WO2016072087A1 - Gasket - Google Patents

Gasket Download PDF

Info

Publication number
WO2016072087A1
WO2016072087A1 PCT/JP2015/005507 JP2015005507W WO2016072087A1 WO 2016072087 A1 WO2016072087 A1 WO 2016072087A1 JP 2015005507 W JP2015005507 W JP 2015005507W WO 2016072087 A1 WO2016072087 A1 WO 2016072087A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
fluid
leakage
annular member
side annular
Prior art date
Application number
PCT/JP2015/005507
Other languages
French (fr)
Japanese (ja)
Inventor
穣 寺西
健太郎 木村
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Publication of WO2016072087A1 publication Critical patent/WO2016072087A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing

Definitions

  • the present invention relates to a gasket, and more particularly to a gasket capable of effectively reducing permeation leakage and contact surface leakage with respect to a fluid that permeates rubber such as gasoline.
  • gasket leakage consists of contact surface leakage and permeation leakage.
  • the contact surface leak refers to a leak that passes between the gasket surface and the flange surface that tightens the gasket
  • the permeation leak refers to a leak that permeates the gasket itself.
  • the NBR (nitrile rubber) gasket has a drawback that NBR has a good balance of oil resistance, cold resistance and mechanical properties, but has a large permeation leakage to gasoline.
  • a gasket made of a vulcanized product of a fluororubber compound, that is, a so-called fluororubber gasket has been put into practical use. Etc. were requested.
  • Patent Document 1 discloses a piping gasket that is arranged between a plurality of pipe members through which a fluid flows and is formed in a ring shape having a predetermined width dimension that seals the joints of both pipe members. It is disclosed.
  • the inner end portion on the center side in the radial direction is formed of a highly resistant resin material.
  • Patent Document 2 also includes a jacket ring member that has a groove that extends substantially along the circumferential direction and has a substantially U-shaped radial cross section, and a groove formed in the jacket ring member.
  • the sealing material characterized by becoming is disclosed.
  • Patent Document 3 includes a ring-shaped gasket body made of a vulcanized body rubber compound based on NBR rubber and a vulcanized rubber compound based on a fluororubber.
  • a rubber gasket characterized by comprising a barrier layer to be formed is disclosed.
  • Patent Document 4 in a carrier gasket having a carrier portion attached to a connecting portion such as an intake manifold or a fuel tank, concave grooves are formed on the front side and the back side of the carrier portion, and the concave groove has a front side. , Characterized in that a seal portion having a protrusion protruding beyond the back surface is formed, and the protrusions on the front seal portion and the protrusions on the back seal portion are arranged in different numbers or shapes. Carrier gaskets and the like are disclosed.
  • this Patent Document 4 describes a carrier gasket (see FIG. 10) in which a protrusion on the front side seal part and a protrusion on the back side seal part are formed in substantially the same shape and dimensions as a conventional technique. Yes.
  • the present invention has been proposed in view of the above circumstances, and an object of the present invention is to provide a gasket that can effectively reduce permeation leakage and contact surface leakage and is excellent in economic efficiency.
  • a gasket according to the present invention has a rubber-shaped anti-fluid-side annular member and a cross-sectional shape that is in close contact with the anti-fluid-side annular member on the fluid side of the anti-fluid-side annular member.
  • a fluid-side annular member, and the fluid-side annular member has a lower permeability to vaporized gas from volatile oil than the anti-fluid-side annular member, the thickness T of the anti-fluid-side annular member, and In the thickness t of the fluid-side annular member, T> t.
  • the fluid-side annular member first seals the fluid even if the fluid is a vaporized gas from volatile oil such as gasoline that permeates the rubber.
  • the anti-fluid-side annular member can seal against contact surface leakage of the fluid-side annular member and reduce contact surface leakage. That is, this gasket can effectively reduce the leakage of the contact surface and the permeation through the tandem structure with respect to the fluid. Further, this gasket can have a simple structure and can reduce the manufacturing cost.
  • FIG. 1 is a schematic view of a gasket according to an embodiment of the present invention, in which (a) is a plan view and (b) is an end view showing an AA enlarged cross section.
  • FIG. 2 is a schematic enlarged cross-sectional view for explaining a use state of the gasket according to the embodiment of the present invention.
  • FIG. 3 is a graph illustrating the measurement results of the leakage amount in the example and the comparative example.
  • FIG. 4 shows a graph for explaining the measurement result of the leakage amount with respect to the compression rate in the examples and comparative examples.
  • FIG. 5 shows a schematic cross-sectional view for explaining the test apparatus.
  • FIG. 6 is a graph illustrating measurement results of the liquid leakage amount, the gas leakage amount, and the permeation leakage actual amount in Examples and Comparative Examples.
  • the gasket 1 of the present embodiment is configured to include an O-ring 2 and a fluid-side annular member 3 as anti-fluid-side annular members.
  • the gasket 1 is a fuel tank gasket, and is attached to a cap portion for supplying an engine to a fuel tank (not shown) of an automobile, and seals fuel such as gasoline.
  • the use of the gasket of this invention is not limited to the case where it uses for a fuel tank, A various use may be sufficient.
  • the O-ring 2 is made of rubber and has an annular shape with a circular cross section.
  • the material of the O-ring 2 of this embodiment is NBR (nitrile rubber), but is not limited to this.
  • NBR nitrile rubber
  • HNBR hydrogenated nitrile rubber
  • U urethane rubber
  • ACM acrylic rubber
  • FKM fluoro rubber
  • the O-ring 2 is an annular shape, but is not limited to this.
  • the O-ring 2 may be a rectangular shape depending on the shape of the cap portion.
  • the anti-fluid-side annular member is the O-ring 2, but is not limited to this, and may be, for example, a square ring, a D ring, an X ring, or the like.
  • the fluid-side annular member 3 is made of a fluorine-based resin, is in close contact with the O-ring 2 on the fluid side of the O-ring 2 and has a substantially rectangular cross-sectional shape.
  • the fluororesin is PTFE (polytetrafluoroethylene) or PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer). If it does in this way, the fluid side annular member 3 can reduce effectively the permeation
  • the fluororesin is not limited to PTFE or PFA.
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • PVDF polyvinylidene
  • the fluid-side annular member 3 has a substantially rectangular cross section. That is, the fluid-side annular member 3 has an annular shape with a width w, and has an upper surface and a lower surface that face each other. These surfaces abut against the flange 4 to reduce contact surface leakage.
  • the cross-sectional shape is substantially rectangular means that, for example, the side surface on the anti-fluid side is curved as described later.
  • the fluid side annular member 3 may have one or two or more annular convex portions for reducing contact surface leakage on the upper and lower surfaces facing each other.
  • the width w of the fluid-side annular member 3 is 1 mm to 10 mm. If it does in this way, the fluid side annular member 3 can reduce a contact surface leak, and can aim at the cost reduction of manufacturing cost.
  • the reason for limiting the above numerical values is that if the thickness is less than 1 mm, the sealing performance for reducing contact surface leakage may not be sufficiently exhibited. On the other hand, if the thickness exceeds 10 mm, the effect on the contact surface leakage is reduced, and many materials are used unnecessarily, and the manufacturing cost may not be reduced.
  • the fluid-side annular member 3 is in close contact with the O-ring 2 on the fluid side of the O-ring 2 (in this embodiment, the inner peripheral side of the O-ring 2). That is, the cross-sectional shape of the fluid-side annular member 3 is such that the portion on the anti-fluid side is curved corresponding to the cross-sectional shape of the O-ring 2. In this way, when the gasket 1 is tightened by the flange 4, no space (not shown) is formed between the O-ring 2 and the fluid-side annular member 3. If this space is formed, vaporized gas from volatile oil such as gasoline leaked in contact with the fluid-side annular member 3 accumulates in the space and causes permeation leakage to the O-ring 2. It becomes. That is, since the fluid-side annular member 3 is in close contact with the O-ring 2 on the fluid side of the O-ring 2, the above-described space is not formed, so that permeation leakage to the O-ring 2 can be effectively prevented. .
  • the gasket 1 of this embodiment has a fluid inside, and has a radial tandem structure as a fluid-side annular member 3 and an O-ring 2 from the center toward the outside.
  • the present invention is not limited to this.
  • the tandem structure in the radial direction is formed from the center toward the outside, It is good also as a fluid side annular member.
  • the tandem structure in the radial direction may be a fluid-side annular member, an anti-fluid-side annular member, and a fluid-side annular member from the center toward the outside.
  • the close contact is usually performed by being hooked on a curved concave portion on the outer peripheral side surface of the fluid-side annular member 3 in a state where the diameter of the O-ring 2 is expanded by a minute distance. If it does in this way, the gasket 1 can be assembled easily and the cost reduction of a manufacturing cost can be aimed at. However, it is not limited to this, For example, you may use an adhesive agent etc. Further, for example, although not shown, a convex portion is formed on the inner peripheral side of the O-ring 2, and the convex portion is engaged with a concave portion formed on the outer peripheral side surface of the fluid-side annular member 3. Good. If it does in this way, it can be set as the structure which the assembled
  • the gasket 1 satisfies d> t in the diameter d of the O-ring 2 and the thickness t of the fluid-side annular member 3. In this way, when the flange 4 tightens the gasket 1, the O-ring 2 is also compressed in a state in which the fluid-side annular member 3 is compressed. And the fuel such as gasoline can be effectively sealed by the O-ring 2.
  • the reason for the above numerical limitation is that if the gasket is less than 1.1, the compression rate of the O-ring 2 becomes insufficient when the gasket 1 is compressed, and the sealing performance by the O-ring 2 may not be sufficiently exhibited. is there.
  • the ratio exceeds 1.4, the compression ratio of the fluid-side annular member 3 becomes insufficient when compressed, and the sealing performance by the fluid-side annular member 3 may not be sufficiently exhibited. Further, in handling, the O-ring 2 is easily detached from the fluid-side annular member 3, and workability and the like may be reduced.
  • the usage state etc. of the gasket 1 of the said structure are demonstrated with reference to drawings.
  • the gasket 1 is fastened by a pair of flanges 4, and the distance between the flanges 4 is t 0 (t 0 ⁇ t). Therefore, the compression rate of the fluid-side annular member 3 is ((t ⁇ t 0 ) / t) ⁇ 100 (%), and the compression rate of the O-ring 2 is ((d ⁇ t 0 ) / d) ⁇ 100. (%).
  • the fluid-side annular member 3 first seals against the vaporized gas (suitably abbreviated as fluid) from volatile oil.
  • the fluid-side annular member 3 is made of a fluorine-based resin, so that permeation leakage can be effectively reduced.
  • the fluid side annular member 3 is mounted at a compression rate of ((t ⁇ t 0 ) / t) ⁇ 100 (%), the fluid is sealed so as to reduce the contact surface leakage.
  • a small amount of contact surface leakage occurs.
  • the gasket 1 is attached so that the O-ring 2 attached at a compression rate of ((dt ⁇ 0 ) / d) ⁇ 100 (%) reduces the contact surface leakage.
  • the fluid can be sealed to further reduce contact surface leakage. That is, the gasket 1 can effectively reduce permeation leakage and contact surface leakage by having the above-described tandem structure with respect to the fluid. Further, the gasket 1 can have a simple structure and can reduce the manufacturing cost.
  • the creep phenomenon means a phenomenon in which deformation increases with time when a load is applied to a material.
  • the gasket 1 of the present embodiment it is possible to effectively reduce permeation leakage and contact surface leakage with respect to a fluid that permeates rubber such as gasoline. You can go down.
  • the gasket 1 is tightened with a flange 4 so that the compression rate of the fluid-side annular member 3 is 0.3% and the compression rate of the O-ring 2 is 28%, and the leakage amount to gasoline (contact surface leakage and The total amount of leakage due to permeation leakage) was measured.
  • the contact surface of the flange 4 was finished with Rz3.
  • the measurement result was 0.02 g of leakage at normal temperature (about 20 ° C.) + 96 hours, and 0.04 g of leakage at 40 ° C. + 96 hours (see FIG. 3).
  • the standard (provisional) leakage amount at normal temperature +96 hours is 0.07 g or less, which is half that of Comparative Example 2, and the standard (provisional) leakage amount at 40 ° C. + 96 hours is 0.09 g or less. did. Therefore, the gasket 1 of Example 1 obtained good results at room temperature and 40 ° C.
  • the 0.02 g leakage amount is considered to be the amount of transmission leakage (0.02 g) that has passed through PTFE and NBR.
  • the breakdown of the 0.04 g leakage amount is as follows: the amount of permeation leakage that has passed through PTFE and NBR (0.02 g) and the contact surface leakage of the fluid-side annular member 3 whose sealing performance has become unstable. It seems that this is the amount (0.02 g) that the O-ring 2 leaked without being sealed.
  • the measurement result was a leak amount of 0.31 g at normal temperature (about 20 ° C.) + 96 hours, and a leak amount of 1.65 g at 40 ° C. + 96 hours (see FIG. 3). Therefore, the gasket of Comparative Example 1 could not satisfy the standard (provisional) at normal temperature and 40 ° C.
  • Comparative Example 2 The gasket of Comparative Example 2 was an O-ring, and the inner diameter was 145.8 mm, the thickness (diameter d) was 5.7 mm, and the material was fluororubber. This gasket is tightened with flange 4 at a compression rate (6.5%) at which contact surface leakage was eliminated in a seal test at room temperature, and the amount of leakage to gasoline (total leakage due to contact surface leakage and permeation leakage) was measured.
  • the measurement result was a leakage amount of 0.14 g at room temperature (about 20 ° C.) + 96 hours, and a leakage amount of 0.18 g at 40 ° C. + 96 hours (see FIG. 3). Therefore, the gasket of Comparative Example 2 could not satisfy the standard (provisional) at normal temperature and 40 ° C.
  • the measurement result was 0.02 g leakage at normal temperature (about 20 ° C.) + 96 hours, and 0.14 g leakage at 40 ° C. + 96 hours (see FIG. 3). Therefore, the gasket of Comparative Example 3 was able to satisfy the standard (provisional) at room temperature, but could not satisfy the standard (provisional) at 40 ° C.
  • the leakage amount of 0.14 g is that the creep phenomenon occurs in PTFE at about 40 ° C., the sealing performance of the gasket becomes unstable, and the leakage amount due to contact surface leakage increases. Seem.
  • the compression rate was changed with respect to the gasket 1 of Example 1 and the gasket of Comparative Example 1, and the amount of leakage was measured at 40 ° C. + 96 hours.
  • the measurement result of the gasket of Comparative Example 1 did not satisfy the standard (provisional) at 40 ° C., although the leakage amount decreased when the compression rate was increased.
  • the measurement result in the gasket 1 of Example 1 shows that when the compression rate is increased, the leakage amount is reduced, and when the compression rate of the O-ring 2 is about 20% or more, the standard (provisional) at 40 ° C.
  • this gasket 1 it is preferable that the O-ring 2 is compressed and the fluid-side annular member 3 is also compressed. However, when the compression rate of the O-ring 2 is about 20% or more, the fluid-side annular member 3 is compressed. Even if they were not in contact, the standard at 40 ° C. (provisional) could be satisfied.
  • the test apparatus 10 used for this test includes a container body 11 and a cover plate 12, and the container body 11 and the cover plate 12 are sealed by the gasket 1.
  • the cover plate 12 when measuring the leakage amount with respect to the fuel 100 in a gaseous state, as shown in FIG. 5A, the cover plate 12 is positioned above the container body 11, and the gasket 1 is vaporized. In contact with the spent fuel 100. The amount of leakage at this time is referred to as gas leakage (see FIG. 6).
  • the container body 11 is positioned above the cover plate 12, and the gasket 1 Contact with liquid fuel 100.
  • the amount of leakage at this time is referred to as the amount of liquid leakage (see FIG. 6).
  • the contact surface (flange surface) of the container main body 11 and the lid plate 12 at this time was finished with Rz3.
  • the gasket 1 was tightened so that the compression rate of the fluid-side annular member 3 was 0.3% and the compression rate of the O-ring 2 was 28%.
  • the leakage amount measured in the state of FIG. 5B under the same conditions as the test apparatus 10 except that the contact surface is mirror-finished (Rz0.4) is referred to as the permeation leakage substance amount (see FIG. 5). 6).
  • the leakage amount was 0.14 g at room temperature + 96 hours. Further, when the gasoline leakage amount (liquid leakage amount) was measured in the state of FIG. 5B, the leakage amount was 0.17 g at room temperature (about 20 ° C.) + 96 hours. Furthermore, when the contact surface was mirror-finished (Rz0.4), the amount of gasoline leaked (substance of permeation leakage) was measured in the state of FIG. 5B, and found to be 0.10 g at room temperature + 96 hours. The amount of leakage. The breakdown of the leakage amount of 0.17 g was 0.10 g due to permeation leakage and 0.07 (0.17-0.10) g due to contact surface leakage.
  • the gasket 1 of Example 1 was able to effectively reduce permeation leakage and contact surface leakage with respect to a fluid that permeates rubber such as gasoline as compared with the gaskets of the respective comparative examples. .
  • gasket according to the present invention has been described with reference to the preferred embodiment.
  • the gasket according to the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. It goes without saying that it is possible.
  • the fluid-side annular member 3 is made of a fluorine-based resin. It can be formed using a material having a low permeability to the vaporized gas.
  • the gasket 1 is used as a flat surface fixing gasket
  • the gasket of the present invention is not shown, but may be applied to a cylindrical surface gasket.
  • the fluid-side annular member has a substantially cylindrical shape having an outer peripheral surface and an inner peripheral surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gasket Seals (AREA)

Abstract

A gasket (1) having a rubber O-ring (2) and a fluid-side annular member (3) that has a substantially rectangular cross-section and that is provided in tight contact with the O-ring (2) on the fluid side of the O-ring (2), the fluid-side annular member (3) exhibiting permeability with respect to vaporized gas from a volatile oil that is less than the permeability of the O-ring (2), and being configured such that the thickness (t) of the fluid-side annular member (3) is less than the diameter (d) of the O-ring (2). Consequently, there is provided a gasket with which it is possible to effectively reduce permeation leakage and contact surface leakage, the gasket demonstrating exceptional economic performance.

