WO2016075733A1 - Thermoelectric conversion device and method for manufacturing same - Google Patents

Thermoelectric conversion device and method for manufacturing same Download PDF

Info

Publication number
WO2016075733A1
WO2016075733A1 PCT/JP2014/079687 JP2014079687W WO2016075733A1 WO 2016075733 A1 WO2016075733 A1 WO 2016075733A1 JP 2014079687 W JP2014079687 W JP 2014079687W WO 2016075733 A1 WO2016075733 A1 WO 2016075733A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion device
layer
conductor portion
nano
Prior art date
Application number
PCT/JP2014/079687
Other languages
French (fr)
Japanese (ja)
Inventor
谷江 尚史
拓也 青柳
宮内 昭浩
岩崎 富生
雄亮 保田
貴志 澄川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/079687 priority Critical patent/WO2016075733A1/en
Publication of WO2016075733A1 publication Critical patent/WO2016075733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric conversion device that converts between heat and electricity by the thermoelectric effect and a manufacturing method thereof.
  • thermoelectric conversion device a pair of conductors are provided in a thermoelectric conversion layer made of a thermoelectric conversion material such as a semiconductor.
  • a temperature difference is applied between the conductors, an electromotive force is generated due to a so-called Seebeck effect.
  • Seebeck effect When a current is passed between the conductors, heat is generated in one conductor and heat is absorbed in the other conductor due to the so-called Peltier effect.
  • thermoelectric conversion performance of such a thermoelectric conversion device depends on the configuration of the thermoelectric conversion layer and the physical properties of the thermoelectric conversion material.
  • Patent Document 1 Patent Document 2, Patent Document 2, and Non-Patent Document 2
  • a technique for improving thermoelectric conversion performance using a fine nanomaterial is known.
  • thermoelectric conversion material in which semiconductor nanowires are dispersed is used as a dispersion material in a matrix phase.
  • thermoelectric conversion material in order to improve the thermoelectric conversion efficiency, the structure of the thermoelectric conversion material is reduced in dimension like a nanowire.
  • Non-Patent Document 1 describes a technique for manufacturing a plurality of nano-order structures in a planar shape, such as a dynamic Oblique Deposition method (dynamic oblique deposition method), a DC Plasma-Enhanced Chemical Vapor Deposition method, a Hydrothermal Crystallization of Colloidal Precursors method, Template -synthesis method, Molecular method, Beam method, Epitaxy method, Reactive method, Pulsed method, Laser method, Deposition method, etc. are disclosed.
  • Patent Document 3 discloses a manufacturing method for forming a nano-order three-dimensional structure using a mold made of a carbon material.
  • Patent Document 4 discloses a technique for manufacturing a nano-order structure by self-organization.
  • thermoelectric conversion devices generate power using the temperature difference in the application environment, the temperature of the device changes and temperature distribution occurs inside the device. For this reason, each member constituting the device is thermally deformed during use, and thermal stress is generated due to a difference in thermal deformation between the members.
  • the above-described conventional technology can improve the thermoelectric conversion performance using the nanomaterial, but it is not considered about the thermal stress generated in the device, and it is difficult to reduce the thermal stress.
  • the present invention provides a thermoelectric conversion device that can improve thermoelectric conversion performance, reduce thermal stress, and improve reliability, and a method for manufacturing the same.
  • thermoelectric conversion device includes a first conductor portion, a thermoelectric conversion layer in contact with the first conductor portion, a second conductor portion in contact with the thermoelectric conversion layer, And the thermoelectric conversion layer is composed of a plurality of spring-like nano-order structures.
  • thermoelectric conversion layer When the thermoelectric conversion layer is composed of a nano-order structure, the thermoelectric conversion performance of the thermoelectric conversion layer is improved. Furthermore, since the nanostructure has a spring shape, the thermal deformation difference between the members is absorbed by the deformation of the spring. Thereby, since a thermal stress is relieved, the reliability of a thermoelectric conversion device can be improved.
  • FIG. 1 is a perspective view illustrating a structure of a thermoelectric conversion device that is Embodiment 1.
  • FIG. Sectional drawing which shows the structure of the thermoelectric conversion device which is Example 1.
  • FIG. 2 is a cross-sectional SEM photograph of the thermoelectric conversion layer of Example 1.
  • FIG. Sectional drawing which shows the structure of the thermoelectric conversion device which is Example 1.
  • FIG. An outline of a manufacturing apparatus to which a dynamic oblique deposition method is applied is shown.
  • An example of the manufacturing process which forms a nanospring is shown.
  • An example of the manufacturing process which forms a nanospring is shown.
  • An example of the manufacturing process which forms a nanospring is shown.
  • An example of the manufacturing process which forms a nanospring layer and a wiring layer is shown.
  • An example of the manufacturing process which forms a nanospring layer and a wiring layer is shown.
  • An example of the manufacturing process which forms a nanospring layer and a wiring layer is shown.
  • An example of the manufacturing process which produces each thermoelectric conversion device from the processed wafer substrate is shown.
  • An example of the manufacturing process which produces each thermoelectric conversion device from the processed wafer substrate is shown.
  • An example of the manufacturing process which produces each thermoelectric conversion device from the processed wafer substrate is shown.
  • An example of the manufacturing process which produces each thermoelectric conversion device from the processed wafer substrate is shown.
  • the manufacturing process of a zigzag nanospring is shown.
  • the manufacturing process of a zigzag nanospring is shown.
  • the manufacturing process of a zigzag nanospring is shown.
  • the manufacturing process of a zigzag nanospring is shown.
  • the manufacturing process of a zigzag nanospring is shown.
  • thermoelectric conversion device The manufacturing process of a zigzag nanospring is shown.
  • a cross-sectional SEM photograph of a zigzag-shaped nanospring is shown.
  • a spiral nanospring is shown.
  • a zigzag shaped nanospring is shown.
  • a columnar nanospring is shown.
  • a slanted columnar nanospring is shown.
  • a helical spring with a variable diameter is shown.
  • the nanospring which consists of multiple layers is shown.
  • the temperature distribution of the thickness direction in the thermoelectric conversion device of Example 1 is shown.
  • the perspective view which shows the structure of the thermoelectric conversion device which is Example 2.
  • FIG. Sectional drawing which shows the structure of the thermoelectric conversion device which is Example 2.
  • FIG. FIG. 6 is a perspective view showing a structure of a thermoelectric conversion device that is Embodiment 3.
  • FIG. 6 is a cross-sectional view showing the structure of a thermoelectric conversion device that is Example 5.
  • the manufacturing method of the thermoelectric conversion device of Example 5 is shown.
  • the temperature distribution of the thickness direction in the thermoelectric conversion device of Example 5 is shown.
  • the cross-sectional structure of the thermoelectric conversion device which is Example 6, and the temperature distribution of the thickness direction are shown.
  • the performance index of the thermoelectric conversion device which is Example 6 is shown.
  • thermoelectric conversion device 1 (a) to 1 (d) show the structure of a thermoelectric conversion device that is Embodiment 1 of the present invention.
  • thermoelectric conversion device of Example 1 is disposed on the main surface of the substrate 1 and the substrate 1, and has a nano-order structure.
  • a thermoelectric conversion layer 2 configured and a wiring layer 3 disposed on the thermoelectric conversion layer 2 are provided.
  • the substrate side terminal 4 is electrically joined to the substrate 1
  • the wiring layer side terminal 5 is electrically joined to the wiring layer 3.
  • the substrate 1, the wiring layer 3, the substrate side terminal 4, and the wiring layer side terminal 5 are made of a metal conductor material such as copper having a high thermal conductivity or electrical conductivity.
  • the thermal resistance and electrical resistance at the layer 3, the substrate side terminal 4, and the wiring layer side terminal 5 are reduced.
  • the thermoelectric conversion layer 2 composed of a nano-order structure, a structure in which a plurality of nano-order springs (hereinafter referred to as “nano springs”) having a wire diameter of less than 100 nm are densely arranged in a planar shape is used. It is done. Thereby, as will be described later, in the first embodiment, the thermoelectric conversion performance of the thermoelectric conversion device is improved, and the thermal stress due to the temperature difference given to the device for power generation is alleviated.
  • the substrate 1, the thermoelectric conversion layer 2, and the wiring layer 3 have substantially the same rectangular or rectangular thin plate or sheet-like planar shape, and are laminated in the thickness direction. That is, one and the other of the two principal surfaces in the thickness direction of the thermoelectric conversion layer 2 are joined to the planar portion of the substrate 1 and the planar portion of the wiring layer 3, respectively. Therefore, a thermoelectric conversion device having a small thickness and a large area can be obtained.
  • FIG. 1C shows a scanning electron microscope (Scanning Electron Microscope, SEM) of a cross section of a thermoelectric conversion layer 2 made of nanosprings manufactured by a known dynamic oblique deposition method (for example, see Non-Patent Document 1 described above). The photograph observed in is shown.
  • a plurality of nanosprings having a wire diameter of several nanometers to several tens of nanometers and a height of several micrometers are erected on the substrate 1 and arranged densely. The lower end and the upper end of each nanospring are joined to the substrate 1 and the wiring layer 3, respectively.
  • thermoelectric conversion device of Example 1 When the thermoelectric conversion device of Example 1 is arranged so that the lower surface of the substrate 1 and the upper surface of the wiring layer 3 are at different temperatures (T2 and T1, respectively) as shown in the cross-sectional view of FIG. A temperature difference occurs in the thickness direction inside the thermoelectric conversion device. Due to this temperature difference, a temperature difference is generated above and below the thermoelectric conversion layer 2 composed of nanosprings, and a potential difference is generated between the upper and lower ends of the thermoelectric conversion layer 2 due to the Seebeck effect which is a thermoelectric effect.
  • thermoelectric conversion performance of the thermoelectric conversion device that converts the temperature difference into electricity is represented by a figure of merit ZT shown in Equation (1).
  • thermoelectric conversion material having a large Seebeck coefficient S and electrical conductivity ⁇ and a small thermal conductivity ⁇ .
  • the Seebeck coefficient S increases when the structure of a thermoelectric conversion material is reduced to a low dimension like a nanowire. This is a phenomenon due to the quantum confinement effect.
  • the diameter of the wire of the thermoelectric conversion material is preferably several nm or less.
  • the diameter of the wire of the thermoelectric conversion material is set to several tens nm or several hundred nm or less, a phenomenon is known in which the thermal conductivity ⁇ is reduced by the phonon scattering effect.
  • the thermal resistance at the grain boundary increases and the thermal conductivity ⁇ decreases. Therefore, in the first embodiment, as shown in FIG.
  • thermoelectric conversion layer 2 is constituted by nanosprings having a wire diameter of several nanometers to several tens of nanometers, whereby the Seebeck coefficient S is increased due to the quantum confinement effect. Since the thermal conductivity ⁇ increases due to the phonon scattering effect and the polycrystalline effect, the figure of merit ZT of the thermoelectric conversion device can be increased.
  • thermoelectric conversion device of the first embodiment when the thermoelectric conversion device of the first embodiment is used in the atmosphere, air is filled between the nanosprings. Since the thermal conductivity of air is sufficiently small as compared with the thermoelectric conversion material constituting the nanospring, heat mainly flows inside the nanospring. Therefore, the inconvenience that heat flows between the nanosprings and the thermoelectric conversion performance does not improve while using the nanosprings can be prevented. In addition, when the thermoelectric conversion device of the first embodiment is used in a vacuum, the heat flow that conducts air between the nanosprings does not occur, so the thermoelectric conversion performance is improved. Therefore, if the thermoelectric conversion device shown in FIG. 1 is vacuum-sealed so that the lower surface of the substrate 1 and the upper surface of the wiring layer 3 are exposed, high thermoelectric conversion performance can be obtained even when used in air.
  • thermoelectric conversion device of Example 1 When the thermoelectric conversion device of Example 1 is arranged so that the lower surface of the substrate 1 and the upper surface of the wiring layer 3 are at different temperatures as shown in FIG. Since the temperature is different, a difference occurs in the thermal deformation. In the thermoelectric conversion device, since the amount of power generation increases as the temperature difference increases, it is preferable to increase the difference between the temperature T1 of the substrate 1 and the temperature T3 of the wiring layer 3. However, the greater the difference between the temperatures T1 and T3, the greater the difference in thermal deformation between the substrate 1 and the wiring layer 3. On the other hand, in the thermoelectric conversion device of Example 1, the thermoelectric conversion layer 2 disposed between the substrate 1 and the wiring layer 3 is composed of a plurality of nanosprings. The thermal deformation difference is absorbed by the deformation of the nanospring. Therefore, since the thermal stress in the substrate 1, the thermoelectric conversion layer 2, and the wiring layer 3 is reduced, the reliability of the thermoelectric conversion device can be improved.
  • the material of the thermoelectric conversion layer 2 is a material having thermoelectric conversion characteristics.
  • materials having thermoelectric conversion characteristics bismuth, telluride materials represented by bismuth telluride compounds, silicon-germanium alloys, silicide materials, skutterudite materials, half-Heusler metal materials, zinc antimony materials
  • non-oxide materials such as boron compounds and oxide materials such as cobalt oxide materials, zinc oxide materials, and titanium oxide materials
  • boron compounds and oxide materials such as cobalt oxide materials, zinc oxide materials, and titanium oxide materials can be applied. Since these materials have different characteristics such as a temperature range in which the figure of merit ZT increases and a durability temperature, appropriate materials can be selected according to the application.
  • thermoelectric conversion layer 2 is manufactured by a known dynamic oblique deposition method.
