WO2016072017A1 - Bonding material for biological tissue, and bonding method for biological tissue - Google Patents

Bonding material for biological tissue, and bonding method for biological tissue Download PDF

Info

Publication number
WO2016072017A1
WO2016072017A1 PCT/JP2014/079593 JP2014079593W WO2016072017A1 WO 2016072017 A1 WO2016072017 A1 WO 2016072017A1 JP 2014079593 W JP2014079593 W JP 2014079593W WO 2016072017 A1 WO2016072017 A1 WO 2016072017A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological tissue
porous body
biological
bonding material
living
Prior art date
Application number
PCT/JP2014/079593
Other languages
French (fr)
Japanese (ja)
Inventor
井上 晃
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2014/079593 priority Critical patent/WO2016072017A1/en
Publication of WO2016072017A1 publication Critical patent/WO2016072017A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses

Definitions

  • the present invention relates to a biological tissue bonding material and a biological tissue bonding method.
  • an energy treatment tool that joins living tissues using energy such as high frequency, heat, and ultrasonic waves is known (see, for example, Patent Document 1).
  • the energy treatment tool locally heats the living tissue by applying energy to the living tissue, denatures the protein, and simultaneously removes moisture from the living tissue, thereby achieving bonding between the living tissues.
  • a medical stapler that mechanically joins living tissues using staples
  • such an energy treatment device has an advantage that no foreign matter is left in the living body.
  • power is unstable.
  • Patent Document 1 a moisture permeation preventing member is disposed at a joint from which moisture has been removed by supplying energy, and the joint is protected from moisture of surrounding tissues by the moisture permeation prevention member, thereby maintaining the joining force at the joint. I am trying.
  • the present invention has been made in view of the above-described circumstances, and provides a living tissue bonding material and a living tissue bonding method capable of increasing the bonding force between living tissues in bonding of living tissues using energy. With the goal.
  • a first aspect of the present invention includes a porous body made of a biocompatible material, and the porous body opens to a surface hole formed on an outer surface and an inner surface of the surface hole. Is a biological tissue bonding material having pores having small pore diameters.
  • the biological tissue bonding material described above is disposed between two overlapping biological tissues, and the two biological tissues with the biological tissue bonding material disposed therebetween are stacked.
  • a biological tissue joining comprising: a pressurizing step for pressurizing in a direction; and an energy supplying step for joining the two living tissues by supplying energy to the two living tissues in a pressurized state by the pressurizing step Is the method.
  • the bonding force between living tissues can be increased in the bonding of living tissues using energy.
  • FIG. 2 is another scanning electron micrograph of the biological tissue bonding material of FIG.
  • FIG. 2 is another scanning electron micrograph of the biological tissue bonding material of FIG.
  • FIG. 2 shows the energy treatment tool used in the biological tissue joining method using the biological tissue joining material of FIG.
  • FIG. 2 shows the process of arrange
  • the biological tissue bonding material 1 includes a plate-like porous body 2 made of a biocompatible material, as shown in FIG.
  • the porous body 2 is formed from a biopolymer or a synthetic polymer.
  • the biopolymer collagen, gelatin, chitosan, cellulose, polysaccharides or derivatives thereof are preferably used.
  • the synthetic polymer polylactic acid, glycolic acid or polyethylene glycol is preferably used.
  • the porous body 2 may be formed of a bioabsorbable material that is decomposed and absorbed over time in the living body.
  • FIG. 1 shows a porous body 2 made of a collagen sponge as an example.
  • the porous body 2 has a large number of surface holes 3 opening on the outer surface and a smaller diameter than the surface holes 3, and a large number opening on the inner surface of the surface hole 3.
  • Pores 4. 2 and 3 are enlarged views of the surface of the porous body 2 made of collagen sponge.
  • the pore diameters of the surface hole 3 and the pore 4 are dimensions that cause capillary action on the liquid contained in the living tissue.
  • the inner diameter of a thin tube capable of sucking physiological saline by capillary action is 0.01 ⁇ m to several mm. Since the composition of the liquid contained in the living tissue approximates the composition of physiological saline, the pore diameters of the surface hole 3 and the pore 4 may be 0.01 ⁇ m to several mm.
  • the pore diameter of the surface hole 3 is several hundred ⁇ m, and the pore diameter of the pore 4 is preferably 0.01 ⁇ m to several ⁇ m.
  • the suction force of the liquid due to capillary action is inversely proportional to the hole diameter, and the smaller the hole diameter, the greater the suction force.
  • the pore diameter of the pore 4 is 0.01 ⁇ m to several ⁇ m, a strong suction force is exerted on the surface of the living tissue that has entered the surface hole 3, and the surface of the living tissue is made to be the inner surface of the surface hole 3.
  • the living tissue can enter the pores 4.
  • the specific surface area per unit weight of the porous body 2 is 0.1 m 2 / g or more and 500 m 2 / g or less.
  • the biological tissue bonding material 1 is used when bonding a biological tissue using the energy treatment tool 5.
  • the energy treatment device 5 includes an elongated cylindrical sheath 6, an openable and closable upper jaw 7 a and lower jaw 7 b provided at the distal end of the sheath 6, and the upper jaw 7 a and lower jaw. 7b and a flat plate 8 provided so as to be able to project and retract.
  • the living tissue H1 and the living tissue H2 are sandwiched between the upper jaw 7a and the lower jaw 7b, and the upper jaw 7a and the lower jaw 7b are closed so that the outer sides of the living tissues H1 and H2 are closed. Hold it.
  • the plate 8 on which the biological tissue bonding material 1 is placed is projected from between the upper jaw 7a and the lower jaw 7b, and the plate 8 is interposed between the biological tissue H1 and the biological tissue H2. Is inserted, the biological tissue bonding material 1 is disposed between the biological tissue H1 and the biological tissue H2, and the plate 8 is retracted into the sheath 6 (arrangement step).