Description

ガスケットgasket
 本発明は、ガスケットに関し、特に、ガソリンなどのゴムを透過する流体に対して、透過漏れ及び接面漏れを効果的に低減することができるガスケットに関する。 The present invention relates to a gasket, and more particularly to a gasket capable of effectively reducing permeation leakage and contact surface leakage with respect to a fluid that permeates rubber such as gasoline.
 一般的に、ガスケットの漏れは、接面漏れと透過漏れとからなっている。接面漏れとは、ガスケット面と、ガスケットを締め付けるフランジ面との間を通る漏れをいい、また、透過漏れとは、ガスケット自身を透過する漏れをいう。 Generally, gasket leakage consists of contact surface leakage and permeation leakage. The contact surface leak refers to a leak that passes between the gasket surface and the flange surface that tightens the gasket, and the permeation leak refers to a leak that permeates the gasket itself.
 近年、環境的見地から、自動車などにおけるガソリンの漏れを低減することが要望されている。
 ここで、NBR(ニトリルゴム)製のガスケットは、NBRが耐油性、耐寒性及び機械的物性のバランスがとれているものの、ガソリンに対する透過漏れが多いといった欠点があった。
 また、上記の欠点を解決するために、フッ素ゴム配合物の加硫物からなるガスケット、いわゆるフッ素ゴム製のガスケットが実用化されているが、低温時の漏れの低下及び価格を廉価とすることなどが要望されていた。
In recent years, there has been a demand for reducing gasoline leakage in automobiles and the like from an environmental standpoint.
Here, the NBR (nitrile rubber) gasket has a drawback that NBR has a good balance of oil resistance, cold resistance and mechanical properties, but has a large permeation leakage to gasoline.
In addition, in order to solve the above-mentioned drawbacks, a gasket made of a vulcanized product of a fluororubber compound, that is, a so-called fluororubber gasket has been put into practical use. Etc. were requested.
 このため、本発明に関連する様々な技術が提案されている。
 たとえば、特許文献1には、内部を流体が流通する複数の管部材の間に配置されて、両方の管部材の継ぎ目をシールする所定の幅寸法を有するリング状に形成された配管用ガスケットが開示されている。この配管用ガスケットは、その径方向における中心側の内端部位が、高耐性樹脂材により形成されている。
For this reason, various techniques related to the present invention have been proposed.
For example, Patent Document 1 discloses a piping gasket that is arranged between a plurality of pipe members through which a fluid flows and is formed in a ring shape having a predetermined width dimension that seals the joints of both pipe members. It is disclosed. In the piping gasket, the inner end portion on the center side in the radial direction is formed of a highly resistant resin material.
 また、特許文献2には、周方向に概ね沿って連なる凹溝を有し、径方向断面のいずれもが略U字状に形成されるジャケットリング部材と、該ジャケットリング部材の凹溝を形成する両側壁に、弾発的に当接するように該凹溝に嵌め込まれるOリング状部材とを備え、該ジャケットリング部材が主としてフッ素樹脂からなり、該Oリング状部材が主として水素化ニトリルゴムからなることを特徴とするシール材が開示されている。 Patent Document 2 also includes a jacket ring member that has a groove that extends substantially along the circumferential direction and has a substantially U-shaped radial cross section, and a groove formed in the jacket ring member. O-ring-like members fitted into the concave grooves so as to elastically abut both side walls, the jacket ring member is mainly made of fluororesin, and the O-ring-like member is mainly made of hydrogenated nitrile rubber. The sealing material characterized by becoming is disclosed.
 また、特許文献3には、NBR系ゴムをベースとする本体ゴム配合物の加硫物からなるリング状のガスケット本体と、フッ素ゴムをベースとするゴム配合物の加硫物からなり、表面に形成されるバリア層とを備えてなることを特徴とするゴムガスケットが開示されている。 Further, Patent Document 3 includes a ring-shaped gasket body made of a vulcanized body rubber compound based on NBR rubber and a vulcanized rubber compound based on a fluororubber. A rubber gasket characterized by comprising a barrier layer to be formed is disclosed.
 さらに、特許文献4には、インテークマニホールドまたは燃料タンクなどの繋ぎ部に装着されるキャリア部を持ったキャリアガスケットにおいて、前記キャリア部の表側,裏側に凹溝を形成し、前記凹溝には表側,裏側の面以上に突出する突条を有したシール部を形成せしめ、表側のシール部の突条と裏側のシール部の突条とを数または形状を異ならしめて配設したことを特徴とするキャリアガスケットなどが開示されている。
 なお、この特許文献4には、従来技術として、表側のシール部の突条と裏側のシール部の突条とを、ほぼ同一形状、寸法に形成したキャリアガスケット(図10参照)が記載されている。
Further, in Patent Document 4, in a carrier gasket having a carrier portion attached to a connecting portion such as an intake manifold or a fuel tank, concave grooves are formed on the front side and the back side of the carrier portion, and the concave groove has a front side. , Characterized in that a seal portion having a protrusion protruding beyond the back surface is formed, and the protrusions on the front seal portion and the protrusions on the back seal portion are arranged in different numbers or shapes. Carrier gaskets and the like are disclosed.
In addition, this Patent Document 4 describes a carrier gasket (see FIG. 10) in which a protrusion on the front side seal part and a protrusion on the back side seal part are formed in substantially the same shape and dimensions as a conventional technique. Yes.
実用新案登録第3104291号公報Utility Model Registration No. 3104291 特開2002-241736号公報JP 2002-241736 A 特開2001-280509号公報JP 2001-280509 A 特開2003-201929号公報JP 2003-201929 A
 しかしながら、上述したフッ素ゴム製のガスケット、及び、特許文献1~4のガスケット等においては、ガソリンなどの漏れをさらに低減すること、及び、製造原価のコストダウンを図ることなどが要望されていた。 However, in the above-described fluororubber gasket and the gaskets of Patent Documents 1 to 4, it has been desired to further reduce the leakage of gasoline and the like and to reduce the manufacturing cost.
 本発明は、上記事情に鑑み提案されたものであり、透過漏れ及び接面漏れを効果的に低減することができ、かつ、経済性などに優れたガスケットの提供を目的とする。 The present invention has been proposed in view of the above circumstances, and an object of the present invention is to provide a gasket that can effectively reduce permeation leakage and contact surface leakage and is excellent in economic efficiency.
 上記目的を達成するため、本発明のガスケットは、ゴム製の反流体側環状部材と、前記反流体側環状部材の流体側において該反流体側環状部材と密接する、断面形状がほぼ矩形状の流体側環状部材とを有し、前記流体側環状部材が、前記反流体側環状部材よりも揮発油からの気化ガスに対する透過率が低く、前記反流体側環状部材の厚さT、及び、前記流体側環状部材の厚さtにおいて、T>tである構成としてある。 In order to achieve the above object, a gasket according to the present invention has a rubber-shaped anti-fluid-side annular member and a cross-sectional shape that is in close contact with the anti-fluid-side annular member on the fluid side of the anti-fluid-side annular member. A fluid-side annular member, and the fluid-side annular member has a lower permeability to vaporized gas from volatile oil than the anti-fluid-side annular member, the thickness T of the anti-fluid-side annular member, and In the thickness t of the fluid-side annular member, T> t.
 本発明のガスケットによれば、流体がゴムを透過するガソリンなどの揮発油からの気化ガスであっても、流体側環状部材がまず流体をシールする。次に、反流体側環状部材が、流体側環状部材の接面漏れに対してシールし、接面漏れを低減することができる。
 すなわち、このガスケットは、流体に対して上記のタンデム構造を有することにより、接面漏れ及び透過漏れを効果的に低減することができる。
 さらに、このガスケットは、構造をシンプルとすることができ、製造原価のコストダウンを図ることができる。
According to the gasket of the present invention, the fluid-side annular member first seals the fluid even if the fluid is a vaporized gas from volatile oil such as gasoline that permeates the rubber. Next, the anti-fluid-side annular member can seal against contact surface leakage of the fluid-side annular member and reduce contact surface leakage.
That is, this gasket can effectively reduce the leakage of the contact surface and the permeation through the tandem structure with respect to the fluid.
Further, this gasket can have a simple structure and can reduce the manufacturing cost.