  • FIG. 2 shows an outline of a manufacturing apparatus to which the dynamic oblique deposition method is applied.
  • 3A to 3C show an example of a manufacturing process for forming a nanospring that is a nano-order structure using the manufacturing apparatus of FIG. 4A to 4C show an example of a manufacturing process for forming the nanospring layer and the wiring layer using the manufacturing apparatus of FIG.
  • the manufacturing apparatus shown in FIG. 2 includes a stage 27 facing the crucible 22, the electron gun 23, and the crucible 22 inside a vacuum chamber 21 that is substantially vacuumed by a vacuum pump (not shown).
  • the stage 27 has a mechanism that maintains a certain angle with respect to the crucible 22 and changes the angle, a rotation mechanism that uses a direction from the stage 27 toward the crucible 22 as a rotation axis, and a rotation mechanism that rotates the surface of the stage 27.
  • a nanospring material 24 which is a nano-order structure in the crucible 22 and irradiating the material 24 with an electron beam 25 emitted from the electron gun 23, the material 24 evaporates and becomes an evaporated flow 26. As the evaporative flow 26 reaches the stage 27 and accumulates, nanosprings are generated.
  • the atoms 32 of the material 24 reach the surface of the substrate wafer 31 from an oblique direction at a certain angle. And deposit. Since the atoms 33 deposited on the surface of the substrate wafer 31 are formed, shadows 34 of the deposited atoms are formed as shown in the partially enlarged view in FIG. As a result, after the shadow 34 of the atom is formed, the atom 32 is not deposited in the region of the deposited atom shadow 34, but is deposited only on the surface of the deposited atom 33. Therefore, as shown in FIG. The atoms 32 evaporated in this manner are deposited in the shape of an oblique column 35.
  • the nanospring is formed of a material having thermoelectric conversion characteristics, but the planar layer is formed of a metal material.
  • thermoelectric conversion material forming the layer of the nanospring 36 and the metal material forming the planar layer 42 can be deposited in a stacked manner. Thereby, the productivity of the thermoelectric conversion device is improved.
  • the nanospring 36 layer and the planar layer 42 are formed by the manufacturing steps shown in FIGS. 3A to 3C and FIGS. 4A to 4C. That is, an example of a manufacturing process for manufacturing individual thermoelectric conversion devices as shown in FIG. 1 from the processed wafer substrate 31 is shown.
  • thermoelectric conversion device is formed on the substantially entire surface of the substrate wafer 31 by the manufacturing process shown in FIGS. 3A to 3C and FIGS. 4A to 4C. Then, the layer of the nanospring 36 and the planar layer 42, which become the thermoelectric conversion layer 2 and the wiring layer 3, respectively, are formed.
  • the substrate wafer 31 is cut at a predetermined interval to produce a plurality of rectangular or square chips having a predetermined size.
  • each chip has a laminated structure in which a thermoelectric conversion layer 2 composed of nanosprings and a wiring layer 3 are laminated in this order on a substrate 1.
  • the substrate-side terminal 4 and the wiring layer-side terminal 5 are joined to the substrate 1 and the wiring layer 3, respectively, to manufacture a thermoelectric conversion device as shown in FIG.
  • FIG. 3C a spiral nanospring is manufactured by vapor deposition while rotating the substrate wafer 31 at a constant speed.
  • FIG. (E), FIG. 7 and FIGS. 8 (a) to (f) can form nanosprings having various shapes.
  • 6 (a) to 6 (e) show the manufacturing process of the zigzag nanospring. Also in the manufacturing process shown in FIGS. 6A to 6E, the dynamic oblique deposition method is used.
  • a substrate wafer 31 having a flat surface as shown in FIG. 6A is fixed to the stage 27 of the manufacturing apparatus shown in FIG. 2, and as shown in FIG. Is deposited on the surface of the substrate wafer 31.
  • the deposited atoms 34 are shadowed by the atoms 33 deposited on the surface of the substrate wafer 31.
  • the atoms 32 are not deposited in the region of the deposited atomic shadow 34, but are deposited only on the surface of the deposited atoms 33.
  • FIG. 6D the stage 27 is rotated 180 degrees in the plane and fixed again.
  • the oblique column grows in a direction different from the nano-order oblique column formed before the rotation.
  • a zigzag nanospring standing on the substrate wafer 31 can be formed.
  • an arbitrary zigzag shape can be formed by controlling the angle of the stage, the rotation time, and the like.
  • the zigzag nanospring can reduce the distance between adjacent nanosprings compared to the spiral shape, and thus can increase the number of nanosprings per unit area. Thereby, the electric power generated by thermoelectric conversion can be increased.
  • the helical nanospring has a small geometric difference in the in-plane direction of the layer, whereas the zigzag nano-order structure has a large geometric difference in the in-plane direction of the layer. In consideration of such a geometric difference, a desired thermoelectric conversion device can be manufactured by selecting the shape of the nanospring including the zigzag shape.
  • FIG. 7 shows a cross-sectional SEM photograph of a zigzag nanospring formed by a dynamic oblique deposition method using bismuth telluride as a thermoelectric conversion material.
  • FIG. 7 shows a state before the wiring layer 3 (planar layer 42 in FIG. 4C) is provided.
  • the zigzag nanospring 71 is self-supporting on the substrate 1 without requiring a special support member. For this reason, when using for a thermoelectric conversion device, the heat which flows into a support member and the heat which flows into nanospring itself does not generate
  • the wire diameter of the zigzag nanospring is several nanometers to several tens of nanometers, the Seebeck coefficient S increases due to the quantum confinement effect, and the thermal conductivity ⁇ decreases due to the phonon diffusion effect. improves.
  • FIGS. 8A to 8F show various shape examples of nanosprings constituting the thermoelectric conversion layer 2 of the thermoelectric conversion device.
  • FIG. 8 (a) shows the spiral nanospring 36 in FIG. 3 (c).
  • FIG. 8B shows the zigzag nanospring 71 in FIG.
  • FIG. 8C shows a nanospring 91 which is erected on the substrate wafer 31 and is self-supporting in a columnar shape.
  • the nanospring 91 of FIG. 8C increases the rotational speed of the stage 27 and decreases the outer diameter of the spiral in the manufacturing process of the spiral nanospring (see FIGS. 3A to 3C). Can be formed.
  • FIG. 8D shows a nanospring 92 that is erected on the substrate wafer 31 and is self-supporting in an oblique column shape.
  • the nanospring 92 in FIG. 8D can be formed by not rotating the stage 27 in the manufacturing process of the zigzag nanospring (see FIGS. 6A to 6E).
  • FIG. 8 (e) shows a nanospring 93 that stands on the substrate wafer 31 and is self-supporting, which has a spiral shape and a diameter that varies in the thickness direction.
  • the nanospring 93 in FIG. 8E can be formed by changing the rotation speed of the stage 27 along with the growth of the nanospring in the manufacturing process of the helical nanospring.
  • FIG. 8 (f) shows a nanospring laminated in a plurality of layers in the thickness direction.
  • the nanospring shown in FIG. 8F is formed by forming the first nanospring 36 layer and the planar layer 94 on the substrate wafer 31 by the manufacturing process shown in FIGS. It can be formed by further forming a layer of the second nanospring 36 on the planar layer 94 by dynamic oblique deposition.
  • the planar layer 42 is formed using the same thermoelectric conversion material as the nanospring 36.
  • two nanospring layers to be stacked can be formed using the planar layer 94 as an intermediate layer.
  • various shapes of nanosprings can be formed by using the dynamic oblique deposition method.
  • FIG. 9 schematically shows the temperature distribution in the thickness direction in the thermoelectric conversion device of the first embodiment.
  • the temperature distribution in FIG. 9 is a temperature distribution during use of the thermoelectric conversion device.
  • substrate 1 and the wiring layer 3 is copper
  • the material of the thermoelectric conversion layer 2 is bismuth telluride.
  • the thermal conductivity of copper is more than 100 times the thermal conductivity of bismuth telluride. Furthermore, since the thermoelectric conversion layer 2 is composed of nanosprings, the effective cross-sectional area is smaller than that of the bulk material, and the phonon scattering effect is obtained by the nanoscale dimensions. Therefore, the thermal conductivity is higher than that of the bulk material. Get smaller. From this, the ratio of the thermal conductivity of the substrate 1 or the wiring layer 3 and the thermal conductivity of the thermoelectric conversion layer 2 is larger than that of the bulk material.
  • thermoelectric conversion device when the temperature of the upper surface of the wiring layer 3 and the temperature of the lower surface of the substrate 1 are T1 and T2 (T1> t2), respectively, the temperature difference in the thermoelectric conversion device mainly occurs in the thermoelectric conversion layer 2. For this reason, the difference between the temperatures T1 and T2 can be effectively contributed to thermoelectric conversion.
  • thermoelectric conversion performance and reliability of the thermoelectric conversion device can be improved.
  • FIGS. 10A to 10B show the structure of a thermoelectric conversion device that is Embodiment 2 of the present invention.
  • FIG. 10A is a perspective view
  • FIG. 10B is a sectional view in the thickness direction.
  • the single-layer wiring layer 3 is provided on the thermoelectric conversion layer 2 in the first embodiment, whereas the wiring layer in the second embodiment includes a plurality of layers, that is, the first layer. 111 and the second layer 112.
  • the single wiring layer 3 has a plurality of functions such as bonding with the thermoelectric conversion layer 2, bonding with the wiring layer side terminal 5, electric conduction as wiring, and heat conduction as a thermoelectric conversion device. I have.
  • these functions are shared by a plurality of layers, that is, the first and second layers 111 and 112, the degree of freedom in selecting a material for the wiring layer is increased.
  • the bonding property with the thermoelectric conversion layer 2 may be considered without considering the bonding property with the wiring layer side terminal 5. Furthermore, in selecting a material for the second layer 112, the bonding property with the wiring-side terminal 5 may be considered without considering the bonding property with the thermoelectric conversion layer 2.
  • the first layer 111 and the second layer 112 constituting the wiring layer may have different thicknesses. As described above, since the degree of freedom in selecting the material and thickness of the wiring layer is increased, a plurality of functions required for the wiring layer can be improved.
  • the 1st layer 111 and the 2nd layer 112 can be formed by changing the manufacturing process which forms the plane layer 42 shown in FIG.4 (c) suitably changing a material suitably.
  • FIGS. 11A to 11B show the structure of a thermoelectric conversion device that is Embodiment 3 of the present invention.
  • FIG. 11A is a perspective view
  • FIG. 11B is a cross-sectional view in the thickness direction.
  • thermoelectric conversion layer 2 is provided on the surface of the substrate 1 in the first and second embodiments, whereas the surface of the substrate 1 and the thermoelectric conversion layer 2 are different in the third embodiment.
  • the intermediate layer 121 is provided.
  • FIG. 12 (a) to 12 (b) show the structure of a thermoelectric conversion device that is Embodiment 4 of the present invention.
  • 12A is a perspective view
  • FIG. 12B is a cross-sectional view in the thickness direction.
  • the intermediate layer 121 is provided between the surface of the substrate 1 and the thermoelectric conversion layer 2 as in Example 3 (FIGS. 11A to 11B). Some are exposed.
  • the intermediate layer 121 is formed of a conductive material. For this reason, the exposed part of the intermediate layer 121 is used as a substrate-side terminal. That is, in the fourth embodiment, the board-side terminal 4 is not necessary, and the manufacturing process for joining the board-side terminal 4 (FIG. 11) to the board 1 can be omitted.
  • the exposed portion of 121 of the intermediate layer is exposed after masking the portion to be the exposed portion in advance before the manufacturing process for forming the thermoelectric conversion layer 2 and the wiring layer 3, or after forming the thermoelectric conversion layer 2 and the wiring layer 3. It can be formed by removing the thermoelectric conversion layer 2 and the wiring layer 3 as a part by etching technique.
  • the material of the substrate 1 is an electrically conductive material such as silicon. Low materials can be used. Accordingly, the degree of freedom in selecting the material of the substrate 1 is improved. Further, in FIG. 12, the position of the exposed portion of the intermediate layer 121 on the substrate 1 is the peripheral end portion of the rectangular or rectangular substrate 1 in order to facilitate connection with an external circuit. Any position where an external circuit can be connected is acceptable.
  • FIG. 13 is a cross-sectional view showing the structure of a thermoelectric conversion device that is Embodiment 5 of the present invention.
  • thermoelectric conversion layer 2a, 2b The difference from the first to fourth embodiments is that a plurality of thermoelectric conversion layers (2a, 2b) are stacked in this embodiment, and in FIG. More specifically, it has the 1st thermoelectric conversion part similar to the thermoelectric conversion device of Example 1 which has the board
  • the 2nd thermoelectric conversion part similar to the thermoelectric conversion device of Example 1 is joined by the joining material 141 interposed between the wiring layer 3a and the board
  • the substrates 1a and 1b, the wiring layers 3a and 3b, the substrate side terminal 4 and the wiring layer side terminal 5 are made of the same conductive material, for example, copper.
  • the thermoelectric conversion layers 2a and 2b are made of the same thermoelectric conversion material, for example, bismuth telluride.
  • FIG. 14 shows a method for manufacturing the thermoelectric conversion device of the fifth embodiment.
  • a substrate 1a on which the thermoelectric conversion layer 2a and the wiring layer 3a are arranged, and a plurality of substrates 1b on which the thermoelectric conversion layer 2b and the wiring layer 3b are arranged are prepared.
  • the substrate side terminal 4 and the wiring layer side terminal 5 are joined to the substrate 1a and the wiring layer 3a, respectively.
