat treatment such as a vapor deposition process, and it can be suitably used as a base film for a film capacitor that is extremely thin and difficult to handle.
  • the oriented film of the present invention comprises a resin composition in which a thermoplastic amorphous resin having a glass transition temperature of 130 ° C. or higher is contained in a syndiotactic styrene polymer.
  • the polystyrene resin having a syndiotactic structure in the present invention (hereinafter sometimes referred to as “syndiotactic polystyrene resin” or “SPS”) is used as a main chain formed of carbon-carbon bonds.
  • the side chain has a three-dimensional structure in which phenyl groups and substituted phenyl groups are alternately positioned in opposite directions.
  • tacticity is quantified by nuclear magnetic resonance ( 13 C-NMR) with isotope carbon, and abundance ratio of a plurality of consecutive structural units, for example, dyad in the case of two, triad in the case of three, In the case of five, it can be indicated by a pentad or the like.
  • the polystyrene-based resin having a syndiotactic structure is polystyrene, poly (alkyl) having a syndiotacticity of 75% or more, preferably 85% or more, or 30% or more, preferably 50% or more, of pentad.
  • Styrene poly (halogenated styrene), poly (alkoxystyrene), poly (vinyl benzoate), polymers in which a part of these benzene rings are hydrogenated, mixtures thereof, or structural units thereof.
  • the copolymer containing is designated.
  • poly (alkyl styrene) includes poly (methyl styrene), poly (ethyl styrene), poly (propyl styrene), poly (butyl styrene), poly (phenyl styrene), and the like. ) Include poly (chlorostyrene), poly (bromostyrene), poly (fluorostyrene) and the like.
  • poly (alkoxystyrene) include poly (methoxystyrene) and poly (ethoxystyrene).
  • polystyrene resins include polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (p-tertiarybutylstyrene), poly (p-chlorostyrene), and poly (m- Chlorostyrene), poly (p-fluorostyrene), and a copolymer of styrene and p-methylstyrene.
  • polystyrene is preferable.
  • polystyrene resin in the present invention is used as a copolymer containing a copolymer component, as its comonomer, in addition to the above-mentioned polystyrene resin monomer, ethylene, propylene, butene, hexene, octene.
  • Olefin monomers such as diene monomers such as butadiene and isoprene, cyclic diene monomers, polar vinyl monomers such as methyl methacrylate, maleic anhydride, and acrylonitrile.
  • the weight average molecular weight of this syndiotactic polystyrene resin is preferably 1.0 ⁇ 10 4 to 3.0 ⁇ 10 6 , more preferably 5.0 ⁇ 10 4 to 1.5 ⁇ 10 6. 6 , particularly preferably 1.1 ⁇ 10 5 to 8.0 ⁇ 10 5 .
  • the weight average molecular weight is preferably 1.0 ⁇ 10 4 or more, preferably 5.0 ⁇ 10 4 or more, and particularly preferably 1.1 ⁇ 10 5 or more, the strength and elongation characteristics are excellent and the heat resistance is further improved.
  • a molded product such as a film can be obtained.
  • the stretching tension is in a suitable range, and at the time of film formation, etc. Breakage and the like are less likely to occur.
  • the thermal contraction rate in the in-plane direction when the oriented film of the present invention is heat-treated at 130 ° C. for 30 minutes is 5.0% or less, preferably 3.0% or less. If the shrinkage rate exceeds the upper limit, the film after the high temperature heat treatment cannot maintain flatness, which is not preferable.
  • the lower limit is not particularly limited, but wrinkles due to elongation of the film tend to occur when the negative heat shrinkage rate is reached, so that it is preferably ⁇ 1.0% or more, and more preferably 0.0% or more.
  • the heat shrinkage rate in the in-plane direction of the film means the average value of the heat shrinkage rates in both directions when the film forming direction of the film and the direction perpendicular thereto are measured.
  • the heat shrinkage rate in at least one direction in the in-plane direction when treated at 200 ° C. for 10 minutes is 6.5% or more, preferably 7.5% or more, and more preferably 8.5% or more. If the shrinkage rate is less than the lower limit, generation of heat loss due to wrinkles during high-temperature heat treatment cannot be suppressed, and the breaking strength is also reduced.
  • the upper limit of the heat shrinkage rate is not particularly limited, but if it becomes excessively high, it becomes difficult to maintain the flatness of the film after the heat treatment, so it is 20% or less, further 18% or less, especially 15%. The following is preferable.
  • any one of the film forming direction and the direction perpendicular to the film (width direction) has the above heat shrinkage characteristics. It means that it only needs to have a direction. Furthermore, it is preferable that the average value of the film forming direction of a film and the width direction exists in the said range, and it is preferable that each value of the film forming direction of a film and the width direction exists in the said range especially.
  • the heat shrinkage rate in at least one direction in the in-plane direction when treated at 150 ° C. for 30 minutes is 3.0% or more, preferably 4.0% or more, which suppresses generation of heat loss due to wrinkles during high-temperature heat treatment. This is preferable because it is easy to increase the breaking strength.
  • the upper limit of the heat shrinkage rate is not particularly limited, but if it becomes excessively high, it is difficult to maintain the flatness of the film after the heat treatment, so that it is 12% or less, and further 10% or less. preferable.
  • either the film forming direction or the direction perpendicular to the film (width direction) has the above heat shrinkage characteristics. It means that it only needs to have a direction.
  • the direction which comprises the said heat shrinkage rate is a direction with the largest heat shrinkage rate.
  • the thermal shrinkage rate in at least one direction in the in-plane direction when treated at 180 ° C. for 10 minutes is 4.5% or more, preferably 5.5% or more. If the shrinkage rate is less than the lower limit, generation of heat loss due to wrinkles during high-temperature heat treatment cannot be suppressed, and the breaking strength is also reduced. On the other hand, the upper limit of the heat shrinkage rate is not particularly limited, but if it becomes too high, it tends to be difficult to maintain the flatness of the film after heat treatment, so that it is 15% or less, and further 13% or less. preferable.
  • either the film forming direction or the direction perpendicular to the film (width direction) has the above heat shrinkage characteristics. It means that it only needs to have a direction.
  • the direction which comprises the said heat shrinkage rate is a direction with the largest heat shrinkage rate.
  • the heat shrinkage rate as described above can be achieved by a combination with a thermoplastic amorphous resin, which will be described later, and a film forming condition, particularly control of a heat setting temperature.
  • the oriented film of the present invention preferably has a peak temperature of loss elastic modulus (E ′′) measured at a vibration frequency of 10 Hz by dynamic viscoelasticity measurement of 120 ° C. or more and 150 ° C. or less.
  • a high peak temperature of the loss modulus (E ′′) means that the temperature at which molecular motion becomes active is high and the heat resistance is excellent.
  • the peak temperature of the loss elastic modulus (E ′′) is more preferably 125 ° C. or higher, and particularly preferably 130 ° C. or higher.
  • the peak temperature of the loss modulus (E ′′) is too high, it also has the effect that the molecular motion is less likely to be active. Is more likely to occur.
  • the peak temperature of the loss elastic modulus (E ′′) is more preferably 145 ° C. or less, and further preferably 140 ° C. or less.
  • a thermoplastic amorphous resin may be employed and the content thereof may be adjusted as appropriate.
  • the breaking strength decreases.
  • the oriented film of the present invention preferably has a breaking strength of 90 MPa or more, and 100 MPa or more. Further preferred.
  • Such a breaking strength can be achieved by a combination with a thermoplastic amorphous resin, which will be described later, and a film forming condition, particularly control of a heat setting temperature.
  • the resin composition in the present invention contains a thermoplastic amorphous resin.
  • the thermoplastic amorphous resin here is a thermoplastic amorphous resin having a glass transition temperature Tg determined by DSC (differential scanning calorimeter) of 130 ° C. or higher, which is higher than SPS.
  • Tg glass transition temperature
  • the substantial upper limit is preferably 350 ° C., more preferably 300 ° C.
  • thermoplastic amorphous resins include aromatic polyethers such as polyphenylene ether and polyetherimide, polycarbonate, polyarylate, polysulfone, polyethersulfone, and polyimide.
  • aromatic polyethers such as polyphenylene ether and polyetherimide
  • polycarbonate such as polyethylene glycol
  • polyarylate such as polysulfone
  • polyethersulfone such as polyethylene glycol
  • polyimide such as poly(ethylene glycol)
  • polycarbonate such as polycarbonate, polyarylate, polysulfone, polyethersulfone, and polyimide.
  • polyphenylene ether resin used here include conventionally known resins such as poly (2,3-dimethyl-6-ethyl-1,4-phenylene ether) and poly (2-methyl-6-chloromethyl-1).
  • 4-phenylene ether poly (2-methyl-6-hydroxyethyl-1,4-phenylene ether), poly (2-methyl-6-n-butyl-1,4-phenylene ether), poly (2-ethyl-6-isopropyl-1,4-phenylene ether), poly (2-ethyl-6-n-propyl-1,4-phenylene ether), poly (2,3,6-trimethyl-1) , 4-phenylene ether), poly (2- (4′-methylphenyl) -1,4-phenylene ether), poly (2-bromo-6-phenyl-1,4-phenylene ether), poly 2-methyl-6-phenyl-1,4-phenylene ether), poly (2-phenyl-1,4-phenylene ether), poly (2-chloro-1,4-phenylene ether), poly (2 -Methyl-1,4-phenylene ether), poly (2-chloro-6-ethyl-1,4-phenylene ether), poly (2-chloro
  • those modified with a modifying agent such as maleic anhydride or fumaric acid are also preferably used.
  • a copolymer obtained by graft copolymerization or block copolymerization of a vinyl aromatic compound such as styrene with the polyphenylene ether is also used.
  • poly (2,6-dimethyl-1,4-phenylene ether) is particularly preferred.
  • the intrinsic viscosity (measured in chloroform at 30 ° C.) of the thermoplastic amorphous resin is preferably in the range of 0.2 to 0.8 dl / g, more preferably in the range of 0.3 to 0.6 dl / g.
  • the intrinsic viscosity is less than 0.2 dl / g, the mechanical strength of the resulting resin composition may be lowered.
  • it exceeds 0.8 dl / g the fluidity of the resulting resin composition is lowered, and the processing during melt molding into a film or the like tends to be difficult.
  • Two or more kinds of thermoplastic amorphous resins may be used in combination, and in this case, those having different intrinsic viscosities may be mixed to obtain a desired intrinsic viscosity.
  • the oriented film of the present invention preferably contains 5% by mass or more and 48% by mass or less of the above thermoplastic amorphous resin with respect to the mass of the oriented film.
  • the thermoplastic amorphous resin By blending the thermoplastic amorphous resin in an amount within the above range, the heat resistance is excellent and the effect of improving the dielectric breakdown voltage can be increased, that is, the dielectric breakdown voltage at a high temperature can be increased.
  • the content of the thermoplastic amorphous resin is more preferably 8% by mass or more, further preferably 11% by mass or more, and particularly preferably 20% by mass or more.
  • the content of the thermoplastic amorphous resin is more preferably 45% by mass or less, further preferably 40% by mass or less, and particularly preferably 35% by mass or less.
  • the oriented film of the present invention may be used in combination with other resins in addition to the SPS and the thermoplastic amorphous resin as long as the object of the present invention is not impaired.
  • the oriented film of the present invention preferably contains an antioxidant.
  • the antioxidant may be either a primary antioxidant that captures the generated radicals to prevent oxidation, or a secondary antioxidant that decomposes the generated peroxides to prevent oxidation.
  • Examples of the primary antioxidant include phenol-based antioxidants and amine-based antioxidants, and examples of the secondary antioxidant include phosphorus-based antioxidants and sulfur-based antioxidants. Of these, primary antioxidants are preferred, and phenolic antioxidants are particularly preferred.
  • the antioxidant has a thermal decomposition temperature of 250 ° C. or higher.
  • the thermal decomposition temperature of the antioxidant is more preferably 280 ° C. or higher, further preferably 300 ° C. or higher, and particularly preferably 320 ° C. or higher.
  • the antioxidant in the present invention is preferably less susceptible to thermal decomposition and preferably has a higher thermal decomposition temperature, but in reality, the upper limit is about 500 ° C. or less.
  • the melting point of the antioxidant is preferably 90 ° C. or higher. If the melting point is too low, the antioxidant melts faster than the polymer during melt extrusion, and the polymer tends to slip at the screw supply portion of the extruder. As a result, the supply of the polymer becomes unstable, and problems such as the uneven thickness of the film occur. From such a viewpoint, the melting point of the antioxidant is more preferably 120 ° C. or higher, further preferably 150 ° C. or higher, and particularly preferably 200 ° C. or higher. On the other hand, when the melting point of the antioxidant is too high, the antioxidant becomes difficult to melt during melt extrusion, and the dispersion in the polymer tends to be poor. Thereby, problems such as the effect of adding the antioxidant appear only locally. From such a viewpoint, the melting point of the antioxidant is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, further preferably 220 ° C. or lower, and particularly preferably 170 ° C. or lower.
  • antioxidants commercially available products can be used as they are.
  • Commercially available products include, for example, pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by Ciba Specialty Chemicals: trade name IRGANOX 1010), N, N′— Bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine (manufactured by Ciba Specialty Chemicals: trade name IRGANOX1024), N, N′-hexane-1,6-diylbis [ 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionamide] (manufactured by Ciba Specialty Chemicals: trade name IRGANOX 1098) is preferred.
