WO2016067682A1 - Brazing furnace and brazing method for aluminum material - Google Patents

Brazing furnace and brazing method for aluminum material Download PDF

Info

Publication number
WO2016067682A1
WO2016067682A1 PCT/JP2015/070550 JP2015070550W WO2016067682A1 WO 2016067682 A1 WO2016067682 A1 WO 2016067682A1 JP 2015070550 W JP2015070550 W JP 2015070550W WO 2016067682 A1 WO2016067682 A1 WO 2016067682A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
chamber
preheating
treated
inert gas
Prior art date
Application number
PCT/JP2015/070550
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 泰永
柳川 裕
正一 迫田
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014228110A external-priority patent/JP2016083699A/en
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to EP15854432.0A priority Critical patent/EP3213850A4/en
Priority to US15/509,303 priority patent/US20170282271A1/en
Priority to BR112017007361A priority patent/BR112017007361A2/en
Publication of WO2016067682A1 publication Critical patent/WO2016067682A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present invention relates to a brazing furnace and an aluminum material brazing method for brazing an aluminum material.
  • a CAB Controlled Atmosphere Brazing
  • flux is applied to a material to be treated and the material to be treated is brazed in an inert gas atmosphere such as nitrogen.
  • the fluoride-based flux used in the CAB method has a problem that its function as a flux decreases when it is oxidized by heating during brazing.
  • a sufficient amount of flux is usually applied, and brazing is performed by controlling the oxygen concentration in the atmosphere to 100 ppm or less, more preferably 20 ppm or less.
  • Fluoride-based flux is non-corrosive to aluminum, so from the viewpoint of corrosiveness after brazing, it is not necessary to clean the aluminum material after brazing and remove the flux residue.
  • the presence of flux or flux residue may cause the following problems.
  • problems such as deterioration of surface treatment property due to a flux residue may occur during the production.
  • clogging due to flux or the like may occur in the refrigerant passage, or there may be a problem that the flux or the like adversely affects electronic components that contact the heat exchanger. is there.
  • Patent Document 1 proposes a method of brazing using argon or helium as an inert gas. These gases can reduce the oxygen concentration and dew point in the atmosphere as compared with nitrogen that is generally used.
  • Patent Document 2 discloses a method in which a front chamber of a brazing additional heat zone is made an independent structure partitioned by a door, the chamber is evacuated in a state where a material to be processed is accommodated in the front chamber, and then the chamber is decompressed with an inert gas.
  • a front chamber of a brazing additional heat zone is made an independent structure partitioned by a door, the chamber is evacuated in a state where a material to be processed is accommodated in the front chamber, and then the chamber is decompressed with an inert gas.
  • the oxygen concentration and dew point of the heating zone can be reduced as compared with the conventional case.
  • the oxygen concentration can be reduced to about 50 ppm relatively easily.
  • Patent Document 3 proposes a method using a brazing material containing a small amount of Bi (bismuth) or Be (beryllium) as a so-called fluxless brazing method in which brazing is performed without using a flux. . It is possible to braze without using flux by etching a brazing material containing Bi or the like or a clad material thereof with an acid or alkali, and heating using a brazing furnace in which oxygen concentration and dew point are strictly controlled. .
  • JP2013-091066A Japanese Patent Laid-Open No. 10-277730 Japanese Patent Laid-Open No. 11-285817
  • Patent Document 1 since the technique of Patent Document 1 needs to use argon or helium that is more expensive than nitrogen, it is difficult to apply it to mass production facilities.
  • Patent Document 2 can reduce the oxygen concentration and dew point in the brazing additional heat zone when nitrogen is used as an inert gas.
  • the technique of Patent Document 2 is applied to reduce the amount of oxygen and moisture brought into the brazing additional heat zone, the occurrence of poor bonding cannot be completely suppressed.
  • Deterioration of brazeability and occurrence of poor bonding are likely to occur, for example, in a season when the dew point in the atmosphere is continuously high or when the structure of the material to be processed is complicated. As this cause, the water
  • the conventional technique has a problem that it is difficult to stabilize the quality of brazing joint in brazing with a reduced amount of flux applied or brazing without using flux.
  • the inventors focused on the fact that the following three points can be factors that deteriorate brazing. (1) Oil adhering to the material to be processed by molding (2) Moisture and oil adsorbed on the jig used for brazing (3) Foreign matter adhering to the jig used for brazing
  • the present invention has been made in view of such a background, and a brazing furnace capable of easily stabilizing the quality of brazing joint in brazing with a reduced amount of flux applied or brazing without using a flux, and It is intended to provide a brazing method.
  • One aspect of the present invention is a brazing furnace used for brazing a material to be treated made of an aluminum material, A preheating chamber and a brazing chamber;
  • the preheating chamber includes a vacuum pump for depressurizing the chamber in a state in which the material to be treated is accommodated, a preheating device for preheating the material to be treated in a decompressed atmosphere, and a pressure relief chamber after the preheating.
  • a return pressure gas introduction device for introducing the inert gas of The brazing chamber is a brazing furnace having a gas replacement device for introducing an inert gas into the chamber and a main heating device for heating the material to be treated to a brazing temperature.
  • a material to be treated made of an aluminum material is preheated under a reduced pressure atmosphere of 100 Pa or less, Next, by supplying an inert gas, the periphery of the material to be treated is made an inert gas atmosphere, Then, it is in the brazing method of the aluminum material which brazes by heating the said to-be-processed material in the state which maintained the said inert gas atmosphere.
  • the brazing furnace has the preheating chamber provided with the vacuum pump, the preheating device, and the return pressure gas introduction device. Therefore, the brazing furnace can perform pressure reduction in the room and preheating of the material to be treated while the material to be treated is accommodated in the preheating chamber. Then, by preheating the material to be treated in a reduced-pressure atmosphere, evaporation or thermal decomposition of moisture adsorbed on the material to be treated and the jig can be promoted. As a result, the amount of moisture and the like brought into the brazing chamber can be reduced as compared with the case where preheating is not performed.
  • the brazing furnace can be reinstated by introducing an inert gas into the preheating chamber after the preheating is completed.
  • an inert gas By performing return pressure of the preheating chamber using an inert gas, it is possible to avoid exposure of the workpiece and jig after the preheating to the atmosphere, and as a result, re-adsorption of moisture and the like to them. Can be avoided.
  • the oxygen concentration and dew point in the brazing chamber can be kept at a low level as compared with a conventional brazing furnace using an inert gas.
  • graphite having a sacrificial oxidation capability for the muffle of the brazing chamber an effect of reducing the manufacturing cost of the brazing furnace can be expected.
  • the brazing furnace can surely reduce the amount of moisture and the like brought into the brazing chamber as compared with the conventional brazing furnace. Therefore, by using the above brazing furnace when brazing with a reduced flux application amount or without using flux, the storage environment and usage status of the materials to be processed, jigs and brazing materials, the outside of the furnace It is possible to suppress the influence of environmental fluctuations on brazing. As a result, the brazing furnace can easily stabilize the quality of the brazing joint, and can suppress the deterioration of the brazing property and the occurrence of poor bonding.
  • the brazing furnace can be suitably used in, for example, high-temperature and high-humidity areas and seasons because the influence of the storage condition of the material to be treated on the brazing property can be suppressed.
  • the brazing furnace can achieve good brazing even in a working environment where strict management such as storage environment of the material to be processed and jigs is difficult.
  • the brazing method of the above aspect performs preheating in a reduced pressure atmosphere, return pressure by supplying an inert gas, and brazing in an inert gas atmosphere. Therefore, as described above, when brazing with a reduced amount of flux applied or brazing without using a flux, the storage environment and usage status of the material to be treated, the jig and the brazing material, the environment outside the furnace, It is possible to suppress the influence of fluctuation or the like on the brazing property. As a result, the quality of the brazing joint can be easily stabilized.
  • FIG. 1 The side view of the brazing furnace in Example 1.
  • FIG. 2 The side view of the brazing furnace provided with the some subunit in Example 2 and the cooling chamber.
  • FIG. The top view of the to-be-processed material which simulated the parallel flow type heat exchanger in Experimental example 2.
  • an inert gas can be used as the inert gas.
  • nitrogen gas is usually used from the viewpoint of cost.
  • the preheating chamber is preferably configured so that the pressure in the chamber can be 100 Pa or less.
  • the pressure in the preheating chamber can be 100 Pa or less.
  • the removal of moisture and the like in the preheating can be further promoted.
  • the time required for preheating can be further shortened.
  • the pressure in the preheating chamber exceeds 100 Pa, the time required for removing moisture and the like becomes longer, and there is a possibility that the productivity is lowered. In some cases, moisture and the like are not sufficiently removed, and the quality of brazing joining may be deteriorated.
  • the preheating device is configured so that the temperature of the material to be processed can exceed 200 ° C.
  • the preheating by elevating the temperature of the material to be processed to 150 ° C. or higher, evaporation of moisture adsorbed on the jig or the like can be promoted. Further, by heating the material to be processed to a temperature exceeding 200 ° C., removal of oil in addition to moisture can be promoted.
  • the heating apparatus may include a plurality of subunits whose temperatures can be individually adjusted, and the plurality of subunits may be arranged along the conveyance direction of the material to be processed.
  • the temperature of the material to be processed can be finely controlled. Therefore, for example, the temperature of the material to be processed can be changed stepwise according to the position in the brazing chamber, and high-quality brazing joining can be realized.
  • a partition door may be provided between the adjacent subunits so as to be openable and closable.
  • the material to be processed disposed between the adjacent partition doors can be heated uniformly using the individual subunits. .
  • the brazing furnace has a cooling chamber communicating with the brazing chamber, and the cooling chamber may have a cooling gas introduction device for introducing an inert gas into the chamber.
  • the cooling chamber may have a cooling gas introduction device for introducing an inert gas into the chamber.
  • the brazing furnace includes brazing of a treated material to which a fluoride-based flux has been applied in advance (flux brazing) and brazing of a treated material to which a fluoride-based flux has not been previously applied (fluxless brazing). ).
  • the preheating is more preferably performed by heating the material to be treated to a temperature of 200 ° C. to 400 ° C. or less.
  • Zn (zinc) and Mg (magnesium) contained in the aluminum material and the flux may evaporate.
  • Zn diffuses by heating during brazing and forms a concentration gradient in the material.
  • a sacrificial anode effect can be provided to a to-be-processed material, and the corrosion resistance after brazing can be improved.
  • Mg has an effect of improving the brazing property by destroying the natural oxide film on the surface of the aluminum material at the time of brazing. Therefore, if Zn or Mg evaporates, the corrosion resistance after brazing and the brazing property of the material to be treated may be deteriorated.
  • the heating temperature in the preheating is 200 ° C. or more and 400 ° C. or less.
  • heating temperature exceeds 400 degreeC, evaporation of Zn or Mg can be suppressed by returning to pressure quickly.
  • a flux diluted with water can be used. It is preferable that the material to be treated coated with such a flux is fed into the preheating chamber after moisture is dried in advance by a separately prepared drying apparatus. In this case, the drying device and the preheating chamber may be directly connected. Further, it is possible to dry the moisture of the flux in the preheating chamber by installing a water cooling trap or the like in the exhaust line of the preheating chamber.
  • the preheating and the brazing are preferably performed in a state where the material to be treated is accommodated in a shielding box made of metal or graphite and having a vent hole.
  • the inert gas flows into the shielding box from the vent hole by returning the pressure in the brazing chamber. Since the pressure difference between the inside and outside of the shielding box is almost zero after the return pressure operation, the inert gas atmosphere inside the shielding box is easily maintained.
  • a sacrificial oxidant that consumes oxygen in the box is accommodated in the shielding box.
  • the oxygen concentration in the shielding box can be further reduced by the action of the sacrificial oxidizing material. Therefore, the quality of the brazing joint can be more easily stabilized.
  • the sacrificial oxide material for example, a metal or an alloy thereof having lower free energy than that of the material to be processed can be used. Specific examples thereof include Mg and Mg alloy. Further, Al (aluminum) or Al alloy having the same quality as the material to be treated can be used as the sacrificial oxidation material.
  • the form of the sacrificial oxidation material is not particularly limited, and various forms such as a powder form and a plate form can be used.
  • the brazing furnace 1 is used for brazing a material to be processed 100 made of an aluminum material.
  • the brazing furnace 1 has a preheating chamber 2 and a brazing chamber 3.
  • the preheating chamber 2 includes a vacuum pump 21 for depressurizing the interior of the processing material 100 in a state in which the processing target material 100 is accommodated, a preheating device 22 for preheating the processing target material 100 in a reduced pressure atmosphere, and restoring the chamber after preheating.
  • a return pressure gas introduction device 23 for introducing an inert gas for pressurization.
  • the brazing chamber 3 includes a gas replacement device 31 that introduces an inert gas into the chamber, and a main heating device 32 that heats the workpiece 100 to a brazing temperature.
  • the brazing furnace 1 of this example is an external heating furnace in which the preheating device 22 and the main heating device 32 are arranged outside the stainless muffles 24 and 33.
  • An intermediate door 25 is provided between the preheating device 22 and the main heating device 32 so as to be openable and closable, and the preheating chamber 2 and the brazing chamber 3 are separated by the intermediate door 25.
  • the soaking area dimensions of the preheating chamber 2 and the brazing chamber 3 are a length of 300 mm, a width of 200 mm, and a height of 200 mm, respectively.
  • Each of the preheating chamber 2 and the brazing chamber 3 is provided with an endless belt type transport device 11 for transporting the material to be processed 100.
  • transfer apparatuses 11 are provided so as to be completely accommodated in the brazing furnace 1 in a state where a front door 261 described later is closed, and a transfer apparatus (illustrated) provided outside the brazing furnace 1 is illustrated. Is omitted. Therefore, it is possible to prevent moisture, oil, and the like from being brought into the furnace by the transfer device provided outside the brazing furnace 1.
  • the preheating chamber 2 has an entrance / exit 26 through which the material to be processed 100 is sent and delivered, and a front door 261 is provided at the entrance / exit 26 so as to be opened and closed.
  • the preheating chamber 2 is configured so that the pressure in the chamber can be reduced to 0.4 Pa or less by operating the vacuum pump 21 with the front door 261 and the intermediate door 25 closed.
  • the indoor pressure can be measured with a Pirani gauge (not shown).
  • the vacuum pump 21 is disposed outside the brazing furnace 1, and an exhaust line 211 extending from the vacuum pump 21 communicates with the preheating chamber 2.
  • the exhaust line 211 is provided with an exhaust valve 212 that shuts off the vacuum pump 21 and the preheating chamber 2.
  • the vacuum pump 21 of this example is an oil rotary pump.
  • the recompressed gas introduction device 23 is disposed on a gas supply source 231 disposed outside the brazing furnace 1, a recompressed gas line 232 extending from the gas supply source 231 into the preheating chamber 2, and a recompressed gas line 232.
  • the return pressure valve 233 is provided.
  • the return pressure gas introduction device 23 is configured to supply nitrogen gas into the preheating chamber 2.
  • a gas replacement device 31 for introducing an inert gas into the brazing chamber 3 extends from the gas supply source 231 and the gas supply source 231 disposed outside the brazing furnace 1 and enters the brazing chamber 3. 311 and a replacement valve 312 disposed on the replacement gas line 311.
  • the gas replacement device 31 is configured to be able to replace the interior of the chamber with nitrogen gas by always introducing 5 m 3 / h of nitrogen gas into the brazing chamber 3. After the brazing chamber 3 is filled with nitrogen gas, excess nitrogen gas is discharged from a gas escape port (not shown) provided near the intermediate door 25.
  • the gas supply source 231 is shared between the return pressure gas introduction device 23 and the gas replacement device 31.
  • Brazing furnace 1 can be used as follows, for example. First, the front door 261 is opened and the material to be processed 100 made of an aluminum material is fed into the preheating chamber 2. Next, the front door 261 and the intermediate door 25 are closed. In this state, the vacuum pump 21 is operated to make the inside of the room a reduced pressure atmosphere, and the preheating device 22 is operated to preheat the material to be processed 100.
  • the timing for starting the exhaust and the timing for starting the preheating of the workpiece 100 may be the same, or one of them may be the first. From the viewpoint of avoiding unnecessary oxidation of the material to be treated 100, it is preferable to start the exhaust before the start of the preheating.
  • the preheating chamber 2 When the pressure in the preheating chamber 2 reaches 100 Pa or less and the temperature of the material to be processed 100 reaches a temperature exceeding 200 ° C., the preheating is completed, the exhaust valve 212 is closed, and then the vacuum pump 21 And the preheating apparatus 22 is stopped. Thereafter, the return pressure valve 233 is opened, and the inside of the preheating chamber 2 is returned to atmospheric pressure with nitrogen gas. Thereby, the circumference
  • the return pressure valve 233 is closed, and then the intermediate door 25 is opened. Thereafter, the workpiece 100 is conveyed into the brazing chamber 3 and the intermediate door 25 is closed. Since the brazing chamber 3 is always an inert gas atmosphere, an inert gas atmosphere is maintained around the material to be treated 100 during the conveyance of the material 100 to be treated.
  • brazing is performed by heating the material to be treated 100 arranged in the brazing chamber 3 by the heating device 32.
  • the intermediate door 25 is opened and the workpiece 100 is conveyed to the preheating chamber 2.
  • An inert gas atmosphere is maintained in the preheating chamber 2.
  • the material 100 is sent out from the entrance 26. As described above, the workpiece 100 can be brazed.
  • the brazing furnace 1 of this example is configured to be able to perform preheating in a reduced pressure atmosphere, return pressure by supplying an inert gas, and brazing in an inert gas atmosphere. Therefore, as described above, when brazing with a reduced amount of flux applied or brazing without using a flux, the storage environment and usage status of the workpiece 100, the jig and the brazing material, the environment outside the furnace, It is possible to suppress the influence of fluctuation or the like on the brazing property. As a result, the quality of the brazing joint can be easily stabilized.
  • the brazing furnace 1 can suppress the influence of the storage status of the material 100 to be treated on the brazing property, so that it can be suitably used, for example, in high-temperature and humid areas and seasons. Further, the brazing furnace 1 can realize good brazing even in a working environment where strict management is difficult, such as a storage environment of the workpiece 100 and the jig.
  • Example 2 This example is an example of a brazing furnace 1 b including three subunits 32 a, 32 b, 32 c and a cooling chamber 4.
  • the main heating device 32 in the brazing furnace 1b of the present example has three subunits 32a to 32c whose temperatures can be individually adjusted.
  • the subunits 32a to 32c are arranged along the conveyance direction of the workpiece 100.
  • a partition door 35 is provided between the adjacent subunits 32a to 32c so as to be opened and closed.
  • the soaking zone dimensions of the three heating zones 36 (36a, 36b, 36c) separated by the partition door 35 are all 300 mm in length, 200 mm in width, and 200 mm in height.
  • the replacement gas line 311 of the gas replacement device 31 enters each of the heating zones 36a to 36c.
  • the brazing furnace 1 b of this example has a cooling chamber 4 communicating with the brazing chamber 3.
  • the brazing furnace 1b feeds the material to be treated 100 from an inlet 27 provided in the preheating chamber 2, and sequentially passes through the preheating chamber 2, the heating zones 36a to 36c, and the cooling chamber 4, and is provided in the cooling chamber 4. Is sent out from the outlet 43. And it is comprised so that the preheating of the to-be-processed material 100, a return pressure, brazing, and cooling can be performed sequentially by letting each chamber pass in said order.
  • the cooling chamber 4 has a cooling gas introduction device 41 for introducing an inert gas into the room.
  • the brazing chamber 3 and the cooling chamber 4 are separated by a rear door 42 so as to be opened and closed.
  • an outlet door 431 is provided at the outlet 43 provided in the cooling chamber 4 so as to be openable and closable in order to prevent air from entering from the outside of the brazing furnace 1.
  • a metal curtain or the like may be installed instead of the exit door 431.
  • the cooling chamber 4 may be further comprised so that indoor exhaust_gas
  • air can be reliably prevented from being mixed into the cooling chamber 4 by exhausting the interior of the cooling chamber 4 and then restoring the pressure with an inert gas.
  • a configuration capable of realizing such a function for example, a configuration in which an exhaust line of a vacuum pump enters the room as in the preheating chamber 2 can be considered.
  • the cooling gas introduction device 41 is disposed on the cooling gas line 411 and the cooling gas line 411 extending from the gas supply source 231 and the gas supply source 231 disposed outside the brazing furnace 1b and entering the room from the outlet 43 side.
  • the cooling valve 412 is provided.
  • the cooling gas introduction device 41 is configured to replace the inside of the cooling chamber 4 with nitrogen gas by introducing nitrogen gas from the outlet 43 side of the cooling chamber 4. After the inside of the cooling chamber 4 is filled with nitrogen gas, excess nitrogen gas is discharged from a gas escape port (not shown) provided in the vicinity of the rear door 42.
  • the gas supply source 231 is shared among the decompression gas introduction device 23, the gas replacement device 31, and the cooling gas introduction device 41. Others are the same as in the first embodiment.
  • the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.
  • the main heating device 32 in the brazing furnace 1b of this example has a plurality of subunits 32a to 32c whose temperatures can be individually adjusted, and the plurality of subunits 32a to 32c are arranged in the conveying direction of the workpiece 100. Are arranged along.
  • a partition door 35 is provided between the adjacent subunits 32a to 32c so as to be opened and closed. Therefore, the heating temperature of the material to be processed 100 can be changed stepwise for each of the heating zones 36a to 36c separated by the partition door 35. Further, by heating the partition door 35 in a closed state, the workpiece 100 can be heated uniformly in the individual heating zones 36a to 36c. As a result, the brazing quality can be further improved.
  • Example 1 In this example, a brazing test was performed using the brazing furnace 1 of the first embodiment.
  • production conditions were variously changed, and 12 types of honeycomb panels (test bodies E1 to E6 and test bodies C1 to C6) were produced.
  • the configuration of the workpiece 101 and the experimental method will be described below.
  • the material to be treated 101 of this example includes a rectangular frame portion 51 composed of four hollow extruded shapes 511, a honeycomb core 52 disposed inside the frame portion 51, and It has a face plate (not shown) that sandwiches the frame portion 51 and the honeycomb core 52 from above and below. After assembling these into a predetermined shape (see FIG. 4), a honeycomb panel can be manufactured by brazing.
  • the outer dimension in the long side direction (length direction) of the frame 51 is 260 mm, and the outer dimension in the short side (width direction) is 180 mm.
  • the hollow extruded shape member 511 constituting the frame portion 51 is made of JIS A 6063 aluminum alloy, and the outer dimension of the cross section perpendicular to the longitudinal direction is 30 mm ⁇ 30 mm.
  • the pair of hollow extruded shapes 511 a constituting the short sides of the frame portion 51 have a vent hole 512 having a diameter of 3 mm at the center thereof, and the vent holes 512. It is comprised so that the exhaust_gas
  • the honeycomb core 52 is configured by arranging a plurality of core members 521, and as shown in FIG. 3, hexagonal columnar cells 522 are formed by adjacent core members 521.
  • the core member 521 is manufactured by corrugating a bare plate made of JIS A 6951 aluminum alloy.
  • the height of the honeycomb core 52 is 30 mm, and the size of the cell 522 is 30 mm.
  • Each cell 522 has two through holes (not shown) having a diameter of 1 mm, and is configured such that each cell 522 can be evacuated and decompressed through the through holes.
  • the honeycomb core 52 of the test bodies E1 to E6 and C1 to C5 was provided with a core member 521 that had not been degreased.
  • the honeycomb core 52 of the test body C6 was provided with a core member 521 that had been previously degreased using acetone.
  • the face plate is composed of a core material and a brazing material clad with a cladding rate of 10% on one side of the core material, and has a thickness of 1 mm.
  • the core of the face plate is made of JIS A 6951 aluminum alloy, and the brazing material is made of aluminum alloy having a chemical component of Al-10% Si-0.02% Bi.
  • the jig of this example is an isotropic graphite plate 53 having a thickness of 10 mm.
  • 30 cc of water was sprayed on the entire surface of the isotropic graphite plate 53 using a mist spray and left at room temperature for 18 hours.
  • the material to be treated 101 was sandwiched between a pair of isotropic graphite plates 53 that had been subjected to the above-described treatment in advance as shown in FIG.
  • preheating and brazing were performed using the brazing furnace 1 of Example 1.
  • the room exhaust and preheating were started immediately.
  • Control of the indoor pressure and the heating temperature of the material to be processed 101 was performed as follows. After the pressure in the preheating chamber 2 reaches the value shown in Table 1, the indoor pressure is adjusted so that the exhaust valve 212 is manually operated to adjust the degree of opening and closing so that the pressure is substantially constant until the preheating is completed. Controlled.
  • the temperature of the furnace wall of the preheating chamber 2 and the material to be processed 101 stay in the room. Controlled by time. Specifically, the preheating device 22 was controlled to set the temperature of the furnace wall of the preheating chamber 2 to the value shown in Table 1, and in this state, the workpiece 101 was allowed to stay in the room for 20 minutes. Note that it is confirmed in advance that the temperature of the workpiece 101 rises to a range of ⁇ 5 to 0 ° C. based on the temperature of the furnace wall of the preheating chamber 2 by performing the preheating in this way.
  • thermocouple was inserted from the ceiling portion of the brazing chamber 3 to be brought into contact with the material to be processed 101, and the material to be processed 101 was heated by the main heating device 32 while measuring its temperature. When the temperature of the workpiece 101 reached 600 ° C., the heating was finished.
  • the thermocouple for temperature measurement is inserted from the ceiling portion of the brazing chamber 3, but it is also possible to insert the thermocouple from the side surface of the brazing chamber 3.
  • the material to be treated 101 was transported to the preheating chamber 2 and cooled in a nitrogen atmosphere, and then taken out from the entrance / exit 26 to the outside of the furnace.
  • the brazing was completed as described above to obtain a honeycomb panel.
  • the joining state of the honeycomb core 52 and a face plate and the joining state of the frame part 51 and a face plate were evaluated by ultrasonic inspection.
  • the center of the test body was cut and the joined state of the core members 521 constituting the honeycomb core 52 was visually evaluated.
  • test bodies E1 to E6 As is known from Table 1, all of the test bodies E1 to E6 that were preheated in a reduced pressure atmosphere, supplied with an inert gas, and brazed in an inert gas atmosphere had a good bonding state. It was. Among the test bodies E1 to E6, the test bodies E1 and E4 in which the pressure in the preheating chamber 2 was lowered were particularly good in the joined state between the frame portion 51 and the face plate. Since the test bodies E2, E3, E5, and E6 have a higher pressure in the preheating chamber 2 than the test bodies E1 and E4, there is a small unjoined portion in the vicinity of the outer periphery of the joint portion between the frame portion 51 and the face plate. Been formed. These minute unjoined portions were not problematic in practical use, and the joined state was good.
  • the joined state between the core members 521 was particularly good.
  • the test bodies E4 to E6 since the set temperature of the preheating chamber 2 was lower than that of the test bodies E1 to E3, a portion having a non-uniform fillet shape was observed.
  • the fillet shapes of the test specimens E4 to E6 are not practically problematic, and the bonding state is good.
  • the test body C1 in which the pressure in the preheating chamber 2 was set to 180 Pa had a poor joined state between the frame portion 51 and the face plate, and an unjoined portion was formed. In addition, a lot of fillet breakage occurred at the joints between the core members 521, resulting in poor joints. This bonding failure is considered to be caused by an increase in the oxygen concentration and dew point in the chamber due mainly to the influence of moisture release from the jig in the brazing chamber 3.
  • the test body C2 in which the temperature of the preheating chamber 2 was 140 ° C. had a poor bonding state between the frame portion 51 and the face plate, and an unbonded portion was formed. Moreover, the fillet was hardly formed about the junction part of core members 521. Since the temperature of the material 101 to be processed when the temperature of the preheating chamber 2 is 140 ° C. is estimated to reach about 135 to 140 ° C., these poor joints are caused by the oil content of the core member 521 due to insufficient preheating. This is considered to be caused by the fact that it was not completely removed and as a result, the wettability of the wax was lowered.
  • test body C3 in which both the pressure and the temperature of the preheating chamber 2 were in adverse conditions was worse in the joining state than the test body C2.
  • the fillet was hardly formed in the specimen C4 that was not preheated and the specimen C5 that was not preheated and depressurized.
  • the joined state between the honeycomb core 52 and the face plate and the joined state between the core members 521 were relatively good, but the joined state between the frame portion 51 and the face plate was It was bad and the bonding was poor. From this, in the brazing of the test body C6, it can be understood that the joining state of the core members 521 is improved by removing the oil content of the core member 521. On the other hand, it is presumed that the joining state between the frame portion 51 and the face plate was not improved because the moisture from the jig could not be removed because the temperature of the preheating chamber 2 was set to 140 ° C.
  • Example 2 In this example, a brazing test of a mini-core simulating a parallel flow heat exchanger is performed.
  • production conditions were variously changed as shown in Table 2 to produce 12 types of minicores (test bodies E11 to E16 and test bodies C11 to C16). The configuration of the workpiece 102 and the experiment method will be described below.
  • the material 102 to be processed in this example includes a pair of headers 61, five extruded tubes 62 inserted through the header 61 in a state of being arranged in parallel with each other, and adjacent extruded tubes 62. And corrugated outer fins 63 disposed on the surface.
  • a mini-core can be produced by brazing.
  • the obtained mini-core has a dimension in the longitudinal direction (length direction) of the extruded tube 62 of 260 mm and a dimension in the arrangement direction (width direction) of 180 mm.
  • the extruded tube 62 is composed of JIS A 1000 series aluminum, and is a multi-hole tube in which the inside of the tube is partitioned into a plurality of flow paths by partition walls.
  • the test bodies E11 to E16 and C11 to C15 were provided with extruded tubes 62 that had not been degreased.
  • the test body C16 was provided with an extruded tube 62 that had been degreased with acetone in advance.
  • the header 61 is made of a core material and a brazing material clad with a cladding rate of 5% on each side of the core material, and has a thickness of 1.2 mm.
  • the core material of the header 61 is made of JIS A 3003 aluminum alloy, and the brazing material is made of JIS A 4343 aluminum alloy.
  • the header 61 has a through hole (not shown) for inserting the extruded tube 62.
  • the outer fin 63 is composed of a core material and a brazing material clad with a cladding rate of 10% on both surfaces of the core material, and has a thickness of 0.1 mm.
  • the core material of the outer fin 63 is made of JIS A 3003 aluminum alloy, and the brazing material is made of JIS A 4045 aluminum alloy.
  • the header 61 and the outer fin 63 were subjected to a degreasing process using acetone, and then subjected to the assembly of the workpiece 102 in a state where the amount of flux shown in Table 2 was applied in advance.
  • the flux application amount was calculated by subtracting the mass of the header 61 and the outer fin 63 measured in advance before the flux application from the mass of the header 61 and the outer fin 63 after the flux application and drying.
  • preheating and brazing were performed using the brazing furnace 1 of Example 1.
  • the procedure of brazing is the same as that of Experimental Example 1 except that the pressure in the preheating chamber 2 is changed to the conditions shown in Table 2.
  • tube 62 and the outer fin 63 were evaluated visually. The results are shown in Table 2.
  • the specimens E14 to E16 have a lower temperature in the preheating chamber 2 than the specimens E11 to E13.
  • the outer fin 63 of 2 g / m 2 there is a practical problem. It was possible to realize a joined state without any.
  • the test body C12 in which the same amount of flux as that of the test bodies E14 to E16 is applied and the temperature of the preheating chamber 2 is 140 ° C., is a joint between the header 61 and the extruded tube 62 and between the extruded tube 62 and the outer fin 63. Fillet breakage occurred at both joints, resulting in poor joints. It is estimated that the temperature of the material 102 to be processed when the temperature of the preheating chamber 2 is 140 ° C. has reached about 135 to 140 ° C. Therefore, the above-mentioned poor bonding is considered to be caused by the fact that the oil content in the extruded tube 62 could not be completely removed in addition to the increase in indoor oxygen concentration and dew point.
  • test body C15 aimed at 5 g / m 2 which is larger than the standard amount of flux application, but the joint between the header 61 and the extruded tube 62 and the joint between the extruded tube 62 and the outer fin 63. There were frequent fillet cuts in both departments.
  • the joined state between the extruded tube 62 and the outer fin 63 was relatively good, but the joined state between the header 61 and the extruded tube 62 was poor. From this, in the brazing of the test body C16, it can be understood that the joining state of the extruded tube 62 and the outer fin 63 is improved by removing the oil content of the extruded tube 62. On the other hand, since the oxygen concentration and dew point in the brazing chamber 3 are high, it is presumed that the joining state of the header 61 and the extruded tube 62 has deteriorated.
  • Example 3 In this example, a mini-core brazing test simulating a hollow heat exchanger was performed. In this example, as shown in Table 3, production conditions were variously changed to produce 20 types of minicores (test bodies E21 to E32 and test bodies C21 to C28). The configuration of the material to be processed 103 and the experimental method will be described below.
  • the material 103 to be processed includes a pair of cup portions 71 formed in a square cup shape and corrugated inner fins 72.
  • a flange portion 711 is provided on the outer peripheral edge of the cup portion 71, and the pair of cup portions 71 are arranged so that the flange portions 711 come into contact with each other.
  • the inner fin 72 is disposed in an internal space formed between the pair of cup portions 71.
  • a mini-core After assembling the pair of cup parts 71 and the inner fins 72 into a predetermined shape (see FIG. 6), a mini-core can be manufactured by brazing.
  • the resulting minicore has outer dimensions of length 50 mm, width 50 mm and thickness 10 mm.
  • the cup portion 71 is composed of a core material and a brazing material clad at a cladding rate of 10% on both surfaces of the core material, and has a thickness of 0.6 mm.
  • the core material of the cup portion 71 is made of JIS A 6951 aluminum alloy, and the brazing material is made of an aluminum alloy having a chemical composition of Al-10% Si-0.03% Bi.
  • the inner fin 72 is made of JIS A 3003 aluminum alloy and has a thickness of 0.1 mm.
  • the cup part 71 and the inner fin 72 were subjected to a degreasing process using acetone in advance and then subjected to assembly.
  • ⁇ Experiment method> After assembling the material to be processed 103 into a predetermined shape, these were fixed using a jig.
  • the jig of this example is a stainless plate 73 having a thickness of 3 mm.
  • the material to be processed 103 was sandwiched between a pair of stainless steel plates 73, and these were clamped with a stainless steel wire (not shown) to fix the material to be processed 103.
  • the material 103 to be processed fixed to the stainless steel plate 73 was accommodated in the shielding box 8 (see FIG. 7).
  • the shielding box 8 is made of stainless steel (SUS304), aluminum alloy (A5052), or isotropic graphite, and has four ventilation holes 81 having a diameter of 3 mm.
  • a sacrificial oxide material 82 was further accommodated inside the shielding box 8. As shown in Table 3, in the brazing of the test body E30, 0.5 g of cutting waste sacrificial oxide material 82 made of pure Mg was placed inside the shielding box 8. In the brazing of the test body E31, 0.5 g of a cutting waste sacrificial oxide material 82 made of an Al-35% Mg alloy was placed inside the shielding box 8. In the brazing of the test body E32, two sacrificial oxidation materials 82 made of JIS A 5052 aluminum alloy plate were installed inside the shielding box 8. The aluminum alloy plate had a length of 40 mm, a width of 10 mm and a thickness of 1 mm, and the mass per sheet was 1 g.
  • preheating and brazing were performed using the brazing furnace 1 of Example 1.
  • the procedure of brazing is the same as that of Experimental Example 1 except that the pressure in the preheating chamber 2 is changed to the conditions shown in Table 3.
  • the center of each specimen after brazing is cut, the fillet formation state on the outer side (see FIG. 6, 712) of the flange portion 711, the fillet formation state on the inner side (see FIG. 6, 713), and the cup portion 71.
  • the formation state of the fillet between the inner fin 72 and the inner fin 72 was visually evaluated. The results are shown in Table 3.
  • test bodies E21 to E32 that had been preheated in a reduced-pressure atmosphere, supplied with an inert gas, and brazed in an inert gas atmosphere had a good bonding state. It was.
  • the specimens E27 to E32 that were preheated and brazed while the workpiece 103 was accommodated in the shielding box 8 were compared to the specimens E21 to E26 that were brazed without using the shielding box 8.
  • the fillet formation state on the outer side of the flange portion 711 was better.
  • the test bodies E21 to E26 were joined with no problem in practical use, although the fillet formation state on the outside of the flange portion 711 was slightly inferior to the test bodies E27 to E32.
  • the specimens E30 to E32 that have been brazed while the sacrificial oxide material 82 is housed in the shielding box 8 have a flange portion compared to the specimens E27 to E29 that have been brazed without using the sacrificial oxide material 82.
  • the fillet formed on the outside of 711 became larger. From this, it can be understood that the oxygen concentration in the shielding box 8 can be reduced by the action of the sacrificial oxidant 82, and as a result, the wettability of the wax outside the flange portion 711 is improved.
  • test body C23 in which both the pressure and temperature of the preheating chamber 2 are in bad conditions and the test body C24 in which the preheating is not performed have worse fillet formation in both the inside and outside of the minicore than the test body C22. .
  • the formation state of the fillet was improved as compared with the test body C24 in which only the pressure reduction of the preheating chamber 2 was performed.
  • fillet breakage occurred on the outer side of the flange portion 711, resulting in poor bonding, so that it did not reach a level where there was no practical problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

A brazing furnace (1) has a preheating chamber (2) and a brazing chamber (3). The preheating chamber (2) has the following: a vacuum pump (21) for reducing the pressure inside the chamber in a state in which the chamber houses a material to be treated (100); a preheating device (22) for preheating the material to be treated (100) under a reduced-pressure atmosphere; and a pressure-restoring gas introducing device (23) that introduces an inert gas for restoring the pressure inside the chamber after preheating. The brazing chamber (3) has a gas substitution device (31) for introducing the inert gas into the chamber and a main heating device (32) that heats the material to be treated (100) to a brazing temperature, and as a result of the foregoing, the brazing joining quality can be easily stabilized with regard to brazing in which the flux application amount is reduced or in which no flux is used.

