WO2016078421A1 - 非能动安全冷却*** - Google Patents

非能动安全冷却*** Download PDF

Info

Publication number
WO2016078421A1
WO2016078421A1 PCT/CN2015/083238 CN2015083238W WO2016078421A1 WO 2016078421 A1 WO2016078421 A1 WO 2016078421A1 CN 2015083238 W CN2015083238 W CN 2015083238W WO 2016078421 A1 WO2016078421 A1 WO 2016078421A1
Authority
WO
WIPO (PCT)
Prior art keywords
passive
containment
tank
cooling system
safety
Prior art date
Application number
PCT/CN2015/083238
Other languages
English (en)
French (fr)
Inventor
傅先刚
曹建华
林维青
蒋晓华
沈永刚
卢向晖
卢冬华
杨江
Original Assignee
中科华核电技术研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科华核电技术研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中科华核电技术研究院有限公司
Priority to US15/527,906 priority Critical patent/US20180350472A1/en
Priority to GB1619951.5A priority patent/GB2540708A/en
Publication of WO2016078421A1 publication Critical patent/WO2016078421A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/004Pressure suppression
    • G21C9/012Pressure suppression by thermal accumulation or by steam condensation, e.g. ice condensers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • G21C15/182Emergency cooling arrangements; Removing shut-down heat comprising powered means, e.g. pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the field of nuclear power plant reactor safety equipment, in particular to a non-kinetic energy safety cooling system suitable for concrete containment.
  • the technical solution of the present invention is to provide a passive safety cooling system including a water supply tank, an advanced safety injection tank, an internal displacement water tank, a pressure relief system, a passive emergency water supply system, and a passive safety shell.
  • a cooling system, the water replenishing tank, the advanced safety tank, the inner displacement water tank, and the pressure relief system are all disposed in the safety shell and respectively communicate with the pressure vessel disposed in the safety shell, the non- The active emergency water supply system is sealingly penetrated through the safety enclosure and corresponding to a steam generator in the safety enclosure, the passive emergency water supply system is configured to realize water supply backflow and heat dissipation of the steam generator, the passive A containment cooling system sealingly penetrates the containment to direct heat within the containment out of the containment.
  • the water supply tank, the advanced safety tank, and the inner displacement water tank are all connected to the pressure vessel through an injection line.
  • the water supply tank is higher than the pressure vessel and one end is connected to the injection pipeline through a first pipeline, and the first pipeline is provided with a first valve.
  • the concentrated boron water in the water supply tank is injected into the pressure vessel through the first pipeline and the injection pipeline by gravity.
  • the other end of the water supply tank communicates with the cold pipe section of the pressure vessel through a pressure equalization line. Due to the function of the pressure balance pipeline, the concentrated boron water in the water supply tank is injected into the pressure vessel by gravity, and the coolant of the cold pipe section enters the water supply tank through the pressure balance pipeline.
  • the advanced safety tank is connected to the injection line through a second line, and the second line is provided with a second valve.
  • the hydraulic components in the advanced safety chamber enable rapid submersion of the lower chamber of the pressure vessel and flooding of the initial section of the core, while also providing a pile for a longer period of time.
  • the core is submerged.
  • a third valve is disposed on the injection line.
  • the advanced safety chamber has a certain initial pressure accumulation.
  • the inner displacement water tank is higher than the pressure vessel.
  • the internal displacement tank uses its relatively high position to achieve passive hydration of the primary circuit.
  • the water replenishing tank, the advanced safety tank, and the inner displacement water tank each have concentrated boron water.
  • the pressure relief system includes a pressure relief line and a pressure relief valve disposed on the pressure relief line, one end of the pressure relief line communicates with a voltage regulator or/and the pressure within the containment a heat pipe section of the container, the other end of the pressure relief line communicating with the inner space of the containment or the inner displacement water tank.
  • the pressure relief system reduces the pressure of the primary circuit sufficiently.
  • the passive emergency water supply system comprises a steam line, a water supply line and a steam condenser disposed outside the containment, the steam condenser being higher than a steam generator in the containment a steam line sealingly penetrating the containment and connected to an outlet of the steam generator and an inlet of the steam condenser, the feed water line sealingly penetrating the containment and connected to an outlet of the steam condenser And the inlet of the steam generator.
  • the steam in the steam generator reaches the steam condenser through the steam line, condenses into water through heat exchange, and then flows back to the steam generator through the water supply line to realize steam generation.
  • the feed water return and heat transfer function is used to conduct heat to the final heat sink of the atmosphere.
  • the steam condenser is housed in a condensate tank disposed outside the containment vessel and submerged below the level of the cooling water in the condensate tank.
  • the steam condenser is housed in an air cooling tower disposed outside the containment vessel.
  • a fourth valve is disposed on the steam line, and a fifth valve is disposed on the water supply pipe.
  • the passive containment cooling system comprises an inner heat exchanger, an outer heat exchanger, an ascending pipeline, a descending duct and a cooling medium
  • the inner heat exchanger is disposed in the safety shell
  • the outer heat exchanger a heat exchanger disposed outside the containment vessel and above the inner heat exchanger
  • the riser pipe sealingly penetrating through the containment vessel and communicating with an outlet of the inner heat exchanger and an inlet of the outer heat exchanger
  • the descending conduit sealingly penetrates the containment vessel and communicates with an outlet of the outer heat exchanger and an inlet of the inner heat exchanger, the cooling medium being in the inner heat exchanger, the ascending conduit, the
  • the outer heat exchanger and the descending pipe form a circulation passage.
  • the outer heat exchanger is housed in a cooling pool outside the containment.
  • the descending pipe is provided with a sixth valve located outside the safety casing.
  • the passive safety cooling system of the present invention is provided with a water supply tank, an advanced safety injection tank, an internal displacement water tank, and a pressure relief system respectively connected to the pressure vessel, different stages after the accident
  • the section, the water tank, the advanced safety tank and the internal displacement tank automatically inject the pressure vessel respectively, and the pressure relief system automatically depressurizes the reactor primary circuit
  • the passive emergency water supply system sealingly penetrates the safety shell and corresponds to the steam generator Setting, under the design basis or super design base accident conditions, the passive emergency water supply system will be automatically started to realize the return flow and heat transfer to the steam generator to cool the reactor and bring it into a safe shutdown state
  • passive safety The shell cooling system is sealed through the containment, and the cooling medium in the passive containment cooling system circulates inside to transfer the heat in the containment to the atmosphere, and the accident can be realized stably, reliably and reliably without relying on the active equipment.
  • the invention can effectively perform safety functions such as core reactivity control, waste heat derivation and radioactive material containment under the accident without relying on the intervention of the active system and the operator, and ensure that the core can be effectively cooled for a long time. Keep in a safe shutdown state and improve the safety of nuclear power plants.
  • the active system and the operator are not required, which greatly reduces the number of equipment, thereby reducing the cost of equipment purchase, installation, operation and maintenance, and correspondingly reducing the construction cost and operation and maintenance cost of the nuclear power plant.