  • the wiring layer 3 a disposed on the substrate 1 a and the substrate 1 b are bonded by the bonding material 141.
  • the bonding material 141 a solder material mainly composed of tin is used.
  • thermoelectric conversion layers 2a and 2b since two or more thermoelectric conversion layers 2a and 2b are laminated, the total thickness of the thermoelectric conversion layers in one thermoelectric conversion device can be increased. For this reason, since the thermal resistance of the thermoelectric conversion layer can be increased, thermoelectric conversion can be performed with high performance even when the difference between the temperatures T1 and T2 is large.
  • FIG. 15 schematically shows a temperature distribution in the thickness direction in the thermoelectric conversion device of the fifth embodiment.
  • the tin-based solder material used as the bonding material 141 in the fifth embodiment has a higher thermal conductivity than the material used for the thermoelectric conversion layer 2, and has a thermal conductivity that is 50 times or more compared to, for example, bismuth telluride.
  • the thermoelectric conversion layer is composed of nanosprings, the effective cross-sectional area is smaller than that of the bulk material, and the phonon scattering effect is obtained by the nanoscale dimensions, so that the thermal conductivity is smaller than that of the bulk material. Become. From this, the ratio between the thermal conductivity of the bonding material 141 and the thermal conductivity of the thermoelectric conversion layer 2 is further increased.
  • thermoelectric conversion device when the temperature of the upper surface of the wiring layer 3b and the temperature of the lower surface of the substrate 1a are T1 and T2 (T1> T2), the temperature difference in the thermoelectric conversion device mainly occurs in the thermoelectric conversion layers 2a and 2b. For this reason, the difference between the temperatures T1 and T2 can be effectively contributed to thermoelectric conversion.
  • the first thermoelectric conversion part (substrate 1a, thermoelectric conversion layer 2a, wiring layer 3a) and the second thermoelectric conversion part (substrate 1b, thermoelectric conversion layer 2b, Although the wiring layer 3b) is bonded, it may be cut into a plurality of chips after bonding in the substrate wafer state as shown in FIG.
  • FIGS. 16A to 16B show the structure of a thermoelectric conversion device that is Embodiment 6 of the present invention.
  • FIG. 16A shows the cross-sectional structure and the temperature distribution in the thickness direction.
  • FIG. 16B shows a figure of merit ZT of thermoelectric conversion.
  • Example 5 uses the same thermoelectric conversion material for a plurality of thermoelectric conversion layers 2a and 2b, whereas Example 6 uses a different thermoelectric conversion material for each layer. is there.
  • thermoelectric conversion layers 2a and 2b have different temperature ranges during operation, the temperature of the thermoelectric conversion layer 2a is close to T2, and the temperature of the thermoelectric conversion layer 2b is close to T1.
  • the thermoelectric conversion material has a temperature at which the figure of merit ZT of thermoelectric conversion (see the above formula (1)) becomes maximum depending on the type of material. Therefore, the thermoelectric conversion layer 2a is made of a material whose conversion efficiency increases at a temperature close to the temperature T2, and the thermoelectric conversion layer 2b is made of a material whose conversion efficiency increases at a temperature close to the temperature T1, thereby generating electric power generated by the thermoelectric conversion device. Can be increased.
  • thermoelectric conversion layers 2a and 2b even when used in an environment where the values of the temperatures T1 and T2 fluctuate, by using different materials for the thermoelectric conversion layers 2a and 2b, high performance in a wide temperature range. Thermoelectric conversion is possible.
  • the present invention may be applied to a Peltier device.

Abstract

Disclosed is a thermoelectric conversion device whereby thermoelectric conversion performance can be improved, thermal stress can be reduced, and reliability can be improved. This thermoelectric conversion device is provided with a first conductor section, a thermoelectric conversion layer in contact with the first conductor section, and a second conductor section in contact with the thermoelectric conversion layer, and the thermoelectric conversion layer is configured from a plurality of spring-like nano-order structures. Since the thermoelectric conversion layer is configured from the nano-order structures, thermoelectric conversion performance of the thermoelectric conversion layer is improved, and since the nano structures have a spring shape, thermal stress is relaxed, thereby improving reliability of the thermoelectric conversion device.

Description

熱電変換デバイスおよびその製造方法Thermoelectric conversion device and manufacturing method thereof
 本発明は、熱電効果によって熱および電気相互の変換を行う熱電変換デバイスおよびその製造方法に関する。 The present invention relates to a thermoelectric conversion device that converts between heat and electricity by the thermoelectric effect and a manufacturing method thereof.
 熱電変換デバイスにおいては、半導体などの熱電変換材料からなる熱電変換層に、一対の導体が設けられる。導体間に温度差を与えると、いわゆるゼーベック(Seebeck)効果により、起電力が発生する。また、導体間に電流を流すと、いわゆるペルチエ(Peltier)効果により、一方の導体で発熱が行われ、他方の導体で吸熱が行われる。 In a thermoelectric conversion device, a pair of conductors are provided in a thermoelectric conversion layer made of a thermoelectric conversion material such as a semiconductor. When a temperature difference is applied between the conductors, an electromotive force is generated due to a so-called Seebeck effect. When a current is passed between the conductors, heat is generated in one conductor and heat is absorbed in the other conductor due to the so-called Peltier effect.
 このような熱電変換デバイスの熱電変換性能は、熱電変換層の構成や熱電変換材料の物性に依存する。これに対し、特許文献1および特許文献2並びに非特許文献2に記載されるように、微細なナノ材料を用いて熱電変換性能を向上する技術が知られている。 The thermoelectric conversion performance of such a thermoelectric conversion device depends on the configuration of the thermoelectric conversion layer and the physical properties of the thermoelectric conversion material. On the other hand, as described in Patent Document 1, Patent Document 2, and Non-Patent Document 2, a technique for improving thermoelectric conversion performance using a fine nanomaterial is known.
 特許文献1に記載の技術においては、断面または幅が40nm以下である、導電性材料製または半導体材料製のナノワイヤが用いられる。 In the technique described in Patent Document 1, a nanowire made of a conductive material or a semiconductor material having a cross section or width of 40 nm or less is used.
 特許文献2に記載の技術においては、母相中に分散材として、半導体ナノワイヤが分散されたナノコンポジット熱電変換材料が用いられる。 In the technique described in Patent Document 2, a nanocomposite thermoelectric conversion material in which semiconductor nanowires are dispersed is used as a dispersion material in a matrix phase.
 非特許文献2に記載の技術では、熱電変換効率を向上するために、熱電変換材料の構造をナノワイヤのように低次元化する。 In the technique described in Non-Patent Document 2, in order to improve the thermoelectric conversion efficiency, the structure of the thermoelectric conversion material is reduced in dimension like a nanowire.
 なお、上記のようなナノ材料を含むナノ構造体を製造する技術が、非特許文献1,特許文献3および特許文献4に開示されている。 In addition, the technique which manufactures the nanostructure containing the above nanomaterials is disclosed by the nonpatent literature 1, the patent document 3, and the patent document 4. FIG.
 非特許文献1には、ナノオーダの構造体を平面状に複数製造する技術として、Dynamic Oblique Deposition 法(動的斜め蒸着法),DC Plasma-Enhanced Chemical Vapor Deposition 法,Hydrothermal Crystallization of Colloidal Precursors 法,Template-synthesis 法,Molecular Beam Epitaxy 法,Reactive Pulsed Laser Deposition 法などが開示されている。 Non-Patent Document 1 describes a technique for manufacturing a plurality of nano-order structures in a planar shape, such as a dynamic Oblique Deposition method (dynamic oblique deposition method), a DC Plasma-Enhanced Chemical Vapor Deposition method, a Hydrothermal Crystallization of Colloidal Precursors method, Template -synthesis method, Molecular method, Beam method, Epitaxy method, Reactive method, Pulsed method, Laser method, Deposition method, etc. are disclosed.
 特許文献3には、カーボン材料からなる金型を用いたナノオーダの三次元構造体を形成する製造方法が開示されている。 Patent Document 3 discloses a manufacturing method for forming a nano-order three-dimensional structure using a mold made of a carbon material.
 特許文献4には、自己組織化によってナノオーダの構造体を製造する技術が開示されている。 Patent Document 4 discloses a technique for manufacturing a nano-order structure by self-organization.
特表2011-517109号公報Special table 2011-517109 特開2013-41916号公報JP 2013-41916 A 特許第4938365号公報Japanese Patent No. 4938365 特開2014-101512号公報JP 2014-101512 A
 熱電変換デバイスは適用環境における温度差を利用して発電するため、デバイスの温度が変化するとともに、デバイス内部に温度分布が生じる。このため、デバイスを構成する各部材は使用中に熱変形し、部材間の熱変形差によって熱応力が発生する。これに対し、上述した従来技術は、ナノ材料を用いて熱電変換性能を向上することができるが、デバイスに生じる熱応力について考慮されたものではなく、熱応力を低減することは難しい。 Since thermoelectric conversion devices generate power using the temperature difference in the application environment, the temperature of the device changes and temperature distribution occurs inside the device. For this reason, each member constituting the device is thermally deformed during use, and thermal stress is generated due to a difference in thermal deformation between the members. On the other hand, the above-described conventional technology can improve the thermoelectric conversion performance using the nanomaterial, but it is not considered about the thermal stress generated in the device, and it is difficult to reduce the thermal stress.
 そこで、本発明は、熱電変換性能を高くすることができると共に、熱応力を低減でき信頼性の向上が可能な熱電変換デバイスおよびその製造方法を提供する。 Therefore, the present invention provides a thermoelectric conversion device that can improve thermoelectric conversion performance, reduce thermal stress, and improve reliability, and a method for manufacturing the same.
 上記課題を解決するために、本発明による熱電変換デバイスは、第1の導電体部と、第1の導電体部に接する熱電変換層と、熱電変換層に接する第2の導電体部と、を備え、熱電変換層が複数のスプリング状のナノオーダ構造体から構成される。 In order to solve the above problems, a thermoelectric conversion device according to the present invention includes a first conductor portion, a thermoelectric conversion layer in contact with the first conductor portion, a second conductor portion in contact with the thermoelectric conversion layer, And the thermoelectric conversion layer is composed of a plurality of spring-like nano-order structures.
 熱電変換層がナノオーダ構造体から構成されることにより、熱電変換層の熱電変換性能が高くなる。さらに、ナノ構造体がスプリング形状であるため、部材間の熱変形差がスプリングの変形で吸収される。これにより、熱応力が緩和されるので、熱電変換デバイスの頼性を向上できる。 When the thermoelectric conversion layer is composed of a nano-order structure, the thermoelectric conversion performance of the thermoelectric conversion layer is improved. Furthermore, since the nanostructure has a spring shape, the thermal deformation difference between the members is absorbed by the deformation of the spring. Thereby, since a thermal stress is relieved, the reliability of a thermoelectric conversion device can be improved.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
実施例1である熱電変換デバイスの構造を示す斜視図。1 is a perspective view illustrating a structure of a thermoelectric conversion device that is Embodiment 1. FIG. 実施例1である熱電変換デバイスの構造を示す断面図。Sectional drawing which shows the structure of the thermoelectric conversion device which is Example 1. FIG. 実施例1の熱電変換層の断面SEM写真。2 is a cross-sectional SEM photograph of the thermoelectric conversion layer of Example 1. FIG. 実施例1である熱電変換デバイスの構造を示す断面図。Sectional drawing which shows the structure of the thermoelectric conversion device which is Example 1. FIG. 動的斜め蒸着法が適用される製造装置の概要を示す。An outline of a manufacturing apparatus to which a dynamic oblique deposition method is applied is shown. ナノスプリングを形成する製造工程の一例を示す。An example of the manufacturing process which forms a nanospring is shown. ナノスプリングを形成する製造工程の一例を示す。An example of the manufacturing process which forms a nanospring is shown. ナノスプリングを形成する製造工程の一例を示す。An example of the manufacturing process which forms a nanospring is shown. ナノスプリング層および配線層を形成する製造工程の一例を示す。An example of the manufacturing process which forms a nanospring layer and a wiring layer is shown. ナノスプリング層および配線層を形成する製造工程の一例を示す。An example of the manufacturing process which forms a nanospring layer and a wiring layer is shown. ナノスプリング層および配線層を形成する製造工程の一例を示す。An example of the manufacturing process which forms a nanospring layer and a wiring layer is shown. 加工されたウェハ基板から個々の熱電変換デバイスを作成する製造工程の一例を示す。An example of the manufacturing process which produces each thermoelectric conversion device from the processed wafer substrate is shown. 加工されたウェハ基板から個々の熱電変換デバイスを作成する製造工程の一例を示す。An example of the manufacturing process which produces each thermoelectric conversion device from the processed wafer substrate is shown. 加工されたウェハ基板から個々の熱電変換デバイスを作成する製造工程の一例を示す。An example of the manufacturing process which produces each thermoelectric conversion device from the processed wafer substrate is shown. 加工されたウェハ基板から個々の熱電変換デバイスを作成する製造工程の一例を示す。An example of the manufacturing process which produces each thermoelectric conversion device from the processed wafer substrate is shown. ジグザグ形状のナノスプリングの製造工程を示す。The manufacturing process of a zigzag nanospring is shown. ジグザグ形状のナノスプリングの製造工程を示す。The manufacturing process of a zigzag nanospring is shown. ジグザグ形状のナノスプリングの製造工程を示す。The manufacturing process of a zigzag nanospring is shown. ジグザグ形状のナノスプリングの製造工程を示す。The manufacturing process of a zigzag nanospring is shown. ジグザグ形状のナノスプリングの製造工程を示す。The manufacturing process of a zigzag nanospring is shown. ジグザグ形状のナノスプリングの断面SEM写真を示す。A cross-sectional SEM photograph of a zigzag-shaped nanospring is shown. らせん形状のナノスプリングを示す。A spiral nanospring is shown. ジグザグ形状のナノスプリングを示す。A zigzag shaped nanospring is shown. 柱形状のナノスプリングを示す。A columnar nanospring is shown. 斜柱状のナノスプリングを示す。A slanted columnar nanospring is shown. 径寸法が変化するらせん形状のナノスプリングを示す。A helical spring with a variable diameter is shown. 複数層からなるナノスプリングを示す。The nanospring which consists of multiple layers is shown. 実施例1の熱電変換デバイスにおける厚さ方向の温度分布を示す。The temperature distribution of the thickness direction in the thermoelectric conversion device of Example 1 is shown. 実施例2である熱電変換デバイスの構造を示す斜視図。The perspective view which shows the structure of the thermoelectric conversion device which is Example 2. FIG. 実施例2である熱電変換デバイスの構造を示す断面図。Sectional drawing which shows the structure of the thermoelectric conversion device which is Example 2. FIG. 実施例3である熱電変換デバイスの構造を示す斜視図。FIG. 6 is a perspective view showing a structure of a thermoelectric conversion device that is Embodiment 3. 実施例3である熱電変換デバイスの構造を示す断面図。Sectional drawing which shows the structure of the thermoelectric conversion device which is Example 3. FIG. 実施例4である熱電変換デバイスの構造を示す斜視図。The perspective view which shows the structure of the thermoelectric conversion device which is Example 4. FIG. 実施例4である熱電変換デバイスの構造を示す断面図。Sectional drawing which shows the structure of the thermoelectric conversion device which is Example 4. FIG. 実施例5である熱電変換デバイスの構造を示す断面図である。FIG. 6 is a cross-sectional view showing the structure of a thermoelectric conversion device that is Example 5. 実施例5の熱電変換デバイスの製造方法を示す。The manufacturing method of the thermoelectric conversion device of Example 5 is shown. 実施例5の熱電変換デバイスにおける厚さ方向の温度分布を示す。The temperature distribution of the thickness direction in the thermoelectric conversion device of Example 5 is shown. 実施例6である熱電変換デバイスの断面構造および厚さ方向の温度分布を示す。The cross-sectional structure of the thermoelectric conversion device which is Example 6, and the temperature distribution of the thickness direction are shown. 実施例6である熱電変換デバイスの性能指数を示す。The performance index of the thermoelectric conversion device which is Example 6 is shown.