  • the content of the antioxidant is preferably 0.1% by mass or more and 5% by mass or less based on the mass of the oriented film.
  • the content of the antioxidant is more preferably 0.2% by mass or more, further preferably 0.5% by mass or more, and particularly preferably 0.7% by mass or more.
  • the content of the antioxidant is more preferably 3% by mass or less, further preferably 2% by mass or less, and particularly preferably 1.5% by mass or less.
  • antioxidants may be used alone or in combination of two or more.
  • the oriented film of the present invention may contain other resin components different from the thermoplastic amorphous resin, for example, in order to further improve the moldability, mechanical properties, surface properties, etc., within the range not impairing the object of the present invention.
  • Additives such as antistatic agents, colorants, weathering agents, lubricants and the like can be added.
  • the oriented film of the present invention becomes a capacitor by, for example, laminating a metal layer on at least one side.
  • the material of the metal layer is not particularly limited, and examples thereof include aluminum, zinc, nickel, chromium, tin, copper, and alloys thereof. Further, these metal layers may be slightly oxidized. Moreover, since a metal layer can be formed easily, it is preferable that a metal layer is a vapor deposition type metal layer formed by the vapor deposition method.
  • the oriented film of the present invention preferably has a plane orientation coefficient by refractive index of ⁇ 0.030 or less.
  • the more negative the plane orientation coefficient the more the molecular chains are oriented in the film plane direction, and the plane orientation coefficient is kept below the upper limit, which will be described later. It is possible to improve the dynamic viscoelasticity E ′′.
  • the upper limit of the plane orientation coefficient is preferably ⁇ 0.030 or less, more preferably ⁇ 0.032 or less, and particularly preferably ⁇ 0.033 or less.
  • the lower limit of the plane orientation coefficient is not particularly limited, but the frequency of film breakage in the film production process, particularly in the stretching process tends to increase, and the productivity of the film tends to decrease. From such a viewpoint, the lower limit of the plane orientation coefficient is preferably ⁇ 0.050 or more, more preferably ⁇ 0.045 or more, and particularly preferably ⁇ 0.040 or more.
  • the thickness of the oriented film of the present invention is not particularly limited, it is 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, particularly 1.0 ⁇ m or more, and most preferably 1.5 ⁇ m or more from the viewpoint of easily preventing breakage as a film.
  • the oriented film of the present invention preferably has a dielectric breakdown voltage (BDV) at room temperature of 500 kV / mm or more.
  • the breakdown voltage is more preferably 520 kV / mm or more, and further preferably 550 kV / mm or more.
  • the oriented film of the present invention preferably has an arithmetic average roughness (Ra) of 20 nm to 150 nm, more preferably 25 nm to 120 nm, still more preferably 30 nm to 100 nm. If Ra exceeds the upper limit, it becomes difficult to maintain flatness even after high-temperature heat treatment. On the other hand, when Ra is lower than the lower limit, the winding property deteriorates, which is not preferable. In order to make Ra within the above range, particles that form irregularities on the surface of the oriented film may be added as a lubricant. The material and shape of the lubricant can be known per se.
  • the oriented film of the present invention preferably has a Young's modulus of 3.0 GPa to 6.0 GPa, more preferably 3.3 GPa to 5.7 GPa, and still more preferably 3.5 GPa to 5.5 GPa.
  • Young's modulus is within the above range, stable film formation is possible under appropriate film formation conditions.
  • the oriented film of the present invention can basically be obtained by a method conventionally known or accumulated in the art.
  • the production method for obtaining the oriented film of the present invention will be described in detail.
  • the oriented film of the present invention may be a uniaxially oriented film or a biaxially oriented film, but is preferably a biaxially oriented film from the viewpoint of the balance between productivity and physical properties.
  • a biaxially oriented film will be described as an example.
  • a resin composition containing SPS and a thermoplastic amorphous resin is heated and melted to prepare an unstretched sheet.
  • the resin composition is heated and melted at a temperature not lower than the melting point (Tm, unit: ° C.) and not higher than (Tm + 50 ° C.), extruded into a sheet, cooled and solidified to obtain an unstretched sheet.
  • Tm melting point
  • this unstretched sheet is stretched biaxially. Stretching may be performed simultaneously in the machine direction (machine axis direction) and the transverse direction (direction perpendicular to the machine axis direction and the thickness direction) or sequentially in any order.
  • a uniaxial direction glass transition temperature (Tg, unit: ° C.) ⁇ 10 ° C.) to (Tg + 70 ° C.) or less at a temperature of 3.2 to 5.8 times
  • the film is stretched at a magnification of 3.3 times to 5.4 times, more preferably 3.4 times to 5.0 times, and then a temperature of Tg or more (Tg + 80 ° C.) in a direction perpendicular to the uniaxial direction.
  • the coating layer is formed by applying a coating solution for forming a coating layer on an unstretched sheet or a uniaxially stretched film obtained by uniaxially stretching the unstretched sheet in the longitudinal direction. It may be formed.
  • heat setting is performed at a temperature of 160 to 230 ° C.
  • the heat setting temperature is 165 ° C. or higher and 225 ° C. or lower, preferably 170 ° C. or higher and 220 ° C. or lower, and more preferably 195 ° C. or higher and 215 ° C. or lower.
  • the above-described heat shrinkage rate can be set to a desired range.
  • relaxation treatment or tension treatment may be performed at a temperature lower by 20 ° C. to 90 ° C. than the heat setting temperature, and the above-described heat shrinkage rate may be adjusted.
  • each characteristic value is measured with the following method, and the film forming direction of a film is called a longitudinal direction, a longitudinal direction, or MD direction, and the direction orthogonal to it is called the width direction, a horizontal direction, or a TD direction.
  • polyphenylene ether The contents of polyphenylene ether and antioxidant were measured by the methods described later.
  • Polyphenylene ether The components of the thermoplastic amorphous resin and the amount of each component were identified by 1H-NMR measurement and 13C-NMR measurement.
  • Antioxidant Components of the antioxidant and the amount of each component were specified by 1H-NMR measurement and 13C-NMR measurement.
  • N N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide] (registered trademark Irg1098), tert-butyl-4-
  • the peak intensity due to hydrogen due to the hydrocarbon chain between the hydroxyphenyl and the amide bond was measured.
  • Film-forming stretchability was performed under the film-forming conditions of each example and comparative example, and evaluated according to the following criteria.
  • the dielectric loss tangent (tan ⁇ ) and the dielectric constant ( ⁇ ) were obtained by measurement using a Ando Electric dielectric loss measuring machine (TR-10C) under conditions of a temperature of 120 ° C. and a vibration frequency of 1 kHz.
  • TR-10C Ando Electric dielectric loss measuring machine
  • the sample was prepared by aluminum vapor deposition according to JIS C 2151. In addition, it measured about each of the vertical direction and the horizontal direction of a film, and calculated
  • the strength at break is an Instron type with a film width of 10 mm and a length of 150 mm, a chuck spacing of 100 mm, a tensile speed of 100 mm / min, and a chart speed of 500 mm / min.
  • the tensile strength was calculated using the universal tensile test apparatus, and the elongation at break was regarded as the elongation at break, and the stress calculated from the load at the break was calculated as the breaking strength.
  • the cross-sectional area at the time of calculating the breaking strength was the cross-sectional area at break (cross-sectional area of the measurement sample / (1 + breaking elongation (%) / 100)).
  • the film is cut into a sample width of 10 mm and a length of 150 mm, the chuck is set to 100 mm, and the film is pulled with an Instron type universal tensile tester under the conditions of a tensile speed of 10 mm / min and a chart speed of 500 mm / min.
  • the Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve.
  • Thermal contraction rate The film has a thermal contraction rate in the tensionless state at 130 ° C. for 30 minutes, at 150 ° C. for 30 minutes, at 180 ° C. for 10 minutes, and at 200 ° C. for 10 minutes (longitudinal). Direction and lateral direction) (unit:%).
  • thermomechanical analyzer manufactured by SII Technology, TMA6000
  • TMA6000 thermomechanical analyzer
  • the dimensional change rate of ⁇ 160 ° C. was calculated.
  • the sample length was 30 mm in the measurement direction ⁇ 4 mm in the width direction (20 mm between chucks). Only the width direction of the film was measured.
  • the elongation of TMA is 30000 ppm or more.
  • the elongation of TMA is 10,000ppm to less than 30000ppm ⁇ ⁇ ⁇ ⁇
  • the elongation of TMA is 3000ppm to less than 10,000ppm.
  • the elongation of TMA is less than 3000 ppm ...
  • the obtained resin composition was dried at 120 ° C. for 7 hours, then fed to an extruder, melted at 300 ° C., extruded from a die slit, solidified by cooling on a casting drum cooled to 50 ° C., and unstretched Created a sheet.
  • This unstretched sheet was stretched 3.0 times in the longitudinal direction (machine axis direction) at 140 ° C., and subsequently led to a tenter, and then 4.0 in the lateral direction (direction perpendicular to the machine axis direction and the thickness direction).
  • the film was stretched twice. At that time, the stretched portion was divided into four equal zones, and the stretching speed in the transverse direction was set to 5000% / min. Further, the stretching temperature in the transverse direction was also divided into four equal stages, and the first stage temperature was 118 ° C. and the final stage temperature was 137 ° C. Thereafter, the film was heat-fixed at 200 ° C.
  • Examples 2 to 11, Comparative Examples 1 to 4 As shown in Table 1, the same operation as in Example 1 was repeated except that the film composition, film forming conditions, and final film thickness were changed. The evaluation results of the obtained oriented film are shown in Table 1 for Examples and Comparative Examples.
  • thermoplastic amorphous resin (PA) used in Example 9 was polyarylate (U polymer manufactured by Unitika, trade name: U-100).
  • the intrinsic viscosity of this resin measured in 1,1,2,2-tetrachloroethane was 0.64 dl / g, and the glass transition temperature was 193 ° C.
  • PPE means polyphenylene ether
  • PA means polyarylate
  • the oriented film of the present invention suppresses generation of heat loss due to wrinkles during heat treatment at a high temperature such as a vapor deposition process, while using a polystyrene polymer having a syndiotactic structure excellent in electrical characteristics and heat resistance. Therefore, it can be suitably used as a base film for a film capacitor. In addition, it can be suitably used for applications such as electrodes for power storage elements such as lithium ion secondary batteries and electric double layer capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides an alignment film of a syndiotactic polystyrene-based resin, the film achieving excellent suppression of the occurrence of heat damage caused by wrinkles resulting from a high-temperature heat treatment. More specifically, provided is an alignment film made of a resin composition which includes a styrene-based polymer of a syndiotactic structure as a main resin component and which includes a thermoplastic non-crystalline resin having a glass transition temperature of 130°C or higher, the alignment film having a heat shrinkage rate of 5.0% or less in the in-plane direction when heat treated for 30 minutes at 130°C, and a heat shrinkage rate of 6.5% or more in at least one direction of the in-plane direction when heat treated for 10 minutes at 200°C.

Description

配向フィルムOriented film
 本発明は、シンジオタクチック構造のスチレン系重合体からなる配向フィルムに関する。さらに詳しくは、蒸着工程など高温での熱処理をするときのシワによる熱負け発生が抑制されたシンジオタクチック構造のスチレン系重合体からなる配向フィルムに関する。 The present invention relates to an oriented film made of a styrene polymer having a syndiotactic structure. More specifically, the present invention relates to an oriented film made of a styrene-based polymer having a syndiotactic structure in which generation of heat loss due to wrinkles during heat treatment at a high temperature such as an evaporation process is suppressed.
 従来、フィルムコンデンサーは、二軸配向ポリエチレンテレフタレートフィルム、二軸配向ポリプロピレンフィルム等のフィルムとアルミニウム箔等の金属薄膜とを重ね合わせ、巻回又は積層する方法により製造されている。近年、電気あるいは電子回路の小型化の要求に伴い、フィルムコンデンサーについても小型化や実装化が進んでおり、電気特性に加えてさらなる耐熱性が要求されるようになってきた。また、自動車用途においては、運転室内での使用のみならず、エンジンルーム内にまで使用範囲が拡大しており、電気特性に加え、より高温高湿下の環境に適したフィルムコンデンサーが要求されている。 Conventionally, a film capacitor is manufactured by a method in which a film such as a biaxially oriented polyethylene terephthalate film or a biaxially oriented polypropylene film and a metal thin film such as an aluminum foil are overlapped and wound or laminated. In recent years, with the demand for miniaturization of electric or electronic circuits, film capacitors have also been miniaturized and mounted, and further heat resistance has been demanded in addition to electrical characteristics. In automotive applications, the range of use extends not only in the cab, but also in the engine room. In addition to electrical characteristics, film capacitors that are suitable for environments with higher temperatures and higher humidity are required. Yes.
 かかる要求に対して、特許文献1(特開平2-143851号公報)、特許文献2(特開平3-124750号公報)、特許文献3(特開平5-200858号公報)や特許文献4(国際公開2008/156210号パンフレット)には、耐熱性および電気特性に優れた極薄のシンジオタクチックポリスチレン系フィルムを用いる方法が提案されている。 In response to such requests, Patent Document 1 (Japanese Patent Laid-Open No. 2-143851), Patent Document 2 (Japanese Patent Laid-Open No. 3-124750), Patent Document 3 (Japanese Patent Laid-Open No. 5-200788), and Patent Document 4 (International JP 2008/156210 pamphlet) proposes a method using an ultrathin syndiotactic polystyrene film excellent in heat resistance and electrical properties.
