WO2016080224A1 - Hybrid vehicle control method - Google Patents

Hybrid vehicle control method Download PDF

Info

Publication number
WO2016080224A1
WO2016080224A1 PCT/JP2015/081457 JP2015081457W WO2016080224A1 WO 2016080224 A1 WO2016080224 A1 WO 2016080224A1 JP 2015081457 W JP2015081457 W JP 2015081457W WO 2016080224 A1 WO2016080224 A1 WO 2016080224A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid vehicle
resistance force
engine
crankshaft
vehicle
Prior art date
Application number
PCT/JP2015/081457
Other languages
French (fr)
Japanese (ja)
Inventor
竜 山角
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2016080224A1 publication Critical patent/WO2016080224A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/20Braking by supplying regenerated power to the prime mover of vehicles comprising engine-driven generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hybrid vehicle control method, and more particularly to a hybrid vehicle control method capable of improving the energy regeneration efficiency during deceleration without impairing drivability.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-238105
  • an engine generator connected to a battery can assist engine torque.
  • Hybrid vehicles equipped with a hybrid system that regenerates energy are attracting attention.
  • the hybrid system efficiently recovers a part of the deceleration energy of the vehicle when the driver turns off the accelerator or operates the brake, and uses the recovered energy for driving the vehicle's electrical components and assisting the engine.
  • the aim is to improve fuel efficiency by reducing engine fuel consumption.
  • An object of the present invention is to provide a control method for a hybrid vehicle that can improve energy regeneration efficiency during deceleration without impairing drivability.
  • one end of the crankshaft of the engine is connected to the drive wheel via a clutch and a transmission having a lock-up mechanism, and the other end of the crankshaft is electrically operated.
  • the traveling resistance force is calculated from the air resistance force, rolling resistance force, and engine braking force applied to the hybrid vehicle during deceleration, and the drivability is considered in advance for the traveling resistance force. Since the magnitude of the required regenerative torque for the motor generator is determined by multiplying the set determination coefficient, the energy regeneration efficiency during deceleration can be improved without impairing drivability.
  • FIG. 1 is a configuration diagram of a hybrid vehicle that is an object of a hybrid vehicle control method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining a hybrid vehicle control method according to the embodiment of the present invention.
  • FIG. 3 is a graph showing an example of map data for obtaining the engine friction torque.
  • FIG. 4 is a graph showing an example of map data for obtaining a regeneration amount determination coefficient.
  • FIG. 5 is a graph showing another example of map data for obtaining a regeneration amount determination coefficient.
  • FIG. 1 shows a configuration of a hybrid vehicle that is an object of a hybrid vehicle control method according to an embodiment of the present invention.
  • crankshaft 3 of the engine 2 is connected to the drive wheel 6 via the clutch 4 having the lock-up mechanism and the automatic transmission 5, while the other end of the crankshaft 3 is a pair of It is connected to the rotating shaft 10 of the motor generator 9 via an endless belt member 8 wound around the pulleys 7a and 7b.
  • the connecting means between the crankshaft 3 and the rotating shaft 10 of the motor generator 9 is not limited to the belt member 8 and may be any mechanical connecting means such as a gear.
  • an ECM (Engine Control Module) 11 performs control to change the fuel injection amount and injection timing from the injector according to the operating state of the hybrid vehicle 1.
  • the TCM 12 Transmission Control ⁇ ⁇ ⁇ Module determines the target gear stage by referring to the map data based on information such as the vehicle speed and the accelerator opening, and the clutch 4 is connected and disconnected. Control to shift to the shift stage is performed.
  • the motor generator 9 is connected to a high voltage lithium ion battery 14 or a lead battery 15 via an inverter 13.
  • the motor generator 9 and the inverter 13 constitute an integrated unit 17 controlled by an MCU 16 (Motor Control Unit).
  • ECM 11, TCM 12, and MCU 16 are connected to the HCU 18 (Hybrid Control Unit) through an in-vehicle network (indicated by a one-dot chain line). Further, an accelerator opening sensor 19 is connected to the HCU 18.
  • a control method related to energy regeneration in the hybrid vehicle 1 will be described below as a function of the HCU 18 with reference to FIG.
  • the HCU 18 determines from the detection value of the accelerator opening sensor 19 whether the driver has turned off the accelerator (S10). If the accelerator is turned off, the HCU 18 instructs the TCM 12 to turn on the clutch 4. Lock up is performed (S20).
  • the HCU 18 calculates the air resistance force Fa applied to the hybrid vehicle 1 from the equation (1) (S30), and calculates the rolling resistance force Fr applied to the tire of the drive wheel 6 from the equation (2) (S40).
  • M vehicle weight
  • g gravitational acceleration
  • rolling resistance coefficient
  • air resistance coefficient
  • S front projected area of the vehicle
  • V vehicle speed.
  • the HCU 18 calculates an engine braking force Fe applied to the crankshaft 3 of the engine 2 from the equation (3) (S50).
  • T EngFric engine friction torque
  • ⁇ TM gear ratio of the automatic transmission
  • ⁇ diff differential gear ratio
  • ⁇ TM transmission efficiency of the automatic transmission
  • R tire drive wheel 6 tire dynamic load radius.
  • the engine friction torque T EngFric is determined from map data indicating the relationship between the engine speed and the engine friction torque T EngFric set in advance for each engine, for example, as shown in FIG.
  • the HCU 18 adds the calculated air resistance force Fa, rolling resistance force Fr, and engine brake force Fe as shown in equation (4) to obtain the vehicle running resistance force F (S60).
  • the HCU 18 multiplies the vehicle running resistance force F by the regeneration amount determination coefficient k REG to obtain the regenerative force F REG on the tire ground contact surface of the drive wheels 6 (S70).
  • the regeneration amount determination coefficient k REG means an increase rate of the deceleration speed of the hybrid vehicle 1 that does not impair drivability, and is set in advance by experiments or calculations.
  • the regeneration amount determination coefficient k REG is a constant value (eg, a value in the range of 0.2 to 0.4) that is a positive value of zero or more.
  • map data indicating the relationship between the vehicle speed of the hybrid vehicle 1 and the number of gear stages of the automatic transmission 5 is used as the regeneration amount determination coefficient k REG. Also good.
  • the HCU 18 calculates a required regenerative torque T REG that is a torque on the rotating shaft 10 of the motor generator 9 from the equation (6) based on the regenerative force F REG (S80).
  • eta Pulley pulley 7a
  • the torque transmission efficiency of 7b belt member 8
  • ⁇ pulley pulley 7a, which is the ratio of 7b.
  • the HCU 18 instructs the MCU 16 to perform energy regeneration at the required regeneration torque T REG in the motor generator 9 (S90).
  • the energy regeneration efficiency during deceleration can be improved without impairing drivability in the hybrid vehicle 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a hybrid vehicle control method capable of improving energy regeneration efficiency during deceleration without impairing drivability, said hybrid vehicle (1) being constructed such that one end of a crankshaft (3) of an engine (2) is connected to a pair of drive wheels (6, 6) via a clutch (4) having a lock-up mechanism and an automatic transmission (5), and the other end of the crankshaft (3) is mechanically connected to a motor-generator (9). An HCU (18): locks up the clutch (4) when the accelerator of the hybrid vehicle (1) is off; obtains a vehicle travel resistance force F from an air resistance force Fa, a rolling resistance force Fr, and an engine-braking force Fe which act on the hybrid vehicle (1); and multiplies the travel resistance force F by a preset determination coefficient kREG in order to calculate a regenerative torque TREG requested of the motor-generator (9).