  • the living tissues H1 and H2 which are overlapped via the living tissue bonding material 1 by holding the living tissues H1 and H2 with a stronger force by the upper jaw 7a and the lower jaw 7b. Are pressed in the stacking direction (pressurizing step).
  • the flexible biological tissues H1 and H2 pressed against the outer surface of the porous body 2 are deformed along the outer surface shape of the porous body 2 and enter the surface hole 3, and further from the surface hole 3. Enter the inside of the hole 4.
  • the state in which the biological tissues H1, H2 are pressurized by the upper jaw 7a and the lower jaw 7b until the entry of the biological tissues H1, H2 into the surface holes 3 and the pores 4 is stabilized for a predetermined time, preferably Is maintained for 0.1 to 30 seconds (maintenance step). Since the time for the living tissues H1 and H2 to enter the surface holes 3 and the pores 4 is ensured by the maintaining step, the anchor effect between the porous body 2 and the living tissues H1 and H2 is further enhanced, The joining force between the tissues H1 and H2 can be further increased.
  • vibration may be applied to the biological tissues H1, H2 in a pressurized state to promote the penetration of the biological tissues H1, H2 into the surface hole 3.
  • the vibration may be given by shaking the hand holding the sheath 6 or may be given by ultrasonically vibrating the jaws 7a and 7b. Since the penetration of the living tissues H1 and H2 into the surface holes 3 and the pores 4 is promoted by the vibration of the living tissues H1 and H2, the anchor effect between the porous body 2 and the living tissues H1 and H2 is further increased. This can increase the bonding force between the living tissues H1 and H2.
  • the jaws 7a, 7b supply the biological tissues H1, H2.
  • Supply of energy for example, high frequency, heat, or ultrasonic waves
  • the living tissues H1 and H2 when the temperature rises due to the supply of energy, the extracellular matrix contained in the living tissues H1 and H2 dissolves and exudes from the surface of the living tissues H1 and H2, and further energy is supplied.
  • the living tissues H1 and H2 are solidified by protein denaturation and moisture evaporation.
  • the biological tissues H1 and H2 are fixed to the porous body 2 using the extracellular matrix as an adhesive while maintaining the shape of the surface holes 3 and pores 4, and the biological tissues H1 and H2 are bonded to each other. Bonding is performed via the porous body 2.
  • the porous body 2 is in a state in which the concavo-convex shape of the surfaces of the biological tissues H1 and H2 meshes with the concavo-convex structure of the porous body 2 formed by the surface holes 3 and the pores 4. 2 and the living tissues H1 and H2 are fixed.
  • the anchor effect which is a mechanical coupling
  • the living tissues H1 and H2 can be strongly bonded to each other through the porous body 2, and a high bonding force sufficient for practical use can be exhibited even in the bonding of thick living tissues such as the large intestine and the small intestine. There is an advantage that can be.
  • the porous body 2 is formed from a biopolymer or a synthetic polymer.
  • the porous body 2 is formed from a biocompatible ceramic. May be.
  • FIG. 8 shows the surface of a porous body 2 made of apatite as an example of the porous body 2 made of ceramic.
  • FIG. 9 is an enlarged view of the inner surface of the surface hole 3 of FIG. Even when the porous body 2 made of ceramic is used, the same high bonding force as that of the porous body 2 made of biopolymer or synthetic polymer can be obtained by the anchor effect by the surface holes 3 and the pores 4. .
  • the biological tissue joining material 1 provided only with the porous body 2 was demonstrated, in addition to the porous body 2, the biological tissue joining material 1 is biocompatible which hardens
  • An adhesive for example, a liquid containing an extracellular matrix such as collagen or elastin may be included.
  • the surface hole 3 may be formed penetrating in the thickness direction of the plate-like porous body 2.
  • the pores 4 are formed in a direction crossing the longitudinal direction of the surface holes 3 as shown in FIG.
  • the biological tissue H1 that has entered the surface hole 3 from one side of the porous body 2 and the biological tissue H2 that has entered the surface hole 3 from the other side are formed inside the porous body 2.
  • the porous body 2 is disposed closer to the thickness direction.
  • the porous body 2 is formed of a biopolymer or a synthetic polymer, the porous body 2 is dissolved or softened by supplying energy and is compressed and deformed according to the pressure from the jaws 7a and 7b.
  • the distance between the living tissue H1 and the living tissue H2 is further reduced.
  • the living tissue H1 and the living tissue H2 are partially bonded directly via an extracellular matrix or an adhesive, and the bonding force between the living tissues H1 and H2 Can be further enhanced.
  • the porous body 2 is plate-shaped, but instead, it may be granular as shown in FIG.
  • FIG. 11 shows a porous bead made of apatite as an example of the granular porous body 2.
  • the same high bonding force as that of the plate-like porous body 2 can be obtained due to the anchor effect by the surface holes and pores.
  • the biological tissue bonding material including the granular porous body 2 is used, for example, in the energy treatment device 5 in which a plurality of discharge ports 9 are formed on both upper and lower surfaces of the plate 8 as shown in FIG.
  • the plurality of discharge ports 9 are connected to a bonding material supply unit (not shown) such as a syringe through passages (not shown) formed inside the plate 8 and the sheath 6.
  • the biological tissue bonding material is supplied into the passage from the bonding material supply unit, and is disposed between the biological tissues H1 and H2 by being discharged from the discharge port 9 of the plate 8 inserted between the biological tissues.
  • the granular porous body 2 may be dispersed in the adhesive described above. By doing in this way, high fluidity

Abstract

A bonding material for a biological tissue (1) is provided with a porous body (2) comprising a biocompatible material. The porous body (2) has surface holes (3) that are formed in the outer surface thereof, and pores (4) that open on the inner surface of the surface holes (3) and that have a smaller hole diameter than the surface holes (3).