図1は、本発明の一実施形態にかかるガスケットの概略図であり、(a)は平面図、(b)はA-A拡大断面を示す端面図である。FIG. 1 is a schematic view of a gasket according to an embodiment of the present invention, in which (a) is a plan view and (b) is an end view showing an AA enlarged cross section. 図2は、本発明の一実施形態にかかるガスケットの使用状態を説明するための概略拡大断面図を示している。FIG. 2 is a schematic enlarged cross-sectional view for explaining a use state of the gasket according to the embodiment of the present invention. 図3は、実施例及び比較例における漏れ量の測定結果を説明するグラフを示している。FIG. 3 is a graph illustrating the measurement results of the leakage amount in the example and the comparative example. 図4は、実施例及び比較例における圧縮率に対する漏れ量の測定結果を説明するグラフを示している。FIG. 4 shows a graph for explaining the measurement result of the leakage amount with respect to the compression rate in the examples and comparative examples. 図5は、試験装置を説明するための概略断面図を示している。FIG. 5 shows a schematic cross-sectional view for explaining the test apparatus. 図6は、実施例及び比較例における、液体の漏れ量、気体の漏れ量及び透過漏れの実体量の測定結果を説明するグラフを示している。FIG. 6 is a graph illustrating measurement results of the liquid leakage amount, the gas leakage amount, and the permeation leakage actual amount in Examples and Comparative Examples.
[ガスケットの一実施形態]
 図1において、本実施形態のガスケット1は、反流体側環状部材としてのOリング2及び流体側環状部材3を備えた構成としてある。このガスケット1は、燃料タンク用ガスケットであり、自動車の燃料タンク(図示せず)のエンジンへの供給用のキャップ部に取り付けられ、ガソリンなどの燃料をシールする。
 なお、本発明のガスケットの用途は、燃料タンクに用いられる場合に限定されるものではなく、様々な用途であってもよい。
[One embodiment of gasket]
In FIG. 1, the gasket 1 of the present embodiment is configured to include an O-ring 2 and a fluid-side annular member 3 as anti-fluid-side annular members. The gasket 1 is a fuel tank gasket, and is attached to a cap portion for supplying an engine to a fuel tank (not shown) of an automobile, and seals fuel such as gasoline.
In addition, the use of the gasket of this invention is not limited to the case where it uses for a fuel tank, A various use may be sufficient.
(Oリング)
 Oリング2は、ゴム製であり、かつ、断面形状が円形の円環状としてある。
 本実施形態のOリング2の材質は、NBR(ニトリルゴム)としてあるが、これに限定されるものではなく、たとえば、HNBR(水素化ニトリルゴム)、U(ウレタンゴム)、ACM(アクリルゴム)FKM(フッ素ゴム)などであってもよい。
(O-ring)
The O-ring 2 is made of rubber and has an annular shape with a circular cross section.
The material of the O-ring 2 of this embodiment is NBR (nitrile rubber), but is not limited to this. For example, HNBR (hydrogenated nitrile rubber), U (urethane rubber), ACM (acrylic rubber) FKM (fluoro rubber) or the like may be used.
 なお、Oリング2は、円環状としてあるが、これに限定されるものではなく、たとえば、上記キャップ部の形状に応じて、矩形環状などでもよい。
 また、本実施形態では、反流体側環状部材をOリング2としてあるが、これに限定されるものではなく、たとえば、角リング、Dリング、Xリングなどでもよい。
The O-ring 2 is an annular shape, but is not limited to this. For example, the O-ring 2 may be a rectangular shape depending on the shape of the cap portion.
Further, in the present embodiment, the anti-fluid-side annular member is the O-ring 2, but is not limited to this, and may be, for example, a square ring, a D ring, an X ring, or the like.
(流体側環状部材)
 本実施形態において、流体側環状部材3は、フッ素系樹脂からなり、Oリング2の流体側においてOリング2と密接し、断面形状がほぼ矩形状である。
 ここで、好ましくは、上記のフッ素系樹脂が、PTFE(ポリテトラフルオロエチレン)又はPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)であるとよい。
 このようにすると、流体側環状部材3は、ガソリンなどの揮発油からの気化ガスに対する透過漏れを効果的に低減することができる。
 なお、フッ素系樹脂は、PTFEやPFAに限定されるものではなく、たとえば、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、ETFE(エチレン・テトラフルオロエチレン共重合体)又はPVDF(ポリビニリデンフルオライド)であってもよい。
(Fluid side annular member)
In the present embodiment, the fluid-side annular member 3 is made of a fluorine-based resin, is in close contact with the O-ring 2 on the fluid side of the O-ring 2 and has a substantially rectangular cross-sectional shape.
Here, preferably, the fluororesin is PTFE (polytetrafluoroethylene) or PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer).
If it does in this way, the fluid side annular member 3 can reduce effectively the permeation | transmission leakage with respect to the vaporization gas from volatile oils, such as gasoline.
The fluororesin is not limited to PTFE or PFA. For example, FEP (tetrafluoroethylene / hexafluoropropylene copolymer), ETFE (ethylene / tetrafluoroethylene copolymer) or PVDF (polyvinylidene). Fluoride).
 また、流体側環状部材3は、断面形状がほぼ矩形状である。すなわち、流体側環状部材3は、幅wの円環状であり、かつ、互いに対向する上面及び下面を有している。そして、これらの面は、フランジ4と当接し、接面漏れを低減する。
 なお、「断面形状がほぼ矩形状である。」とは、たとえば、後述するように、反流体側の側面が湾曲している場合をも含むといった意味である。また、流体側環状部材3は、図示してないが、対向する上面及び下面に、接面漏れを低減するための、一又は二以上の環状の凸部を有していてもよい。
The fluid-side annular member 3 has a substantially rectangular cross section. That is, the fluid-side annular member 3 has an annular shape with a width w, and has an upper surface and a lower surface that face each other. These surfaces abut against the flange 4 to reduce contact surface leakage.
Note that “the cross-sectional shape is substantially rectangular” means that, for example, the side surface on the anti-fluid side is curved as described later. Moreover, although not shown in figure, the fluid side annular member 3 may have one or two or more annular convex portions for reducing contact surface leakage on the upper and lower surfaces facing each other.
 ここで、好ましくは、流体側環状部材3の幅wが、1mm~10mmであるとよい。このようにすると、流体側環状部材3が接面漏れを低減でき、かつ、製造原価のコストダウンを図ることができる。
 上記の数値限定の理由は、1mm未満であると、接面漏れを低減するためのシール性を十分に発揮できなくなる虞があるからである。また、10mmを超えると、接面漏れに対する効果が低くなり、不要に多くの材料を使用することとなり、製造原価のコストダウンを図ることができなくなる虞があるからである。
Here, preferably, the width w of the fluid-side annular member 3 is 1 mm to 10 mm. If it does in this way, the fluid side annular member 3 can reduce a contact surface leak, and can aim at the cost reduction of manufacturing cost.
The reason for limiting the above numerical values is that if the thickness is less than 1 mm, the sealing performance for reducing contact surface leakage may not be sufficiently exhibited. On the other hand, if the thickness exceeds 10 mm, the effect on the contact surface leakage is reduced, and many materials are used unnecessarily, and the manufacturing cost may not be reduced.
 また、流体側環状部材3は、Oリング2の流体側(本実施形態では、Oリング2の内周側)においてOリング2と密接している。すなわち、流体側環状部材3の断面形状は、反流体側の部分が、Oリング2の断面形状と対応する湾曲した形状としてある。
 このようにすると、ガスケット1がフランジ4によって締め付けられた際、Oリング2と流体側環状部材3との間にスペース(図示せず)が形成されない。仮に、このスペースが形成されると、流体側環状部材3に対して接面漏れしたガソリンなどの揮発油からの気化ガスが、該スペースに溜まり、Oリング2に対して透過漏れを発生させることとなる。すなわち、流体側環状部材3が、Oリング2の流体側においてOリング2と密接していることにより、上記のスペースが形成されないので、Oリング2に対する透過漏れを効果的に防止することができる。
Further, the fluid-side annular member 3 is in close contact with the O-ring 2 on the fluid side of the O-ring 2 (in this embodiment, the inner peripheral side of the O-ring 2). That is, the cross-sectional shape of the fluid-side annular member 3 is such that the portion on the anti-fluid side is curved corresponding to the cross-sectional shape of the O-ring 2.
In this way, when the gasket 1 is tightened by the flange 4, no space (not shown) is formed between the O-ring 2 and the fluid-side annular member 3. If this space is formed, vaporized gas from volatile oil such as gasoline leaked in contact with the fluid-side annular member 3 accumulates in the space and causes permeation leakage to the O-ring 2. It becomes. That is, since the fluid-side annular member 3 is in close contact with the O-ring 2 on the fluid side of the O-ring 2, the above-described space is not formed, so that permeation leakage to the O-ring 2 can be effectively prevented. .
 なお、本実施形態のガスケット1は、内側に流体があり、径方向のタンデム構造を、中心から外側に向かって、流体側環状部材3及びOリング2としてある。
 ただし、これに限定されるものではなく、たとえば、図示してないが、ガスケットの外側に流体がある場合には、径方向のタンデム構造を、中心から外側に向かって、反流体側環状部材及び流体側環状部材としてもよい。また、ガスケットの内側及び外側に流体がある場合には、径方向のタンデム構造を、中心から外側に向かって、流体側環状部材、反流体側環状部材及び流体側環状部材としてもよい。
In addition, the gasket 1 of this embodiment has a fluid inside, and has a radial tandem structure as a fluid-side annular member 3 and an O-ring 2 from the center toward the outside.