Description

ハイブリッド車両の制御方法Control method of hybrid vehicle
 本発明はハイブリッド車両の制御方法に関し、更に詳しくは、ドライバビリティを損なうことなく減速時のエネルギー回生効率を向上することができるハイブリッド車両の制御方法に関する。 The present invention relates to a hybrid vehicle control method, and more particularly to a hybrid vehicle control method capable of improving the energy regeneration efficiency during deceleration without impairing drivability.
 近年、燃費向上と環境対策などの観点から、例えば日本出願の特開2002-238105号公報(特許文献1)に記載されているように、バッテリーに接続する電動発電機により、エンジントルクのアシストやエネルギー回生を行うハイブリッドシステムを搭載したハイブリッド車両が注目されている。 In recent years, from the viewpoint of improving fuel consumption and environmental measures, for example, as described in Japanese Patent Application Laid-Open No. 2002-238105 (Patent Document 1), an engine generator connected to a battery can assist engine torque. Hybrid vehicles equipped with a hybrid system that regenerates energy are attracting attention.
 ハイブリッドシステムは、ドライバーがアクセルをオフした時やブレーキを操作した時に、車両の減速エネルギーの一部を効率よく回収し、その回収したエネルギーを車両の電装品の駆動やエンジンのアシストに用いることで、エンジンの燃料消費量を低減して燃費を向上させることを目的としている。 The hybrid system efficiently recovers a part of the deceleration energy of the vehicle when the driver turns off the accelerator or operates the brake, and uses the recovered energy for driving the vehicle's electrical components and assisting the engine. The aim is to improve fuel efficiency by reducing engine fuel consumption.
 このエネルギー回生に係る制御においては、車両の減速エネルギーを可能な範囲でより多く回収することが必要である。しかし、回生量を大きくし過ぎると、ドライバーが車両減速度に対して違和感を感じることになる。そのため、ドライバビリティを損なわない範囲で、いかに多くのエネルギーを回生するかが重要となっている。 In the control related to this energy regeneration, it is necessary to recover more deceleration energy of the vehicle as much as possible. However, if the regeneration amount is increased too much, the driver will feel uncomfortable with the vehicle deceleration. Therefore, how much energy is regenerated within the range that does not impair drivability is important.
日本出願の特開2002-238105号公報Japanese Patent Application No. 2002-238105
 本発明の目的は、ドライバビリティを損なうことなく減速時のエネルギー回生効率を向上することができるハイブリッド車両の制御方法を提供することにある。 An object of the present invention is to provide a control method for a hybrid vehicle that can improve energy regeneration efficiency during deceleration without impairing drivability.
 上記の目的を達成する本発明のハイブリッド車両の制御方法は、エンジンのクランク軸の一端がロックアップ機構を有するクラッチ及び変速機を介して駆動輪に接続するとともに、前記クランク軸の他端が電動発電機に機械的に連結するハイブリッド車両の制御方法であって、前記ハイブリッド車両がアクセルオフ時になったときに前記クラッチをロックアップするステップと、前記ハイブリッド車両に加わる空気抵抗力を算出するステップと、前記駆動輪に加わる転がり抵抗力を算出するステップと、前記クランク軸に加わるエンジンブレーキ力を算出するステップと、前記空気抵抗力、転がり抵抗力及びエンジンブレーキ力を合計して車両走行抵抗力を求めるステップと、前記車両走行抵抗力に予め設定された決定係数を乗ずることで前記電動発電機における回生力を求めるステップと、前記回生力に基づいて前記電動発電機への要求回生トルクを算出するステップとを有することを特徴とするものである。 In the hybrid vehicle control method of the present invention that achieves the above object, one end of the crankshaft of the engine is connected to the drive wheel via a clutch and a transmission having a lock-up mechanism, and the other end of the crankshaft is electrically operated. A method of controlling a hybrid vehicle mechanically coupled to a generator, the step of locking up the clutch when the hybrid vehicle is in an accelerator-off state, and the step of calculating an air resistance force applied to the hybrid vehicle; A step of calculating a rolling resistance force applied to the drive wheel, a step of