 以下、本発明の実施例について、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1(a)~(d)は、本発明の実施例1である熱電変換デバイスの構造を示す。 1 (a) to 1 (d) show the structure of a thermoelectric conversion device that is Embodiment 1 of the present invention.
 図1(a)の斜視図および図1(b)の断面図に示すように、本実施例1の熱電変換デバイスは、基板1と、基板1の主面上に配置され、ナノオーダ構造体で構成される熱電変換層2と、熱電変換層2上に配置される配線層3を備えている。さらに、基板1には基板側端子4が電気的に接合され、配線層3には配線層側端子5が電気的に接合されている。基板側端子4および配線層側端子5を外部回路に接続することにより、熱電変換層2における熱電変換により熱から変換される電力が外部に取り出される。 As shown in the perspective view of FIG. 1 (a) and the cross-sectional view of FIG. 1 (b), the thermoelectric conversion device of Example 1 is disposed on the main surface of the substrate 1 and the substrate 1, and has a nano-order structure. A thermoelectric conversion layer 2 configured and a wiring layer 3 disposed on the thermoelectric conversion layer 2 are provided. Further, the substrate side terminal 4 is electrically joined to the substrate 1, and the wiring layer side terminal 5 is electrically joined to the wiring layer 3. By connecting the substrate side terminal 4 and the wiring layer side terminal 5 to an external circuit, electric power converted from heat by thermoelectric conversion in the thermoelectric conversion layer 2 is taken out to the outside.
 本実施例1では、基板1,配線層3,基板側端子4,配線層側端子5には、熱伝導率や電気伝導率の高い銅などの金属導体材料を用いることで、基板1,配線層3,基板側端子4,配線層側端子5での熱抵抗や電気抵抗を低減している。ナノオーダ構造体で構成される熱電変換層2としては、線径が100nm未満であるナノオーダのスプリング(以下、「ナノスプリング」と記す)が、複数個、平面状に密に配置される構造が用いられる。これにより、後述するように、本実施例1では、熱電変換デバイスの熱電変換性能が向上すると共に、発電のためにデバイスに与えられる温度差に起因する熱応力が緩和される。 In the first embodiment, the substrate 1, the wiring layer 3, the substrate side terminal 4, and the wiring layer side terminal 5 are made of a metal conductor material such as copper having a high thermal conductivity or electrical conductivity. The thermal resistance and electrical resistance at the layer 3, the substrate side terminal 4, and the wiring layer side terminal 5 are reduced. As the thermoelectric conversion layer 2 composed of a nano-order structure, a structure in which a plurality of nano-order springs (hereinafter referred to as “nano springs”) having a wire diameter of less than 100 nm are densely arranged in a planar shape is used. It is done. Thereby, as will be described later, in the first embodiment, the thermoelectric conversion performance of the thermoelectric conversion device is improved, and the thermal stress due to the temperature difference given to the device for power generation is alleviated.
 なお、本実施例に1において、基板1,熱電変換層2,配線層3は、略同じ矩形あるいは方形の薄板あるいはシート状の平面形状を備え、厚さ方向に積層される。すなわち、熱電変換層2の厚さ方向の2主面の一方および他方が、それぞれ、基板1の平面部および配線層3の平面部と接合される。従って、厚さが薄く、面積が広い、熱電変換デバイスが得られる。 In this embodiment, the substrate 1, the thermoelectric conversion layer 2, and the wiring layer 3 have substantially the same rectangular or rectangular thin plate or sheet-like planar shape, and are laminated in the thickness direction. That is, one and the other of the two principal surfaces in the thickness direction of the thermoelectric conversion layer 2 are joined to the planar portion of the substrate 1 and the planar portion of the wiring layer 3, respectively. Therefore, a thermoelectric conversion device having a small thickness and a large area can be obtained.
 図1(c)は、公知の動的斜め蒸着法(例えば前述の非特許文献1参照)で製造されるナノスプリングからなる熱電変換層2の断面を走査型電子顕微鏡(Scanning Electron Microscope,SEM)で観察した写真を示す。線径が数nmから数十nmで高さが数μmのナノスプリングが、複数、基板1上に立設されると共に、密に配置される。各ナノスプリングの下端部および上端部は、それぞれ基板1および配線層3と接合される。 FIG. 1C shows a scanning electron microscope (Scanning Electron Microscope, SEM) of a cross section of a thermoelectric conversion layer 2 made of nanosprings manufactured by a known dynamic oblique deposition method (for example, see Non-Patent Document 1 described above). The photograph observed in is shown. A plurality of nanosprings having a wire diameter of several nanometers to several tens of nanometers and a height of several micrometers are erected on the substrate 1 and arranged densely. The lower end and the upper end of each nanospring are joined to the substrate 1 and the wiring layer 3, respectively.
 本実施例1の熱電変換デバイスを、図1(d)の断面図に示すように、基板1の下面と配線層3の上面が異なる温度(それぞれ、T2,T1)になるように配置すると、熱電変換デバイス内部の厚さ方向に温度差が生じる。この温度差によって、ナノスプリングで構成される熱電変換層2の上下に温度差が生じ、熱電効果であるゼーベック(Seebeck)効果によって、熱電変換層2の上下端に電位差が生じる。 When the thermoelectric conversion device of Example 1 is arranged so that the lower surface of the substrate 1 and the upper surface of the wiring layer 3 are at different temperatures (T2 and T1, respectively) as shown in the cross-sectional view of FIG. A temperature difference occurs in the thickness direction inside the thermoelectric conversion device. Due to this temperature difference, a temperature difference is generated above and below the thermoelectric conversion layer 2 composed of nanosprings, and a potential difference is generated between the upper and lower ends of the thermoelectric conversion layer 2 due to the Seebeck effect which is a thermoelectric effect.
 ここで、温度差を電気に変換する熱電変換デバイスの熱電変換性能は、式(1)に示される性能指数ZTで表される。 Here, the thermoelectric conversion performance of the thermoelectric conversion device that converts the temperature difference into electricity is represented by a figure of merit ZT shown in Equation (1).
 ZT=SσT/κ …(1)
 ここで、Sはゼーベック係数、σは電気伝導率、κは熱伝導率、Tは絶対温度であり、この性能指数が大きいほど熱電変換性能が高い。したがって、高い熱電変換性能を得るためには、ゼーベック係数Sや電気伝導率σが大きく、熱伝導率κの小さい熱電変換材料を選択することが好ましい。
ZT = S 2 σT / κ (1)
Here, S is the Seebeck coefficient, σ is the electrical conductivity, κ is the thermal conductivity, and T is the absolute temperature. The larger this figure of merit, the higher the thermoelectric conversion performance. Therefore, in order to obtain a high thermoelectric conversion performance, it is preferable to select a thermoelectric conversion material having a large Seebeck coefficient S and electrical conductivity σ and a small thermal conductivity κ.
 熱電変換材料の構造をナノワイヤのように低次元化すると、ゼーベック係数Sが増加する現象が知られている。これは、量子閉じ込め効果による現象であり、この現象を起こすためには、熱電変換材料のワイヤの直径は数nm以下が好ましい。また、熱電変換材料のワイヤの直径を数十nmあるいは数百nm以下にすると、フォノン散乱効果によって熱伝導率κが小さくなる現象が知られている。また,ナノワイヤを多結晶体とすることで,粒界での熱抵抗が大きくなって熱伝導率κが小さくなる。したがって、本実施例1においては、図1(c)に示すような、線径が数nmから数十nmのナノスプリングによって熱電変換層2を構成することにより、量子閉じ込め効果によりゼーベック係数Sが増加し、フォノン散乱効果と多結晶効果により熱伝導率κが増加するので、熱電変換デバイスの性能指数ZTを増大することができる。 It is known that the Seebeck coefficient S increases when the structure of a thermoelectric conversion material is reduced to a low dimension like a nanowire. This is a phenomenon due to the quantum confinement effect. In order to cause this phenomenon, the diameter of the wire of the thermoelectric conversion material is preferably several nm or less. Moreover, when the diameter of the wire of the thermoelectric conversion material is set to several tens nm or several hundred nm or less, a phenomenon is known in which the thermal conductivity κ is reduced by the phonon scattering effect. In addition, by making the nanowire polycrystalline, the thermal resistance at the grain boundary increases and the thermal conductivity κ decreases. Therefore, in the first embodiment, as shown in FIG. 1C, the thermoelectric conversion layer 2 is constituted by nanosprings having a wire diameter of several nanometers to several tens of nanometers, whereby the Seebeck coefficient S is increased due to the quantum confinement effect. Since the thermal conductivity κ increases due to the phonon scattering effect and the polycrystalline effect, the figure of merit ZT of the thermoelectric conversion device can be increased.
 ところで、本実施例1の熱電変換デバイスを大気中に配置して使用する場合、ナノスプリングの間には空気が充填される。ナノスプリングを構成する熱電変換材料と比較して空気の熱伝導率は十分小さいことから、熱は主にナノスプリングの内部を流れる。したがって、ナノスプリングを用いながらも、ナノスプリング間に熱が流れて熱電変換性能が向上しないというような不都合が防止できる。また、本実施例1の熱電変換デバイスを真空中で使用すると、ナノスプリング間における空気を伝導する熱の流れは生じないので、熱電変換性能が向上する。このため、図1に示す熱電変換デバイスを、基板1の下面および配線層3の上面が露出するように真空封止すれば、空気中で使用する場合でも、高い熱電変換性能が得られる。 By the way, when the thermoelectric conversion device of the first embodiment is used in the atmosphere, air is filled between the nanosprings. Since the thermal conductivity of air is sufficiently small as compared with the thermoelectric conversion material constituting the nanospring, heat mainly flows inside the nanospring. Therefore, the inconvenience that heat flows between the nanosprings and the thermoelectric conversion performance does not improve while using the nanosprings can be prevented. In addition, when the thermoelectric conversion device of the first embodiment is used in a vacuum, the heat flow that conducts air between the nanosprings does not occur, so the thermoelectric conversion performance is improved. Therefore, if the thermoelectric conversion device shown in FIG. 1 is vacuum-sealed so that the lower surface of the substrate 1 and the upper surface of the wiring layer 3 are exposed, high thermoelectric conversion performance can be obtained even when used in air.