However, the present invention is not limited to this. For example, although not shown, when there is a fluid outside the gasket, the tandem structure in the radial direction is formed from the center toward the outside, It is good also as a fluid side annular member. Moreover, when there is fluid inside and outside the gasket, the tandem structure in the radial direction may be a fluid-side annular member, an anti-fluid-side annular member, and a fluid-side annular member from the center toward the outside.
 また、上記の密接は、通常、Oリング2が微少距離だけ拡径された状態で、流体側環状部材3の外周側側面の湾曲した凹部に掛けられることによって行われる。このようにすると、ガスケット1を容易に組み立てることができ、製造原価のコストダウンを図ることができる。
 ただし、これに限定されるものではなく、たとえば、接着剤などを用いもよい。さらに、たとえば、図示してないが、Oリング2の内周側に凸部を形成し、該凸部が、流体側環状部材3の外周側側面に形成された凹部に係入する構成としてもよい。このようにすると、組み付けられたOリング2が流体側環状部材3から容易に外れない構成とすることができ、取扱い性などを向上させることができる。
Further, the close contact is usually performed by being hooked on a curved concave portion on the outer peripheral side surface of the fluid-side annular member 3 in a state where the diameter of the O-ring 2 is expanded by a minute distance. If it does in this way, the gasket 1 can be assembled easily and the cost reduction of a manufacturing cost can be aimed at.
However, it is not limited to this, For example, you may use an adhesive agent etc. Further, for example, although not shown, a convex portion is formed on the inner peripheral side of the O-ring 2, and the convex portion is engaged with a concave portion formed on the outer peripheral side surface of the fluid-side annular member 3. Good. If it does in this way, it can be set as the structure which the assembled | attached O-ring 2 does not remove | deviate from the fluid side annular member 3 easily, and handleability etc. can be improved.
 またガスケット1は、Oリング2の直径d、及び、流体側環状部材3の厚さtにおいて、d>tである。
 このようにすると、フランジ4がガスケット1を締め付けた際、流体側環状部材3を圧縮した状態において、Oリング2も圧縮されることとなり、ガスケット1は、後述するように、流体側環状部材3及びOリング2により、効果的にガソリンなどの燃料をシールすることができる。
The gasket 1 satisfies d> t in the diameter d of the O-ring 2 and the thickness t of the fluid-side annular member 3.
In this way, when the flange 4 tightens the gasket 1, the O-ring 2 is also compressed in a state in which the fluid-side annular member 3 is compressed. And the fuel such as gasoline can be effectively sealed by the O-ring 2.
 ここで、好ましくは、Oリング2の断面形状(円形)の直径d、及び、流体側環状部材3の厚さtにおいて、d/t=1.1~1.4であるとよく、より好ましくは、d/t=1.2~1.3であるとよい。
 このようにすると、シール性を向上させることができ、また、作業性などを向上させることができる。
 上記の数値限定の理由は、1.1未満であると、ガスケット1を圧縮した際、Oリング2の圧縮率が不十分となり、Oリング2によるシール性を十分発揮できなくなる虞があるからである。また、1.4を超えると、圧縮した際、流体側環状部材3の圧縮率が不十分となり、流体側環状部材3によるシール性を充分発揮できなくなる虞があるからである。さらに、ハンドリングにおいて、Oリング2が流体側環状部材3から容易に外れてしまい、作業性などが低下する虞があるからである。
Here, preferably, in the diameter d of the cross-sectional shape (circular shape) of the O-ring 2 and the thickness t of the fluid-side annular member 3, d / t = 1.1 to 1.4 is more preferable. Is preferably d / t = 1.2 to 1.3.
If it does in this way, a sealing performance can be improved and workability | operativity etc. can be improved.
The reason for the above numerical limitation is that if the gasket is less than 1.1, the compression rate of the O-ring 2 becomes insufficient when the gasket 1 is compressed, and the sealing performance by the O-ring 2 may not be sufficiently exhibited. is there. On the other hand, if the ratio exceeds 1.4, the compression ratio of the fluid-side annular member 3 becomes insufficient when compressed, and the sealing performance by the fluid-side annular member 3 may not be sufficiently exhibited. Further, in handling, the O-ring 2 is easily detached from the fluid-side annular member 3, and workability and the like may be reduced.
 次に、上記構成のガスケット1の使用状態などについて、図面を参照して説明する。
 図2において、ガスケット1は、一対のフランジ4によって締め付けられており、フランジ4どうしの距離は、t(t<t)としてある。したがって、流体側環状部材3の圧縮率は、((t-t)/t)×100(%)であり、Oリング2の圧縮率は、((d-t)/d)×100(%)である。
Next, the usage state etc. of the gasket 1 of the said structure are demonstrated with reference to drawings.
In FIG. 2, the gasket 1 is fastened by a pair of flanges 4, and the distance between the flanges 4 is t 0 (t 0 <t). Therefore, the compression rate of the fluid-side annular member 3 is ((t−t 0 ) / t) × 100 (%), and the compression rate of the O-ring 2 is ((d−t 0 ) / d) × 100. (%).
 ガスケット1は、揮発油からの気化ガス(適宜、流体と略称する。)に対して、流体側環状部材3がまずシールする。この流体側環状部材3のシールにおいて、本実施形態では、流体側環状部材3がフッ素系樹脂製であることにより、透過漏れを効果的に低減することができる。さらに、流体側環状部材3は、((t-t)/t)×100(%)の圧縮率で取り付けられているので、接面漏れを低減するように流体をシールする。
 ただし、流体側環状部材3によるシールでは、微量の接面漏れが発生する。
In the gasket 1, the fluid-side annular member 3 first seals against the vaporized gas (suitably abbreviated as fluid) from volatile oil. In the seal of the fluid-side annular member 3, in the present embodiment, the fluid-side annular member 3 is made of a fluorine-based resin, so that permeation leakage can be effectively reduced. Furthermore, since the fluid side annular member 3 is mounted at a compression rate of ((t−t 0 ) / t) × 100 (%), the fluid is sealed so as to reduce the contact surface leakage.
However, in the seal by the fluid side annular member 3, a small amount of contact surface leakage occurs.
 次に、この接面漏れに対して、ガスケット1は、((d-t)/d)×100(%)の圧縮率で取り付けられたOリング2が、接面漏れを低減するように流体をシールし、接面漏れをさらに低減することができる。
 すなわち、ガスケット1は、流体に対して上述したタンデム構造を有することにより、透過漏れ及び接面漏れを効果的に低減することができる。
 また、ガスケット1は、構造をシンプルとすることができ、製造原価のコストダウンを図ることができる。
Next, with respect to this contact surface leakage, the gasket 1 is attached so that the O-ring 2 attached at a compression rate of ((dt− 0 ) / d) × 100 (%) reduces the contact surface leakage. The fluid can be sealed to further reduce contact surface leakage.
That is, the gasket 1 can effectively reduce permeation leakage and contact surface leakage by having the above-described tandem structure with respect to the fluid.
Further, the gasket 1 can have a simple structure and can reduce the manufacturing cost.
 また、PTFEは、温度が上昇するとクリープ現象が発生し、流体側環状部材3のシール性が不安定となるが、ガスケット1によれば、Oリング2により、漏れを低減することができる。
 なお、クリープ現象とは、材料に荷重を加えたときに、時間とともに変形が増大していく現象のことをいう。
In addition, when the temperature of PTFE rises, a creep phenomenon occurs and the sealing performance of the fluid-side annular member 3 becomes unstable. However, according to the gasket 1, leakage can be reduced by the O-ring 2.
The creep phenomenon means a phenomenon in which deformation increases with time when a load is applied to a material.
 以上説明したように、本実施形態のガスケット1によれば、ガソリンなどのゴムを透過する流体に対して、透過漏れ及び接面漏れを効果的に低減することができ、さらに、製造原価のコストダウンを図ることができる。 As described above, according to the gasket 1 of the present embodiment, it is possible to effectively reduce permeation leakage and contact surface leakage with respect to a fluid that permeates rubber such as gasoline. You can go down.
 次に、本実施形態の実施例などについて、図面を参照して説明する。 Next, examples of the present embodiment will be described with reference to the drawings.
[実施例1]
 実施例1のガスケット1は、
 Oリング2の内径=145.8mm、太さ(直径d)=5.7mm、材質=NBRであり、また、
 流体側環状部材3の内径=139.6mm、厚さt=4.1mm、幅w=約4.0mm、材質=PTFE
 であった。
 このガスケット1を、流体側環状部材3の圧縮率=0.3%、かつ、Oリング2の圧縮率=28%となるように、フランジ4にて締め付け、ガソリンに対する漏れ量(接面漏れと透過漏れによる合計の漏れ量)を測定した。
 なお、フランジ4の接触面は、Rz3で仕上げ加工した。
[Example 1]
The gasket 1 of Example 1 is
The inner diameter of the O-ring 2 is 145.8 mm, the thickness (diameter d) is 5.7 mm, the material is NBR, and
Inner diameter of fluid side annular member 3 = 139.6 mm, thickness t = 4.1 mm, width w = about 4.0 mm, material = PTFE
Met.
The gasket 1 is tightened with a flange 4 so that the compression rate of the fluid-side annular member 3 is 0.3% and the compression rate of the O-ring 2 is 28%, and the leakage amount to gasoline (contact surface leakage and The total amount of leakage due to permeation leakage) was measured.