  • Figure 1 is a schematic view showing the structure of a passive safety cooling system of the present invention.
  • FIG. 2 is a schematic view showing the state of use of the passive safety cooling system of the present invention.
  • the passive safety cooling system 100 provided by the present invention is mainly applicable to a pressurized water reactor nuclear power plant having a concrete containment 200 of 3 to 2 million kilowatts (electric power) level, but is not limited thereto.
  • the concrete containment vessel 200 is provided with a pressure vessel 210 and a steam generator 220.
  • the pressure vessel 210 and the steam generator 220 are connected by a pipeline, and the pipeline forms a heat pipe section 230 and a cold pipe section 240.
  • a primary circuit pump 250 is also provided in the cold pipe section 240.
  • the heat pipe section 230, the cold pipe section 240, the main pump 250, and the like constitute a loop.
  • the nuclear power plant has more than one loop, and only one loop is shown in FIG. 1 and FIG.
  • the huge heat generated by the primary reactor core heats the coolant, and the heated coolant enters the heat transfer tube in the steam generator 220 through the heat pipe section 230, and transfers the heat energy to the heat transfer pipe through the pipe wall.
  • the second circuit cooling water, the heat releasing coolant is passed through the main pump 250, The cold pipe section 240 is returned to the core for reheating.
  • the passive safety cooling system 100 of the present invention can effectively perform safety functions such as core reactivity control, waste heat derivation and radioactive material containment under accident.
  • the utility model comprises at least one water supply tank 110, at least one advanced safety tank 120, an inner displacement water tank 130, a pressure relief system 140, at least one passive emergency water supply system 150 and at least one passive containment cooling system 160;
  • the water supply tank 110, the advanced safety tank 120, the internal replacement water tank 130, and the pressure relief system 140 are all disposed in the containment 200 and respectively communicate with the pressure vessel 210 disposed in the containment 200, and the passive emergency water supply system 150 is sealed.
  • the passive emergency water supply system 150 is used to implement the feed water return and heat transfer of the steam generator 220, and the passive containment cooling system 160 is sealingly penetrated.
  • the containment 200 removes heat from the containment 200 out of the containment 200.
  • the water supply tank 110, the advanced safety tank 120, and the internal replacement water tank 130 are all connected to the pressure vessel 210 through an injection line 131.
  • the position of the water supply tank 110 is higher than the position of the pressure vessel 210, and the lower end of the water supply tank 110 is connected to the injection line 131 through the first line 111, and the first line 111 is provided with a first valve 112 for hydrating
  • the upper end of the tank 110 is connected to the cold pipe section 240 through a pressure equalization line 113, and the water supply tank 110 has concentrated boron water therein.
  • the first valve 112 is triggered to open according to the protection signal, and the inside of the water supply tank 110 is thick due to the action of the pressure balance line 113.
  • the boron water is injected into the pressure vessel 210 by gravity through the first line 111 and the injection line 131; the coolant of the cold tube section 240 enters the water supply tank 110 through the pressure equalization line 113.
  • the advanced safety tank 120 communicates with the injection line 131 through the second pipeline 121 , and the second pipeline 121 is provided with a second valve 122 .
  • the advanced safety tank 120 has concentrated boron water and passes through The nitrogen is stored under pressure to have a certain initial pressure accumulation therein.
  • the second valve 122 is triggered to open according to the protection signal. Since the advanced safety tank 120 maintains a certain pressure accumulation in advance, the concentrated boron water therein passes through the second pipeline 121 and is injected. Line 131 is automatically injected into the pressure vessel In 210, water injection into the core is achieved.
  • the advanced safety injection tank 120 of the present invention can realize the rapid flooding of the lower chamber of the pressure vessel 210 and the core after the primary water loss accident (LOCA) is realized by the hydraulic components therein. Submerged in the descending section, while also providing submerged cores for a longer period of time.
  • LOCA primary water loss accident
  • the inner displacement water tank 130 is higher than the pressure vessel 210, one end of the injection line 131 is connected to the bottom of the inner displacement water tank 130, and the other end is connected to the pressure vessel 210, and the injection line 131 is provided with a first
  • the three valve 132 has a concentrated boron water in the inner displacement water tank 130.
  • the internal displacement tank 130 utilizes its relatively high position to achieve passive hydration of the primary circuit in the event that the primary circuit is fully depressurized.
  • the pressure relief system 140 includes a pressure relief line 141 and a pressure relief valve 142 disposed on the pressure relief line 141.
  • One end of the pressure relief line 141 communicates with a regulator within the containment vessel 200 or/and a heat pipe section 230 of the pressure vessel 210.
  • the other end of the pressure relief line 141 communicates with the internal space of the containment vessel 200 or the internal displacement tank 130.
  • one end of the pressure relief line 141 communicates with the heat pipe section 230 of the pressure vessel 210, and the other end extends below the liquid level of the inner displacement water tank 130.
  • the pressure relief valve 142 is triggered to open according to a certain signal, and the pressure relief line 141 can sufficiently reduce the pressure of the primary circuit.
  • the automatic pressure relief system 140 can employ a component step relief design.
  • the passive emergency water supply system 150 is disposed corresponding to the steam generator 220, and a plurality of passive emergency water supply systems 150 may be disposed, and each of the passive emergency water supply systems 150 is disposed corresponding to a steam generator 220. Only one passive emergency water supply system 150 may be provided, which is provided corresponding to the plurality of steam generators 220.
  • each set of passive emergency water supply system 150 corresponds to a steam generator 220.
  • the passive emergency water supply system 150 includes a steam line 151, a steam condenser 152, and a water supply line 153.
  • the steam condenser 152 is disposed outside the containment vessel 200 and higher than the steam generator 220 in the containment vessel 200, and the steam is condensed.
  • the 152 is housed in the condensate tank 154 disposed outside the containment vessel 200 and submerged below the level of the cooling water in the condensate tank 154; the steam line 151 sealingly penetrates the containment vessel 200 and is connected to the steam generator 220 The outlet and the inlet of the steam condenser 152, the feed water line 153 sealingly penetrates the containment vessel 200 and is connected to the outlet of the steam condenser 152 and the inlet of the steam generator 220.
  • the steam line 151 is further provided with a fourth valve 155, the fourth valve 155 is located in the safety shell 200; the water supply line 153 is further provided with a fifth valve 156, the fifth valve 156 is located within the containment 200 or outer.
  • the passive emergency water supply system 150 can be automatically started when it cannot be put into operation for a long time.
  • the fourth valve 155 and the fifth valve 156 are triggered to open according to a certain signal, and the steam in the steam generator 220 reaches the steam condenser 152 through the steam line 151, is condensed into water through heat exchange, and then flows through the water supply pipe 153.
  • the feed water return and heat transfer of the steam generator 220 is effected, thereby directing heat to the final heat sink of the atmospheric environment outside the containment vessel 200.
  • the cooling water in the condensate tank 154 is mainly evaporated to guide the heat to the atmosphere.
  • the heat is led out by air cooling to cool the reactor and bring it into a safe shutdown state.