Description

生体組織接合材および生体組織接合方法Biological tissue bonding material and biological tissue bonding method
 本発明は、生体組織接合材および生体組織接合方法に関するものである。 The present invention relates to a biological tissue bonding material and a biological tissue bonding method.
 従来、高周波、熱、超音波等のエネルギを用いて生体組織同士を接合するエネルギ処置具が知られている(例えば、特許文献1参照。)。エネルギ処置具は、生体組織にエネルギを与えることによって生体組織を局所的に加熱し、タンパク質を変性させるのと同時に生体組織から水分を除去することによって、生体組織同士の接合を達成している。このようなエネルギ処置具は、ステープルを用いて機械的に生体組織を接合する医療用ステープラと比べて、生体内に異物を残すことが無いというメリットがある一方、生体組織同士の接合部における接合力が不安定であるデメリットがある。特許文献1では、エネルギの供給によって水分を除去した接合部に水分浸透防止部材を配置し、該水分浸透防止部材によって接合部を周辺組織の水分から保護することによって、接合部における接合力の維持を図っている。 2. Description of the Related Art Conventionally, an energy treatment tool that joins living tissues using energy such as high frequency, heat, and ultrasonic waves is known (see, for example, Patent Document 1). The energy treatment tool locally heats the living tissue by applying energy to the living tissue, denatures the protein, and simultaneously removes moisture from the living tissue, thereby achieving bonding between the living tissues. Compared to a medical stapler that mechanically joins living tissues using staples, such an energy treatment device has an advantage that no foreign matter is left in the living body. There is a disadvantage that power is unstable. In Patent Document 1, a moisture permeation preventing member is disposed at a joint from which moisture has been removed by supplying energy, and the joint is protected from moisture of surrounding tissues by the moisture permeation prevention member, thereby maintaining the joining force at the joint. I am trying.
特許第5123435号公報Japanese Patent No. 5123435
 しかしながら、特許文献1のエネルギ処置具では、大腸のように厚い生体組織を接合するには、接合力が足りない可能性があり、接合力のさらなる増強が望まれている。
 本発明は、上述した事情に鑑みてなされたものであって、エネルギを用いた生体組織の接合において生体組織間の接合力を高めることができる生体組織接合材および生体組織接合方法を提供することを目的とする。
However, in the energy treatment device of Patent Document 1, there is a possibility that the joining force is insufficient to join a thick biological tissue like the large intestine, and further enhancement of the joining force is desired.
The present invention has been made in view of the above-described circumstances, and provides a living tissue bonding material and a living tissue bonding method capable of increasing the bonding force between living tissues in bonding of living tissues using energy. With the goal.
 本発明の第1の態様は、生体適合性材料からなる多孔質体を備え、該多孔質体が、外表面に形成された表面孔と、該表面孔の内面に開口し、該表面孔よりも小さな孔径を有する細孔とを有する生体組織接合材である。 A first aspect of the present invention includes a porous body made of a biocompatible material, and the porous body opens to a surface hole formed on an outer surface and an inner surface of the surface hole. Is a biological tissue bonding material having pores having small pore diameters.
 本発明の第2の態様は、上記に記載の生体組織接合材を、重なり合う2つの生体組織間に配置する配置ステップと、前記生体組織接合材が間に配置された前記2つの生体組織を積層方向に加圧する加圧ステップと、該加圧ステップによって加圧状態にある前記2つの生体組織に対してエネルギを供給して前記2つの生体組織を互いに接合するエネルギ供給ステップとを含む生体組織接合方法である。 According to a second aspect of the present invention, the biological tissue bonding material described above is disposed between two overlapping biological tissues, and the two biological tissues with the biological tissue bonding material disposed therebetween are stacked. A biological tissue joining comprising: a pressurizing step for pressurizing in a direction; and an energy supplying step for joining the two living tissues by supplying energy to the two living tissues in a pressurized state by the pressurizing step Is the method.
 本発明によれば、エネルギを用いた生体組織の接合において生体組織間の接合力を高めることができるという効果を奏する。 According to the present invention, there is an effect that the bonding force between living tissues can be increased in the bonding of living tissues using energy.
本発明の一実施形態に係る生体組織接合材を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the biological tissue bonding | jointing material which concerns on one Embodiment of this invention. 図1の生体組織接合材を拡大観察した走査型電子顕微鏡写真である。It is the scanning electron micrograph which expandedly observed the biological tissue bonding | jointing material of FIG. 図1の生体組織接合材を拡大観察したもう1つの走査型電子顕微鏡写真である。FIG. 2 is another scanning electron micrograph of the biological tissue bonding material of FIG. 図1の生体組織接合材を用いた生体組織接合方法において使用されるエネルギ処置具を示す図である。It is a figure which shows the energy treatment tool used in the biological tissue joining method using the biological tissue joining material of FIG. 図4のエネルギ処置具を用いて生体組織間に生体組織接合材を配置する工程を説明する図である。It is a figure explaining the process of arrange | positioning a biological tissue bonding material between biological tissues using the energy treatment tool of FIG. 図4のエネルギ処置具を用いて生体組織を加圧する工程を説明する図である。It is a figure explaining the process of pressurizing a biological tissue using the energy treatment tool of FIG. 図6の加圧状態にある生体組織および生体組織接合材の積層方向の拡大断面図である。It is an expanded sectional view of the lamination direction of the biological tissue in the pressurized state of FIG. 6, and a biological tissue bonding material. 本発明の一実施形態の変形例に係る生体組織接合材を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the biological tissue bonding material which concerns on the modification of one Embodiment of this invention. 図8の生体組織接合材を拡大観察した走査型電子顕微鏡写真である。It is the scanning electron micrograph which expanded and observed the biological tissue bonding | jointing material of FIG. 本発明の一実施形態のもう1つの変形例に係る生体組織接合材を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the biological tissue bonding material which concerns on another modification of one Embodiment of this invention. 本発明の一実施形態のもう1つの変形例に係る生体組織接合材を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the biological tissue bonding material which concerns on another modification of one Embodiment of this invention. 図11の生体組織接合材を用いた生体組織接合方法において使用されるエネルギ処置具のプレートを示す斜視図である。It is a perspective view which shows the plate of the energy treatment tool used in the biological tissue joining method using the biological tissue joining material of FIG.
 以下に、本発明の一実施形態に係る生体組織接合材1について図面を参照して説明する。
 本実施形態に係る生体組織接合材1は、図1に示されるように、生体適合性材料からなる板状の多孔質体2を備えている。
 多孔質体2は、生体高分子または合成高分子から形成される。生体高分子としては、コラーゲン、ゼラチン、キトサン、セルロース、多糖類またはこれらの誘導体が好適に用いられる。合成高分子としては、ポリ乳酸、グリコール酸またはポリエチレングリコールが好適に用いられる。多孔質体2は、生体内において継時的に分解および吸収される生体吸収性材料から形成されていてもよい。図1には、コラーゲンスポンジからなる多孔質体2が一例として示されている。
Below, the biological tissue bonding | jointing material 1 which concerns on one Embodiment of this invention is demonstrated with reference to drawings.
The biological tissue bonding material 1 according to the present embodiment includes a plate-like porous body 2 made of a biocompatible material, as shown in FIG.
The porous body 2 is formed from a biopolymer or a synthetic polymer. As the biopolymer, collagen, gelatin, chitosan, cellulose, polysaccharides or derivatives thereof are preferably used. As the synthetic polymer, polylactic acid, glycolic acid or polyethylene glycol is preferably used. The porous body 2 may be formed of a bioabsorbable material that is decomposed and absorbed over time in the living body. FIG. 1 shows a porous body 2 made of a collagen sponge as an example.
 多孔質体2は、図2および図3に示されるように、外表面に開口する多数の表面孔3と、該表面孔3よりも小さい孔径を有し、表面孔3の内面に開口する多数の細孔4とを有している。図2および図3は、コラーゲンスポンジからなる多孔質体2の表面を拡大したものである。表面孔3および細孔4の孔径は、生体組織に含まれる液体に対して毛細管現象を発生する寸法である。具体的には、生理食塩水を毛細管現象によって吸い上げることができる細い管の内径は、0.01μm~数mmである。生体組織に含まれる液体の組成は、生理食塩水の組成と近似しているので、表面孔3および細孔4の孔径は、0.01μm~数mmであればよい。 As shown in FIGS. 2 and 3, the porous body 2 has a large number of surface holes 3 opening on the outer surface and a smaller diameter than the surface holes 3, and a large number opening on the inner surface of the surface hole 3. Pores 4. 2 and 3 are enlarged views of the surface of the porous body 2 made of collagen sponge. The pore diameters of the surface hole 3 and the pore 4 are dimensions that cause capillary action on the liquid contained in the living tissue. Specifically, the inner diameter of a thin tube capable of sucking physiological saline by capillary action is 0.01 μm to several mm. Since the composition of the liquid contained in the living tissue approximates the composition of physiological saline, the pore diameters of the surface hole 3 and the pore 4 may be 0.01 μm to several mm.
 さらに、表面孔3の孔径は数100μmであり、細孔4の孔径は、0.01μm~数μmであることが好ましい。毛細管現象による液体の吸引力は孔径に反比例し、孔径が小さい程、大きな吸引力が得られる。表面孔3の孔径を数100μmとすることによって、毛細管現象による吸引力を生体組織に対して発揮しつつ、柔軟な生体組織を表面孔3の内面に沿って変形させて生体組織を表面孔3内に容易に入り込ませることができる。また、細孔4の孔径を0.01μm~数μmとすることによって、表面孔3内に入り込んだ生体組織の表面に対して強い吸引力を発揮し、生体組織の表面を表面孔3の内面に強固に固定することができるとともに、細孔4内にも生体組織を入り込ませることができる。 Furthermore, the pore diameter of the surface hole 3 is several hundred μm, and the pore diameter of the pore 4 is preferably 0.01 μm to several μm. The suction force of the liquid due to capillary action is inversely proportional to the hole diameter, and the smaller the hole diameter, the greater the suction force. By setting the diameter of the surface hole 3 to several 100 μm, the living tissue is deformed along the inner surface of the surface hole 3 while exerting a suction force by capillary action on the living tissue, so that the living tissue is transformed into the surface hole 3. It can easily get inside. Further, by setting the pore diameter of the pore 4 to 0.01 μm to several μm, a strong suction force is exerted on the surface of the living tissue that has entered the surface hole 3, and the surface of the living tissue is made to be the inner surface of the surface hole 3. In addition, the living tissue can enter the pores 4.
 多孔質体2の単位重量当たりの比表面積は、0.1m/g以上500m/g以下である。比表面積を上記範囲とすることで、表面孔3および細孔4による高いアンカー効果(後述)を得ることができ、生体組織間の接合力を効果的に向上することができる。 The specific surface area per unit weight of the porous body 2 is 0.1 m 2 / g or more and 500 m 2 / g or less. By setting the specific surface area within the above range, a high anchor effect (described later) by the surface holes 3 and the pores 4 can be obtained, and the bonding force between living tissues can be effectively improved.
 次に、このように構成された生体組織接合材1の作用について説明する。
 本実施形態に係る生体組織接合材1は、エネルギ処置具5を用いて生体組織を接合する際に使用される。エネルギ処置具5は、図4に示されるように、細長い筒状のシース6と、該シース6の先端に設けられた開閉可能な上ジョー7aおよび下ジョー7bと、該上ジョー7aと下ジョー7bとの間において突没可能に設けられた平板状のプレート8とを備える。
Next, the effect | action of the biological tissue bonding | jointing material 1 comprised in this way is demonstrated.
The biological tissue bonding material 1 according to the present embodiment is used when bonding a biological tissue using the energy treatment tool 5. As shown in FIG. 4, the energy treatment device 5 includes an elongated cylindrical sheath 6, an openable and closable upper jaw 7 a and lower jaw 7 b provided at the distal end of the sheath 6, and the upper jaw 7 a and lower jaw. 7b and a flat plate 8 provided so as to be able to project and retract.
 まず、上ジョー7aと下ジョー7bとの間に、生体組織H1と生体組織H2とを重ね合わせた状態で挟み、上ジョー7aと下ジョー7bとを閉じることによって生体組織H1,H2の外側を把持する。次に、図5に示されるように、生体組織接合材1を載置したプレート8を上ジョー7aと下ジョー7bとの間から突出させ、生体組織H1と生体組織H2との間にプレート8を挿入し、生体組織接合材1を生体組織H1と生体組織H2との間に配置してプレート8をシース6内に引っ込める(配置ステップ)。 First, the living tissue H1 and the living tissue H2 are sandwiched between the upper jaw 7a and the lower jaw 7b, and the upper jaw 7a and the lower jaw 7b are closed so that the outer sides of the living tissues H1 and H2 are closed. Hold it. Next, as shown in FIG. 5, the plate 8 on which the biological tissue bonding material 1 is placed is projected from between the upper jaw 7a and the lower jaw 7b, and the plate 8 is interposed between the biological tissue H1 and the biological tissue H2. Is inserted, the biological tissue bonding material 1 is disposed between the biological tissue H1 and the biological tissue H2, and the plate 8 is retracted into the sheath 6 (arrangement step).
 次に、図6に示されるように、上ジョー7aおよび下ジョー7bによってさらに強い力で生体組織H1,H2を把持することによって、生体組織接合材1を介して重なり合っている生体組織H1,H2を積層方向に加圧する(加圧ステップ)。これにより、多孔質体2の外表面に押し付けられた柔軟な生体組織H1,H2が、多孔質体2の外表面形状に沿って変形して表面孔3内に入り込み、さらに表面孔3から細孔4の内部へ入り込む。 Next, as shown in FIG. 6, the living tissues H1 and H2 which are overlapped via the living tissue bonding material 1 by holding the living tissues H1 and H2 with a stronger force by the upper jaw 7a and the lower jaw 7b. Are pressed in the stacking direction (pressurizing step). As a result, the flexible biological tissues H1 and H2 pressed against the outer surface of the porous body 2 are deformed along the outer surface shape of the porous body 2 and enter the surface hole 3, and further from the surface hole 3. Enter the inside of the hole 4.
 このときに、図7に示されるように、多孔質体2の外表面と接触する生体組織H1,H2には、生体組織H1,H2に含まれる液体が毛細管現象によって表面孔3内に吸引されるのに伴って、表面孔3内への吸引力Fが作用する。さらに、表面孔3の内面に接触する生体組織H1,H2には、生体組織H1,H2に含まれる液体が毛細管現象によって細孔4内に吸引されるのに伴って、細孔4内への吸引力Fが作用する。これら吸引力Fによって、生体組織H1,H2は、表面孔3および細孔4の内部に確実に入り込み、かつ、表面孔3の内面に対して強固に固定される。これにより、多孔質体2と生体組織H1,H2との間において高いアンカー効果が得られ、生体組織H1、H2間の高い接合力が得られる。 At this time, as shown in FIG. 7, in the living tissues H1 and H2 that are in contact with the outer surface of the porous body 2, the liquid contained in the living tissues H1 and H2 is sucked into the surface holes 3 by capillary action. Accordingly, a suction force F into the surface hole 3 acts. Furthermore, in the living tissues H1 and H2 that are in contact with the inner surface of the surface hole 3, the liquid contained in the living tissues H1 and H2 is sucked into the pores 4 by capillary action, and is introduced into the pores 4. A suction force F acts. By these suction forces F, the living tissues H1 and H2 surely enter the surface holes 3 and the pores 4 and are firmly fixed to the inner surfaces of the surface holes 3. Thereby, a high anchor effect is obtained between the porous body 2 and the living tissues H1 and H2, and a high bonding force between the living tissues H1 and H2 is obtained.
 次に、生体組織H1,H2の表面孔3および細孔4の内部への入り込みが安定するまで、上ジョー7aおよび下ジョー7bによって生体組織H1,H2を加圧した状態を、所定時間、好ましくは0.1秒~30秒間、維持する(維持ステップ)。維持ステップにより、表面孔3および細孔4の内部に生体組織H1,H2が入り込む時間が確保されるので、多孔質体2と生体組織H1,H2との間のアンカー効果をより高めて、生体組織H1,H2間の接合力をさらに高めることができる。 Next, the state in which the biological tissues H1, H2 are pressurized by the upper jaw 7a and the lower jaw 7b until the entry of the biological tissues H1, H2 into the surface holes 3 and the pores 4 is stabilized for a predetermined time, preferably Is maintained for 0.1 to 30 seconds (maintenance step). Since the time for the living tissues H1 and H2 to enter the surface holes 3 and the pores 4 is ensured by the maintaining step, the anchor effect between the porous body 2 and the living tissues H1 and H2 is further enhanced, The joining force between the tissues H1 and H2 can be further increased.
 維持ステップにおいては、加圧状態の生体組織H1,H2に対して振動を与えて、生体組織H1,H2の表面孔3内への入り込みを促進してもよい。振動は、シース6を把持している手を震わすことによって与えてもよく、ジョー7a,7bを超音波振動させることによって与えてもよい。生体組織H1,H2の振動によって生体組織H1,H2の表面孔3および細孔4の内部への入り込みが促進されるので、多孔質体2と生体組織H1,H2との間のアンカー効果をさらに高めて、生体組織H1,H2間の接合力をさらに高めることができる。 In the maintenance step, vibration may be applied to the biological tissues H1, H2 in a pressurized state to promote the penetration of the biological tissues H1, H2 into the surface hole 3. The vibration may be given by shaking the hand holding the sheath 6 or may be given by ultrasonically vibrating the jaws 7a and 7b. Since the penetration of the living tissues H1 and H2 into the surface holes 3 and the pores 4 is promoted by the vibration of the living tissues H1 and H2, the anchor effect between the porous body 2 and the living tissues H1 and H2 is further increased. This can increase the bonding force between the living tissues H1 and H2.
 次に、生体組織H1,H2の加圧状態を維持したまま、図示しない電源から上ジョー7aおよび下ジョー7bへエネルギ源の供給を開始することによって、ジョー7a,7bから生体組織H1,H2へエネルギ(例えば、高周波、熱、または、超音波)の供給を開始する(エネルギ供給ステップ)。生体組織H1,H2においては、エネルギの供給によって温度が上昇することによって、生体組織H1,H2に含まれていた細胞外基質が溶解して生体組織H1,H2の表面から滲出し、さらにエネルギを供給し続けると、タンパク質の変性および水分の蒸発によって生体組織H1,H2が固化する。これにより、生体組織H1,H2が、表面孔3および細孔4の内部に入り込んだ形状のまま、細胞外基質を接着剤として多孔質体2に固定され、生体組織H1と生体組織H2とが多孔質体2を介して接合される。 Next, by starting supply of an energy source from a power source (not shown) to the upper jaw 7a and the lower jaw 7b while maintaining the pressurized state of the biological tissues H1, H2, the jaws 7a, 7b supply the biological tissues H1, H2. Supply of energy (for example, high frequency, heat, or ultrasonic waves) is started (energy supply step). In the living tissues H1 and H2, when the temperature rises due to the supply of energy, the extracellular matrix contained in the living tissues H1 and H2 dissolves and exudes from the surface of the living tissues H1 and H2, and further energy is supplied. When the supply is continued, the living tissues H1 and H2 are solidified by protein denaturation and moisture evaporation. As a result, the biological tissues H1 and H2 are fixed to the porous body 2 using the extracellular matrix as an adhesive while maintaining the shape of the surface holes 3 and pores 4, and the biological tissues H1 and H2 are bonded to each other. Bonding is performed via the porous body 2.
 このように、本実施形態によれば、表面孔3および細孔4によって形成された多孔質体2の凹凸構造内に生体組織H1,H2の表面の凹凸形状が噛み合った状態で、多孔質体2と生体組織H1,H2とが固定される。これにより、生体組織H1,H2と多孔質体2との間には、細胞外基質による接着力に加えて、機械的な結合であるアンカー効果が生じる。このアンカー効果によって、生体組織H1,H2同士を多孔質体2を介して強固に接合することができ、大腸や小腸のような厚い生体組織の接合においても実用に足る高い接合力を発揮することができるという利点がある。 As described above, according to the present embodiment, the porous body 2 is in a state in which the concavo-convex shape of the surfaces of the biological tissues H1 and H2 meshes with the concavo-convex structure of the porous body 2 formed by the surface holes 3 and the pores 4. 2 and the living tissues H1 and H2 are fixed. Thereby, in addition to the adhesive force by an extracellular matrix, the anchor effect which is a mechanical coupling | bonding arises between the biological tissue H1, H2 and the porous body 2. Due to this anchor effect, the living tissues H1 and H2 can be strongly bonded to each other through the porous body 2, and a high bonding force sufficient for practical use can be exhibited even in the bonding of thick living tissues such as the large intestine and the small intestine. There is an advantage that can be.
 なお、本実施形態においては、多孔質体2が、生体高分子または合成高分子から形成されていることとしたが、これに代えて、多孔質体2が、生体適合性を有するセラミックから形成されていてもよい。図8は、セラミックからなる多孔質体2の一例として、アパタイトからなる多孔質体2の表面を示している。図9は、図8の表面孔3の内面を拡大観察したものである。セラミックからなる多孔質体2を使用した場合にも、表面孔3および細孔4によるアンカー効果によって、生体高分子または合成高分子からなる多孔質体2と同様の高い接合力を得ることができる。 In the present embodiment, the porous body 2 is formed from a biopolymer or a synthetic polymer. Instead, the porous body 2 is formed from a biocompatible ceramic. May be. FIG. 8 shows the surface of a porous body 2 made of apatite as an example of the porous body 2 made of ceramic. FIG. 9 is an enlarged view of the inner surface of the surface hole 3 of FIG. Even when the porous body 2 made of ceramic is used, the same high bonding force as that of the porous body 2 made of biopolymer or synthetic polymer can be obtained by the anchor effect by the surface holes 3 and the pores 4. .
 また、本実施形態においては、多孔質体2のみを備える生体組織接合材1について説明したが、生体組織接合材1は、多孔質体2に加えて、エネルギの供給によって硬化する生体適合性の接着剤、例えば、コラーゲンやエラスチン等の細胞外基質を含む液体を含んでいてもよい。このようにすることで、接着剤による生体組織H1,H2と多孔質体2との接着力によって、生体組織間の接合力をさらに高めることができる。 Moreover, in this embodiment, although the biological tissue joining material 1 provided only with the porous body 2 was demonstrated, in addition to the porous body 2, the biological tissue joining material 1 is biocompatible which hardens | cures by supply of energy. An adhesive, for example, a liquid containing an extracellular matrix such as collagen or elastin may be included. By doing in this way, the joining force between living tissue can further be raised by the adhesive force of living tissue H1, H2 and the porous body 2 by an adhesive agent.
 また、本実施形態においては、表面孔3が、板状の多孔質体2の厚さ方向に貫通形成されていてもよい。この場合、細孔4は、図10に示されるように、表面孔3の長手方向に交差する方向に形成される。
 このようにすることで、多孔質体2の一側から表面孔3内に入り込んだ生体組織H1と、他側から表面孔3内に入り込んだ生体組織H2とが、多孔質体2の内部で該多孔質体2の厚さ方向により近接して配置される。特に、多孔質体2が生体高分子または合成高分子から形成されている場合には、エネルギの供給によって多孔質体2が溶解または軟化し、ジョー7a,7bからの圧力に従って圧縮変形することによって、生体組織H1と生体組織H2との距離がさらに近くなる。これにより、多孔質体2の内部においては、生体組織H1と生体組織H2とが部分的に細胞外基質または接着剤を介して直接接着されるようになり、生体組織H1,H2間の接合力をさらに高めることができる。
Further, in the present embodiment, the surface hole 3 may be formed penetrating in the thickness direction of the plate-like porous body 2. In this case, the pores 4 are formed in a direction crossing the longitudinal direction of the surface holes 3 as shown in FIG.
By doing so, the biological tissue H1 that has entered the surface hole 3 from one side of the porous body 2 and the biological tissue H2 that has entered the surface hole 3 from the other side are formed inside the porous body 2. The porous body 2 is disposed closer to the thickness direction. In particular, when the porous body 2 is formed of a biopolymer or a synthetic polymer, the porous body 2 is dissolved or softened by supplying energy and is compressed and deformed according to the pressure from the jaws 7a and 7b. The distance between the living tissue H1 and the living tissue H2 is further reduced. Thereby, in the inside of the porous body 2, the living tissue H1 and the living tissue H2 are partially bonded directly via an extracellular matrix or an adhesive, and the bonding force between the living tissues H1 and H2 Can be further enhanced.
 また、本実施形態においては、多孔質体2が板状であることとしたが、これに代えて、図11に示されるように、顆粒状であってもよい。図11には、顆粒状の多孔質体2の一例として、アパタイトからなる多孔質ビーズが示されている。このように、顆粒状の多孔質体2を使用した場合にも、表面孔および細孔によるアンカー効果によって、板状の多孔質体2と同様の高い接合力を得ることができる。 Further, in the present embodiment, the porous body 2 is plate-shaped, but instead, it may be granular as shown in FIG. FIG. 11 shows a porous bead made of apatite as an example of the granular porous body 2. As described above, even when the granular porous body 2 is used, the same high bonding force as that of the plate-like porous body 2 can be obtained due to the anchor effect by the surface holes and pores.
 顆粒状の多孔質体2を備える生体組織接合材は、例えば、図12に示されるように、プレート8の上下両面に複数の吐出口9が形成されたエネルギ処置具5に使用される。複数の吐出口9は、プレート8およびシース6の内部に形成された通路(図示略)を介して、シリンジのような接合材供給部(図示略)に接続される。生体組織接合材は、接合材供給部から通路内に供給され、生体組織の間に挿入されているプレート8の吐出口9から吐出されることによって、生体組織H1,H2間に配置される。顆粒状の多孔質体2は、上述した接着剤内に分散されていてもよい。このようにすることで、顆粒状の多孔質体2に高い流動性を付与し、通路内において円滑に移動させることができる。 The biological tissue bonding material including the granular porous body 2 is used, for example, in the energy treatment device 5 in which a plurality of discharge ports 9 are formed on both upper and lower surfaces of the plate 8 as shown in FIG. The plurality of discharge ports 9 are connected to a bonding material supply unit (not shown) such as a syringe through passages (not shown) formed inside the plate 8 and the sheath 6. The biological tissue bonding material is supplied into the passage from the bonding material supply unit, and is disposed between the biological tissues H1 and H2 by being discharged from the discharge port 9 of the plate 8 inserted between the biological tissues. The granular porous body 2 may be dispersed in the adhesive described above. By doing in this way, high fluidity | liquidity can be provided to the granular porous body 2, and it can be made to move smoothly in a channel | path.
1 生体組織接合材
2 多孔質体
3 表面孔
4 細孔
H1,H2 生体組織
DESCRIPTION OF SYMBOLS 1 Biological tissue bonding material 2 Porous body 3 Surface hole 4 Pore H1, H2 Biological tissue

Claims (6)

  1.  生体適合性材料からなる多孔質体を備え、
     該多孔質体が、外表面に形成された表面孔と、該表面孔の内面に開口し、該表面孔よりも小さな孔径を有する細孔とを有する生体組織接合材。
    A porous body made of a biocompatible material is provided,
    A biological tissue bonding material, wherein the porous body has surface holes formed on an outer surface, and pores that are open on the inner surface of the surface holes and have a smaller diameter than the surface holes.
  2.  前記細孔が、生体組織に含まれる液体を毛細管現象によってその内部に吸引する孔径を有する請求項1に記載の生体組織接合材。 The living tissue bonding material according to claim 1, wherein the pores have a pore diameter for sucking a liquid contained in the living tissue into the inside thereof by capillary action.
  3.  前記多孔質体が、板状であり、
     前記表面孔が、前記多孔質体を厚さ方向に貫通する請求項1または請求項2に記載の生体組織接合材。
    The porous body is plate-shaped,
    The biological tissue bonding material according to claim 1, wherein the surface hole penetrates the porous body in a thickness direction.
  4.  請求項1から請求項3のいずれかに記載の生体組織接合材を、重なり合う2つの生体組織間に配置する配置ステップと、
     前記生体組織接合材が間に配置された前記2つの生体組織を積層方向に加圧する加圧ステップと、
     該加圧ステップによって加圧状態にある前記2つの生体組織に対してエネルギを供給して前記2つの生体組織を互いに接合するエネルギ供給ステップとを含む生体組織接合方法。
    An arrangement step of arranging the biological tissue bonding material according to any one of claims 1 to 3 between two overlapping biological tissues;
    A pressurizing step of pressurizing the two biological tissues with the biological tissue bonding material disposed therebetween in the stacking direction;
    A biological tissue joining method comprising: supplying energy to the two biological tissues in a pressurized state by the pressurizing step to join the two biological tissues together.
  5.  前記加圧ステップと前記エネルギ供給ステップとの間に、前記生体組織を加圧状態に所定時間維持する維持ステップを含む請求項4に記載の生体組織接合方法。 The living tissue joining method according to claim 4, further comprising a maintaining step of maintaining the living tissue in a pressurized state for a predetermined time between the pressurizing step and the energy supplying step.
  6.  前記維持ステップにおいて、加圧状態の前記生体組織に対して振動を与える請求項5に記載の生体組織接合方法。 The biological tissue bonding method according to claim 5, wherein in the maintaining step, vibration is applied to the biological tissue in a pressurized state.
PCT/JP2014/079593 2014-11-07 2014-11-07 Bonding material for biological tissue, and bonding method for biological tissue WO2016072017A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079593 WO2016072017A1 (en) 2014-11-07 2014-11-07 Bonding material for biological tissue, and bonding method for biological tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079593 WO2016072017A1 (en) 2014-11-07 2014-11-07 Bonding material for biological tissue, and bonding method for biological tissue