Description

ろう付炉及びアルミニウム材のろう付方法Brazing furnace and aluminum brazing method
 本発明は、アルミニウム材のろう付を行うためのろう付炉及びアルミニウム材のろう付方法に関する。 The present invention relates to a brazing furnace and an aluminum material brazing method for brazing an aluminum material.
 アルミニウム材のろう付方法としては、フラックスを被処理材に塗布し、窒素などの不活性ガス雰囲気下において被処理材を加熱してろう付を行うCAB(Controlled Atmosphere Brazing)法が多用されている。CAB法に用いられるフッ化物系フラックスは、ろう付時の加熱により酸化されるとフラックスとしての機能が低下するという問題がある。この問題を回避するため、CAB法においては、通常、十分な量のフラックスを塗布するとともに、雰囲気中の酸素濃度を100ppm以下、より好ましくは20ppm以下に制御してろう付を行っている。 As a brazing method for aluminum materials, a CAB (Controlled Atmosphere Brazing) method is often used in which flux is applied to a material to be treated and the material to be treated is brazed in an inert gas atmosphere such as nitrogen. . The fluoride-based flux used in the CAB method has a problem that its function as a flux decreases when it is oxidized by heating during brazing. In order to avoid this problem, in the CAB method, a sufficient amount of flux is usually applied, and brazing is performed by controlling the oxygen concentration in the atmosphere to 100 ppm or less, more preferably 20 ppm or less.
 フッ化物系フラックスはアルミニウムに対して非腐食性であるため、ろう付後の腐食性の観点からは、ろう付後にアルミニウム材を洗浄してフラックスの残渣を除去する必要がない。しかしながら、アルミニウム材の用途によっては、フラックスやフラックス残渣が存在すると以下のような問題を起こすことがある。例えば、自動車用熱交換器に代表されるアルミニウム製熱交換器においては、その製造時にフラックス残渣により表面処理性が悪化するなどの問題が発生するおそれがある。また、アルミニウム製熱交換器の使用中に、冷媒通路にフラックス等に起因する目詰まりが発生する、あるいは、熱交換器に当接する電子部品にフラックス等が悪影響を与えるなどの問題が生じるおそれがある。 Fluoride-based flux is non-corrosive to aluminum, so from the viewpoint of corrosiveness after brazing, it is not necessary to clean the aluminum material after brazing and remove the flux residue. However, depending on the use of the aluminum material, the presence of flux or flux residue may cause the following problems. For example, in an aluminum heat exchanger represented by a heat exchanger for automobiles, there is a possibility that problems such as deterioration of surface treatment property due to a flux residue may occur during the production. In addition, during use of the aluminum heat exchanger, clogging due to flux or the like may occur in the refrigerant passage, or there may be a problem that the flux or the like adversely affects electronic components that contact the heat exchanger. is there.
 そこで、フラックスの塗布量を低減したろう付方法や、フラックスを使用しないろう付方法の開発が進められている。接合不良の発生を抑制しつつ、フラックスの塗布量の低減あるいはフラックスを使用しないろう付を実現するためには、ろう付時における雰囲気中の酸素濃度や露点を低減することが効果的である。 Therefore, the development of a brazing method that reduces the amount of flux applied and a brazing method that does not use a flux are underway. It is effective to reduce the oxygen concentration and dew point in the atmosphere at the time of brazing in order to reduce the amount of flux applied or to achieve brazing without using flux while suppressing the occurrence of poor bonding.
 例えば、特許文献1には、不活性ガスとしてアルゴンやヘリウムを用いてろう付を行う方法が提案されている。これらのガスは、一般的に使用されている窒素に比べて雰囲気中の酸素濃度や露点を低減することができる。 For example, Patent Document 1 proposes a method of brazing using argon or helium as an inert gas. These gases can reduce the oxygen concentration and dew point in the atmosphere as compared with nitrogen that is generally used.
 特許文献2には、ろう付加熱ゾーンの前室を扉で仕切られた独立構造にし、前室に被処理材を収容した状態で室内を真空排気した後、不活性ガスで室内を復圧する方法が提案されている。この方法によれば、前室からろう付加熱ゾーンへの酸素や水分の持ち込み量を低減することができる。その結果、加熱ゾーンの酸素濃度や露点を従来に比べて低減することができ、例えば、酸素濃度を比較的容易に50ppm程度まで低減することができる。 Patent Document 2 discloses a method in which a front chamber of a brazing additional heat zone is made an independent structure partitioned by a door, the chamber is evacuated in a state where a material to be processed is accommodated in the front chamber, and then the chamber is decompressed with an inert gas. Has been proposed. According to this method, it is possible to reduce the amount of oxygen and moisture brought from the anterior chamber to the brazing additional heat zone. As a result, the oxygen concentration and dew point of the heating zone can be reduced as compared with the conventional case. For example, the oxygen concentration can be reduced to about 50 ppm relatively easily.
 また、特許文献3には、フラックスを用いずにろう付を行う、いわゆるフラックスレスろう付法として、微量のBi(ビスマス)やBe(ベリリウム)を含むろう材を用いた方法が提案されている。Bi等を含むろう材またはそのクラッド材を酸やアルカリでエッチングし、酸素濃度や露点を厳しく管理したろう付炉を用いて加熱を行うことにより、フラックスを用いずにろう付を行うことができる。 Patent Document 3 proposes a method using a brazing material containing a small amount of Bi (bismuth) or Be (beryllium) as a so-called fluxless brazing method in which brazing is performed without using a flux. . It is possible to braze without using flux by etching a brazing material containing Bi or the like or a clad material thereof with an acid or alkali, and heating using a brazing furnace in which oxygen concentration and dew point are strictly controlled. .
特開2013-091066号公報JP2013-091066A 特開平10-277730号公報Japanese Patent Laid-Open No. 10-277730 特開平11-285817号公報Japanese Patent Laid-Open No. 11-285817
 しかしながら、特許文献1の技術は、窒素に比べて高価なアルゴンやヘリウムを用いる必要があるため、量産設備に適用することは困難である。 However, since the technique of Patent Document 1 needs to use argon or helium that is more expensive than nitrogen, it is difficult to apply it to mass production facilities.
 特許文献2の技術は、不活性ガスとして窒素を用いた場合に、ろう付加熱ゾーンにおける酸素濃度や露点を従来よりも低減することができる。ところが、特許文献2の技術を適用してろう付加熱ゾーンへの酸素や水分の持ち込み量を低減しても、接合不良の発生を完全に抑制することはできていない。ろう付性の悪化や接合不良の発生は、例えば、大気中の露点が継続して高い季節や、被処理材の構造が複雑な場合等に起こりやすい。この原因としては、ろう付に用いる治具や被処理材に吸着した水分等がろう付加熱ゾーンに持ち込まれることが挙げられる。後述するように、このようにして持ち込まれる水分は、真空排気により十分に除去することが困難である。 The technique of Patent Document 2 can reduce the oxygen concentration and dew point in the brazing additional heat zone when nitrogen is used as an inert gas. However, even if the technique of Patent Document 2 is applied to reduce the amount of oxygen and moisture brought into the brazing additional heat zone, the occurrence of poor bonding cannot be completely suppressed. Deterioration of brazeability and occurrence of poor bonding are likely to occur, for example, in a season when the dew point in the atmosphere is continuously high or when the structure of the material to be processed is complicated. As this cause, the water | moisture content etc. which were adsorb | sucked to the jig | tool used for brazing, and a to-be-processed material are mentioned. As will be described later, it is difficult to sufficiently remove the moisture brought in this way by evacuation.
 また、フラックスレスろう付法としては、材料や加熱方法に関して、特許文献3の技術を含めて多くの技術の提案がなされている。しかしながら、今日に至るまで、不活性ガス雰囲気下でのフラックスレスろう付法が実用化された事例は殆ど存在していない。フラックスレスろう付法の実用化を妨げる要因としては、フラックスを用いるろう付法に比べて接合能力が劣る点、及び、ろう付性が作業環境による影響を受け易く、ろう付接合の品質を安定させることが難しい点が挙げられる。特に、後者の問題は、治具、被処理材及びろう材の保管環境や使用状況によっては深刻な接合不良を生じさせるおそれがあるため、フラックスレスろう付法の実用化を妨げる大きな原因となっている。 As the fluxless brazing method, many techniques have been proposed regarding the material and the heating method, including the technique of Patent Document 3. However, to date, there have been few examples of practical application of the fluxless brazing method under an inert gas atmosphere. Factors that hinder the practical application of the flux-less brazing method are that the bonding ability is inferior to that of the flux-based brazing method, and that the brazing performance is easily affected by the work environment, which stabilizes the quality of brazing. It is difficult to make it. In particular, the latter problem is a major cause of hindering the practical application of the fluxless brazing method because it may cause serious bonding failure depending on the storage environment and usage conditions of the jig, the workpiece and the brazing material. ing.
 以上のように、従来の技術では、フラックスの塗布量を低減したろう付あるいはフラックスを使用しないろう付において、ろう付接合の品質を安定させることが難しいという問題がある。発明者らは、上記の背景を踏まえて更に検討を重ねた結果、以下の3点がろう付性を悪化させる要因となり得ることに着目した。
 (1)成形加工により被処理材に付着した油分
 (2)ろう付に用いる治具に吸着している水分及び油分
 (3)ろう付に用いる治具に付着している異物
As described above, the conventional technique has a problem that it is difficult to stabilize the quality of brazing joint in brazing with a reduced amount of flux applied or brazing without using flux. As a result of further investigations based on the above background, the inventors focused on the fact that the following three points can be factors that deteriorate brazing.
(1) Oil adhering to the material to be processed by molding (2) Moisture and oil adsorbed on the jig used for brazing (3) Foreign matter adhering to the jig used for brazing
 上記(1)については、成形加工により被処理材に付着した油分は、真空排気により除去することが困難である。油分の低減には、脱脂処理液を用いて成形加工後に被処理材の脱脂処理を行うことが有効である。しかし、脱脂処理液には、環境上の問題により使用が制限されているものがある。また、脱脂処理による製造コストの増大を回避するため、成形加工の際に揮発性油を用い、脱脂処理を省略することも少なくない。 As for (1) above, it is difficult to remove the oil adhering to the material to be treated by the molding process by vacuum exhaust. In order to reduce the oil content, it is effective to degrease the material to be treated after molding using a degreasing solution. However, some degreasing liquids are restricted in use due to environmental problems. Further, in order to avoid an increase in manufacturing cost due to the degreasing treatment, volatile oil is often used in the molding process, and the degreasing treatment is often omitted.
 上記(2)については、例えば、黒鉛製の治具を用いる場合にろう付性への影響が大きくなると考えられる。黒鉛等の多孔質材料は、その孔内に水分や油分が吸着されているため、真空排気を長時間行っても孔内の水分等を完全に除去することが困難である。 Regarding the above (2), for example, when a graphite jig is used, it is considered that the effect on brazing is increased. In porous materials such as graphite, moisture and oil are adsorbed in the pores, so that it is difficult to completely remove moisture and the like in the pores even after evacuation for a long time.
 上記(3)については、種々の原因により治具に付着した異物が問題になると考えられる。例えば、フラックスを用いたろう付においては、加熱により溶融したフラックスが再度固化して治具に付着することが頻繁に発生する。このフラックスは、治具に付着した油分、アルミニウム材中のMg(マグネシウム)、大気中の酸素または水分等と混合し、あるいは反応することがある。このようにして形成された混合物や反応物は、真空排気により除去することができない。 Regarding (3) above, it is considered that foreign matter adhering to the jig due to various causes becomes a problem. For example, in brazing using a flux, the flux melted by heating frequently solidifies again and adheres to the jig. This flux may mix or react with oil adhering to the jig, Mg (magnesium) in the aluminum material, oxygen or moisture in the atmosphere, and the like. The mixture or reactant formed in this way cannot be removed by evacuation.
 このように、ろう付加熱ゾーンにはろう付性を悪化させる原因となる水分等が被処理材や治具から持ち込まれ得る。そして、ろう付加熱ゾーン内に持ち込まれた水分等は、加熱により蒸発し、あるいは熱分解してろう付性を悪化させると考えられる。上記(1)~(3)の推定要因は、常に複合的に作用してろう付性に多様な影響を及ぼすため、ろう付性を悪化させる原因の究明を困難にし、更にはろう付性を恒久的に改善するための解決策を見出すことを妨げていた。 Thus, moisture or the like that causes the brazing property to deteriorate can be brought into the brazing additive heat zone from the material to be treated or the jig. And the water | moisture content etc. which were brought in in the brazing additional heat zone are considered to evaporate by heating or to thermally decompose and to deteriorate brazing property. The above estimation factors (1) to (3) always act in a complex manner and have various effects on brazing properties, making it difficult to determine the cause of the deterioration of brazing properties, It prevented us from finding a solution to improve permanently.
 本発明は、かかる背景に鑑みてなされたものであり、フラックスの塗布量を低減したろう付あるいはフラックスを使用しないろう付において、ろう付接合の品質を容易に安定させることができるろう付炉及びろう付方法を提供しようとするものである。 The present invention has been made in view of such a background, and a brazing furnace capable of easily stabilizing the quality of brazing joint in brazing with a reduced amount of flux applied or brazing without using a flux, and It is intended to provide a brazing method.
 本発明の一態様は、アルミニウム材よりなる被処理材のろう付に用いられるろう付炉であって、
 予備加熱室とろう付室とを有し、
 上記予備加熱室は、上記被処理材を収容した状態で室内を減圧するための真空ポンプと、減圧雰囲気下において上記被処理材を予備加熱する予備加熱装置と、予備加熱後に室内を復圧するための不活性ガスを導入する復圧ガス導入装置とを有し、
 上記ろう付室は、室内に不活性ガスを導入するガス置換装置と、上記被処理材をろう付温度に加熱する本加熱装置とを有している、ろう付炉にある。
One aspect of the present invention is a brazing furnace used for brazing a material to be treated made of an aluminum material,
A preheating chamber and a brazing chamber;
The preheating chamber includes a vacuum pump for depressurizing the chamber in a state in which the material to be treated is accommodated, a preheating device for preheating the material to be treated in a decompressed atmosphere, and a pressure relief chamber after the preheating. A return pressure gas introduction device for introducing the inert gas of
The brazing chamber is a brazing furnace having a gas replacement device for introducing an inert gas into the chamber and a main heating device for heating the material to be treated to a brazing temperature.
 本発明の他の態様は、アルミニウム材よりなる被処理材を100Pa以下の減圧雰囲気下において予備加熱し、
 次いで、不活性ガスを供給することにより上記被処理材の周囲を不活性ガス雰囲気にし、
 その後、上記不活性ガス雰囲気を維持した状態で上記被処理材を加熱してろう付を行う、アルミニウム材のろう付方法にある。
In another aspect of the present invention, a material to be treated made of an aluminum material is preheated under a reduced pressure atmosphere of 100 Pa or less,
Next, by supplying an inert gas, the periphery of the material to be treated is made an inert gas atmosphere,
Then, it is in the brazing method of the aluminum material which brazes by heating the said to-be-processed material in the state which maintained the said inert gas atmosphere.
 上記ろう付炉は、上記真空ポンプと、上記予備加熱装置と、上記復圧ガス導入装置とを備えた上記予備加熱室を有している。それ故、上記ろう付炉は、上記被処理材を上記予備加熱室に収容した状態で、室内の減圧及び上記被処理材の予備加熱を行うことができる。そして、減圧雰囲気下において上記被処理材の予備加熱を行うことにより、上記被処理材及び治具に吸着した水分等の蒸発や熱分解を促進させることができる。その結果、予備加熱を行わない場合に比べて、上記ろう付室内に持ち込まれる水分等の量を低減することができる。 The brazing furnace has the preheating chamber provided with the vacuum pump, the preheating device, and the return pressure gas introduction device. Therefore, the brazing furnace can perform pressure reduction in the room and preheating of the material to be treated while the material to be treated is accommodated in the preheating chamber. Then, by preheating the material to be treated in a reduced-pressure atmosphere, evaporation or thermal decomposition of moisture adsorbed on the material to be treated and the jig can be promoted. As a result, the amount of moisture and the like brought into the brazing chamber can be reduced as compared with the case where preheating is not performed.
 また、上記ろう付炉は、上記予備加熱が完了した後、上記予備加熱室内に不活性ガスを導入して復圧することができる。不活性ガスを用いて上記予備加熱室の復圧を行うことにより、上記予備加熱後の上記被処理材及び治具が大気に晒されることを回避でき、結果としてこれらへの水分等の再吸着を回避することができる。 Also, the brazing furnace can be reinstated by introducing an inert gas into the preheating chamber after the preheating is completed. By performing return pressure of the preheating chamber using an inert gas, it is possible to avoid exposure of the workpiece and jig after the preheating to the atmosphere, and as a result, re-adsorption of moisture and the like to them. Can be avoided.
 また、不活性ガスを用いて上記予備加熱室を復圧することにより、上記被処理材を上記予備加熱室から上記ろう付室へ移動させる際に、ろう付室に大気が混入することを回避できる。その結果、上記ろう付室内の酸素濃度及び露点を、従来の不活性ガスを用いたろう付炉に比べて低水準に保つことができる。また、上記ろう付室のマッフルに犠牲酸化能力を有する黒鉛を用いるなどの必要がなくなるため、上記ろう付炉の製造コストを低減する効果も期待することができる。 In addition, by restoring the pressure of the preheating chamber using an inert gas, it is possible to avoid air from being mixed into the brazing chamber when the material to be treated is moved from the preheating chamber to the brazing chamber. . As a result, the oxygen concentration and dew point in the brazing chamber can be kept at a low level as compared with a conventional brazing furnace using an inert gas. Moreover, since it is not necessary to use graphite having a sacrificial oxidation capability for the muffle of the brazing chamber, an effect of reducing the manufacturing cost of the brazing furnace can be expected.