The contact surface of the flange 4 was finished with Rz3.
 測定結果は、常温(約20℃)+96時間にて、0.02gの漏れ量であり、40℃+96時間にて、0.04gの漏れ量であった(図3参照)。
 なお、今回の測定においては、常温+96時間における漏れ量の基準(暫定)を比較例2の半分0.07g以下、及び、40℃+96時間における漏れ量の基準(暫定)を0.09g以下とした。
 したがって、実施例1のガスケット1は、常温及び40℃において、良好な結果を得た。
The measurement result was 0.02 g of leakage at normal temperature (about 20 ° C.) + 96 hours, and 0.04 g of leakage at 40 ° C. + 96 hours (see FIG. 3).
In this measurement, the standard (provisional) leakage amount at normal temperature +96 hours is 0.07 g or less, which is half that of Comparative Example 2, and the standard (provisional) leakage amount at 40 ° C. + 96 hours is 0.09 g or less. did.
Therefore, the gasket 1 of Example 1 obtained good results at room temperature and 40 ° C.
 なお、上述したように、PTFEは、約40℃において、クリープ現象が発生し、流体側環状部材3のシール性が不安定となる(すなわち、接面漏れが増加する)が、このガスケット1は、適度に圧縮されたOリング2により、漏れ量を低減することができた。
 また、上記の0.02gの漏れ量は、PTFE及びNBRを透過した透過漏れの量(0.02g)であると思われる。また、上記の0.04gの漏れ量の内訳は、PTFE及びNBRを透過した透過漏れの量(0.02g)と、シール性が不安定となった流体側環状部材3の接面漏れに対し、Oリング2がシールできずに漏らした量(0.02g)であると思われる。
As described above, PTFE causes a creep phenomenon at about 40 ° C., and the sealing performance of the fluid-side annular member 3 becomes unstable (that is, contact surface leakage increases). The amount of leakage could be reduced by the appropriately compressed O-ring 2.
The 0.02 g leakage amount is considered to be the amount of transmission leakage (0.02 g) that has passed through PTFE and NBR. In addition, the breakdown of the 0.04 g leakage amount is as follows: the amount of permeation leakage that has passed through PTFE and NBR (0.02 g) and the contact surface leakage of the fluid-side annular member 3 whose sealing performance has become unstable. It seems that this is the amount (0.02 g) that the O-ring 2 leaked without being sealed.
[比較例1]
 比較例1のガスケットは、Oリングであり、内径=145.8mm、太さ(直径d)=5.7mm、材質=NBRであった。
 このガスケットを、常温でのシール試験にて接面漏れがなくなった圧縮率(5.4%)で、フランジ4にて締め付け、ガソリンに対する漏れ量(接面漏れと透過漏れによる合計の漏れ量)を測定した。
[Comparative Example 1]
The gasket of Comparative Example 1 was an O-ring, and had an inner diameter = 145.8 mm, a thickness (diameter d) = 5.7 mm, and a material = NBR.
This gasket is tightened with flange 4 at a compression rate (5.4%) that eliminates contact surface leakage in a seal test at room temperature, and the amount of leakage to gasoline (total leakage due to contact surface leakage and permeation leakage) Was measured.
 測定結果は、常温(約20℃)+96時間にて、0.31gの漏れ量であり、40℃+96時間にて、1.65gの漏れ量であった(図3参照)。
 したがって、比較例1のガスケットは、常温及び40℃において、基準(暫定)を満足できなかった。
The measurement result was a leak amount of 0.31 g at normal temperature (about 20 ° C.) + 96 hours, and a leak amount of 1.65 g at 40 ° C. + 96 hours (see FIG. 3).
Therefore, the gasket of Comparative Example 1 could not satisfy the standard (provisional) at normal temperature and 40 ° C.
[比較例2]
 比較例2のガスケットは、Oリングであり、内径=145.8mm、太さ(直径d)=5.7mm、材質=フッ素ゴムであった。
 このガスケットを、常温でのシール試験にて接面漏れがなくなった圧縮率(6.5%)で、フランジ4にて締め付け、ガソリンに対する漏れ量(接面漏れと透過漏れによる合計の漏れ量)を測定した。
[Comparative Example 2]
The gasket of Comparative Example 2 was an O-ring, and the inner diameter was 145.8 mm, the thickness (diameter d) was 5.7 mm, and the material was fluororubber.
This gasket is tightened with flange 4 at a compression rate (6.5%) at which contact surface leakage was eliminated in a seal test at room temperature, and the amount of leakage to gasoline (total leakage due to contact surface leakage and permeation leakage) Was measured.
 測定結果は、常温(約20℃)+96時間にて、0.14gの漏れ量であり、40℃+96時間にて、0.18gの漏れ量であった(図3参照)。
 したがって、比較例2のガスケットは、常温及び40℃において、基準(暫定)を満足できなかった。
The measurement result was a leakage amount of 0.14 g at room temperature (about 20 ° C.) + 96 hours, and a leakage amount of 0.18 g at 40 ° C. + 96 hours (see FIG. 3).
Therefore, the gasket of Comparative Example 2 could not satisfy the standard (provisional) at normal temperature and 40 ° C.
[比較例3]
 比較例3のガスケットは、断面形状が矩形状の円環状のガスケットであり、内径=139.6mm、厚さt=5.35mm、幅w=約4.0mm、材質=PTFEであった。
 このガスケットを、常温でのシール試験にて接面漏れがなくなった圧縮率(3.0%)で、フランジ4にて締め付け、ガソリンに対する漏れ量(接面漏れと透過漏れによる合計の漏れ量)を測定した。
[Comparative Example 3]
The gasket of Comparative Example 3 was an annular gasket having a rectangular cross-section, and had an inner diameter = 139.6 mm, a thickness t = 5.35 mm, a width w = about 4.0 mm, and a material = PTFE.
This gasket is tightened with flange 4 at a compression rate (3.0%) at which contact surface leakage is eliminated in a seal test at room temperature, and the amount of leakage to gasoline (total leakage due to contact leakage and permeation leakage) Was measured.
 測定結果は、常温(約20℃)+96時間にて、0.02gの漏れ量であり、40℃+96時間にて、0.14gの漏れ量であった(図3参照)。
 したがって、比較例3のガスケットは、常温において、基準(暫定)を満足できたものの、40℃において、基準(暫定)を満足できなかった。
 なお、上記の0.14gの漏れ量は、上述したように、約40℃において、PTFEにクリープ現象が発生し、ガスケットのシール性が不安定となり、接面漏れによる漏れ量が増加したものと思われる。
The measurement result was 0.02 g leakage at normal temperature (about 20 ° C.) + 96 hours, and 0.14 g leakage at 40 ° C. + 96 hours (see FIG. 3).
Therefore, the gasket of Comparative Example 3 was able to satisfy the standard (provisional) at room temperature, but could not satisfy the standard (provisional) at 40 ° C.
In addition, as described above, the leakage amount of 0.14 g is that the creep phenomenon occurs in PTFE at about 40 ° C., the sealing performance of the gasket becomes unstable, and the leakage amount due to contact surface leakage increases. Seem.
 次に、実施例1のガスケット1、及び、比較例1のガスケットにおける、圧縮率と漏れ量の関係について、図面を参照して説明する。
 図4に示すように、実施例1のガスケット1、及び、比較例1のガスケットに対して、圧縮率を変化させ、40℃+96時間にて、漏れ量を測定した。
 比較例1のガスケットにおける測定結果は、圧縮率を上げると漏れ量が減少するものの、40℃における基準(暫定)を満足できなかった。
 これに対し、実施例1のガスケット1における測定結果は、圧縮率を上げると漏れ量が減少し、Oリング2の圧縮率を約20%以上とすると、40℃における基準(暫定)を満足できた。すなわち、このガスケット1は、Oリング2が圧縮され、かつ、流体側環状部材3も圧縮されていることが好ましいが、Oリング2の圧縮率を約20%以上とすると、流体側環状部材3が接触していなくても、40℃における基準(暫定)を満足できた。
Next, the relationship between the compression rate and the leakage amount in the gasket 1 of Example 1 and the gasket of Comparative Example 1 will be described with reference to the drawings.
As shown in FIG. 4, the compression rate was changed with respect to the gasket 1 of Example 1 and the gasket of Comparative Example 1, and the amount of leakage was measured at 40 ° C. + 96 hours.
The measurement result of the gasket of Comparative Example 1 did not satisfy the standard (provisional) at 40 ° C., although the leakage amount decreased when the compression rate was increased.
On the other hand, the measurement result in the gasket 1 of Example 1 shows that when the compression rate is increased, the leakage amount is reduced, and when the compression rate of the O-ring 2 is about 20% or more, the standard (provisional) at 40 ° C. can be satisfied. It was. That is, in this gasket 1, it is preferable that the O-ring 2 is compressed and the fluid-side annular member 3 is also compressed. However, when the compression rate of the O-ring 2 is about 20% or more, the fluid-side annular member 3 is compressed. Even if they were not in contact, the standard at 40 ° C. (provisional) could be satisfied.
 次に、実施例1のガスケット1、及び、比較例1、2のガスケットにおける、気体状態のガソリンなどの燃料100、及び、液体状態のガソリンなどの燃料100に対する漏れ量などについて、図面を参照して説明する。
 まず、この試験に用いる試験装置10は、図5に示すように、容器本体11及び蓋板12などを有しており、容器本体11と蓋板12とは、ガスケット1によってシールされる。
 この試験装置10は、気体状態の燃料100に対して、漏れ量を測定する場合、図5(a)に示すように、容器本体11の上方に蓋板12が位置し、ガスケット1は、気化した燃料100と接触する。このときの漏れ量を、気体の漏れ量と呼称する(図6参照)。