calculating an engine braking force applied to the crankshaft, and adding the air resistance force, the rolling resistance force and the engine braking force to obtain a vehicle running resistance force. Multiplying the vehicle running resistance force by a predetermined coefficient of determination. Determining a regenerative force in serial electric generator, it is characterized in that a step of calculating a required regenerative torque to the motor generator on the basis of the regenerative power.
 本発明のハイブリッド車両の制御方法によれば、減速時においてハイブリッド車両に加わる空気抵抗力、転がり抵抗力及びエンジンブレーキ力から走行抵抗力を算出し、その走行抵抗力にドライバビリティを考慮して予め設定された決定係数を乗ずることで、電動発電機に対する要求回生トルクの大きさを決定するようにしたので、ドライバビリティを損なうことなく減速時のエネルギー回生効率を向上することができる。 According to the hybrid vehicle control method of the present invention, the traveling resistance force is calculated from the air resistance force, rolling resistance force, and engine braking force applied to the hybrid vehicle during deceleration, and the drivability is considered in advance for the traveling resistance force. Since the magnitude of the required regenerative torque for the motor generator is determined by multiplying the set determination coefficient, the energy regeneration efficiency during deceleration can be improved without impairing drivability.
図1は、本発明の実施形態からなるハイブリッド車両の制御方法の対象となるハイブリッド車両の構成図である。FIG. 1 is a configuration diagram of a hybrid vehicle that is an object of a hybrid vehicle control method according to an embodiment of the present invention. 図2は、本発明の実施形態からなるハイブリッド車両の制御方法を説明するフロー図である。FIG. 2 is a flowchart for explaining a hybrid vehicle control method according to the embodiment of the present invention. 図3は、エンジンフリクショントルクを求めるマップデータの例を示すグラフである。FIG. 3 is a graph showing an example of map data for obtaining the engine friction torque. 図4は、回生量決定係数を求めるマップデータの例を示すグラフである。FIG. 4 is a graph showing an example of map data for obtaining a regeneration amount determination coefficient. 図5は、回生量決定係数を求めるマップデータの他の例を示すグラフである。FIG. 5 is a graph showing another example of map data for obtaining a regeneration amount determination coefficient.
 以下に、本発明の実施の形態について、図面を参照して説明する。図1は、本発明の実施形態からなるハイブリッド車両の制御方法の対象であるハイブリッド車両の構成を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a hybrid vehicle that is an object of a hybrid vehicle control method according to an embodiment of the present invention.
 このハイブリッド車両1は、エンジン2のクランク軸3の一端が、ロックアップ機構を有するクラッチ4及び自動変速機5を介して駆動輪6に接続する一方で、クランク軸3の他端が、一対のプーリー7a、7bに巻き回された無端状のベルト部材8を介して電動発電機9の回転軸10に連結している。なお、クランク軸3と電動発電機9の回転軸10との連結手段は、ベルト部材8に限るものではなく、歯車などの機械的な連結手段であれば良い。 In this hybrid vehicle 1, one end of the crankshaft 3 of the engine 2 is connected to the drive wheel 6 via the clutch 4 having the lock-up mechanism and the automatic transmission 5, while the other end of the crankshaft 3 is a pair of It is connected to the rotating shaft 10 of the motor generator 9 via an endless belt member 8 wound around the pulleys 7a and 7b. The connecting means between the crankshaft 3 and the rotating shaft 10 of the motor generator 9 is not limited to the belt member 8 and may be any mechanical connecting means such as a gear.
