WO2016079797A1 - Inline concentration measurement probe and concentration measurement system - Google Patents

Inline concentration measurement probe and concentration measurement system Download PDF

Info

Publication number
WO2016079797A1
WO2016079797A1 PCT/JP2014/080440 JP2014080440W WO2016079797A1 WO 2016079797 A1 WO2016079797 A1 WO 2016079797A1 JP 2014080440 W JP2014080440 W JP 2014080440W WO 2016079797 A1 WO2016079797 A1 WO 2016079797A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
concentration
fiber
probe
guides
Prior art date
Application number
PCT/JP2014/080440
Other languages
French (fr)
Japanese (ja)
Inventor
豊島 良一
Original Assignee
日本メクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メクトロン株式会社 filed Critical 日本メクトロン株式会社
Priority to PCT/JP2014/080440 priority Critical patent/WO2016079797A1/en
Publication of WO2016079797A1 publication Critical patent/WO2016079797A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Definitions

  • the present invention relates to an in-line type chemical concentration measuring probe and a concentration measuring system. More specifically, the present invention relates to a probe for spectroscopically measuring a concentrated chemical concentration in a reaction vessel and a concentration using the probe. It relates to a measurement system.
  • the present invention relates to a probe for measuring the concentration of a reaction solution in a reaction vessel in detail in light of the configuration of the invention, and in particular, the light emitted from a light source enters the reaction vessel via an optical fiber.
  • a probe that guides the light transmitted through the reaction solution in the reaction vessel to the light receiving element through the optical fiber the transmitted light to the light receiving element with respect to the core diameter of the fiber that guides the light emitted from the light source
  • the core diameter of the fiber that guides light from the light source is large, the end on the side opposite to the light source of the fiber that guides the light emitted from the light source, and the end on the side opposite to the light receiving element that guides the transmitted light to the light receiving element
  • the present invention also relates to a probe for measuring the concentration of a reaction solution in a reaction tank, which is fixed so that the exposed core surfaces face each other and the tip of the fiber protrudes, and a concentration measurement system using the probe. It is.
  • Electroless copper plating and electrolytic copper plating can be said to be indispensable processes for securing the connection between layers during the production of multilayer printed circuit boards.
  • it is necessary to constantly control the concentration of the machining fluid by such a chemical reaction, and if it deviates from an appropriate management range, it causes defects such as abnormal deposition and non-precipitation of copper plating.
  • Examples of the management items for the electroless copper plating solution include [Non-Patent Document 1] [Electrical plating study group, edited by Nikkan Kogyo Shimbun, June 1994, “Electroless plating basics and applications” (see pages 122-124). ], There are copper concentration, reducing agent concentration, pH, complexing agent and the like.
  • Spectroscopic density measurement is performed by irradiating a measurement object with measurement light emitted from a light source and receiving light transmitted through the measurement object.
  • the light intensity I 0 from a light source, the light intensity I a measured object absorbs and the received light intensity and I t, I 0 I a + I t Holds is related, I a is the type of object to be measured, since it is unique to the concentration, if known absorption light intensity of a specific substance, can determine its concentration using I t It becomes.
  • Absorbance A shows a linear relationship with the concentration when the concentration of the analyte is low. However, this relationship is broken when the object to be measured has a high concentration.
  • the concentration of the copper plating solution as described at the beginning is set to a high concentration for efficient copper deposition, and it is difficult to measure the concentration by absorbance with the plating solution as it is.
  • the sampled plating solution is diluted and usually diluted 10 to 100 times. Then, as described above, off-line concentration measurement requires operations such as sampling and measurement operation, which is disadvantageous in terms of immediacy of copper plating solution concentration measurement and high-frequency analysis.
  • Patent Document 3 simplifies the cell by guiding light from the light emitting part outside the reaction tank to the reaction tank and from the reaction tank to the light receiving part outside the reaction tank. ing.
  • the invention described in the document is a technique related to turbidity measurement, it is not always necessary to receive all the light scattered in the reaction vessel.
  • the diameter of the core serving as the light guide portion of the optical fiber is several tens to several hundreds of ⁇ m. If not properly selected, the measurement light leaks into the liquid, making accurate measurement difficult.
  • the optical fiber is fixed so as to protrude into the reaction vessel, but generally the electroless copper plating reaction vessel in industrial production is as large as several meter square, that is, the distance between the optical fibers, It is difficult to control the optical path length to 100 ⁇ m or less as described above.
  • Patent Document 5 Japanese Patent Laid-Open No. 2008-116314
  • a method of bringing an optical fiber close to each other and fixing it to a V-groove is disclosed. This makes it possible to realize an optical path length of 100 ⁇ m or less, but it is necessary to use an optical fiber strand in order to fix the fiber in the V-groove.
  • the strand is an optical fiber without a protective coating, and has a problem that it is bent by bending or impact.
  • the reaction tank is stirred at a high speed, and when the fiber strand is immersed, breakage, cracking, etc. are considered, and accurate measurement becomes difficult.
  • the present invention has been proposed to achieve the above object,
  • the invention according to claim 1 is an in-line absorbance measurement probe, in which light emitted from a light source is guided to a reaction tank through an optical fiber, and the light transmitted through the reaction liquid in the reaction tank is passed through the optical fiber.
  • the core diameter of the fiber that guides the transmitted light to the light receiving element is larger than the core diameter of the fiber that guides the light emitted from the light source, and guides the light emitted from the light source.
  • the end of the fiber opposite to the light source and the end opposite to the light receiving element that guides transmitted light to the light receiving element face the exposed core surface, and the fiber tip protrudes.
  • a probe for measuring the concentration of the reaction solution in the reaction vessel in the optical fiber that guides the light emitted from the light source, in the end including the core where the liquid contact part is exposed, the end is not affected by the liquid in the reaction vessel.
  • the probe for measuring the concentration of the reaction solution in the reaction vessel according to claim 1 and protected by a ferrule made of a material, and the invention according to claim 3 guides light emitted from the light source.
  • the core diameter of the optical fiber is 62.5 ⁇ m or less, more specifically 50 ⁇ m or less, and the core diameter of the optical fiber that guides the transmitted light to the light receiving element is 100 ⁇ m or more, more specifically 200 ⁇ m or more.
  • a probe for measuring the concentration of the reaction solution in the reaction vessel according to claim 2 In the invention according to claim 4, the distance between the core surfaces facing each other so as to expose the optical fiber that guides the light emitted from the light source and the optical fiber that guides the transmitted light to the light receiving element is 1 mm.
  • the invention according to claim 5 is such that an optical fiber for guiding light emitted from the light source and an exposed core surface of each of the optical fibers for guiding transmitted light to the light receiving element are opposed to each other and the tip of the fiber.
  • the probe for fixing between the exposed exposed core surfaces facing each other at the predetermined distance is assembled by an optical communication member assembling method.
  • a probe for measuring the concentration of the reaction solution in the reaction vessel according to Item 3 or Claim 4 uses the probe for measuring the density
  • a calibration curve created by measuring reaction solutions of various concentrations is held in the control device, and the absorbance measurement results obtained by measuring the reaction solution in-line with the probe for concentration measurement are stored in the control device.
  • an optical fiber is used as a means for guiding the light emitted from the light source and the transmitted light to the light receiving element, so that accurate concentration measurement is possible.
  • the structure of the probe is simplified, which is advantageous in terms of manufacturing cost and liquid flow.
  • the end portion of the optical fiber is fixed so as to protrude, it is further advantageous for the liquid flow, and the concentration of the entire reaction tank can be immediately reflected.
  • the ferrule is made of a material that is not affected by the reaction solution.
  • fiber breakage can be prevented by using zirconia, borosilicate glass, or the like.
  • the configuration of the present invention it is possible to minimize the leakage of measurement light into the reaction solution by increasing the core diameter of the light receiving side optical fiber relative to the light emitting side optical fiber. Yes, accurate concentration measurement is possible.
  • the distance between the opposing core surfaces is set so that the optical path length when measuring the concentration of the reaction solution in the reaction tank off-line is equal to or less than the value obtained by dividing the dilution rate in the off-line measurement.
  • the reaction solution set to various concentrations is measured using the probe, a calibration curve is created and input to the control device, and the control device and the probe are measured in-line. It is possible to output an accurate concentration from the measurement result of absorbance. As a result, the reaction solution concentration can be monitored immediately.
  • the effects of the invention can be summarized as follows. According to the present invention, it is possible to measure the concentration of a reaction solution that normally requires dilution without diluting it accurately and in-line. It is possible to always manage the reaction solution in a good state, and as a result, it is possible to stably manufacture a product manufactured using the reaction solution, which reduces the manufacturing cost of the product. It is possible to bring about a great utility of contributing to reduction of the product cost by reduction and manufacturing cost reduction.
  • FIG. 3 is a perspective view schematically showing a configuration of a member that forms a fiber support in the first embodiment.
  • FIG. 2 is a schematic perspective view showing a mode after assembly of the fiber support in Example 1.
  • FIG. 3 is a schematic perspective view showing a mode in which optical axes of two fiber supports in Example 1 are aligned.
  • FIG. 2 is a schematic perspective view of a probe in Example 1.
  • 1 is a block diagram illustrating a configuration of a measurement system using a probe assembled in Example 1.
  • the present invention is an in-line absorbance measurement probe, in which light emitted from a light source is guided to a reaction vessel through an optical fiber, and the light transmitted through a reaction solution in the reaction vessel is received through the optical fiber as a light receiving element.
  • the distance between the opposing exposed core surfaces is set so that the optical path length when measuring the reaction solution concentration offline is divided by or less than the dilution rate in the offline measurement.
  • one end is the same connector as the optical connector prepared for the spectrophotometer, the other end is a diameter of 1.249 mm, and the distance from the tip to the flange 4a is 4.95 mm.
  • a SUS316 plate 3 having a thickness of 1 mm and a 10 mm square provided with 2 is prepared.
  • 4a is a flange of the ferrule 1
  • 4b is a fiber main body (web) which is a main component of the ferrule.
  • the ferrule 1 is passed through the plate 3 of SUS316 through the through-hole 2 using the ferrule flange 4a as a stopper, and then the fiber support 5 is fixed.
  • the ferrule is shown, and the coated fiber is not shown.
  • a fiber support 5 ′ similar to the fiber support 5 is manufactured using a coated optical fiber 1 ′ having a core diameter of 118 ⁇ m and a fiber support plate 3 (the fiber support 5 ′ is not shown alone). ). These two supports 5 and 5 'are used as one set for the production of an absorbance measurement probe.
  • the fiber supports 5 and 5 ′ are held by an aligner by an appropriate method, and the optical axes of the two fiber supports are adjusted as shown in FIG. 3.
  • the distance of the gap 6 between the fiber ends at the end of the alignment is set to 100 ⁇ m.
  • a centering machine that is an optical component assembling mechanism, it is possible to adjust the optical axis and set the distance between the fiber ends with high accuracy.
  • the distance between the fiber ends is 100 ⁇ m, it is possible to measure the reaction liquid that has been measured for absorbance at a dilution of 100 times using a 1 cm cell without dilution.
  • the beam diameter of 100 ⁇ m ahead of the light emitted from the 50 ⁇ m core is about 100 ⁇ m, but the refractive index of the optical fiber core (1.4 to 1.6). )
  • the core diameter of the optical fiber on the light receiving side may be 100 ⁇ m or less when the refractive index of the electroless copper plating solution is low.
  • a fiber having a core diameter of 118 ⁇ m is used here. This corresponds to a liquid refractive index of 2.3 or more, and the aqueous solution usually does not have such a refractive index.
  • the fiber supports 5 and 5 ' are held by the aligning machine and are fixed by the bridging member 7 so as to bridge both supports as shown in FIG.
  • a structure in which the fiber supports 5 and 5 ′ and the bridging member 7 are combined serves as an absorbance measurement probe 8.
  • the bridging member 7 a SUS316 plate having a thickness of 1 mm was used.
  • an adhesive, mechanical fixing, welding, or the like can be applied.
  • fixing is performed by laser welding.
  • an adhesive it is necessary to make sure that the material is not affected by the reaction solution.
  • care must be taken so that the positional relationship between the fiber supports does not change during fixing. By applying laser welding, these considerations become unnecessary.
  • resistance welding can also be applied, it is necessary to consider that the positional relationship between the supports does not go wrong when the welding probe is pressed against the support or the bridging member.
  • the absorbance measuring probe 8 is attached to the spectrophotometer and the absorbance is measured with a blank. Since there are transmission loss in the fiber and Fresnel reflection at the end of the fiber, not all the input light can be received even in the blank.
  • FIG. 5 shows a schematic block diagram thereof.
  • 9 is a reaction tank, which is a plating bath used for concentration detection using the probe 8 for in-line detection or the like.
  • a laser light source 10 that emits light of a measurement wavelength
  • a detector 11 that detects laser light that has passed through the reaction liquid
  • an amplifier 12 that amplifies the signal from the detector 11, a control for the laser light source and a control that receives the detector signal
  • PC13 PC13. Measurement results of a blank and two or more kinds of standard concentration reaction solutions are input in advance to the PC 13 and held as a calibration curve. This is done each time the probe 8 changes.
  • a low-pass filter 14 is inserted in the signal path from the amplifier 12 to the PC 13 to cause a sudden signal. Provide a mechanism to cut changes. Further, in order to cope with a steady change in absorbance due to foreign matter adhesion or liquid deterioration, the PC 13 is configured to issue an alarm when the upper and lower limits of absorbance received by the PC 13 are exceeded. Further, by accumulating the measurement results in the PC 13, it is possible to detect the concentration while tracking the sequential concentration change of the reaction solution in the reaction tank 9.
  • Example 1 the distance 6 between the fiber ends was set to 100 ⁇ m, assuming a dilution rate of 100 times in the off-line measurement of the reaction solution.
  • a reaction solution with a relatively low copper concentration such as a low dilution factor in the off-line and a 10-fold dilution in a measurement cell of 1 cm, it is measured when a probe with a fiber end-to-end distance of 100 ⁇ m is applied. As the absorbance decreases, the resolution is affected.
  • the distance between the fiber ends set at the time of assembling the probe is set to 1 mm with a dilution ratio of 10 times.
  • the beam diameter at the light receiving end is 460 ⁇ m.
  • the core diameter of the fiber on the light receiving side is also set to 460 ⁇ m or more, preferably 680 ⁇ m or more (corresponding to a refractive index of 2 or more of the reaction solution).
  • the present invention can be used for concentration measurement in a reaction tank, particularly copper concentration measurement in a copper plating solution, and has excellent utility for copper concentration measurement in this field, such as concentration measurement in an electroless copper plating solution tank. You can expect to have an effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