 また、試験装置10は、液体状態の燃料100に対して、漏れ量を測定する場合、図5(b)に示すように、蓋板12の上方に容器本体11が位置し、ガスケット1は、液体の燃料100と接触する。このときの漏れ量を、液体の漏れ量と呼称する(図6参照)。
 このときの容器本体11及び蓋板12の接触面(フランジ面)は、Rz3で仕上げ加工した。また、流体側環状部材3の圧縮率=0.3%、Oリング2の圧縮率=28%となるように、ガスケット1を締め付けた。
 また、当該接触面を鏡面仕上げ(Rz0.4)とした以外は試験装置10と同一の条件で、図5(b)の状態で測定した漏れ量を、透過漏れの実体量と呼称する(図6参照)。
Next, in the gasket 1 of Example 1 and the gaskets of Comparative Examples 1 and 2, the amount of leakage of the fuel 100 such as gasoline in the gas state and the fuel 100 such as gasoline in the liquid state is described with reference to the drawings. I will explain.
First, as shown in FIG. 5, the test apparatus 10 used for this test includes a container body 11 and a cover plate 12, and the container body 11 and the cover plate 12 are sealed by the gasket 1.
In the test apparatus 10, when measuring the leakage amount with respect to the fuel 100 in a gaseous state, as shown in FIG. 5A, the cover plate 12 is positioned above the container body 11, and the gasket 1 is vaporized. In contact with the spent fuel 100. The amount of leakage at this time is referred to as gas leakage (see FIG. 6).
Further, when the test apparatus 10 measures the leakage amount with respect to the liquid fuel 100, as shown in FIG. 5B, the container body 11 is positioned above the cover plate 12, and the gasket 1 Contact with liquid fuel 100. The amount of leakage at this time is referred to as the amount of liquid leakage (see FIG. 6).
The contact surface (flange surface) of the container main body 11 and the lid plate 12 at this time was finished with Rz3. Further, the gasket 1 was tightened so that the compression rate of the fluid-side annular member 3 was 0.3% and the compression rate of the O-ring 2 was 28%.
Further, the leakage amount measured in the state of FIG. 5B under the same conditions as the test apparatus 10 except that the contact surface is mirror-finished (Rz0.4) is referred to as the permeation leakage substance amount (see FIG. 5). 6).
 図6に示すように、実施例1のガスケット1に対して、図5(a)の状態でガソリンの漏れ量(気体の漏れ量)を測定したところ、常温+96時間にて、0.02gの漏れ量であった。
 また、図5(b)の状態でガソリンの漏れ量(液体の漏れ量)を測定したところ、常温(約20℃)+96時間にて、0.15gの漏れ量であった。
 さらに、接触面を鏡面仕上げ(Rz0.4)した試験装置において、図5(a)の状態でガソリンの漏れ量(透過漏れの実体量)を測定したところ、常温+96時間にて、0.01gであった。
 ここで、透過漏れと接面漏れを区別でき、透過漏れによる漏れ量が0.01gであり、接面漏れによる漏れ量が0.14(0.15-0.01)gであった。
As shown in FIG. 6, when the gasoline leakage amount (gas leakage amount) was measured in the state of FIG. 5A with respect to the gasket 1 of Example 1, 0.02 g was obtained at room temperature + 96 hours. The amount of leakage.
Further, when the gasoline leakage amount (liquid leakage amount) was measured in the state of FIG. 5B, the leakage amount was 0.15 g at room temperature (about 20 ° C.) + 96 hours.
Furthermore, when the contact surface was mirror-finished (Rz0.4) and the amount of gasoline leaked (substance of permeation leakage) was measured in the state of FIG. 5A, it was 0.01 g at room temperature + 96 hours. Met.
Here, permeation leakage and contact surface leakage could be distinguished, the leakage amount due to permeation leakage was 0.01 g, and the leakage amount due to contact surface leakage was 0.14 (0.15-0.01) g.
 比較例1のガスケットに対して、図5(a)の状態でガソリンの漏れ量(気体の漏れ量)を測定したところ、常温+96時間にて、0.28gの漏れ量であった。
 また、図5(b)の状態でガソリンの漏れ量(液体の漏れ量)を測定したところ、常温(約20℃)+96時間にて、0.69gの漏れ量であった。
 さらに、接触面を鏡面仕上げ(Rz0.4)した試験装置において、図5(b)の状態でガソリンの漏れ量(透過漏れの実体量)を測定したところ、常温+96時間にて、0.17gの漏れ量であった。
 なお、漏れ量0.69gの内訳は、透過漏れによる漏れ量が0.17gであり、接面漏れによる漏れ量が0.52(0.69-0.17)gであった。
With respect to the gasket of Comparative Example 1, when the gasoline leakage amount (gas leakage amount) was measured in the state of FIG. 5A, the leakage amount was 0.28 g at room temperature + 96 hours.
Further, when the leakage amount of gasoline (liquid leakage amount) was measured in the state of FIG. 5B, the leakage amount was 0.69 g at normal temperature (about 20 ° C.) + 96 hours.
Furthermore, when the contact surface was mirror-finished (Rz0.4), the amount of gasoline leaked (substance of permeation leakage) was measured in the state of FIG. 5B, and it was 0.17 g at room temperature + 96 hours. The amount of leakage.
The breakdown of the leakage amount of 0.69 g was 0.17 g due to permeation leakage and 0.52 (0.69-0.17) g due to contact surface leakage.
 比較例2のガスケットに対して、図5(a)の状態でガソリンの漏れ量(気体の漏れ量)を測定したところ、常温+96時間にて、0.14gの漏れ量であった。
 また、図5(b)の状態でガソリンの漏れ量(液体の漏れ量)を測定したところ、常温(約20℃)+96時間にて、0.17gの漏れ量であった。
 さらに、接触面を鏡面仕上げ(Rz0.4)した試験装置において、図5(b)の状態でガソリンの漏れ量(透過漏れの実体量)を測定したところ、常温+96時間にて、0.10gの漏れ量であった。
 なお、漏れ量0.17gの内訳は、透過漏れによる漏れ量が0.10gであり、接面漏れによる漏れ量が0.07(0.17-0.10)gであった。
When the gasoline leakage amount (gas leakage amount) was measured with respect to the gasket of Comparative Example 2 in the state of FIG. 5A, the leakage amount was 0.14 g at room temperature + 96 hours.
Further, when the gasoline leakage amount (liquid leakage amount) was measured in the state of FIG. 5B, the leakage amount was 0.17 g at room temperature (about 20 ° C.) + 96 hours.
Furthermore, when the contact surface was mirror-finished (Rz0.4), the amount of gasoline leaked (substance of permeation leakage) was measured in the state of FIG. 5B, and found to be 0.10 g at room temperature + 96 hours. The amount of leakage.
The breakdown of the leakage amount of 0.17 g was 0.10 g due to permeation leakage and 0.07 (0.17-0.10) g due to contact surface leakage.
 上述したように、実施例1のガスケット1は、各比較例のガスケットと比べると、ガソリンなどのゴムを透過する流体に対して、透過漏れ及び接面漏れを効果的に低減することができた。 As described above, the gasket 1 of Example 1 was able to effectively reduce permeation leakage and contact surface leakage with respect to a fluid that permeates rubber such as gasoline as compared with the gaskets of the respective comparative examples. .
 以上、本発明のガスケットについて、好ましい実施形態などを示して説明したが、本発明に係るガスケットは、上述した実施形態などにのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。 The gasket according to the present invention has been described with reference to the preferred embodiment. However, the gasket according to the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. It goes without saying that it is possible.
 例えば、前述した実施形態では、流体側環状部材3がフッ素系樹脂からなる例を示したが、流体側環状部材3は、フッ素系樹脂に限らず、反流体側環状部材2よりも揮発油からの気化ガスに対する透過率が低い材料を用いて形成することができる。 For example, in the embodiment described above, an example in which the fluid-side annular member 3 is made of a fluorine-based resin has been shown. It can be formed using a material having a low permeability to the vaporized gas.
 また、ガスケット1は、平面固定用のガスケットとしてあるが、本発明のガスケットは、図示してないが、円筒面用のガスケットに適用してもよい。なお、この円筒面用のガスケットにおいては、流体側環状部材は、外周面及び内周面を有するほぼ円筒形状である。 Further, although the gasket 1 is used as a flat surface fixing gasket, the gasket of the present invention is not shown, but may be applied to a cylindrical surface gasket. In this cylindrical surface gasket, the fluid-side annular member has a substantially cylindrical shape having an outer peripheral surface and an inner peripheral surface.
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。 All the contents of the documents described in this specification and the specification of the Japanese application that is the basis of Paris priority of this application are incorporated herein.
1 ガスケット
2 Oリング(反流体側環状部材)
3 流体側環状部材
4 フランジ
10 試験装置
11 容器本体
12 蓋板
100 燃料
1 Gasket 2 O-ring (Anti-fluid-side annular member)
3 Fluid side annular member 4 Flange 10 Test device 11 Container body 12 Cover plate 100 Fuel