 このように、上記ろう付炉は、従来のろう付炉に比べて上記ろう付室内に持ち込まれる水分等の量を確実に低減することができる。それ故、フラックスの塗布量を低減したろう付あるいはフラックスを使用しないろう付を行う際に上記ろう付炉を用いることにより、被処理材、治具及びろう材の保管環境や使用状況、炉外環境の変動等がろう付性に及ぼす影響を抑制することができる。その結果、上記ろう付炉は、ろう付接合の品質を容易に安定させることができ、ろう付性の悪化や接合不良の発生を抑制することができる。 Thus, the brazing furnace can surely reduce the amount of moisture and the like brought into the brazing chamber as compared with the conventional brazing furnace. Therefore, by using the above brazing furnace when brazing with a reduced flux application amount or without using flux, the storage environment and usage status of the materials to be processed, jigs and brazing materials, the outside of the furnace It is possible to suppress the influence of environmental fluctuations on brazing. As a result, the brazing furnace can easily stabilize the quality of the brazing joint, and can suppress the deterioration of the brazing property and the occurrence of poor bonding.
 上記ろう付炉は、被処理材等の保管状況等がろう付性に及ぼす影響を抑制することができるため、例えば高温多湿な地域や季節においても好適に使用することができる。また、上記ろう付炉は、被処理材や治具の保管環境等の厳密な管理が難しい作業環境であっても良好なろう付を実現することができる。 The brazing furnace can be suitably used in, for example, high-temperature and high-humidity areas and seasons because the influence of the storage condition of the material to be treated on the brazing property can be suppressed. In addition, the brazing furnace can achieve good brazing even in a working environment where strict management such as storage environment of the material to be processed and jigs is difficult.
 上記の態様のろう付方法は、減圧雰囲気下における予備加熱、不活性ガスの供給による復圧及び不活性ガス雰囲気下でのろう付を行う。それ故、上述したように、フラックスの塗布量を低減したろう付あるいはフラックスを使用しないろう付を行う際に、上記被処理材、治具及びろう材の保管環境や使用状況、炉外環境の変動等がろう付性に及ぼす影響を抑制することができる。その結果、ろう付接合の品質を容易に安定させることができる。 The brazing method of the above aspect performs preheating in a reduced pressure atmosphere, return pressure by supplying an inert gas, and brazing in an inert gas atmosphere. Therefore, as described above, when brazing with a reduced amount of flux applied or brazing without using a flux, the storage environment and usage status of the material to be treated, the jig and the brazing material, the environment outside the furnace, It is possible to suppress the influence of fluctuation or the like on the brazing property. As a result, the quality of the brazing joint can be easily stabilized.
実施例1における、ろう付炉の側面図。The side view of the brazing furnace in Example 1. FIG. 実施例2における、複数のサブユニット及び冷却室を備えたろう付炉の側面図。The side view of the brazing furnace provided with the some subunit in Example 2 and the cooling chamber. 実験例1における、ハニカムパネルを構成するハニカムコア及び枠部の平面図。The top view of the honeycomb core and frame part which comprise a honeycomb panel in Experimental example 1. FIG. 実験例1における、被処理材を治具に固定した状態の側面図。The side view of the state which fixed the to-be-processed material to the jig | tool in Experimental example 1. FIG. 実験例2における、パラレルフロー型熱交換器を模擬した被処理材の平面図。The top view of the to-be-processed material which simulated the parallel flow type heat exchanger in Experimental example 2. FIG. 実験例3における、中空型熱交換器を模擬した被処理材の側面断面図。Side surface sectional drawing of the to-be-processed material which simulated the hollow type heat exchanger in Experimental example 3. FIG. 実験例3における、被処理材を収容した状態の遮蔽箱の側面断面図。Side surface sectional drawing of the shielding box in the state in which the to-be-processed material was accommodated in Experimental example 3. FIG.
 上記ろう付炉において、不活性ガスとしては、酸化性を有しないガスを使用することができる。量産設備においては、コストの観点から、通常、窒素ガスが使用される。 In the brazing furnace, an inert gas can be used as the inert gas. In mass production facilities, nitrogen gas is usually used from the viewpoint of cost.
 予備加熱室は、室内の圧力を100Pa以下にすることができるように構成されていることが好ましい。予備加熱室内の圧力を100Pa以下にすることにより、予備加熱における水分等の除去をより促進することができる。その結果、予備加熱に要する時間をより短縮することができる。予備加熱室内の圧力が100Paを超える場合には、水分等の除去に要する時間が長くなり、生産性の低下を招くおそれがある。また、場合によっては水分等が十分に除去されず、ろう付接合の品質の低下を招くおそれもある。 The preheating chamber is preferably configured so that the pressure in the chamber can be 100 Pa or less. By setting the pressure in the preheating chamber to 100 Pa or less, the removal of moisture and the like in the preheating can be further promoted. As a result, the time required for preheating can be further shortened. When the pressure in the preheating chamber exceeds 100 Pa, the time required for removing moisture and the like becomes longer, and there is a possibility that the productivity is lowered. In some cases, moisture and the like are not sufficiently removed, and the quality of brazing joining may be deteriorated.
 上記予備加熱装置は、上記被処理材の温度を200℃超にすることができるように構成されていることが好ましい。予備加熱においては、被処理材の温度を150℃以上にすることにより、治具等に吸着した水分の蒸発を促進させることができる。また、被処理材を200℃を超える温度まで加熱することにより、水分に加えて油分の除去を促進させることができる。 It is preferable that the preheating device is configured so that the temperature of the material to be processed can exceed 200 ° C. In the preheating, by elevating the temperature of the material to be processed to 150 ° C. or higher, evaporation of moisture adsorbed on the jig or the like can be promoted. Further, by heating the material to be processed to a temperature exceeding 200 ° C., removal of oil in addition to moisture can be promoted.
 上記本加熱装置は、個別に温度を調整可能な複数のサブユニットを有しており、該複数のサブユニットが上記被処理材の搬送方向に沿って配置されていてもよい。この場合には、被処理材の温度をきめ細かく制御することが可能となる。そのため、例えばろう付室内の位置に応じて被処理材の温度を段階的に変化させ、高品質なろう付接合を実現することができる。 The heating apparatus may include a plurality of subunits whose temperatures can be individually adjusted, and the plurality of subunits may be arranged along the conveyance direction of the material to be processed. In this case, the temperature of the material to be processed can be finely controlled. Therefore, for example, the temperature of the material to be processed can be changed stepwise according to the position in the brazing chamber, and high-quality brazing joining can be realized.
 上記の場合において、隣り合う上記サブユニットの間には仕切り扉が開閉可能に設けられていてもよい。この場合には、仕切り扉を閉鎖した状態で被処理材を加熱することにより、隣り合う仕切り扉の間に配置された被処理材を、個々のサブユニットを用いて均一に加熱することができる。 In the above case, a partition door may be provided between the adjacent subunits so as to be openable and closable. In this case, by heating the material to be processed in a state where the partition door is closed, the material to be processed disposed between the adjacent partition doors can be heated uniformly using the individual subunits. .
 上記ろう付炉は、上記ろう付室に連通する冷却室を有しており、該冷却室は、室内に不活性ガスを導入する冷却ガス導入装置を有していてもよい。被処理材を不活性ガス雰囲気下で冷却することにより、被処理材の不要な酸化を抑制することができる。また、この場合には、上記冷却室が不活性ガスで満たされているため、ろう付室への大気の混入が起こりにくい。それ故、ろう付室内の酸素濃度及び露点を長期間に亘って容易に低い水準に保つことができる。 The brazing furnace has a cooling chamber communicating with the brazing chamber, and the cooling chamber may have a cooling gas introduction device for introducing an inert gas into the chamber. By cooling the material to be treated in an inert gas atmosphere, unnecessary oxidation of the material to be treated can be suppressed. In this case, since the cooling chamber is filled with an inert gas, air is hardly mixed into the brazing chamber. Therefore, the oxygen concentration and the dew point in the brazing chamber can be easily kept at a low level over a long period of time.
 上記ろう付炉は、フッ化物系フラックスが予め塗布された被処理材のろう付(フラックスろう付)、及び、フッ化物系フラックスが予め塗布されていない被処理材のろう付(フラックスレスろう付)のいずれにも用いることができる。いずれの場合であっても、上記予備加熱は、上記被処理材を200℃超え400℃以下の温度に加熱して行うことがより好ましい。減圧雰囲気下において400℃を超える温度まで被処理材を加熱すると、アルミニウム材やフラックスに含まれるZn(亜鉛)やMg(マグネシウム)が蒸発するおそれがある。 The brazing furnace includes brazing of a treated material to which a fluoride-based flux has been applied in advance (flux brazing) and brazing of a treated material to which a fluoride-based flux has not been previously applied (fluxless brazing). ). In any case, the preheating is more preferably performed by heating the material to be treated to a temperature of 200 ° C. to 400 ° C. or less. When the material to be treated is heated to a temperature exceeding 400 ° C. in a reduced pressure atmosphere, Zn (zinc) and Mg (magnesium) contained in the aluminum material and the flux may evaporate.
 Znは、ろう付時の加熱により拡散して材料中に濃度勾配を形成する。これにより、被処理材に犠牲陽極効果を付与することができ、ろう付後の耐食性を向上させることができる。また、Mgは、ろう付時にアルミニウム材表面の自然酸化膜を破壊してろう付性を向上させる効果を有する。それ故、ZnやMgが蒸発すると、ろう付後の耐食性の悪化や被処理材のろう付性の悪化を招くおそれがある。かかる問題を回避するため、予備加熱における加熱温度は200℃超え400℃以下とすることが好ましい。なお、加熱温度が400℃を超える場合には、速やかに復圧することによりZnやMgの蒸発を抑制することができる。 Zn diffuses by heating during brazing and forms a concentration gradient in the material. Thereby, a sacrificial anode effect can be provided to a to-be-processed material, and the corrosion resistance after brazing can be improved. Mg has an effect of improving the brazing property by destroying the natural oxide film on the surface of the aluminum material at the time of brazing. Therefore, if Zn or Mg evaporates, the corrosion resistance after brazing and the brazing property of the material to be treated may be deteriorated. In order to avoid such a problem, it is preferable that the heating temperature in the preheating is 200 ° C. or more and 400 ° C. or less. In addition, when heating temperature exceeds 400 degreeC, evaporation of Zn or Mg can be suppressed by returning to pressure quickly.
上記ろう付炉を用いてフラックスろう付を行う場合には、ろう付室内に持ち込む水分や油分等を低減することができるため、従来の方法に比べてフラックスを効果的に作用させることができる。それ故、良好なろう付性を確保した上で、従来よりもフラックスの塗布量を容易に低減することができる。 When flux brazing is performed using the brazing furnace, moisture, oil, and the like brought into the brazing chamber can be reduced, so that the flux can be effectively applied as compared with the conventional method. Therefore, it is possible to easily reduce the amount of flux applied as compared with the prior art while ensuring good brazing properties.
 フラックスろう付においては、水で希釈したフラックスを用いることもできる。かかるフラックスを塗布した被処理材は、別途準備した乾燥装置により予め水分を乾燥させた後に上記予備加熱室内に送入することが好ましい。この場合において、乾燥装置と予備加熱室とが直結していてもよい。また、予備加熱室の排気ラインに水冷トラップ等を設置することにより、予備加熱室内でフラックスの水分を乾燥させることも可能である。 In flux brazing, a flux diluted with water can be used. It is preferable that the material to be treated coated with such a flux is fed into the preheating chamber after moisture is dried in advance by a separately prepared drying apparatus. In this case, the drying device and the preheating chamber may be directly connected. Further, it is possible to dry the moisture of the flux in the preheating chamber by installing a water cooling trap or the like in the exhaust line of the preheating chamber.
 上記ろう付炉を用いてフラックスレスろう付を行う場合には、ろう付室内に持ち込む水分や油分等を低減することができるため、従来のフラックスレスろう付に比べて接合能力を向上させることができる。それ故、従来よりも良好なろう付を実現できると共に、ろう付接合の品質を容易に安定させることができる。 When performing fluxless brazing using the above brazing furnace, it is possible to reduce the moisture and oil content brought into the brazing chamber, so that the joining ability can be improved compared to conventional fluxless brazing. it can. Therefore, it is possible to realize brazing better than the conventional one and to easily stabilize the quality of the brazing joint.
 フラックスレスろう付を行う場合、上記予備加熱及び上記ろう付は、金属または黒鉛よりなり通気孔を有する遮蔽箱に上記被処理材を収容した状態で行われることが好ましい。この場合には、予備加熱により被処理材から水分等が除去された後、ろう付室内を復圧することにより、上記通気孔から遮蔽箱内に不活性ガスが流入する。そして、復圧作業以降は、遮蔽箱の内部と外部との間の圧力差がほぼない状態となるため、遮蔽箱内部の不活性ガス雰囲気が維持され易い。そのため、例えば何らかの原因でろう付室内の酸素濃度や露点が上昇した場合等にも、遮蔽箱外部の雰囲気の影響を受けにくくなり、良好なろう付を実現できると共に、ろう付接合の品質をより容易に安定させることができる。 When performing fluxless brazing, the preheating and the brazing are preferably performed in a state where the material to be treated is accommodated in a shielding box made of metal or graphite and having a vent hole. In this case, after moisture or the like is removed from the material to be treated by preheating, the inert gas flows into the shielding box from the vent hole by returning the pressure in the brazing chamber. Since the pressure difference between the inside and outside of the shielding box is almost zero after the return pressure operation, the inert gas atmosphere inside the shielding box is easily maintained. For this reason, for example, even when the oxygen concentration or dew point in the brazing chamber rises for some reason, it is less affected by the atmosphere outside the shielding box, and it is possible to achieve good brazing and improve the quality of brazing joints. Can be easily stabilized.
 また、上記遮蔽箱には、さらに、箱内の酸素を消費する犠牲酸化材が収容されていることが好ましい。この場合には、犠牲酸化材の作用により、遮蔽箱内の酸素濃度を更に低減することができる。それ故、ろう付接合の品質をより容易に安定させることができる。 Further, it is preferable that a sacrificial oxidant that consumes oxygen in the box is accommodated in the shielding box. In this case, the oxygen concentration in the shielding box can be further reduced by the action of the sacrificial oxidizing material. Therefore, the quality of the brazing joint can be more easily stabilized.
 上記犠牲酸化材としては、例えば、酸化物を生成する際の自由エネルギーが被処理材よりも低い金属やその合金を使用することができる。この具体例としては、MgやMg合金が挙げられる。また、犠牲酸化材として、被処理材と同質のAl(アルミニウム)やAl合金を使用することもできる。犠牲酸化材の形態は特に限定されず、粉末状や板状等の種々の形態とすることができる。 As the sacrificial oxide material, for example, a metal or an alloy thereof having lower free energy than that of the material to be processed can be used. Specific examples thereof include Mg and Mg alloy. Further, Al (aluminum) or Al alloy having the same quality as the material to be treated can be used as the sacrificial oxidation material. The form of the sacrificial oxidation material is not particularly limited, and various forms such as a powder form and a plate form can be used.
(実施例1)
 上記ろう付炉及びろう付方法の実施例について、図を用いて説明する。図1に示すように、ろう付炉1は、アルミニウム材よりなる被処理材100のろう付に用いられる。ろう付炉1は予備加熱室2とろう付室3とを有している。予備加熱室2は、被処理材100を収容した状態で室内を減圧するための真空ポンプ21と、減圧雰囲気下において被処理材100を予備加熱する予備加熱装置22と、予備加熱後に室内を復圧するための不活性ガスを導入する復圧ガス導入装置23とを有している。ろう付室3は、室内に不活性ガスを導入するガス置換装置31と、被処理材100をろう付温度に加熱する本加熱装置32とを有している。
(Example 1)
Examples of the brazing furnace and the brazing method will be described with reference to the drawings. As shown in FIG. 1, the brazing furnace 1 is used for brazing a material to be processed 100 made of an aluminum material. The brazing furnace 1 has a preheating chamber 2 and a brazing chamber 3. The preheating chamber 2 includes a vacuum pump 21 for depressurizing the interior of the processing material 100 in a state in which the processing target material 100 is accommodated, a preheating device 22 for preheating the processing target material 100 in a reduced pressure atmosphere, and restoring the chamber after preheating. And a return pressure gas introduction device 23 for introducing an inert gas for pressurization. The brazing chamber 3 includes a gas replacement device 31 that introduces an inert gas into the chamber, and a main heating device 32 that heats the workpiece 100 to a brazing temperature.
 本例のろう付炉1は、ステンレスマッフル24、33の外側に予備加熱装置22及び本加熱装置32が配置された外熱式の加熱炉である。予備加熱装置22と本加熱装置32との間には中間扉25が開閉可能に設けられており、中間扉25により予備加熱室2とろう付室3とが隔てられている。予備加熱室2及びろう付室3の均熱域寸法は、それぞれ、長さ300mm、幅200mm及び高さ200mmである。また、予備加熱室2及びろう付室3には、それぞれ、被処理材100を搬送する無端ベルト式の搬送装置11が設けられている。これらの搬送装置11は、後述する前扉261を閉じた状態においてろう付炉1の内部に完全に収容されるように設けられており、ろう付炉1の外部に設けられた搬送装置(図示略)とは切り離されている。そのため、ろう付炉1の外部に設けられた搬送装置による炉内への水分や油分等の持込みを防止することができる。 The brazing furnace 1 of this example is an external heating furnace in which the preheating device 22 and the main heating device 32 are arranged outside the stainless muffles 24 and 33. An intermediate door 25 is provided between the preheating device 22 and the main heating device 32 so as to be openable and closable, and the preheating chamber 2 and the brazing chamber 3 are separated by the intermediate door 25. The soaking area dimensions of the preheating chamber 2 and the brazing chamber 3 are a length of 300 mm, a width of 200 mm, and a height of 200 mm, respectively. Each of the preheating chamber 2 and the brazing chamber 3 is provided with an endless belt type transport device 11 for transporting the material to be processed 100. These transfer apparatuses 11 are provided so as to be completely accommodated in the brazing furnace 1 in a state where a front door 261 described later is closed, and a transfer apparatus (illustrated) provided outside the brazing furnace 1 is illustrated. Is omitted. Therefore, it is possible to prevent moisture, oil, and the like from being brought into the furnace by the transfer device provided outside the brazing furnace 1.