 さらに、特開2011-111592号公報には、シンジオタクチックポリスチレン系フィルムの耐熱性を向上させ、さらに製膜性を向上させるために、ガラス転移温度が130℃以上である熱可塑性非晶樹脂を併用することが、提案されている。
特開平2-143851号公報 特開平3-124750号公報 特開平5-200858号公報 国際公開2008/156210号パンフレット 特開2011-111592号公報
Further, JP 2011-1111592 A discloses a thermoplastic amorphous resin having a glass transition temperature of 130 ° C. or higher in order to improve the heat resistance of the syndiotactic polystyrene film and further improve the film forming property. It has been proposed to be used in combination.
Japanese Patent Laid-Open No. 2-143851 Japanese Patent Laid-Open No. 3-124750 Japanese Patent Laid-Open No. 5-200858 International Publication No. 2008/156210 Pamphlet JP 2011-1111592 A
 ところで、厚みが薄いフィルムに蒸着工程など高温熱処理を施そうとするとシワにより熱負けが発生し、通常はシワを消すために張力を高くする。しかしながら、従来のポリエステルフィルムに比べてフィルムが裂けやすいため、張力を高くすると熱処理加工時に切断が発生しやすくなるという新たな問題が見出された。この問題はフィルムの厚みを薄くすると特に顕著に表れ、前述の特許文献5にて提案された熱可塑性非晶樹脂を併用して製膜性を向上させても依然として解消されなかった。 By the way, when a high-temperature heat treatment such as a vapor deposition process is applied to a thin film, the wrinkles cause heat loss, and usually the tension is increased to eliminate the wrinkles. However, since the film is more easily torn than the conventional polyester film, a new problem has been found that if the tension is increased, cutting is likely to occur during heat treatment. This problem is particularly prominent when the thickness of the film is reduced. Even when the thermoplastic amorphous resin proposed in Patent Document 5 described above is used in combination to improve the film forming property, it has not been solved.
 本発明は、このような上記の背景技術に鑑みなされたもので、その目的は、高温熱処理時のシワによる熱負け発生抑制に優れるシンジオタクチックポリスチレン系樹脂の配向フィルムを提供することにある。 The present invention has been made in view of the above-described background art, and an object thereof is to provide an alignment film of a syndiotactic polystyrene resin that is excellent in suppressing generation of heat loss due to wrinkles during high-temperature heat treatment.
 本発明者らは、上記目的を達成するために鋭意研究したところ、従来はシワなどの発生や平面性の問題から200℃熱収は6%未満が良いとされていた。しかし、熱可塑性非晶樹脂を併用することで耐熱性や製膜性を向上させる系では、耐熱性が向上するのに合わせて、製膜条件を高温側にシフトさせて高温での熱寸法安定性を向上させると、かえって破断強度が低下することが判明した。そして、驚くべきことに200℃での熱収縮率を逆に大きくすることで、収縮によりシワによる熱負けの発生が抑えられ、破断強度なども向上できることを見出し、本発明に到達した。 The inventors of the present invention conducted intensive research to achieve the above-mentioned object, and conventionally, the heat yield at 200 ° C. was preferably less than 6% due to the occurrence of wrinkles and flatness. However, in a system that improves heat resistance and film-forming properties by using a thermoplastic amorphous resin together, the film-forming conditions are shifted to a higher temperature side in accordance with the improvement in heat resistance. It was found that the breaking strength is lowered when the properties are improved. Surprisingly, the inventors have found that by increasing the heat shrinkage rate at 200 ° C., the occurrence of heat loss due to shrinkage can be suppressed and the breaking strength can be improved, and the present invention has been achieved.
 かくして本発明によれば、シンジオタクチック構造のスチレン系重合体を主たる樹脂成分として含み、ガラス転移温度が130℃以上である熱可塑性非晶樹脂を含む樹脂組成物からなり、130℃で30分処理した時の面内方向における熱収縮率が5.0%以下、200℃で10分熱処理したときの面内方向における少なくとも1方向の熱収縮率が6.5%以上である配向フィルムが提供される。 Thus, according to the present invention, it comprises a resin composition containing a thermoplastic amorphous resin having a syndiotactic styrene polymer as a main resin component and having a glass transition temperature of 130 ° C. or higher, and at 130 ° C. for 30 minutes. Provided is an oriented film having a heat shrinkage rate in the in-plane direction of 5.0% or less when treated and a heat shrinkage rate in at least one direction in the in-plane direction of 6.5% or more when heat-treated at 200 ° C. for 10 minutes. Is done.
 また、本発明によれば、本発明の好ましい態様として、振動周波数10Hzでの損失弾性率(E’’)のピーク温度が125℃以上でかつ破断強度が90MPa以上であること、200℃で10分熱処理したときの製膜方向および幅方向の熱収縮率の平均値が6.5%以上15.0%以下であること、130℃で30分熱処理したときの面内方向における熱収縮率が0.0%以上5.0%以下であること、熱可塑性非晶樹脂がポリフェニレンエーテルであること、フィルムの厚みが0.3~30μmであること、蒸着加工に用いられることの少なくともいずれか一つを具備する配向フィルムも提供される。 Further, according to the present invention, as a preferred embodiment of the present invention, the peak temperature of the loss elastic modulus (E ″) at a vibration frequency of 10 Hz is 125 ° C. or higher and the breaking strength is 90 MPa or higher. The average value of the heat shrinkage rate in the film forming direction and the width direction when the heat treatment is performed is 6.5% or more and 15.0% or less, and the heat shrinkage rate in the in-plane direction when heat treatment is performed at 130 ° C. for 30 minutes. It is at least one of 0.0% or more and 5.0% or less, that the thermoplastic amorphous resin is polyphenylene ether, that the film thickness is 0.3 to 30 μm, or that it is used for vapor deposition processing. An oriented film comprising one is also provided.
 本発明の配向フィルムは、電気特性と耐熱性に優れたシンジオタクチック構造を有するポリスチレン系重合体を用いながらも、蒸着工程など高温での熱処理をするときのシワによる熱負け発生を抑制することができる。 The oriented film of the present invention suppresses generation of heat loss due to wrinkles during heat treatment at a high temperature such as a vapor deposition process, while using a polystyrene polymer having a syndiotactic structure excellent in electrical characteristics and heat resistance. Can do.
 また、本発明によれば、絶縁破壊電圧が高く、蒸着工程などの高温熱処理後も平面性を確保でき、極めて薄く取扱いが難しいフィルムコンデンサー用のベースフィルムとしても好適に用いることができる。 In addition, according to the present invention, the dielectric breakdown voltage is high, flatness can be secured even after high-temperature heat treatment such as a vapor deposition process, and it can be suitably used as a base film for a film capacitor that is extremely thin and difficult to handle.
 本発明の配向フィルムは、シンジオタクチック構造のスチレン系重合体にガラス転移温度が130℃以上である熱可塑性非晶樹脂を含有させた樹脂組成物からなる。 The oriented film of the present invention comprises a resin composition in which a thermoplastic amorphous resin having a glass transition temperature of 130 ° C. or higher is contained in a syndiotactic styrene polymer.
 本発明におけるシンジオタクチック構造を有するポリスチレン系樹脂(以下、「シンジオタクチックポリスチレン樹脂」、もしくは「SPS」と称することがある。)としては、炭素-炭素結合から形成される主鎖に対して側鎖であるフェニル基や置換フェニル基が交互に反対方向に位置する立体構造を有するものである。一般にタクティシティーは、同位体炭素による核磁気共鳴法(13C-NMR法)により定量され、連続する複数個の構成単位の存在割合、例えば2個の場合はダイアッド、3個の場合はトリアッド、5個の場合はペンタッド等によって示すことができる。本発明におけるシンジオタクチック構造のポリスチレン系樹脂とは、ダイアッドで75%以上、好ましくは85%以上、あるいはペンタッドで30%以上、好ましくは50%以上のシンジオタクティシティーを有するポリスチレン、ポリ(アルキルスチレン)、ポリ(ハロゲン化スチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、あるいはこれらのベンゼン環の一部が水素化された重合体やこれらの混合物、またはこれらの構造単位を含む共重合体を指称する。なお、ここでポリ(アルキルスチレン)としては、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(プロピルスチレン)、ポリ(ブチルスチレン)、ポリ(フェニルスチレン)等があり、ポリ(ハロゲン化スチレン)としては、ポリ(クロロスチレン)、ポリ(ブロモスチレン)、ポリ(フロオロスチレン)等がある。また、ポリ(アルコキシスチレン)としては、ポリ(メトキシスチレン)、ポリ(エトキシスチレン)等がある。これらのうち好ましいポリスチレン系樹脂としては、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-ターシャリーブチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)、またスチレンとp-メチルスチレンとの共重合体を挙げることができ、なかでもポリスチレンが好ましい。 The polystyrene resin having a syndiotactic structure in the present invention (hereinafter sometimes referred to as “syndiotactic polystyrene resin” or “SPS”) is used as a main chain formed of carbon-carbon bonds. The side chain has a three-dimensional structure in which phenyl groups and substituted phenyl groups are alternately positioned in opposite directions. In general, tacticity is quantified by nuclear magnetic resonance ( 13 C-NMR) with isotope carbon, and abundance ratio of a plurality of consecutive structural units, for example, dyad in the case of two, triad in the case of three, In the case of five, it can be indicated by a pentad or the like. In the present invention, the polystyrene-based resin having a syndiotactic structure is polystyrene, poly (alkyl) having a syndiotacticity of 75% or more, preferably 85% or more, or 30% or more, preferably 50% or more, of pentad. Styrene), poly (halogenated styrene), poly (alkoxystyrene), poly (vinyl benzoate), polymers in which a part of these benzene rings are hydrogenated, mixtures thereof, or structural units thereof. The copolymer containing is designated. Here, poly (alkyl styrene) includes poly (methyl styrene), poly (ethyl styrene), poly (propyl styrene), poly (butyl styrene), poly (phenyl styrene), and the like. ) Include poly (chlorostyrene), poly (bromostyrene), poly (fluorostyrene) and the like. Examples of poly (alkoxystyrene) include poly (methoxystyrene) and poly (ethoxystyrene). Among these, preferred polystyrene resins include polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (p-tertiarybutylstyrene), poly (p-chlorostyrene), and poly (m- Chlorostyrene), poly (p-fluorostyrene), and a copolymer of styrene and p-methylstyrene. Among them, polystyrene is preferable.
 さらに、本発明におけるポリスチレン系樹脂に共重合成分を含有させて共重合体として使用する場合においては、そのコモノマーとして、上述の如きポリスチレン系樹脂のモノマーのほか、エチレン、プロピレン、ブテン、ヘキセン、オクテン等のオレフィンモノマー、ブタジエン、イソプレン等のジエンモノマー、環状ジエンモノマーやメタクリル酸メチル、無水マレイン酸、アクリロニトリル等の極性ビニルモノマー等を用いることができる。 Further, in the case where the polystyrene resin in the present invention is used as a copolymer containing a copolymer component, as its comonomer, in addition to the above-mentioned polystyrene resin monomer, ethylene, propylene, butene, hexene, octene. Olefin monomers such as diene monomers such as butadiene and isoprene, cyclic diene monomers, polar vinyl monomers such as methyl methacrylate, maleic anhydride, and acrylonitrile.
 また、このシンジオタクチック構造のポリスチレン系樹脂の重量平均分子量は、好ましくは1.0×10~3.0×10であり、さらに好ましくは5.0×10~1.5×10であり、特に好ましくは1.1×10~8.0×10である。重量平均分子量を1.0×10以上、好ましくは5.0×10以上、特に好ましくは1.1×10以上とすることで、強伸度特性に優れ、耐熱性がより向上したフィルム等の成形品を得ることができる。また、重量平均分子量が3.0×10以下、好ましくは1.5×10以下、特に好ましくは8.0×10以下だと、延伸張力が好適な範囲となり、製膜時等において破断等が発生しにくくなる。 The weight average molecular weight of this syndiotactic polystyrene resin is preferably 1.0 × 10 4 to 3.0 × 10 6 , more preferably 5.0 × 10 4 to 1.5 × 10 6. 6 , particularly preferably 1.1 × 10 5 to 8.0 × 10 5 . By setting the weight average molecular weight to 1.0 × 10 4 or more, preferably 5.0 × 10 4 or more, and particularly preferably 1.1 × 10 5 or more, the strength and elongation characteristics are excellent and the heat resistance is further improved. A molded product such as a film can be obtained. Further, when the weight average molecular weight is 3.0 × 10 6 or less, preferably 1.5 × 10 6 or less, particularly preferably 8.0 × 10 5 or less, the stretching tension is in a suitable range, and at the time of film formation, etc. Breakage and the like are less likely to occur.