 本実施例1の熱電変換デバイスが、図1(d)に示すように、基板1の下面と配線層3の上面が異なる温度になるように配置されると、基板1と配線層3とでは、温度が異なることから、熱変形に違いが生じる。熱電変換デバイスでは、大きな温度差があるほど発電量が増加することから、基板1の温度T1と配線層3の温度T3の差は大きくすることが好ましい。しかし、温度T1とT3の差が大きいほど基板1と配線層3の熱変形の差が大きくなる。これに対し、本実施例1の熱電変換デバイスでは、基板1と配線層3の間に配置される熱電変換層2が複数のナノスプリングで構成されていることから、基板1と配線層3の熱変形差がナノスプリングの変形によって吸収される。そのため、基板1、熱電変換層2、配線層3における熱応力が低減されるので、熱電変換デバイスの信頼性が向上できる。 When the thermoelectric conversion device of Example 1 is arranged so that the lower surface of the substrate 1 and the upper surface of the wiring layer 3 are at different temperatures as shown in FIG. Since the temperature is different, a difference occurs in the thermal deformation. In the thermoelectric conversion device, since the amount of power generation increases as the temperature difference increases, it is preferable to increase the difference between the temperature T1 of the substrate 1 and the temperature T3 of the wiring layer 3. However, the greater the difference between the temperatures T1 and T3, the greater the difference in thermal deformation between the substrate 1 and the wiring layer 3. On the other hand, in the thermoelectric conversion device of Example 1, the thermoelectric conversion layer 2 disposed between the substrate 1 and the wiring layer 3 is composed of a plurality of nanosprings. The thermal deformation difference is absorbed by the deformation of the nanospring. Therefore, since the thermal stress in the substrate 1, the thermoelectric conversion layer 2, and the wiring layer 3 is reduced, the reliability of the thermoelectric conversion device can be improved.
 熱電変換層2の材料には、熱電変換特性を有する材料を用いる。熱電変換特性を有する材料として、ビスマス,テルル化ビスマス系化合物に代表されるテルライド系材料,シリコン・ゲルマニウム系合金,シリサイド系材料,スクッテルダイト系材料,ハーフホイスラー金属系材料,亜鉛・アンチモン系材料およびホウ素化合物などの非酸化物系材料や、酸化コバルト系材料,酸化亜鉛系材料および酸化チタン系材料などの酸化物系材料など、様々な材料が適用できる。これらの材料は、それぞれ性能指数ZTが大きくなる温度域や耐久温度などの特性が異なるため、用途に応じて適切な材料を選択することができる。 The material of the thermoelectric conversion layer 2 is a material having thermoelectric conversion characteristics. As materials having thermoelectric conversion characteristics, bismuth, telluride materials represented by bismuth telluride compounds, silicon-germanium alloys, silicide materials, skutterudite materials, half-Heusler metal materials, zinc antimony materials Various materials such as non-oxide materials such as boron compounds and oxide materials such as cobalt oxide materials, zinc oxide materials, and titanium oxide materials can be applied. Since these materials have different characteristics such as a temperature range in which the figure of merit ZT increases and a durability temperature, appropriate materials can be selected according to the application.
 次に、図2~5を用いて、本実施例1の熱電変換デバイスの製造方法を説明する。なお、本実施例1では、熱電変換層2が公知の動的斜め蒸着法によって製造される。 Next, the manufacturing method of the thermoelectric conversion device of Example 1 will be described with reference to FIGS. In Example 1, the thermoelectric conversion layer 2 is manufactured by a known dynamic oblique deposition method.
 図2は、動的斜め蒸着法が適用される製造装置の概要を示す。また、図3(a)~(c)は、図2の製造装置を用いてナノオーダ構造体であるナノスプリングを形成する製造工程の一例を示す。図4(a)~(c)は、図2の製造装置を用いてナノスプリング層および配線層を形成する製造工程の一例を示す。 FIG. 2 shows an outline of a manufacturing apparatus to which the dynamic oblique deposition method is applied. 3A to 3C show an example of a manufacturing process for forming a nanospring that is a nano-order structure using the manufacturing apparatus of FIG. 4A to 4C show an example of a manufacturing process for forming the nanospring layer and the wiring layer using the manufacturing apparatus of FIG.
 図2に示す製造装置は、図示されない真空ポンプによって内部が略真空になる真空チャンバ21の内部に、るつぼ22と電子銃23とるつぼ22に対向するステージ27を備える。ステージ27は、るつぼ22に対して一定の角度を保つと共にこの角度を変える機構と、ステージ27からるつぼ22に向かう方向を回転軸とする回転機構と、ステージ27面を回転する回転機構を有する。るつぼ22にナノオーダ構造体であるナノスプリングの材料24を配置して、電子銃23から出射される電子ビーム25を材料24に照射することで、材料24は蒸発し、蒸発流26となる。蒸発流26がステージ27に到達して堆積することで、ナノスプリングが生成される。 The manufacturing apparatus shown in FIG. 2 includes a stage 27 facing the crucible 22, the electron gun 23, and the crucible 22 inside a vacuum chamber 21 that is substantially vacuumed by a vacuum pump (not shown). The stage 27 has a mechanism that maintains a certain angle with respect to the crucible 22 and changes the angle, a rotation mechanism that uses a direction from the stage 27 toward the crucible 22 as a rotation axis, and a rotation mechanism that rotates the surface of the stage 27. By disposing a nanospring material 24 which is a nano-order structure in the crucible 22 and irradiating the material 24 with an electron beam 25 emitted from the electron gun 23, the material 24 evaporates and becomes an evaporated flow 26. As the evaporative flow 26 reaches the stage 27 and accumulates, nanosprings are generated.
 このとき、ステージ27の表面に、図3(a)に示す平坦な面を持つ基板ウェハ31を固定しておくと、一定角度の斜め方向から材料24の原子32が基板ウェハ31の表面に到達し、堆積する。基板ウェハ31の表面に堆積した原子33ができることで、図3(a)における部分拡大図に示す様に堆積した原子の影34ができる。その結果、原子の影34ができた後は、堆積した原子の影34の領域には原子32が堆積せず、堆積した原子33の表面のみに堆積するため、図3(b)に示す様に蒸発した原子32は斜柱35状に堆積する。このとき、図3(c)に示すように、原子32を堆積させながらステージ27を面内に一定速度で回転させると、堆積した原子33によって生じる影34の方向がステージ27の面内回転に伴って変化するため、基板ウェハ31上に複数のらせん状に自立したナノオーダスプリング36が形成される。このとき、ステージの角度や回転速度などを制御することで、任意のらせん形状を製造できる。 At this time, if the substrate wafer 31 having a flat surface shown in FIG. 3A is fixed to the surface of the stage 27, the atoms 32 of the material 24 reach the surface of the substrate wafer 31 from an oblique direction at a certain angle. And deposit. Since the atoms 33 deposited on the surface of the substrate wafer 31 are formed, shadows 34 of the deposited atoms are formed as shown in the partially enlarged view in FIG. As a result, after the shadow 34 of the atom is formed, the atom 32 is not deposited in the region of the deposited atom shadow 34, but is deposited only on the surface of the deposited atom 33. Therefore, as shown in FIG. The atoms 32 evaporated in this manner are deposited in the shape of an oblique column 35. At this time, as shown in FIG. 3C, when the stage 27 is rotated in a plane at a constant speed while depositing the atoms 32, the direction of the shadow 34 caused by the deposited atoms 33 becomes the in-plane rotation of the stage 27. Accordingly, a plurality of spiral nano-order springs 36 are formed on the substrate wafer 31. At this time, an arbitrary spiral shape can be manufactured by controlling the angle and rotation speed of the stage.
 図3(a)~(c)に示す製造工程によって、図4(a)に示すような基板ウェハ31上の実質全面に、図4(b)に示すように、基板ウェハ31を回転しながら原子33を堆積することでナノスプリング36の層が形成される。次に、図4(c)に示すように、基板ウェハ31の正面から原子41を蒸着させると、ナノスプリング36の層の上端部に原子が堆積して成長することで、隣接するナノスプリングの上端部どうしが連結され、さらに蒸着を続けることで、デバイスにおいて配線層3となる平面層42が形成される。ここで、ナノスプリングは熱電変換特性を有する材料で形成するが、平面層は金属材料で形成する。ナノスプリング36の層を形成する工程(図4(b))と平面層42を形成する工程(図4(c))において、図2の製造装置のるつぼ22にセットする材料を適宜変更することで、ナノスプリング36の層を構成する熱電変換材料と平面層42を構成する金属材料を、重ねて蒸着することができる。これにより、熱電変換デバイスの生産性が向上する。 3 (a) to 3 (c), while rotating the substrate wafer 31 as shown in FIG. 4 (b) over the substantially entire surface of the substrate wafer 31 as shown in FIG. 4 (a). By depositing atoms 33, a layer of nanosprings 36 is formed. Next, as shown in FIG. 4C, when the atoms 41 are vapor-deposited from the front surface of the substrate wafer 31, the atoms are deposited and grown on the upper end portion of the nanospring 36 layer. The upper end portions are connected to each other, and the planar layer 42 to be the wiring layer 3 in the device is formed by continuing the vapor deposition. Here, the nanospring is formed of a material having thermoelectric conversion characteristics, but the planar layer is formed of a metal material. In the step of forming the nano-spring 36 layer (FIG. 4B) and the step of forming the planar layer 42 (FIG. 4C), the material set in the crucible 22 of the manufacturing apparatus in FIG. Thus, the thermoelectric conversion material forming the layer of the nanospring 36 and the metal material forming the planar layer 42 can be deposited in a stacked manner. Thereby, the productivity of the thermoelectric conversion device is improved.
 図5(a)~(d)は、図3(a)~(c)並びに図4(a)~(c)に示す製造工程によって、ナノスプリング36の層および平面層42が形成された、すなわち加工されたウェハ基板31から、図1に示すような個々の熱電変換デバイスを製作する製造工程の一例を示す。 5A to 5D, the nanospring 36 layer and the planar layer 42 are formed by the manufacturing steps shown in FIGS. 3A to 3C and FIGS. 4A to 4C. That is, an example of a manufacturing process for manufacturing individual thermoelectric conversion devices as shown in FIG. 1 from the processed wafer substrate 31 is shown.
 図5(a)に示すように、前述した図3(a)~(c)および図4(a)~(c)に示す製造工程によって、基板ウェハ31の実質全面上に、熱電変換デバイスにおいて、それぞれ熱電変換層2および配線層3となる、ナノスプリング36の層および平面層42が形成される。次に、図5(b)に示すように、基板ウェハ31を、所定の間隔で切断することにより、所定の寸法の矩形状あるいは正方形状のチップを複数個作製する。各チップは、図5(c)に示すように、基板1上にナノスプリングで構成される熱電変換層2と配線層3がこの順で積層される積層構造を有する。次に、図5(d)に示すように、基板1および配線層3に、それぞれ基板側端子4および配線層側端子5を接合することにより、図1に示すような熱電変換デバイスが製造される。 As shown in FIG. 5A, the thermoelectric conversion device is formed on the substantially entire surface of the substrate wafer 31 by the manufacturing process shown in FIGS. 3A to 3C and FIGS. 4A to 4C. Then, the layer of the nanospring 36 and the planar layer 42, which become the thermoelectric conversion layer 2 and the wiring layer 3, respectively, are formed. Next, as shown in FIG. 5B, the substrate wafer 31 is cut at a predetermined interval to produce a plurality of rectangular or square chips having a predetermined size. As shown in FIG. 5C, each chip has a laminated structure in which a thermoelectric conversion layer 2 composed of nanosprings and a wiring layer 3 are laminated in this order on a substrate 1. Next, as shown in FIG. 5 (d), the substrate-side terminal 4 and the wiring layer-side terminal 5 are joined to the substrate 1 and the wiring layer 3, respectively, to manufacture a thermoelectric conversion device as shown in FIG. The
 なお、図3(c)の製造工程では、基板ウェハ31を一定速度で回転しながら蒸着することで、らせん状のナノスプリングが製造されるが、回転方法を変更することで、後述する図6(e),図7並びに図8(a)~(f)に示すような種々の形状のナノスプリングを形成することができる。 In the manufacturing process of FIG. 3C, a spiral nanospring is manufactured by vapor deposition while rotating the substrate wafer 31 at a constant speed. However, by changing the rotation method, FIG. (E), FIG. 7 and FIGS. 8 (a) to (f) can form nanosprings having various shapes.
 図6(a)~(e)は、ジグザグ形状のナノスプリングの製造工程を示す。図6(a)~(e)に示す製造工程においても、動的斜め蒸着法が用いられる。 6 (a) to 6 (e) show the manufacturing process of the zigzag nanospring. Also in the manufacturing process shown in FIGS. 6A to 6E, the dynamic oblique deposition method is used.
 図6(a)に示すような平坦な面を持つ基板ウェハ31を、図2に示す製造装置のステージ27に固定し、図6(b)に示すように、一定角度の斜め方向から原子32を基板ウェハ31の表面に堆積させる。その結果、基板ウェハ31の表面に堆積した原子33によって、堆積した原子の影34ができる。原子の影34ができた後は、堆積した原子の影34の領域には原子32が堆積せず、堆積した原子33の表面のみに堆積するため、蒸発した原子32は、図6(c)に示すように斜柱35状に堆積する。このとき、ステージ27を固定すると、ナノオーダの斜柱が長く成長する。その後、図6(d)に示す様にステージ27を面内に180度回転させて再び固定する。このようなステージ27の回転によって、図6(e)に示すように、回転前に形成されるナノオーダの斜柱とは異なる方向に斜柱が成長する。このような工程を繰り返すことで、基板ウェハ31上に立設するジグザグ状のナノスプリングを形成できる。このとき、ステージの角度や回転させる時間などを制御することで、任意のジグザグ形状を形成できる。 A substrate wafer 31 having a flat surface as shown in FIG. 6A is fixed to the stage 27 of the manufacturing apparatus shown in FIG. 2, and as shown in FIG. Is deposited on the surface of the substrate wafer 31. As a result, the deposited atoms 34 are shadowed by the atoms 33 deposited on the surface of the substrate wafer 31. After the atomic shadow 34 is formed, the atoms 32 are not deposited in the region of the deposited atomic shadow 34, but are deposited only on the surface of the deposited atoms 33. As shown in FIG. At this time, if the stage 27 is fixed, a nano-order oblique column grows longer. Thereafter, as shown in FIG. 6D, the stage 27 is rotated 180 degrees in the plane and fixed again. By such rotation of the stage 27, as shown in FIG. 6E, the oblique column grows in a direction different from the nano-order oblique column formed before the rotation. By repeating such a process, a zigzag nanospring standing on the substrate wafer 31 can be formed. At this time, an arbitrary zigzag shape can be formed by controlling the angle of the stage, the rotation time, and the like.