 予備加熱室2は、被処理材100を送入及び送出する出入口26を有しており、出入口26には前扉261が開閉可能に設けられている。予備加熱室2は、前扉261及び中間扉25を閉鎖した状態で真空ポンプ21を作動させることにより、室内の圧力を0.4Pa以下にすることができるように構成されている。なお、室内の圧力は、ピラニゲージ(不図示)により測定することができる。 The preheating chamber 2 has an entrance / exit 26 through which the material to be processed 100 is sent and delivered, and a front door 261 is provided at the entrance / exit 26 so as to be opened and closed. The preheating chamber 2 is configured so that the pressure in the chamber can be reduced to 0.4 Pa or less by operating the vacuum pump 21 with the front door 261 and the intermediate door 25 closed. The indoor pressure can be measured with a Pirani gauge (not shown).
 真空ポンプ21は、ろう付炉1の外部に配置されており、真空ポンプ21から延びた排気ライン211が予備加熱室2の室内に連通している。また、排気ライン211には、真空ポンプ21と予備加熱室2との間を遮断する排気バルブ212が設けられている。なお、本例の真空ポンプ21は油回転ポンプである。 The vacuum pump 21 is disposed outside the brazing furnace 1, and an exhaust line 211 extending from the vacuum pump 21 communicates with the preheating chamber 2. The exhaust line 211 is provided with an exhaust valve 212 that shuts off the vacuum pump 21 and the preheating chamber 2. In addition, the vacuum pump 21 of this example is an oil rotary pump.
 復圧ガス導入装置23は、ろう付炉1の外部に配置されたガス供給源231、ガス供給源231から予備加熱室2内まで延びた復圧ガスライン232及び復圧ガスライン232上に配置された復圧バルブ233を有している。復圧ガス導入装置23は、予備加熱室2内に窒素ガスを供給できるように構成されている。 The recompressed gas introduction device 23 is disposed on a gas supply source 231 disposed outside the brazing furnace 1, a recompressed gas line 232 extending from the gas supply source 231 into the preheating chamber 2, and a recompressed gas line 232. The return pressure valve 233 is provided. The return pressure gas introduction device 23 is configured to supply nitrogen gas into the preheating chamber 2.
 ろう付室3に不活性ガスを導入するガス置換装置31は、ろう付炉1の外部に配置されたガス供給源231、ガス供給源231から延び、ろう付室3内まで進入した置換ガスライン311及び置換ガスライン311上に配置された置換バルブ312を有している。ガス置換装置31は、ろう付室3内に常時5m3/hの窒素ガスを導入することにより、室内を窒素ガスで置換することができるように構成されている。ろう付室3内が窒素ガスにより満たされた後、余剰の窒素ガスは、中間扉25付近に設けられたガス逃がし口(図示略)から排出される。なお、本例においては、復圧ガス導入装置23とガス置換装置31との間で、ガス供給源231を共用している。 A gas replacement device 31 for introducing an inert gas into the brazing chamber 3 extends from the gas supply source 231 and the gas supply source 231 disposed outside the brazing furnace 1 and enters the brazing chamber 3. 311 and a replacement valve 312 disposed on the replacement gas line 311. The gas replacement device 31 is configured to be able to replace the interior of the chamber with nitrogen gas by always introducing 5 m 3 / h of nitrogen gas into the brazing chamber 3. After the brazing chamber 3 is filled with nitrogen gas, excess nitrogen gas is discharged from a gas escape port (not shown) provided near the intermediate door 25. In this example, the gas supply source 231 is shared between the return pressure gas introduction device 23 and the gas replacement device 31.
 ろう付炉1は、例えば、以下のようにして使用することができる。まず、前扉261を開放してアルミニウム材よりなる被処理材100を予備加熱室2内に送入する。次いで、前扉261及び中間扉25を閉鎖する。この状態で、真空ポンプ21を作動させて室内を減圧雰囲気にするとともに、予備加熱装置22を作動させて被処理材100の予備加熱を行う。排気を開始するタイミングと被処理材100の予備加熱を開始するタイミングは、同時であってもよく、どちらかが先であってもよい。被処理材100の不要な酸化を回避する観点からは、予備加熱の開始より前に排気を開始することが好ましい。 Brazing furnace 1 can be used as follows, for example. First, the front door 261 is opened and the material to be processed 100 made of an aluminum material is fed into the preheating chamber 2. Next, the front door 261 and the intermediate door 25 are closed. In this state, the vacuum pump 21 is operated to make the inside of the room a reduced pressure atmosphere, and the preheating device 22 is operated to preheat the material to be processed 100. The timing for starting the exhaust and the timing for starting the preheating of the workpiece 100 may be the same, or one of them may be the first. From the viewpoint of avoiding unnecessary oxidation of the material to be treated 100, it is preferable to start the exhaust before the start of the preheating.
 予備加熱室2内の圧力が100Pa以下に到達し、かつ、被処理材100の温度が200℃を超える温度に到達した時点で予備加熱を完了し、排気バルブ212を閉鎖し、次いで真空ポンプ21及び予備加熱装置22を停止させる。その後、復圧バルブ233を開放して予備加熱室2内を窒素ガスで大気圧まで復圧させる。これにより、被処理材100の周囲が不活性ガス雰囲気になる。 When the pressure in the preheating chamber 2 reaches 100 Pa or less and the temperature of the material to be processed 100 reaches a temperature exceeding 200 ° C., the preheating is completed, the exhaust valve 212 is closed, and then the vacuum pump 21 And the preheating apparatus 22 is stopped. Thereafter, the return pressure valve 233 is opened, and the inside of the preheating chamber 2 is returned to atmospheric pressure with nitrogen gas. Thereby, the circumference | surroundings of the to-be-processed material 100 become inert gas atmosphere.
 復圧が完了した後、復圧バルブ233を閉鎖し、次いで中間扉25を開放する。その後、被処理材100をろう付室3内へ搬送し、中間扉25を閉鎖する。ろう付室3内は常時不活性ガス雰囲気であるため、被処理材100の搬送中、被処理材100の周囲は不活性ガス雰囲気が維持されている。 After the return pressure is completed, the return pressure valve 233 is closed, and then the intermediate door 25 is opened. Thereafter, the workpiece 100 is conveyed into the brazing chamber 3 and the intermediate door 25 is closed. Since the brazing chamber 3 is always an inert gas atmosphere, an inert gas atmosphere is maintained around the material to be treated 100 during the conveyance of the material 100 to be treated.
 その後、ろう付室3内に配置された被処理材100を本加熱装置32で加熱してろう付を行う。ろう付が完了した後、中間扉25を開けて被処理材100を予備加熱室2へ搬送する。予備加熱室2の室内は不活性ガス雰囲気が維持されており、ろう付済みの被処理材100を予備加熱室2の室内で冷却した後、出入口26から被処理材100を送出する。以上により、被処理材100のろう付を行うことができる。 Thereafter, brazing is performed by heating the material to be treated 100 arranged in the brazing chamber 3 by the heating device 32. After the brazing is completed, the intermediate door 25 is opened and the workpiece 100 is conveyed to the preheating chamber 2. An inert gas atmosphere is maintained in the preheating chamber 2. After the brazed material 100 is cooled in the preheating chamber 2, the material 100 is sent out from the entrance 26. As described above, the workpiece 100 can be brazed.
 本例のろう付炉1は、減圧雰囲気下における予備加熱、不活性ガスの供給による復圧及び不活性ガス雰囲気下でのろう付を行うことができるように構成されている。それ故、上述したように、フラックスの塗布量を低減したろう付あるいはフラックスを使用しないろう付を行う際に、被処理材100、治具及びろう材の保管環境や使用状況、炉外環境の変動等がろう付性に及ぼす影響を抑制することができる。その結果、ろう付接合の品質を容易に安定させることができる。 The brazing furnace 1 of this example is configured to be able to perform preheating in a reduced pressure atmosphere, return pressure by supplying an inert gas, and brazing in an inert gas atmosphere. Therefore, as described above, when brazing with a reduced amount of flux applied or brazing without using a flux, the storage environment and usage status of the workpiece 100, the jig and the brazing material, the environment outside the furnace, It is possible to suppress the influence of fluctuation or the like on the brazing property. As a result, the quality of the brazing joint can be easily stabilized.
 また、ろう付炉1は、被処理材100等の保管状況等がろう付性に及ぼす影響を抑制することができるため、例えば高温多湿な地域や季節においても好適に使用することができる。また、ろう付炉1は、被処理材100や治具の保管環境等の厳密な管理が難しい作業環境であっても良好なろう付を実現することができる。 Also, the brazing furnace 1 can suppress the influence of the storage status of the material 100 to be treated on the brazing property, so that it can be suitably used, for example, in high-temperature and humid areas and seasons. Further, the brazing furnace 1 can realize good brazing even in a working environment where strict management is difficult, such as a storage environment of the workpiece 100 and the jig.
(実施例2)
 本例は、3つのサブユニット32a、32b、32c及び冷却室4を備えたろう付炉1bの例である。図2に示すように、本例のろう付炉1bにおける本加熱装置32は、個別に温度を調整可能な3つのサブユニット32a~32cを有している。サブユニット32a~32cは、被処理材100の搬送方向に沿って配置されている。また、隣り合うサブユニット32a~32cの間には、仕切り扉35が開閉可能に設けられている。本例において、仕切り扉35により隔てられた3つの加熱ゾーン36(36a、36b、36c)の均熱域寸法は、いずれも長さ300mm、幅200mm及び高さ200mmである。また、個々の加熱ゾーン36a~36cには、ガス置換装置31の置換ガスライン311が進入している。
(Example 2)
This example is an example of a brazing furnace 1 b including three subunits 32 a, 32 b, 32 c and a cooling chamber 4. As shown in FIG. 2, the main heating device 32 in the brazing furnace 1b of the present example has three subunits 32a to 32c whose temperatures can be individually adjusted. The subunits 32a to 32c are arranged along the conveyance direction of the workpiece 100. Further, a partition door 35 is provided between the adjacent subunits 32a to 32c so as to be opened and closed. In this example, the soaking zone dimensions of the three heating zones 36 (36a, 36b, 36c) separated by the partition door 35 are all 300 mm in length, 200 mm in width, and 200 mm in height. Further, the replacement gas line 311 of the gas replacement device 31 enters each of the heating zones 36a to 36c.
 また、本例のろう付炉1bは、ろう付室3に連通する冷却室4を有している。ろう付炉1bは、予備加熱室2に設けられた入口27から被処理材100を送入し、予備加熱室2、加熱ゾーン36a~36c及び冷却室4を順次通過させ、冷却室4に設けられた出口43から送出される。そして、上記の順序で各室を通過させることにより、被処理材100の予備加熱、復圧、ろう付及び冷却を順次行うことができるよう構成されている。 Also, the brazing furnace 1 b of this example has a cooling chamber 4 communicating with the brazing chamber 3. The brazing furnace 1b feeds the material to be treated 100 from an inlet 27 provided in the preheating chamber 2, and sequentially passes through the preheating chamber 2, the heating zones 36a to 36c, and the cooling chamber 4, and is provided in the cooling chamber 4. Is sent out from the outlet 43. And it is comprised so that the preheating of the to-be-processed material 100, a return pressure, brazing, and cooling can be performed sequentially by letting each chamber pass in said order.
 冷却室4は、室内に不活性ガスを導入する冷却ガス導入装置41を有している。ろう付室3と冷却室4との間は、後扉42により開閉可能に隔てられている。また、冷却室4に設けられた出口43には、ろう付炉1の外部からの大気の混入を抑制するために、出口扉431が開閉可能に設けられている。なお、出口扉431に替えて、メタルカーテン等を設置しても良い。また、出口扉431を有する構成において、冷却室4は、さらに、室内の排気及び復圧ができるように構成されていてもよい。この場合には、冷却室4の室内を排気し、その後不活性ガスで復圧することにより、冷却室4内への大気の混入を確実に防止することができる。かかる機能を実現可能な構成としては、例えば、予備加熱室2と同様に、室内に真空ポンプの排気ラインを進入させる構成等が考えられる。 The cooling chamber 4 has a cooling gas introduction device 41 for introducing an inert gas into the room. The brazing chamber 3 and the cooling chamber 4 are separated by a rear door 42 so as to be opened and closed. In addition, an outlet door 431 is provided at the outlet 43 provided in the cooling chamber 4 so as to be openable and closable in order to prevent air from entering from the outside of the brazing furnace 1. A metal curtain or the like may be installed instead of the exit door 431. Moreover, in the structure which has the exit door 431, the cooling chamber 4 may be further comprised so that indoor exhaust_gas | exhaustion and return pressure can be performed. In this case, air can be reliably prevented from being mixed into the cooling chamber 4 by exhausting the interior of the cooling chamber 4 and then restoring the pressure with an inert gas. As a configuration capable of realizing such a function, for example, a configuration in which an exhaust line of a vacuum pump enters the room as in the preheating chamber 2 can be considered.
 冷却ガス導入装置41は、ろう付炉1bの外部に配置されたガス供給源231、ガス供給源231から延び、出口43側から室内に進入した冷却ガスライン411及び冷却ガスライン411上に配置された冷却バルブ412を有している。冷却ガス導入装置41は、冷却室4の出口43側から窒素ガスを導入することにより、冷却室4内を窒素ガスで置換することができるように構成されている。冷却室4内が窒素ガスにより満たされた後、余剰の窒素ガスは、後扉42付近に設けられたガス逃がし口(図示略)から排出される。なお、本例においては、復圧ガス導入装置23、ガス置換装置31及び冷却ガス導入装置41の間で、ガス供給源231を共用している。その他は実施例1と同様である。図2において用いた符号のうち、実施例1において用いた符号と同一のものは、特に説明のない限り、実施例1と同様の構成要素等を表す。 The cooling gas introduction device 41 is disposed on the cooling gas line 411 and the cooling gas line 411 extending from the gas supply source 231 and the gas supply source 231 disposed outside the brazing furnace 1b and entering the room from the outlet 43 side. The cooling valve 412 is provided. The cooling gas introduction device 41 is configured to replace the inside of the cooling chamber 4 with nitrogen gas by introducing nitrogen gas from the outlet 43 side of the cooling chamber 4. After the inside of the cooling chamber 4 is filled with nitrogen gas, excess nitrogen gas is discharged from a gas escape port (not shown) provided in the vicinity of the rear door 42. In this example, the gas supply source 231 is shared among the decompression gas introduction device 23, the gas replacement device 31, and the cooling gas introduction device 41. Others are the same as in the first embodiment. Of the reference numerals used in FIG. 2, the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.
 本例のろう付炉1bにおける本加熱装置32は、個別に温度を調整可能な複数のサブユニット32a~32cを有しており、複数のサブユニット32a~32cが被処理材100の搬送方向に沿って配置されている。また、隣り合うサブユニット32a~32cの間には仕切り扉35が開閉可能に設けられている。それ故、仕切り扉35により隔てられた個々の加熱ゾーン36a~36cごとに被処理材100の加熱温度を段階的に変化させることができる。また、仕切り扉35を閉鎖した状態で加熱することにより、個々の加熱ゾーン36a~36cにおいて被処理材100を均一に加熱することができる。これらの結果、ろう付の品質をより向上させることができる。 The main heating device 32 in the brazing furnace 1b of this example has a plurality of subunits 32a to 32c whose temperatures can be individually adjusted, and the plurality of subunits 32a to 32c are arranged in the conveying direction of the workpiece 100. Are arranged along. A partition door 35 is provided between the adjacent subunits 32a to 32c so as to be opened and closed. Therefore, the heating temperature of the material to be processed 100 can be changed stepwise for each of the heating zones 36a to 36c separated by the partition door 35. Further, by heating the partition door 35 in a closed state, the workpiece 100 can be heated uniformly in the individual heating zones 36a to 36c. As a result, the brazing quality can be further improved.
(実験例1)
 本例は、実施例1のろう付炉1を用いてろう付試験を行った例である。本例においては、表1に示すように製造条件を種々変更し、12種類のハニカムパネル(試験体E1~E6及び試験体C1~C6)を作製した。被処理材101の構成及び実験方法を以下に説明する。
(Experimental example 1)
In this example, a brazing test was performed using the brazing furnace 1 of the first embodiment. In this example, as shown in Table 1, production conditions were variously changed, and 12 types of honeycomb panels (test bodies E1 to E6 and test bodies C1 to C6) were produced. The configuration of the workpiece 101 and the experimental method will be described below.
<被処理材101>
 本例の被処理材101は、図3に示すように、4本の中空押出形材511から構成された長方形状の枠部51と、枠部51の内側に配置されるハニカムコア52と、枠部51及びハニカムコア52を上下両面から挟む面板(不図示)とを有している。これらを所定の形状(図4参照)に組み立てた後、ろう付を行うことによりハニカムパネルを作製することができる。
<Material to be treated 101>
As shown in FIG. 3, the material to be treated 101 of this example includes a rectangular frame portion 51 composed of four hollow extruded shapes 511, a honeycomb core 52 disposed inside the frame portion 51, and It has a face plate (not shown) that sandwiches the frame portion 51 and the honeycomb core 52 from above and below. After assembling these into a predetermined shape (see FIG. 4), a honeycomb panel can be manufactured by brazing.
 枠部51は、長辺方向(長さ方向)の外寸法が260mmであり、短辺(幅方向)の外寸法が180mmである。枠部51を構成する中空押出形材511は、JIS A 6063アルミニウム合金より構成されており、長手方向に直交する断面の外寸法が30mm×30mmである。また、4本の中空押出形材511のうち、枠部51の短辺を構成する一対の中空押出形材511aは、その中央部に直径3mmの通気孔512を有しており、通気孔512を介して枠部51の内側の排気及び復圧ができるように構成されている。 The outer dimension in the long side direction (length direction) of the frame 51 is 260 mm, and the outer dimension in the short side (width direction) is 180 mm. The hollow extruded shape member 511 constituting the frame portion 51 is made of JIS A 6063 aluminum alloy, and the outer dimension of the cross section perpendicular to the longitudinal direction is 30 mm × 30 mm. Of the four hollow extruded shapes 511, the pair of hollow extruded shapes 511 a constituting the short sides of the frame portion 51 have a vent hole 512 having a diameter of 3 mm at the center thereof, and the vent holes 512. It is comprised so that the exhaust_gas | exhaustion inside a frame part 51 and a return pressure can be performed through this.
 ハニカムコア52は、コア部材521を複数枚並べて構成されており、図3に示すように、隣り合うコア部材521により六角柱状のセル522が形成されている。コア部材521は、JIS A 6951アルミニウム合金よりなるベアプレートにコルゲート加工を施して作製されている。ハニカムコア52の高さは30mmであり、セル522のサイズは30mmである。また、個々のセル522は、直径1mmの貫通穴(不図示)を2箇所有しており、貫通穴を介して各セル522の排気及び復圧ができるように構成されている。 The honeycomb core 52 is configured by arranging a plurality of core members 521, and as shown in FIG. 3, hexagonal columnar cells 522 are formed by adjacent core members 521. The core member 521 is manufactured by corrugating a bare plate made of JIS A 6951 aluminum alloy. The height of the honeycomb core 52 is 30 mm, and the size of the cell 522 is 30 mm. Each cell 522 has two through holes (not shown) having a diameter of 1 mm, and is configured such that each cell 522 can be evacuated and decompressed through the through holes.
