WO2016067437A1 - Communication system - Google Patents

Communication system Download PDF

Info

Publication number
WO2016067437A1
WO2016067437A1 PCT/JP2014/079014 JP2014079014W WO2016067437A1 WO 2016067437 A1 WO2016067437 A1 WO 2016067437A1 JP 2014079014 W JP2014079014 W JP 2014079014W WO 2016067437 A1 WO2016067437 A1 WO 2016067437A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
data
communication
station
communication system
Prior art date
Application number
PCT/JP2014/079014
Other languages
French (fr)
Japanese (ja)
Inventor
大倉 敬規
武井 健
正裕 青野
山田 勉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/079014 priority Critical patent/WO2016067437A1/en
Publication of WO2016067437A1 publication Critical patent/WO2016067437A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present invention relates to a communication system, and more particularly to a technique for improving reliability and security.
  • Patent Document 1 Japanese Patent No. 3930802
  • the transmission side terminal divides the data to be subjected to multilink communication, distributes the divided data to a plurality of transmission lines, and transmits the divided data to the plurality of transmission lines.
  • Patent Document 1 The technology described in Patent Document 1 is to improve transmission efficiency by dividing transmission data to generate a plurality of divided data, and distributing the plurality of divided data to a plurality of transmission paths in parallel.
  • the transmission line in which an abnormality has occurred is discontinued and the transmission is continued using the remaining normal transmission lines. That is, depending on the communication quality of each transmission path, the number of transmission paths that can be used simultaneously, that is, the amount of data that can be transmitted per unit time varies.
  • Such a conventional transmission method is used for best-effort transmission of large-capacity data such as moving image data in a transmission system in which the amount of data that can be transmitted per unit time varies depending on the communication quality of each transmission path.
  • large-capacity data such as moving image data
  • a transmission system in which the amount of data that can be transmitted per unit time varies depending on the communication quality of each transmission path.
  • high-reliable data transmission that is required to reliably transmit a small amount of correct data, such as control data and monitoring data used in industrial plants. .
  • an object of the present invention is to provide a communication system that can improve reliability and security using a plurality of transmission paths.
  • the claims of the present invention include a plurality of means for solving the above-mentioned problems.
  • a transmission unit capable of transmitting communication data using a plurality of transmission paths having different properties.
  • a transmission station, and a reception station including a reception unit capable of receiving communication data from the plurality of transmission paths, wherein the transmission station has a predetermined value for the communication quality of each transmission path in the reception station.
  • a transmission processing unit for determining communication parameters and transmitting communication data.
  • the receiving station determines whether the communication quality of the received communication data deviates from the predetermined value.
  • a reception processing unit for detecting an abnormality in the transmission path.
  • the present invention it is possible to provide a communication system capable of improving reliability and security in a communication system in which a transmission terminal and a reception terminal communicate using a plurality of transmission paths.
  • FIG. 1 is a block diagram illustrating a configuration of a communication system according to an embodiment of the present invention. It is a block diagram which shows the structure of the radio station and data relay apparatus which concern on one Embodiment of this invention. It is a block diagram which shows the structure of the relay processing apparatus which concerns on one Embodiment of this invention. It is a figure which shows the example of the procedure which adjusts the transmission quality of a propagation path in the communication system which concerns on one Embodiment of this invention. It is a figure which shows the example which distributes and transmits data in the communication system which concerns on one Embodiment of this invention. It is a figure which shows the example which distributes and transmits data in the communication system which concerns on one Embodiment of this invention. It is a figure which shows the example which distributes and transmits data in the communication system which concerns on one Embodiment of this invention.
  • FIG. 1 is a block diagram illustrating a configuration of a communication system according to an embodiment of the present invention. It is a block diagram which shows the structure of the radio station and data relay apparatus which concern on one Embodiment of this invention. It is a figure which shows the example of the procedure which adjusts the transmission quality of a propagation path in the communication system which concerns on one Embodiment of this invention. It is a figure which shows the example of the procedure which adjusts the transmission quality of a propagation path in the communication system which concerns on one Embodiment of this invention. It is a figure which shows the example of the packet format which a radio station transmits / receives in the communication system which concerns on one Embodiment of this invention.