 ジグザグ形状のナノスプリングは、らせん形状と比較して隣接するナノスプリング間の距離を低減することができるので、単位面積当りのナノスプリングの個数を増大することができる。これにより、熱電変換によって発電される電力を大きくすることができる。一方、らせん形状のナノスプリングは、層の面内方向において幾何学的な違いが小さいのに対して、ジグザグ形状のナノオーダ構造体は層の面内方向において幾何学的な違いが大きい。このような幾何学的な違いを考慮して、ジグザグ状の形状も含めて、ナノスプリングの形状を選択することにより、所望の熱電変換デバイスを製造することができる。 The zigzag nanospring can reduce the distance between adjacent nanosprings compared to the spiral shape, and thus can increase the number of nanosprings per unit area. Thereby, the electric power generated by thermoelectric conversion can be increased. On the other hand, the helical nanospring has a small geometric difference in the in-plane direction of the layer, whereas the zigzag nano-order structure has a large geometric difference in the in-plane direction of the layer. In consideration of such a geometric difference, a desired thermoelectric conversion device can be manufactured by selecting the shape of the nanospring including the zigzag shape.
 図7は、熱電変換材料としてテルル化ビスマスを用いて、動的斜め蒸着法で形成されるジグザグ形状のナノスプリングの断面SEM写真を示す。なお、図7は、配線層3(図4(c)における平面層42)を設ける前の状態を示す。 FIG. 7 shows a cross-sectional SEM photograph of a zigzag nanospring formed by a dynamic oblique deposition method using bismuth telluride as a thermoelectric conversion material. FIG. 7 shows a state before the wiring layer 3 (planar layer 42 in FIG. 4C) is provided.
 図7に示すように、配線層3を設ける前であっても、ジグザグ形状のナノスプリング71は、特段のサポート部材を要することなく、基板1上に自立する。このため、熱電変換デバイスに用いる場合に、サポート部材に熱が流れてナノスプリング自体に流れる熱が減少するような不都合が起こらず、高い熱電変換性能が得られる。また、ジグザグ形状のナノスプリングの線径は数nmから数十nmであるため、量子閉じ込め効果によりゼーベック係数Sが増加し、またフォノン拡散効果により熱伝導率κが低下するので、熱電変換性能が向上する。 As shown in FIG. 7, even before the wiring layer 3 is provided, the zigzag nanospring 71 is self-supporting on the substrate 1 without requiring a special support member. For this reason, when using for a thermoelectric conversion device, the heat which flows into a support member and the heat which flows into nanospring itself does not generate | occur | produce, and high thermoelectric conversion performance is obtained. In addition, since the wire diameter of the zigzag nanospring is several nanometers to several tens of nanometers, the Seebeck coefficient S increases due to the quantum confinement effect, and the thermal conductivity κ decreases due to the phonon diffusion effect. improves.
 図8(a)~(f)は、熱電変換デバイスの熱電変換層2を構成するナノスプリングの種々の形状例を示す。 FIGS. 8A to 8F show various shape examples of nanosprings constituting the thermoelectric conversion layer 2 of the thermoelectric conversion device.
 図8(a)は、図3(c)におけるらせん形状のナノスプリング36を示す。 FIG. 8 (a) shows the spiral nanospring 36 in FIG. 3 (c).
 図8(b)は、図7におけるジグザグ形状のナノスプリング71を示す。 FIG. 8B shows the zigzag nanospring 71 in FIG.
 図8(c)は、柱状に、基板ウェハ31上に立設され自立するナノスプリング91を示す。図8(c)のナノスプリング91は、らせん形状のナノスプリングの製造工程(図3(a)~(c)参照)において、ステージ27の回転速度を大きくして、らせんの外径を小さくすることで形成できる。 FIG. 8C shows a nanospring 91 which is erected on the substrate wafer 31 and is self-supporting in a columnar shape. The nanospring 91 of FIG. 8C increases the rotational speed of the stage 27 and decreases the outer diameter of the spiral in the manufacturing process of the spiral nanospring (see FIGS. 3A to 3C). Can be formed.
 図8(d)は、斜柱状に、基板ウェハ31上に立設され自立するナノスプリング92を示す。図8(d)のナノスプリング92は、ジグザグ形状のナノスプリングの製造工程(図6(a)~(e)参照)において、ステージ27を回転させないことで形成できる。 FIG. 8D shows a nanospring 92 that is erected on the substrate wafer 31 and is self-supporting in an oblique column shape. The nanospring 92 in FIG. 8D can be formed by not rotating the stage 27 in the manufacturing process of the zigzag nanospring (see FIGS. 6A to 6E).
 図8(e)は、らせん状で、かつ厚さ方向に径寸法が変化する、基板ウェハ31上に立設され自立するナノスプリング93を示す。図8(e)のナノスプリング93は、らせん形状のナノスプリングの製造工程において、ナノスプリングの成長と共にステージ27の回転速度を変更することで形成できる。 FIG. 8 (e) shows a nanospring 93 that stands on the substrate wafer 31 and is self-supporting, which has a spiral shape and a diameter that varies in the thickness direction. The nanospring 93 in FIG. 8E can be formed by changing the rotation speed of the stage 27 along with the growth of the nanospring in the manufacturing process of the helical nanospring.
 図8(f)は、厚さ方向に複数層積層されるナノスプリングを示す。図8(f)のナノスプリングは、図4(a)~(c)に示す製造工程によって、基板ウェハ31上に第1のナノスプリング36の層および平面層94を形成し、次に表面の平面層94の上にさらに動的斜め蒸着法で第2のナノスプリング36の層を形成することで形成できる。ここで、平面層42はナノスプリング36と同じ熱電変換材料を用いて形成される。これにより、平面層94を中間層として、積層される二層のナノスプリングの層を形成することができる。なお、このような製造工程を繰り返すことで、3層以上の複数層のナノオーダスプリングの層を形成することができる。これにより、実効的に、ナノオーダ構造体の層の厚さを容易に増大することができるので、熱電変換デバイスの発電電力を増大することができる。 FIG. 8 (f) shows a nanospring laminated in a plurality of layers in the thickness direction. The nanospring shown in FIG. 8F is formed by forming the first nanospring 36 layer and the planar layer 94 on the substrate wafer 31 by the manufacturing process shown in FIGS. It can be formed by further forming a layer of the second nanospring 36 on the planar layer 94 by dynamic oblique deposition. Here, the planar layer 42 is formed using the same thermoelectric conversion material as the nanospring 36. As a result, two nanospring layers to be stacked can be formed using the planar layer 94 as an intermediate layer. In addition, by repeating such a manufacturing process, it is possible to form three or more layers of nano-order springs. Thereby, since the thickness of the layer of the nano-order structure can be increased effectively, the generated power of the thermoelectric conversion device can be increased.
 以上のように、動的斜め蒸着法を用いることで、様々な形状のナノスプリングを形成できる。 As described above, various shapes of nanosprings can be formed by using the dynamic oblique deposition method.
 図9は、本実施例1の熱電変換デバイスにおける厚さ方向の温度分布を模式的に示す。図9中の温度分布は、熱電変換デバイスを使用中の温度分布である。なお、基板1や配線層3の材料は銅であり、熱電変換層2の材料はテルル化ビスマスである。 FIG. 9 schematically shows the temperature distribution in the thickness direction in the thermoelectric conversion device of the first embodiment. The temperature distribution in FIG. 9 is a temperature distribution during use of the thermoelectric conversion device. In addition, the material of the board | substrate 1 and the wiring layer 3 is copper, and the material of the thermoelectric conversion layer 2 is bismuth telluride.
 バルク材で比較すると、銅の熱伝導率はテルル化ビスマスの熱伝導率の100倍以上である。さらに、熱電変換層2は、ナノスプリングから構成されるため、実効的な断面積がバルク材よりも小さいこと、ナノスケール寸法によりフォノン散乱効果が得られることから、熱伝導率がバルク材よりも小さくなる。このことから、基板1や配線層3の熱伝導率と、熱電変換層2の熱伝導率との比は、バルク材よりも大きくなる。したがって、配線層3の上面の温度および基板1の下面の温度がそれぞれT1およびT2(T1>t2)のとき、熱電変換デバイス内における温度差は主に熱電変換層2で生じる。このため、温度T1とT2の差を、有効に熱電変換に寄与させることができる。 Compared with bulk materials, the thermal conductivity of copper is more than 100 times the thermal conductivity of bismuth telluride. Furthermore, since the thermoelectric conversion layer 2 is composed of nanosprings, the effective cross-sectional area is smaller than that of the bulk material, and the phonon scattering effect is obtained by the nanoscale dimensions. Therefore, the thermal conductivity is higher than that of the bulk material. Get smaller. From this, the ratio of the thermal conductivity of the substrate 1 or the wiring layer 3 and the thermal conductivity of the thermoelectric conversion layer 2 is larger than that of the bulk material. Therefore, when the temperature of the upper surface of the wiring layer 3 and the temperature of the lower surface of the substrate 1 are T1 and T2 (T1> t2), respectively, the temperature difference in the thermoelectric conversion device mainly occurs in the thermoelectric conversion layer 2. For this reason, the difference between the temperatures T1 and T2 can be effectively contributed to thermoelectric conversion.
 上述したように、本実施例1によれば、熱電変換デバイスの熱電変換性能および信頼性を向上することができる。 As described above, according to the first embodiment, the thermoelectric conversion performance and reliability of the thermoelectric conversion device can be improved.
 図10(a)~(b)は、本発明の実施例2である熱電変換デバイスの構造を示す。図10(a)は斜視図、図10(b)は厚さ方向の断面図である。 FIGS. 10A to 10B show the structure of a thermoelectric conversion device that is Embodiment 2 of the present invention. FIG. 10A is a perspective view, and FIG. 10B is a sectional view in the thickness direction.
 実施例1との相違点は、実施例1では熱電変換層2の上部に単層の配線層3が設けられるのに対し、本実施例2では配線層が、複数の層すなわち第1の層111および第2の層112によって構成される点である。実施例1では、単層の配線層3が、熱電変換層2との接合,配線層側端子5との接合,配線としての電気伝導および熱電変換デバイスとしての熱伝導というような複数の機能を備えている。これに対し、本実施例2では、これらの機能を複数の層すなわち第1および第2の層111,112で分担して受け持つため、配線層の材料選定の自由度が大きくなる。たとえば、第1の層111の材料選定においては、配線層側端子5との接合性は考慮せず、熱電変換層2との接合性を考慮すれば良い。さらに、第2の層112の材料選定においては、熱電変換層2との接合性は考慮せず、配線側端子5との接合性を考慮すれば良い。また、電気伝導性や熱伝導性を考慮して、第1の層111と配線層を構成する第2の層112を異なる厚さにしても良い。このように、配線層の材料や厚さの選定の自由度が広がることにより、配線層に要求される複数の機能をともに良好ならしめることができる。 The difference from the first embodiment is that the single-layer wiring layer 3 is provided on the thermoelectric conversion layer 2 in the first embodiment, whereas the wiring layer in the second embodiment includes a plurality of layers, that is, the first layer. 111 and the second layer 112. In the first embodiment, the single wiring layer 3 has a plurality of functions such as bonding with the thermoelectric conversion layer 2, bonding with the wiring layer side terminal 5, electric conduction as wiring, and heat conduction as a thermoelectric conversion device. I have. In contrast, in the second embodiment, since these functions are shared by a plurality of layers, that is, the first and second layers 111 and 112, the degree of freedom in selecting a material for the wiring layer is increased. For example, in selecting the material of the first layer 111, the bonding property with the thermoelectric conversion layer 2 may be considered without considering the bonding property with the wiring layer side terminal 5. Furthermore, in selecting a material for the second layer 112, the bonding property with the wiring-side terminal 5 may be considered without considering the bonding property with the thermoelectric conversion layer 2. In consideration of electric conductivity and thermal conductivity, the first layer 111 and the second layer 112 constituting the wiring layer may have different thicknesses. As described above, since the degree of freedom in selecting the material and thickness of the wiring layer is increased, a plurality of functions required for the wiring layer can be improved.
 なお、第1の層111および第2の層112は、図4(c)に示す平面層42を形成する製造工程を、適宜材料を変えて繰り返すことにより形成することができる。 In addition, the 1st layer 111 and the 2nd layer 112 can be formed by changing the manufacturing process which forms the plane layer 42 shown in FIG.4 (c) suitably changing a material suitably.
 図11(a)~(b)は、本発明の実施例3である熱電変換デバイスの構造を示す。図11(a)は斜視図、図11(b)は厚さ方向の断面図である。 FIGS. 11A to 11B show the structure of a thermoelectric conversion device that is Embodiment 3 of the present invention. FIG. 11A is a perspective view, and FIG. 11B is a cross-sectional view in the thickness direction.