  • the steam condenser 152 is not limited to being immersed in the cooling water for cooling, and may be cooled by other means, for example, the steam condenser 152 is disposed in the air cooling tower outside the containment 200, and is cooled by air cooling.
  • the above effects can be achieved, which are well known to those skilled in the art.
  • the passive containment cooling system 160 includes an inner heat exchanger 161 , an ascending pipe 162 , an outer heat exchanger 163 , a descending pipe 164 , and a cooling medium.
  • the inner heat exchanger 161 is disposed on the safety shell 200 .
  • the inner and outer heat exchangers 163 are disposed outside the containment 200 and higher than the inner heat exchanger 161.
  • the riser pipe 162 sealingly penetrates the containment 200 and communicates with the outlet of the inner heat exchanger 161 and the inlet of the outer heat exchanger 163.
  • the descending duct 164 sealingly penetrates the containment vessel 200 and communicates with the outlet of the outer heat exchanger 163 and the inlet of the inner heat exchanger 161, and the cooling medium is cooled in the inner heat exchanger 161, the riser pipe 162, the outer heat exchanger 163, Flow occurs in the circulation passage formed by the conduit 164.
  • the inlet of the inner heat exchanger 161 is located at the lower end
  • the outlet of the inner heat exchanger 161 is located at the upper end
  • the outer heat exchanger 163 is housed in the cooling pool 165 outside the entire casing
  • the inlet of the outer heat exchanger 163 is located at the upper end.
  • the outlet of the outer heat exchanger 163 is located at the lower end.
  • a sixth valve 166 located outside the containment vessel 200 is also provided on the descending duct 164.
  • the passive containment cooling system 160 is activated according to the signal, and the sixth valve 166 is opened, and the cooling medium absorbs the heat in the containment 200 in the inner heat exchanger 161, and the heat rises to the outer heat exchanger 163 to pass the condensation.
  • the cooling medium condenses naturally and flows downward due to the increase in density. Therefore, the heat in the containment vessel 200 is passively led out of the containment 200 by the flow of the cooling medium in the circulation passage, thereby realizing the long-term after the accident. The temperature drop in the containment 200 is reduced.
  • the cooling medium is cooling water that maintains a certain degree of vacuum.
  • it is not limited to water, but may be other media, but the medium needs to ensure that it can undergo a phase change under working conditions.
  • multiple sets of passive containment cooling systems 160 may be disposed along the circumference of the containment vessel 200.
  • the passive safety cooling system 100 does not start but is in a usable state.
  • the passive safety cooling system 100 is automatically started according to the protection signal.
  • the first valve 112 is triggered to open according to the protection signal, and the water is replenished due to the action of the pressure balance line 113.
  • the concentrated boron water in the tank 110 is automatically injected into the pressure vessel 210 through the first line 111 and the injection line 131 by gravity.
  • the second valve 122 When the primary circuit pressure of the nuclear power plant is reduced to a certain extent, the second valve 122 is triggered to open according to the protection signal, and the advanced safety tank 120 maintains a certain pressure accumulation in advance, so that the concentrated boron water therein can pass through the second pipeline 121 and inject.
  • the line 131 is automatically injected into the pressure vessel 210 to effect hydration of the core.
  • the pressure relief valve 142 When the primary circuit coolant of the nuclear power plant is reduced to a certain extent, the pressure relief valve 142 is triggered to open according to a certain signal, and the pressure relief line 141 can quickly relieve the pressure of the primary circuit, so that the pressure of the primary circuit can be sufficiently reduced.
  • the third valve 132 on the injection line 131 is triggered to open according to a certain signal, and the concentrated boron water in the internal displacement water tank 130 is directly injected into the pressure vessel 210 through the injection line 131 to realize passive hydration of the primary circuit.
  • the passive emergency water supply system 150 can be automatically started, that is, the fourth valve 155 and the fifth valve 156 are triggered to open according to a certain signal, and the steam
  • the steam in the generator 220 reaches the steam condenser 152 through the steam line 151, is condensed into water through heat exchange, and then flows back to the steam generator 220 through the feed water line 153 to realize the feed water return and heat transfer of the steam generator 220;
  • the steam condenser 152 exchanges heat, the heat heats the cooling water in the condensate tank 154.
  • the cooling water in the condensate tank 154 is mainly evaporated to guide the heat to the final heat sink of the atmospheric environment, and the air is cooled later in the accident. Heat is removed to cool the reactor and bring it into a safe shutdown state, as shown in Figure 2.
  • the passive containment cooling system 160 is triggered according to a certain signal.
  • the sixth valve 166 is triggered to open, and the cooling medium absorbs heat in the containment 200 in the inner heat exchanger 161.
  • the cooling medium After the cooling medium is heated, it enters the outer heat exchanger 163 through the rising pipe 162, and heat is condensed in the outer heat exchanger 163.
  • the condensed cooling medium Upon release, the condensed cooling medium naturally flows downward to return to the inner heat exchanger 161 through the descending conduit 164 due to the increased density.
  • the heat released by the condensation of the external heat exchanger 163 heats the cooling water in the cooling pool 165, thereby passively discharging the heat in the containment 200 out of the containment 200, thereby realizing the cooling and lowering of the containment 200 in the long-term after the accident. Pressure.
  • the passive safety cooling system 100 of the present invention is provided with a water supply tank 110, an advanced safety tank 120, an internal displacement water tank 130, and a pressure relief system 140 that respectively connect the pressure vessel 210, the water tank 110, at different stages after the accident.
  • the advanced safety tank 120 and the internal displacement water tank 130 respectively automatically inject the pressure vessel 210, and the pressure relief system 140 automatically depressurizes the reactor primary circuit; the passive emergency water supply system 150 sealingly penetrates the containment 200 and corresponds to steam generation.
  • the device 220 is configured to automatically start the passive emergency water supply system 150 under the design basis or the super design basis accident condition, and realize the water supply return and heat release to the steam generator 220 to cool the reactor and bring it into a safe shutdown state.
  • the passive containment cooling system 160 sealingly penetrates the containment 200, and the cooling medium in the passive containment cooling system 160 circulates inside thereof to transfer the heat in the containment 200 to the atmosphere without relying on the active equipment.
  • the function of deriving waste heat in the containment 200 under the accident is realized in a long-term, stable and reliable manner. Therefore, the invention can effectively perform safety functions such as core reactivity control, waste heat derivation and radioactive material containment under the accident without relying on the intervention of the active system and the operator, and ensure that the core can be effectively cooled for a long time. Keep in a safe shutdown state and improve the safety of nuclear power plants. Without needing Dynamic systems and operators greatly reduce the number of equipment, thus reducing the cost of equipment purchase, installation, operation and maintenance, and correspondingly reduce the construction cost and operation and maintenance costs of nuclear power plants.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一种非能动安全冷却***,包括补水箱(110)、先进安注箱(120)、内置换料水箱(130)、泄压***(140)、非能动应急给水***(150)及非能动安全壳冷却***(160),补水箱(110)、先进安注箱(120)、内置换料水箱(130)、泄压***(140)均设于安全壳(200)内并分别连通压力容器(210),非能动应急给水***(150)密封地贯穿安全壳(200)并对应安全壳(200)内的蒸汽发生器(220)设置用于实现蒸汽发生器(220)的给水回流及热量导出,非能动安全壳冷却***(160)密封地贯穿安全壳(200)以将安全壳(200)内的热量导出安全壳(200)外。该***不需要依靠能动***及操纵员的干预,即可有效执行事故下堆芯反应性控制、余热导出和放射性物质包容等安全功能,保证堆芯能得到有效冷却并保持在安全停堆状态,提高核电站的安全性,同时大大减少核电厂的建造成本和运维费用。

