WO2016071040A1 - Propulsion system comprising an internal combustion engine and a turbomachine - Google Patents

Propulsion system comprising an internal combustion engine and a turbomachine Download PDF

Info

Publication number
WO2016071040A1
WO2016071040A1 PCT/EP2015/072148 EP2015072148W WO2016071040A1 WO 2016071040 A1 WO2016071040 A1 WO 2016071040A1 EP 2015072148 W EP2015072148 W EP 2015072148W WO 2016071040 A1 WO2016071040 A1 WO 2016071040A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbomachine
internal combustion
propulsion system
engine
combustion engine
Prior art date
Application number
PCT/EP2015/072148
Other languages
French (fr)
Inventor
Fabrice LE BERR
Thomas WASSELIN
Guillaume ALIX
Stéphane Richard
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2016071040A1 publication Critical patent/WO2016071040A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/026Aircraft characterised by the type or position of power plants comprising different types of power plants, e.g. combination of a piston engine and a gas-turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/02Adaptations for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/20Adaptations of gas-turbine plants for driving vehicles
    • F02C6/206Adaptations of gas-turbine plants for driving vehicles the vehicles being airscrew driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the present invention relates to the field of mechanical propulsion, particularly in the aeronautical sector, most of the aircraft propulsion systems are equipped with a turbomachine.
  • the internal combustion engine such as the piston, has the advantage of having a very good specific consumption over its entire operating range.
  • the present invention proposes to design a propulsion system that optimally combines the two systems: turbomachine and internal combustion engine, in order to combine their advantages of the two systems and to limit their disadvantages in order to have a system that globally has: • a better specific consumption than the turbomachine,
  • the present invention relates to an optimized system mutualizing the elements of the air intake and / or exhaust gas exhaust lines of two energy conversion systems to form an integrated and inseparable assembly dedicated to the propulsion of a vehicle.
  • the invention relates to an optimized propulsion system comprising at least one turbomachine and a supercharged internal combustion engine mechanically coupled, characterized in that it comprises in addition means for exchanging at least one fluid between said turbomachine and supercharging means of said engine, so as to optimize the energies distributed by the turbomachine and / or by the internal combustion engine.
  • the supercharging means may comprise a turbocharger driven by exhaust gases from said engine.
  • the exchange means may comprise a pipe which brings at least a portion of the exhaust gas of said turbocharger into at least one turbine of said turbomachine.
  • the exchange means may comprise a pipe which brings at least a portion of the compressed oxidant into the turbomachine to the inlet of said turbocharger.
  • the turbomachine may comprise a free turbine.
  • the motor shafts of the turbomachine and the internal combustion engine can be mechanically secured to a propulsion shaft, via clutch and / or gearbox.
  • the exchange means comprise a recirculation line of at least a portion of the exhaust gas of said internal combustion engine in the combustion chamber of said turbomachine.
  • the internal combustion engine may be a supercharged piston engine.
  • FIGS. 1a and 1b diagrammatically show the coupling principle according to the invention for the cases of a turbomachine respectively with linked turbine and free turbine;
  • FIGS. 2a, 2b, 2c and 2d illustrate different fluid exchange variants: oxidant and / or exhaust gas;
  • FIG. 3 shows a mode of recirculation of the exhaust gases
  • FIGS. 1a and 1b schematically illustrate the system according to the invention in the case of coupling between a supercharged heat engine 1, such as an internal combustion engine, and a turbomachine 2.
  • the turbomachine of FIG. 1a is a linked turbine engine 3 which comprises a turbine 4 and compression means 5 of a fluid oxidant, in this case outside air, whereas the turbomachine of FIG. 1b is a turbomachine.
  • free turbine 3 ' which also comprises a turbine 4' and compression means 5 'of a fluid oxidant, here also outside air.
  • the turbomachine comprises air compression means 5, 5 'with one or more compression stages, here two 6a, 6b and 6'a, 6'b, supplying a combustion chamber 7, 7 'evacuating the flue gases to a turbine 4, 4' with one or more expansion stages, here two stages respectively 8a, 8b and 8'a, 8'b, recovering the thermal energy of these gases.
  • the thermal energy thus recovered is converted into mechanical energy that will be transmitted to another member 9, 9 'to ensure propulsion (transfer case or propeller propeller for example), and to supply the compression stage or stages compression means 5, 5 '.
  • At least one expansion stage of the turbines 4, 4 'supplying the mechanical energy compression stages are connected to the same shaft 10.
  • the mechanical energy dedicated to the propulsion can either be supplied by the same shaft in the frame of a linked turbine ( Figure la), either by a free turbine connected to a separate transmission shaft 11 ( Figure lb).
  • the engine 1 is connected to supercharging means 12, which may comprise a turbocharger.
  • the turbocharger comprises a compressor 13 of a fluid, in this case outside air, and a turbine 14 connected to each other by a mechanical shaft 15.
  • the turbine relaxes the exhaust gas from the engine and mechanically actuates, with the aid of the energy thus recovered, the compressor to which it is connected.