 実施例1~2との相違点は、実施例1~2では基板1の表面に熱電変換層2が設けられるのに対して、本実施例3では基板1の表面と熱電変換層2の間に中間層121が設けられる点である。中間層121の材料として、基板1および熱電変換層2の両方と接合強度の大きい材料、例えば、クロムやチタンを用いることにより、実質的に基板1と熱電変換層2の間の接合強度を大きくすることができる。これにより、熱電変換デバイスの強度信頼性が向上する。 The difference from the first and second embodiments is that the thermoelectric conversion layer 2 is provided on the surface of the substrate 1 in the first and second embodiments, whereas the surface of the substrate 1 and the thermoelectric conversion layer 2 are different in the third embodiment. The intermediate layer 121 is provided. By using a material having a high bonding strength with both the substrate 1 and the thermoelectric conversion layer 2, for example, chromium or titanium, as the material of the intermediate layer 121, the bonding strength between the substrate 1 and the thermoelectric conversion layer 2 is substantially increased. can do. This improves the strength reliability of the thermoelectric conversion device.
 図12(a)~(b)は、本発明の実施例4である熱電変換デバイスの構造を示す。図12(a)は斜視図、図12(b)は厚さ方向の断面図である。 12 (a) to 12 (b) show the structure of a thermoelectric conversion device that is Embodiment 4 of the present invention. 12A is a perspective view, and FIG. 12B is a cross-sectional view in the thickness direction.
 本実施例4では、実施例3(図11(a)~(b))と同様に、基板1の表面と熱電変換層2の間に中間層121が設けられるが、中間層121の表面の一部が露出している。ここで、中間層121は導電性材料から形成されている。このため、中間層121の露出部は、基板側端子として利用される。すなわち、本実施例4においては、基板側端子4が不要となり、基板1に基板側端子4(図11)を接合する製造工程を省略することができる。 In the present Example 4, the intermediate layer 121 is provided between the surface of the substrate 1 and the thermoelectric conversion layer 2 as in Example 3 (FIGS. 11A to 11B). Some are exposed. Here, the intermediate layer 121 is formed of a conductive material. For this reason, the exposed part of the intermediate layer 121 is used as a substrate-side terminal. That is, in the fourth embodiment, the board-side terminal 4 is not necessary, and the manufacturing process for joining the board-side terminal 4 (FIG. 11) to the board 1 can be omitted.
 中間層の121の露出部は、熱電変換層2および配線層3を形成する製造工程の前に、露出部とする部分を予めマスキングしたり、熱電変換層2および配線層3を形成後、露出部とする部分の熱電変換層2および配線層3をエッチング技術により除去したりすることにより形成できる。 The exposed portion of 121 of the intermediate layer is exposed after masking the portion to be the exposed portion in advance before the manufacturing process for forming the thermoelectric conversion layer 2 and the wiring layer 3, or after forming the thermoelectric conversion layer 2 and the wiring layer 3. It can be formed by removing the thermoelectric conversion layer 2 and the wiring layer 3 as a part by etching technique.
 なお、本実施例4においては、基板1に基板側端子4が接合されず、基板1が電気回路の一部として使用されないことから、基板1の材料として、例えばシリコンの様に電気伝導性の低い材料を用いることができる。従って、基板1の材料選択の自由度が向上する。また、基板1上における中間層121の露出部の位置は、図12では、外部回路との接続を容易にするため、矩形あるいは方形状の基板1の周辺端部としているが、これに限らず、外部回路との接続が可能な任意の位置で良い。 In the fourth embodiment, since the substrate-side terminal 4 is not joined to the substrate 1 and the substrate 1 is not used as a part of the electric circuit, the material of the substrate 1 is an electrically conductive material such as silicon. Low materials can be used. Accordingly, the degree of freedom in selecting the material of the substrate 1 is improved. Further, in FIG. 12, the position of the exposed portion of the intermediate layer 121 on the substrate 1 is the peripheral end portion of the rectangular or rectangular substrate 1 in order to facilitate connection with an external circuit. Any position where an external circuit can be connected is acceptable.
 図13は、本発明の実施例5である熱電変換デバイスの構造を示す断面図である。 FIG. 13 is a cross-sectional view showing the structure of a thermoelectric conversion device that is Embodiment 5 of the present invention.
 第1~4の実施例との相違点は、本実施例では複数層、図13では2層の熱電変換層(2a,2b)が積層されている点である。より具体的には、基板1a,熱電変換層2aおよび配線層3aを有する、実施例1の熱電変換デバイスと同様の第1熱電変換部と、基板1b,熱電変換層2bおよび配線層3bを有する、実施例1の熱電変換デバイスと同様の第2熱電変換部とが、配線層3aと基板1bの間に介在する接合材141によって接合される。さらに、基板側端子4が基板1aに接合され、配線層側端子5が配線層3bに接合される。基板1aおよび1b,配線層3aおよび3b,基板側端子4および配線層側端子5は、同じ導電性材料、例えば銅からなる。また、熱電変換層2aおよび2bは、同じ熱電変換材料、例えばテルル化ビスマスからなる。 The difference from the first to fourth embodiments is that a plurality of thermoelectric conversion layers (2a, 2b) are stacked in this embodiment, and in FIG. More specifically, it has the 1st thermoelectric conversion part similar to the thermoelectric conversion device of Example 1 which has the board | substrate 1a, the thermoelectric conversion layer 2a, and the wiring layer 3a, and the board | substrate 1b, the thermoelectric conversion layer 2b, and the wiring layer 3b. The 2nd thermoelectric conversion part similar to the thermoelectric conversion device of Example 1 is joined by the joining material 141 interposed between the wiring layer 3a and the board | substrate 1b. Further, the substrate side terminal 4 is bonded to the substrate 1a, and the wiring layer side terminal 5 is bonded to the wiring layer 3b. The substrates 1a and 1b, the wiring layers 3a and 3b, the substrate side terminal 4 and the wiring layer side terminal 5 are made of the same conductive material, for example, copper. The thermoelectric conversion layers 2a and 2b are made of the same thermoelectric conversion material, for example, bismuth telluride.
 図14は、本実施例5の熱電変換デバイスの製造方法を示す。 FIG. 14 shows a method for manufacturing the thermoelectric conversion device of the fifth embodiment.
 図14に示すように、まず、熱電変換層2aと配線層3aが表面に配置される基板1aと、熱電変換層2bと配線層3bが表面に配置される複数の基板1bを準備する。ここで、基板1aおよび配線層3aには、それぞれ、基板側端子4および配線層側端子5が接合される。次に、基板1aに配置される配線層3aと基板1bとが、接合材141によって接合される。接合材141として、錫を主成分とするはんだ材が用いられる。 As shown in FIG. 14, first, a substrate 1a on which the thermoelectric conversion layer 2a and the wiring layer 3a are arranged, and a plurality of substrates 1b on which the thermoelectric conversion layer 2b and the wiring layer 3b are arranged are prepared. Here, the substrate side terminal 4 and the wiring layer side terminal 5 are joined to the substrate 1a and the wiring layer 3a, respectively. Next, the wiring layer 3 a disposed on the substrate 1 a and the substrate 1 b are bonded by the bonding material 141. As the bonding material 141, a solder material mainly composed of tin is used.
 本実施例5によれば、2層すなわち複数層の熱電変換層2a,2bが積層されるため、一熱電変換デバイスにおける熱電変換層の総厚さを増大することができる。このため、熱電変換層の熱抵抗を大きくすることができるので、温度T1とT2の差が大きい場合であっても高い性能で熱電変換できる。 According to the fifth embodiment, since two or more thermoelectric conversion layers 2a and 2b are laminated, the total thickness of the thermoelectric conversion layers in one thermoelectric conversion device can be increased. For this reason, since the thermal resistance of the thermoelectric conversion layer can be increased, thermoelectric conversion can be performed with high performance even when the difference between the temperatures T1 and T2 is large.
 図15は、本実施例5の熱電変換デバイスにおける厚さ方向の温度分布を模式的に示す。本実施例5において接合材141として用いる錫系はんだ材は、熱電変換層2に用いる材料よりも熱伝導率が高く、例えばテルル化ビスマスと比較すると50倍以上の熱伝導率を有する。さらに、熱電変換層は、ナノスプリングから構成されるため、実効的な断面積がバルク材よりも小さいこと、ナノスケール寸法によりフォノン散乱効果が得られることから、熱伝導率がバルク材よりも小さくなる。このことから、接合材141の熱伝導率と熱電変換層2の熱伝導率の比がさらに大きくなる。したがって、配線層3bの上面の温度および基板1aの下面の温度がそれぞれT1およびT2(T1>T2)のとき、熱電変換デバイス内における温度差は主に熱電変換層2a,2bで生じる。このため、温度T1とT2の差を、有効に熱電変換に寄与させることができる。 FIG. 15 schematically shows a temperature distribution in the thickness direction in the thermoelectric conversion device of the fifth embodiment. The tin-based solder material used as the bonding material 141 in the fifth embodiment has a higher thermal conductivity than the material used for the thermoelectric conversion layer 2, and has a thermal conductivity that is 50 times or more compared to, for example, bismuth telluride. Furthermore, since the thermoelectric conversion layer is composed of nanosprings, the effective cross-sectional area is smaller than that of the bulk material, and the phonon scattering effect is obtained by the nanoscale dimensions, so that the thermal conductivity is smaller than that of the bulk material. Become. From this, the ratio between the thermal conductivity of the bonding material 141 and the thermal conductivity of the thermoelectric conversion layer 2 is further increased. Therefore, when the temperature of the upper surface of the wiring layer 3b and the temperature of the lower surface of the substrate 1a are T1 and T2 (T1> T2), the temperature difference in the thermoelectric conversion device mainly occurs in the thermoelectric conversion layers 2a and 2b. For this reason, the difference between the temperatures T1 and T2 can be effectively contributed to thermoelectric conversion.
 本実施例5では、図14に示されるように、チップ状態の第1熱電変換部(基板1a,熱電変換層2a,配線層3a)および第2熱電変換部(基板1b,熱電変換層2b,配線層3b)が接合されるが、図5に示すような基板ウェハ状態で接合した後で複数チップに切断しても良い。 In the fifth embodiment, as shown in FIG. 14, the first thermoelectric conversion part (substrate 1a, thermoelectric conversion layer 2a, wiring layer 3a) and the second thermoelectric conversion part (substrate 1b, thermoelectric conversion layer 2b, Although the wiring layer 3b) is bonded, it may be cut into a plurality of chips after bonding in the substrate wafer state as shown in FIG.
 図16(a)~(b)は、本発明の実施例6である熱電変換デバイスの構造を示す。図16(a)は、断面構造および厚さ方向の温度分布を示す。また、図16(b)は、熱電変換の性能指数ZTを示す。 FIGS. 16A to 16B show the structure of a thermoelectric conversion device that is Embodiment 6 of the present invention. FIG. 16A shows the cross-sectional structure and the temperature distribution in the thickness direction. FIG. 16B shows a figure of merit ZT of thermoelectric conversion.
 実施例5との相違点は、実施例5では複数の熱電変換層2aおよび2bに同じ熱電変換材料を用いるのに対し、本実施例6では、各層で異なる熱電変換材料を用いている点である。 The difference from Example 5 is that Example 5 uses the same thermoelectric conversion material for a plurality of thermoelectric conversion layers 2a and 2b, whereas Example 6 uses a different thermoelectric conversion material for each layer. is there.
 図16(a)に示すように、熱電変換層2aと2bでは、動作中の温度域が異なり、熱電変換層2aの温度はT2に近く、熱電変換層2bの温度はT1に近い。熱電変換材料は、図16(b)に示すように材料の種類によって、熱電変換の性能指数ZT(前述の式(1)参照)が極大となる温度が異なる。そこで、熱電変換層2aとして温度T2に近い温度で変換効率が大きくなる材料を用い、熱電変換層2bとして温度T1に近い温度で変換効率が大きくなる材料を用いることで、熱電変換デバイスの発電電力を増大することができる。 As shown in FIG. 16A, the thermoelectric conversion layers 2a and 2b have different temperature ranges during operation, the temperature of the thermoelectric conversion layer 2a is close to T2, and the temperature of the thermoelectric conversion layer 2b is close to T1. As shown in FIG. 16B, the thermoelectric conversion material has a temperature at which the figure of merit ZT of thermoelectric conversion (see the above formula (1)) becomes maximum depending on the type of material. Therefore, the thermoelectric conversion layer 2a is made of a material whose conversion efficiency increases at a temperature close to the temperature T2, and the thermoelectric conversion layer 2b is made of a material whose conversion efficiency increases at a temperature close to the temperature T1, thereby generating electric power generated by the thermoelectric conversion device. Can be increased.
 また、本実施例6によれば、温度T1やT2の値が変動する環境で使用する場合であっても、熱電変換層2a,2bに異なる材料を用いることで、幅広い温度域で高い性能で熱電変換することができる。 Moreover, according to the sixth embodiment, even when used in an environment where the values of the temperatures T1 and T2 fluctuate, by using different materials for the thermoelectric conversion layers 2a and 2b, high performance in a wide temperature range. Thermoelectric conversion is possible.
 なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。 In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 例えば、本発明はペルチエデバイスに適用しても良い。 For example, the present invention may be applied to a Peltier device.