Description

非能动安全冷却*** 技术领域
本发明涉及核电站反应堆安全设备领域,尤其涉及一种适用于混凝土安全壳的非动能安全冷却***。
背景技术
现役的压水堆核电站,安全壳广泛采用混凝土结构,由于混凝土本身的导热性能很差,且壁厚较厚,因此在事故后,不可能依靠混凝土安全壳本身来将壳内的热量迅速有效地排出至大气环境中。为此,一些核电站设置了能动的余热排出***来实现堆芯余热的排出,但这些能动***在发生全场断电等工况下需依赖外部动力,例如依赖昂贵的应急柴油机、整套能动的应急给水***及整套能动的安全注入***等,因此大大增加了设备数量,由此增加了设备购买、安装、运行和维修等的费用,相应增加核电厂的建造成本和运维费用。
为此,在新一代反应堆中,提出安全壳非能动余热排出的方法。其中一种方式是建造钢制安全壳,并在钢制安全壳的顶部设置水箱及喷淋***,在反应堆事故发生后,通过开启喷淋***的阀门,使水箱内的水布洒到钢制安全壳的外部,通过蒸发或对流带走安全壳内的热量,因此,安全壳外部钢制壁面的水膜对其换热能力至关重要,但水膜能否有效的形成一定规模在业内一直倍受质疑,所以这种方式不仅建造成本高而且安全性能也一直倍受质疑。再者,现有的非能动余热排出***,在任何事故状态下,都只能将堆芯热量带到安全壳内的内置换料水箱,而不能直接将热量带到安全壳外。
因此,有必要提供一种能够长期、稳定、可靠地将热量导出至安全壳外、并能降低运维成本的非动能冷却***,以解决上述现有技术的不足。
发明内容
本发明的目的在于提供一种能够长期、稳定、可靠地将热量导出至安全壳外、并能降低运维成本的非动能安全冷却***。
为实现上述目的,本发明的技术方案为:提供一种非能动安全冷却***,其包括补水箱、先进安注箱、内置换料水箱、泄压***、非能动应急给水***及非能动安全壳冷却***,所述补水箱、所述先进安注箱、所述内置换料水箱、所述泄压***均设于安全壳内并分别连通设于所述安全壳内的压力容器,所述非能动应急给水***密封地贯穿所述安全壳并对应所述安全壳内的蒸汽发生器设置,所述非能动应急给水***用于实现所述蒸汽发生器的给水回流及热量导出,所述非能动安全壳冷却***密封地贯穿所述安全壳以将所述安全壳内的热量导出所述安全壳外。
较佳地,所述补水箱、所述先进安注箱、所述内置换料水箱均通过一注入管线连通所述压力容器。
较佳地,所述补水箱高于所述压力容器且一端通过第一管路连通所述注入管线,且所述第一管路上设有第一阀门。当核电厂发生破口类失去冷却水的事故或其他导致反应堆一回路冷却剂质量减少的事故后,补水箱内的浓硼水依靠重力通过第一管路、注入管线注入到压力容器内。
较佳地,所述补水箱的另一端通过压力平衡管线连通所述压力容器的冷管段。由于压力平衡管线的作用,补水箱内的浓硼水依靠重力注入压力容器内,冷管段的冷却剂通过压力平衡管线进入补水箱。
较佳地,所述先进安注箱通过第二管路连通所述注入管线,且所述第二管路上设有第二阀门。当一回路发生失水事故(LOCA)后,先进安注箱内的水力学部件使其实现压力容器下腔室的快速淹没以及堆芯初始段的淹没,同时还提供后续较长时间段内堆芯的淹没。
较佳地,所述注入管线上设有第三阀门。
较佳地,所述先进安注箱内具有一定初始蓄压。
较佳地,所述内置换料水箱高于所述压力容器。丧失冷却剂事故的后期,在一回路充分泄压的情况下,内置换料水箱利用其相对高位的布置,实现对一回路的非能动补水。
较佳地,所述补水箱、所述先进安注箱、所述内置换料水箱内均具有浓硼水。
较佳地,所述泄压***包括泄压管线及设于所述泄压管线上的泄压阀,所述泄压管线的一端连通所述安全壳内的稳压器或/和所述压力容器的热管段,所述泄压管线的另一端连通所述安全壳的内部空间或所述内置换料水箱。当核电厂一回路冷却剂减少到一定程度时,泄压***使一回路的压力得到充分降低。
较佳地,所述非能动应急给水***包括蒸汽管路、给水管路及设于所述安全壳外的蒸汽冷凝器,所述蒸汽冷凝器高于所述安全壳内的蒸汽发生器,所述蒸汽管路密封地贯穿安全壳并连接于所述蒸汽发生器的出口及所述蒸汽冷凝器的入口,所述给水管路密封地贯穿所述安全壳并连接于所述蒸汽冷凝器的出口及所述蒸汽发生器的入口。在设计基准事故或超设计基准事故工况下,蒸汽发生器内的蒸汽通过蒸汽管路到达蒸汽冷凝器,经过换热冷凝成水,再经过给水管路流回至蒸汽发生器,实现蒸汽发生器给水回流和热量导出功能,从而将热量导出至大气环境最终热阱。
较佳地,所述蒸汽冷凝器容置于所述安全壳外设置的冷凝水箱内并淹没于所述冷凝水箱内的冷却水的液面以下。
较佳地,所述蒸汽冷凝器容置于所述安全壳外设置的空冷塔内。
较佳地,所述蒸汽管路上设有第四阀门,所述给水管路上设有第五阀门。
较佳地,所述非能动安全壳冷却***包括内换热器、外换热器、上升管道、下降管道及冷却介质,所述内换热器设于所述安全壳内,所述外换热器设于所述安全壳外并高于所述内换热器,所述上升管道密封地贯穿所述安全壳并连通所述内换热器的出口及所述外换热器的入口,所述下降管道密封地贯穿所述安全壳并连通所述外换热器的出口及所述内换热器的入口,所述冷却介质在所述内换热器、所述上升管道、所述外换热器、所述下降管道形成的循环通道内流动。事故后,通过冷却介质在循环通道内的流动将安全壳内的热量非能动地导出安全壳外,实现事故后长期阶段安全壳内的降温降压。
较佳地,所述外换热器容置于所述安全壳外的冷却水池内。
较佳地,所述下降管道上设有位于所述安全壳外的第六阀门。
与现有技术相比,由于本发明的非能动安全冷却***,设有分别连通压力容器的补水箱、先进安注箱、内置换料水箱、泄压***,因此事故后的不同阶 段,补水箱、先进安注箱、内置换料水箱分别对压力容器进行自动注入,同时泄压***自动对反应堆一回路进行降压;非能动应急给水***密封地贯穿安全壳并对应蒸汽发生器设置,在设计基础或超设计基础事故工况下,非能动应急给水***都会自动启动,实现对蒸汽发生器的给水回流和热量导出,以冷却反应堆将其带入安全停堆状态;非能动安全壳冷却***密封地贯穿安全壳,非能动安全壳冷却***中的冷却介质在其内部循环从而将安全壳内的热量导出至大气环境,不依赖于能动设备便可长期、稳定、可靠地实现事故下安全壳内余热的导出功能。因此,本发明不需要依靠能动***及操纵员的干预,即可有效执行事故下堆芯反应性控制、余热导出和放射性物质包容等安全功能,保证相当长时间内堆芯都能得到有效冷却并保持在安全停堆状态,提高核电站的安全性。另,不需要能动***及操纵员,大大减少了设备数量,因而减少设备购买、安装、运行和维修等费用,相应减少核电厂的建造成本和运维费用。