 なお、表1に示すように、試験体E1~E6及びC1~C5のハニカムコア52には、脱脂処理を行っていないコア部材521を供した。試験体C6のハニカムコア52には、予めアセトンを用いて脱脂処理を行ったコア部材521を供した。 As shown in Table 1, the honeycomb core 52 of the test bodies E1 to E6 and C1 to C5 was provided with a core member 521 that had not been degreased. The honeycomb core 52 of the test body C6 was provided with a core member 521 that had been previously degreased using acetone.
 面板は、心材と、心材の片面に10%のクラッド率でクラッドされたろう材とからなり、1mmの厚さを有する。面板の心材はJIS A 6951アルミニウム合金より構成されており、ろう材はAl-10%Si-0.02%Biの化学成分を有するアルミニウム合金より構成されている。 The face plate is composed of a core material and a brazing material clad with a cladding rate of 10% on one side of the core material, and has a thickness of 1 mm. The core of the face plate is made of JIS A 6951 aluminum alloy, and the brazing material is made of aluminum alloy having a chemical component of Al-10% Si-0.02% Bi.
<実験方法>
 上記の被処理材101を所定の形状に組み立てた後、治具を用いてこれらを固定した。本例の治具は、厚さ10mmの等方性黒鉛板53である。治具を高湿環境下で保管した状態を模擬するために、等方性黒鉛板53の全面に霧吹きを用いて30ccの水を吹きかけ、室温で18時間放置した。予め上記の処理を行った一対の等方性黒鉛板53の間に、図4に示すように被処理材101を挟み込み、これらをステンレス線54で締め付けることにより、被処理材101を固定した。
<Experiment method>
After assembling the material to be processed 101 into a predetermined shape, these were fixed using a jig. The jig of this example is an isotropic graphite plate 53 having a thickness of 10 mm. In order to simulate the state in which the jig was stored in a high-humidity environment, 30 cc of water was sprayed on the entire surface of the isotropic graphite plate 53 using a mist spray and left at room temperature for 18 hours. The material to be treated 101 was sandwiched between a pair of isotropic graphite plates 53 that had been subjected to the above-described treatment in advance as shown in FIG.
 その後、実施例1のろう付炉1を用いて予備加熱及びろう付を行った。被処理材101を予備加熱室2に送入し、前扉261を閉鎖した後、直ちに室内の排気及び予備加熱を開始した。室内の圧力及び被処理材101の加熱温度の制御は、以下のようにして行った。室内の圧力は、予備加熱室2の圧力が表1に示す値に到達した後、排気バルブ212を手動で操作して開閉の度合いを調整し、予備加熱完了まで圧力が概ね一定となるように制御した。 Then, preheating and brazing were performed using the brazing furnace 1 of Example 1. After the workpiece 101 was fed into the preheating chamber 2 and the front door 261 was closed, the room exhaust and preheating were started immediately. Control of the indoor pressure and the heating temperature of the material to be processed 101 was performed as follows. After the pressure in the preheating chamber 2 reaches the value shown in Table 1, the indoor pressure is adjusted so that the exhaust valve 212 is manually operated to adjust the degree of opening and closing so that the pressure is substantially constant until the preheating is completed. Controlled.
 被処理材101の加熱温度は、減圧雰囲気下では被処理材101の温度を正確に計測することが困難であるため、予備加熱室2の炉壁の温度及び被処理材101を室内に滞在させる時間により制御した。具体的には、予備加熱装置22を制御して予備加熱室2の炉壁の温度を表1に示す値にし、この状態において室内に被処理材101を20分間滞在させた。なお、このように予備加熱を行うことにより、予備加熱室2の炉壁の温度を基準として-5~0℃の範囲まで被処理材101の温度が上昇することを予め確認している。 Since it is difficult to accurately measure the temperature of the material to be processed 101 under a reduced pressure atmosphere, the temperature of the furnace wall of the preheating chamber 2 and the material to be processed 101 stay in the room. Controlled by time. Specifically, the preheating device 22 was controlled to set the temperature of the furnace wall of the preheating chamber 2 to the value shown in Table 1, and in this state, the workpiece 101 was allowed to stay in the room for 20 minutes. Note that it is confirmed in advance that the temperature of the workpiece 101 rises to a range of −5 to 0 ° C. based on the temperature of the furnace wall of the preheating chamber 2 by performing the preheating in this way.
 予備加熱が完了した後、予備加熱室2内を窒素ガスで復圧し、次いで中間扉25を開放して被処理材101をろう付室3に搬送した。ろう付室3内における雰囲気の酸素濃度及び露点は表1に示す通りであった。中間扉25を閉鎖した後、ろう付室3の天井部から熱電対を挿入して被処理材101に接触させ、その温度を計測しつつ本加熱装置32により被処理材101を加熱した。被処理材101の温度が600℃に達した時点で加熱を終了した。なお、本例においては、温度測定用の熱電対をろう付室3の天井部から挿入したが、ろう付室3の側面から熱電対を挿入することも可能である。 After the preheating was completed, the pressure in the preheating chamber 2 was restored with nitrogen gas, and then the intermediate door 25 was opened and the workpiece 101 was conveyed to the brazing chamber 3. Table 1 shows the oxygen concentration and dew point of the atmosphere in the brazing chamber 3. After closing the intermediate door 25, a thermocouple was inserted from the ceiling portion of the brazing chamber 3 to be brought into contact with the material to be processed 101, and the material to be processed 101 was heated by the main heating device 32 while measuring its temperature. When the temperature of the workpiece 101 reached 600 ° C., the heating was finished. In this example, the thermocouple for temperature measurement is inserted from the ceiling portion of the brazing chamber 3, but it is also possible to insert the thermocouple from the side surface of the brazing chamber 3.
 その後、被処理材101を予備加熱室2に搬送して窒素雰囲気下で冷却した後、出入口26から炉外へ取り出した。以上によりろう付を完了し、ハニカムパネルを得た。ろう付後の各試験体について、超音波検査によりハニカムコア52と面板との接合状態及び枠部51と面板との接合状態を評価した。その後、試験体中央を切断してハニカムコア52を構成するコア部材521同士の接合状態を目視により評価した。これらの結果を表1に示す。 Thereafter, the material to be treated 101 was transported to the preheating chamber 2 and cooled in a nitrogen atmosphere, and then taken out from the entrance / exit 26 to the outside of the furnace. The brazing was completed as described above to obtain a honeycomb panel. About each test body after brazing, the joining state of the honeycomb core 52 and a face plate and the joining state of the frame part 51 and a face plate were evaluated by ultrasonic inspection. Thereafter, the center of the test body was cut and the joined state of the core members 521 constituting the honeycomb core 52 was visually evaluated. These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1における評価結果の欄に記載した記号の意味は、以下の通りである。
・ハニカムコア52と面板との接合状態
 A+:極めて良好
 A:一部にフィレット形状が不均一な部分があるが、良好
 B:フィレットが形成されていない部分が存在する
 C:フィレットが形成されていない部分が比較的多く存在する
 D:フィレットが形成されていない部分が多い
In addition, the meaning of the symbol described in the column of the evaluation result in Table 1 is as follows.
-Joined state of the honeycomb core 52 and the face plate A +: Extremely good A: There are portions where the fillet shape is not uniform, but good B: There are portions where the fillet is not formed C: Fillet is formed There are relatively many parts D: Many parts where no fillets are formed
・枠部51と面板との接合状態
 A+:極めて良好
 A:微小な未接合部分が存在するが、良好
 B:未接合部分が存在する
 C:未接合部分が多い
 D:ほとんど全面が接合されていない
-Joining state of the frame part 51 and the face plate A +: Very good A: There are minute unjoined parts, but it is good B: There are unjoined parts C: Many unjoined parts D: Almost the whole surface is joined Absent
・コア部材521同士の接合状態
 A+:極めて良好
 A:一部にフィレット形状が不均一な部分があるが、良好
 B:フィレットが形成されていない部分が存在する
 C:フィレットがほとんど形成されていない
-Joining state between the core members 521 A +: Extremely good A: There are portions where the fillet shape is non-uniform, but good B: There are portions where no fillets are formed C: Little fillets are formed
 表1より知られるように、減圧雰囲気下における予備加熱、不活性ガスの供給による及び不活性ガス雰囲気下でのろう付を行った試験体E1~E6は、いずれも、接合状態が良好であった。試験体E1~E6の中でも、予備加熱室2の圧力を低くした試験体E1およびE4は、枠部51と面板との接合状態が特に良好であった。試験体E2、E3、E5及びE6は、試験体E1およびE4に比べて予備加熱室2の圧力が高いため、枠部51と面板との接合部のうち、外周近傍に微小な未接合部分が形成された。これらの微小な未接合部分は、実用上問題にはならない程度であり、接合状態は良好であった。 As is known from Table 1, all of the test bodies E1 to E6 that were preheated in a reduced pressure atmosphere, supplied with an inert gas, and brazed in an inert gas atmosphere had a good bonding state. It was. Among the test bodies E1 to E6, the test bodies E1 and E4 in which the pressure in the preheating chamber 2 was lowered were particularly good in the joined state between the frame portion 51 and the face plate. Since the test bodies E2, E3, E5, and E6 have a higher pressure in the preheating chamber 2 than the test bodies E1 and E4, there is a small unjoined portion in the vicinity of the outer periphery of the joint portion between the frame portion 51 and the face plate. Been formed. These minute unjoined portions were not problematic in practical use, and the joined state was good.
 また、予備加熱室2の設定温度を高くした試験体E1~E3は、コア部材521同士の接合状態が特に良好であった。試験体E4~E6は、試験体E1~E3に比べて予備加熱室2の設定温度が低いため、一部にフィレット形状が不均一な部分が観察された。しかしながら、試験体E4~E6のフィレット形状は実用上問題にはならない程度であり、接合状態は良好であった。 In addition, in the test bodies E1 to E3 in which the set temperature of the preheating chamber 2 was increased, the joined state between the core members 521 was particularly good. In the test bodies E4 to E6, since the set temperature of the preheating chamber 2 was lower than that of the test bodies E1 to E3, a portion having a non-uniform fillet shape was observed. However, the fillet shapes of the test specimens E4 to E6 are not practically problematic, and the bonding state is good.
 予備加熱室2の圧力を180Paにした試験体C1は、枠部51と面板との接合状態が悪く、未接合部分が形成された。また、コア部材521同士の接合部についても、フィレット切れが多く発生し、接合不良となった。この接合不良は、主としてろう付室3における治具からの水分放出の影響により、室内の酸素濃度及び露点が上昇したことが原因と考えられる。 The test body C1 in which the pressure in the preheating chamber 2 was set to 180 Pa had a poor joined state between the frame portion 51 and the face plate, and an unjoined portion was formed. In addition, a lot of fillet breakage occurred at the joints between the core members 521, resulting in poor joints. This bonding failure is considered to be caused by an increase in the oxygen concentration and dew point in the chamber due mainly to the influence of moisture release from the jig in the brazing chamber 3.
 予備加熱室2の温度を140℃にした試験体C2は、枠部51と面板との接合状態が悪く、未接合部分が形成された。また、コア部材521同士の接合部については、ほとんどフィレットが形成されていなかった。予備加熱室2の温度が140℃であるときの被処理材101の温度は135~140℃程度に到達すると推定されるため、これらの接合不良は、予備加熱の不足によりコア部材521の油分が除去し切れず、その結果ろうの濡れ性が低下したことが原因と考えられる。 The test body C2 in which the temperature of the preheating chamber 2 was 140 ° C. had a poor bonding state between the frame portion 51 and the face plate, and an unbonded portion was formed. Moreover, the fillet was hardly formed about the junction part of core members 521. Since the temperature of the material 101 to be processed when the temperature of the preheating chamber 2 is 140 ° C. is estimated to reach about 135 to 140 ° C., these poor joints are caused by the oil content of the core member 521 due to insufficient preheating. This is considered to be caused by the fact that it was not completely removed and as a result, the wettability of the wax was lowered.
 予備加熱室2の圧力及び温度の両方を悪条件とした試験体C3は、試験体C2よりもさらに接合状態が悪くなった。また、予備加熱を行わない試験体C4、予備加熱及び減圧の両方を行わない試験体C5については、フィレットがほとんど形成されなかった。 The test body C3 in which both the pressure and the temperature of the preheating chamber 2 were in adverse conditions was worse in the joining state than the test body C2. In addition, the fillet was hardly formed in the specimen C4 that was not preheated and the specimen C5 that was not preheated and depressurized.
 ハニカムコア52の脱脂処理を行った試験体C6は、ハニカムコア52と面板との接合状態及びコア部材521同士の接合状態は比較的良好であったが、枠部51と面板との接合状態が悪く、接合不良となった。このことから、試験体C6のろう付においては、コア部材521の油分を除去したことによりコア部材521同士の接合状態が改善されたことが理解できる。一方で、予備加熱室2の温度を140℃にしたことにより治具からの水分が除去しきれなかったために枠部51と面板との接合状態が改善されなかったと推測される。 In the test body C6 in which the honeycomb core 52 was degreased, the joined state between the honeycomb core 52 and the face plate and the joined state between the core members 521 were relatively good, but the joined state between the frame portion 51 and the face plate was It was bad and the bonding was poor. From this, in the brazing of the test body C6, it can be understood that the joining state of the core members 521 is improved by removing the oil content of the core member 521. On the other hand, it is presumed that the joining state between the frame portion 51 and the face plate was not improved because the moisture from the jig could not be removed because the temperature of the preheating chamber 2 was set to 140 ° C.
(実験例2)
 本例は、パラレルフロー型熱交換器を模擬したミニコアのろう付試験を行った例である。本例においては、表2に示すように製造条件を種々変更し、12種類のミニコア(試験体E11~E16及び試験体C11~C16)を作製した。被処理材102の構成及び実験方法を以下に説明する。
(Experimental example 2)
In this example, a brazing test of a mini-core simulating a parallel flow heat exchanger is performed. In this example, production conditions were variously changed as shown in Table 2 to produce 12 types of minicores (test bodies E11 to E16 and test bodies C11 to C16). The configuration of the workpiece 102 and the experiment method will be described below.
<被処理材102>
 本例の被処理材102は、図5に示すように、一対のヘッダ61と、互いに平行に並んだ状態でヘッダ61に挿通される5本の押出管62と、隣り合う押出管62の間に配置されるコルゲート形状のアウターフィン63とを有している。これらを所定の形状に組み立てた後、ろう付を行うことによりミニコアを作製することができる。得られるミニコアは、押出管62の長手方向(長さ方向)における寸法が260mmであり、並び方向(幅方向)における寸法が180mmである。
<Processed material 102>
As shown in FIG. 5, the material 102 to be processed in this example includes a pair of headers 61, five extruded tubes 62 inserted through the header 61 in a state of being arranged in parallel with each other, and adjacent extruded tubes 62. And corrugated outer fins 63 disposed on the surface. After assembling these into a predetermined shape, a mini-core can be produced by brazing. The obtained mini-core has a dimension in the longitudinal direction (length direction) of the extruded tube 62 of 260 mm and a dimension in the arrangement direction (width direction) of 180 mm.
 押出管62は、JIS A 1000系アルミニウムより構成されており、管内部が隔壁により複数の流路に区画された多穴管である。なお、試験体E11~E16及びC11~C15には、脱脂処理を行っていない押出管62を供した。試験体C16には、予めアセトンを用いて脱脂処理を行った押出管62を供した。 The extruded tube 62 is composed of JIS A 1000 series aluminum, and is a multi-hole tube in which the inside of the tube is partitioned into a plurality of flow paths by partition walls. The test bodies E11 to E16 and C11 to C15 were provided with extruded tubes 62 that had not been degreased. The test body C16 was provided with an extruded tube 62 that had been degreased with acetone in advance.
 ヘッダ61は、心材と、心材の両面に各々5%のクラッド率でクラッドされたろう材とからなり、1.2mmの厚さを有する。ヘッダ61の心材はJIS A 3003アルミニウム合金より構成されており、ろう材はJIS A 4343アルミニウム合金より構成されている。また、ヘッダ61は、押出管62を挿通するための貫通穴(図示略)を有している。 The header 61 is made of a core material and a brazing material clad with a cladding rate of 5% on each side of the core material, and has a thickness of 1.2 mm. The core material of the header 61 is made of JIS A 3003 aluminum alloy, and the brazing material is made of JIS A 4343 aluminum alloy. The header 61 has a through hole (not shown) for inserting the extruded tube 62.
 アウターフィン63は、心材と、心材の両面に各々10%のクラッド率でクラッドされたろう材とからなり、0.1mmの厚さを有する。アウターフィン63の心材はJIS A 3003アルミニウム合金より構成されており、ろう材はJIS A 4045アルミニウム合金より構成されている。 The outer fin 63 is composed of a core material and a brazing material clad with a cladding rate of 10% on both surfaces of the core material, and has a thickness of 0.1 mm. The core material of the outer fin 63 is made of JIS A 3003 aluminum alloy, and the brazing material is made of JIS A 4045 aluminum alloy.
 ヘッダ61及びアウターフィン63は、アセトンを用いて脱脂処理を行った後、表2に示す量のフラックスを予め塗布した状態で被処理材102の組み立てに供した。フラックスの塗布量は、フラックスの塗布及び乾燥を行った後のヘッダ61及びアウターフィン63の質量から、フラックスの塗布前に予め測定したヘッダ61及びアウターフィン63の質量を差し引くことにより算出した。 The header 61 and the outer fin 63 were subjected to a degreasing process using acetone, and then subjected to the assembly of the workpiece 102 in a state where the amount of flux shown in Table 2 was applied in advance. The flux application amount was calculated by subtracting the mass of the header 61 and the outer fin 63 measured in advance before the flux application from the mass of the header 61 and the outer fin 63 after the flux application and drying.
<実験方法>
 上記の被処理材102を所定の形状に組み立てた後、図5に示すように、ステンレス線64を用いて押出管62及びアウターフィン63を幅方向に締め付けることにより、被処理材102を固定した。
<Experiment method>
After assembling the workpiece 102 into a predetermined shape, the workpiece 102 is fixed by tightening the extruded tube 62 and the outer fin 63 in the width direction using a stainless steel wire 64 as shown in FIG. .
 その後、実施例1のろう付炉1を用いて予備加熱及びろう付を行った。ろう付の手順は、予備加熱室2内の圧力等を表2に示す条件に変更した以外は、実験例1と同様である。ろう付後の各試験体について、ヘッダ61と押出管62との接合状態及び押出管62とアウターフィン63との接合状態を目視により評価した。その結果を表2に示す。 Then, preheating and brazing were performed using the brazing furnace 1 of Example 1. The procedure of brazing is the same as that of Experimental Example 1 except that the pressure in the preheating chamber 2 is changed to the conditions shown in Table 2. About each test body after brazing, the joining state of the header 61 and the extrusion pipe | tube 62 and the joining state of the extrusion pipe | tube 62 and the outer fin 63 were evaluated visually. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表2における評価結果の欄に記載した記号の意味は、以下の通りである。
 A+:極めて良好
 A:一部にフィレット形状が不均一な部分があるが、良好
 B:フィレットが形成されていない部分が存在する
 C:フィレットが形成されていない部分が多く存在する
In addition, the meaning of the symbol described in the column of the evaluation result in Table 2 is as follows.
A +: Extremely good A: There are portions where the fillet shape is not uniform, but good B: There are portions where the fillet is not formed C: There are many portions where the fillet is not formed
 表2より知られるように、減圧雰囲気下における予備加熱、不活性ガスの供給による及び不活性ガス雰囲気下でのろう付を行った試験体E11~E16は、いずれも、接合状態が良好であった。この種の熱交換器をフラックスろう付により作製する場合、良好なろう付接合を実現するために、3g/m2程度のフラックスを塗布することが標準的である。これに対し、試験体E11~E13は、ヘッダ61へのフラックスの塗布量を2g/m2狙い、アウターフィン63へのフラックスの塗布量を1g/m2狙いと少なくしても、実用上問題のない接合状態を実現することができた。 As is known from Table 2, all of the test bodies E11 to E16 that had been preheated in a reduced-pressure atmosphere, supplied with an inert gas, and brazed in an inert gas atmosphere had a good bonding state. It was. When this type of heat exchanger is manufactured by flux brazing, it is standard to apply a flux of about 3 g / m 2 in order to achieve good brazing joining. On the other hand, the specimens E11 to E13 have practical problems even if the amount of flux applied to the header 61 is aimed at 2 g / m 2 and the amount of flux applied to the outer fin 63 is aimed at 1 g / m 2. It was possible to realize a joined state without any.
 また、試験体E14~E16は、試験体E11~E13に比べて予備加熱室2の温度を低くしたが、アウターフィン63へのフラックスの塗布量を2g/m2狙いにした結果、実用上問題のない接合状態を実現することができた。 In addition, the specimens E14 to E16 have a lower temperature in the preheating chamber 2 than the specimens E11 to E13. However, as a result of aiming at an application amount of flux to the outer fin 63 of 2 g / m 2 , there is a practical problem. It was possible to realize a joined state without any.
 予備加熱室2の圧力を180Paにした試験体C11は、ヘッダ61及びアウターフィン63の両方に、標準的な量のフラックス(3g/m2狙い)を塗布したが、ヘッダ61と押出管62との接合部にフィレット切れが発生し、接合不良となった。この接合不良は、室内の酸素濃度及び露点が上昇したことが原因と考えられる。 The specimen C11 in which the pressure in the preheating chamber 2 was 180 Pa applied a standard amount of flux (targeting 3 g / m 2 ) to both the header 61 and the outer fin 63. A fillet breakage occurred at the joined portion of the wire, resulting in poor bonding. This bonding failure is considered to be caused by an increase in indoor oxygen concentration and dew point.
 試験体E14~E16と同程度のフラックスを塗布し、予備加熱室2の温度を140℃にした試験体C12は、ヘッダ61と押出管62との接合部及び押出管62とアウターフィン63との接合部の両方にフィレット切れが発生し、接合不良となった。予備加熱室2の温度が140℃であるときの被処理材102の温度は135~140℃程度に到達したと推定される。そのため、上記の接合不良は、室内の酸素濃度及び露点が上昇したことに加え、押出管62の油分が除去し切れなかったことが原因と考えられる。 The test body C12, in which the same amount of flux as that of the test bodies E14 to E16 is applied and the temperature of the preheating chamber 2 is 140 ° C., is a joint between the header 61 and the extruded tube 62 and between the extruded tube 62 and the outer fin 63. Fillet breakage occurred at both joints, resulting in poor joints. It is estimated that the temperature of the material 102 to be processed when the temperature of the preheating chamber 2 is 140 ° C. has reached about 135 to 140 ° C. Therefore, the above-mentioned poor bonding is considered to be caused by the fact that the oil content in the extruded tube 62 could not be completely removed in addition to the increase in indoor oxygen concentration and dew point.
 予備加熱室2の圧力及び温度の両方を悪条件とした試験体C13は、標準的な量のフラックス(3g/m2狙い)を塗布したが、接合状態は改善されず、接合不良となった。また、予備加熱を行わない試験体C14、予備加熱及び減圧の両方を行わない試験体C15については、試験体C12及びC13よりもさらに接合状態が悪化した。特に、試験体C15は、フラックスの塗布量を標準量よりも多い5g/m2狙いにしたにもかかわらず、ヘッダ61と押出管62との接合部及び押出管62とアウターフィン63との接合部の両方にフィレット切れが多発した。 Specimen C13, in which both the pressure and temperature of preheating chamber 2 were unfavorable conditions, applied a standard amount of flux (aimed at 3 g / m 2 ), but the bonding state was not improved, resulting in poor bonding. . Moreover, about the test body C14 which does not perform preheating, and the test body C15 which does not perform both preheating and pressure reduction, the joining state deteriorated further rather than the test bodies C12 and C13. In particular, the test body C15 aimed at 5 g / m 2 which is larger than the standard amount of flux application, but the joint between the header 61 and the extruded tube 62 and the joint between the extruded tube 62 and the outer fin 63. There were frequent fillet cuts in both departments.
 押出管62の脱脂処理を行った試験体C16は、押出管62とアウターフィン63との接合状態は比較的良好であったが、ヘッダ61と押出管62との接合状態が悪かった。このことから、試験体C16のろう付においては、押出管62の油分を除去したことにより押出管62とアウターフィン63との接合状態が改善されたことが理解できる。一方で、ろう付室3内の酸素濃度及び露点が高いためにヘッダ61と押出管62との接合状態が悪くなったことが推測される。 In the test body C16 in which the extruded tube 62 was degreased, the joined state between the extruded tube 62 and the outer fin 63 was relatively good, but the joined state between the header 61 and the extruded tube 62 was poor. From this, in the brazing of the test body C16, it can be understood that the joining state of the extruded tube 62 and the outer fin 63 is improved by removing the oil content of the extruded tube 62. On the other hand, since the oxygen concentration and dew point in the brazing chamber 3 are high, it is presumed that the joining state of the header 61 and the extruded tube 62 has deteriorated.
(実験例3)
 本例は、中空型熱交換器を模擬したミニコアのろう付試験を行った例である。本例においては、表3に示すように製造条件を種々変更し、20種類のミニコア(試験体E21~E32及び試験体C21~C28)を作製した。被処理材103の構成及び実験方法を以下に説明する。
(Experimental example 3)
In this example, a mini-core brazing test simulating a hollow heat exchanger was performed. In this example, as shown in Table 3, production conditions were variously changed to produce 20 types of minicores (test bodies E21 to E32 and test bodies C21 to C28). The configuration of the material to be processed 103 and the experimental method will be described below.
<被処理材103>
 本例の被処理材103は、図6及び図7に示すように、角型カップ状に成形された一対のカップ部71と、コルゲート形状のインナーフィン72とを有している。カップ部71の外周端縁にはフランジ部711が設けられており、一対のカップ部71は、フランジ部711が互いに当接するように配置される。また、インナーフィン72は、一対のカップ部71の間に形成される内部空間に配置される。
<Processed material 103>
As shown in FIGS. 6 and 7, the material 103 to be processed includes a pair of cup portions 71 formed in a square cup shape and corrugated inner fins 72. A flange portion 711 is provided on the outer peripheral edge of the cup portion 71, and the pair of cup portions 71 are arranged so that the flange portions 711 come into contact with each other. In addition, the inner fin 72 is disposed in an internal space formed between the pair of cup portions 71.
 一対のカップ部71及びインナーフィン72を所定の形状(図6参照)に組み立てた後、ろう付を行うことによりミニコアを作製することができる。得られるミニコアは、長さ50mm、幅50mm及び厚み10mmの外寸法を有している。 After assembling the pair of cup parts 71 and the inner fins 72 into a predetermined shape (see FIG. 6), a mini-core can be manufactured by brazing. The resulting minicore has outer dimensions of length 50 mm, width 50 mm and thickness 10 mm.
 カップ部71は、心材と、心材の両面に各々10%のクラッド率でクラッドされたろう材とからなり、0.6mmの厚さを有する。カップ部71の心材はJIS A 6951アルミニウム合金より構成されており、ろう材はAl-10%Si-0.03%Biの化学成分を有するアルミニウム合金より構成されている。 The cup portion 71 is composed of a core material and a brazing material clad at a cladding rate of 10% on both surfaces of the core material, and has a thickness of 0.6 mm. The core material of the cup portion 71 is made of JIS A 6951 aluminum alloy, and the brazing material is made of an aluminum alloy having a chemical composition of Al-10% Si-0.03% Bi.
 インナーフィン72は、JIS A 3003アルミニウム合金より構成されており、0.1mmの厚さを有する。カップ部71及びインナーフィン72は、予めアセトンを用いて脱脂処理を行った後、組み立てに供した。 The inner fin 72 is made of JIS A 3003 aluminum alloy and has a thickness of 0.1 mm. The cup part 71 and the inner fin 72 were subjected to a degreasing process using acetone in advance and then subjected to assembly.
<実験方法>
 上記の被処理材103を所定の形状に組み立てた後、治具を用いてこれらを固定した。本例の治具は、厚さ3mmのステンレス板73である。図6に示すように、一対のステンレス板73の間に被処理材103を挟み込み、これらをステンレス線(不図示)で締め付けることにより、被処理材103を固定した。
<Experiment method>
After assembling the material to be processed 103 into a predetermined shape, these were fixed using a jig. The jig of this example is a stainless plate 73 having a thickness of 3 mm. As shown in FIG. 6, the material to be processed 103 was sandwiched between a pair of stainless steel plates 73, and these were clamped with a stainless steel wire (not shown) to fix the material to be processed 103.
 試験体E27~E32、C25、C26及びC28については、ステンレス板73に固定した被処理材103を遮蔽箱8(図7参照)に収容した。遮蔽箱8は、表3に示すようにステンレス鋼(SUS304)、アルミニウム合金(A5052)または等方性黒鉛から構成されており、直径3mmの通気孔81を4箇所備えている。 For the test bodies E27 to E32, C25, C26, and C28, the material 103 to be processed fixed to the stainless steel plate 73 was accommodated in the shielding box 8 (see FIG. 7). As shown in Table 3, the shielding box 8 is made of stainless steel (SUS304), aluminum alloy (A5052), or isotropic graphite, and has four ventilation holes 81 having a diameter of 3 mm.
 試験体E30~E32については、更に、遮蔽箱8の内部に犠牲酸化材82を収容した。表3に示すように、試験体E30のろう付においては、遮蔽箱8の内部に、純Mgからなる切削屑状の犠牲酸化材82を0.5g設置した。試験体E31のろう付においては、遮蔽箱8の内部に、Al-35%Mg合金からなる切削屑状の犠牲酸化材82を0.5g設置した。試験体E32のろう付においては、遮蔽箱8の内部に、JIS A 5052アルミニウム合金板からなる犠牲酸化材82を2枚設置した。このアルミニウム合金板の寸法は長さ40mm、幅10mm及び厚さ1mmであり、1枚あたりの質量は1gであった。 For the test bodies E30 to E32, a sacrificial oxide material 82 was further accommodated inside the shielding box 8. As shown in Table 3, in the brazing of the test body E30, 0.5 g of cutting waste sacrificial oxide material 82 made of pure Mg was placed inside the shielding box 8. In the brazing of the test body E31, 0.5 g of a cutting waste sacrificial oxide material 82 made of an Al-35% Mg alloy was placed inside the shielding box 8. In the brazing of the test body E32, two sacrificial oxidation materials 82 made of JIS A 5052 aluminum alloy plate were installed inside the shielding box 8. The aluminum alloy plate had a length of 40 mm, a width of 10 mm and a thickness of 1 mm, and the mass per sheet was 1 g.
 その後、実施例1のろう付炉1を用いて予備加熱及びろう付を行った。ろう付の手順は、予備加熱室2内の圧力等を表3に示す条件に変更した以外は、実験例1と同様である。ろう付後の各試験体の中央を切断し、フランジ部711の外側(図6、符号712参照)におけるフィレットの形成状態、内側(図6、符号713参照)におけるフィレットの形成状態及びカップ部71とインナーフィン72との間のフィレットの形成状態を目視により評価した。その結果を表3に示す。 Then, preheating and brazing were performed using the brazing furnace 1 of Example 1. The procedure of brazing is the same as that of Experimental Example 1 except that the pressure in the preheating chamber 2 is changed to the conditions shown in Table 3. The center of each specimen after brazing is cut, the fillet formation state on the outer side (see FIG. 6, 712) of the flange portion 711, the fillet formation state on the inner side (see FIG. 6, 713), and the cup portion 71. The formation state of the fillet between the inner fin 72 and the inner fin 72 was visually evaluated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、表3における評価結果の欄に記載した記号の意味は、以下の通りである。
 A+:極めて良好
 A:一部にフィレット形状が不均一な部分があるが、良好
 B:フィレットが形成されていない部分が存在する
 C:フィレットが形成されていない部分が多く存在する
 D:フィレットが全く形成されていない
In addition, the meaning of the symbol described in the column of the evaluation result in Table 3 is as follows.
A +: Extremely good A: There is a portion where the fillet shape is not uniform, but it is good B: There are portions where the fillet is not formed C: Many portions where the fillet is not formed D: Fillet Not formed at all
 表3より知られるように、減圧雰囲気下における予備加熱、不活性ガスの供給による及び不活性ガス雰囲気下でのろう付を行った試験体E21~E32は、いずれも、接合状態が良好であった。特に、被処理材103を遮蔽箱8内に収容した状態で予備加熱及びろう付を行った試験体E27~E32は、遮蔽箱8を用いずにろう付を行った試験体E21~E26に比べて、フランジ部711の外側におけるフィレットの形成状態がより良好であった。なお、試験体E21~E26は、試験体E27~E32に比べてフランジ部711の外側におけるフィレットの形成状態が若干劣るものの、実用上問題のない接合状態であった。 As is known from Table 3, all of the test bodies E21 to E32 that had been preheated in a reduced-pressure atmosphere, supplied with an inert gas, and brazed in an inert gas atmosphere had a good bonding state. It was. In particular, the specimens E27 to E32 that were preheated and brazed while the workpiece 103 was accommodated in the shielding box 8 were compared to the specimens E21 to E26 that were brazed without using the shielding box 8. Thus, the fillet formation state on the outer side of the flange portion 711 was better. The test bodies E21 to E26 were joined with no problem in practical use, although the fillet formation state on the outside of the flange portion 711 was slightly inferior to the test bodies E27 to E32.
 また、遮蔽箱8に犠牲酸化材82を収容した状態でろう付を行った試験体E30~E32は、犠牲酸化材82を用いずにろう付を行った試験体E27~E29に比べてフランジ部711の外側に形成されるフィレットがより大きくなった。このことから、犠牲酸化材82の作用によって遮蔽箱8内の酸素濃度を低減することができ、結果としてフランジ部711の外側におけるろうの濡れ性が向上したことが理解できる。 In addition, the specimens E30 to E32 that have been brazed while the sacrificial oxide material 82 is housed in the shielding box 8 have a flange portion compared to the specimens E27 to E29 that have been brazed without using the sacrificial oxide material 82. The fillet formed on the outside of 711 became larger. From this, it can be understood that the oxygen concentration in the shielding box 8 can be reduced by the action of the sacrificial oxidant 82, and as a result, the wettability of the wax outside the flange portion 711 is improved.
 予備加熱室2の圧力を180Paにした試験体C21及び予備加熱室2の設定温度を140℃にした試験体C22は、フランジ部711の外側においてフィレット切れが発生した。また、ミニコア内部のフィレット、即ち、フランジ部711の内側に形成されたフィレット及びカップ部71とインナーフィン72との間に形成されたフィレットについても、試験体E21等に比べて形成状態が悪くなった。なお、予備加熱室2の温度が140℃であるときの被処理材103の温度は135~140℃程度に到達したと推定される。 In the test body C21 in which the pressure in the preheating chamber 2 was set to 180 Pa and the test body C22 in which the set temperature in the preheating chamber 2 was set to 140 ° C., fillet breakage occurred outside the flange portion 711. In addition, the fillet inside the mini-core, that is, the fillet formed inside the flange portion 711 and the fillet formed between the cup portion 71 and the inner fin 72 are also poorly formed compared to the specimen E21 or the like. It was. It is estimated that the temperature of the workpiece 103 when the temperature of the preheating chamber 2 is 140 ° C. has reached about 135 to 140 ° C.
 予備加熱室2の圧力及び温度の両方を悪条件とした試験体C23及び予備加熱を行わない試験体C24は、試験体C22に比べて、ミニコアの内外両方においてフィレットの形成状態がさらに悪くなった。 The test body C23 in which both the pressure and temperature of the preheating chamber 2 are in bad conditions and the test body C24 in which the preheating is not performed have worse fillet formation in both the inside and outside of the minicore than the test body C22. .
 試験体C25及び試験体C26は、遮蔽箱8を使用したため、予備加熱室2の減圧のみを行った試験体C24に比べてフィレットの形成状態が改善された。しかしながら、フランジ部711の外側においてフィレット切れが発生して接合不良となったため、実用上問題のない水準には到達しなかった。 Since the test body C25 and the test body C26 used the shielding box 8, the formation state of the fillet was improved as compared with the test body C24 in which only the pressure reduction of the preheating chamber 2 was performed. However, fillet breakage occurred on the outer side of the flange portion 711, resulting in poor bonding, so that it did not reach a level where there was no practical problem.
 また、予備加熱及び減圧の両方を行わない試験体C27及びC28については、ミニコアの内外両方においてフィレット切れが多発し、接合不良となった。特に、試験体C28は、遮蔽箱8内が大気雰囲気の状態のままろう付を行ったため、かえって接合状態が悪化し、ほとんどフィレットが形成されなかった。 In addition, for the specimens C27 and C28 that were not subjected to both preheating and decompression, fillet breakage occurred frequently both inside and outside the minicore, resulting in poor bonding. In particular, since the test body C28 was brazed while the inside of the shielding box 8 was in an air atmosphere, the joining state deteriorated and a fillet was hardly formed.