  • the number of propagation paths is three will be described as an example of a plurality of propagation paths, but the number of propagation paths depends on the number of propagation paths regardless of whether the number of propagation paths is two or four or more. It is obvious that the same effect can be obtained.
  • the first embodiment will be described.
  • FIG. 1 shows a configuration of a communication system according to the first embodiment.
  • a (900), B (901), and C (902) are configured as three propagation paths between two radio stations 1, respectively.
  • the wireless station 1 includes a data relay device 10 that relays data and antennas 1100, 1101, and 1102 that transmit and receive wireless data.
  • the data relay device 10 has a function of transmitting and receiving data to and from the transmission path 1200 of communication means other than wireless.
  • the transmission path 1200 for communication means other than wireless may be a wired network such as an IEEE 802.3 compliant LAN.
  • the data relay apparatus 10 relays the data received from the transmission path 1200 to all or any of the propagation paths A (900), B (901), and C (902) configured by the wireless transmission path, and the propagation path. It has a function of relaying data received from A (900), B (901), and C (902) to the transmission path 1200.
  • the data relay apparatus 10 has a function of transmitting / receiving data to / from each of the propagation paths A (900), B (901), and C (902) configured by a wireless transmission path, and a function of measuring the state of each propagation path
  • the wireless transmission / reception devices 110, 111, and 112 each having a transmission line transmission / reception device 120 having a function of transmitting / receiving data to / from the transmission line 1200. Further, the data output from each wireless transmission / reception device 110, 111, 112 is output to transmission line transmission / reception device 120, and the data output from transmission line transmission / reception device 120 is output to each wireless transmission / reception device 110, 111, 112.
  • the relay processing device 100 is provided.
  • the wireless transmission / reception devices 110, 111, and 112 may be wireless networks such as a wireless LAN compliant with communication standards such as IEEE 802.11 and IEEE 802.15, or public wireless communication networks such as a mobile phone network. It may be a unique wireless communication system or a mixture of them.
  • the data relay device 10 collects the states of the propagation paths output by the wireless transmission / reception devices 110, 111, and 112, determines the transmission quality of each propagation route, and outputs the result to the relay processing device 100.
  • the quality determination device 130, the setting information input device 140 that outputs setting information input from the outside to the relay processing device 100 and the transmission quality determination device 130, and log information that is the relay processing result of the relay processing device 100 are accumulated.
  • a log information storage device 150 for outputting to the outside is provided.
  • the relay processing device 100 includes a central processing unit 1001 that performs relay processing, a storage device 1002 that temporarily stores transmission / reception data, and wireless transmission / reception devices that perform data transfer between the wireless transmission / reception devices 110, 111, and 112.
  • a transmission path transmission / reception apparatus interface 1020 for transferring data between the interfaces 1010, 1011, 1012 and the transmission path transmission / reception apparatus 120; a transmission quality determination apparatus interface 1030 for transferring data between the transmission quality determination apparatus 130; It comprises a setting information input device interface 1040 for transferring data to and from the setting information input device 140, a log information storage device interface 1050 for transferring data to and from the log information storage device 150, and a bus 1090 connecting them. .
  • Each of the wireless transmission / reception devices 110, 111, and 112 is set so that the radio wave interference between the propagation path corresponding to the own apparatus and another propagation path is reduced.
  • the frequency to be used, the modulation method, the spread code, the spatial propagation path, or the wireless protocol may be set to be different from each other.
  • different modulation schemes (1) For example, a combination of different schemes such as a direct spreading scheme and a frequency hopping scheme, or an OFDM scheme and a frequency hopping scheme, as a scheme for making the scheme itself different.
  • the center frequency is shifted from each other in the direct spreading method or OFDM method to avoid interference, or the hopping pattern is made different from each other by frequency hopping.
  • a method of avoiding interference there is a method of avoiding interference, and (3) a method of combining (1) and (2) above can be considered.
  • the spreading code different there is an example in which a different spreading code is used for each propagation path in the code division multiplexing system.