 本発明の配向フィルムの、130℃で30分熱処理した時の面内方向の熱収縮率は5.0%以下、好ましくは3.0%以下である。この収縮率が上限を超えると高温熱処理後のフィルムが平面性を維持できなくなるため好ましくない。他方、下限は特に制限されないが、負の熱収縮率になるとフィルムが伸びることによるシワが発生しやすくなることから、-1.0%以上、さらに0.0%以上であることが好ましい。なお、フィルムの面内方向における熱収縮率とは、フィルムの製膜方向およびそれに直交する方向を測定したときの両方向の熱収縮率の平均値を意味する。 The thermal contraction rate in the in-plane direction when the oriented film of the present invention is heat-treated at 130 ° C. for 30 minutes is 5.0% or less, preferably 3.0% or less. If the shrinkage rate exceeds the upper limit, the film after the high temperature heat treatment cannot maintain flatness, which is not preferable. On the other hand, the lower limit is not particularly limited, but wrinkles due to elongation of the film tend to occur when the negative heat shrinkage rate is reached, so that it is preferably −1.0% or more, and more preferably 0.0% or more. In addition, the heat shrinkage rate in the in-plane direction of the film means the average value of the heat shrinkage rates in both directions when the film forming direction of the film and the direction perpendicular thereto are measured.
 また200℃で10分処理したときの面内方向の少なくとも一方向の熱収縮率は6.5%以上、好ましくは7.5%以上、さらに好ましくは8.5%以上である。この収縮率が下限未満であると高温熱処理時にシワによる熱負け発生が抑制できず、また破断強度も低下してしまう。一方で熱収縮率の上限は特に制限されないが、過度に高くなり過ぎると熱処理加工後のフィルムの平面性を維持するのが難しくなりやすいことから、20%以下、さらに18%以下、特に15%以下であることが好ましい。なお、200℃で10分処理したときの面内方向の少なくとも一方向の熱収縮率とは、例えばフィルムの製膜方向およびそれに直交する方向(幅方向)のいずれかが上記熱収縮特性を有する方向を有していればよいことを意味する。さらにフィルムの製膜方向および幅方向の平均値が上記範囲にあることが好ましく、特にフィルムの製膜方向および幅方向のそれぞれの値が上記範囲にあることが好ましい。 Further, the heat shrinkage rate in at least one direction in the in-plane direction when treated at 200 ° C. for 10 minutes is 6.5% or more, preferably 7.5% or more, and more preferably 8.5% or more. If the shrinkage rate is less than the lower limit, generation of heat loss due to wrinkles during high-temperature heat treatment cannot be suppressed, and the breaking strength is also reduced. On the other hand, the upper limit of the heat shrinkage rate is not particularly limited, but if it becomes excessively high, it becomes difficult to maintain the flatness of the film after the heat treatment, so it is 20% or less, further 18% or less, especially 15%. The following is preferable. In addition, the heat shrinkage rate in at least one direction in the in-plane direction when treated at 200 ° C. for 10 minutes is, for example, any one of the film forming direction and the direction perpendicular to the film (width direction) has the above heat shrinkage characteristics. It means that it only needs to have a direction. Furthermore, it is preferable that the average value of the film forming direction of a film and the width direction exists in the said range, and it is preferable that each value of the film forming direction of a film and the width direction exists in the said range especially.
 さらに150℃で30分処理したときの面内方向の少なくとも一方向の熱収縮率は3.0%以上、好ましくは4.0%以上であることが、高温熱処理時にシワによる熱負け発生を抑制しやすく、破断強度も高めやすいことから好ましい。一方で熱収縮率の上限は特に制限されないが、過度に高くなり過ぎると熱処理加工後のフィルムの平面性を維持するのが難しくなりやすいことから、12%以下、さらに10%以下であることが好ましい。なお、150℃で30分処理したときの面内方向の少なくとも一方向の熱収縮率とは、例えばフィルムの製膜方向およびそれに直交する方向(幅方向)のいずれかが上記熱収縮特性を有する方向を有していればよいことを意味する。なお上記熱収縮率を具備する方向は、最も熱収縮率が大きい方向であることが好ましい。 Furthermore, the heat shrinkage rate in at least one direction in the in-plane direction when treated at 150 ° C. for 30 minutes is 3.0% or more, preferably 4.0% or more, which suppresses generation of heat loss due to wrinkles during high-temperature heat treatment. This is preferable because it is easy to increase the breaking strength. On the other hand, the upper limit of the heat shrinkage rate is not particularly limited, but if it becomes excessively high, it is difficult to maintain the flatness of the film after the heat treatment, so that it is 12% or less, and further 10% or less. preferable. The heat shrinkage rate in at least one direction in the in-plane direction when treated at 150 ° C. for 30 minutes, for example, either the film forming direction or the direction perpendicular to the film (width direction) has the above heat shrinkage characteristics. It means that it only needs to have a direction. In addition, it is preferable that the direction which comprises the said heat shrinkage rate is a direction with the largest heat shrinkage rate.
 180℃で10分処理したときの面内方向の少なくとも一方向の熱収縮率は4.5%以上、好ましくは5.5%以上である。この収縮率が下限未満であると高温熱処理時にシワによる熱負け発生が抑制できず、また破断強度も低下してしまう。一方で熱収縮率の上限は特に制限されないが、過度に高くなり過ぎると熱処理加工後のフィルムの平面性を維持するのが難しくなりやすいことから、15%以下、さらに13%以下であることが好ましい。なお、180℃で10分処理したときの面内方向の少なくとも一方向の熱収縮率とは、例えばフィルムの製膜方向およびそれに直交する方向(幅方向)のいずれかが上記熱収縮特性を有する方向を有していればよいことを意味する。なお上記熱収縮率を具備する方向は、最も熱収縮率が大きい方向であることが好ましい。 The thermal shrinkage rate in at least one direction in the in-plane direction when treated at 180 ° C. for 10 minutes is 4.5% or more, preferably 5.5% or more. If the shrinkage rate is less than the lower limit, generation of heat loss due to wrinkles during high-temperature heat treatment cannot be suppressed, and the breaking strength is also reduced. On the other hand, the upper limit of the heat shrinkage rate is not particularly limited, but if it becomes too high, it tends to be difficult to maintain the flatness of the film after heat treatment, so that it is 15% or less, and further 13% or less. preferable. The heat shrinkage rate in at least one direction in the in-plane direction when treated at 180 ° C. for 10 minutes, for example, either the film forming direction or the direction perpendicular to the film (width direction) has the above heat shrinkage characteristics. It means that it only needs to have a direction. In addition, it is preferable that the direction which comprises the said heat shrinkage rate is a direction with the largest heat shrinkage rate.
 上記のような熱収縮率は、後述の熱可塑性非晶樹脂との組合せと製膜条件、特に熱固定温度の制御などにより達成できる。 The heat shrinkage rate as described above can be achieved by a combination with a thermoplastic amorphous resin, which will be described later, and a film forming condition, particularly control of a heat setting temperature.
 本発明の配向フィルムは、動的粘弾性測定により振動周波数10Hzで測定した損失弾性率(E’’)のピーク温度が120℃以上150℃以下であることが好ましい。損失弾性率(E’’)のピーク温度が高いということは、分子運動が活発になる温度が高く、耐熱性に優れることを意味する。このような観点から、損失弾性率(E’’)のピーク温度は、125℃以上がより好ましく、130℃以上が特に好ましい。一方、損失弾性率(E’’)のピーク温度が高すぎるということは、分子運動が活発になり難いということも併せ持っており、延伸時の延伸応力が高くなるためか、延伸製膜時に破断が起き易くなる。このような観点からは、損失弾性率(E’’)のピーク温度は、145℃以下がより好ましく、140℃以下がさらに好ましい。上記のような損失弾性率(E’’)のピーク温度を達成するためには、熱可塑性非晶樹脂を採用し、その含有量を適宜調整すればよい。 The oriented film of the present invention preferably has a peak temperature of loss elastic modulus (E ″) measured at a vibration frequency of 10 Hz by dynamic viscoelasticity measurement of 120 ° C. or more and 150 ° C. or less. A high peak temperature of the loss modulus (E ″) means that the temperature at which molecular motion becomes active is high and the heat resistance is excellent. From such a viewpoint, the peak temperature of the loss elastic modulus (E ″) is more preferably 125 ° C. or higher, and particularly preferably 130 ° C. or higher. On the other hand, if the peak temperature of the loss modulus (E ″) is too high, it also has the effect that the molecular motion is less likely to be active. Is more likely to occur. From such a viewpoint, the peak temperature of the loss elastic modulus (E ″) is more preferably 145 ° C. or less, and further preferably 140 ° C. or less. In order to achieve the peak temperature of the loss elastic modulus (E ″) as described above, a thermoplastic amorphous resin may be employed and the content thereof may be adjusted as appropriate.
 また、前述の通り、熱可塑性非晶樹脂を含有させると、破断強度が低下することが判明した。その結果、高温熱処理などのフィルム加工工程において切断が発生しやすくなるなどの問題があり、そのような観点から、本発明の配向フィルムは、破断強度が90MPa以上であることが好ましく、100MPa以上がさらに好ましい。このような破断強度は、後述の熱可塑性非晶樹脂との組合せと製膜条件、特に熱固定温度の制御などにより達成できる。 Further, as described above, it has been found that when a thermoplastic amorphous resin is contained, the breaking strength decreases. As a result, there is a problem that cutting is likely to occur in a film processing step such as high-temperature heat treatment. From such a viewpoint, the oriented film of the present invention preferably has a breaking strength of 90 MPa or more, and 100 MPa or more. Further preferred. Such a breaking strength can be achieved by a combination with a thermoplastic amorphous resin, which will be described later, and a film forming condition, particularly control of a heat setting temperature.
 ところで、本発明における樹脂組成物は、熱可塑性非晶樹脂を含有する。ここでいう熱可塑性非晶樹脂は、DSC(示差走査熱量計)により求められるガラス転移温度TgがSPSより高い130℃以上のTgを有する熱可塑性非晶樹脂である。SPSにこのような熱可塑性非晶樹脂を配合すると、混合体としてのガラス転移温度Tgが高くなるだけでなく、耐熱性が向上し、高温における絶縁破壊電圧が高くなる。また、配向フィルムの熱寸法安定性が良好となり、延伸性も向上させることができる。このような観点から、熱可塑性非晶樹脂のガラス転移温度Tgは、150℃以上であることが好ましく、180℃以上であることがさらに好ましく、200℃以上であることが特に好ましい。配合する熱可塑性非晶樹脂のガラス転移温度Tgが高いほど、熱寸法安定性等の上記効果の向上効果が大きくなる。溶融押出等を考慮すると、実質的な上限は好ましくは350℃、より好ましくは300℃である。 Incidentally, the resin composition in the present invention contains a thermoplastic amorphous resin. The thermoplastic amorphous resin here is a thermoplastic amorphous resin having a glass transition temperature Tg determined by DSC (differential scanning calorimeter) of 130 ° C. or higher, which is higher than SPS. When such a thermoplastic amorphous resin is blended with SPS, not only the glass transition temperature Tg as a mixture increases, but also the heat resistance improves, and the dielectric breakdown voltage at a high temperature increases. Moreover, the thermal dimensional stability of the oriented film becomes good, and the stretchability can also be improved. From such a viewpoint, the glass transition temperature Tg of the thermoplastic amorphous resin is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and particularly preferably 200 ° C. or higher. The higher the glass transition temperature Tg of the thermoplastic amorphous resin to be blended, the greater the effect of improving the above effects such as thermal dimensional stability. Considering melt extrusion or the like, the substantial upper limit is preferably 350 ° C., more preferably 300 ° C.