附图说明
图1是本发明非能动安全冷却***的结构示意图。
图2是本发明非能动安全冷却***的使用状态示意图。
具体实施方式
现在参考附图描述本发明的实施例,附图中类似的元件标号代表类似的元件。本发明所提供的非能动安全冷却***100,主要适用于30~200万千瓦(电功率)级别的、拥有混凝土式安全壳200的压水堆核电厂,但并不以此为限。
如图1所示,所述混凝土式安全壳200内设有压力容器210及蒸汽发生器220,压力容器210与蒸汽发生器220之间通过管道连接,所述管道形成热管段230和冷管段240,在冷管段240还设有一回路主泵250。热管段230、冷管段240、主泵250等组成一个环路,一般核电厂不止具有一个环路,图1和图2只绘示一个环路。核电站正常运行时,一回路反应堆堆芯产生的巨大热能加热冷却剂,加热后的冷却剂通过热管段230进入蒸汽发生器220内的传热管,通过管壁将热能传递给传热管外的二回路冷却水,释放热量的冷却剂又经主泵250、 冷管段240送回堆芯重新加热。
本发明所述非能动安全冷却***100,能有效执行事故下堆芯反应性控制、余热导出和放射性物质包容等安全功能。其包括至少一个补水箱110、至少一个先进安注箱120、一个内置换料水箱130、一个泄压***140、至少一个非能动应急给水***150及至少一个非能动安全壳冷却***160;其中,补水箱110、先进安注箱120、内置换料水箱130、泄压***140均设于安全壳200内并分别连通设于安全壳200内的压力容器210,所述非能动应急给水***150密封地贯穿安全壳200并对应安全壳200内的蒸汽发生器220设置,非能动应急给水***150用于实现蒸汽发生器220的给水回流及热量导出,所述非能动安全壳冷却***160密封地贯穿安全壳200以将安全壳200内的热量导出安全壳200外。
具体地,所述补水箱110、先进安注箱120、内置换料水箱130均通过一注入管线131连通所述压力容器210。
下面结合附图所示,对所述非能动安全冷却***100的各部分结构分别进行说明。
参看图1所示,补水箱110的位置高于压力容器210的位置,且补水箱110的下端通过第一管路111连通注入管线131,第一管路111上设有第一阀门112,补水箱110的上端通过压力平衡管线113连通所述冷管段240,补水箱110内具有浓硼水。当核电厂发生破口类失去冷却水的事故或其他导致反应堆一回路冷却剂质量减少的事故后,第一阀门112根据保护信号触发打开,由于压力平衡管线113的作用,补水箱110内的浓硼水依靠重力通过第一管路111、注入管线131而注入压力容器210内;冷管段240的冷却剂通过压力平衡管线113进入补水箱110。
本发明中,多个补水箱110的设置方式均相同,不在赘述。
继续参看图1所示,所述先进安注箱120通过第二管路121连通注入管线131,第二管路121上设有第二阀门122,先进安注箱120内具有浓硼水并通过氮气蓄压,使其内具有一定初始蓄压。当核电厂一回路压力降低到一定程度时,第二阀门122根据保护信号触发打开,由于先进安注箱120内事先保持一定蓄压,因此其内的浓硼水通过第二管路121、注入管线131自动注入到压力容器 210内,实现对堆芯的注水。相较于传统的安注箱,本发明的先进安注箱120可以通过其内的水力学部件实现一回路失水事故(LOCA)后,对压力容器210下腔室的快速淹没以及对堆芯下降段的淹没,同时还提供后续较长时间段内对堆芯的淹没。
本发明中多个先进安注箱120的安装方式均相同,不再重复描述。
再次参看图1所示,所述内置换料水箱130高于压力容器210,注入管线131的一端连接于内置换料水箱130的底部,另一端连通压力容器210,该注入管线131上设有第三阀门132,内置换料水箱130内具有浓硼水。在核电厂丧失冷却剂事故的后期,一回路充分泄压的情况下,内置换料水箱130利用其相对高位的布置,实现对一回路的非能动补水。
所述泄压***140包括泄压管线141及设于泄压管线141上的泄压阀142,泄压管线141的一端连通安全壳200内的稳压器或/和压力容器210的热管段230,泄压管线141的另一端连通安全壳200的内部空间或内置换料水箱130。
本实施例中,泄压管线141的一端连通压力容器210的热管段230,另一端伸入内置换料水箱130的液面以下。当核电厂一回路冷却剂减少到一定程度时,泄压阀142根据一定信号触发打开,泄压管线141可使一回路压力得到充分降低。且根据需要,自动泄压***140可以采用成分步骤泄压设计。
再次参看图1所示,所述非能动应急给水***150对应蒸汽发生器220设置,可设置多个非能动应急给水***150,每一个非能动应急给水***150对应一蒸汽发生器220设置,也可以仅设置一个非能动应急给水***150,其对应多个蒸汽发生器220设置。
本实施例中,每一组非能动应急给水***150对应于一蒸汽发生器220。具体地,非能动应急给水***150包括蒸汽管路151、蒸汽冷凝器152及给水管路153,蒸汽冷凝器152设于安全壳200外并高于安全壳200内的蒸汽发生器220,蒸汽冷凝器152容置于安全壳200外设置的冷凝水箱154中,且淹没于冷凝水箱154中的冷却水的液面以下;所述蒸汽管路151密封地贯穿安全壳200并连接于蒸汽发生器220的出口及蒸汽冷凝器152的入口,给水管路153密封地贯穿安全壳200并连接于蒸汽冷凝器152的出口及蒸汽发生器220的入口。
另外,蒸汽管路151上还设有第四阀门155,第四阀门155位于安全壳200内;给水管路153上还设有第五阀门156,第五阀门156位于安全壳200之内或者之外。