  • the compressor thus driven generates a forced air flow 16 which induces an increase in the intake pressure and the amount of air ingested by the engine.
  • the reference E symbolizes the fluid exchange means between the supercharging means 4 and the turbomachine 2.
  • these fluids can be: the oxidizer, the fuel, the exhaust gases.
  • the motor shafts, respectively 10, 11 and 17 of the turbomachine and the internal combustion engine, comprise mechanical coupling means 18 and 19 for distributing the energy produced to the propulsion shaft 20 of the aeronautical apparatus.
  • These mechanical means are within the reach of those skilled in the art and consist mainly of assemblies of clutches and / or reduction / multiplication boxes.
  • FIG. 2a illustrates an exemplary embodiment of a free turbine turbine engine according to the invention in which the supercharging means 12 comprise a turbocharger driven by exhaust gases 21 of the internal combustion engine 1 and in which said gas of exhaust are fed to the turbine 8'b of the turbomachine by a conduit 22 to recover the maximum energy and that in combination with the flue gases from the chamber T.
  • the supercharging means 12 comprise a turbocharger driven by exhaust gases 21 of the internal combustion engine 1 and in which said gas of exhaust are fed to the turbine 8'b of the turbomachine by a conduit 22 to recover the maximum energy and that in combination with the flue gases from the chamber T.
  • the advantage of this variant is to offer an increase in the efficiency of the assembly, by making it possible to exploit, using the turbine 8'b, the residual energy of the exhaust gases 21 which would otherwise be lost.
  • An interesting scale effect is that it requires the use of a larger free-flow turbine, and thus with higher expansion efficiencies.
  • FIG. 2b shows a variant in which the exhaust gases of the internal combustion engine 1 leaving the turbine 14 are supplied to all the turbines 8'a, 8'b of the turbomachine via a pipe 23 to pass through these turbines in addition, in this variant, the supercharging compressor 13 is supplied by the withdrawal of a compressed oxidant via a line 24, for example by the first stage 6 '. compression 5 'of the turbomachine.
  • the dual use of the compression and expansion stages for both the heat engine and the turbomachine also makes it possible to use a compressor and a turbine at a higher flow rate, and therefore a better efficiency, while pooling part of the components for increase the compactness and reduce the mass.
  • FIG. 2c describes a variant in which said fluid exchange means between the turbomachine and the supercharging means of the heat engine, comprise a compressor stage 6'c and a turbine stage 8'c dedicated to exchanges with the turbocharger 12 of the engine.
  • said fluid exchange means between the turbomachine and the supercharging means of the heat engine comprise a compressor stage 6'c and a turbine stage 8'c dedicated to exchanges with the turbocharger 12 of the engine.
  • the supercharging stage added to the heat engine being mechanically connected to the turbomachine it is possible to control it independently of the operating point of the heat engine so as to improve the flow of air in stabilized conditions as in transients, especially under conditions critical operation (in altitude in particular) requiring a high compression ratio of the gases It is also possible, via this architecture, to recover energy on the turbine shaft linked to the turbomachine, in order to reduce the energy to provide compressor for gas compression.
  • Figure 2d is a variant of Figure 2c for which there are added two conduits 25 and 26 distribution, respectively oxidizer and flue gas.
  • This variant makes it possible to have two compressors 6'b and 6'c operating in parallel upstream of the compression stage 6'b of the turbomachine and to inject the burned gases from the chamber 7 'into the turbine 8'a in addition to the exhaust gas from the turbine 14.
  • FIG. 3 further describes another coupling variant between the heat engine and the free turbine turbine engine with additional energy recovery from the exhaust gases of the heat engine via the pipe 23 and an exhaust gas recirculation pipe 27 of which the flow is controlled by a valve 28, for example of the type of an EGR valve.
  • This variant thus makes it possible, in the context of stopping the turbomachine, to have, at the inlet of the combustion chamber, a hot gas, under pressure, containing oxygen which enables the combustion chamber 7 to be re-ignited. and therefore the turbomachine thereafter.
  • these gases make it possible to reduce the operating wealth (operation similar to EGR on a piston engine).
  • the present invention comprising a coupling of a heat engine with a turbomachine can be carried out in various ways.
  • the coupling between these two systems comprises a mechanical link and fluid exchange means by mutualization of organs, in particular for the supply of the oxidant (air) to the various combustion chambers and for the energy recovery of the exhaust gases. .
  • FIG. 4 an example of calculation of specific consumption (CS) as a function of the estimated power (Pe) of each system can be seen: turbomachine (TM curve), heat engine (TH curve) and coupling of the two according to the invention (TC curve).
  • TM curve turbomachine
  • TH curve heat engine
  • TC curve coupling of the two according to the invention
  • the estimated power densities of the turbomachine being approximately 4 kW / kg, of the internal combustion engine of 1. 75 kW / kg, with iso power, to obtain a power density of the invention of approximately 2.4 kW / kg, in coupling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)