 このような熱可塑性非晶樹脂としては、ポリフェニレンエーテル、ポリエーテルイミドなどの芳香族ポリエーテル、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリイミド等を好ましく例示することができる。これらのうち延伸性を向上させやすく、また酸化防止剤と組合せたときに、相乗作用があるためか、耐熱性、寸法安定性だけでなく、絶縁破壊電圧もさらに向上することから、ポリフェニレンエーテルが特に好ましい。ここで用いられるポリフェニレンエーテル樹脂としては、従来公知の樹脂、例えば、ポリ(2,3-ジメチル-6-エチル-1,4-フェニレンエ-テル)、ポリ(2-メチル-6-クロロメチル-1,4-フェニレンエ-テル)、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレンエ-テル)、ポリ(2-メチル-6-n-ブチル-1,4-フェニレンエ-テル)、ポリ(2-エチル-6-イソプロピル-1,4-フェニレンエ-テル)、ポリ(2-エチル-6-n-プロピル-1,4-フェニレンエ-テル)、ポリ(2、3、6-トリメチル-1,4-フェニレンエ-テル)、ポリ(2-(4’-メチルフェニル)-1,4-フェニレンエ-テル)、ポリ(2-ブロモ-6-フェニル-1,4-フェニレンエ-テル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエ-テル)、ポリ(2-フェニル-1,4-フェニレンエ-テル)、ポリ(2-クロロ-1,4-フェニレンエ-テル)、ポリ(2-メチル-1,4-フェニレンエ-テル)、ポリ(2-クロロ-6-エチル-1,4-フェニレンエ-テル)、ポリ(2-クロロ-6-ブロモ-1,4-フェニレンエ-テル)、ポリ(2,6-ジ-n-プロピル-1,4-フェニレンエ-テル)、ポリ(2-メチル-6-イソプロピル-1,4-フェニレンエ-テル)、ポリ(2-クロロ-6-メチル-1,4-フェニレンエ-テル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエ-テル)、ポリ(2,6-ジブロモ-1,4-フェニレンエ-テル)、ポリ(2,6-ジクロロ-1,4-フェニレンエ-テル)、ポリ(2,6-ジエチル-1,4-フェニレンエ-テル)、ポリ(2,6-ジメチル-1,4-フェニレンエ-テル)等のホモポリマー、及び、これらの共重合体を挙げることができる。また、これらを無水マレイン酸,フマル酸等の変性剤で変性したものも好適に用いられる。さらに、スチレン等のビニル芳香族化合物を上記ポリフェニレンエ-テルにグラフト共重合またはブロック共重合した共重合体も用いられる。これらのなかで、ポリ(2,6-ジメチル-1,4-フェニレンエ-テル)が特に好ましい。 Preferred examples of such thermoplastic amorphous resins include aromatic polyethers such as polyphenylene ether and polyetherimide, polycarbonate, polyarylate, polysulfone, polyethersulfone, and polyimide. Among these, it is easy to improve stretchability, and because it has a synergistic effect when combined with an antioxidant, not only heat resistance and dimensional stability, but also dielectric breakdown voltage is further improved. Particularly preferred. Examples of the polyphenylene ether resin used here include conventionally known resins such as poly (2,3-dimethyl-6-ethyl-1,4-phenylene ether) and poly (2-methyl-6-chloromethyl-1). , 4-phenylene ether), poly (2-methyl-6-hydroxyethyl-1,4-phenylene ether), poly (2-methyl-6-n-butyl-1,4-phenylene ether), poly (2-ethyl-6-isopropyl-1,4-phenylene ether), poly (2-ethyl-6-n-propyl-1,4-phenylene ether), poly (2,3,6-trimethyl-1) , 4-phenylene ether), poly (2- (4′-methylphenyl) -1,4-phenylene ether), poly (2-bromo-6-phenyl-1,4-phenylene ether), poly 2-methyl-6-phenyl-1,4-phenylene ether), poly (2-phenyl-1,4-phenylene ether), poly (2-chloro-1,4-phenylene ether), poly (2 -Methyl-1,4-phenylene ether), poly (2-chloro-6-ethyl-1,4-phenylene ether), poly (2-chloro-6-bromo-1,4-phenylene ether), Poly (2,6-di-n-propyl-1,4-phenylene ether), poly (2-methyl-6-isopropyl-1,4-phenylene ether), poly (2-chloro-6-methyl-) 1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), poly (2,6-dibromo-1,4-phenylene ether), poly (2,6 -Dichloro-1,4-phenyle Homopolymers such as ether), poly (2,6-diethyl-1,4-phenylene ether), poly (2,6-dimethyl-1,4-phenylene ether), and copolymers thereof Can be mentioned. Further, those modified with a modifying agent such as maleic anhydride or fumaric acid are also preferably used. Furthermore, a copolymer obtained by graft copolymerization or block copolymerization of a vinyl aromatic compound such as styrene with the polyphenylene ether is also used. Of these, poly (2,6-dimethyl-1,4-phenylene ether) is particularly preferred.
 熱可塑性非晶樹脂の固有粘度(クロロホルム中、30℃で測定)は、0.2~0.8dl/gの範囲が好ましく、0.3~0.6dl/gの範囲がより好ましい。固有粘度が0.2dl/g未満の場合には、得られる樹脂組成物の機械的強度が低下する場合がある。一方0.8dl/gを超える場合には、得られる樹脂組成物の流動性が低下し、フィルム等に溶融成形する際の加工が困難になる傾向にある。熱可塑性非晶樹脂は2種以上を併用してもよく、その際には固有粘度の異なるものを混合して所望の固有粘度となるようにしてもよい。 The intrinsic viscosity (measured in chloroform at 30 ° C.) of the thermoplastic amorphous resin is preferably in the range of 0.2 to 0.8 dl / g, more preferably in the range of 0.3 to 0.6 dl / g. When the intrinsic viscosity is less than 0.2 dl / g, the mechanical strength of the resulting resin composition may be lowered. On the other hand, when it exceeds 0.8 dl / g, the fluidity of the resulting resin composition is lowered, and the processing during melt molding into a film or the like tends to be difficult. Two or more kinds of thermoplastic amorphous resins may be used in combination, and in this case, those having different intrinsic viscosities may be mixed to obtain a desired intrinsic viscosity.
 本発明の配向フィルムは、該配向フィルムの質量に対して上記の熱可塑性非晶樹脂を5質量%以上48質量%以下配合していることが好ましい。熱可塑性非晶樹脂を上記範囲の量配合することによって、耐熱性に優れ、また絶縁破壊電圧の向上効果を高くすることができ、すなわち高温における絶縁破壊電圧を高くすることができる。含有量が少なすぎる場合は、耐熱性が劣る傾向にあり、また絶縁破壊電圧の向上効果が低くなる傾向にあり、延伸性の向上効果も乏しくなる。このような観点から、熱可塑性非晶樹脂の含有量は、8質量%以上がより好ましく、11質量%以上がさらに好ましく、20質量%以上が特に好ましい。また、含有量が多すぎる場合は、SPSの結晶性が低下しやすくなる傾向にあり、フィルムの耐熱性が劣る傾向にある。このような観点から、熱可塑性非晶樹脂の含有量は、45質量%以下がより好ましく、40質量%以下がさらに好ましく、35質量%以下が特に好ましい。 The oriented film of the present invention preferably contains 5% by mass or more and 48% by mass or less of the above thermoplastic amorphous resin with respect to the mass of the oriented film. By blending the thermoplastic amorphous resin in an amount within the above range, the heat resistance is excellent and the effect of improving the dielectric breakdown voltage can be increased, that is, the dielectric breakdown voltage at a high temperature can be increased. When the content is too small, the heat resistance tends to be inferior, the effect of improving the dielectric breakdown voltage tends to be low, and the effect of improving the stretchability is poor. From such a viewpoint, the content of the thermoplastic amorphous resin is more preferably 8% by mass or more, further preferably 11% by mass or more, and particularly preferably 20% by mass or more. Moreover, when there is too much content, it exists in the tendency for the crystallinity of SPS to fall easily, and it exists in the tendency for the heat resistance of a film to be inferior. From such a viewpoint, the content of the thermoplastic amorphous resin is more preferably 45% by mass or less, further preferably 40% by mass or less, and particularly preferably 35% by mass or less.
 もちろん、本発明の配向フィルムは、本発明の目的を阻害しない範囲内で、上記SPS、熱可塑性非晶樹脂の他に、さらに他の樹脂を併用してもよい。 Of course, the oriented film of the present invention may be used in combination with other resins in addition to the SPS and the thermoplastic amorphous resin as long as the object of the present invention is not impaired.
<酸化防止剤>
 本発明の配向フィルムは、酸化防止剤を含有することが好ましい。酸化防止剤としては、生成したラジカルを捕捉して酸化を防止する一次酸化防止剤、あるいは生成したパーオキサイドを分解して酸化を防止する二次酸化防止剤のいずれであってもよい。一次酸化防止剤としてはフェノール系酸化防止剤、アミン系酸化防止剤が挙げられ、二次酸化防止剤としてはリン系酸化防止剤、硫黄系酸化防止剤が挙げられる。これらの中でも一次酸化防止剤が好ましく、特にフェノール系酸化防止剤が好ましい。
<Antioxidant>
The oriented film of the present invention preferably contains an antioxidant. The antioxidant may be either a primary antioxidant that captures the generated radicals to prevent oxidation, or a secondary antioxidant that decomposes the generated peroxides to prevent oxidation. Examples of the primary antioxidant include phenol-based antioxidants and amine-based antioxidants, and examples of the secondary antioxidant include phosphorus-based antioxidants and sulfur-based antioxidants. Of these, primary antioxidants are preferred, and phenolic antioxidants are particularly preferred.
 また、酸化防止剤は、その熱分解温度が250℃以上であることが好ましい。熱分解温度が高いと、高温における絶縁破壊電圧の向上効果が高くなる。熱分解温度が低すぎる場合は、溶融押出時に酸化防止剤自体が熱分解してしまい、工程を汚染してしまう、ポリマーが黄色く着色してしまう等の問題が生じやすくなる傾向にあり好ましくない。このような観点から、酸化防止剤の熱分解温度は、より好ましくは280℃以上、さらに好ましくは300℃以上、特に好ましくは320℃以上である。本発明における酸化防止剤は、熱分解しにくい方が好ましく、熱分解温度は高い方が好ましいが、現実的には、その上限は500℃以下程度である。 Further, it is preferable that the antioxidant has a thermal decomposition temperature of 250 ° C. or higher. When the thermal decomposition temperature is high, the effect of improving the dielectric breakdown voltage at a high temperature becomes high. If the thermal decomposition temperature is too low, the antioxidant itself is thermally decomposed at the time of melt extrusion, which tends to cause problems such as contamination of the process and yellowing of the polymer. From such a viewpoint, the thermal decomposition temperature of the antioxidant is more preferably 280 ° C. or higher, further preferably 300 ° C. or higher, and particularly preferably 320 ° C. or higher. The antioxidant in the present invention is preferably less susceptible to thermal decomposition and preferably has a higher thermal decomposition temperature, but in reality, the upper limit is about 500 ° C. or less.
 また、酸化防止剤の融点は、90℃以上であることが好ましい。融点が低すぎる場合は、溶融押出時に酸化防止剤がポリマーより早く融解してしまい、押出機のスクリュー供給部分においてポリマーがスリップしてしまう傾向にある。それによって、ポリマーの供給が不安定となり、フィルムの厚み斑が悪くなる等の問題が生じる。このような観点から、酸化防止剤の融点は、より好ましくは120℃以上、さらに好ましくは150℃以上、特に好ましくは200℃以上である。他方、酸化防止剤の融点が高すぎる場合は、溶融押出時に酸化防止剤が融解しにくくなり、ポリマー内での分散が悪くなってしまう傾向にある。それにより、酸化防止剤の添加効果が局所的にしか発現しない等の問題が生じる。このような観点から、酸化防止剤の融点は、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは220℃以下、特に好ましくは170℃以下である。 The melting point of the antioxidant is preferably 90 ° C. or higher. If the melting point is too low, the antioxidant melts faster than the polymer during melt extrusion, and the polymer tends to slip at the screw supply portion of the extruder. As a result, the supply of the polymer becomes unstable, and problems such as the uneven thickness of the film occur. From such a viewpoint, the melting point of the antioxidant is more preferably 120 ° C. or higher, further preferably 150 ° C. or higher, and particularly preferably 200 ° C. or higher. On the other hand, when the melting point of the antioxidant is too high, the antioxidant becomes difficult to melt during melt extrusion, and the dispersion in the polymer tends to be poor. Thereby, problems such as the effect of adding the antioxidant appear only locally. From such a viewpoint, the melting point of the antioxidant is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, further preferably 220 ° C. or lower, and particularly preferably 170 ° C. or lower.
 以上のような酸化防止剤としては、市販品をそのまま用いることもできる。市販品としては、例えば、ペンタエリスリトールテトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(チバ・スペシャルティ・ケミカルズ社製:商品名IRGANOX1010)、N,N’-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン(チバ・スペシャルティ・ケミカルズ社製:商品名IRGANOX1024)、N,N’-ヘキサン-1,6-ジイルビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオンアミド〕(チバ・スペシャルティ・ケミカルズ社製:商品名IRGANOX1098)等が好ましく挙げられる。 As the above antioxidants, commercially available products can be used as they are. Commercially available products include, for example, pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by Ciba Specialty Chemicals: trade name IRGANOX 1010), N, N′— Bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine (manufactured by Ciba Specialty Chemicals: trade name IRGANOX1024), N, N′-hexane-1,6-diylbis [ 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionamide] (manufactured by Ciba Specialty Chemicals: trade name IRGANOX 1098) is preferred.
 酸化防止剤の含有量は、配向フィルムの質量を基準として0.1質量%以上5質量%以下が好ましい。酸化防止剤を上記数値範囲の含有量で含有することによって、絶縁破壊電圧の向上効果を高くすることができる。酸化防止剤の含有量が少なすぎる場合は、酸化防止剤の添加効果が十分でなく、絶縁破壊電圧の向上効果が低くなる傾向にある。このような観点から、酸化防止剤の含有量は、0.2質量%以上がより好ましく、0.5質量%以上がさらに好ましく、0.7質量%以上が特に好ましい。他方、含有量が多すぎる場合は、二軸延伸フィルム中において酸化防止剤が凝集しやすくなる傾向にあり、酸化防止剤に起因する欠点が増加する傾向にあり、かかる欠点により絶縁破壊電圧の向上効果が低くなる。このような観点から、酸化防止剤の含有量は、3質量%以下がより好ましく、2質量%以下がさらに好ましく、1.5質量%以下が特に好ましい。 The content of the antioxidant is preferably 0.1% by mass or more and 5% by mass or less based on the mass of the oriented film. By containing the antioxidant in a content within the above numerical range, the effect of improving the dielectric breakdown voltage can be increased. When the content of the antioxidant is too small, the effect of adding the antioxidant is not sufficient, and the effect of improving the dielectric breakdown voltage tends to be low. From such a viewpoint, the content of the antioxidant is more preferably 0.2% by mass or more, further preferably 0.5% by mass or more, and particularly preferably 0.7% by mass or more. On the other hand, when the content is too high, the antioxidant tends to aggregate in the biaxially stretched film, and the defects due to the antioxidant tend to increase. Less effective. From such a viewpoint, the content of the antioxidant is more preferably 3% by mass or less, further preferably 2% by mass or less, and particularly preferably 1.5% by mass or less.