  • Examples of making the spatial propagation path different include an example in which the radio wave transmission direction differs for each propagation path by a directional antenna, and an example in which the polarization plane of the radio wave differs for each propagation path. It is done.
  • An example in which different wireless media are used is an example in which different media are used for each propagation path, such as radio wave radio and infrared radio.
  • Each wireless transmission / reception device 110, 111, 112 has a function of measuring the state of the propagation path at all times, periodically, or before starting data communication at the time of power-on.
  • the value indicating the state of the propagation path (hereinafter referred to as state measurement value) is, for example, received radio wave intensity, data packet error rate, data bit error rate, data round-trip delay time, data arrival interval, unit time The amount of received data per hit.
  • the transmission quality judgment device 130 collects the state measurement values representing the state of the propagation path measured by the wireless transmission / reception devices 110, 111, and 112. The transmission quality judgment device 130 judges the transmission quality of each propagation path from the collected state measurement values.
  • the transmission quality judgment device 130 discards or corrects the data received from the transmission path where the abnormality is detected.
  • the threshold may be set by the operator of the communication system to the transmission quality determination device 130 via the setting information input device 140, or the relay processing device 100 may receive data round-trip delay time, data arrival interval, or reception per unit time. It may be determined based on the maximum value, the minimum value, or the average value of the data amount and set in the transmission quality determination device 130, or the transmission quality determination device 130 is input from each of the wireless transmission / reception devices 110, 111, and 112. The determination may be made based on the maximum value, the minimum value, or the average value of the state measurement values.
  • the upper limit threshold is set to ⁇ 60 dBm
  • the lower limit threshold is set to ⁇ 90 dBm
  • the received radio wave intensity measured by the wireless transmission / reception apparatus receiving the data is ⁇ 75 dBm or ⁇ 89 dBm
  • threshold ⁇ state measurement value ⁇ upper limit threshold it is determined as normal, and if ⁇ 95 dBm (state measurement value ⁇ lower limit threshold) or ⁇ 50 dBm (state measurement value> upper limit threshold), it is determined as abnormal. .
  • “state measurement value> upper limit threshold value” described above there may be a case where an obstacle on the propagation path has disappeared and the radio wave environment has changed. It is also conceivable that a third party transmits falsified data impersonated from a position closer to the wireless station 1 on the side, and there is also a security effect that eliminates falsified data.
  • the upper limit threshold is set to 10 minus 1 power
  • the lower limit threshold is set to 10 minus 10 power
  • the error rate measured by the wireless transmission / reception apparatus that has received the data Is 0.01 or 0.001 (lower limit threshold ⁇ state measurement value ⁇ upper limit threshold)
  • 0.5 state measurement value> upper limit threshold
  • the radio wave environment on the propagation path may be changed. There may be a case where a radio wave is transmitted, and there is also a security effect that excludes a transmission path that interferes with data transmission.
  • the upper-limit threshold is 100 milliseconds
  • the lower-limit threshold is 1 millisecond
  • the data round-trip delay time measured by the wireless transmission / reception apparatus that has received the data is 10 milliseconds or 50 milliseconds.
  • Second (lower threshold ⁇ state measurement ⁇ upper threshold) is determined to be normal, and 0.5 milliseconds (state measurement ⁇ lower limit threshold) or 200 milliseconds (state measurement> upper threshold) ) Is determined to be abnormal. Note that the measurement of the data round-trip delay time requires a communication procedure in which reception confirmation data is returned from the reception side to the data transmitted from the transmission side, as in the TCP / IP protocol.
  • the data arrival interval is a state measurement value
  • the upper limit threshold is 120 milliseconds and the lower limit threshold is 80 milliseconds
  • the wireless transmission / reception apparatus that has received the data If the measured data arrival interval is 105 milliseconds or 95 milliseconds (lower threshold value ⁇ state measurement value ⁇ upper threshold value), it is determined as normal, and if 50 ms (state measurement value ⁇ lower threshold value) In the case of 200 milliseconds (state measurement value> upper limit threshold value), it is determined as abnormal.