[Problem] To construct an accurate and simple inline concentration measurement probe that has a reduced optical path length, minimizes the liquid flow inhibition in a measurement part, and is not subject to light leakage, or the like. [Solution] In a probe 5, 5ʹ for guiding light having passed through a reaction solution to a light reception element via an optical fiber 1, the core diameter of the fiber 1 for guiding transmitted light to the light reception element is wider than the core diameter of the fiber 1 for guiding light emitted from the light source 10, the fiber 1 leading ends are fixed so as to protrude so that the exposed core surfaces of the end of the fiber 1 for guiding the light from the light source opposite from the light source and the end of the fiber for guiding the transmitted light to the light reception element opposite from the light reception element oppose each other, and the distance 6 between the opposing exposed cores is at most the value arrived at by dividing the optical path length when the reaction solution concentration is measured offline by an offline measurement dilution rate.

Description

インライン式濃度測定プローブ及び濃度測定システムInline concentration measurement probe and concentration measurement system
 本発明は、インライン式薬液濃度の測定プローブと濃度測定システムに関するものであり、さらに詳細にいえば、濃厚な薬液濃度を分光学的に反応槽内で測定するためのプローブ及びそれを用いた濃度測定システムに関するものである。 The present invention relates to an in-line type chemical concentration measuring probe and a concentration measuring system. More specifically, the present invention relates to a probe for spectroscopically measuring a concentrated chemical concentration in a reaction vessel and a concentration using the probe. It relates to a measurement system.
 本発明につき、発明の構成に照らして、詳しく記述すると、反応槽内で反応液の濃度を測定するためのプローブに関するものであり、特に、光源から発した光が光ファイバを介して反応槽に導光され、反応槽内部の反応液を透過した当該光を光ファイバを介して受光素子に導光するプローブにおいて、光源から発する光を導光するファイバのコア径に対し、受光素子へ透過光を導光するファイバのコア径が大きく、光源から発する光を導光するファイバの光源とは反対側の端部、および受光素子へ透過光を導光する受光素子とは反対側の端部が各々露出したコア面を対向するように、かつファイバ先端が突出するように固定されてなる、反応槽内で反応液の濃度を測定するためのプローブと該プローブを用いた濃度測定システムに関するものである。 The present invention relates to a probe for measuring the concentration of a reaction solution in a reaction vessel in detail in light of the configuration of the invention, and in particular, the light emitted from a light source enters the reaction vessel via an optical fiber. In a probe that guides the light transmitted through the reaction solution in the reaction vessel to the light receiving element through the optical fiber, the transmitted light to the light receiving element with respect to the core diameter of the fiber that guides the light emitted from the light source The core diameter of the fiber that guides light from the light source is large, the end on the side opposite to the light source of the fiber that guides the light emitted from the light source, and the end on the side opposite to the light receiving element that guides the transmitted light to the light receiving element The present invention also relates to a probe for measuring the concentration of a reaction solution in a reaction tank, which is fixed so that the exposed core surfaces face each other and the tip of the fiber protrudes, and a concentration measurement system using the probe. It is.
 無電解銅めっきや電解銅めっきは多層プリント基板製造時の層間の接続を確保するために欠かせぬ工程であるといえる。一方、このような化学反応による加工液は定常的な濃度管理が必要であり、適正な管理範囲を逸脱すると銅めっきの異常析出や、不析出など不良の原因となる。無電解銅めっき液の管理項目には、例えば[非特許文献1]の[電気鍍金研究会編、’94年6月日刊工業新聞社発行「無電解めっき 基礎と応用」(p122-124参照)]にあるように、銅濃度、還元剤濃度、pH、錯化剤などがある。一方、電解銅めっきの場合、銅濃度、硫酸濃度、添加剤濃度などがある。これらのうち、銅濃度はめっき作業を重ねるに従い一方的に減少する。銅濃度の測定は、一般にEDTAなどを用いた、キレート滴定や、分光学的な手法が適用されている。特にこれら銅めっき液においては分光学的な手法が主流である。しかしながら、これらはいずれも銅めっき反応槽から薬液をサンプリングし、オフラインでの測定を行うことが前提となっており、分析値の即時性、分析頻度の面で、精細な管理を行うことは困難である。 Electroless copper plating and electrolytic copper plating can be said to be indispensable processes for securing the connection between layers during the production of multilayer printed circuit boards. On the other hand, it is necessary to constantly control the concentration of the machining fluid by such a chemical reaction, and if it deviates from an appropriate management range, it causes defects such as abnormal deposition and non-precipitation of copper plating. Examples of the management items for the electroless copper plating solution include [Non-Patent Document 1] [Electrical plating study group, edited by Nikkan Kogyo Shimbun, June 1994, “Electroless plating basics and applications” (see pages 122-124). ], There are copper concentration, reducing agent concentration, pH, complexing agent and the like. On the other hand, in the case of electrolytic copper plating, there are copper concentration, sulfuric acid concentration, additive concentration and the like. Among these, the copper concentration decreases unilaterally as the plating operation is repeated. For the measurement of copper concentration, chelate titration and spectroscopic techniques using EDTA or the like are generally applied. Particularly in these copper plating solutions, a spectroscopic method is mainly used. However, all of these are based on the assumption that chemicals are sampled from the copper plating reaction tank and measured offline, making it difficult to perform precise management in terms of immediacy of analysis values and analysis frequency. It is.
 分光学的な濃度測定は、光源から発せられた測定光を被測定物に照射し、被測定物を透過した光を受光することで行う。光源からの光強度I、被測定物が吸収する光強度をI、受光する光強度をIとすると、
=I+I
の関係が成り立ち、Iは被測定物の種類、濃度に固有のものであることから、特定の物質の吸収する光強度が既知であれば、Iを用いてその濃度を求めることが可能となる。
一般に被測定物を透過した光の強度I
A=-log(I/I
なる式で換算した吸光度Aで表す。
Spectroscopic density measurement is performed by irradiating a measurement object with measurement light emitted from a light source and receiving light transmitted through the measurement object. The light intensity I 0 from a light source, the light intensity I a measured object absorbs and the received light intensity and I t,
I 0 = I a + I t
Holds is related, I a is the type of object to be measured, since it is unique to the concentration, if known absorption light intensity of a specific substance, can determine its concentration using I t It becomes.
Generally the light intensity I t which has transmitted through the DUT is A = -log (I t / I 0)
It is represented by absorbance A converted by the following formula.
 吸光度Aは被測定物の濃度が低い場合は濃度に対し線形の関係を示す。ところが、被測定物が高濃度の場合はこの関係が崩れる。そして、冒頭に述べたような銅めっき液は効率的な銅析出のためにその濃度は高濃度に設定されており、めっき液そのままでは吸光度による濃度測定は困難である。 Absorbance A shows a linear relationship with the concentration when the concentration of the analyte is low. However, this relationship is broken when the object to be measured has a high concentration. The concentration of the copper plating solution as described at the beginning is set to a high concentration for efficient copper deposition, and it is difficult to measure the concentration by absorbance with the plating solution as it is.
 そこで、オフラインにおける濃度測定では、サンプリングしためっき液を希釈し、通常10~100倍に希釈する。
 そうすると、上述のようにオフラインでの濃度測定はサンプリング、測定操作という作業が必要となり、銅めっき液濃度測定の即時性、高頻度での分析という点において不利となる。
Therefore, in the off-line concentration measurement, the sampled plating solution is diluted and usually diluted 10 to 100 times.
Then, as described above, off-line concentration measurement requires operations such as sampling and measurement operation, which is disadvantageous in terms of immediacy of copper plating solution concentration measurement and high-frequency analysis.