Abstract

The present invention relates to an optimized propulsion system comprising at least one turbomachine (2) and a supercharged internal combustion engine (1) which are mechanically coupled. According to the invention, the propulsion system additionally comprises means (E) of exchanging at least one fluid between said turbomachine and the means of supercharging said engine, so as to optimize the energies distributed by the turbomachine and/or by the internal combustion engine.

Description

SYSTEME DE PROPULSION COMPORTANT UN MOTEUR A COMBUSTION INTERNE ET UNE TURBOMACHINE  PROPULSION SYSTEM COMPRISING AN INTERNAL COMBUSTION ENGINE AND A TURBOMACHINE
La présente invention concerne le domaine de la propulsion mécanique, en particulier du secteur aéronautique, dont la plupart des systèmes de propulsion des aéronefs sont équipés d'une turbomachine. The present invention relates to the field of mechanical propulsion, particularly in the aeronautical sector, most of the aircraft propulsion systems are equipped with a turbomachine.
De tels systèmes avec une turbomachine présentent de nombreux avantages : Such systems with a turbomachine have many advantages:
• une densité de puissance très élevée qui les rendent très compétitifs sur les systèmes volants,  • a very high power density which makes them very competitive on flying systems,
• une capacité à fonctionner au-delà de sa puissance nominale sur des durées limitées, permettant des manœuvres d'urgence très importante sur un aéronef,  • an ability to operate beyond its nominal power over limited periods, allowing very high emergency maneuvers on an aircraft,
• une grande simplicité mécanique et donc une grande fiabilité, indispensable pour tenir les objectifs de certification.  • a great mechanical simplicity and therefore high reliability, essential to meet the certification objectives.
Cependant, un des principaux inconvénients est la consommation spécifique élevée en carburant, particulièrement à faible puissance, ce qui les rend limitants dans l'objectif de réduire la consommation et les émissions de C02. A l'inverse, le moteur à combustion interne, tel que celui à pistons, présente l'avantage d'avoir une très bonne consommation spécifique sur l'ensemble de sa plage de fonctionnement. However, one of the main drawbacks is the high specific fuel consumption, particularly at low power, which makes them limiting with the aim of reducing consumption and C02 emissions. Conversely, the internal combustion engine, such as the piston, has the advantage of having a very good specific consumption over its entire operating range.
Il est néanmoins limité du point de vue de la densité de puissance qui reste environ quatre fois plus faible que celle d'une turbomachine de puissance équivalente, ainsi que sur la fiabilité du fait de la complexité du mécanisme.  It is nevertheless limited in terms of power density which remains about four times lower than that of a turbine engine of equivalent power, as well as reliability due to the complexity of the mechanism.
Le déploiement de l'utilisation du moteur à combustion dans le secteur aéronautique, pour supplanter les turbomachines, est actuellement difficile du fait de ces inconvénients que ne compense pas suffisamment sa faible consommation spécifique. La présente invention se propose de concevoir un système de propulsion qui associe de façon optimisée les deux systèmes : turbomachine et moteur à combustion interne, afin de cumuler leurs avantages des deux systèmes et de limiter leurs inconvénients afin d'avoir un système qui globalement a : • une meilleure consommation spécifique que la turbomachine, The deployment of the use of the combustion engine in the aeronautics sector, to supplant turbomachines, is currently difficult because of these disadvantages that do not compensate sufficiently for its low specific consumption. The present invention proposes to design a propulsion system that optimally combines the two systems: turbomachine and internal combustion engine, in order to combine their advantages of the two systems and to limit their disadvantages in order to have a system that globally has: • a better specific consumption than the turbomachine,
• une plus forte densité de puissance que le moteur thermique.  • a higher power density than the heat engine.
On connaît le document US2011108663A qui décrit de manière générique le couplage mécanique de deux systèmes de conversion d'énergie qui peuvent être différents. Document US2011108663A is known which generically describes the mechanical coupling of two energy conversion systems which may be different.
Ce couplage maintient une distinction entre ces deux systèmes et ne permet pas d'effectuer de synergie autre que celle autorisée par la jonction mécanique et le degré de liberté supplémentaire qu'elle autorise.  This coupling maintains a distinction between these two systems and does not allow any synergism other than that authorized by the mechanical junction and the additional degree of freedom it allows.
Par conséquent, le rendement énergétique de l'ensemble couplé mécaniquement ne dépassera pas le rendement du système de conversion le plus efficace.  Therefore, the energy efficiency of the mechanically coupled assembly will not exceed the efficiency of the most efficient conversion system.
La présente invention concerne un système optimisé mutualisant les éléments des lignes d'admission en air et/ou d'échappement des gaz brûlés de deux systèmes de conversion d'énergie pour constituer un ensemble intégré et indissociable dédié à la propulsion d'un véhicule. The present invention relates to an optimized system mutualizing the elements of the air intake and / or exhaust gas exhaust lines of two energy conversion systems to form an integrated and inseparable assembly dedicated to the propulsion of a vehicle.
A cet effet, l'invention concerne un système de propulsion optimisé comportant au moins une turbomachine et un moteur à combustion interne suralimenté couplés mécaniquement, caractérisé en ce qu'il comporte en sus des moyens d'échange d'au moins un fluide entre ladite turbomachine et des moyens de suralimentation dudit moteur, de façon à optimiser les énergies distribuées par la turbomachine et/ou par le moteur à combustion interne. For this purpose, the invention relates to an optimized propulsion system comprising at least one turbomachine and a supercharged internal combustion engine mechanically coupled, characterized in that it comprises in addition means for exchanging at least one fluid between said turbomachine and supercharging means of said engine, so as to optimize the energies distributed by the turbomachine and / or by the internal combustion engine.
Les moyens de suralimentation peuvent comprendre un turbocompresseur entraîné par des gaz d'échappement dudit moteur. The supercharging means may comprise a turbocharger driven by exhaust gases from said engine.
Les moyens d'échange peuvent comprendre une conduite qui amène au moins une partie des gaz d'échappement dudit turbocompresseur dans au moins une turbine de ladite turbomachine. The exchange means may comprise a pipe which brings at least a portion of the exhaust gas of said turbocharger into at least one turbine of said turbomachine.
Les moyens d'échange peuvent comprendre une conduite qui amène au moins une partie du comburant comprimé dans la turbomachine vers l'admission dudit turbocompresseur. La turbomachine peut comporter une turbine libre. The exchange means may comprise a pipe which brings at least a portion of the compressed oxidant into the turbomachine to the inlet of said turbocharger. The turbomachine may comprise a free turbine.
Les arbres moteurs de la turbomachine et du moteur à combustion interne peuvent être solidaires mécaniquement d'un arbre de propulsion, par l'intermédiaire d'embrayage et/ou de boite de vitesse. The motor shafts of the turbomachine and the internal combustion engine can be mechanically secured to a propulsion shaft, via clutch and / or gearbox.
Les moyens d'échange comprennent une conduite de recirculation d'au moins une partie des gaz d'échappement dudit moteur à combustion interne dans la chambre de combustion de ladite turbomachine. The exchange means comprise a recirculation line of at least a portion of the exhaust gas of said internal combustion engine in the combustion chamber of said turbomachine.
Le moteur à combustion interne peut être un moteur à pistons suralimenté. The internal combustion engine may be a supercharged piston engine.
L'invention sera mieux comprise et ses avantages apparaîtront plus clairement à la lecture de la description qui suit avec des exemples, nullement limitatifs, de mise en œuvre de réalisation, illustrée par les figures ci-après annexées : The invention will be better understood and its advantages will appear more clearly on reading the description which follows with examples, which are in no way limitative, of implementation, illustrated by the appended figures below:
- les figures la et lb montrent schématiquement le principe du couplage selon l'invention pour les cas d'une turbomachine respectivement à turbine liée et à turbine libre;  FIGS. 1a and 1b diagrammatically show the coupling principle according to the invention for the cases of a turbomachine respectively with linked turbine and free turbine;
- les figures 2a, 2b, 2c et 2d illustrent différentes variantes d'échange de fluides : comburant et/ou de gaz d'échappement ;  FIGS. 2a, 2b, 2c and 2d illustrate different fluid exchange variants: oxidant and / or exhaust gas;
- la figure 3 montre un mode de recirculation des gaz d'échappement et  FIG. 3 shows a mode of recirculation of the exhaust gases and
- la figure 4 montre un exemple de calcul de consommation spécifique selon la présente invention.  - Figure 4 shows an example of calculation of specific consumption according to the present invention.
Les figures la et lb illustrent schématiquement le système selon l'invention dans le cas du couplage entre un moteur thermique suralimenté 1, comme un moteur à combustion interne, et une turbomachine 2. FIGS. 1a and 1b schematically illustrate the system according to the invention in the case of coupling between a supercharged heat engine 1, such as an internal combustion engine, and a turbomachine 2.
La turbomachine de la figure 1 a est une turbomachine à turbine liée 3 qui comprend une turbine 4 et des moyens de compression 5 d'un comburant fluide, ici de l'air extérieur, alors que la turbomachine de la figure lb est une turbomachine à turbine libre 3' qui comprend également une turbine 4' et des moyens de compression 5' d'un comburant fluide, ici également de l'air extérieur.  The turbomachine of FIG. 1a is a linked turbine engine 3 which comprises a turbine 4 and compression means 5 of a fluid oxidant, in this case outside air, whereas the turbomachine of FIG. 1b is a turbomachine. free turbine 3 'which also comprises a turbine 4' and compression means 5 'of a fluid oxidant, here also outside air.
Comme cela est illustré sur les figures la et lb, la turbomachine comprend des moyens de compression d'air 5, 5' avec un ou plusieurs étages de compression, ici deux 6a, 6b et 6'a, 6'b, alimentant une chambre de combustion 7, 7' évacuant les gaz brûlés vers une turbine 4, 4' avec un ou plusieurs étages de détente, ici deux étages respectivement 8a, 8b et 8'a, 8'b, récupérant l'énergie thermique de ces gaz. As illustrated in FIGS. 1a and 1b, the turbomachine comprises air compression means 5, 5 'with one or more compression stages, here two 6a, 6b and 6'a, 6'b, supplying a combustion chamber 7, 7 'evacuating the flue gases to a turbine 4, 4' with one or more expansion stages, here two stages respectively 8a, 8b and 8'a, 8'b, recovering the thermal energy of these gases.
L'énergie thermique ainsi récupérée est convertie en énergie mécanique qui sera transmise à un autre organe 9, 9' permettant d'assurer la propulsion (boîte de transfert ou hélice de propulsion par exemple), et d'alimenter le ou les étages de compression de moyens de compression 5, 5'.  The thermal energy thus recovered is converted into mechanical energy that will be transmitted to another member 9, 9 'to ensure propulsion (transfer case or propeller propeller for example), and to supply the compression stage or stages compression means 5, 5 '.
Dans ce dernier cas, au moins un étage de détente des turbines 4, 4' alimentant les étages de compression en énergie mécanique sont reliées au même arbre 10. L'énergie mécanique dédiée à la propulsion peut soit être fournie par ce même arbre dans le cadre d'une turbine liée (figure la), soit par une turbine libre reliée à un arbre de transmission 11 séparé (figure lb). Le moteur 1 est raccordé à des moyens de suralimentation 12, qui peut comprendre un turbocompresseur. In the latter case, at least one expansion stage of the turbines 4, 4 'supplying the mechanical energy compression stages are connected to the same shaft 10. The mechanical energy dedicated to the propulsion can either be supplied by the same shaft in the frame of a linked turbine (Figure la), either by a free turbine connected to a separate transmission shaft 11 (Figure lb). The engine 1 is connected to supercharging means 12, which may comprise a turbocharger.
Le turbocompresseur comprend un compresseur 13 d'un fluide, ici de l'air extérieur, et une turbine 14 reliés entre eux par un arbre mécanique 15. The turbocharger comprises a compressor 13 of a fluid, in this case outside air, and a turbine 14 connected to each other by a mechanical shaft 15.
Placée dans la ligne d'échappement (non représentée) du moteur thermique, la turbine effectue une détente des gaz d'échappement provenant du moteur et actionne mécaniquement, à l'aide de l'énergie ainsi récupérée, le compresseur auquel elle est reliée. Le compresseur ainsi entraîné génère un débit d'air 16 forcé qui induit une augmentation de la pression d'admission et de la quantité d'air ingérée par le moteur.  Placed in the exhaust line (not shown) of the engine, the turbine relaxes the exhaust gas from the engine and mechanically actuates, with the aid of the energy thus recovered, the compressor to which it is connected. The compressor thus driven generates a forced air flow 16 which induces an increase in the intake pressure and the amount of air ingested by the engine.
La référence E symbolise les moyens d'échange de fluide entre les moyens de suralimentation 4 et la turbomachine 2. The reference E symbolizes the fluid exchange means between the supercharging means 4 and the turbomachine 2.
Généralement, ces fluides peuvent être : le comburant, le carburant, les gaz d'échappement.  Generally, these fluids can be: the oxidizer, the fuel, the exhaust gases.
Les arbres moteurs, respectivement 10, 11 et 17 de la turbomachine et du moteur à combustion interne, comportent des moyens mécaniques de couplage 18 et 19 pour distribuer l'énergie produite à l'arbre de propulsion 20 de l'appareil aéronautique. Ces moyens mécaniques sont à la portée de l'homme du métier et consistent principalement en assemblages d'embrayages et/ou de boites de réduction/multiplication. The motor shafts, respectively 10, 11 and 17 of the turbomachine and the internal combustion engine, comprise mechanical coupling means 18 and 19 for distributing the energy produced to the propulsion shaft 20 of the aeronautical apparatus. These mechanical means are within the reach of those skilled in the art and consist mainly of assemblies of clutches and / or reduction / multiplication boxes.
La figure 2a illustre un exemple de réalisation d'une turbomachine à turbine libre selon l'invention dans laquelle les moyens de suralimentation 12 comportent un turbocompresseur entraîné par des gaz d'échappement 21 du moteur à combustion interne 1 et dans laquelle lesdits gaz d'échappement sont amenés sur la turbine 8'b de la turbomachine par un conduit 22 afin d'en récupérer le maximum d'énergie et cela en association avec les gaz brûlés venant de la chambre T. FIG. 2a illustrates an exemplary embodiment of a free turbine turbine engine according to the invention in which the supercharging means 12 comprise a turbocharger driven by exhaust gases 21 of the internal combustion engine 1 and in which said gas of exhaust are fed to the turbine 8'b of the turbomachine by a conduit 22 to recover the maximum energy and that in combination with the flue gases from the chamber T.
L'avantage de cette variante est d'offrir une augmentation du rendement de l'ensemble, en permettant d'exploiter, à l'aide de la turbine 8'b, l'énergie résiduelle des gaz d'échappement 21 qui serait autrement perdue. Un effet d'échelle intéressant est que cela nécessite l'emploi d'une turbine libre à plus gros débit, et donc avec des rendements de détente supérieurs.  The advantage of this variant is to offer an increase in the efficiency of the assembly, by making it possible to exploit, using the turbine 8'b, the residual energy of the exhaust gases 21 which would otherwise be lost. . An interesting scale effect is that it requires the use of a larger free-flow turbine, and thus with higher expansion efficiencies.
La figure 2b montre une variante dans laquelle les gaz d'échappement du moteur à combustion interne 1 sortant de la turbine 14 sont amenés à l'ensemble des turbines 8'a, 8'b de la turbomachine par un conduit 23 pour traverser ces turbines en association avec les gaz brûlés venant de la chambre V. De plus, dans cette variante, on alimente le compresseur de suralimentation 13 par le prélèvement par une conduite 24 d'un comburant comprimé, par exemple par le premier étage 6'a des moyens de compression 5' de la turbomachine. FIG. 2b shows a variant in which the exhaust gases of the internal combustion engine 1 leaving the turbine 14 are supplied to all the turbines 8'a, 8'b of the turbomachine via a pipe 23 to pass through these turbines in addition, in this variant, the supercharging compressor 13 is supplied by the withdrawal of a compressed oxidant via a line 24, for example by the first stage 6 '. compression 5 'of the turbomachine.
Le double usage des étages de compression et de détente à la fois pour le moteur thermique et la turbomachine permet là aussi d'utiliser un compresseur et une turbine au débit plus élevé, et donc de meilleur rendement, tout en mutualisant une partie des composants pour augmenter la compacité et réduire la masse.  The dual use of the compression and expansion stages for both the heat engine and the turbomachine also makes it possible to use a compressor and a turbine at a higher flow rate, and therefore a better efficiency, while pooling part of the components for increase the compactness and reduce the mass.
Il autorise également un fonctionnement du moteur thermique à pression de suralimentation plus élevé, avec des gains potentiel de rendement du moteur thermique ou une augmentation de la plage d'utilisation du moteur thermique (notamment pour un fonctionnement étendu en altitude), sans pour autant nécessiter l'ajout d'éléments de suralimentation complémentaires, préjudiciables à l'encombrement.  It also allows operation of the engine with higher boost pressure, with potential gains in efficiency of the engine or an increase in the range of use of the engine (especially for extended operation at altitude), without requiring the addition of additional supercharging elements, detrimental to congestion.
La figure 2c décrit une variante dans laquelle lesdits moyens d'échange de fluide entre la turbomachine et les moyens de suralimentation du moteur thermique, comprennent un étage de compresseur 6'c et un étage de turbine 8'c dédiés aux échanges avec le turbocompresseur 12 du moteur thermique. Ceci permet une compression du comburant en deux étages par le compresseur 6'c de la turbomachine et le compresseur 13 du turbocompresseur 12 raccordés par une conduite 24 et une récupération de l'énergie des gaz d'échappement dans une turbine spécifique 8'c par une conduite 23 raccordant la turbine 14 du turbocompresseur et la turbine 8'c. FIG. 2c describes a variant in which said fluid exchange means between the turbomachine and the supercharging means of the heat engine, comprise a compressor stage 6'c and a turbine stage 8'c dedicated to exchanges with the turbocharger 12 of the engine. This allows compression of the oxidant in two stages by the compressor 6'c of the turbomachine and the compressor 13 of the turbocharger 12 connected by a pipe 24 and a recovery of the energy of the exhaust gas in a specific turbine 8'c by a pipe 23 connecting the turbine 14 of the turbocharger and the turbine 8'c.
L'étage de suralimentation ajouté au moteur thermique étant relié mécaniquement à la turbomachine, il est possible de le contrôler indépendamment du point de fonctionnement du moteur thermique de façon à améliorer la circulation d'air en conditions stabilisées comme en transitoires, notamment dans des conditions critiques de fonctionnement (en altitude notamment) nécessitant un taux de compression élevé des gaz Il est aussi possible, via cette architecture, de récupérer de l'énergie sur l'arbre de la turbine liée de la turbomachine, afin de réduire l'énergie à fournir au compresseur pour la compression des gaz.  The supercharging stage added to the heat engine being mechanically connected to the turbomachine, it is possible to control it independently of the operating point of the heat engine so as to improve the flow of air in stabilized conditions as in transients, especially under conditions critical operation (in altitude in particular) requiring a high compression ratio of the gases It is also possible, via this architecture, to recover energy on the turbine shaft linked to the turbomachine, in order to reduce the energy to provide compressor for gas compression.
La figure 2d est une variante de la figure 2c pour laquelle on ajoute deux conduits 25 et 26 de répartition, respectivement du comburant et du gaz brûlés. Figure 2d is a variant of Figure 2c for which there are added two conduits 25 and 26 distribution, respectively oxidizer and flue gas.
Cette variante permet de disposer de deux compresseurs 6'b et 6'c fonctionnant en parallèle en amont de l'étage de compression 6'b de la turbomachine et d'injecter les gaz brûles de la chambre 7' dans la turbine 8'a en plus des gaz d'échappement venant de la turbine 14.  This variant makes it possible to have two compressors 6'b and 6'c operating in parallel upstream of the compression stage 6'b of the turbomachine and to inject the burned gases from the chamber 7 'into the turbine 8'a in addition to the exhaust gas from the turbine 14.
Ceci permet un contrôle fin de la suralimentation du moteur thermique tout en donnant une latitude quant au choix des composants de turbine et compresseur. La figure 3 décrit encore une autre variante de couplage entre le moteur thermique et la turbomachine à turbine libre avec récupération d'énergie complémentaire des gaz d'échappement du moteur thermique par le conduit 23 et une conduite 27 de recirculation de gaz d'échappement dont le débit est contrôlé par une vanne 28, par exemple du type d'une vanne EGR.  This allows a fine control of the supercharging of the engine while giving latitude in the choice of turbine and compressor components. FIG. 3 further describes another coupling variant between the heat engine and the free turbine turbine engine with additional energy recovery from the exhaust gases of the heat engine via the pipe 23 and an exhaust gas recirculation pipe 27 of which the flow is controlled by a valve 28, for example of the type of an EGR valve.
Cette variante permet ainsi, dans le cadre d'un arrêt de la turbomachine, de disposer en entrée de la chambre de combustion d'un gaz chaud, sous-pression, contenant de l'oxygène qui permet un rallumage de la chambre de combustion 7' et donc de la turbomachine par la suite. Par ailleurs, dans un objectif de limitation des émissions polluantes de la turbomachine (notamment des NOx), ces gaz permettent de réduire les richesses de fonctionnement (fonctionnement similaire à de l'EGR sur moteur à pistons). Ainsi, la présente invention comportant un couplage d'un moteur thermique avec une turbomachine peut être réalisée de diverses manières. This variant thus makes it possible, in the context of stopping the turbomachine, to have, at the inlet of the combustion chamber, a hot gas, under pressure, containing oxygen which enables the combustion chamber 7 to be re-ignited. and therefore the turbomachine thereafter. Moreover, with a view to limiting the polluting emissions of the turbomachine (in particular NOx), these gases make it possible to reduce the operating wealth (operation similar to EGR on a piston engine). Thus, the present invention comprising a coupling of a heat engine with a turbomachine can be carried out in various ways.
Le couplage entre ces deux systèmes comporte un lien mécanique et des moyens d'échange de fluide par mutualisation d'organes, notamment pour la fourniture du comburant (air) aux différentes chambres de combustion et pour la récupération d'énergie des gaz d'échappement.  The coupling between these two systems comprises a mechanical link and fluid exchange means by mutualization of organs, in particular for the supply of the oxidant (air) to the various combustion chambers and for the energy recovery of the exhaust gases. .
Les avantages obtenus sont les suivants :  The advantages obtained are the following:
• une meilleure consommation spécifique par rapport à un système équivalent basé uniquement sur une turbomachine,  • a better specific consumption compared to an equivalent system based solely on a turbomachine,
• une plus forte densité de puissance par rapport à un système équivalent basé uniquement sur un moteur thermique,  • a higher power density compared to an equivalent system based solely on a heat engine,
• une mutualisation de certains composants de façon à réduire le poids et le coût du système global,  • a pooling of certain components in order to reduce the weight and the cost of the overall system,
• réaliser des synergies permettant notamment de récupérer de l'énergie sur un des systèmes en utilisant tout ou partie de l'autre système,  • achieve synergies, notably to recover energy from one system using all or part of the other system,
· limiter la production de polluant,  · Limit the production of pollutants,
• optimiser les performances transitoires du système global en contrôlant séparément le fonctionnement de la turbomachine et du moteur thermique,  Optimize the transient performance of the overall system by separately controlling the operation of the turbomachine and the heat engine,
• Redémarrer plus facilement l'un ou l'autre des deux systèmes en bénéficiant de l'apport de couple ou de comburant dans un état thermodynamique plus favorable (gaz plus chaud ou sous pression par exemple).  • Restart one or the other of the two systems more easily by benefiting from the addition of torque or oxidant in a more favorable thermodynamic state (hotter gas or under pressure for example).
Sur la figure 4, on peut voir un exemple de calcul de consommation spécifique (CS) en fonction de la puissance estimée (Pe) de chaque système : turbomachine (courbe TM), moteur thermique (courbe TH) et couplage des deux selon l'invention (courbe TC). In FIG. 4, an example of calculation of specific consumption (CS) as a function of the estimated power (Pe) of each system can be seen: turbomachine (TM curve), heat engine (TH curve) and coupling of the two according to the invention (TC curve).
Les densités de puissance estimée de la turbomachine étant environ de 4 kW/kg, du moteur à combustion interne de l,75kW/kg, à iso puissance, pour obtenir une densité de puissance de l'invention d'environ 2,4 kW/kg, en couplage.  The estimated power densities of the turbomachine being approximately 4 kW / kg, of the internal combustion engine of 1. 75 kW / kg, with iso power, to obtain a power density of the invention of approximately 2.4 kW / kg, in coupling.

Claims

REVENDICATIONS
1) Système de propulsion optimisé comportant au moins une turbomachine (2) et un moteur à combustion interne suralimenté (1) couplés mécaniquement, caractérisé en ce qu'il comporte en sus des moyens d'échange (E) d'au moins un fluide entre ladite turbomachine et des moyens de suralimentation (12) dudit moteur, de façon à optimiser les énergies distribuées par la turbomachine et/ou par le moteur à combustion interne. 1) Optimized propulsion system comprising at least one turbomachine (2) and a supercharged internal combustion engine (1) mechanically coupled, characterized in that it comprises in addition exchange means (E) of at least one fluid between said turbomachine and supercharging means (12) of said engine, so as to optimize the energies distributed by the turbomachine and / or by the internal combustion engine.
2) Système de propulsion selon la revendication 1, dans lequel les moyens de suralimentation comprennent un turbocompresseur (12) entraîné par des gaz d'échappement dudit moteur. 2) Propulsion system according to claim 1, wherein the supercharging means comprise a turbocharger (12) driven by exhaust gas of said engine.
3) Système de propulsion selon la revendication 2, dans lequel lesdits moyens d'échange comprennent une conduite (22, 23) qui amène au moins une partie des gaz d'échappement dudit turbocompresseur dans au moins une turbine (8'a, 8'b, 8'c) de ladite turbomachine. 3) propulsion system according to claim 2, wherein said exchange means comprise a pipe (22, 23) which brings at least a portion of the exhaust gas of said turbocharger into at least one turbine (8'a, 8 '). b, 8'c) of said turbomachine.
4) Système de propulsion selon l'une des revendications 2 ou 3, dans lequel lesdits moyens d'échange comprennent une conduite (24) qui amène au moins une partie du comburant comprimé dans la turbomachine vers l'admission de compression dudit turbocompresseur. 4) propulsion system according to one of claims 2 or 3, wherein said exchange means comprise a pipe (24) which brings at least a portion of the compressed oxidant in the turbomachine to the compression inlet of said turbocharger.
5) Système de propulsion selon l'une des revendications précédentes, dans lequel la turbomachine comporte au moins une turbine libre. 5) Propulsion system according to one of the preceding claims, wherein the turbomachine comprises at least one free turbine.
6) Système de propulsion selon l'une des revendications précédentes, dans lequel les arbres moteurs (10, 11 ; 17) de la turbomachine et du moteur à combustion interne sont solidaires mécaniquement d'un arbre de propulsion (20), par l'intermédiaire d'embrayage et/ou de boite de vitesse ( 18, 19). 6) propulsion system according to one of the preceding claims, wherein the motor shafts (10, 11; 17) of the turbomachine and the internal combustion engine are mechanically secured to a propulsion shaft (20), by the intermediate clutch and / or gearbox (18, 19).
7) Système de propulsion selon l'une des revendications précédentes, dans lequel lesdits moyens d'échange comprennent une conduite de recirculation (27) d'au moins une partie des gaz d'échappement dudit moteur à combustion interne dans la chambre de combustion (V) de ladite turbomachine. 7) propulsion system according to one of the preceding claims, wherein said exchange means comprise a recirculation pipe (27) at least a portion of the exhaust gas of said internal combustion engine into the combustion chamber (V) of said turbomachine.
8) Système de propulsion selon l'une des revendications précédentes, dans lequel ledit moteur à combustion interne est un moteur à pistons suralimenté. 8) Propulsion system according to one of the preceding claims, wherein said internal combustion engine is a supercharged piston engine.
PCT/EP2015/072148 2014-11-07 2015-09-25 Propulsion system comprising an internal combustion engine and a turbomachine WO2016071040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1460772A FR3028243A1 (en) 2014-11-07 2014-11-07 PROPULSION SYSTEM COMPRISING AN INTERNAL COMBUSTION ENGINE AND A TURBOMACHINE
FR1460772 2014-11-07

Publications (1)

Publication Number Publication Date
WO2016071040A1 true WO2016071040A1 (en) 2016-05-12

Family

ID=52423884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/072148 WO2016071040A1 (en) 2014-11-07 2015-09-25 Propulsion system comprising an internal combustion engine and a turbomachine

Country Status (2)

Country Link
FR (1) FR3028243A1 (en)
WO (1) WO2016071040A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240151179A1 (en) * 2022-11-04 2024-05-09 Raytheon Technologies Corporation Compounded turbo power unit with boost combustor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH277880A (en) * 1944-12-30 1951-09-15 Sigma Reaction propulsion installation.
FR1005786A (en) * 1947-09-23 1952-04-15 Gen Mecanique Appliquee Soc In Improvements made to engine gas installations, in particular for air navigation
DE836870C (en) * 1950-09-17 1952-06-30 Napier & Son Ltd Power plant with internal combustion piston machine and gas turbine
EP1992811A2 (en) * 2007-05-15 2008-11-19 United Technologies Corporation Aircraft combination engines exhaust thrust recovery
US20110108663A1 (en) 2006-11-29 2011-05-12 Airbus Deutschland Gmbh Propulsion device with a plurality of energy converters for an aircraft
DE102010046850A1 (en) * 2010-09-29 2012-03-29 Eads Deutschland Gmbh Diesel engines / gas turbine compound engine for a means of transport
DE102012021339A1 (en) * 2012-10-31 2014-04-30 Eads Deutschland Gmbh Unmanned aerial vehicle and operating procedures therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH277880A (en) * 1944-12-30 1951-09-15 Sigma Reaction propulsion installation.
FR1005786A (en) * 1947-09-23 1952-04-15 Gen Mecanique Appliquee Soc In Improvements made to engine gas installations, in particular for air navigation
DE836870C (en) * 1950-09-17 1952-06-30 Napier & Son Ltd Power plant with internal combustion piston machine and gas turbine
US20110108663A1 (en) 2006-11-29 2011-05-12 Airbus Deutschland Gmbh Propulsion device with a plurality of energy converters for an aircraft
EP1992811A2 (en) * 2007-05-15 2008-11-19 United Technologies Corporation Aircraft combination engines exhaust thrust recovery
DE102010046850A1 (en) * 2010-09-29 2012-03-29 Eads Deutschland Gmbh Diesel engines / gas turbine compound engine for a means of transport
DE102012021339A1 (en) * 2012-10-31 2014-04-30 Eads Deutschland Gmbh Unmanned aerial vehicle and operating procedures therefor

Also Published As

Publication number Publication date
FR3028243A1 (en) 2016-05-13

Similar Documents

Publication Publication Date Title
CA2678657C (en) System for cooling and adjusting the temperature of apparatuses in the propulsion assembly of an aircraft
FR3024755B1 (en) HYBRIDIZING THE COMPRESSORS OF A TURBOJET ENGINE
CA2874962C (en) Method and architecture for the optimized transfer of power between an auxiliary power motor and the main engines of a helicopter
EP2591219A1 (en) Method and architecture for recombining the power of a turbomachine
FR2978728A1 (en) AIRCRAFT PROPULSION ARCHITECTURE INTEGRATING AN ENERGY RECOVERY SYSTEM
EP1329617A3 (en) Fluid flow system for a gas turbine engine
EP2815153B1 (en) Hybrid hydraulic power train including a hydraulic circuit
CA2639217A1 (en) Electricity generation in a turbine engine
FR2962763A1 (en) SYSTEM FOR ADJUSTING FLOW IN A STEAM TURBINE
EP2909457A1 (en) Heat engine for driving a drive shaft
FR3056641A1 (en) SYSTEM FOR COOLING A CIRCUIT OF A FIRST FLUID OF A TURBOMACHINE
WO2016071040A1 (en) Propulsion system comprising an internal combustion engine and a turbomachine
EP3642465B1 (en) Arrangement of two turboshaft engines
FR3084913A1 (en) RANKINE CIRCUIT THERMAL SYSTEM
EP2273085A1 (en) System with electric generator and turbine for the energy recovery content in exhaust gas from heat engine
WO2023072614A1 (en) System for conditioning fuel for supplying an aircraft turbomachine, aircraft and method of use
FR3033831A1 (en) ENGINE FOR AIRCRAFT
EP3458695B1 (en) Reversible system for dissipating thermal power generated in a gas-turbine engine
FR3137712A1 (en) Method and system for generating electrical energy within a turbomachine
EP3274573A1 (en) Engine system with energy recovery system
FR3007790A1 (en) AIRCRAFT TURBOPROPOWER UNIT COMPRISING A CIRCUIT FOR RECOVERING AND CONVERTING THERMAL ENERGY
EP4129828A1 (en) Aircraft comprising a hydrogen supply device integrating a hydrogen heating system positioned in the fuselage of the aircraft
FR3044363B1 (en) ENGINE SYSTEM WITH BURN GAS RECIRCULATION CIRCUIT
FR3115821A1 (en) PROPULSION AND HEAT RECOVERY SYSTEM FITTING A MOTOR VEHICLE
FR3039516A1 (en) METHOD FOR MANAGING THE POWER OF A PROPULSION SYSTEM, PARTICULARLY IN THE AERONAUTICAL SECTOR, AND ESPECIALLY A SYSTEM COMPRISING TWO DRIVING MACHINES, SUCH AS A TURBOMACHINE AND AN INTERNAL COMBUSTION ENGINE.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15767549

Country of ref document: EP

Kind code of ref document: A1