  • the upper limit threshold is 1000 bytes per second
  • the lower limit threshold is 1 byte per second
  • the received data amount measured by the wireless transmission / reception apparatus receiving the data is 100 bytes per second or 500 bytes per second (lower limit threshold ⁇ state measurement value ⁇ upper limit threshold) is determined to be normal
  • 10000 bytes per second is abnormal Is determined.
  • the data reception amount may be the number of received packets.
  • “state measurement value> upper threshold value” described above it is of course possible that the amount of legitimate transmission data increases.
  • DoS Delivery of Service
  • both the upper limit threshold and the lower limit threshold are not necessarily required, and may be either one as necessary.
  • state measurement values are not limited to those described above, and may be other values representing the state of the propagation path.
  • the transmission quality may be determined by using only one type of state measurement value or by combining determination results from a plurality of types of state measurement values.
  • the transmission quality judgment device 130 outputs the determination result to the relay processing device 100.
  • the relay processing device 100 Before transmitting / receiving data, the relay processing device 100 communicates with the relay processing device 100 of the radio station 1 on the data receiving side in advance for the transmission quality of each propagation path A (900), B (901), C (902). Respectively.
  • the transmission quality to be determined is the transmission quality measured by the reception-side radio station 1 at the time of data reception, and the transmission-side radio station 1 adjusts and transmits data so as to have the same value between the propagation paths. .
  • Examples of the transmission quality to be determined include received radio wave intensity, data error rate, data round-trip delay time, data arrival interval, and data reception amount per unit time.
  • the received radio wave intensity is the transmission quality
  • the propagation distance varies depending on each propagation path. Therefore, the transmission power from the transmission-side radio station 1 is adjusted for each propagation path, and the reception-side radio station 1
  • the received power is set within a certain range among a plurality of propagation paths.
  • the data error rate is defined as transmission quality
  • the radio wave environment such as noise differs depending on each propagation path. Therefore, the modulation method and data transmission speed of the data transmitted from the wireless station 1 on the transmission side, the number of repeated transmissions of the same data, etc. Adjustment is made for each propagation path so that the data error rate in the radio station 1 on the receiving side falls within a certain range among a plurality of propagation paths.
  • the OFDM transmission method is used, the data transmission rate is 54 Mbps, the number of transmission repetitions (number of continuous transmissions) is one, and in the transmission line with much noise and bad radio wave environment.
  • the data transmission rate is set to 1 Mbps using the DSSS modulation method, and the number of transmission repetitions (number of continuous transmissions) is set to 3 times.
  • the data round-trip delay time is used as the transmission quality, a communication procedure is required so that reception confirmation data is returned from the receiving side to the data transmitted from the transmitting side, as in the TCP / IP protocol between the transmitting and receiving radio stations.
  • the data propagation delay time differs depending on each propagation path, the return timing of the reception confirmation data returned from the reception-side radio station 1 is adjusted for each propagation path and measured by the transmission-side radio station 1. Make the data round-trip delay time within a certain range.
  • the transmission side radio station 1 transmits the data so that the transmission intervals of the data transmitted to the respective propagation paths are equal.
  • the transmission side radio station 1 monitors the amount of data transmitted to each propagation path, and transmits so that the amount of data flowing through each propagation path is within a certain range.
  • the amount of data per unit time that the wireless station 1 on the side transmits to each propagation path is adjusted.
  • the data amount may be the number of packets.
  • the transmission quality is not limited to the above-described one, and may be other values representing the transmission quality of the propagation path.
  • the transmission quality adjusted between the transmitting and receiving radios may be only one type or may be determined by combining a plurality of types.
  • the above transmission quality adjustment is set in the relay processing apparatus 100 by the operator of the communication system via the setting information input apparatus 140.
  • the relay processing device 100 determines the transmission quality of each of the propagation paths A (900), B (901), and C (902) with the relay processing device 100 of the wireless station 1 that is the data transmission destination.
  • the same data to which a serial number indicating the transmission order is added is transmitted to each propagation path.
  • the transmission quality determining device 130 determines normality or abnormality of the received data from the measured state value of the received data in each propagation path, and the relay processing device 100 transmits only the normally determined data to the transmission path transmitting / receiving device. It outputs to 120 and discards the data of abnormality determination.