 これら酸化防止剤は、1種類を単独で用いてもよいし、2種以上を併用してもよい。 These antioxidants may be used alone or in combination of two or more.
<その他の添加剤>
 本発明の配向フィルムは、本発明の目的を阻害しない範囲で、例えばさらに成形性、力学物性、表面性等を改良するために、熱可塑性非晶樹脂とは異なる他の樹脂成分を含有させたり、帯電防止剤、着色剤、耐候剤、滑剤等の添加剤を加えることができる。
<Other additives>
The oriented film of the present invention may contain other resin components different from the thermoplastic amorphous resin, for example, in order to further improve the moldability, mechanical properties, surface properties, etc., within the range not impairing the object of the present invention. Additives such as antistatic agents, colorants, weathering agents, lubricants and the like can be added.
<金属層>
 本発明の配向フィルムは、例えば少なくとも片面に金属層を積層することでコンデンサーとなる。金属層の材質については、特に制限はないが、例えばアルミニウム、亜鉛、ニッケル、クロム、錫、銅およびこれらの合金が挙げられる。さらにこれらの金属層は若干量酸化されていてもよい。また、金属層を簡便に形成できるため、金属層は蒸着法により形成された蒸着型金属層であることが好ましい。
<Metal layer>
The oriented film of the present invention becomes a capacitor by, for example, laminating a metal layer on at least one side. The material of the metal layer is not particularly limited, and examples thereof include aluminum, zinc, nickel, chromium, tin, copper, and alloys thereof. Further, these metal layers may be slightly oxidized. Moreover, since a metal layer can be formed easily, it is preferable that a metal layer is a vapor deposition type metal layer formed by the vapor deposition method.
<フィルム特性>
(厚み方向の屈折率)
 本発明の配向フィルムは、屈折率による面配向係数が-0.030以下であることが好ましい。なお、本発明の配向フィルムでは、面配向係数が負の値になればなるほど、フィルム面方向に分子鎖が配向されていることを意味し、面配向係数を上限以下にしていくことで、後述の動的粘弾性E’’を向上させることができる。このような観点から、面配向係数の上限は、-0.030以下が好ましく、-0.032以下がより好ましく、-0.033以下が特に好ましい。
<Film characteristics>
(Refractive index in the thickness direction)
The oriented film of the present invention preferably has a plane orientation coefficient by refractive index of −0.030 or less. In the oriented film of the present invention, the more negative the plane orientation coefficient, the more the molecular chains are oriented in the film plane direction, and the plane orientation coefficient is kept below the upper limit, which will be described later. It is possible to improve the dynamic viscoelasticity E ″. From such a viewpoint, the upper limit of the plane orientation coefficient is preferably −0.030 or less, more preferably −0.032 or less, and particularly preferably −0.033 or less.
 一方、面配向係数の下限は特に制限されないが、フィルム製造工程、特に延伸工程におけるフィルム破断の頻度が増加する傾向にあり、フィルムの生産性が低下しやすくなる。このような観点から、面配向係数の下限は、好ましくは-0.050以上であり、-0.045以上がより好ましく、-0.040以上が特に好ましい。 On the other hand, the lower limit of the plane orientation coefficient is not particularly limited, but the frequency of film breakage in the film production process, particularly in the stretching process tends to increase, and the productivity of the film tends to decrease. From such a viewpoint, the lower limit of the plane orientation coefficient is preferably −0.050 or more, more preferably −0.045 or more, and particularly preferably −0.040 or more.
(フィルム厚み)
 本発明の配向フィルムは、その厚みは特に制限されないが、フィルムとしての破断を抑制しやすい点から、0.3μm以上、さらに0.5μm以上、特に1.0μm以上、最も好ましくは1.5μm以上であり、他方薄くなるほど本発明の効果が出やすいことから、30.0μm以下、さらに20.0μm以下、特に好ましくは10.0μm以下、最も好ましくは5μm以下である。
(Film thickness)
Although the thickness of the oriented film of the present invention is not particularly limited, it is 0.3 μm or more, more preferably 0.5 μm or more, particularly 1.0 μm or more, and most preferably 1.5 μm or more from the viewpoint of easily preventing breakage as a film. On the other hand, the thinner the film is, the more easily the effect of the present invention can be obtained.
(絶縁破壊電圧(BDV))
 本発明の配向フィルムは、室温における絶縁破壊電圧(BDV)が500kV/mm以上であることが好ましい。かかる絶縁破壊電圧はより好ましくは520kV/mm以上、さらに好ましくは550kV/mm以上である。
(Dielectric breakdown voltage (BDV))
The oriented film of the present invention preferably has a dielectric breakdown voltage (BDV) at room temperature of 500 kV / mm or more. The breakdown voltage is more preferably 520 kV / mm or more, and further preferably 550 kV / mm or more.
(表面粗さ)
 本発明の配向フィルムは、算術平均粗さ(Ra)が20nm~150nmであることが好ましく、より好ましくは25nm~120nm、さらに好ましくは30nm~100nmである。Raが上限を超えると、高温熱処理後も平面性を維持するのが難しくなる。また、Raが下限以下となると、巻取性が悪化するため好ましくない。Raを上記範囲内とするために滑剤として、配向フィルム表面に凹凸を形成する粒子などを添加してもよい。滑剤の材質、形状はそれ自体公知のものを採用できる。
(Surface roughness)
The oriented film of the present invention preferably has an arithmetic average roughness (Ra) of 20 nm to 150 nm, more preferably 25 nm to 120 nm, still more preferably 30 nm to 100 nm. If Ra exceeds the upper limit, it becomes difficult to maintain flatness even after high-temperature heat treatment. On the other hand, when Ra is lower than the lower limit, the winding property deteriorates, which is not preferable. In order to make Ra within the above range, particles that form irregularities on the surface of the oriented film may be added as a lubricant. The material and shape of the lubricant can be known per se.
(ヤング率)
 本発明の配向フィルムは、ヤング率が3.0GPa~6.0GPaであることが好ましく、より好ましくは3.3GPa~5.7GPa、さらに好ましくは3.5GPa~5.5GPaである。ヤング率が上記範囲内にあると適正な製膜条件で安定製膜が可能である。ところで、本発明の特徴は、従来通りヤング率で見ても差がないものの、加工性に大きな差が生じることを新たに見出したものと言える。
(Young's modulus)
The oriented film of the present invention preferably has a Young's modulus of 3.0 GPa to 6.0 GPa, more preferably 3.3 GPa to 5.7 GPa, and still more preferably 3.5 GPa to 5.5 GPa. When the Young's modulus is within the above range, stable film formation is possible under appropriate film formation conditions. By the way, it can be said that the feature of the present invention is a new finding that a large difference occurs in workability although there is no difference in Young's modulus as usual.
<フィルムの製造方法>
 本発明の配向フィルムは、基本的には従来から知られている、あるいは当業界に蓄積されている方法で得ることができる。以下、本発明の配向フィルムを得るための製造方法について詳記する。なお、本発明の配向フィルムは、一軸配向フィルムであっても二軸配向フィルムであっても良いが、生産性や物性のバランスの点から二軸配向フィルムであることが好ましい。以下、二軸配向フィルムを例にとって、説明する。
<Film production method>
The oriented film of the present invention can basically be obtained by a method conventionally known or accumulated in the art. Hereinafter, the production method for obtaining the oriented film of the present invention will be described in detail. The oriented film of the present invention may be a uniaxially oriented film or a biaxially oriented film, but is preferably a biaxially oriented film from the viewpoint of the balance between productivity and physical properties. Hereinafter, a biaxially oriented film will be described as an example.
 先ず、前述の通り、SPSと熱可塑性非晶樹脂を配合した樹脂組成物を加熱溶融し、未延伸シートを作成する。具体的には樹脂組成物の融点(Tm、単位:℃)以上(Tm+50℃)以下の温度で加熱溶融し、シート状に押し出して、冷却固化して未延伸シートを得る。得られた未延伸シートの固有粘度は、0.35~0.90dl/gの範囲であることが好ましい。 First, as described above, a resin composition containing SPS and a thermoplastic amorphous resin is heated and melted to prepare an unstretched sheet. Specifically, the resin composition is heated and melted at a temperature not lower than the melting point (Tm, unit: ° C.) and not higher than (Tm + 50 ° C.), extruded into a sheet, cooled and solidified to obtain an unstretched sheet. The intrinsic viscosity of the obtained unstretched sheet is preferably in the range of 0.35 to 0.90 dl / g.
 次いで、この未延伸シートを二軸に延伸する。延伸は、縦方向(機械軸方向)および横方向(機械軸方向と厚み方向とに垂直な方向)を同時延伸してもよいし、任意の順序で逐次延伸してもよい。例えば逐次延伸の場合は、先ず一軸方向に(樹脂組成物のガラス転移温度(Tg、単位:℃)-10℃)以上(Tg+70℃)以下の温度で3.2倍以上5.8倍以下、好ましくは3.3倍以上5.4倍以下、さらに好ましくは3.4倍以上5.0倍以下の倍率で延伸し、次いで該一軸方向と直交する方向にTg以上(Tg+80℃)以下の温度で3.8倍以上5.9倍以下、好ましくは4.0倍以上5.5倍以下、より好ましくは4.1倍以上5.1倍以下、さらに好ましくは4.2倍以上4.9倍以下の倍率で延伸する。さらに、面積延伸倍率(=縦延伸倍率×横延伸倍率)としては、12.0倍以上である事が、前述の面配向係数を備えるフィルムを得るため好ましい。面積延伸倍率が低くなると、耐熱性が劣るようになり好ましくない。このことから、面積延伸倍率は13.0倍以上がより好ましく、13.5倍以上がさらに好ましく、14.0倍以上が特に好ましい。また、面積延伸倍率が高くなり過ぎると製膜・延伸時に破断が起き易くなり、望ましくない。このような観点から、面積延伸倍率は、22倍以下が好ましく、20倍以下がより好ましく、18倍以下がさらに好ましく、17倍以下が特に好ましい。 Next, this unstretched sheet is stretched biaxially. Stretching may be performed simultaneously in the machine direction (machine axis direction) and the transverse direction (direction perpendicular to the machine axis direction and the thickness direction) or sequentially in any order. For example, in the case of successive stretching, first, in a uniaxial direction (glass transition temperature (Tg, unit: ° C.) − 10 ° C.) to (Tg + 70 ° C.) or less at a temperature of 3.2 to 5.8 times, Preferably, the film is stretched at a magnification of 3.3 times to 5.4 times, more preferably 3.4 times to 5.0 times, and then a temperature of Tg or more (Tg + 80 ° C.) in a direction perpendicular to the uniaxial direction. 3.8 times to 5.9 times, preferably 4.0 times to 5.5 times, more preferably 4.1 times to 5.1 times, and even more preferably 4.2 times to 4.9 times. Stretch at a magnification of less than double. Furthermore, the area stretching ratio (= longitudinal stretching ratio × lateral stretching ratio) is preferably 12.0 times or more in order to obtain a film having the above-described plane orientation coefficient. If the area stretch ratio is low, the heat resistance becomes poor, which is not preferable. Therefore, the area stretch ratio is more preferably 13.0 times or more, further preferably 13.5 times or more, and particularly preferably 14.0 times or more. On the other hand, if the area stretch ratio is too high, breakage tends to occur during film formation and stretching, which is not desirable. From such a viewpoint, the area stretch ratio is preferably 22 times or less, more preferably 20 times or less, still more preferably 18 times or less, and particularly preferably 17 times or less.
 なお、本発明においては、未延伸シート、または、かかる未延伸シートを、好ましくは縦方向に一軸延伸した一軸延伸フィルムに、塗布層を形成するための塗液を塗布することで、塗布層を形成してもよい。 In the present invention, the coating layer is formed by applying a coating solution for forming a coating layer on an unstretched sheet or a uniaxially stretched film obtained by uniaxially stretching the unstretched sheet in the longitudinal direction. It may be formed.
 次いで、160~230℃の温度で熱固定する。熱固定の温度は165℃以上225℃以下であり、好ましくは170℃以上220℃以下であり、さらに好ましくは195℃以上215℃以下である。上記のような熱固定温度を採用することで、前述の熱収縮率を所望とする範囲とすることができる。また、熱固定の後に必要に応じて熱固定温度より20℃~90℃低い温度下で弛緩処理や緊張処理を行い、さらに前述の熱収縮率を調整しても良い。 Next, heat setting is performed at a temperature of 160 to 230 ° C. The heat setting temperature is 165 ° C. or higher and 225 ° C. or lower, preferably 170 ° C. or higher and 220 ° C. or lower, and more preferably 195 ° C. or higher and 215 ° C. or lower. By adopting the heat setting temperature as described above, the above-described heat shrinkage rate can be set to a desired range. In addition, after heat setting, if necessary, relaxation treatment or tension treatment may be performed at a temperature lower by 20 ° C. to 90 ° C. than the heat setting temperature, and the above-described heat shrinkage rate may be adjusted.