1…基板,2…熱電変換層,3…配線層,4…基板側端子,5…配線層側端子,21…真空チャンバ,22…るつぼ,23…電子銃,24…材料,25…電子ビーム,26…蒸発流,27…ステージ,31…基板ウェハ,36…ナノスプリング,42…平面層,71,91,92,93…ナノスプリング,94…平面層,121…中間層,141…接合材 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Thermoelectric conversion layer, 3 ... Wiring layer, 4 ... Board | substrate side terminal, 5 ... Wiring layer side terminal, 21 ... Vacuum chamber, 22 ... Crucible, 23 ... Electron gun, 24 ... Material, 25 ... Electron beam , 26 ... Evaporation flow, 27 ... Stage, 31 ... Substrate wafer, 36 ... Nanospring, 42 ... Planar layer, 71, 91, 92, 93 ... Nanospring, 94 ... Planar layer, 121 ... Intermediate layer, 141 ... Bonding material

Claims (16)

  1.  熱電変換を行う熱電変換デバイスにおいて、
     第1の導電体部と、
     前記第1の導電体部に接する熱電変換層と、
     前記熱電変換層に接する第2の導電体部と、
    を備え、
     前記熱電変換層が複数のスプリング状のナノオーダ構造体から構成されることを特徴とする熱電変換デバイス。
    In a thermoelectric conversion device that performs thermoelectric conversion,
    A first conductor portion;
    A thermoelectric conversion layer in contact with the first conductor portion;
    A second conductor portion in contact with the thermoelectric conversion layer;
    With
    The thermoelectric conversion device is composed of a plurality of spring-like nano-order structures.
  2.  請求項1に記載の熱電変換デバイスにおいて、
     前記第1の導電体部および前記第2の導電体部に温度差が与えられると熱電効果により発電することを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 1,
    A thermoelectric conversion device that generates electricity by a thermoelectric effect when a temperature difference is given between the first conductor portion and the second conductor portion.
  3.  請求項1に記載の熱電変換デバイスにおいて、
     前記複数のスプリング状のナノオーダ構造体の材料が、
     ビスマス,テルライド系材料,シリコン・ゲルマニウム系合金,シリサイド系材料,スクッテルダイト系材料,ハーフホイスラー金属系材料,亜鉛・アンチモン系材料,ホウ素化合物,酸化コバルト系材料,酸化亜鉛系材料,酸化チタン系材料のいずれかであることを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 1,
    The material of the plurality of spring-like nano-order structures is
    Bismuth, telluride materials, silicon / germanium alloys, silicide materials, skutterudite materials, half-Heusler metal materials, zinc / antimony materials, boron compounds, cobalt oxide materials, zinc oxide materials, titanium oxide materials A thermoelectric conversion device characterized in that it is one of materials.
  4.  請求項1に記載の熱電変換デバイスにおいて、
     前記複数のスプリング状のナノオーダ構造体が、らせん形状,ジグザグ形状,柱形状,斜柱形状のいずれかであることを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 1,
    The thermoelectric conversion device, wherein the plurality of spring-like nano-order structures are any one of a spiral shape, a zigzag shape, a column shape, and an oblique column shape.
  5.  請求項1に記載の熱電変換デバイスにおいて、
     前記熱電変換層が、前記複数のスプリング状のナノオーダ構造体からなる層を複数層有すると共に、層間に位置する平面層を有することを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 1,
    The thermoelectric conversion device, wherein the thermoelectric conversion layer has a plurality of layers made of the plurality of spring-like nano-order structures, and has a planar layer located between the layers.
  6.  請求項1に記載の熱電変換デバイスにおいて、
     前記第1の導電体部に設けられる第1の端子と、
     前記第2の導電体部に設けられる第2の端子と、
    を備えることを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 1,
    A first terminal provided in the first conductor portion;
    A second terminal provided in the second conductor portion;
    A thermoelectric conversion device comprising:
  7.  請求項1に記載の熱電変換デバイスにおいて、
     前記熱電変換層の厚さ方向の2主面の一方および他方が、それぞれ、前記第1の導電体部の平面部および前記第2の導電体部の平面部と接合されることを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 1,
    One and the other of the two principal surfaces in the thickness direction of the thermoelectric conversion layer are respectively joined to the planar portion of the first conductor portion and the planar portion of the second conductor portion. Thermoelectric conversion device.
  8.  請求項1に記載の熱電変換デバイスにおいて、
     前記第1の導電体部が、互いに異なる材料で構成される複数の導電体層を有することを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 1,
    The thermoelectric conversion device, wherein the first conductor portion has a plurality of conductor layers made of different materials.
  9.  請求項7に記載の熱電変換デバイスにおいて、
     前記第1の導電体部の平面部が、部分的に露出している露出部を有することを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 7,
    The thermoelectric conversion device, wherein the planar portion of the first conductor portion has an exposed portion that is partially exposed.
  10.  請求項9に記載の熱電変換デバイスにおいて、
     前記露出部からなる第1の端子と、
     前記第2の導電体部に設けられる第2の端子と、
    を備えることを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 9, wherein
    A first terminal comprising the exposed portion;
    A second terminal provided in the second conductor portion;
    A thermoelectric conversion device comprising:
  11.  熱電変換を行う熱電変換デバイスにおいて、
     第1の導電体部と、
     前記第1の導電体部に接する第1の熱電変換層と、
     前記第1の熱電変換層に接する第2の導電体部と、
    を備え、
     前記第1の熱電変換層が、複数のスプリング状のナノオーダ構造体からなる第1の層を備える第1の熱電変換部と、
     第3の導電体部と、
     前記第3の導電体部に接する第2の熱電変換層と、
     前記熱電変換層に接する第4の導電体部と、
    を備え、
     前記第2の熱電変換層が、複数のスプリング状のナノオーダ構造体からなる第2の層を備える第2の熱電変換部と、
    を備え、
     前記第2の導電体部と前記第3の導電体部とが接合されることを特徴とする熱電変換デバイス。
    In a thermoelectric conversion device that performs thermoelectric conversion,
    A first conductor portion;
    A first thermoelectric conversion layer in contact with the first conductor portion;
    A second conductor portion in contact with the first thermoelectric conversion layer;
    With
    A first thermoelectric conversion unit, wherein the first thermoelectric conversion layer includes a first layer made of a plurality of spring-like nano-order structures;
    A third conductor portion;
    A second thermoelectric conversion layer in contact with the third conductor portion;
    A fourth conductor portion in contact with the thermoelectric conversion layer;
    With
    The second thermoelectric conversion layer includes a second thermoelectric conversion unit including a second layer made of a plurality of spring-like nano-order structures;
    With
    The thermoelectric conversion device, wherein the second conductor portion and the third conductor portion are joined.
  12.  請求項11に記載の熱電変換デバイスにおいて、
     前記第1の層と前記第2の層が互いに異なる材料からなることを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 11, wherein
    The thermoelectric conversion device, wherein the first layer and the second layer are made of different materials.
  13.  請求項12に記載の熱電変換デバイスにおいて、
     前記第2の熱電変換層の性能指数が極大になる温度が、前記第1の熱電変換層の性能指数が極大になる温度よりも高く、
     前記第4の導電体部側の温度が、前記第1の導電体側の温度よりも高くなるような環境で使用されることを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 12, wherein
    The temperature at which the figure of merit of the second thermoelectric conversion layer is maximized is higher than the temperature at which the figure of merit of the first thermoelectric conversion layer is maximized,
    The thermoelectric conversion device is used in an environment in which the temperature on the fourth conductor portion side is higher than the temperature on the first conductor side.
  14.  請求項11に記載の熱電変換デバイスにおいて、
     前記第1の導電体部に設けられる第1の端子と、
     前記第4の導電体部に設けられる第2の端子と、
    を備えることを特徴とする熱電変換デバイス。
    The thermoelectric conversion device according to claim 11, wherein
    A first terminal provided in the first conductor portion;
    A second terminal provided in the fourth conductor portion;
    A thermoelectric conversion device comprising:
  15.  熱電変換デバイスの製造方法において、
     動的斜め蒸着法によって、複数のスプリング状のナノオーダ構造体からなる層を形成することにより、熱電変換層を形成する工程
    を含むことを特徴とする熱電変換デバイスの製造方法。
    In the method of manufacturing a thermoelectric conversion device,
    The manufacturing method of the thermoelectric conversion device characterized by including the process of forming the thermoelectric conversion layer by forming the layer which consists of a some spring-like nano-order structure by the dynamic diagonal vapor deposition method.
  16.  請求項15に記載の熱電変換デバイスの製造方法において、
     前記熱電変換層を形成する工程において、前記複数のスプリング状のナノオーダ構造体からなる層は基板ウェハ上に形成され、
     さらに、前記熱電変換層を形成する工程以降において、前記基板ウェハを複数チップに切断する工程を含むことを特徴とする熱電変換デバイスの製造方法。
    In the manufacturing method of the thermoelectric conversion device according to claim 15,
    In the step of forming the thermoelectric conversion layer, the layer composed of the plurality of spring-like nano-order structures is formed on a substrate wafer,
    Furthermore, after the process of forming the thermoelectric conversion layer, the process of cutting the substrate wafer into a plurality of chips is included.
PCT/JP2014/079687 2014-11-10 2014-11-10 Thermoelectric conversion device and method for manufacturing same WO2016075733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079687 WO2016075733A1 (en) 2014-11-10 2014-11-10 Thermoelectric conversion device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079687 WO2016075733A1 (en) 2014-11-10 2014-11-10 Thermoelectric conversion device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016075733A1 true WO2016075733A1 (en) 2016-05-19

Family

ID=55953846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079687 WO2016075733A1 (en) 2014-11-10 2014-11-10 Thermoelectric conversion device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016075733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623464A (en) * 2017-09-04 2018-01-23 上海必修福企业管理有限公司 Thermoelectric generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294538A (en) * 2004-03-31 2005-10-20 Yamaha Corp Thermoelectric element, manufacturing method thereof and thermoelectric module
JP2012089604A (en) * 2010-10-18 2012-05-10 Nec Corp Thermoelectric conversion device, method of manufacturing the same, and thermoelectric conversion unit
JP2012127795A (en) * 2010-12-15 2012-07-05 Sony Corp Imaging apparatus, electronic apparatus, solar cell and method of manufacturing imaging apparatus
WO2014109014A1 (en) * 2013-01-09 2014-07-17 株式会社日立製作所 Semiconductor device and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294538A (en) * 2004-03-31 2005-10-20 Yamaha Corp Thermoelectric element, manufacturing method thereof and thermoelectric module
JP2012089604A (en) * 2010-10-18 2012-05-10 Nec Corp Thermoelectric conversion device, method of manufacturing the same, and thermoelectric conversion unit
JP2012127795A (en) * 2010-12-15 2012-07-05 Sony Corp Imaging apparatus, electronic apparatus, solar cell and method of manufacturing imaging apparatus
WO2014109014A1 (en) * 2013-01-09 2014-07-17 株式会社日立製作所 Semiconductor device and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623464A (en) * 2017-09-04 2018-01-23 上海必修福企业管理有限公司 Thermoelectric generator

Similar Documents

Publication Publication Date Title
Luo et al. High thermoelectric performance in the new cubic semiconductor AgSnSbSe3 by high-entropy engineering
KR101956278B1 (en) Heterogeneous laminate comprising graphene, thermoelectric material, thermoelectric module and thermoelectric apparatus comprising same
US20160322554A1 (en) Electrode structures for arrays of nanostructures and methods thereof
JP5988302B2 (en) Thermoelectric conversion device using the Savebeck / Peltier effect, comprising parallel nanowires made of a conductive material or a semiconductor material arranged in rows and columns via an insulating material, and a method of manufacturing the same
US9065014B2 (en) Thermoelectric material including coating layers, method of preparing the thermoelectric material, and thermoelectric device including the thermoelectric material
CN101969095B (en) Quasi one-dimensional nano structural thermoelectric material, device and preparation method thereof
US9461227B2 (en) Thermoelectric material including nano-inclusions, thermoelectric module and thermoelectric apparatus including the same
KR101482598B1 (en) Thermoelectric material, method for producing same, and thermoelectric conversion module using same
JP2014503996A (en) Array of long nanostructures of semiconductor material and method of manufacturing the same
JP2010192780A (en) Thermoelectric conversion element
JP6072427B2 (en) Thermal-electrical conversion device using the Savebeck / Pelty effect in which conductive layers and dielectric layers of nanometer (nm) thickness are alternately laminated
JP2012124469A (en) Thermoelectric element and thermoelectric module
EP2671255A1 (en) Electrode structures for arrays of nanostructures and methods thereof
Lee et al. Enhanced Cross-Plane Thermoelectric Figure of Merit Observed in an Al2O3/ZnO Superlattice Film by Hole Carrier Blocking and Phonon Scattering
Liu et al. Improvement of Thermoelectric Properties of Evaporated ZnO: Al Films by CNT and Au Nanocomposites
KR101303859B1 (en) Method for fabricating thermoelectricity nanowire having core/shell structure
JP2012089604A (en) Thermoelectric conversion device, method of manufacturing the same, and thermoelectric conversion unit
US10886451B2 (en) Thermoelectric material, method of fabricating the same, and thermoelectric device
WO2016075733A1 (en) Thermoelectric conversion device and method for manufacturing same
CN101969096B (en) Nanostructured thermoelectric material and device and production method thereof
WO2018225823A1 (en) Semiconductor substrate and method for producing same, substrate, and laminate
KR102065111B1 (en) Heat radiation-thermoelectric fin, thermoelectric module and thermoelectric apparatus comprising the same
JP5472534B2 (en) Thermoelectric conversion structure and manufacturing method thereof
KR102118782B1 (en) Thermoelectric device
Zheng High-performance skuerudite CoSb₃ based thin films and devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP