WO2016071946A1 - 積層型ヘッダ、熱交換器、及び、空気調和装置 - Google Patents

積層型ヘッダ、熱交換器、及び、空気調和装置 Download PDF

Info

Publication number
WO2016071946A1
WO2016071946A1 PCT/JP2014/079185 JP2014079185W WO2016071946A1 WO 2016071946 A1 WO2016071946 A1 WO 2016071946A1 JP 2014079185 W JP2014079185 W JP 2014079185W WO 2016071946 A1 WO2016071946 A1 WO 2016071946A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
branch
plate
refrigerant
header
Prior art date
Application number
PCT/JP2014/079185
Other languages
English (en)
French (fr)
Inventor
繁佳 松井
真哉 東井上
毅浩 林
厚志 望月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016557363A priority Critical patent/JP6214789B2/ja
Priority to CN201480082968.1A priority patent/CN107003085B/zh
Priority to KR1020177014351A priority patent/KR102031021B1/ko
Priority to EP14905368.8A priority patent/EP3217135B1/en
Priority to US15/510,265 priority patent/US10060685B2/en
Priority to AU2014410872A priority patent/AU2014410872B2/en
Priority to PCT/JP2014/079185 priority patent/WO2016071946A1/ja
Publication of WO2016071946A1 publication Critical patent/WO2016071946A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05333Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages

Definitions

  • the present invention relates to a laminated header, a heat exchanger, and an air conditioner.
  • a laminated header that distributes and supplies a refrigerant to each heat transfer tube of a heat exchanger.
  • This laminated header distributes the refrigerant to each heat transfer tube of the heat exchanger by laminating a plurality of plate-like bodies forming a distribution channel that branches into a plurality of outlet channels for one inlet channel (See, for example, Patent Document 1).
  • the ratio of the flow rate of the liquid refrigerant flowing out from each of the plurality of outlet channels, that is, the distribution ratio is kept uniform. This is important in ensuring the performance of the heat exchanger functioning as an evaporator.
  • the liquid refrigerant is biased in the distribution channel while the refrigerant is repeatedly branched in the branch channel, and the liquid refrigerant flows out unevenly at a plurality of outlets of the laminated header. Then, there was a problem that the refrigerant was supplied non-uniformly to each heat transfer tube of the heat exchanger, and the heat exchange performance deteriorated.
  • the present invention has been made against the background of the above-described problems.
  • the refrigerant is evenly distributed to the heat transfer tubes of the heat exchanger to ensure the heat exchange performance of the heat exchanger and to reduce the size.
  • the purpose is to obtain a realized stacked header.
  • an object of this invention is to obtain the heat exchanger provided with such a laminated header.
  • an object of this invention is to obtain the air conditioning apparatus provided with such a heat exchanger.
  • the laminated header according to the present invention has one first opening, a plurality of second openings, and a distribution channel connecting the first opening and the second opening, and a plurality of plate-like bodies are laminated.
  • the distribution header includes a first flow path having a linear shape, a first branch flow path that branches the first flow path into a plurality of flow paths, and a first branch flow.
  • a second flow path that is connected to the plurality of flow paths branched by the road and has a linear shape; a second branch flow path that branches the second flow path into the plurality of flow paths; and a plurality of branches branched by the second branch flow path
  • a third flow path connected to the flow path and having a linear shape, and the refrigerant flowing into the distribution flow path flows in the opposite direction to the first flow path and the second flow path, and the second flow path
  • the flow path and the third flow path face each other and flow in opposite directions.
  • the refrigerant that has flowed into the distribution flow path flows in the opposite direction, facing the first flow path and the second flow path, and faces the second flow path and the third flow path. Therefore, the stacked header can be reduced in size and the straight portion of the distribution channel can be secured to a certain length, so that the distribution of the refrigerant in the branch channel is suppressed by suppressing the bias of the refrigerant.
  • the rate can be made uniform.
  • FIG. 3 is an exploded perspective view of the multilayer header according to Embodiment 1.
  • FIG. 2 is a front sectional view and a side sectional view of a distribution flow path of the multilayer header according to Embodiment 1.
  • FIG. 4 is a graph showing a relationship between a refrigerant distribution ratio to each heat transfer tube and L / D (L: length of straight line portion S, D: inner diameter of flow path) according to Embodiment 1. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 1 is applied.
  • FIG. 10 is an exploded perspective view showing a modification of the laminated header according to the first embodiment.
  • FIG. 6 is an exploded perspective view showing a comparative example for the stacked header according to the first embodiment.
  • the laminated header 2 according to the present invention will be described with reference to the drawings.
  • the multilayer header 2 according to the present invention distributes the refrigerant flowing into the heat exchanger 1
  • the multilayer header 2 according to the present invention is not limited to other devices.
  • the refrigerant flowing into the tank may be distributed.
  • the configuration, operation, and the like described below are merely examples, and the multilayer header 2 according to the present invention is not limited to such a configuration, operation, and the like.
  • symbol is attached
  • symbol is abbreviate
  • the illustration of the fine structure is simplified or omitted as appropriate.
  • overlapping or similar descriptions are appropriately simplified or omitted.
  • FIG. 1 is a diagram illustrating a configuration of a heat exchanger according to the first embodiment.
  • the heat exchanger 1 includes a laminated header 2, a cylindrical header 3, a plurality of heat transfer tubes 4, a holding member 5, and a plurality of fins 6.
  • the stacked header 2 has one refrigerant inflow portion 2A (corresponding to the first opening of the present invention) and a plurality of refrigerant outflow portions 2B (corresponding to the second opening of the present invention).
  • the cylindrical header 3 has a plurality of refrigerant inflow portions 3A and one refrigerant outflow portion 3B.
  • Refrigerant piping of the refrigeration cycle apparatus is connected to the refrigerant inflow portion 2A of the laminated header 2 and the refrigerant outflow portion 3B of the cylindrical header 3.
  • a heat transfer tube 4 is connected between the refrigerant outflow portion 2B of the laminated header 2 and the refrigerant inflow portion 3A of the cylindrical header 3.
  • the heat transfer tube 4 is a flat tube or a circular tube in which a plurality of flow paths are formed.
  • the heat transfer tube 4 is made of, for example, copper or aluminum.
  • the end of the heat transfer tube 4 on the side of the laminated header 2 is connected to the refrigerant outflow portion 2B of the laminated header 2 while being held by the plate-like holding member 5.
  • the holding member 5 is made of aluminum, for example.
  • a plurality of fins 6 are joined to the heat transfer tube 4.
  • the fin 6 is made of aluminum, for example.
  • FIG. 1 although the case where the number of the heat exchanger tubes 4 is eight is shown, it is not limited to such a case. For example, two may be used.
  • the refrigerant flowing through the plurality of heat transfer tubes 4 flows into and joins the cylindrical header 3 through the plurality of refrigerant inflow portions 3A, and flows out to the refrigerant pipe through the refrigerant outflow portion 3B.
  • the heat exchanger 1 functions as a condenser, the refrigerant flows in the direction opposite to this flow.
  • FIG. 2 is an exploded perspective view of the stacked header according to the first embodiment.
  • the laminated header 2 shown in FIG. 2 includes, for example, a rectangular first plate body 111, 112, 113, 114, 115, 116 and a second plate body 121 sandwiched between the first plate bodies. , 122, 123, 124, 125.
  • a brazing material is applied to both surfaces or one surface of the second plate-like bodies 121, 122, 123, 124, 125.
  • the first plate-like bodies 111, 112, 113, 114, 115, 116 are laminated via the second plate-like bodies 121, 122, 123, 124, 125, and are joined together by brazing.
  • the first plate-like bodies 111, 112, 113, 114, 115, 116 and the second plate-like bodies 121, 122, 123, 124, 125 are, for example, about 1 to 10 mm in thickness and made of aluminum. .
  • the laminated header 2 has circular through holes formed in the first plate bodies 111, 112, 113, 114, 115, 116 and the second plate bodies 121, 122, 123, 124, 125.
  • Each plate-like body is processed by pressing or cutting. In the case of processing by press working, a plate material having a thickness that can be pressed is 5 mm or less, and in the case of processing by cutting processing, a plate material having a thickness of 5 mm or more may be used.
  • the refrigerant piping of the refrigeration cycle apparatus is connected to the first flow path 10A of the first plate-like body 111.
  • the first flow path 10A of the first plate-like body 111 corresponds to the refrigerant inflow portion 2A in FIG.
  • the first flow path 10 ⁇ / b> A is open at the approximate center of the first plate-like bodies 111, 112, 113 and the second plate-like bodies 121, 122, 123.
  • a pair of second flow paths 11 ⁇ / b> A are opened in positions facing the first flow path 10 ⁇ / b> A in the first plate-like body 113 and the second plate-like bodies 122 and 123.
  • four third flow paths 12A are opened at positions facing the second flow paths 11A of the first plate bodies 113, 114 and the second plate bodies 122, 123, 124.
  • the fourth plate 13 ⁇ / b> A has eight openings in the first plate 116 and the second plate 125.
  • the first flow path 10A, the second flow path 11A, the third flow path 12A, and the fourth flow path 13A are composed of a first plate-like body 111, 112, 113, 114, 115, 116, and a second plate-like body.
  • 121, 122, 123, 124, 125 are laminated, they are positioned and opened so as to communicate with each other.
  • the first plate 114 (corresponding to the first branch plate of the present invention) is provided with a first branch channel 10B, and the first plate 112 (second branch plate of the present invention).
  • a second branch channel 11B is formed in the first plate-like body 115, and a third branch channel 12B is formed in the first plate 115.
  • the first flow path 10A is connected to the center of the first branch flow path 10B formed in the first plate-shaped body 114.
  • the second flow path 11A is connected to both ends of the first branch flow path 10B.
  • a second flow path 11A is connected to the center of the second branch flow path 11B formed in the first plate-like body 112, and a third flow path is provided at both ends of the second branch flow path 11B.
  • 12A is connected.
  • the third flow path 12A is connected to the center of the third branch flow path 12B formed in the first plate-like body 115, and the fourth flow path is connected to both ends of the third branch flow path 12B.
  • 13A is connected.
  • the first plate bodies 111, 112, 113, 114, 115, 116 and the second plate bodies 121, 122, 123, 124, 125 are stacked and brazed to connect each flow path.
  • a distribution channel can be formed.
  • the refrigerant that has flowed into the second flow path 11A goes straight through the second flow path 11A in the opposite direction opposite to the refrigerant that travels through the first flow path 10A.
  • This refrigerant collides with the surface of the second plate 121 in the second branch flow path 11B of the first plate 112 and splits up and down in the direction of gravity.
  • the divided refrigerant travels to both ends of the second branch flow path 11B and flows into the four third flow paths 12A.
  • the refrigerant that has flowed into the third flow path 12A travels straight through the third flow path 12A in the opposite direction to the refrigerant that travels through the second flow path 11A.
  • This refrigerant collides with the surface of the second plate-like body 125 in the third branch flow path 12B of the first plate-like body 115, and splits up and down in the direction of gravity.
  • the divided refrigerant travels to both ends of the third branch flow path 12B and flows into the eight fourth flow paths 13A.
  • the refrigerant that has flowed into the fourth flow path 13A goes straight through the fourth flow path 13A in the opposite direction opposite to the refrigerant that proceeds through the third flow path 12A. And it flows out out of the 4th flow path 13A, flows into the some heat exchanger tube 4 through the flow path of the holding member 5, and flows in.
  • the example of the laminated header 2 having eight branches through three branch channels is shown, but the number of branches is not particularly limited.
  • FIG. 3 is a front cross-sectional view and a side cross-sectional view of the distribution flow path of the multilayer header according to the first embodiment.
  • the refrigerant distribution flow path in the laminated header 2 is bent at a right angle and connected to a plurality of refrigerant outflow portions 2 ⁇ / b> B by repeating a plurality of branches.
  • the liquid film of the refrigerant flows in a bent portion or a branched portion of the flow path so as to be present in a large amount biased toward the outside of the flow path due to centrifugal force.
  • a large amount of liquid refrigerant flows into one of the branch flow paths, and the gas-liquid two-phase refrigerant cannot be uniformly distributed to the plurality of heat transfer tubes 4.
  • a straight portion S having a certain length indicated by a broken line in FIG. 2 is formed before the flow from the bent portion or the branched portion of the flow channel to the next branched flow channel. is doing.
  • the first flow path 10A, the second flow path 11A, and the third flow path 12A are configured to have a certain length.
  • the liquid film bias is uniformed in the straight line portion S. Then, the gas-liquid two-phase refrigerant is evenly distributed in the branch channel that flows next.
  • An index of the length of the straight portion S that rectifies the gas-liquid two-phase flow is a value of the length L of the straight portion S with respect to the inner diameter D of the flow path, and is expressed by L / D (L: shown in FIG. 3). Length [m] of the straight line portion S of the flow path, D: inner diameter [m] of the flow path). The longer the length L of the straight portion S is, and the smaller the inner diameter D of the flow path is, the more effective the rectification is.
  • the pressure loss ⁇ P of the gas-liquid two-phase flow in the flow path of the straight portion S is considered.
  • the pressure loss ⁇ P of the gas-liquid two-phase flow in the flow path of the straight line portion S is expressed by the following equation (1).
  • the respective plate members of the laminated header 2 of the present invention are joined by being integrally brazed in a furnace.
  • the inner diameter D of the flow path needs to be 2 ⁇ 2 [mm], and the inner diameter D of the flow path cannot be significantly reduced. Therefore, it is difficult to make the flow state of the refrigerant flowing in the flow path into a homogeneous flow such as an annular spray flow using a throttling function, and the flow path becomes an annular flow, a slag flow, or a laminar flow.
  • a straight portion S for rectifying the two-phase flow is required.
  • FIG. 4 shows the relationship between the refrigerant distribution ratio to each heat transfer tube according to Embodiment 1 and L / D (L: length of straight portion S [m], D: inner diameter [m] of flow path). It is the shown graph.
  • L length of straight portion S [m]
  • D inner diameter [m] of flow path
  • the refrigerant diversion ratio is effectively set to the optimum value of 48 to 52% at the branch portion.
  • the heat exchange performance of the heat exchanger 1 can be ensured.
  • the heat exchanger 1 By ensuring the lengths of the straight portions S of the first flow path 10A, the second flow path 11A, and the third flow path 12A in a range of 2 ⁇ L / D ⁇ 5, the heat exchanger 1 The heat exchange performance can be ensured by supplying the refrigerant to the heat transfer tubes 4 evenly.
  • the refrigerant flows through the first flow path 10A, the second flow path 11A, the third flow path 12A, and the fourth flow path 13A in opposite directions, so that the stacked header 2 can be reduced in size.
  • the refrigerant can be evenly branched in each branch flow path downstream of the straight portion S.
  • the L / D value can be increased within the allowable range of the dimensions of the laminated header 2.
  • the length L2 of the straight portion S of the second flow path 11A between at least the first branch flow path 10B and the second branch flow path 11B in the range of 2 ⁇ L2 / D2 ⁇ 5
  • the flow axis at both ends of the first branch flow path 10B, the second branch flow path 11B, and the third branch flow path 12B which are substantially Z-shaped through grooves, and the vertical direction (first plate)
  • the value of the angle ⁇ increases in this order.
  • the liquid film becomes more uneven.
  • the third branch flow path 12B It becomes possible to branch the refrigerant uniformly.
  • FIG. 5 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 1 is applied.
  • the air conditioner 20 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger (heat source side heat exchanger) 23, a throttling device 24, and an indoor heat exchanger (load side).
  • the compressor 21, the four-way valve 22, the outdoor heat exchanger 23, the expansion device 24, and the indoor heat exchanger 25 are connected by a refrigerant pipe to form a refrigerant circulation circuit.
  • the control device 28 is connected with, for example, a compressor 21, a four-way valve 22, a throttle device 24, an outdoor fan 26, an indoor fan 27, various sensors, and the like. By switching the flow path of the four-way valve 22 by the control device 28, the cooling operation and the heating operation are switched.
  • the flow of the refrigerant during the cooling operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 through the four-way valve 22, exchanges heat with the air supplied by the outdoor fan 26, and condenses.
  • the condensed refrigerant enters a high-pressure liquid state, flows out of the outdoor heat exchanger 23, and enters a low-pressure gas-liquid two-phase state by the expansion device 24.
  • the low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchanger 25 and evaporates by heat exchange with the air supplied by the indoor fan 27, thereby cooling the room.
  • the evaporated refrigerant enters a low-pressure gas state, flows out of the indoor heat exchanger 25, and is sucked into the compressor 21 through the four-way valve 22.
  • the flow of the refrigerant during the heating operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 21 flows into the indoor heat exchanger 25 through the four-way valve 22 and condenses by heat exchange with the air supplied by the indoor fan 27. Heat up.
  • the condensed refrigerant enters a high-pressure liquid state, flows out of the indoor heat exchanger 25, and becomes a low-pressure gas-liquid two-phase refrigerant by the expansion device 24.
  • the low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 23, exchanges heat with the air supplied by the outdoor fan 26, and evaporates.
  • the evaporated refrigerant enters a low-pressure gas state, flows out of the outdoor heat exchanger 23, and is sucked into the compressor 21 through the four-way valve 22.
  • the heat exchanger 1 is used for at least one of the outdoor heat exchanger 23 and the indoor heat exchanger 25.
  • the heat exchanger 1 acts as an evaporator
  • the heat exchanger 1 is connected so that the refrigerant flows from the laminated header 2 and flows out to the cylindrical header 3. That is, when the heat exchanger 1 acts as an evaporator, the refrigerant in the gas-liquid two-phase state flows from the refrigerant pipe to the stacked header 2, branches, and flows into the heat transfer tubes 4 of the heat exchanger 1. Further, when the heat exchanger 1 acts as a condenser, liquid refrigerant flows from each heat transfer tube 4 into the laminated header 2 and joins and flows out to the refrigerant pipe.
  • FIG. 6 is an exploded perspective view showing a modification of the stacked header according to the first embodiment.
  • the laminated header 2 includes, for example, first plate bodies 111, 112, 114, 115, and 116, and second plate bodies 121, 123, 124, and 125 sandwiched between the first plate bodies.
  • a brazing material is applied to both sides or one side of the second plate-like bodies 121, 123, 124, 125.
  • the first plate-like bodies 111, 112, 114, 115, 116 are stacked via the second plate-like bodies 121, 123, 124, 125, and are joined together by brazing.
  • the laminated header 2 includes a first flow path that is a circular through hole formed in the first plate bodies 111, 113, 114, 115, 116, and the second plate bodies 121, 123, 124, 125.
  • a road is formed.
  • a distribution channel similar to that of the multilayer header 2 according to the first embodiment is formed, and one second plate-like body 123 is formed.
  • the first flow path 10A which is the straight line portion S of the flow path indicated by the broken line portion, is secured in the range of 2 ⁇ L1 / D1 ⁇ 5.
  • the range of 2 ⁇ L2 / D2 ⁇ 5 is secured for the second flow path 11A.
  • the range of 2 ⁇ L3 / D3 ⁇ 5 is secured for the third flow path 12A.
  • the refrigerant can be supplied uniformly to the heat transfer tubes 4 of the heat exchanger 1 to ensure the heat exchange performance.
  • the manufacturing process can be simplified as compared with the multilayer header 2. Other effects are the same as those of the multilayer header 2 according to the first embodiment.
  • the refrigerant flows through the first flow path 10A, the second flow path 11A, the third flow path 12A, and the fourth flow path 13A in opposite directions in the distribution flow path. It was. On the other hand, in the comparative example, the refrigerant flows in the same direction through the first flow path 10A, the second flow path 11A, the third flow path 12A, and the fourth flow path 13A.
  • FIG. 6 is an exploded perspective view showing a comparative example for the stacked header according to the first embodiment.
  • the laminated header 2 includes, for example, a first plate body 111, 112, 113, 114, 115, 116, 117, 118, 119 and a second plate body 121 sandwiched between the first plate bodies. 122, 123, 124, 125, 126, 127, 128.
  • a brazing material is applied to both sides or one side of the second plate-like bodies 121, 122, 123, 124, 125, 126, 127, 128.
  • the first plate-like bodies 111, 112, 113, 114, 115, 116, 117, 118, 119 are stacked via the second plate-like bodies 121, 122, 123, 124, 125, 126, 127, 128, They are joined together by brazing.
  • the laminated header 2 includes the first plate bodies 111, 112, 113, 114, 115, 116, 117, 118, 119 and the second plate bodies 121, 122, 123, 124, 125, 126, 127. , 128 are the first flow path 10A, the second flow path 11A, the third flow path 12A, and the fourth flow path 13A, which are circular through holes, and a substantially S-shaped or substantially Z-shaped through groove.
  • a distribution flow path constituted by the branch flow paths 10B, 11B, and 12B is formed.
  • the first flow path 10 ⁇ / b> A and the second flow path 11 ⁇ / b> A are different from the configuration in which the refrigerant flow in the multilayer header 2 according to the first embodiment is a counter flow.
  • the third flow path 12A and the fourth flow path 13A are configured as distribution flow paths in which the refrigerant flows in the same direction.
  • the first flow path 10A, the second flow path 11A, and the third flow path 12A which are the straight line portions S of the broken line portion shown in FIG. 7, are respectively 2 ⁇ L / D ⁇ 5 (L: straight line portion S).
  • Length [m], D: inner diameter [m] of the flow path) the first flow path 10A, the second flow path 11A, the third flow path 12A, and the fourth flow path 13A are arranged in series. Since they are arranged side by side, the dimensions on the stacking side of the comparative example are longer than the dimensions on the stacking side of the stacked header 2 according to the first embodiment and the above modification.
  • the stacked header 2 according to the first embodiment and the modified example of the first embodiment uses the first flow channel 10A, the second flow channel 11A, the third flow channel 12A, By configuring the four flow paths 13A to face each other in the opposite direction, the stacked header 2 can be downsized compared to this comparative example. Further, when the stacked header 2 according to the first embodiment or the modified example of the first embodiment has the same dimensions as the comparative example, the first flow path 10A, the second flow path 11A, the third flow path Since the length L of the linear portion S of 12A can be set longer than that of the comparative example, the rectifying effect of the liquid film can be further improved.
  • 1 heat exchanger 2 stacked header, 2A refrigerant inflow part (first opening), 2B refrigerant outflow part (second opening), 3 cylindrical header, 3A refrigerant inflow part, 3B refrigerant outflow part, 4 heat transfer pipe, 5 Holding member, 6 fins, 10A first channel, 10B first channel, 11A second channel, 11B second channel, 12A third channel, 12B third channel, 13A fourth channel 20, air conditioner, 21 compressor, 22 four-way valve, 23 outdoor heat exchanger, 24 throttle device, 25 indoor heat exchanger, 26 outdoor fan, 27 indoor fan, 28 control device, 111, 112, 113, 114, 115, 116, 117, 118, 119 First plate, 121, 122, 123, 124, 125, 126, 127, 128 Second plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 本発明に係る積層型ヘッダは、1つの第1開口と、複数の第2開口と、第1開口と第2開口とを接続する分配流路と、を有し、複数の板状体を積層して形成された積層型ヘッダであって、分配流路は、直線形状となる第1流路と、第1流路を複数の流路に分岐する第1分岐流路と、第1分岐流路で分岐した複数の流路に接続し直線形状となる第2流路と、第2流路を複数の流路に分岐する第2分岐流路と、第2分岐流路で分岐した複数の流路に接続し直線形状となる第3流路と、を有し、分配流路に流入した冷媒は、第1流路と第2流路とを対向して逆方向に流れるとともに、第2流路と第3流路とを対向して逆方向に流れる構成となるものである。

Description

積層型ヘッダ、熱交換器、及び、空気調和装置
 本発明は、積層型ヘッダと熱交換器と空気調和装置とに関するものである。
 従来、熱交換器の各伝熱管に対して冷媒を分配して供給する積層型ヘッダが知られている。この積層型ヘッダは、1つの入口流路に対して複数の出口流路に分岐する分配流路を形成する板状体を複数枚積層することによって、熱交換器の各伝熱管に冷媒を分配して供給するものである(例えば、特許文献1参照)。
特開平9-189463号公報(図1等を参照)
 このような積層型ヘッダでは、熱交換器の各伝熱管に均一に冷媒を供給するために、複数の出口流路のそれぞれから流出する液冷媒の流量の比率、つまり、分配率を均一に保つことが蒸発器として機能する熱交換器の性能を確保する上で重要である。
 従来の積層型ヘッダでは、分岐流路で冷媒が繰り返して分岐するうちに分配流路内で液冷媒が偏った状態となり、積層型ヘッダの複数の出口で液冷媒が不均一に流出する。すると、熱交換器の各伝熱管に冷媒が不均一に供給され、熱交換性能が低下するという問題があった。
 本発明は、上記のような課題を背景としてなされたものであり、熱交換器の各伝熱管に対して冷媒を均一に分配して熱交換器の熱交換性能を担保するとともに、小型化を実現した積層型ヘッダを得ることを目的とする。また、本発明は、そのような積層型ヘッダを備えた熱交換器を得ることを目的とする。また、本発明は、そのような熱交換器を備えた空気調和装置を得ることを目的とする。
 本発明に係る積層型ヘッダは、1つの第1開口と、複数の第2開口と、第1開口と第2開口とを接続する分配流路と、を有し、複数の板状体を積層して形成された積層型ヘッダであって、分配流路は、直線形状となる第1流路と、第1流路を複数の流路に分岐する第1分岐流路と、第1分岐流路で分岐した複数の流路に接続し直線形状となる第2流路と、第2流路を複数の流路に分岐する第2分岐流路と、第2分岐流路で分岐した複数の流路に接続し直線形状となる第3流路と、を有し、分配流路に流入した冷媒は、第1流路と第2流路とを対向して逆方向に流れるとともに、第2流路と第3流路とを対向して逆方向に流れる構成となるものである。
 本発明に係る積層型ヘッダでは、分配流路に流入した冷媒は、第1流路と第2流路とを対向して逆方向に流れるとともに、第2流路と第3流路とを対向して逆方向に流れるため、積層型ヘッダを小型化することができるとともに、分配流路の直線部分を一定長さ確保することができるため、冷媒の偏りを抑制して分岐流路での分配率を均一化することが可能になる。
実施の形態1に係る熱交換器の構成を示す図である。 実施の形態1に係る積層型ヘッダにおける分解斜視図である。 実施の形態1に係る積層型ヘッダの分配流路の正面断面図及び側面断面図である。 実施の形態1に係る各伝熱管への冷媒分配比とL/D(L:直線部分Sの長さ、D:流路の内径)との関係を示したグラフである。 実施の形態1に係る熱交換器が適用される空気調和装置の構成を示す図である。 実施の形態1に係る積層型ヘッダにおける変形例を示す分解斜視図である。 実施の形態1に係る積層型ヘッダに対する比較例を示す分解斜視図である。
 以下、本発明に係る積層型ヘッダ2について、図面を用いて説明する。
 なお、以下では、本発明に係る積層型ヘッダ2が、熱交換器1に流入する冷媒を分配するものである場合を説明しているが、本発明に係る積層型ヘッダ2が、他の機器に流入する冷媒を分配するものであってもよい。また、以下で説明する構成、動作等は、一例に過ぎず、本発明に係る積層型ヘッダ2は、そのような構成、動作等である場合に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
 実施の形態1.
 実施の形態1に係る熱交換器1について説明する。
 <熱交換器の構成>
 以下に、実施の形態1に係る熱交換器1の構成について説明する。
 図1は、実施の形態1に係る熱交換器の構成を示す図である。
 図1に示されるように、熱交換器1は、積層型ヘッダ2と、円筒型ヘッダ3と、複数の伝熱管4と、保持部材5と、複数のフィン6と、を有する。
 積層型ヘッダ2は、1つの冷媒流入部2A(本発明の第1開口に相当する)と、複数の冷媒流出部2B(本発明の第2開口に相当する)と、を有する。円筒型ヘッダ3は、複数の冷媒流入部3Aと、1つの冷媒流出部3Bと、を有する。積層型ヘッダ2の冷媒流入部2A及び円筒型ヘッダ3の冷媒流出部3Bには、冷凍サイクル装置の冷媒配管が接続される。積層型ヘッダ2の冷媒流出部2Bと円筒型ヘッダ3の冷媒流入部3Aとの間には、伝熱管4が接続される。
 伝熱管4は、複数の流路が形成された扁平管もしくは円管である。伝熱管4は、例えば、銅製やアルミニウム製である。伝熱管4の積層型ヘッダ2側の端部は、板状の保持部材5によって保持された状態で、積層型ヘッダ2の冷媒流出部2Bに接続される。保持部材5は、例えば、アルミニウム製である。伝熱管4には、複数のフィン6が接合される。フィン6は、例えば、アルミニウム製である。なお、図1では、伝熱管4が8本である場合を示しているが、そのような場合に限定されない。例えば、2本であってもよい。
 <熱交換器における冷媒の流れ>
 以下に、実施の形態1に係る熱交換器1における冷媒の流れについて説明する。
 冷媒配管を流れる冷媒は、例えば熱交換器1が蒸発器として機能する際に、冷媒流入部2Aを介して積層型ヘッダ2に流入して分配され、複数の冷媒流出部2Bを介して複数の伝熱管4に流出する。冷媒は、複数の伝熱管4において、例えば、送風機によって供給される空気等と熱交換する。複数の伝熱管4を流れる冷媒は、複数の冷媒流入部3Aを介して円筒型ヘッダ3に流入して合流し、冷媒流出部3Bを介して冷媒配管に流出する。なお、熱交換器1が凝縮器として機能する場合には冷媒は、この流れと逆方向に流れる。
 <積層型ヘッダの構成>
 以下に、実施の形態1に係る熱交換器1の積層型ヘッダ2の構成について説明する。
 図2は、実施の形態1に係る積層型ヘッダにおける分解斜視図である。
 図2に示す積層型ヘッダ2は、例えば矩形形状の第1板状体111、112、113、114、115、116と、この各第1板状体の間に挟み込まれる第2板状体121、122、123、124、125とで構成されている。
 第2板状体121、122、123、124、125の両面又は片面には、ロウ材が塗布される。第1板状体111、112、113、114、115、116は、第2板状体121、122、123、124、125を介して積層され、ろう付けにより一体に接合される。第1板状体111、112、113、114、115、116と、第2板状体121、122、123、124、125とは、例えば、厚さ1~10mm程度であり、アルミニウム製である。
 積層型ヘッダ2には、第1板状体111、112、113、114、115、116、及び、第2板状体121、122、123、124、125に形成された円形の貫通穴である第1流路10A、第2流路11A、第3流路12A、第4流路13Aと、略Z字形状の貫通溝である分岐流路10B、11B、12Bと、によって、分配流路が形成されている。なお、各板状体は、プレス加工や切削加工によって加工される。プレス加工によって加工する場合は、プレス加工が可能な厚みが5mm以下の板材を使用し、切削加工によって加工する場合は、厚みが5mm以上の板材を使用してもよい。
 冷凍サイクル装置の冷媒配管は、第1板状体111の第1流路10Aに接続される。第1板状体111の第1流路10Aは、図1における冷媒流入部2Aに相当する。
 第1板状体111、112、113、及び第2板状体121、122、123の略中央には第1流路10Aが開口している。また、第1板状体113、及び第2板状体122、123には第1流路10Aに対して対向する位置に一対の第2流路11Aが開口している。
 さらに、第1板状体113、114、及び、第2板状体122、123、124の第2流路11Aに対して対向する位置には第3流路12Aが4箇所開口している。
 そして、第1板状体116と第2板状体125には、第4流路13Aが8箇所開口している。
 これら第1流路10A、第2流路11A、第3流路12A、第4流路13Aは、第1板状体111、112、113、114、115、116、及び、第2板状体121、122、123、124、125を積層したときにそれぞれ連通するように位置決めされて開口している。
 また、第1板状体114(本発明の第1分岐板状体に相当する)には、第1分岐流路10Bが形成され、第1板状体112(本発明の第2分岐板状体に相当する)には、第2分岐流路11Bが形成され、第1板状体115には、第3分岐流路12Bが形成されている。
 ここで、各板状体が積層され分配流路が形成された際には、第1板状体114に形成された第1分岐流路10Bの中央に、第1流路10Aが接続されるとともに、第1分岐流路10Bの両端部には、第2流路11Aが接続される。
 また、第1板状体112に形成された第2分岐流路11Bの中央には、第2流路11Aが接続されるとともに、第2分岐流路11Bの両端部には、第3流路12Aが接続されている。
 さらに、第1板状体115に形成された第3分岐流路12Bの中央には、第3流路12Aが接続されるとともに、第3分岐流路12Bの両端部には、第4流路13Aが接続されている。
 このように第1板状体111、112、113、114、115、116、及び、第2板状体121、122、123、124、125を積層してろう付けすることで各流路を接続し分配流路を形成することができる。
<積層型ヘッダにおける冷媒の流れ>
 次に、積層型ヘッダ2内の分配流路及び冷媒の流れについて説明する。
 熱交換器1が蒸発器として機能する場合、気液二相流の冷媒が、第1板状体111の第1流路10Aから積層型ヘッダ2内に流入する。流入した冷媒は、第1流路10A内を直進し、第1板状体114の第1分岐流路10B内で第2板状体124の表面に衝突し、重力方向における上下に分流する。
分流した冷媒は第1分岐流路10Bの両端部まで進み一対の第2流路11A内に流入する。
 第2流路11A内に流入した冷媒は、第1流路10A内を進む冷媒と対向する反対向きに第2流路11A内を直進する。この冷媒は、第1板状体112の第2分岐流路11B内で第2板状体121の表面に衝突し、重力方向における上下に分流する。
分流した冷媒は第2分岐流路11Bの両端部まで進み4つの第3流路12A内に流入する。
 第3流路12A内に流入した冷媒は、第2流路11A内を進む冷媒と対向する反対向きに第3流路12A内を直進する。この冷媒は、第1板状体115の第3分岐流路12B内で第2板状体125の表面に衝突し、重力方向における上下に分流する。
分流した冷媒は第3分岐流路12Bの両端部まで進み8つの第4流路13A内に流入する。
 第4流路13A内に流入した冷媒は、第3流路12A内を進む冷媒と対向する反対向きに第4流路13A内を直進する。そして第4流路13Aから流出し、保持部材5の流路を介して複数の伝熱管4に均一に分配されて流入する。
なお、実施の形態1の分配流路では、3回分岐流路を通り、8分岐とした積層型ヘッダ2の例を示したが、分岐の回数は特段限定されない。
 <積層型ヘッダ内の分配流路における液膜の状態について>
 ここで、積層型ヘッダ2内の流路における液膜の状態について図3を用いて説明する。
 図3は、実施の形態1に係る積層型ヘッダの分配流路の正面断面図及び側面断面図である。
 積層型ヘッダ2内の冷媒の分配流路は、図3に示すように直角に曲折するとともに、複数の分岐を繰り返すことで複数の冷媒流出部2Bに接続されている。冷媒が分配流路を流れる際には、図3に示すように冷媒の液膜が流路の曲折部分や分岐部分で遠心力により流路の外側方向に偏って多量に存在するように流れる。この状態で次の分岐流路に冷媒が流入すると分岐流路の一方に偏って多くの液冷媒が流入し、複数の伝熱管4に均一に気液二相冷媒を分配することができなくなる。
 そこで、実施の形態1に係る積層型ヘッダ2では、流路の曲折部分や分岐部分から次の分岐流路に流入するまでの間に図2に破線で示す一定長さの直線部分Sを形成している。
 具体的には、第1流路10A、第2流路11A、第3流路12Aを一定長さ確保した構成となっている。
 このように冷媒の流路の曲折部分や分岐部分から次の分岐流路に流入するまでの間に一定距離の直線部分Sを形成することで、これら直線部分Sで液膜の偏りが均一化され、次に流入する分岐流路で均一に気液二相冷媒が分配される。
 気液二相流を整流化する直線部分Sの長さの指標は、流路の内径Dに対する直線部分Sの長さLの値となり、L/Dで表される(L:図3に示す流路の直線部分Sの長さ[m]、D:流路の内径[m])。直線部分Sの長さLが長いほど、また、流路の内径Dが小さいほど整流効果がある。
 ここで、直線部分Sの流路の気液二相流の圧力損失ΔPを考える。
 直線部分Sの流路の気液二相流の圧力損失ΔPは次式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
f:摩擦係数、ρ:密度[kg/m]、u:流速[m/s]、Gr:冷媒循環量[kg/h]、φ:二相流増大係数、L:直線部分Sの長さ[m]、D:流路の内径[m]
 式(1)より、気液二相流の整流効果を得るために流路の内径Dを小さくすると、圧力損失ΔP増大への寄与度が非常に大きくなることがわかる。そこで、直線部分Sの長さLを長くとることで圧力損失ΔPの増大を抑制しながら気液二相流の整流効果を得ることができる。
 さらに、本発明の積層型ヘッダ2の各板材は、炉中で一体ろう付けすることにより、接合される。ロウ材による閉塞を防ぐためには、流路の内径D≧2[mm]である必要があり、大幅に小さい流路の内径Dとすることができない。したがって、流路を流れる冷媒の流動状態を絞り機能を用いて環状噴霧流などの均質流とすることは困難であり、流路内は環状流、スラグ流、または層状流となるため、気液二相流の整流を行うための直線部分Sが必要となる。
 ここで、L/Dの最適な値について図4を用いて説明する。
 図4は、実施の形態1に係る各伝熱管への冷媒分配比と、L/D(L:直線部分Sの長さ[m]、D:流路の内径[m])との関係を示したグラフである。
 図4からわかるように流路の直線部分の長さLは長いほど液膜の整流効果があるが、5<L/Dの範囲では整流効果の増加が横ばいとなっている。また、L/Dを大きくすると積層型ヘッダ2が大型化する。
 また、分岐部分での冷媒分流比を実用上、熱交換器1の性能に支障をきたさない値である48%以上とするために、L/Dの値を2以上とすることが望ましいことがわかる。
 このことから、2≦L/D≦5の範囲において冷媒を直線部分Sの流路内で整流することにより、分岐部分で効果的に冷媒分流比を最適値である48~52%とすることができ、熱交換器1の熱交換性能を担保することができる。
 実施の形態1に係る積層型ヘッダ2では、流路の直線部分Sとして、第1流路10Aの長さをL1、流路の内径をD1としたときに、2≦L1/D1≦5の範囲を確保する。同様に、流路の直線部分Sとして、第2流路11Aの長さをL2、流路の内径をD2としたときに、2≦L2/D2≦5の範囲を確保する。さらに、流路の直線部分Sとして、第3流路12Aの長さをL3、流路の内径をD3としたときに、2≦L3/D3≦5の範囲を確保する。このように、第1流路10A、第2流路11A、第3流路12Aの直線部分Sの長さを全て2≦L/D≦5の範囲で確保することで、熱交換器1の伝熱管4に均等に冷媒を供給して熱交換性能を担保することができる。
 また、第1流路10A、第2流路11A、第3流路12A、第4流路13Aを冷媒が対向して反対向きに流れることで、積層型ヘッダ2を小型化することが可能となる。
 なお、少なくとも第1流路10A、第2流路11A、第3流路12Aのうちのいずれか1つの直線部分Sの長さを2≦L/D≦5の範囲で確保することでも、その直線部分Sの下流の各分岐流路で均等に冷媒を分岐することができる。
 また、L/Dの値が5以上に大きくなっても整流効果が落ちることはないため、積層型ヘッダ2の寸法が許容する範囲でL/Dの値を大きくとることが可能である。
 また、少なくとも第1分岐流路10Bと第2分岐流路11Bとの間の第2流路11Aの直線部分Sの長さL2を2≦L2/D2≦5の範囲で確保することで、第1流路10Aと第3流路12Aの長さは第2流路11Aより長くなるため必要十分な整流効果を得ることができる。
 さらに、図3において、略Z字形状の貫通溝である第1分岐流路10B、第2分岐流路11B、第3分岐流路12Bにおける両端部の流路軸と、鉛直方向(第1板状体111、112、113、114、115、116、及び、第2板状体121、122、123、124、125の長手方向)とのなす角度θとする。すると、第1分岐流路10B、第2分岐流路11B、第3分岐流路12Bの順に鉛直方向の高さが低くなるため、角度θの値はこの順番で大きくなる。この角度θが大きい程、液膜の偏りが大きく発生する。
 よって、特に第3分岐流路12Bの上流側に位置する第3流路の直線部分Sの長さL3を2≦L3/D3≦5の範囲で確保することで、第3分岐流路12Bで冷媒を均一に分岐することが可能になる。
 <熱交換器の使用態様>
 以下に、実施の形態1に係る熱交換器1の使用態様の一例について説明する。
 なお、以下では、実施の形態1に係る熱交換器1が、空気調和装置20に使用される場合を説明しているが、そのような場合に限定されず、例えば、冷媒循環回路を有する他の冷凍サイクル装置に使用されてもよい。また、空気調和装置20が、冷房運転と暖房運転とを切り替えるものである場合を説明しているが、そのような場合に限定されず、冷房運転又は暖房運転のみを行うものであってもよい。
 図5は、実施の形態1に係る熱交換器が適用される空気調和装置の構成を示す図である。
 なお、図5では、冷房運転時の冷媒の流れが点線の矢印で示され、暖房運転時の冷媒の流れが実線の矢印で示される。
 図5に示されるように、空気調和装置20は、圧縮機21と、四方弁22と、室外熱交換器(熱源側熱交換器)23と、絞り装置24と、室内熱交換器(負荷側熱交換器)25と、室外ファン(熱源側ファン)26と、室内ファン(負荷側ファン)27と、制御装置28と、を有する。圧縮機21と四方弁22と室外熱交換器23と絞り装置24と室内熱交換器25とが冷媒配管で接続されて、冷媒循環回路が形成される。
 制御装置28には、例えば、圧縮機21、四方弁22、絞り装置24、室外ファン26、室内ファン27、各種センサ等が接続される。制御装置28によって、四方弁22の流路が切り替えられることで、冷房運転と暖房運転とが切り替えられる。
 冷房運転時の冷媒の流れについて説明する。
 圧縮機21から吐出される高圧高温のガス状態の冷媒は、四方弁22を介して室外熱交換器23に流入し、室外ファン26によって供給される空気と熱交換を行い、凝縮する。凝縮した冷媒は、高圧の液状態となり、室外熱交換器23から流出し、絞り装置24によって、低圧の気液二相状態となる。低圧の気液二相状態の冷媒は、室内熱交換器25に流入し、室内ファン27によって供給される空気との熱交換によって蒸発することで、室内を冷却する。蒸発した冷媒は、低圧のガス状態となり、室内熱交換器25から流出し、四方弁22を介して圧縮機21に吸入される。
 暖房運転時の冷媒の流れについて説明する。
 圧縮機21から吐出される高圧高温のガス状態の冷媒は、四方弁22を介して室内熱交換器25に流入し、室内ファン27によって供給される空気との熱交換によって凝縮することで、室内を暖房する。凝縮した冷媒は、高圧の液状態となり、室内熱交換器25から流出し、絞り装置24によって、低圧の気液二相状態の冷媒となる。低圧の気液二相状態の冷媒は、室外熱交換器23に流入し、室外ファン26によって供給される空気と熱交換を行い、蒸発する。蒸発した冷媒は、低圧のガス状態となり、室外熱交換器23から流出し、四方弁22を介して圧縮機21に吸入される。
 室外熱交換器23及び室内熱交換器25の少なくとも一方に、熱交換器1が用いられる。熱交換器1は、蒸発器として作用する際に、積層型ヘッダ2から冷媒が流入し、円筒型ヘッダ3に冷媒を流出するように接続される。つまり、熱交換器1が蒸発器として作用する際は、冷媒配管から積層型ヘッダ2に気液二相状態の冷媒が流入し、分岐して熱交換器1の各伝熱管4に流入する。また、熱交換器1が凝縮器として作用する際は、各伝熱管4から積層型ヘッダ2に液冷媒が流入し合流して冷媒配管に流出する。
 [変形例]
 実施の形態1に係る積層型ヘッダ2では、第1流路10A、第2流路11A、第3流路12Aによる直線部分Sの長さL1、L2、L3を一定長さ以上確保するために第1板状体113及び第2板状体122、123を複数枚積層して直線部分Sの長さLを確保したが、この変形例では1枚の第2板状体123の厚みにより第1流路10A、第2流路11A、第3流路12Aの長さを調整する例である。
 なお、その他の分配流路の構成は実施の形態1に係る積層型ヘッダ2と同様である。
 また、この変形例に係る積層型ヘッダ2を使用した熱交換器1や、熱交換器1の使用態様などは実施の形態1に係る積層型ヘッダ2と同様である。
 <積層型ヘッダの構成>
 以下に、実施の形態1に係る積層型ヘッダ2の変形例の構成について説明する。
 図6は、実施の形態1に係る積層型ヘッダにおける変形例を示す分解斜視図である。
 積層型ヘッダ2は、例えば第1板状体111、112、114、115、116と、この各第1板状体の間に挟み込まれる第2板状体121、123、124、125とで構成されている。
 第2板状体121、123、124、125の両面又は片面には、ロウ材が塗布される。第1板状体111、112、114、115、116は、第2板状体121、123、124、125を介して積層され、ろう付けにより一体に接合される。
 積層型ヘッダ2には、第1板状体111、113、114、115、116、及び、第2板状体121、123、124、125に形成された円形の貫通穴である第1流路10A、第2流路11A、第3流路12A、第4流路13Aと、略S字もしくは略Z字形状の貫通溝である分岐流路10B、11B、12Bと、によって構成される分配流路が形成されている。
 このように、図6に示す変形例に係る積層型ヘッダ2では、上記実施の形態1に係る積層型ヘッダ2と同様の分配流路が形成されており、1枚の第2板状体123の厚みを調整して破線部で示す流路の直線部分Sである第1流路10Aを2≦L1/D1≦5の範囲で確保する。同様に、第2流路11Aを2≦L2/D2≦5の範囲を確保する。さらに、第3流路12Aを2≦L3/D3≦5の範囲を確保する。
 すると、1枚の第2板状体123の厚みを調整するだけで熱交換器1の伝熱管4に均等に冷媒を供給して熱交換性能を担保することができ、実施の形態1に係る積層型ヘッダ2に比べて製造工程を簡略化することができる。
 また、その他の効果については実施の形態1に係る積層型ヘッダ2と同様である。
 [比較例]
 実施の形態1に係る積層型ヘッダ2では、分配流路において第1流路10A、第2流路11A、第3流路12A、第4流路13Aを冷媒が対向して反対向きに流れる構成とした。
 これに対して、比較例では、第1流路10A、第2流路11A、第3流路12A、第4流路13Aを冷媒が同一方向に流れる構成となっている。
 <積層型ヘッダの構成>
 以下に、実施の形態1に係る積層型ヘッダ2の比較例の構成について説明する。
 実施の形態1に係る積層型ヘッダに対する比較例を示す分解斜視図である。
 積層型ヘッダ2は、例えば第1板状体111、112、113、114、115、116、117、118、119と、この各第1板状体の間に挟み込まれる第2板状体121、122、123、124、125、126、127、128とで構成されている。
 第2板状体121、122、123、124、125、126、127、128の両面又は片面には、ロウ材が塗布される。第1板状体111、112、113、114、115、116、117、118、119は、第2板状体121、122、123、124、125、126、127、128を介して積層され、ろう付けにより一体に接合される。
 積層型ヘッダ2には、第1板状体111、112、113、114、115、116、117、118、119、及び、第2板状体121、122、123、124、125、126、127、128に形成された円形の貫通穴である第1流路10A、第2流路11A、第3流路12A、第4流路13Aと、略S字もしくは略Z字形状の貫通溝である分岐流路10B、11B、12Bと、によって構成される分配流路が形成されている。
 図7に示す比較例に係る積層型ヘッダ2では、上記実施の形態1に係る積層型ヘッダ2の冷媒の流れが対向流となる構成に対して、第1流路10A、第2流路11A、第3流路12A、第4流路13Aを冷媒が同一方向に流れる分配流路の構成となっている。
 ここで、比較例において図7に示す破線部の直線部分Sである第1流路10A、第2流路11A、第3流路12Aをそれぞれ2≦L/D≦5(L:直線部分Sの長さ[m]、D:流路の内径[m])の範囲で確保すると、第1流路10A、第2流路11A、第3流路12A、第4流路13Aが直列方向に並んで配置されているため、実施の形態1や上記変形例に係る積層型ヘッダ2の積層側の寸法に対して比較例の積層側の寸法は長くなる。
 これに対して、実施の形態1や、実施の形態1の上記変形例に係る積層型ヘッダ2は、分配流路を第1流路10A、第2流路11A、第3流路12A、第4流路13Aを冷媒が対向して反対向きに流れる構成とすることで、この比較例に対して積層型ヘッダ2を小型化することが可能となる。また、実施の形態1や、実施の形態1の上記変形例に係る積層型ヘッダ2を比較例と同一寸法とした場合には、第1流路10A、第2流路11A、第3流路12Aの直線部分Sの長さLを比較例よりも長く設定することができるため、液膜の整流効果をより向上させることができる。
 1 熱交換器、2 積層型ヘッダ、2A 冷媒流入部(第1開口)、2B 冷媒流出部(第2開口)、3 円筒型ヘッダ、3A 冷媒流入部、3B 冷媒流出部、4 伝熱管、5 保持部材、6 フィン、10A 第1流路、10B 第1分岐流路、11A 第2流路、11B 第2分岐流路、12A 第3流路、12B 第3分岐流路、13A 第4流路、20 空気調和装置、21 圧縮機、22 四方弁、23 室外熱交換器、24 絞り装置、25 室内熱交換器、26 室外ファン、27 室内ファン、28 制御装置、111,112,113,114,115,116,117,118,119 第1板状体、121,122,123,124,125,126,127,128 第2板状体。

Claims (9)

  1.  1つの第1開口と、複数の第2開口と、前記第1開口と前記第2開口とを接続する分配流路と、を有し、複数の板状体を積層して形成された積層型ヘッダであって、
     前記分配流路は、直線形状となる第1流路と、該第1流路を複数の流路に分岐する第1分岐流路と、該第1分岐流路で分岐した前記複数の流路に接続し直線形状となる第2流路と、該第2流路を複数の流路に分岐する第2分岐流路と、該第2分岐流路で分岐した前記複数の流路に接続し直線形状となる第3流路と、を有し、
     前記分配流路に流入した冷媒は、前記第1流路と前記第2流路とを対向して逆方向に流れるとともに、前記第2流路と前記第3流路とを対向して逆方向に流れる構成となる積層型ヘッダ。
  2.  前記第1分岐流路は、1枚の第1分岐板状体に形成され、
     前記第2分岐流路は、1枚の第2分岐板状体に形成され、
     前記第1分岐板状体と前記第2分岐板状体との間には、複数の板状体が積層されて前記分配流路が形成されている請求項1に記載の積層型ヘッダ。
  3.  前記第1分岐流路は、1枚の第1分岐板状体に形成され、
     前記第2分岐流路は、1枚の第2分岐板状体に形成され、
     前記第1分岐板状体と前記第2分岐板状体との間には、1枚の板状体が配置されて前記分配流路が形成されている請求項1に記載の積層型ヘッダ。
  4.  前記第2流路は、内径寸法D2の円形断面形状、かつ、軸方向の長さ寸法L2の直線形状として形成され、
     D2/L2の値が2≦D2/L2≦5の範囲となる請求項1~3のいずれか1項に記載の積層型ヘッダ。
  5. 前記第2流路は、内径寸法D3の円形断面形状、かつ、軸方向の長さ寸法L3の直線形状として形成され、
     D3/L3の値が2≦D3/L3≦5の範囲となる請求項1~3のいずれか1項に記載の積層型ヘッダ。
  6.  前記第1流路は、内径寸法D1の円形断面形状、かつ、軸方向の長さ寸法L1の直線形状として形成され、
     前記第2流路は、内径寸法D2の円形断面形状、かつ、軸方向の長さ寸法L2の直線形状として形成され、
     前記第3流路は、内径寸法D3の円形断面形状、かつ、軸方向の長さ寸法L3の直線形状として形成され、
     D1/L1、D2/L2、D3/L3の値が2以上5以下の範囲となる請求項1~3のいずれか1項に記載の積層型ヘッダ。
  7.  前記第1流路は、内径寸法D1の円形断面形状、かつ、軸方向の長さ寸法L1の直線形状として形成され、
     前記第2流路は、内径寸法D2の円形断面形状、かつ、軸方向の長さ寸法L2の直線形状として形成され、
     前記第3流路は、内径寸法D3の円形断面形状、かつ、軸方向の長さ寸法L3の直線形状として形成され、
     少なくともD1/L1、D2/L2、D3/L3のいずれか1つの値が2以上5以下の範囲となる請求項1~3のいずれか1項に記載の積層型ヘッダ。
  8.  請求項1~7のいずれか1項に記載の積層型ヘッダと、
     前記複数の第2開口のそれぞれに接続された複数の伝熱管と、
    を備えた熱交換器。
  9.  請求項8に記載の熱交換器を備えた空気調和装置。
PCT/JP2014/079185 2014-11-04 2014-11-04 積層型ヘッダ、熱交換器、及び、空気調和装置 WO2016071946A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016557363A JP6214789B2 (ja) 2014-11-04 2014-11-04 積層型ヘッダ、熱交換器、及び、空気調和装置
CN201480082968.1A CN107003085B (zh) 2014-11-04 2014-11-04 层叠型集管、热交换器以及空调装置
KR1020177014351A KR102031021B1 (ko) 2014-11-04 2014-11-04 적층형 헤더, 열교환기, 및, 공기 조화 장치
EP14905368.8A EP3217135B1 (en) 2014-11-04 2014-11-04 Layered header, heat exchanger, and air-conditioning device
US15/510,265 US10060685B2 (en) 2014-11-04 2014-11-04 Laminated header, heat exchanger, and air-conditioning apparatus
AU2014410872A AU2014410872B2 (en) 2014-11-04 2014-11-04 Laminated header, heat exchanger, and air-conditioning apparatus
PCT/JP2014/079185 WO2016071946A1 (ja) 2014-11-04 2014-11-04 積層型ヘッダ、熱交換器、及び、空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079185 WO2016071946A1 (ja) 2014-11-04 2014-11-04 積層型ヘッダ、熱交換器、及び、空気調和装置

Publications (1)

Publication Number Publication Date
WO2016071946A1 true WO2016071946A1 (ja) 2016-05-12

Family

ID=55908703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079185 WO2016071946A1 (ja) 2014-11-04 2014-11-04 積層型ヘッダ、熱交換器、及び、空気調和装置

Country Status (7)

Country Link
US (1) US10060685B2 (ja)
EP (1) EP3217135B1 (ja)
JP (1) JP6214789B2 (ja)
KR (1) KR102031021B1 (ja)
CN (1) CN107003085B (ja)
AU (1) AU2014410872B2 (ja)
WO (1) WO2016071946A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116413A1 (ja) * 2016-12-21 2018-06-28 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
WO2018179311A1 (ja) * 2017-03-31 2018-10-04 三菱電機株式会社 熱交換器およびそれを備えた冷凍サイクル装置
WO2018189892A1 (ja) 2017-04-14 2018-10-18 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
WO2019073610A1 (ja) 2017-10-13 2019-04-18 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、冷凍サイクル装置
JPWO2019087235A1 (ja) * 2017-10-30 2020-10-22 三菱電機株式会社 冷媒分配器および冷凍サイクル装置
WO2020262378A1 (ja) * 2019-06-28 2020-12-30 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
WO2022085113A1 (ja) * 2020-10-21 2022-04-28 三菱電機株式会社 分配器、熱交換器および空気調和装置
WO2023275936A1 (ja) * 2021-06-28 2023-01-05 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
WO2024134798A1 (ja) * 2022-12-21 2024-06-27 三菱電機株式会社 冷媒分配器および熱交換器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6214670B2 (ja) * 2013-10-25 2017-10-18 三菱電機株式会社 熱交換器及びその熱交換器を用いた冷凍サイクル装置
AU2013404239B2 (en) * 2013-10-29 2016-11-03 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
US11421947B2 (en) * 2015-09-07 2022-08-23 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus
JP6479195B2 (ja) * 2015-09-07 2019-03-06 三菱電機株式会社 分配器、積層型ヘッダ、熱交換器、及び、空気調和装置
CN115111939A (zh) * 2018-10-29 2022-09-27 三菱电机株式会社 热交换器、室外机以及制冷循环装置
DE102018220139A1 (de) * 2018-11-23 2020-05-28 Mahle International Gmbh Sammelrohr für einen Wärmeübertrager
JP6930557B2 (ja) * 2019-06-28 2021-09-01 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
WO2023148841A1 (ja) 2022-02-02 2023-08-10 三菱電機株式会社 熱交換器および空気調和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
JPH0611291A (ja) * 1992-04-02 1994-01-21 Nartron Corp 冷却システム用の積層プレートヘッダー及びその製造方法
JP2007531861A (ja) * 2004-04-05 2007-11-08 モーディーン・マニュファクチャリング・カンパニー 流体流分配装置
JP2010139085A (ja) * 2008-12-09 2010-06-24 Panasonic Corp 冷媒分流器
JP2014081149A (ja) * 2012-10-17 2014-05-08 Hitachi Appliances Inc 冷媒分配器及びこれを備える冷凍サイクル装置
WO2014185391A1 (ja) * 2013-05-15 2014-11-20 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537217A (en) * 1982-12-09 1985-08-27 Research Triangle Institute Fluid distributor
JPH09189463A (ja) * 1996-02-29 1997-07-22 Mitsubishi Electric Corp 熱交換器の分配装置及びその製造方法
JP3387387B2 (ja) 1997-09-30 2003-03-17 三菱電機株式会社 冷媒分配器およびそれを用いた冷凍サイクル装置
JP3647375B2 (ja) * 2001-01-09 2005-05-11 日産自動車株式会社 熱交換器
JP4331611B2 (ja) * 2001-12-21 2009-09-16 ベール ゲーエムベーハー ウント コー カーゲー 熱交換装置
JP4120611B2 (ja) * 2004-04-08 2008-07-16 株式会社デンソー 冷媒蒸発器
JP2006125652A (ja) * 2004-10-26 2006-05-18 Mitsubishi Electric Corp 熱交換器
CN202013133U (zh) * 2008-02-22 2011-10-19 利厄伯特公司 热交换器和热交换器***
EP2372283B1 (en) * 2010-03-23 2013-09-04 Delphi Technologies, Inc. Heat exchanger with a manifold plate
ITMI20100249U1 (it) 2010-07-16 2012-01-17 Alfa Laval Corp Ab Dispositivo di scambio termico con sistema perfezionato di distribuzione del fluido refrigerante
FR2963091B1 (fr) * 2010-07-20 2012-08-17 Univ Savoie Module de circulation de fluides
WO2014083651A1 (ja) 2012-11-29 2014-06-05 株式会社日立製作所 空気調和機
CN105229404B (zh) * 2013-05-15 2018-07-17 三菱电机株式会社 层叠型联管箱、热交换器和空气调节装置
JP6177319B2 (ja) 2013-05-15 2017-08-09 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
US10107570B2 (en) * 2013-05-15 2018-10-23 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
JPH0611291A (ja) * 1992-04-02 1994-01-21 Nartron Corp 冷却システム用の積層プレートヘッダー及びその製造方法
JP2007531861A (ja) * 2004-04-05 2007-11-08 モーディーン・マニュファクチャリング・カンパニー 流体流分配装置
JP2010139085A (ja) * 2008-12-09 2010-06-24 Panasonic Corp 冷媒分流器
JP2014081149A (ja) * 2012-10-17 2014-05-08 Hitachi Appliances Inc 冷媒分配器及びこれを備える冷凍サイクル装置
WO2014185391A1 (ja) * 2013-05-15 2014-11-20 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018116413A1 (ja) * 2016-12-21 2019-06-27 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
WO2018116413A1 (ja) * 2016-12-21 2018-06-28 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
CN110476036B (zh) * 2017-03-31 2021-05-18 三菱电机株式会社 热交换器及具备该热交换器的制冷循环装置
WO2018179311A1 (ja) * 2017-03-31 2018-10-04 三菱電機株式会社 熱交換器およびそれを備えた冷凍サイクル装置
JPWO2018179311A1 (ja) * 2017-03-31 2019-11-07 三菱電機株式会社 熱交換器およびそれを備えた冷凍サイクル装置
CN110476036A (zh) * 2017-03-31 2019-11-19 三菱电机株式会社 热交换器及具备该热交换器的制冷循环装置
WO2018189892A1 (ja) 2017-04-14 2018-10-18 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
US11629897B2 (en) 2017-04-14 2023-04-18 Mitsubishi Electric Corporation Distributor, heat exchanger, and refrigeration cycle apparatus
WO2019073610A1 (ja) 2017-10-13 2019-04-18 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、冷凍サイクル装置
EP3499169A4 (en) * 2017-10-13 2019-06-26 Mitsubishi Electric Corporation LAMINATE COLLECTOR, THERMAL EXCHANGER AND REFRIGERATION CYCLE DEVICE
JPWO2019073610A1 (ja) * 2017-10-13 2020-04-02 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、冷凍サイクル装置
JPWO2019087235A1 (ja) * 2017-10-30 2020-10-22 三菱電機株式会社 冷媒分配器および冷凍サイクル装置
WO2020262378A1 (ja) * 2019-06-28 2020-12-30 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
CN114041030A (zh) * 2019-06-28 2022-02-11 大金工业株式会社 热交换器和热泵装置
JP2021008973A (ja) * 2019-06-28 2021-01-28 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
US11740026B2 (en) 2019-06-28 2023-08-29 Daikin Industries, Ltd. Heat exchanger and heat pump apparatus
WO2022085113A1 (ja) * 2020-10-21 2022-04-28 三菱電機株式会社 分配器、熱交換器および空気調和装置
JPWO2022085113A1 (ja) * 2020-10-21 2022-04-28
WO2023275936A1 (ja) * 2021-06-28 2023-01-05 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
JP7486671B2 (ja) 2021-06-28 2024-05-17 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
WO2024134798A1 (ja) * 2022-12-21 2024-06-27 三菱電機株式会社 冷媒分配器および熱交換器

Also Published As

Publication number Publication date
US20170328652A1 (en) 2017-11-16
CN107003085A (zh) 2017-08-01
JPWO2016071946A1 (ja) 2017-04-27
EP3217135B1 (en) 2021-03-24
AU2014410872A1 (en) 2017-04-27
EP3217135A1 (en) 2017-09-13
EP3217135A4 (en) 2018-06-20
CN107003085B (zh) 2019-01-04
JP6214789B2 (ja) 2017-10-18
US10060685B2 (en) 2018-08-28
AU2014410872B2 (en) 2018-09-20
KR20170074991A (ko) 2017-06-30
KR102031021B1 (ko) 2019-10-11

Similar Documents

Publication Publication Date Title
JP6214789B2 (ja) 積層型ヘッダ、熱交換器、及び、空気調和装置
JP6584514B2 (ja) 積層型ヘッダ、熱交換器、及び、空気調和装置
CN110073154B (zh) 分配器、热交换器以及制冷循环装置
CN105593630B (zh) 层叠型集管、换热器和空调装置
JP6138263B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
US11402162B2 (en) Distributor and heat exchanger
CN109564070B (zh) 热交换器和使用它的制冷***
EP3088831B1 (en) Heat exchanger and air conditioning apparatus
JP6188926B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP7112164B2 (ja) 冷媒分配器、熱交換器および空気調和装置
JP2019045063A (ja) 熱交換器
JP2019066132A (ja) 多パス型熱交換器およびそれを用いた冷凍システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557363

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15510265

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014410872

Country of ref document: AU

Date of ref document: 20141104

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014905368

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177014351

Country of ref document: KR

Kind code of ref document: A