 このため、例えば、[特許文献1]の[特開2001-228079号公報]に記載の発明や、[特許文献2]の[特許第3609029号公報]に記載の発明にみられるように、被測定物への光照射と透過光の受光が行えるセルを直接反応槽に浸漬して測定する手法が開示されている。ここで、被測定物の吸光度と光路長、濃度には
A=αLC
というランベルト・ベールの法則(ここでαは被測定物固有の吸光係数、Lは光路長、Cは濃度を表す)が成り立ち、高濃度の薬液に対しては光路長を短くすることで希釈と同じ効果が得られる。上述の文献では、光路長を可変とすることで高濃度の薬液をインラインで分析することが可能としている。
For this reason, as seen in, for example, the invention described in [Patent Document 1] [Japanese Patent Laid-Open No. 2001-228079] and the [Patent Document 2] [Patent No. 3609029], A method is disclosed in which a cell capable of irradiating a measurement object with light and receiving transmitted light is directly immersed in a reaction vessel for measurement. Here, the absorbance, optical path length, and concentration of the object to be measured are A = αLC.
The Lambert-Beer law (where α is the extinction coefficient specific to the object to be measured, L is the optical path length, and C is the concentration) is established. The same effect can be obtained. In the above-mentioned document, it is possible to analyze a high concentration chemical solution in-line by making the optical path length variable.
 また、吸光度測定ではないが、[特許文献3]の[特開昭63-284454号公報]に記載の発明では、被測定物への光照射、散乱光受光方法として光ファイバを、そして、[特許文献4]の[特開2000-304693号公報]に記載の発明では、ガラスロッドを用いて、セルの簡素化を図っている。 Further, although it is not an absorbance measurement, in the invention described in [Patent Document 3] [Japanese Patent Laid-Open No. 63-284454], an optical fiber is used as a method of irradiating the object to be measured and receiving scattered light, and [ In the invention described in [Patent Document 4] [Japanese Patent Laid-Open No. 2000-304693], the cell is simplified by using a glass rod.
特開2001-228079号公報JP 2001-228079 A
特許第3609029号公報Japanese Patent No. 36009029
特開昭63-284454号公報JP-A 63-284454
特開2000-304693号公報JP 2000-304693 A
特開2008-116314号公報JP 2008-116314 A
 [特許文献1]の[特開2001-228079号公報]に記載の発明では、光路長を変更するために発光側と受光側接液面間距離をボールねじや、モータなどの可動機構をセルに持たせることで実現しているが、セル自体にこのような機構を有せしめるために、セルが複雑化する。また、これら機構を高反応性の薬液から保護するためには何らかの防水構造が必要となる。また、可動性のある部品であるため、衝撃などによって接液面間距離が動いてしまい、結果として光路長が変わり正確な濃度測定ができなくなるという虞がある。 In the invention described in [Patent Document 1] [Japanese Patent Laid-Open No. 2001-228079], in order to change the optical path length, the distance between the liquid contact surface on the light-emitting side and the light-receiving side is set to a movable mechanism such as a ball screw or a motor. However, since the cell itself has such a mechanism, the cell becomes complicated. In addition, some waterproof structure is required to protect these mechanisms from highly reactive chemicals. In addition, since it is a movable part, the distance between the wetted surfaces may move due to impact or the like, and as a result, the optical path length may change and accurate concentration measurement may not be possible.
 また、[特許文献2]の[特許第3609029号公報]に記載の発明では、光路長についていくつかのバリエーションを持たせうるようにガラスセルを加工する必要があり、ガラスセルは複雑な形状となり、加工性に問題が生じる。とくに、高濃度の薬液では光路長を100μm以下に設定する必要があり、ガラス加工の難易度が増す。
 また、これら前述した2文献に記載された発明では、その形状の複雑さのゆえに、透過光測定部の液流が、槽全体に対し遅くなるため、必ずしも槽全体の薬液濃度を代表する濃度とはならないという可能性がある。
Further, in the invention described in [Patent Document 2], [Patent No. 3609629], it is necessary to process the glass cell so as to have some variations in the optical path length, and the glass cell has a complicated shape. Problems arise in workability. In particular, in the case of a high concentration chemical solution, it is necessary to set the optical path length to 100 μm or less, which increases the difficulty of glass processing.
Further, in the inventions described in the above-mentioned two documents, the liquid flow of the transmitted light measurement unit is slow with respect to the entire tank due to the complexity of the shape. There is a possibility that it should not.
 これらの課題に対応するため、特許文献3記載の発明では、光ファイバによって反応槽外部にある発光部から反応槽、反応槽から反応槽外部にある受光部へ導光することでセルを簡素化している。
 ところが、当該文献に記載の発明は、濁度測定に関する手法であるため、反応槽内で散乱した光を必ずしもすべて受光する必要がない。一般に光ファイバの導光部となるコアの径は数十~数百μmであり、適正に選択しない場合、測定光が液中に漏れ、正確な測定が困難となる。
 また、当該文献に記載の発明では、反応槽内部に光ファイバが突出するように固定するが、一般に工業生産における無電解銅めっきの反応槽は数メートル角と大きく、光ファイバ間の距離、すなわち光路長を上述のように100μm以下に制御することは困難である。
In order to deal with these problems, the invention described in Patent Document 3 simplifies the cell by guiding light from the light emitting part outside the reaction tank to the reaction tank and from the reaction tank to the light receiving part outside the reaction tank. ing.
However, since the invention described in the document is a technique related to turbidity measurement, it is not always necessary to receive all the light scattered in the reaction vessel. In general, the diameter of the core serving as the light guide portion of the optical fiber is several tens to several hundreds of μm. If not properly selected, the measurement light leaks into the liquid, making accurate measurement difficult.
Moreover, in the invention described in the document, the optical fiber is fixed so as to protrude into the reaction vessel, but generally the electroless copper plating reaction vessel in industrial production is as large as several meter square, that is, the distance between the optical fibers, It is difficult to control the optical path length to 100 μm or less as described above.
 また、[特許文献4]の[特開2000-304693号公報]に記載の発明にみられるように、ガラスロッドを液中に浸漬して測定する場合、ガラスと薬液の屈折率が近い場合には、ガラスロッド内を導光した光が本来全反射すべきはずのガラスロッド側壁から漏れ出る可能性があり、その結果、正確な測定が困難となる。 In addition, as seen in the invention described in [Patent Document 4] [JP 2000-304693], when measuring by immersing a glass rod in a liquid, when the refractive index of the glass and the chemical is close to each other, In this case, there is a possibility that the light guided in the glass rod leaks from the side wall of the glass rod which should be totally reflected, and as a result, accurate measurement becomes difficult.
 これらに対し、[特許文献5]の[特開2008-116314号公報]に記載の発明では、光ファイバを近接させてV溝に固定する方法が開示されている。これによって100μm以下の光路長を実現することは可能であるが、V溝にファイバを固定するためには光ファイバの素線を用いる必要がある。素線は保護用の被覆のない光ファイバで、曲げや、衝撃に対して折れるという問題がある。薬液濃度を槽内で均一にするため、反応槽内は高速度で撹拌を行っており、ファイバ素線を浸漬した場合、折れ、クラックの発生などが考えられ、正確な測定は困難となる。 On the other hand, in the invention described in [Patent Document 5] [Japanese Patent Laid-Open No. 2008-116314], a method of bringing an optical fiber close to each other and fixing it to a V-groove is disclosed. This makes it possible to realize an optical path length of 100 μm or less, but it is necessary to use an optical fiber strand in order to fix the fiber in the V-groove. The strand is an optical fiber without a protective coating, and has a problem that it is bent by bending or impact. In order to make the chemical concentration uniform in the tank, the reaction tank is stirred at a high speed, and when the fiber strand is immersed, breakage, cracking, etc. are considered, and accurate measurement becomes difficult.
 そこで、前述した技術上の諸不具合に鑑み、光路長を短くし、測定部の液流阻害を最小限とし、光の漏れなどの発生しない、正確でシンプルなインライン式濃度測定プローブを構築するにはどうするべきかが技術上の問題点となっており、本発明は、このような技術的課題を解決することを目的とするものである。 Therefore, in view of the technical problems described above, to construct an accurate and simple in-line concentration measurement probe that shortens the optical path length, minimizes the liquid flow obstruction of the measurement unit, and does not cause light leakage. What should be done is a technical problem, and the present invention aims to solve such a technical problem.
 本発明は、前記目的を達成するために提案されたものであり、
 請求項1記載の発明は、インライン式の吸光度測定プローブであり、光源から発した光が光ファイバを介して反応槽に導光され、反応槽内部の反応液を透過した当該光を光ファイバを介して受光素子に導光するプローブにおいて、光源から発する光を導光するファイバのコア径に対し、受光素子へ透過光を導光するファイバのコア径が大きく、光源から発する光を導光するファイバの光源とは反対側の端部、および受光素子へ透過光を導光する受光素子とは反対側の端部が各々露出したコア面を対向するように、かつファイバ先端が突出するように固定されており、対向する露出したコア面間の距離を、当該反応液濃度をオフラインで測定する際の光路長を当該オフライン測定における希釈率で割った値あるいはそれ以下となるように設定した、反応槽内で反応液の濃度を測定するためのプローブ、
 及び、請求項2記載の発明は、上記光源から発する光を導光する光ファイバのうち、接液部が露出したコアを含む端部において、その端部が当該反応槽内の液によって侵されない材質でできたフェルールによって保護されている、請求項1に記載の反応槽内で反応液の濃度を測定するためのプローブ、 及び、請求項3記載の発明は、上記光源から発する光を導光する光ファイバのコア径が62.5μm以下、さらに言えば50μm以下であり、上記受光素子へ透過光を導光する光ファイバのコア径が100μm以上、さらに言えば200μm以上である、請求項1または請求項2に記載の反応槽内で反応液の濃度を測定するためのプローブ、
 及び、請求項4記載の発明は、上記光源から発する光を導光する光ファイバと、上記受光素子へ透過光を導光する光ファイバの各々露出するように対向したコア面同士の距離が1mm以下、さらに言えば200μm以下である、請求項1または請求項2または請求項3に記載の反応槽内で反応液の濃度を測定するためのプローブ、
 及び、請求項5記載の発明は、上記光源から発する光を導光する光ファイバと、上記受光素子へ透過光を導光する光ファイバの各々の露出したコア面を対向するようにかつファイバ先端が突出するように固定されており、対向する露出したコア面間を上記所定の距離で固定するためのプローブが、光通信部材の組み立て方法で組み立てられた、請求項1または請求項2または請求項3または請求項4に記載の反応槽内で反応液の濃度を測定するためのプローブ、
 及び、請求項6記載の発明は、請求項1または請求項2または請求項3または請求項4または請求項5に記載の反応槽内で反応液の濃度を測定するためのプローブを用いて、種々の濃度の反応液を測定して作成した検量線を制御用装置に保持し、上記濃度測定のためのプローブで上記反応液をインラインで測定した吸光度の測定結果に対し、当該制御用装置に保持した検量線を参照することによってリアルタイムで濃度に換算することを特徴とする反応槽内で反応液の濃度を測定する濃度測定システムを、
それぞれ、提供するものである。
The present invention has been proposed to achieve the above object,
The invention according to claim 1 is an in-line absorbance measurement probe, in which light emitted from a light source is guided to a reaction tank through an optical fiber, and the light transmitted through the reaction liquid in the reaction tank is passed through the optical fiber. In the probe that guides light to the light receiving element, the core diameter of the fiber that guides the transmitted light to the light receiving element is larger than the core diameter of the fiber that guides the light emitted from the light source, and guides the light emitted from the light source. The end of the fiber opposite to the light source and the end opposite to the light receiving element that guides transmitted light to the light receiving element face the exposed core surface, and the fiber tip protrudes. The distance between the exposed exposed core surfaces is fixed so that the optical path length when measuring the reaction solution concentration offline is divided by or less than the dilution rate in the offline measurement. , A probe for measuring the concentration of the reaction solution in the reaction vessel,
According to the second aspect of the present invention, in the optical fiber that guides the light emitted from the light source, in the end including the core where the liquid contact part is exposed, the end is not affected by the liquid in the reaction vessel. The probe for measuring the concentration of the reaction solution in the reaction vessel according to claim 1 and protected by a ferrule made of a material, and the invention according to claim 3 guides light emitted from the light source. The core diameter of the optical fiber is 62.5 μm or less, more specifically 50 μm or less, and the core diameter of the optical fiber that guides the transmitted light to the light receiving element is 100 μm or more, more specifically 200 μm or more. Or a probe for measuring the concentration of the reaction solution in the reaction vessel according to claim 2,
In the invention according to claim 4, the distance between the core surfaces facing each other so as to expose the optical fiber that guides the light emitted from the light source and the optical fiber that guides the transmitted light to the light receiving element is 1 mm. Hereinafter, the probe for measuring the concentration of the reaction solution in the reaction tank according to claim 1, claim 2, or claim 3, which is 200 μm or less.
The invention according to claim 5 is such that an optical fiber for guiding light emitted from the light source and an exposed core surface of each of the optical fibers for guiding transmitted light to the light receiving element are opposed to each other and the tip of the fiber. The probe for fixing between the exposed exposed core surfaces facing each other at the predetermined distance is assembled by an optical communication member assembling method. A probe for measuring the concentration of the reaction solution in the reaction vessel according to Item 3 or Claim 4,
And invention of Claim 6 uses the probe for measuring the density | concentration of the reaction liquid in the reaction tank of Claim 1 or Claim 2 or Claim 3 or Claim 4 or Claim 5, A calibration curve created by measuring reaction solutions of various concentrations is held in the control device, and the absorbance measurement results obtained by measuring the reaction solution in-line with the probe for concentration measurement are stored in the control device. A concentration measurement system for measuring the concentration of a reaction solution in a reaction tank, characterized in that it is converted to a concentration in real time by referring to a stored calibration curve,
Each is provided.
 本発明の構成によれば、光源から発した光および透過した光を受光素子に導光する手段として光ファイバを用いることで、反応液中への光漏れがないため、正確な濃度測定が可能であり、プローブの構造がシンプルとなり、製造コスト、液流れの点で有利である。また、光ファイバの端部が突出するように固定されていることから、さらに液流れに有利となり、反応槽全体の濃度を即時的に反映可能である。 According to the configuration of the present invention, since an optical fiber is used as a means for guiding the light emitted from the light source and the transmitted light to the light receiving element, there is no light leakage into the reaction solution, so that accurate concentration measurement is possible. Thus, the structure of the probe is simplified, which is advantageous in terms of manufacturing cost and liquid flow. Further, since the end portion of the optical fiber is fixed so as to protrude, it is further advantageous for the liquid flow, and the concentration of the entire reaction tank can be immediately reflected.
 また、本発明の構成によれば、ファイバの接液端部をフェルールで保護することで、液流や衝撃などによるファイバの破損を防ぐことが可能となる。この際、フェルールの材質は反応液に侵されない材質であることが望ましく、無電解銅めっき液で言えば、ジルコニアやホウケイ酸ガラスなどを用いることを通じてファイバ破損を防止し得る。 Also, according to the configuration of the present invention, it is possible to prevent damage to the fiber due to liquid flow or impact by protecting the wetted end of the fiber with a ferrule. At this time, it is desirable that the ferrule is made of a material that is not affected by the reaction solution. In the case of an electroless copper plating solution, fiber breakage can be prevented by using zirconia, borosilicate glass, or the like.
 また、本発明の構成によれば、発光側の光ファイバに対して、受光側の光ファイバのコア径を大きくすることによって反応液中への測定光の漏れを最小限に抑えることが可能であり、正確な濃度測定が可能となる。 Further, according to the configuration of the present invention, it is possible to minimize the leakage of measurement light into the reaction solution by increasing the core diameter of the light receiving side optical fiber relative to the light emitting side optical fiber. Yes, accurate concentration measurement is possible.
 また、本発明では、反応槽における当該反応液濃度をオフラインで測定する際の光路長を当該オフライン測定における希釈率で割った値あるいはそれ以下となるように、対向するコア面間距離を設定することで、高濃度の反応液に対しても希釈の必要がなく、正確な濃度測定が可能である。 In the present invention, the distance between the opposing core surfaces is set so that the optical path length when measuring the concentration of the reaction solution in the reaction tank off-line is equal to or less than the value obtained by dividing the dilution rate in the off-line measurement. Thus, it is not necessary to dilute even a high concentration reaction solution, and accurate concentration measurement is possible.
 また、本発明によれば、種々の濃度に設定した反応液を当該プローブを用いて測定して検量線を作成し、制御用機器に入力し、当該制御用機器等やプローブがインラインで測定した吸光度の測定結果から正確な濃度を出力することが可能である。これによって、反応液濃度が即時的にモニタ可能となる。 In addition, according to the present invention, the reaction solution set to various concentrations is measured using the probe, a calibration curve is created and input to the control device, and the control device and the probe are measured in-line. It is possible to output an accurate concentration from the measurement result of absorbance. As a result, the reaction solution concentration can be monitored immediately.
 以上のとおり、発明の効果を総括すると、本発明によれば、通常希釈が必要な反応液の濃度測定を希釈することなく、正確かつインラインで測定することが可能となり、反応液濃度を即時的に測定することで、反応液を常に良好な状態に管理することが可能となり、その結果、当該反応液を用いて製造する製品を安定的に製造することが可能となり、当該製品の製造コストの低減、および製造コスト低減による製品コストの低減に貢献するという多大の有用性をもたらすことができる。 As described above, the effects of the invention can be summarized as follows. According to the present invention, it is possible to measure the concentration of a reaction solution that normally requires dilution without diluting it accurately and in-line. It is possible to always manage the reaction solution in a good state, and as a result, it is possible to stably manufacture a product manufactured using the reaction solution, which reduces the manufacturing cost of the product. It is possible to bring about a great utility of contributing to reduction of the product cost by reduction and manufacturing cost reduction.
実施例1におけるファイバ支持体をなす部材の構成を模式的に示す斜視図。FIG. 3 is a perspective view schematically showing a configuration of a member that forms a fiber support in the first embodiment. 実施例1におけるファイバ支持体の組立後の態様を示す模式的斜視図。FIG. 2 is a schematic perspective view showing a mode after assembly of the fiber support in Example 1. 実施例1における2つのファイバ支持体の光軸を合わせる態様を示す模式的斜視図。FIG. 3 is a schematic perspective view showing a mode in which optical axes of two fiber supports in Example 1 are aligned. 実施例1におけるプローブの模式的斜視図。FIG. 2 is a schematic perspective view of a probe in Example 1. 実施例1で組み立てたプローブによる測定システムの構成を示すブロック図。1 is a block diagram illustrating a configuration of a measurement system using a probe assembled in Example 1. FIG.
 本発明は、インライン式の吸光度測定プローブであり、光源から発した光が光ファイバを介して反応槽に導光され、反応槽内部の反応液を透過した当該光を光ファイバを介して受光素子に導光するプローブにおいて、光源から発する光を導光するファイバのコア径に対し、受光素子へ透過光を導光するファイバのコア径が大きく、光源から発する光を導光するファイバの光源とは反対側の端部、および受光素子へ透過光を導光する受光素子とは反対側の端部が各々露出したコア面を対向するように、かつファイバ先端が突出するように固定されており、対向する露出したコア面間の距離を、当該反応液濃度をオフラインで測定する際の光路長を当該オフライン測定における希釈率で割った値あるいはそれ以下となるように設定したことを特徴とする、反応槽内で反応液の濃度を測定するためのプローブを提供することによって、実現したものである。
 なお、以下、図に従って、本発明の実施例を示すが、本発明はこれに限定するものではない。
The present invention is an in-line absorbance measurement probe, in which light emitted from a light source is guided to a reaction vessel through an optical fiber, and the light transmitted through a reaction solution in the reaction vessel is received through the optical fiber as a light receiving element. A fiber light source for guiding light emitted from the light source, wherein the core diameter of the fiber guiding the transmitted light to the light receiving element is larger than the core diameter of the fiber guiding the light emitted from the light source. Is fixed so that the opposite end and the opposite end of the light receiving element that guides the transmitted light to the light receiving element face the exposed core surface, and the end of the fiber protrudes The distance between the opposing exposed core surfaces is set so that the optical path length when measuring the reaction solution concentration offline is divided by or less than the dilution rate in the offline measurement. To, by providing a probe for measuring the concentration of the reaction solution in the reaction vessel is an implementation.
In addition, although the Example of this invention is shown below according to a figure, this invention is not limited to this.
 まず、図1に示すように、一端は分光光度計に用意した光コネクタと同じコネクタであり、もう一端は、直径1.249mm、先端からフランジ4aまでの距離が、4.95mmのジルコニア製フェルールで加工した被覆付き光ファイバであるフェルール(光ファイバ)1(NA=0.21、コア径50μm、被覆径0.9mm、GIマルチモードファイバ)、および、このフェルール先端を貫通できるように貫通穴2を設けた厚さ1mm、10mm角のSUS316の板3を用意する。同図中、前述のとおり4aは、前記フェルール1のフランジであり、4bは、フェルールの主要構成をなすファイバの本体(ウェッブ)である。 First, as shown in FIG. 1, one end is the same connector as the optical connector prepared for the spectrophotometer, the other end is a diameter of 1.249 mm, and the distance from the tip to the flange 4a is 4.95 mm. Ferrule (optical fiber) 1 (NA = 0.21, core diameter 50 μm, coating diameter 0.9 mm, GI multimode fiber) processed with the above, and a through hole so as to be able to penetrate the ferrule tip A SUS316 plate 3 having a thickness of 1 mm and a 10 mm square provided with 2 is prepared. In the figure, as described above, 4a is a flange of the ferrule 1, and 4b is a fiber main body (web) which is a main component of the ferrule.
 そして、図2に示すようにフェルール1をSUS316の板3にフェルールのフランジ4aをストッパとして貫通穴2を通して貫通させたのちに両者を固定したファイバ支持体5を作製する。なお、各図ではフェルールのみを図示しており、被覆付きファイバは図示していない。 Then, as shown in FIG. 2, the ferrule 1 is passed through the plate 3 of SUS316 through the through-hole 2 using the ferrule flange 4a as a stopper, and then the fiber support 5 is fixed. In each figure, only the ferrule is shown, and the coated fiber is not shown.
 前記ファイバ支持体5と同様のファイバ支持体5’を、コア径118μmの被覆付き光ファイバ1’とファイバ支持のための板3を用いて作製する(ファイバ支持体5’を単独では図示せず)。吸光度測定プローブの作製にはこれら2つの支持体5および5’を1組として使用するものである。 A fiber support 5 ′ similar to the fiber support 5 is manufactured using a coated optical fiber 1 ′ having a core diameter of 118 μm and a fiber support plate 3 (the fiber support 5 ′ is not shown alone). ). These two supports 5 and 5 'are used as one set for the production of an absorbance measurement probe.
 次いで、当該ファイバ支持体5、5’を適切な方法で調芯機に把持し、図3に示すように2つのファイバ支持体の光軸を調整する。この際、調芯終了時のファイバ端部間の間隙6の距離が100μmとなるようにする。光部品組み立て機構である調芯機を用いることで、高精度で光軸調整及びファイバ端部間距離の設定が可能である。ファイバ端部間距離を100μmとすることによって1cmのセルを用いて、通常100倍希釈で吸光度測定を行っていた反応液が、無希釈で測定可能となる。なお、NAより求めたファイバからの出射角が12°なので、50μmコアから出射される光の100μm先のビーム径は約100μmとなるが、光ファイバコアの屈折率(1.4~1.6)に比べて、無電解銅めっき液の屈折率が低い場合、受光側の光ファイバのコア径は100μm以下でよい。しかし、反応液の濃度によって屈折率も変化するので、ここではコア径118μmのファイバを適用した。これは液の屈折率2.3以上に相当し、通常、水溶液がこのような屈折率になることはない。 Next, the fiber supports 5 and 5 ′ are held by an aligner by an appropriate method, and the optical axes of the two fiber supports are adjusted as shown in FIG. 3. At this time, the distance of the gap 6 between the fiber ends at the end of the alignment is set to 100 μm. By using a centering machine that is an optical component assembling mechanism, it is possible to adjust the optical axis and set the distance between the fiber ends with high accuracy. By setting the distance between the fiber ends to 100 μm, it is possible to measure the reaction liquid that has been measured for absorbance at a dilution of 100 times using a 1 cm cell without dilution. Since the emission angle from the fiber obtained from NA is 12 °, the beam diameter of 100 μm ahead of the light emitted from the 50 μm core is about 100 μm, but the refractive index of the optical fiber core (1.4 to 1.6). ), The core diameter of the optical fiber on the light receiving side may be 100 μm or less when the refractive index of the electroless copper plating solution is low. However, since the refractive index also changes depending on the concentration of the reaction solution, a fiber having a core diameter of 118 μm is used here. This corresponds to a liquid refractive index of 2.3 or more, and the aqueous solution usually does not have such a refractive index.
 調芯終了後、当該ファイバ支持体5および5’を調芯機で把持した状態のまま、図4に示すように、両支持体を橋渡しするように橋渡し部材7で固定する。これらファイバ支持体5および5’、橋渡し部材7を合わせた構造体が吸光度測定プローブ8となる。橋渡し部材7には厚さ1mmのSUS316の板を用いた。固定の方法としては接着材や、機械的固定、溶接などが適用可能であるが、ここではレーザ溶接にて固定した。接着材使用時には、反応液に侵されない材質であること、機械固定時には、固定時にファイバ支持体同士の位置関係が狂わないように配慮する必要がある。レーザ溶接を適用することで、これらの配慮が不要となる。なお、抵抗溶接も適用可能であるが、支持体や、橋渡し部材に溶接プローブを押し付ける際に支持体同士の位置関係が狂わないように配慮する必要がある。 After completion of the alignment, the fiber supports 5 and 5 'are held by the aligning machine and are fixed by the bridging member 7 so as to bridge both supports as shown in FIG. A structure in which the fiber supports 5 and 5 ′ and the bridging member 7 are combined serves as an absorbance measurement probe 8. As the bridging member 7, a SUS316 plate having a thickness of 1 mm was used. As a fixing method, an adhesive, mechanical fixing, welding, or the like can be applied. Here, fixing is performed by laser welding. When using an adhesive, it is necessary to make sure that the material is not affected by the reaction solution. When fixing the machine, care must be taken so that the positional relationship between the fiber supports does not change during fixing. By applying laser welding, these considerations become unnecessary. Although resistance welding can also be applied, it is necessary to consider that the positional relationship between the supports does not go wrong when the welding probe is pressed against the support or the bridging member.
 固定完了後、分光光度計に吸光度測定プローブ8を取り付け、ブランクでの吸光度測定を行う。ファイバ内での伝送損失や、ファイバ端部でのフレネル反射などがあるので、ブランクにおいても、入力した光すべてが、受光可能なわけではない。 After completion of fixing, the absorbance measuring probe 8 is attached to the spectrophotometer and the absorbance is measured with a blank. Since there are transmission loss in the fiber and Fresnel reflection at the end of the fiber, not all the input light can be received even in the blank.
 このブランク値はプローブの製造バラつきの影響を受けるため、プローブを、個別に測定する。 ∙ Since this blank value is affected by the manufacturing variation of the probe, measure the probe individually.
 これ等実施例に示したプローブを用いて、反応槽内での反応液の濃度測定のための濃度測定システムを構成する。図5にその模式的ブロック図を示す。同図中、9は、反応槽であり、インライン検出する等のために、プローブ8を用いて濃度検出に供するめっき浴である。測定波長の光を発するレーザ光源10と反応液を透過したレーザ光を検出する検出器11、該検出器11からの信号を増幅するアンプ12、レーザ光源の制御と検出器の信号を受け取る制御用PC13からなる。PC13にはあらかじめブランクおよび2種類以上の標準濃度反応液の測定結果を入力し、検量線として保持する。これは、プローブ8が変わる都度に行う。プローブ8のファイバ間は自由空間であるため、反応液中の異物がファイバ間を通過することが考えられることから、アンプ12からPC13へ至る信号経路にはローパスフィルタ14を挿入し、急な信号変化をカットする機構を設ける。また、異物付着や、液劣化による吸光度の定常的な変化に対応するため、PC13の受ける吸光度の上下限を超えた場合に、PC13より警報を発するように構成する。また、測定結果はPC13に蓄積することを通じて、反応槽9の反応液の逐次的な濃度変化を追跡しつつ濃度検出を行うことができる。 Using the probes shown in these examples, a concentration measurement system for measuring the concentration of the reaction solution in the reaction vessel is constructed. FIG. 5 shows a schematic block diagram thereof. In the figure, 9 is a reaction tank, which is a plating bath used for concentration detection using the probe 8 for in-line detection or the like. A laser light source 10 that emits light of a measurement wavelength, a detector 11 that detects laser light that has passed through the reaction liquid, an amplifier 12 that amplifies the signal from the detector 11, a control for the laser light source and a control that receives the detector signal It consists of PC13. Measurement results of a blank and two or more kinds of standard concentration reaction solutions are input in advance to the PC 13 and held as a calibration curve. This is done each time the probe 8 changes. Since the space between the fibers of the probe 8 is free space, it is conceivable that foreign matter in the reaction solution passes between the fibers. Therefore, a low-pass filter 14 is inserted in the signal path from the amplifier 12 to the PC 13 to cause a sudden signal. Provide a mechanism to cut changes. Further, in order to cope with a steady change in absorbance due to foreign matter adhesion or liquid deterioration, the PC 13 is configured to issue an alarm when the upper and lower limits of absorbance received by the PC 13 are exceeded. Further, by accumulating the measurement results in the PC 13, it is possible to detect the concentration while tracking the sequential concentration change of the reaction solution in the reaction tank 9.
 前記した実施例1では反応液のオフラインでの測定における希釈率100倍を想定し、ファイバ端部間の距離6を100μmに設定した。オフラインでの希釈率が低く、1cmの測定セルに対し10倍希釈で測定するような、銅濃度が比較的希薄な反応液の場合、ファイバ端部間距離100μmのプローブを適用した場合、測定される吸光度が低くなるため、分解能の低下が影響される。 In Example 1 described above, the distance 6 between the fiber ends was set to 100 μm, assuming a dilution rate of 100 times in the off-line measurement of the reaction solution. In the case of a reaction solution with a relatively low copper concentration, such as a low dilution factor in the off-line and a 10-fold dilution in a measurement cell of 1 cm, it is measured when a probe with a fiber end-to-end distance of 100 μm is applied. As the absorbance decreases, the resolution is affected.
 そこで、プローブ組立時に設定するファイバ端部間距離を希釈率10倍にそろえて1mmとする。前述したコア径50μmのファイバを適用した場合、受光端でのビーム径は460μmとなる。このため、受光側のファイバのコア径も460μm以上、望ましくは680μm以上(反応液の屈折率2以上に相当)とする。 Therefore, the distance between the fiber ends set at the time of assembling the probe is set to 1 mm with a dilution ratio of 10 times. When the above-described fiber having a core diameter of 50 μm is applied, the beam diameter at the light receiving end is 460 μm. For this reason, the core diameter of the fiber on the light receiving side is also set to 460 μm or more, preferably 680 μm or more (corresponding to a refractive index of 2 or more of the reaction solution).
尚、本発明は、本発明の基本的精神を逸脱しない限り種々の改変をなすことが可能であり、そして、本発明が該改変されたものにも及ぶことは当然である。 The present invention can be variously modified without departing from the basic spirit of the present invention, and the present invention naturally extends to the modified ones.
 本発明は、反応槽内での濃度測定、特に銅めっき液中の銅濃度測定に利用することができ、無電解銅めっき液槽における濃度測定等、斯界における、銅濃度測定に卓越した効用を及ぼすことを期待することができる。 The present invention can be used for concentration measurement in a reaction tank, particularly copper concentration measurement in a copper plating solution, and has excellent utility for copper concentration measurement in this field, such as concentration measurement in an electroless copper plating solution tank. You can expect to have an effect.
 1   フェルール
 2   板3に設けたフェルール先端が貫通する貫通穴
 3   板
 4a  フェルールのフランジ
 4b  ファイバの本体部(ウェッブ)
 4a’ フェルールのフランジ
 4b’ ファイバの本体部(ウェッブ)
 5   ファイバ支持体
 5’  ファイバ支持体
 6   ファイバ端部間間隙
 7   橋渡し部材
 8   吸光度測定プローブ
 9   反応槽
 10  光源
 11  検出器
 12  アンプ
 13  制御用PC
 14  ローパスフィルタ
DESCRIPTION OF SYMBOLS 1 Ferrule 2 Through-hole which the ferrule tip provided in the board 3 penetrates 3 Board 4a Ferrule flange 4b Fiber main-body part (web)
4a 'Ferrule flange 4b' Fiber body (web)
DESCRIPTION OF SYMBOLS 5 Fiber support 5 'Fiber support 6 Gap between fiber ends 7 Bridging member 8 Absorbance measurement probe 9 Reaction tank 10 Light source 11 Detector 12 Amplifier 13 Control PC
14 Low-pass filter

Claims (6)

  1.  インライン式の吸光度測定プローブであり、光源から発した光が光ファイバを介して反応槽に導光され、反応槽内部の反応液を透過した当該光を光ファイバを介して受光素子に導光するプローブにおいて、光源から発する光を導光するファイバのコア径に対し、受光素子へ透過光を導光するファイバのコア径が大きく、光源から発する光を導光するファイバの光源とは反対側の端部、および受光素子へ透過光を導光する受光素子とは反対側の端部が各々露出したコア面を対向するように、かつファイバ先端が突出するように固定されており、対向する露出したコア面間の距離を、当該反応液濃度をオフラインで測定する際の光路長を当該オフライン測定における希釈率で割った値あるいはそれ以下となるように設定したことを特徴とする、反応槽内で反応液の濃度を測定するためのプローブ。 An in-line absorbance measurement probe, light emitted from a light source is guided to a reaction vessel via an optical fiber, and the light transmitted through the reaction liquid inside the reaction vessel is guided to a light receiving element via the optical fiber. In the probe, the core diameter of the fiber that guides the transmitted light to the light receiving element is larger than the core diameter of the fiber that guides the light emitted from the light source, and is opposite to the light source of the fiber that guides the light emitted from the light source. The end and the opposite end of the light receiving element that guides the transmitted light to the light receiving element are fixed so that the exposed core surface faces each other and the fiber tip protrudes, and the opposite exposure The distance between the core surfaces was set to be equal to or less than the value obtained by dividing the optical path length when measuring the reaction solution concentration offline by the dilution rate in the offline measurement, Probe for measuring the concentration of the reaction solution within 応槽.
  2.  上記光源から発する光を導光する光ファイバのうち、接液部が露出したコアを含む端部において、その端部が当該反応槽内の液によって侵されない材質でできたフェルールによって保護されていることを特徴とする、請求項1に記載の反応槽内で反応液の濃度を測定するためのプローブ。 Of the optical fiber that guides the light emitted from the light source, at the end including the core where the wetted part is exposed, the end is protected by a ferrule made of a material that is not affected by the liquid in the reaction vessel. The probe for measuring the density | concentration of the reaction liquid in the reaction tank of Claim 1 characterized by the above-mentioned.
  3.  上記光源から発する光を導光する光ファイバのコア径が62.5μm以下、さらに言えば50μm以下であり、上記受光素子へ透過光を導光する光ファイバのコア径が100μm以上、さらに言えば200μm以上であることを特徴とする、請求項1または請求項2に記載の反応槽内で反応液の濃度を測定するためのプローブ。 The core diameter of the optical fiber that guides the light emitted from the light source is 62.5 μm or less, more specifically 50 μm or less, and the core diameter of the optical fiber that guides the transmitted light to the light receiving element is 100 μm or more. The probe for measuring the concentration of the reaction solution in the reaction tank according to claim 1, wherein the probe is 200 μm or more.
  4.  上記光源から発する光を導光する光ファイバと、上記受光素子へ透過光を導光する光ファイバの各々露出するように対向したコア面同士の距離が1mm以下、さらに言えば200μm以下であることを特徴とする、請求項1または請求項2または請求項3に記載の反応槽内で反応液の濃度を測定するためのプローブ。 The distance between the optical fiber that guides the light emitted from the light source and the optical fiber that guides the transmitted light to the light receiving element and the core surfaces facing each other is 1 mm or less, and more specifically, 200 μm or less. The probe for measuring the density | concentration of the reaction liquid in the reaction tank of Claim 1 or Claim 2 or Claim 3 characterized by these.
  5.  上記光源から発する光を導光する光ファイバと、上記受光素子へ透過光を導光する光ファイバの各々の露出したコア面を対向するようにかつファイバ先端が突出するように固定されており、対向する露出したコア面間を上記所定の距離で固定するためのプローブが、光通信部材の組み立て方法で組み立てられたことを特徴とする、請求項1または請求項2または請求項3または請求項4に記載の反応槽内で反応液の濃度を測定するためのプローブ。 The optical fiber that guides the light emitted from the light source and the optical fiber that guides the transmitted light to the light receiving element are fixed so as to face each exposed core surface and so that the fiber tip protrudes, The probe for fixing between the exposed core surfaces facing each other at the predetermined distance is assembled by an optical communication member assembling method. 5. A probe for measuring the concentration of the reaction solution in the reaction vessel according to 4.
  6.  請求項1または請求項2または請求項3または請求項4または請求項5に記載の反応槽内で反応液の濃度を測定するためのプローブを用いて、種々の濃度の反応液を測定して作成した検量線を制御用装置に保持し、上記濃度測定のためのプローブで上記反応液をインラインで測定した吸光度の測定結果に対し、当該制御用装置に保持した検量線を参照することによってリアルタイムで濃度に換算することを特徴とする反応槽内での反応液の濃度測定のための濃度測定システム。 Using the probe for measuring the concentration of the reaction solution in the reaction tank according to claim 1, claim 2, claim 3, claim 4 or claim 5, the reaction solution of various concentrations is measured. The prepared calibration curve is held in a control device, and the absorbance measurement result obtained by measuring the reaction solution in-line with the probe for concentration measurement is referred to in real time by referring to the calibration curve held in the control device. A concentration measurement system for measuring the concentration of a reaction solution in a reaction tank, wherein the concentration is converted into a concentration in a reaction tank.
PCT/JP2014/080440 2014-11-18 2014-11-18 Inline concentration measurement probe and concentration measurement system WO2016079797A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/080440 WO2016079797A1 (en) 2014-11-18 2014-11-18 Inline concentration measurement probe and concentration measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/080440 WO2016079797A1 (en) 2014-11-18 2014-11-18 Inline concentration measurement probe and concentration measurement system

Publications (1)

Publication Number Publication Date
WO2016079797A1 true WO2016079797A1 (en) 2016-05-26

Family

ID=56013413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080440 WO2016079797A1 (en) 2014-11-18 2014-11-18 Inline concentration measurement probe and concentration measurement system

Country Status (1)

Country Link
WO (1) WO2016079797A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167449A (en) * 1992-11-30 1994-06-14 General Signal Japan Kk Method and equipment for controlling concentration
JP2003508748A (en) * 1999-08-30 2003-03-04 ユーロ−セルティーク,エス.エイ. In situ method for measuring release of a substance from a dosage form
JP2013518278A (en) * 2010-01-28 2013-05-20 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Optical flow cell detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167449A (en) * 1992-11-30 1994-06-14 General Signal Japan Kk Method and equipment for controlling concentration
JP2003508748A (en) * 1999-08-30 2003-03-04 ユーロ−セルティーク,エス.エイ. In situ method for measuring release of a substance from a dosage form
JP2013518278A (en) * 2010-01-28 2013-05-20 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Optical flow cell detector

Similar Documents

Publication Publication Date Title
CN101929955B (en) Optical fiber Bragg grating refractive index sensor
JP5621837B2 (en) Electric field / magnetic field probe
EP3067686B1 (en) Transmission probe, system and immersion transmission measurement method
US20080144015A1 (en) Optical characteristic inspection method, optical characteristic inspection apparatus, and optical characteristic inspection system for optical fiber device
JPH03120443A (en) Convergent light optoroad
CN103364370A (en) Annular core optical fiber sensor based on annular chamber decline
JP4976113B2 (en) Optical waveguide inspection method and inspection apparatus
Sinchenko et al. The effect of the cladding refractive index on an optical fiber evanescent-wave sensor
CN102175645B (en) Polarized light detection-based highly-sensitive photonic crystal fiber refractive index sensor
CN116559117A (en) Probe type optical fiber seawater salinity sensor based on FP interference and manufacturing method thereof
JP2009250825A (en) Probe for absorbance measurement, and absorptiometer
CN104502292A (en) Light path system of trace gas sensor and air chamber
WO2016079797A1 (en) Inline concentration measurement probe and concentration measurement system
CN109406408B (en) Optical fiber liquid analysis device
JP2015078930A (en) In-line type concentration measurement probe and concentration measurement system
Dress et al. Increasing the accuracy of liquid analysis and p H-value control using a liquid-core waveguide
TWI539146B (en) On - line concentration determination probe and concentration determination system
JP7117869B2 (en) Analysis equipment
CA2843536C (en) Head for an evanescent-wave fibre-optic sensor
CN217688546U (en) Optical fiber gas sensor and optical fiber gas detection device
Selvas-Aguilar et al. Noncontact optical fiber sensor for measuring the refractive index of liquids
Chen et al. Light-sheet skew-ray enhanced pump-absorption for sensing
JP2004205415A (en) Photometric analysis measuring probe apparatus, solution concentration monitoring method and spectroscopic analysis apparatus
Yang et al. TFBG Side Modes and Fresnel Reflection-Based Sensing System for Solution Concentration Measurement
Li et al. Highly sensitive differential fiber-optic SPR sensor in telecom band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14906582

Country of ref document: EP

Kind code of ref document: A1