Claims (6)

  1.  ゴム製の反流体側環状部材と、
     前記反流体側環状部材の流体側において該反流体側環状部材と密接する、断面形状がほぼ矩形状の流体側環状部材と
     を有し、
     前記流体側環状部材が、前記反流体側環状部材よりも揮発油からの気化ガスに対する透過率が低く、
     前記反流体側環状部材の厚さT、及び、前記流体側環状部材の厚さtにおいて、
     T>t
     であることを特徴とするガスケット。
    A rubber anti-fluid side annular member;
    A fluid side annular member having a substantially rectangular cross-sectional shape in close contact with the fluid side annular member on the fluid side of the fluid side annular member;
    The fluid side annular member has a lower permeability to vaporized gas from volatile oil than the anti-fluid side annular member,
    In the thickness T of the counter fluid side annular member and the thickness t of the fluid side annular member,
    T> t
    The gasket characterized by being.
  2.  前記反流体側環状部材の断面形状が円形であり、該円形の直径d、及び、前記厚さtにおいて、
     d/t=1.1~1.4
     であることを特徴とする請求項1に記載されたガスケット。
    The cross-sectional shape of the anti-fluid-side annular member is circular, and in the circular diameter d and the thickness t,
    d / t = 1.1 to 1.4
    The gasket according to claim 1, wherein:
  3.  前記流体側環状部材の幅wが、1mm~10mmであることを特徴とする請求項1又は2に記載されたガスケット。 The gasket according to claim 1 or 2, wherein a width w of the fluid side annular member is 1 mm to 10 mm.
  4.  前記流体側環状部材がフッ素系樹脂からなることを特徴とする請求項1~3のいずれか一項に記載されたガスケット。 The gasket according to any one of claims 1 to 3, wherein the fluid-side annular member is made of a fluorine-based resin.
  5.  前記フッ素系樹脂が、PTFE(ポリテトラフルオロエチレン)又はPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)であることを特徴とする請求項4に記載されたガスケット。 The gasket according to claim 4, wherein the fluororesin is PTFE (polytetrafluoroethylene) or PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer).
  6.  前記ガスケットが、燃料タンク用ガスケットであることを特徴とする請求項1~5のいずれか一項に記載されたガスケット。 The gasket according to any one of claims 1 to 5, wherein the gasket is a fuel tank gasket.
PCT/JP2015/005507 2014-11-04 2015-11-02 Gasket WO2016072087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-224627 2014-11-04
JP2014224627A JP2016089936A (en) 2014-11-04 2014-11-04 gasket