 以下、実施例により本発明をさらに説明する。なお、各特性値は以下の方法により測定し、フィルムの製膜方向を、長手方向、縦方向またはMD方向、それに直交する方向を、幅方向、横方向またはTD方向と称する。 Hereinafter, the present invention will be further described with reference to examples. In addition, each characteristic value is measured with the following method, and the film forming direction of a film is called a longitudinal direction, a longitudinal direction, or MD direction, and the direction orthogonal to it is called the width direction, a horizontal direction, or a TD direction.
(1)フィルム厚み
 電子マイクロメータ(アンリツ(株)製の商品名「K-312A型」)を用いて針圧30gにてフィルム厚みを測定した。 
(1) Film thickness Using an electronic micrometer (trade name “K-312A type” manufactured by Anritsu Corporation), the film thickness was measured at a needle pressure of 30 g.
(2)ガラス転移温度
 サンプル10mgを測定用のアルミニウム製パンに封入して示差走査熱量計(DSC)(TA Instruments社製:商品名DSCQ100に装着し、室温(25℃)から20℃/分の速度で320℃まで昇温させ、その後サンプルを急冷してから再度20℃/分の速度で昇温してガラス転移温度(単位:℃)を測定した。
(2) Glass transition temperature 10 mg of sample was sealed in an aluminum pan for measurement and mounted on a differential scanning calorimeter (DSC) (manufactured by TA Instruments: trade name DSCQ100, from room temperature (25 ° C.) to 20 ° C./min. The temperature was raised to 320 ° C. at a rate, and then the sample was quenched, and then the temperature was raised again at a rate of 20 ° C./min to measure the glass transition temperature (unit: ° C.).
(3)ポリフェニレンエーテル、酸化防止剤の含有量はそれぞれ後述の方法で測定した。
 ポリフェニレンエーテル:1H-NMR測定、13C-NMR測定により、熱可塑性非晶樹脂の成分および各成分量を特定した。
 酸化防止剤:1H-NMR測定、13C-NMR測定により、酸化防止剤の成分および各成分量を特定した。なお、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド](登録商標Irg1098)の場合はtert-ブチル-4-ヒドロキシフェニルとアミド結合との間の炭化水素鎖に起因する水素に起因するピーク強度を測定した。かかるNMR測定結果をもとに、安定剤が樹脂と反応している場合はもとの安定剤に換算した含有量を求めた。また、ポリマーと未反応な安定剤と、ポリマーと反応した安定剤とが混在し、同じ炭化水素鎖に着目しても複数のピーク位置が検出される場合は、それらの合計値より含有量を求めた。
(3) The contents of polyphenylene ether and antioxidant were measured by the methods described later.
Polyphenylene ether: The components of the thermoplastic amorphous resin and the amount of each component were identified by 1H-NMR measurement and 13C-NMR measurement.
Antioxidant: Components of the antioxidant and the amount of each component were specified by 1H-NMR measurement and 13C-NMR measurement. In the case of N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide] (registered trademark Irg1098), tert-butyl-4- The peak intensity due to hydrogen due to the hydrocarbon chain between the hydroxyphenyl and the amide bond was measured. Based on the NMR measurement results, when the stabilizer reacted with the resin, the content converted to the original stabilizer was determined. In addition, if a polymer and an unreacted stabilizer are mixed with a stabilizer that has reacted with a polymer and a plurality of peak positions are detected even when focusing on the same hydrocarbon chain, the content is calculated from the total value of them. Asked.
(4)製膜延伸性
 各実施例・比較例の製膜条件にて製膜を行い、下記の基準で評価した。
 製膜延伸性◎ :5万mの製膜当り、破断が1回未満
 製膜延伸性○ :5万mの製膜当り、破断が1回~2回未満
 製膜延伸性△ :5万mの製膜当り、破断が2回~4回未満
 製膜延伸性× :5万mの製膜当り、破断が4回~8回未満
 製膜延伸性××:5万mの製膜当り、破断が8回以上
(4) Film-forming stretchability Film-forming was performed under the film-forming conditions of each example and comparative example, and evaluated according to the following criteria.
Film-forming stretchability ◎: Less than 1 break per 50,000 m film-forming film forming property ○: Film-forming stretchability △: 50,000 m per 50,000-m film forming Per film formation, film breakability ×: less than 50,000 m film formation, breakage less than 4 to less than 8 times film formation stretchability ×: per film formation of 50,000 m 8 or more breaks
(5)損失弾性率(E’’)、誘電正接(tanδ)、誘電率(ε)
 動的粘弾性測定装置(Perkin Elmer社製、DMA8000)を用い、20℃から230℃まで2℃/分の速度で昇温しながら振動周波数10Hzの条件で、フィルムサンプルの損失弾性率(E’’)(単位:MPa)を測定した。このとき、サンプル長は、測定方向2cm×幅方向5mm(チャック間1cm)とした。上記測定結果から、損失弾性率(E’’)のピーク温度(単位:℃)を求めた。なお、フィルムの縦方向および横方向のそれぞれについて測定を実施し、それらの平均値を算出して求めた。また、ピークが2つある場合には、低温側のピーク温度を採用した。
(5) Loss elastic modulus (E ″), dielectric loss tangent (tan δ), dielectric constant (ε)
Using a dynamic viscoelasticity measuring device (Perkin Elmer, DMA8000), the loss elastic modulus (E ′) of the film sample was measured at a vibration frequency of 10 Hz while being heated from 20 ° C. to 230 ° C. at a rate of 2 ° C./min. ') (Unit: MPa) was measured. At this time, the sample length was 2 cm in the measurement direction × 5 mm in the width direction (1 cm between the chucks). From the measurement results, the peak temperature (unit: ° C.) of the loss elastic modulus (E ″) was determined. In addition, it measured about each of the vertical direction and the horizontal direction of a film, and calculated | required and calculated | required those average values. Moreover, when there were two peaks, the peak temperature on the low temperature side was adopted.
 また、誘電正接(tanδ)と誘電率(ε)は、安藤電気製誘電体損測定機(TR-10C)を用い、温度120℃、振動周波数1kHzの条件で測定して求めた。サンプルはJIS C 2151に従ってアルミ蒸着によって作成した。なお、フィルムの縦方向および横方向のそれぞれについて測定を実施し、それらの平均値を算出して求めた。 Further, the dielectric loss tangent (tan δ) and the dielectric constant (ε) were obtained by measurement using a Ando Electric dielectric loss measuring machine (TR-10C) under conditions of a temperature of 120 ° C. and a vibration frequency of 1 kHz. The sample was prepared by aluminum vapor deposition according to JIS C 2151. In addition, it measured about each of the vertical direction and the horizontal direction of a film, and calculated | required and calculated | required those average values.
(6)屈折率
 ナトリウムD線(589nm)を光源としたアッベ屈折計を用いて23℃65%RHにて、縦方向(Nx)、横方向(Ny)、厚み方向の屈折率(Nz)を測定し、面配向係数(ΔP)を算出した。面配向係数の算出方法は以下の通り。
ΔP=(Nx+Ny)/2-Nz
(6) Refractive index The refractive index (Nz) in the longitudinal direction (Nx), transverse direction (Ny), and thickness direction at 23 ° C. and 65% RH using an Abbe refractometer using sodium D-line (589 nm) as a light source. Measurements were made to calculate the plane orientation coefficient (ΔP). The calculation method of the plane orientation coefficient is as follows.
ΔP = (Nx + Ny) / 2−Nz
(7)破断強伸度、ヤング率
 破断強伸度はフィルムを試料幅10mm、長さ150mmに切り、チャック間100mmにして、引張速度100mm/min、チャート速度500mm/minの条件でインストロンタイプの万能引張試験装置にて引っ張り、破断点の伸度を破断伸度とし、破断点の荷重から計算した応力を破断強度として算出した。なお、破断強度を算出する際の断面積は、破断時の断面積(測定サンプルの断面積/(1+破断伸度(%)/100)で割った値)を用いた。
(7) Tensile strength at break and Young's modulus The strength at break is an Instron type with a film width of 10 mm and a length of 150 mm, a chuck spacing of 100 mm, a tensile speed of 100 mm / min, and a chart speed of 500 mm / min. The tensile strength was calculated using the universal tensile test apparatus, and the elongation at break was regarded as the elongation at break, and the stress calculated from the load at the break was calculated as the breaking strength. The cross-sectional area at the time of calculating the breaking strength was the cross-sectional area at break (cross-sectional area of the measurement sample / (1 + breaking elongation (%) / 100)).
 ヤング率はフィルムを試料幅10mm、長さ150mmに切り、チャック間100mmにして、引張速度10mm/min、チャート速度500mm/minの条件でインストロンタイプの万能引張試験装置にて引っ張る。得られる荷重-伸び曲線の立上り部の接線よりヤング率を計算する。 For Young's modulus, the film is cut into a sample width of 10 mm and a length of 150 mm, the chuck is set to 100 mm, and the film is pulled with an Instron type universal tensile tester under the conditions of a tensile speed of 10 mm / min and a chart speed of 500 mm / min. The Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve.
(8)熱収縮率
 無張力の状態で130℃の雰囲気中30分、150℃の雰囲気中30分、180℃の雰囲気中10分、200℃の雰囲気中10分におけるフィルムの熱収縮率(縦方向および横方向)(単位:%)を求めた。
(8) Thermal contraction rate The film has a thermal contraction rate in the tensionless state at 130 ° C. for 30 minutes, at 150 ° C. for 30 minutes, at 180 ° C. for 10 minutes, and at 200 ° C. for 10 minutes (longitudinal). Direction and lateral direction) (unit:%).
(9)表面粗さ
 非接触式三次元粗さ計(小坂研究所製、ET-30HK)を用いて波長780nmの半導体レーザー、ビーム径1.6μmの光触針で測定長(Lx)1mm、サンプリングピッチ2μm、カットオフ0.25mm、厚み方向拡大倍率1万倍、横方向拡大倍率200倍、走査線数100本(従って、Y方向の測定長Ly=0.2mm)の条件にてフィルム表面の突起プロファイルを測定した。なおフィルムの巻内面、巻外面それぞれの表面について測定を実施した。その粗さ曲面をZ=f(x,y)で表わしたとき、次の式で得られる値をフィルムの中心線平均表面粗さ(Ra、単位:nm)とした。
 なお、表面粗さはそれぞれの主面を測定し、それぞれの値を記載した。
(9) Surface roughness Using a non-contact type three-dimensional roughness meter (manufactured by Kosaka Laboratory, ET-30HK) with a semiconductor laser having a wavelength of 780 nm, a measuring length (Lx) of 1 mm with an optical probe having a beam diameter of 1.6 μm, Film surface under the conditions of sampling pitch 2 μm, cut-off 0.25 mm, thickness direction enlargement magnification 10,000 times, lateral direction enlargement magnification 200 times, scanning line number 100 (accordingly, measurement length Ly = 0.2 mm in Y direction) The protrusion profile was measured. In addition, it measured about the surface of each roll inner surface and outer surface of a film. When the roughness curved surface was represented by Z = f (x, y), the value obtained by the following formula was defined as the center line average surface roughness (Ra, unit: nm) of the film.
In addition, the surface roughness measured each main surface, and described each value.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(10)シワ評価
 熱機械分析装置(SII Technology社製、TMA6000)を用い、3.14mN/μmの荷重をかけながら、30℃から180℃まで5℃/minの速度で昇温し、30℃~160℃の寸法変化割合を算出した。このときサンプル長は測定方向30mm×幅方向4mm(チャック間20mm)とした。なおフィルムの幅方向のみ測定した。
 TMAの伸びが30000ppm以上・・・×
 TMAの伸びが10000ppm~30000ppm未満・・・△
 TMAの伸びが3000ppm~10000ppm未満・・・○
 TMAの伸びが3000ppm未満・・・◎
(10) Wrinkle evaluation Using a thermomechanical analyzer (manufactured by SII Technology, TMA6000), while applying a load of 3.14 mN / μm, the temperature was increased from 30 ° C. to 180 ° C. at a rate of 5 ° C./min. The dimensional change rate of ˜160 ° C. was calculated. At this time, the sample length was 30 mm in the measurement direction × 4 mm in the width direction (20 mm between chucks). Only the width direction of the film was measured.
The elongation of TMA is 30000 ppm or more.
The elongation of TMA is 10,000ppm to less than 30000ppm ・ ・ ・ △
The elongation of TMA is 3000ppm to less than 10,000ppm.
The elongation of TMA is less than 3000 ppm ...
(11)絶縁破壊電圧(BDV)
 得られた二軸配向フィルムを用い、JIS規格C2151に記載のDC試験のうち平板電極法に準拠して、東京精電株式会社製ITS-6003を用いて、0.1kV/secの昇圧速度で測定し、破壊時の電圧を絶縁破壊電圧として測定した。測定はn=50で行い、平均値を絶縁破壊電圧とし、標準偏差を絶縁破壊電圧のばらつきとした。なお測定は20℃の室温で実施した。
(11) Breakdown voltage (BDV)
Using the obtained biaxially oriented film, in accordance with the plate electrode method in the DC test described in JIS standard C2151, using an ITS-6003 made by Tokyo Seiden Co., Ltd., at a boosting rate of 0.1 kV / sec. The voltage at the time of breakdown was measured as a dielectric breakdown voltage. The measurement was performed at n = 50, the average value was the breakdown voltage, and the standard deviation was the variation in breakdown voltage. The measurement was performed at room temperature of 20 ° C.