在主给水管线破口事故或丧失主给水注入等设计基准事故后,或者当核电厂发生场内场外电源丧失的超设计基准事故时(即一回路主泵250和主给水泵同时停运且长时间不能被投入运行时),非能动应急给水***150均能自动启动。具体地,第四阀门155、第五阀门156根据一定信号触发打开,蒸汽发生器220内的蒸汽通过蒸汽管路151到达蒸汽冷凝器152,经过换热冷凝成水,再经过给水管路153流回至蒸汽发生器220,实现蒸汽发生器220的给水回流和热量导出,从而将热量导出至安全壳200外的大气环境最终热阱。且事故前期主要依靠冷凝水箱154中的冷却水蒸发而将热量导向大气环境,事故后期则通过风冷导出热量,以冷却反应堆将其带入安全停堆状态。
可以理解地,蒸汽冷凝器152不限于浸没在冷却水中进行冷却,还可以通过其他方式进行冷却,例如将蒸汽冷凝器152设于安全壳200外的空冷塔内,通过风冷方式进行冷却,一样能实现上述效果,此为本领域技术人员所熟知的技术。
继续参阅图1所示,所述非能动安全壳冷却***160包括内换热器161、上升管道162、外换热器163、下降管道164及冷却介质,内换热器161设于安全壳200内,外换热器163设于安全壳200外并高于内换热器161,上升管道162密封地贯穿安全壳200并连通内换热器161的出口及外换热器163的入口,所述下降管道164密封地贯穿安全壳200并连通外换热器163的出口及内换热器161的入口,所述冷却介质在内换热器161、上升管道162、外换热器163、下降管道164所形成的循环通道内流动。
具体地,内换热器161的入口位于下端,内换热器161的出口位于上端;外换热器163容置于全壳外的冷却水池165内,且外换热器163的入口位于上端,外换热器163的出口位于下端。另外,在下降管道164上还设有位于安全壳200外的第六阀门166。
当核电厂发生破口失水事故或其他造成安全壳200内压力、温度升高的事 故后,非能动安全壳冷却***160根据信号触发启动,第六阀门166开启,冷却介质在内换热器161内吸收安全壳200内的热量,受热上升到外换热器163内通过冷凝将热量释放出来,冷却介质冷凝之后由于密度增大,自然往下流动,因此,通过冷却介质在循环通道内的流动将安全壳200内的热量非能动地导出安全壳200外,实现事故后长期阶段安全壳200内的降温降压。
优选地,冷却介质为保持一定真空度的冷却水。但并不限于水,还可以是其他介质,但该介质需保证其在工作状态下能发生相变。
可以理解地,为提高冗余性及安全性,可沿安全壳200的周向设置多组非能动安全壳冷却***160。
下面结合图1-图2所示,对非能动安全冷却***100的工作过程及原理进行说明。
在核电厂正常运行的情况下,非能动安全冷却***100不启动,但处于可用状态。
在核电厂事故工况下,非能动安全冷却***100根据保护信号自动启动。如图2所示,当核电厂发生破口类失去冷却水事故或其他导致反应堆一回路冷却剂质量减少的事故后,第一阀门112根据保护信号触发打开,由于压力平衡管线113的作用,补水箱110内的浓硼水依靠重力通过第一管路111、注入管线131自动注入到压力容器210内。
当核电厂一回路压力降低到一定程度时,第二阀门122根据保护信号触发打开,先进安注箱120内事先保持一定蓄压,从而其内的浓硼水可通过第二管路121、注入管线131自动注入到压力容器210内,实现对堆芯的补水。
当核电厂一回路冷却剂减少到一定程度时,泄压阀142根据一定信号触发打开,利用泄压管线141可对一回路进行快速泄压,使一回路压力能得到充分降低。与此同时,注入管线131上的第三阀门132根据一定信号触发打开,内置换料水箱130内的浓硼水通过注入管线131直接注入到压力容器210内,实现对一回路的非能动补水。
然而,不管是设计基准事故还是超设计基准事故,非能动应急给水***150都能自动启动,即,第四阀门155、第五阀门156根据一定信号触发打开,蒸汽 发生器220内的蒸汽通过蒸汽管路151到达蒸汽冷凝器152,经过换热冷凝成水,再经给水管路153流回至蒸汽发生器220,实现蒸汽发生器220的给水回流和热量导出;蒸汽冷凝器152换热冷凝时,热量加热冷凝水箱154中的冷却水,因此,在事故前期主要依靠冷凝水箱154中的冷却水蒸发而将热量导向大气环境最终热阱,事故后期则通过风冷导出热量,以冷却反应堆将其带入安全停堆状态,如图2所示。
继续参看图2所示,当核电厂发生破口失水事故或安全壳200内主蒸汽管道等造成安全壳200内压力、温度升高的事故后,非能动安全壳冷却***160根据一定信号触发启动,第六阀门166触发开启,冷却介质在内换热器161中吸收安全壳200内热量,冷却介质受热之后通过上升管道162进入外换热器163,在外换热器163内通过冷凝将热量释放出来,冷凝之后的冷却介质由于密度增大,因此自然往下流动从而通过下降管道164回流至内换热器161。通过外换热器163冷凝释放出的热量加热冷却水池165中的冷却水,从而将安全壳200内的热量非能动地导出安全壳200外,实现事故后长期阶段安全壳200内的降温、降压。
由于本发明非能动安全冷却***100,设有分别连通压力容器210的补水箱110、先进安注箱120、内置换料水箱130、泄压***140,因此事故后的不同阶段,补水箱110、先进安注箱120、内置换料水箱130分别对压力容器210进行自动注入,同时泄压***140自动对反应堆一回路进行降压;非能动应急给水***150密封地贯穿安全壳200并对应蒸汽发生器220设置,在设计基础或超设计基准事故工况下,非能动应急给水***150都会自动启动,实现对蒸汽发生器220的给水回流和热量导出,以冷却反应堆将其带入安全停堆状态;非能动安全壳冷却***160密封地贯穿安全壳200,非能动安全壳冷却***160中的冷却介质在其内部循环从而将安全壳200内的热量导出至大气环境,不依赖于能动设备便可长期、稳定、可靠地实现事故下安全壳200内余热的导出功能。因此,本发明不需要依靠能动***及操纵员的干预,即可有效执行事故下堆芯反应性控制、余热导出和放射性物质包容等安全功能,保证相当长时间内堆芯都能得到有效冷却并保持在安全停堆状态,提高核电站的安全性。而不需要能 动***及操纵员,大大减少了设备数量,因而减少设备购买、安装、运行和维修等费用,相应减少核电厂的建造成本和运维费用。
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。

Claims (17)

  1. 一种非能动安全冷却***,其特征在于:包括补水箱、先进安注箱、内置换料水箱、泄压***、非能动应急给水***及非能动安全壳冷却***,所述补水箱、所述先进安注箱、所述内置换料水箱、所述泄压***均设于安全壳内并分别连通设于所述安全壳内的压力容器,所述非能动应急给水***密封地贯穿所述安全壳并对应所述安全壳内的蒸汽发生器设置,所述非能动应急给水***用于实现所述蒸汽发生器的给水回流及热量导出,所述非能动安全壳冷却***密封地贯穿所述安全壳以将所述安全壳内的热量导出所述安全壳外。
  2. 如权利要求1所述的非能动安全冷却***,其特征在于:所述补水箱、所述先进安注箱、所述内置换料水箱均通过一注入管线连通所述压力容器。
  3. 如权利要求2所述的非能动安全冷却***,其特征在于:所述补水箱高于所述压力容器且一端通过第一管路连通所述注入管线,且所述第一管路上设有第一阀门。
  4. 如权利要求3所述的非能动安全冷却***,其特征在于:所述补水箱的另一端通过压力平衡管线连通所述压力容器的冷管段。
  5. 如权利要求2所述的非能动安全冷却***,其特征在于:所述先进安注箱通过第二管路连通所述注入管线,且所述第二管路上设有第二阀门。
  6. 如权利要求2所述的非能动安全冷却***,其特征在于:所述注入管线上设有第三阀门。
  7. 如权利要求1所述的非能动安全冷却***,其特征在于:所述先进安注箱内具有一定初始蓄压。
  8. 如权利要求1所述的非能动安全冷却***,其特征在于:所述内置换料水箱高于所述压力容器。
  9. 如权利要求1所述的非能动安全冷却***,其特征在于:所述补水箱、所述先进安注箱、所述内置换料水箱内均具有浓硼水。
  10. 如权利要求1所述的非能动安全冷却***,其特征在于:所述泄压***包括泄压管线及设于所述泄压管线上的泄压阀,所述泄压管线的一端连通所述安全壳内的稳压器或/和所述压力容器的热管段,所述泄压管线的另一端连通所述安全壳的内部空间或所述内置换料水箱。
  11. 如权利要求1所述的非能动安全冷却***,其特征在于:所述非能动应急给水***包括蒸汽管路、给水管路及设于所述安全壳外的蒸汽冷凝器,所述蒸汽冷凝器高于所述安全壳内的蒸汽发生器,所述蒸汽管路密封地贯穿安全壳并连接于所述蒸汽发生器的出口及所述蒸汽冷凝器的入口,所述给水管路密封地贯穿所述安全壳并连接于所述蒸汽冷凝器的出口及所述蒸汽发生器的入口。
  12. 如权利要求11所述的非能动安全冷却***,其特征在于:所述蒸汽冷凝器容置于所述安全壳外设置的冷凝水箱内并淹没于所述冷凝水箱内的冷却水的液面以下。
  13. 如权利要求11所述的非能动安全冷却***,其特征在于:所述蒸汽冷凝器容置于所述安全壳外设置的空冷塔内。
  14. 如权利要求11所述的非能动安全冷却***,其特征在于:所述蒸汽管路上设有第四阀门,所述给水管路上设有第五阀门。
  15. 如权利要求1所述的非能动安全冷却***,其特征在于:所述非能动安全壳冷却***包括内换热器、外换热器、上升管道、下降管道及冷却介质,所述内换热器设于所述安全壳内,所述外换热器设于所述安全壳外并高于所述内换热器,所述上升管道密封地贯穿所述安全壳并连通所述内换热器的出口及所述外换热器的入口,所述下降管道密封地贯穿所述安全壳并连通所述外换热器的出口及所述内换热器的入口,所述冷却介质在所述内换热器、所述上升管道、所述外换热器、所述下降管道形成的循环通道内流动。
  16. 如权利要求15所述的非能动安全冷却***,其特征在于:所述外换热器容置于所述安全壳外的冷却水池内。
  17. 如权利要求15所述的非能动安全冷却***,其特征在于:所述下降管道上设有位于所述安全壳外的第六阀门。
PCT/CN2015/083238 2014-11-19 2015-07-03 非能动安全冷却*** WO2016078421A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/527,906 US20180350472A1 (en) 2014-11-19 2015-07-03 Passive safe cooling system
GB1619951.5A GB2540708A (en) 2014-11-19 2015-07-03 Passive safe cooling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410664612.0 2014-11-19
CN201410664612.0A CN104361914A (zh) 2014-11-19 2014-11-19 非能动安全冷却***

Publications (1)

Publication Number Publication Date
WO2016078421A1 true WO2016078421A1 (zh) 2016-05-26

Family

ID=52529169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083238 WO2016078421A1 (zh) 2014-11-19 2015-07-03 非能动安全冷却***

Country Status (4)

Country Link
US (1) US20180350472A1 (zh)
CN (1) CN104361914A (zh)
GB (1) GB2540708A (zh)
WO (1) WO2016078421A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108010593A (zh) * 2017-12-29 2018-05-08 安徽中科超安科技有限公司 一种核电宝及其非能动余热排出***
CN109765067A (zh) * 2017-11-10 2019-05-17 国核华清(北京)核电技术研发中心有限公司 大型先进压水堆核电站非能动堆芯冷却***整体性能试验平台
CN111370153A (zh) * 2020-03-09 2020-07-03 苏州热工研究院有限公司 核电厂非能动脉冲冷却方法以及***
CN115352608A (zh) * 2022-08-10 2022-11-18 中国舰船研究设计中心 一种船用核动力安全海水***

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104361914A (zh) * 2014-11-19 2015-02-18 中科华核电技术研究院有限公司 非能动安全冷却***
CN106409355B (zh) * 2016-10-09 2021-09-17 中国核电工程有限公司 用于启动安全壳冷却***的非能动自动控制***
JP6716479B2 (ja) * 2017-02-21 2020-07-01 株式会社東芝 非常用炉心冷却系およびそれを用いた沸騰水型原子力プラント
CN107403650B (zh) * 2017-08-25 2023-11-03 中国船舶重工集团公司第七一九研究所 海上浮动核电站的二次侧非能动余热排出***
CN109243634B (zh) * 2018-08-27 2021-04-02 中广核研究院有限公司 反应堆安全***
CN109473185B (zh) * 2018-11-13 2022-07-29 中国核动力研究设计院 一种自动化学停堆***的测试装置及其测试方法
CN109585044B (zh) * 2018-12-18 2024-04-12 长江勘测规划设计研究有限责任公司 一种地下核电站洞室型安全壳非能动冷却***
CN109887624A (zh) * 2019-03-06 2019-06-14 中国核动力研究设计院 模块式小堆安全壳隔离失效时的失水事故长期冷却***
CN110097982B (zh) * 2019-05-09 2023-03-21 中国核电工程有限公司 一种核电厂安全注入及余热排出***
CN110783005B (zh) * 2019-10-08 2021-10-01 中国核电工程有限公司 一种非能动导热装置及二次侧非能动冷却***
US20230215589A1 (en) * 2019-12-30 2023-07-06 Joint-Stock Company "Atomenergoprorkt" Self-cleaning liquid purification system
CN111128414B (zh) * 2019-12-31 2022-07-26 中国核动力研究设计院 一种核电厂能动与非能动相结合的安全***及其方法
CN112037944A (zh) * 2020-08-24 2020-12-04 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种适用于海洋核动力平台的二回路热量导出***
CN112053791B (zh) * 2020-09-15 2023-01-03 哈尔滨工程大学 一种具有集成释热阱的无时限非能动联合排热***
CN112652413B (zh) * 2020-11-26 2024-01-23 中国核电工程有限公司 安全壳***的布置方法以及安全壳***布置结构
CN112599257B (zh) * 2020-12-01 2024-03-15 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种船用毛细力驱动的安全壳热量导出***
CN112885490B (zh) * 2021-03-17 2024-06-18 上海核工程研究设计院股份有限公司 一种一体化非能动先进小堆
CN113140338A (zh) * 2021-03-26 2021-07-20 中广核工程有限公司 核电厂应急余热排出和补水***
CN113555137A (zh) * 2021-06-22 2021-10-26 中国核电工程有限公司 一种核电站的安全注入***
CN113808764B (zh) * 2021-08-03 2023-09-19 中国核电工程有限公司 安全壳内堆芯余热导出方法和***
CN113669962A (zh) * 2021-08-19 2021-11-19 合肥亦威科技有限公司 一种内置压力平衡装置的温控***
CN114023470B (zh) * 2021-09-17 2024-04-16 中国船舶重工集团公司第七一九研究所 非能动换热***和反应堆***
CN114121313B (zh) * 2021-11-26 2024-06-18 上海核工程研究设计院股份有限公司 一种紧凑式反应堆的非能动安全***
CN114060784A (zh) * 2021-12-13 2022-02-18 中国核动力研究设计院 一种应用于直流蒸汽发生装置的给水***
CN114999683A (zh) * 2022-06-16 2022-09-02 中广核研究院有限公司 反应堆的一体化安全***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847646C1 (de) * 1998-10-15 2000-04-20 Siemens Ag Sicherheitssystem und Verfahren zum Betrieb eines Sicherheitssystems für eine Kernreaktoranlage
CN104134474A (zh) * 2014-07-30 2014-11-05 中科华核电技术研究院有限公司 非能动冷却***
CN203931515U (zh) * 2014-03-20 2014-11-05 中国核动力研究设计院 基于177堆芯的能动加非能动核蒸汽供应***及其核电站
CN104361914A (zh) * 2014-11-19 2015-02-18 中科华核电技术研究院有限公司 非能动安全冷却***
CN204242601U (zh) * 2014-11-19 2015-04-01 中科华核电技术研究院有限公司 非能动安全冷却***