Publications (1)

Publication Number Publication Date
WO2016072087A1 true WO2016072087A1 (en) 2016-05-12

Family

ID=55908827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005507 WO2016072087A1 (en) 2014-11-04 2015-11-02 Gasket

Country Status (2)

Country Link
JP (1) JP2016089936A (en)
WO (1) WO2016072087A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164338A (en) * 2018-01-15 2020-05-15 Nok株式会社 Sealing structure and sealing piece for same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101952809B1 (en) * 2017-04-13 2019-02-27 (주)유니엠 Gasket for connecting pipe and pipe assembly comprising the same
WO2024005166A1 (en) * 2022-06-30 2024-01-04 大同工業株式会社 Chain

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121599A (en) * 1994-10-24 1996-05-14 Shionogi & Co Ltd Gasket for sanitary piping and its manufacture
JPH10311429A (en) * 1997-05-12 1998-11-24 Nichias Corp O-ring having auxiliary ring
JP2001124210A (en) * 1999-10-27 2001-05-11 Boc Group Plc:The Seal assembly
JP2008164079A (en) * 2006-12-28 2008-07-17 Nichias Corp Rubber-resin compound sealing material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121599A (en) * 1994-10-24 1996-05-14 Shionogi & Co Ltd Gasket for sanitary piping and its manufacture
JPH10311429A (en) * 1997-05-12 1998-11-24 Nichias Corp O-ring having auxiliary ring
JP2001124210A (en) * 1999-10-27 2001-05-11 Boc Group Plc:The Seal assembly
JP2008164079A (en) * 2006-12-28 2008-07-17 Nichias Corp Rubber-resin compound sealing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164338A (en) * 2018-01-15 2020-05-15 Nok株式会社 Sealing structure and sealing piece for same

Also Published As

Publication number Publication date
JP2016089936A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
KR102502375B1 (en) Gaskets and Fluid Couplings for Fluid Couplings
JP4324607B2 (en) Non-asbestos gasket
JP5209334B2 (en) Combination seal
US9752682B2 (en) Compound back-up ring for O-ring/back-up ring sealing systems in 70 MPA hydrogen storage systems
JP2009058126A (en) Ring seal provided with enclosure lobe
KR101441731B1 (en) Metal gasket
JP6955739B2 (en) Pipe fitting
WO2016072087A1 (en) Gasket
KR20160110897A (en) Gasket and the manufacturing method thereof
JP2008164079A (en) Rubber-resin compound sealing material
JP6480941B2 (en) Uncoated cylinder head gasket
JP6363923B2 (en) Volatile fuel gasket
JP6630023B2 (en) Sealing element
CA2930132A1 (en) Snap together u-shaped cup seal
JP6020492B2 (en) Electromagnetic flow meter
KR101889092B1 (en) Gasket
JP6738741B2 (en) Lining type butterfly valve
JP2013224690A (en) Pipe joint cover
JP6329773B2 (en) gasket
JP2011007276A (en) Spiral gasket
JP2016089937A (en) Gasket for automobile fuel tank
WO2013177392A1 (en) Spiral wound gasket
Bausman et al. Practical sealing for common gasket materials and construction types
WO2017056884A1 (en) Piston seal structure for piston-type accumulator
CN203309104U (en) Multiple sealing structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858070

Country of ref document: EP

Kind code of ref document: A1