[実施例1]
 重量平均分子量3.0×10であり、13C-NMR測定でほぼ完全なシンジオタクチック構造であることが観察されるポリスチレン67.9質量部と、熱可塑性非晶樹脂として、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル(クロロホルム中で測定された固有粘度が0.32dl/g、ガラス転移温度が210℃)30質量部と、酸化防止剤(C1)として、ペンタエリスリトールテトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(チバ・スペシャルティ・ケミカルズ社製:商品名IRGANOX1010、融点120℃、熱分解温度335℃)2質量部と、滑剤として多孔質シリカ粒子(平均粒径=2.7μm、圧縮率=66%、細孔容積=1.5ml/g、細孔平均径=10nm)0.1重量部とを混練し、樹脂組成物を得た。
(配向フィルムの製膜)
 得られた樹脂組成物を120℃で7時間乾燥し、次いで押出機に供給し、300℃で溶融し、ダイスリットから押出し後、50℃に冷却されたキャスティングドラム上で冷却固化し、未延伸シートを作成した。
[Example 1]
67.9 parts by mass of polystyrene, which has a weight average molecular weight of 3.0 × 10 5 and is observed to have a nearly complete syndiotactic structure by 13 C-NMR measurement, and poly (2 , 6-dimethyl-1,4-phenylene) ether (inherent viscosity measured in chloroform is 0.32 dl / g, glass transition temperature is 210 ° C.) and 30 parts by weight as an antioxidant (C1), pentaerythritol 2 parts by mass of tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by Ciba Specialty Chemicals: trade name IRGANOX 1010, melting point 120 ° C., thermal decomposition temperature 335 ° C.) Porous silica particles (average particle diameter = 2.7 μm, compressibility = 66%, pore volume = 1.5 ml / g, average pore diameter = 10 n as a lubricant m) 0.1 part by weight was kneaded to obtain a resin composition.
(Oriented film production)
The obtained resin composition was dried at 120 ° C. for 7 hours, then fed to an extruder, melted at 300 ° C., extruded from a die slit, solidified by cooling on a casting drum cooled to 50 ° C., and unstretched Created a sheet.
 この未延伸シートを140℃で縦方向(機械軸方向)に3.0倍延伸し、続いてテンターに導いた後、横方向(機械軸方向と厚み方向とに垂直な方向)に4.0倍延伸した。その際、延伸部分を等分の4ゾーンに別け、横方向の延伸速度は5000%/分とした。また、横方向の延伸の温度も、等分の4段階に別け、第1段階の温度を118℃、最終段階の温度を137℃とした。その後200℃で9秒間熱固定をし、さらに180℃まで冷却する間に横方向に0.6%弛緩処理をして、厚み3.0μmの二軸配向フィルムを得てロール状に巻き取った。得られたフィルムの特性を表1に示す。 This unstretched sheet was stretched 3.0 times in the longitudinal direction (machine axis direction) at 140 ° C., and subsequently led to a tenter, and then 4.0 in the lateral direction (direction perpendicular to the machine axis direction and the thickness direction). The film was stretched twice. At that time, the stretched portion was divided into four equal zones, and the stretching speed in the transverse direction was set to 5000% / min. Further, the stretching temperature in the transverse direction was also divided into four equal stages, and the first stage temperature was 118 ° C. and the final stage temperature was 137 ° C. Thereafter, the film was heat-fixed at 200 ° C. for 9 seconds, and further subjected to a 0.6% relaxation treatment in the transverse direction while cooling to 180 ° C., to obtain a biaxially oriented film having a thickness of 3.0 μm and wound into a roll. . The properties of the obtained film are shown in Table 1.
[実施例2~11、比較例1~4]
 表1に記載の通り、フィルム組成、製膜条件、最終のフィルム厚みを変更する以外は実施例1と同様な操作を繰り返した。得られた配向フィルムの評価結果を、実施例と比較例は表1に示す。
[Examples 2 to 11, Comparative Examples 1 to 4]
As shown in Table 1, the same operation as in Example 1 was repeated except that the film composition, film forming conditions, and final film thickness were changed. The evaluation results of the obtained oriented film are shown in Table 1 for Examples and Comparative Examples.
 なお、実施例9にて使用する熱可塑性非晶樹脂(PA)は、ポリアリレート(ユニチカ社製Uポリマー、商品名:U-100)を使用した。この樹脂の1,1,2,2-テトラクロロエタン中で測定された固有粘度は0.64dl/g、ガラス転移温度は193℃であった。 The thermoplastic amorphous resin (PA) used in Example 9 was polyarylate (U polymer manufactured by Unitika, trade name: U-100). The intrinsic viscosity of this resin measured in 1,1,2,2-tetrachloroethane was 0.64 dl / g, and the glass transition temperature was 193 ° C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1中のPPEはポリフェニレンエーテル、PAはポリアリレートを意味する。 In Table 1, PPE means polyphenylene ether and PA means polyarylate.
 本発明の配向フィルムは、電気特性と耐熱性に優れたシンジオタクチック構造を有するポリスチレン系重合体を用いながらも、蒸着工程など高温での熱処理をするときのシワによる熱負け発生を抑制することができることから、フィルムコンデンサー用のベースフィルムとして好適に用いることができる。また、その他にもリチウムイオン二次電池用、電気二重層キャパシタなどの蓄電素子用の電極といった用途に好適に用いることができる。 The oriented film of the present invention suppresses generation of heat loss due to wrinkles during heat treatment at a high temperature such as a vapor deposition process, while using a polystyrene polymer having a syndiotactic structure excellent in electrical characteristics and heat resistance. Therefore, it can be suitably used as a base film for a film capacitor. In addition, it can be suitably used for applications such as electrodes for power storage elements such as lithium ion secondary batteries and electric double layer capacitors.

Claims (7)

  1.  シンジオタクチック構造のスチレン系重合体を主たる樹脂成分として含み、ガラス転移温度が130℃以上である熱可塑性非晶樹脂を含む樹脂組成物からなり、130℃で30分熱処理した時の面内方向における熱収縮率が5.0%以下、200℃で10分熱処理したときの面内方向における少なくとも1方向の熱収縮率が6.5%以上であることを特徴とする配向フィルム。 In-plane direction when a resin composition containing a thermoplastic amorphous resin having a glass transition temperature of 130 ° C. or higher, including a styrene polymer having a syndiotactic structure as a main resin component, and heat-treated at 130 ° C. for 30 minutes An oriented film having a heat shrinkage rate of 5.0% or less at a heat shrinkage rate of 6.5% or more in at least one direction in the in-plane direction when heat-treated at 200 ° C. for 10 minutes.
  2.  振動周波数10Hzでの損失弾性率(E’’)のピーク温度が125℃以上でかつ破断強度が90MPa以上である請求項1記載の配向フィルム。 2. The oriented film according to claim 1, wherein the peak temperature of the loss elastic modulus (E ″) at a vibration frequency of 10 Hz is 125 ° C. or higher and the breaking strength is 90 MPa or higher.
  3.  200℃で10分熱処理したときの製膜方向および幅方向の熱収縮率の平均値が6.5以上15.0%以下である請求項1記載の配向フィルム。 The oriented film according to claim 1, wherein an average value of heat shrinkage in the film forming direction and the width direction when heat-treated at 200 ° C for 10 minutes is from 6.5 to 15.0%.
  4.  130℃で30分熱処理したときの面内方向における熱収縮率が0.0%以上5.0%以下である請求項1記載の配向フィルム。 The oriented film according to claim 1, wherein the heat shrinkage in the in-plane direction when heat-treated at 130 ° C for 30 minutes is 0.0% or more and 5.0% or less.
  5.  熱可塑性非晶樹脂がポリフェニレンエーテルである請求項1に記載の配向フィルム。 The oriented film according to claim 1, wherein the thermoplastic amorphous resin is polyphenylene ether.
  6.  フィルムの厚みが0.3~30μmである請求項1記載の配向フィルム。 The oriented film according to claim 1, wherein the film has a thickness of 0.3 to 30 µm.
  7.  蒸着加工に用いられる請求項1記載の配向フィルム。 The oriented film according to claim 1, which is used for vapor deposition.
PCT/JP2015/082141 2014-11-18 2015-11-16 Alignment film WO2016080356A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016560215A JP6346301B2 (en) 2014-11-18 2015-11-16 Oriented film
CN201580062749.1A CN107001661B (en) 2014-11-18 2015-11-16 Alignment film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014233560 2014-11-18
JP2014-233560 2014-11-18

Publications (1)

Publication Number Publication Date
WO2016080356A1 true WO2016080356A1 (en) 2016-05-26

Family

ID=56013893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082141 WO2016080356A1 (en) 2014-11-18 2015-11-16 Alignment film

Country Status (3)

Country Link
JP (1) JP6346301B2 (en)
CN (1) CN107001661B (en)
WO (1) WO2016080356A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070863A1 (en) * 2019-10-11 2021-04-15 王子ホールディングス株式会社 Resin composition suitable for use as film for film capacitor
JP2021063215A (en) * 2019-10-11 2021-04-22 王子ホールディングス株式会社 Resin composition suitable for film application for film capacitor
JP2021063216A (en) * 2019-10-11 2021-04-22 王子ホールディングス株式会社 Resin composition suitable for film application for film capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555694A (en) * 2019-10-11 2022-05-27 王子控股株式会社 Resin composition suitable for film applications for film capacitors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182346A (en) * 1988-01-14 1989-07-20 Idemitsu Kosan Co Ltd Molded body of styrene based resin and production thereof
JPH02218724A (en) * 1988-09-30 1990-08-31 Idemitsu Kosan Co Ltd Draw molded body of styrene-based resin and production thereof
WO2008156210A1 (en) * 2007-06-21 2008-12-24 Teijin Limited Insulating film
WO2012147777A1 (en) * 2011-04-26 2012-11-01 帝人株式会社 High-insulating film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5801532B2 (en) * 2009-11-30 2015-10-28 帝人株式会社 High insulation film
KR101986868B1 (en) * 2012-01-24 2019-06-07 도요보 가부시키가이샤 Stretched polypropylene film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182346A (en) * 1988-01-14 1989-07-20 Idemitsu Kosan Co Ltd Molded body of styrene based resin and production thereof
JPH02218724A (en) * 1988-09-30 1990-08-31 Idemitsu Kosan Co Ltd Draw molded body of styrene-based resin and production thereof
WO2008156210A1 (en) * 2007-06-21 2008-12-24 Teijin Limited Insulating film
WO2012147777A1 (en) * 2011-04-26 2012-11-01 帝人株式会社 High-insulating film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070863A1 (en) * 2019-10-11 2021-04-15 王子ホールディングス株式会社 Resin composition suitable for use as film for film capacitor
JP2021063215A (en) * 2019-10-11 2021-04-22 王子ホールディングス株式会社 Resin composition suitable for film application for film capacitor
JP2021063216A (en) * 2019-10-11 2021-04-22 王子ホールディングス株式会社 Resin composition suitable for film application for film capacitor
JP7439721B2 (en) 2019-10-11 2024-02-28 王子ホールディングス株式会社 Resin composition suitable for film use in film capacitors
JP7439722B2 (en) 2019-10-11 2024-02-28 王子ホールディングス株式会社 Resin composition suitable for film use in film capacitors

Also Published As

Publication number Publication date
CN107001661B (en) 2020-03-17
JPWO2016080356A1 (en) 2017-07-27
CN107001661A (en) 2017-08-01
JP6346301B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP5801532B2 (en) High insulation film
JP5149240B2 (en) Biaxially oriented polypropylene film for capacitors, metal-deposited film thereof, and cast raw sheet
JP6304470B1 (en) Biaxially oriented polypropylene film, metallized film for capacitors, and capacitors
JP6346301B2 (en) Oriented film
JP5110604B2 (en) Finely roughened polypropylene film and method for producing the same
WO1998006776A1 (en) Polypropylene film and capacitor made by using the same as the dielectric
JP6314509B2 (en) Capacitor element manufacturing method
JP2007169595A (en) Polypropylene film for capacitor
JP5358111B2 (en) High insulation film
WO2016043172A1 (en) Polypropylene film and film capacitor
JP5771068B2 (en) High insulation film
US9617407B2 (en) Highly insulating film
WO2021162021A1 (en) Polypropylene film, polypropylene film integrated with metal layer, and film capacitor
JP2020132882A (en) Polypropylene film, and metal film laminated film and film capacitor using the same
JP5629235B2 (en) High insulation film
JP2022001638A (en) Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll
JP5684873B2 (en) High insulation film
WO2024058078A1 (en) Biaxially stretched polypropylene film, metallized film, and capacitor
JP6309838B2 (en) Oriented film
JP7020394B2 (en) Polypropylene film, metal layer integrated polypropylene film, film capacitor, and film roll
JP2022046339A (en) Amorphous resin stretched porous material
WO2022190838A1 (en) Film suitable for capacitor use
JP2022140299A (en) Film suitable for use in capacitor
JP2023113106A (en) Film suitable for capacitor use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/08/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15861204

Country of ref document: EP

Kind code of ref document: A1