 エンジン2においては、ECM(Engine Control Module)11が、ハイブリッド車両1の運転状態に応じて、インジェクタからの燃料噴射量や噴射タイミングを変更する制御などを行う。 In the engine 2, an ECM (Engine Control Module) 11 performs control to change the fuel injection amount and injection timing from the injector according to the operating state of the hybrid vehicle 1.
 自動変速機5及びクラッチ4においては、TCM12(Transmission Control Module)が車速やアクセル開度などの情報を基にマップデータを参照して目標変速段を決定し、クラッチ4を断接して、その目標変速段に変速する制御を行う。 In the automatic transmission 5 and the clutch 4, the TCM 12 (Transmission Control マ ッ プ Module) determines the target gear stage by referring to the map data based on information such as the vehicle speed and the accelerator opening, and the clutch 4 is connected and disconnected. Control to shift to the shift stage is performed.
 電動発電機9は、インバータ13を介して高電圧のリチウムイオン電池14や鉛バッテリ15に接続している。電動発電機9及びインバータ13は、MCU16(Motor Control Unit)により制御される一体型のユニット17を構成している。 The motor generator 9 is connected to a high voltage lithium ion battery 14 or a lead battery 15 via an inverter 13. The motor generator 9 and the inverter 13 constitute an integrated unit 17 controlled by an MCU 16 (Motor Control Unit).
 上述したECM11、TCM12及びMCU16は、HCU18(Hybrid Control Unit)に車載ネットワーク(一点鎖線で示す)を通じて接続されている。また、HCU18には、アクセル開度センサ19が接続されている。 The above-described ECM 11, TCM 12, and MCU 16 are connected to the HCU 18 (Hybrid Control Unit) through an in-vehicle network (indicated by a one-dot chain line). Further, an accelerator opening sensor 19 is connected to the HCU 18.
 このようなハイブリッド車両1におけるエネルギー回生に係る制御方法を、HCU18の機能として、図2に基づいて以下に説明する。 A control method related to energy regeneration in the hybrid vehicle 1 will be described below as a function of the HCU 18 with reference to FIG.
 まず、HCU18は、アクセル開度センサ19の検出値から、ドライバーがアクセルをオフしているか否かを判定し(S10)、アクセルがオフされている場合には、TCM12に指令してクラッチ4をロックアップする(S20)。 First, the HCU 18 determines from the detection value of the accelerator opening sensor 19 whether the driver has turned off the accelerator (S10). If the accelerator is turned off, the HCU 18 instructs the TCM 12 to turn on the clutch 4. Lock up is performed (S20).
 そして、HCU18は、ハイブリッド車両1に加わる空気抵抗力Faを(1)式から算出する(S30)とともに、駆動輪6のタイヤに加わる転がり抵抗力Frを(2)式から算出する(S40)。
Figure JPOXMLDOC01-appb-I000001
 ここで、M:車両重量、g:重力加速度、μ:ころがり抵抗係数、λ:空気抵抗係数、S:車両の前面投影面積、V:車速である。
Then, the HCU 18 calculates the air resistance force Fa applied to the hybrid vehicle 1 from the equation (1) (S30), and calculates the rolling resistance force Fr applied to the tire of the drive wheel 6 from the equation (2) (S40).
Figure JPOXMLDOC01-appb-I000001
Here, M: vehicle weight, g: gravitational acceleration, μ: rolling resistance coefficient, λ: air resistance coefficient, S: front projected area of the vehicle, and V: vehicle speed.
 次に、HCU18は、エンジン2のクランク軸3に加わるエンジンブレーキ力Feを(3)式から算出する(S50)。
Figure JPOXMLDOC01-appb-I000002
 ここで、TEngFric:エンジンフリクショントルク、γTM:自動変速機5のギア比、γdiff:デフギア比、ηTM:自動変速機5の伝達効率、ηdiff:デフ伝達効率、Rtire:駆動輪6のタイヤ動荷重半径である。
Next, the HCU 18 calculates an engine braking force Fe applied to the crankshaft 3 of the engine 2 from the equation (3) (S50).
Figure JPOXMLDOC01-appb-I000002
Here, T EngFric : engine friction torque, γ TM : gear ratio of the automatic transmission 5, γ diff : differential gear ratio, η TM : transmission efficiency of the automatic transmission 5, η diff : differential transmission efficiency, R tire : drive wheel 6 tire dynamic load radius.