Publications (1)

Publication Number Publication Date
WO2016072017A1 true WO2016072017A1 (en) 2016-05-12

Family

ID=55908769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079593 WO2016072017A1 (en) 2014-11-07 2014-11-07 Bonding material for biological tissue, and bonding method for biological tissue

Country Status (1)

Country Link
WO (1) WO2016072017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188657A1 (en) * 2018-03-28 2019-10-03 テルモ株式会社 Medical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523483A (en) * 1997-11-14 2001-11-27 ボーンテック コーポレーション Biodegradable polymer scaffold
JP2009160302A (en) * 2008-01-09 2009-07-23 National Institute For Materials Science Composite porous scaffold
JP2010115412A (en) * 2008-11-14 2010-05-27 Kobe Univ Material for tissue regeneration
JP5123435B2 (en) * 2009-08-11 2013-01-23 オリンパスメディカルシステムズ株式会社 THERAPEUTIC TREATMENT TOOL, THERAPEUTIC TREATMENT DEVICE, AND THERAPEUTIC TREATMENT METHOD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523483A (en) * 1997-11-14 2001-11-27 ボーンテック コーポレーション Biodegradable polymer scaffold
JP2009160302A (en) * 2008-01-09 2009-07-23 National Institute For Materials Science Composite porous scaffold
JP2010115412A (en) * 2008-11-14 2010-05-27 Kobe Univ Material for tissue regeneration
JP5123435B2 (en) * 2009-08-11 2013-01-23 オリンパスメディカルシステムズ株式会社 THERAPEUTIC TREATMENT TOOL, THERAPEUTIC TREATMENT DEVICE, AND THERAPEUTIC TREATMENT METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188657A1 (en) * 2018-03-28 2019-10-03 テルモ株式会社 Medical device

Similar Documents

Publication Publication Date Title
JP7046964B2 (en) Release of auxiliary material for surgical stapler
US11058425B2 (en) Implantable layers for a surgical instrument
JP5329414B2 (en) Graft, transplant device, transplant method
JP7046963B2 (en) Suction attachment of auxiliary material to surgical instruments
JP2016147048A (en) Surgical stapling instrument having ultrasonic energy delivery
JP2010504119A5 (en)
WO2008024442A3 (en) Energetically activated biomedical nanotheurapeutics integrating dental and medical treatments and procedures
US20170156713A1 (en) Ultrasound assisted tissue welding device
US9415543B2 (en) Bonding objects together
JP2021511082A (en) Integrated microneedle patch
JP2017501901A5 (en)
JP2006149818A (en) Percutaneous administration device
JP7039603B2 (en) Methods and equipment for delivering and immobilizing auxiliary materials to the treatment site
WO2016072017A1 (en) Bonding material for biological tissue, and bonding method for biological tissue
JP2005192820A5 (en)
JP5185668B2 (en) Hemostatic device
Mendez et al. Mechanoresponsive Drug Release from a Flexible, Tissue‐Adherent, Hybrid Hydrogel Actuator
JP7394576B2 (en) fine protrusions
KR20100034836A (en) Skin stimulating device of ultrasonic vibration type using micro-needle and manufacture method for bonding the micro-needle
JP2011092347A (en) Biological tissue treatment apparatus
JPH0723970A (en) Ultrasonic treatment apparatus
JP6253767B2 (en) Tissue stabilization and repair device
JP2009273559A (en) Hemostatic device
US20160051194A1 (en) Implant and insertion device for an implant
KR101711417B1 (en) Apparatus for inserting surgical micro staple into soft tissues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14905556

Country of ref document: EP

Kind code of ref document: A1