Claims (13)

  1.  アルミニウム材よりなる被処理材のろう付に用いられるろう付炉であって、
     予備加熱室とろう付室とを有し、
     上記予備加熱室は、上記被処理材を収容した状態で室内を減圧するための真空ポンプと、減圧雰囲気下において上記被処理材を予備加熱する予備加熱装置と、予備加熱後に室内を復圧するための不活性ガスを導入する復圧ガス導入装置とを有し、
     上記ろう付室は、室内に不活性ガスを導入するガス置換装置と、上記被処理材をろう付温度に加熱する本加熱装置とを有している、ろう付炉。
    A brazing furnace used for brazing a material to be treated made of an aluminum material,
    A preheating chamber and a brazing chamber;
    The preheating chamber includes a vacuum pump for depressurizing the chamber in a state in which the material to be treated is accommodated, a preheating device for preheating the material to be treated in a decompressed atmosphere, and a pressure relief chamber after the preheating. A return pressure gas introduction device for introducing the inert gas of
    The brazing chamber is a brazing furnace having a gas displacement device for introducing an inert gas into the chamber and a main heating device for heating the material to be treated to a brazing temperature.
  2.  上記予備加熱室は、室内の圧力を100Pa以下にすることができるように構成されている、請求項1に記載のろう付炉。 The brazing furnace according to claim 1, wherein the preheating chamber is configured so that the pressure in the chamber can be 100 Pa or less.
  3.  上記予備加熱装置は、上記被処理材の温度を200℃超にすることができるように構成されている、請求項1または2に記載のろう付炉。 The brazing furnace according to claim 1 or 2, wherein the preheating device is configured so that the temperature of the material to be processed can be increased to more than 200 ° C.
  4.  上記本加熱装置は、個別に温度を調整可能な複数のサブユニットを有しており、該複数のサブユニットが上記被処理材の搬送方向に沿って配置されている、請求項1~3のいずれか1項に記載のろう付炉。 The heating apparatus according to any one of claims 1 to 3, further comprising a plurality of subunits whose temperatures can be individually adjusted, wherein the plurality of subunits are arranged along a conveying direction of the material to be processed. The brazing furnace according to any one of the above.
  5.  上記ろう付炉は、上記ろう付室に連通する冷却室を有しており、該冷却室は、室内に不活性ガスを導入する冷却ガス導入装置を有している、請求項1~4のいずれか1項に記載のろう付炉。 The brazing furnace has a cooling chamber communicating with the brazing chamber, and the cooling chamber has a cooling gas introducing device for introducing an inert gas into the chamber. The brazing furnace according to any one of the above.
  6.  上記ろう付炉は、上記被処理材を入口から出口まで搬送する搬送装置を有している、請求項1~5のいずれか1項に記載のろう付炉。 The brazing furnace according to any one of claims 1 to 5, wherein the brazing furnace has a conveying device for conveying the material to be treated from an inlet to an outlet.
  7.  アルミニウム材よりなる被処理材を100Pa以下の減圧雰囲気下において予備加熱し、
     次いで、不活性ガスを供給することにより上記被処理材の周囲を不活性ガス雰囲気にし、
     その後、上記不活性ガス雰囲気を維持した状態で上記被処理材を加熱してろう付を行う、アルミニウム材のろう付方法。
    Preheating the material to be treated made of an aluminum material under a reduced pressure atmosphere of 100 Pa or less,
    Next, by supplying an inert gas, the periphery of the material to be treated is made an inert gas atmosphere,
    Then, the brazing method of the aluminum material which brazes by heating the said to-be-processed material in the state which maintained the said inert gas atmosphere.
  8.  上記予備加熱は、上記被処理材を200℃超え400℃以下の温度に加熱して行う、請求項7に記載のアルミニウム材のろう付方法。 The aluminum material brazing method according to claim 7, wherein the preheating is performed by heating the material to be treated to a temperature of 200 ° C to 400 ° C.
  9.  上記被処理材は、ろう付を行う部分に予めフッ化物系フラックスが塗布されている、請求項7または8に記載のアルミニウム材のろう付方法。 The aluminum material brazing method according to claim 7 or 8, wherein the material to be treated is preliminarily coated with a fluoride-based flux on a portion to be brazed.
  10.  上記被処理材は、ろう付を行う部分に予めフッ化物系フラックスが塗布されていない、請求項7または8に記載のアルミニウム材のろう付方法。 The aluminum material brazing method according to claim 7 or 8, wherein the material to be treated is not preliminarily coated with a fluoride-based flux on a portion to be brazed.
  11.  上記予備加熱及び上記ろう付は、金属または黒鉛よりなり通気孔を有する遮蔽箱に上記被処理材を収容した状態で行われる、請求項10に記載のアルミニウム材のろう付方法。 The method for brazing an aluminum material according to claim 10, wherein the preheating and the brazing are performed in a state where the material to be treated is accommodated in a shielding box made of metal or graphite and having a vent hole.
  12.  上記遮蔽箱には、さらに、箱内の酸素を消費する犠牲酸化材が収容されている、請求項11に記載のアルミニウム材のろう付方法。 12. The aluminum material brazing method according to claim 11, wherein the shielding box further contains a sacrificial oxidizing material that consumes oxygen in the box.
  13.  請求項1~6のいずれか1項に記載のろう付炉を用いてろう付を行う、請求項7~12のいずれか1項に記載のアルミニウム材のろう付方法。 The method for brazing an aluminum material according to any one of claims 7 to 12, wherein brazing is performed using the brazing furnace according to any one of claims 1 to 6.
PCT/JP2015/070550 2014-10-28 2015-07-17 Brazing furnace and brazing method for aluminum material WO2016067682A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15854432.0A EP3213850A4 (en) 2014-10-28 2015-07-17 Brazing furnace and brazing method for aluminum material
US15/509,303 US20170282271A1 (en) 2014-10-28 2015-07-17 Brazing furnace and aluminum-material brazing method
BR112017007361A BR112017007361A2 (en) 2014-10-28 2015-07-17 brazing furnace and aluminum material brazing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014218831 2014-10-28
JP2014-218831 2014-10-28
JP2014228110A JP2016083699A (en) 2014-10-28 2014-11-10 Brazing furnace and brazing method for aluminium material
JP2014-228110 2014-11-10

Publications (1)

Publication Number Publication Date
WO2016067682A1 true WO2016067682A1 (en) 2016-05-06

Family

ID=55777030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070550 WO2016067682A1 (en) 2014-10-28 2015-07-17 Brazing furnace and brazing method for aluminum material

Country Status (2)

Country Link
CN (2) CN205183999U (en)
WO (1) WO2016067682A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028895A (en) * 2018-08-22 2020-02-27 株式会社Uacj Manufacturing method of heat exchanger

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067682A1 (en) * 2014-10-28 2016-05-06 株式会社Uacj Brazing furnace and brazing method for aluminum material
JP6529482B2 (en) * 2016-12-26 2019-06-12 株式会社Uacj Brazing furnace and brazing method of aluminum material
CN109732169B (en) * 2019-02-22 2021-04-06 常州爱克普换热器有限公司 Vacuum brazing equipment of plate-fin heat exchanger
CN111375857B (en) * 2020-04-10 2021-12-17 柳州市易昇热导技术有限公司 Brazing method of double-layer composite water tank
CN113543514B (en) * 2020-04-15 2022-09-23 昆山达菲乐电子产品有限公司 Reflow furnace

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762859A (en) * 1980-09-30 1982-04-16 Chugai Ro Kogyo Kaisha Ltd Method and furnace for aluminum brazing using protective atmosphere
JPS57106469A (en) * 1980-12-22 1982-07-02 Ishikawajima Harima Heavy Ind Co Ltd Brazing method and brazing furnace of aluminum
JPS6381839A (en) * 1986-09-25 1988-04-12 Nec Corp Soldering
JP2010219158A (en) * 2009-03-13 2010-09-30 Denso Corp Reflow soldering method
US20130062399A1 (en) * 2010-04-14 2013-03-14 Afc-Holcroft Apparatus for and method of brazing aluminium products with closed loop conveyor within the furnace
JP2014049746A (en) * 2013-01-10 2014-03-17 Yamato Seisakusho:Kk Heating furnace
JP2014055338A (en) * 2012-09-13 2014-03-27 Uacj Corp Aluminum clad-plate for heat exchanger and method for manufacturing the same, and aluminum heat exchanger employing clad-plate and method for manufacturing the same
JP2014104509A (en) * 2012-11-30 2014-06-09 Uacj Corp Aluminum alloy brazing sheet and brazing method of aluminum member using aluminum alloy brazing sheet
JP2014136223A (en) * 2013-01-15 2014-07-28 Showa Denko Kk Flux transfer sheet, flux deposition method and brazing method
JP2014185386A (en) * 2013-03-25 2014-10-02 Mitsubishi Alum Co Ltd Aluminum alloy fin material for soldering and fin cladding material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031592B2 (en) * 1977-11-21 1985-07-23 三菱アルミニウム株式会社 Flux-free brazing method for Al alloy members containing elements that easily vaporize during brazing as alloy components
JPH0655349B2 (en) * 1986-06-25 1994-07-27 石川島播磨重工業株式会社 Vacuum brazing method for aluminum
JP3066436B2 (en) * 1990-09-05 2000-07-17 東洋ラジエーター株式会社 Vacuum brazing method for heat exchanger
JPH07115169B2 (en) * 1992-08-11 1995-12-13 株式会社サーマル Brazing continuous device
US6780225B2 (en) * 2002-05-24 2004-08-24 Vitronics Soltec, Inc. Reflow oven gas management system and method
CN2625092Y (en) * 2003-03-18 2004-07-14 劲茂科技有限公司 Four-cabin continuous vacuum braze welding furnace
WO2016067682A1 (en) * 2014-10-28 2016-05-06 株式会社Uacj Brazing furnace and brazing method for aluminum material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762859A (en) * 1980-09-30 1982-04-16 Chugai Ro Kogyo Kaisha Ltd Method and furnace for aluminum brazing using protective atmosphere
JPS57106469A (en) * 1980-12-22 1982-07-02 Ishikawajima Harima Heavy Ind Co Ltd Brazing method and brazing furnace of aluminum
JPS6381839A (en) * 1986-09-25 1988-04-12 Nec Corp Soldering
JP2010219158A (en) * 2009-03-13 2010-09-30 Denso Corp Reflow soldering method
US20130062399A1 (en) * 2010-04-14 2013-03-14 Afc-Holcroft Apparatus for and method of brazing aluminium products with closed loop conveyor within the furnace
JP2014055338A (en) * 2012-09-13 2014-03-27 Uacj Corp Aluminum clad-plate for heat exchanger and method for manufacturing the same, and aluminum heat exchanger employing clad-plate and method for manufacturing the same
JP2014104509A (en) * 2012-11-30 2014-06-09 Uacj Corp Aluminum alloy brazing sheet and brazing method of aluminum member using aluminum alloy brazing sheet
JP2014049746A (en) * 2013-01-10 2014-03-17 Yamato Seisakusho:Kk Heating furnace
JP2014136223A (en) * 2013-01-15 2014-07-28 Showa Denko Kk Flux transfer sheet, flux deposition method and brazing method
JP2014185386A (en) * 2013-03-25 2014-10-02 Mitsubishi Alum Co Ltd Aluminum alloy fin material for soldering and fin cladding material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3213850A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028895A (en) * 2018-08-22 2020-02-27 株式会社Uacj Manufacturing method of heat exchanger
JP7178209B2 (en) 2018-08-22 2022-11-25 株式会社Uacj Heat exchanger manufacturing method

Also Published As

Publication number Publication date
CN205183999U (en) 2016-04-27
CN105537717A (en) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2016067682A1 (en) Brazing furnace and brazing method for aluminum material
JP2016083699A (en) Brazing furnace and brazing method for aluminium material
WO2016093017A1 (en) Brazing method
EP3363582A1 (en) Aluminum alloy brazing sheet, method for manufacturing same, aluminum alloy sheet, and heat exchanger
CN107708907B (en) The manufacturing method of constructed of aluminium body
RU2731572C2 (en) Sheet for high-temperature soldering
US11654516B2 (en) Aluminium multilayer brazing sheet for fluxfree brazing
CN107614178A (en) The manufacture method of constructed of aluminium body
JP2007000915A5 (en)
JP2010042439A (en) Brazing method of combination type of convection heat and radiant heat, and brazing furnace
US11229978B2 (en) Brazing sheet for flux-free brazing, method for flux-free brazing and method for manufacturing heat exchanger
US8196804B2 (en) Method for soldering components
CN108885071A (en) Hydrophilic coating film and the aluminum fin and heat exchanger for using the hydrophilic coating film
JP2014237142A (en) Brazing furnace and brazing method of aluminum material
WO2018123401A1 (en) Brazing furnace and brazing method for aluminum material
JPWO2016208615A1 (en) Continuous heat treatment furnace and method for manufacturing ceramic electronic components using the same
JP2006035232A (en) Brazing method
JP5953019B2 (en) Manufacturing method of aluminum heat exchanger with high strength and high corrosion resistance
JPH0569631B2 (en)
JP2013215735A (en) Aluminum alloy brazing sheet
JP2013094837A (en) Aluminum alloy brazing sheet
JPS58154456A (en) Manufacture of aluminium heat exchanger
JP2014226703A (en) Soldering method for aluminum alloy material
JPH02284766A (en) Vapor phase soldering method of al or al alloy
JPH03230888A (en) Brazing method for aluminum material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854432

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15509303

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015854432

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015854432

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017007361

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017007361

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170410