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217398A1 (de) * 1972-04-11 1973-10-25 Siemens Ag Kernreaktor
JP2548838B2 (ja) * 1989-09-19 1996-10-30 三菱重工業株式会社 加圧水型原子炉の炉心崩壊熱除去装置
US5259008A (en) * 1992-06-24 1993-11-02 Westinghouse Electric Corp. Staged depressurization system
US5612982A (en) * 1995-07-31 1997-03-18 Westinghouse Electric Corporation Nuclear power plant with containment cooling
US5887043A (en) * 1995-10-03 1999-03-23 Atomic Energy Of Canada Limited Energie Atomique Du Canad Passive emergency water system for water-cooled nuclear reactors
US6795518B1 (en) * 2001-03-09 2004-09-21 Westinghouse Electric Company Llc Integral PWR with diverse emergency cooling and method of operating same
JP4592773B2 (ja) * 2008-02-29 2010-12-08 株式会社東芝 静的冷却減圧系および加圧水型原子力プラント
CN102169733B (zh) * 2011-02-14 2013-10-23 中国核电工程有限公司 一种核电站非能动与能动相结合的专设安全***
US8867690B2 (en) * 2011-08-25 2014-10-21 Babcock & Wilcox Mpower, Inc. Pressurized water reactor with compact passive safety systems
CN102522127B (zh) * 2011-12-23 2014-07-30 中国核电工程有限公司 非能动安全壳热量导出***
CN103295656B (zh) * 2012-02-29 2017-12-26 上海核工程研究设计院 用于核反应堆的多样化专设安全***
CN102867550A (zh) * 2012-08-20 2013-01-09 中国核电工程有限公司 一种应对全厂断电事故的非能动排热装置
CN202855317U (zh) * 2012-09-04 2013-04-03 中科华核电技术研究院有限公司 一种非能动启动冷却***
US20140241484A1 (en) * 2013-02-27 2014-08-28 Westinghouse Electric Company Llc Pressurized water reactor depressurization system
CN203366761U (zh) * 2013-07-31 2013-12-25 中科华核电技术研究院有限公司 带有水封的二次侧余热排出***
KR101499641B1 (ko) * 2014-02-27 2015-03-06 한국원자력연구원 수냉-공냉 복합 피동급수냉각 장치 및 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847646C1 (de) * 1998-10-15 2000-04-20 Siemens Ag Sicherheitssystem und Verfahren zum Betrieb eines Sicherheitssystems für eine Kernreaktoranlage
CN203931515U (zh) * 2014-03-20 2014-11-05 中国核动力研究设计院 基于177堆芯的能动加非能动核蒸汽供应***及其核电站
CN104134474A (zh) * 2014-07-30 2014-11-05 中科华核电技术研究院有限公司 非能动冷却***
CN104361914A (zh) * 2014-11-19 2015-02-18 中科华核电技术研究院有限公司 非能动安全冷却***
CN204242601U (zh) * 2014-11-19 2015-04-01 中科华核电技术研究院有限公司 非能动安全冷却***

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WANG , ZHI: "Research of AP 1000 Passive Core Cooling System and System Design Transient", CHINA NUCLEAR POWER, vol. 4, no. 3, 30 September 2011 (2011-09-30), pages 195 - 206 *
WANG, ZHI: "Research of AP 1000 Passive Core Cooling System and System Design Transient", CHINA NUCLEAR POWER, vol. 4, no. 3, 30 September 2011 (2011-09-30), pages 195 - 206 *
YAN, CHUN;: "Design of Passive Residual Heat Removal System for Advanced Reactor", DISSERTATION FOR THE MASTER DEGREE IN ENGINEERING, 31 December 2010 (2010-12-31) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765067A (zh) * 2017-11-10 2019-05-17 国核华清(北京)核电技术研发中心有限公司 大型先进压水堆核电站非能动堆芯冷却***整体性能试验平台
CN108010593A (zh) * 2017-12-29 2018-05-08 安徽中科超安科技有限公司 一种核电宝及其非能动余热排出***
CN111370153A (zh) * 2020-03-09 2020-07-03 苏州热工研究院有限公司 核电厂非能动脉冲冷却方法以及***
CN111370153B (zh) * 2020-03-09 2022-07-29 苏州热工研究院有限公司 核电厂非能动脉冲冷却方法以及***
CN115352608A (zh) * 2022-08-10 2022-11-18 中国舰船研究设计中心 一种船用核动力安全海水***
CN115352608B (zh) * 2022-08-10 2024-05-07 中国舰船研究设计中心 一种船用核动力安全海水***

Also Published As

Publication number Publication date
GB201619951D0 (en) 2017-01-11
GB2540708A (en) 2017-01-25
US20180350472A1 (en) 2018-12-06
CN104361914A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
WO2016078421A1 (zh) 非能动安全冷却***
CN202887748U (zh) 一种应对全厂断电事故的非能动排热装置
KR102111813B1 (ko) 소형 모듈식 원자로 안전 시스템
KR101215323B1 (ko) 원자로를 포함하는 원자로 조립체, 원자로용 비상 냉각 시스템, 및 원자로의 비상 냉각 방법
KR101242746B1 (ko) 원자력 발전소의 격납건물 외부 통합피동안전계통 시스템
CN105810256B (zh) 一种核电站非能动余热排出***
US20120294407A1 (en) Nuclear Power Plant, Fuel Pool Water Cooling Facility and Method Thereof
CN109545401B (zh) 一种铅基快堆堆外非能动余热排出***
CN107393605A (zh) 一种模块化小型核反应堆的非能动空气冷却装置及方法
GB2531190A (en) Passive concrete containment cooling system
WO2016078285A1 (zh) 二次侧非能动佘热导出***
CN204242601U (zh) 非能动安全冷却***
CN204480678U (zh) 一种核电站非能动余热排出***
CN103617815A (zh) 压水堆核电站非能动余热排出***
CN104103325B (zh) 一种长期非能动安全壳热量导出***
CN104916334A (zh) 压水堆核电站分离式热管式非能动余热排出***
WO2014048293A1 (zh) 一种能动与非能动相结合的安全壳排热装置
CN202887745U (zh) 一种能动与非能动相结合的安全壳排热装置
WO2014048289A1 (zh) 一种能动与非能动相结合的二次侧堆芯热量导出装置
KR101250479B1 (ko) 안전보호용기를 구비한 피동형 비상노심냉각설비 및 이를 이용한 열 전달량 증가 방법
CN104919531A (zh) 用于冷却核反应堆堆芯的被动***
CN205656860U (zh) 低温核供热堆堆芯余热非能动排出***
CN109994230A (zh) 一种核电站蒸汽发生器非能动事故排放与冷却***及方法
CN210837199U (zh) 余热排出***与核电***
CN209729520U (zh) 一种核电站蒸汽发生器非能动事故排放与冷却***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201619951

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150703

WWE Wipo information: entry into national phase

Ref document number: 1619951.5

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860238

Country of ref document: EP

Kind code of ref document: A1