 なお、エンジンフリクショントルクTEngFricは、例えば図3に示すような、エンジン毎に予め実験により設定されたエンジン回転数とエンジンフリクショントルクTEngFricとの関係を示すマップデータから決定される。 The engine friction torque T EngFric is determined from map data indicating the relationship between the engine speed and the engine friction torque T EngFric set in advance for each engine, for example, as shown in FIG.
 そして、HCU18は、それぞれ算出された空気抵抗力Fa、転がり抵抗力Fr及びエンジンブレーキ力Feを、(4)式のように合計して車両走行抵抗力Fを求める(S60)。
Figure JPOXMLDOC01-appb-I000003
Then, the HCU 18 adds the calculated air resistance force Fa, rolling resistance force Fr, and engine brake force Fe as shown in equation (4) to obtain the vehicle running resistance force F (S60).
Figure JPOXMLDOC01-appb-I000003
 次に、HCU18は、(5)式に示すように、車両走行抵抗力Fに回生量決定係数kREGを乗じて、駆動輪6のタイヤ接地面上における回生力FREGを求める(S70)。
Figure JPOXMLDOC01-appb-I000004
Next, as shown in equation (5), the HCU 18 multiplies the vehicle running resistance force F by the regeneration amount determination coefficient k REG to obtain the regenerative force F REG on the tire ground contact surface of the drive wheels 6 (S70).
Figure JPOXMLDOC01-appb-I000004
 回生量決定係数kREGは、ドライバビリティを損うことのないハイブリッド車両1の減速速度の増加率を意味しており、予め実験や計算により設定される。回生量決定係数kREGとしては、ゼロ以上の正の値である一定値(例えば、0.2~0.4の範囲の値)とする。あるいはその他に、図4及び図5にそれぞれ例を示すように、回生量決定係数kREGとして、ハイブリッド車両1の車速や自動変速機5のギヤ段数との関係を示すマップデータを用いるようにしても良い。 The regeneration amount determination coefficient k REG means an increase rate of the deceleration speed of the hybrid vehicle 1 that does not impair drivability, and is set in advance by experiments or calculations. The regeneration amount determination coefficient k REG is a constant value (eg, a value in the range of 0.2 to 0.4) that is a positive value of zero or more. Alternatively, as shown in FIGS. 4 and 5, for example, map data indicating the relationship between the vehicle speed of the hybrid vehicle 1 and the number of gear stages of the automatic transmission 5 is used as the regeneration amount determination coefficient k REG. Also good.
 そして、HCU18は、回生力FREGに基づいて、(6)式から電動発電機9の回転軸10上のトルクである要求回生トルクTREGを算出する(S80)。
Figure JPOXMLDOC01-appb-I000005
 ここで、ηpulley:プーリー7a、7b(ベルト部材8)のトルク伝達効率、γpulley:プーリー7a、7bの比である。
Then, the HCU 18 calculates a required regenerative torque T REG that is a torque on the rotating shaft 10 of the motor generator 9 from the equation (6) based on the regenerative force F REG (S80).
Figure JPOXMLDOC01-appb-I000005
Here, eta Pulley: pulley 7a, the torque transmission efficiency of 7b (belt member 8), γ pulley: pulley 7a, which is the ratio of 7b.
 最後に、HCU18は、MCU16に指令して、電動発電機9において要求回生トルクTREGでのエネルギー回生を行う(S90)。 Finally, the HCU 18 instructs the MCU 16 to perform energy regeneration at the required regeneration torque T REG in the motor generator 9 (S90).
 このようなハイブリッド車両1の制御方法を行うことで、ハイブリッド車両1においてドライバビリティを損なうことなく減速時のエネルギー回生効率を向上することができるのである。 By performing such a control method of the hybrid vehicle 1, the energy regeneration efficiency during deceleration can be improved without impairing drivability in the hybrid vehicle 1.
1 ハイブリッド車両
2 エンジン
3 クランク軸
4 クラッチ
5 自動変速機
6 駆動輪
7a、7b プーリー
8 ベルト部材
9 電動発電機
10 回転軸
18 HCU
19 アクセル開度センサ
DESCRIPTION OF SYMBOLS 1 Hybrid vehicle 2 Engine 3 Crankshaft 4 Clutch 5 Automatic transmission 6 Drive wheel 7a, 7b Pulley 8 Belt member 9 Motor generator 10 Rotating shaft 18 HCU
19 Accelerator position sensor

Claims (3)

  1.  エンジンのクランク軸の一端がロックアップ機構を有するクラッチ及び変速機を介して駆動輪に接続するとともに、前記クランク軸の他端が電動発電機に機械的に連結するハイブリッド車両の制御方法であって、
     前記ハイブリッド車両がアクセルオフ時になったときに前記クラッチをロックアップするステップと、
     前記ハイブリッド車両に加わる空気抵抗力を算出するステップと、
     前記駆動輪に加わる転がり抵抗力を算出するステップと、
     前記クランク軸に加わるエンジンブレーキ力を算出するステップと、
     前記空気抵抗力、転がり抵抗力及びエンジンブレーキ力を合計して車両走行抵抗力を求めるステップと、
     前記車両走行抵抗力に予め設定された決定係数を乗ずることで前記電動発電機における回生力を求めるステップと、
     前記回生力に基づいて前記電動発電機への要求回生トルクを算出するステップと、を有することを特徴とするハイブリッド車両の制御方法。
    A control method for a hybrid vehicle in which one end of an engine crankshaft is connected to a drive wheel via a clutch and transmission having a lock-up mechanism, and the other end of the crankshaft is mechanically connected to a motor generator. ,
    Locking up the clutch when the hybrid vehicle is in an accelerator-off state;
    Calculating an air resistance applied to the hybrid vehicle;
    Calculating rolling resistance applied to the drive wheel;
    Calculating an engine braking force applied to the crankshaft;
    Adding the air resistance force, rolling resistance force and engine braking force to obtain a vehicle running resistance force;
    Obtaining the regenerative power in the motor generator by multiplying the vehicle running resistance by a predetermined coefficient of determination;
    Calculating a required regenerative torque to the motor generator based on the regenerative power.
  2.  前記決定係数が、一定値である請求項1に記載のハイブリッド車両の制御方法。 The method for controlling a hybrid vehicle according to claim 1, wherein the determination coefficient is a constant value.
  3.  前記決定係数が、前記ハイブリッド車両の車速、又は前記変速機の段数に基づいて決定される請求項1に記載のハイブリッド車両の制御方法。 2. The hybrid vehicle control method according to claim 1, wherein the determination coefficient is determined based on a vehicle speed of the hybrid vehicle or a number of stages of the transmission.
PCT/JP2015/081457 2014-11-19 2015-11-09 Hybrid vehicle control method WO2016080224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-234354 2014-11-19
JP2014234354A JP6515499B2 (en) 2014-11-19 2014-11-19 Control method and control device for hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2016080224A1 true WO2016080224A1 (en) 2016-05-26

Family

ID=56013769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081457 WO2016080224A1 (en) 2014-11-19 2015-11-09 Hybrid vehicle control method

Country Status (2)

Country Link
JP (1) JP6515499B2 (en)
WO (1) WO2016080224A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108725419A (en) * 2017-04-21 2018-11-02 铃木株式会社 Hybrid vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193724A (en) * 1997-09-17 1999-04-06 Honda Motor Co Ltd Control device for hybrid vehicle
JP2002354607A (en) * 2001-05-22 2002-12-06 Mazda Motor Corp Control device for vehicle
JP2003165361A (en) * 2001-11-29 2003-06-10 Toyota Motor Corp Vehicle control device
JP2012136191A (en) * 2010-12-27 2012-07-19 Toyota Motor Corp Vehicle control system
JP2013067241A (en) * 2011-09-21 2013-04-18 Toyota Motor Corp Driving device of hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193724A (en) * 1997-09-17 1999-04-06 Honda Motor Co Ltd Control device for hybrid vehicle
JP2002354607A (en) * 2001-05-22 2002-12-06 Mazda Motor Corp Control device for vehicle
JP2003165361A (en) * 2001-11-29 2003-06-10 Toyota Motor Corp Vehicle control device
JP2012136191A (en) * 2010-12-27 2012-07-19 Toyota Motor Corp Vehicle control system
JP2013067241A (en) * 2011-09-21 2013-04-18 Toyota Motor Corp Driving device of hybrid vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108725419A (en) * 2017-04-21 2018-11-02 铃木株式会社 Hybrid vehicle
CN108725419B (en) * 2017-04-21 2021-08-24 铃木株式会社 Hybrid vehicle

Also Published As

Publication number Publication date
JP6515499B2 (en) 2019-05-22
JP2016097730A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
US9604623B2 (en) Drive control system for electric motor and method of controlling electric motor
KR101588789B1 (en) Method and apparatus of controlling creep torque for vehicle including driving motor
KR102574116B1 (en) Vehicle and method for controlling the vehicle
KR102542523B1 (en) Brake system and controlling method thereof
CN103043056A (en) Method of controlling vehicle wheel axle torque and control system for same
JP6984329B2 (en) car
US20100133032A1 (en) Device for Controlling Regenerative Braking of Vehicle
CN107776437B (en) Speed control device for low-speed electric vehicle
JP2008068704A (en) Vehicular drive source control apparatus
JP6146292B2 (en) Hybrid car
JP6686384B2 (en) Hybrid vehicle regenerative electric energy control system, hybrid vehicle, and regenerative electric energy control method for hybrid vehicle
CN106523167B (en) Vehicle, system and method for calculating engine torque request value
WO2016080224A1 (en) Hybrid vehicle control method
JP6287572B2 (en) Vehicle control device
JP2015000675A (en) Control method for hybrid vehicle during cost drive and hybrid
KR100598805B1 (en) Method and system for controlling regenerative braking of four wheel drive electric vehicle
JP4752282B2 (en) Motor drive control device for electric motor type four-wheel drive vehicle
JP2009018708A (en) Vehicle and control method therefor
JP2009018709A (en) Vehicle and control method therefor
JP6690339B2 (en) Driving force control device
JP6593045B2 (en) Hybrid vehicle and control method thereof
JP5135924B2 (en) Hybrid car
JP2018070058A (en) Hybrid automobile
JP2017121146A (en) Control device for vehicle
JP2017030594A (en) Hybrid vehicle and control method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860555

Country of ref document: EP

Kind code of ref document: A1