  • the data received first is output to the transmission / reception device 120, and then the received data is discarded. Also good.
  • each transmission / reception radio station has a different nature.
  • the propagation path having the same transmission quality can be used as a redundant one, and the reliability of data transmission between the transmitting and receiving radio stations can be improved.
  • a propagation path whose transmission quality deviates from the upper limit or lower limit of the threshold occurs among multiple propagation paths, it is determined that a third party has received a cyber attack, and the data received from the propagation path is discarded. By using data received from other propagation paths, attacks can be eliminated and the security strength of the communication system itself can be increased.
  • the transmission quality of each propagation path is adjusted by the operator of the communication system in the relay processing device 100 via the setting information input device 140.
  • the operator of the communication system in the relay processing device 100 changes from moment to moment, it may be difficult for the operator to set each time.
  • the relay processing device 100 of the radio station 1 on both the transmission side and the reception side autonomously adjusts the transmission quality of each propagation path.
  • the configuration of the communication system and the configuration of the radio station are the same as those in the first embodiment.
  • An example of the procedure for adjusting the transmission quality of each propagation path is shown in FIG.
  • the relay processing device 100 of the wireless station 1 transmits each propagation path A (with respect to the wireless station 1 on the data receiving side (hereinafter referred to as a counterpart wireless station) at the time of start-up after power-on or before starting data transmission.
  • 900), B (901), and C (902) are used to transmit specific data a plurality of times.
  • the specific data may be a fixed-length code string such as “1, 0, 1, 0, 1, 0,...”, Or a plurality of adjustment packets in which specific bit strings are described. It may be.
  • the relay processing apparatus 100 of the counterpart wireless station 1 receives the specific data, the state measurement values in the three propagation paths A, B, and C are combined into one state measurement value data, and the state measurement value data To the radio station 1 using all the propagation paths.
  • the relay processing apparatus 100 of the wireless station 1 receives the state measurement value data from the counterpart wireless station 1, the relay processing apparatus 100 determines an upper limit and / or a lower limit of a state measurement value of each propagation path in the counterpart radio station 1. Then, the other radio station 1 (the transmission quality judgment device 130) is notified.
  • the relay processing device 100 of the wireless station 1 determines a transmission method from the wireless station 1 so that each state measurement value of the counterpart wireless station 1 falls between the upper limit and the lower limit of the threshold, and transmission power and Information related to wireless characteristics such as modulation scheme and data transmission rate is notified to each of the wireless transmission / reception devices 110, 111, and 112.
  • FIG. 9 is an example showing a procedure in which the radio station ⁇ and the counterpart radio station ⁇ autonomously adjust the received power as transmission quality and state measurement values.
  • the relay processing device 100 of the wireless station ⁇ uses the propagation paths A (900), B (901), and C (902) to the counterpart wireless station ⁇ , and uses the same transmission power for each propagation path, for example, 20 dBm. Then, the 8-bit code string of the specific data “1, 0, 1, 0, 1, 0, 1, 0” is transmitted a plurality of times, for example, 100 times.
  • the relay processing apparatus 100 of the counterpart wireless station ⁇ receives the specific data from the propagation path A, for example, at ⁇ 60 dBm ⁇ 10 dB, from the propagation path B at ⁇ 50 dBm ⁇ 5 dB, and from the propagation path C.
  • the received power in the three propagation paths A, B, and C is combined into one state measurement value data, and the state measurement value data is used for all propagation paths. It is notified to the radio station ⁇ by repeating a plurality of times, for example, 10 times each. At this time, it is desirable to notify the radio station ⁇ with the maximum transmission power that the counterpart radio station ⁇ can transmit.
  • the relay processing device 100 of the wireless station ⁇ When the relay processing device 100 of the wireless station ⁇ receives the state measurement value data from the counterpart wireless station ⁇ , it determines the upper and lower limits of the threshold value of the state measurement value of each propagation path in the counterpart wireless station ⁇ . For example, the transmission power of the radio station ⁇ can be received at 10 dBm (20 dBm when transmitted at 20 dBm) to the propagation path A so that the center value of the received power at the partner radio station ⁇ is 70 dBm for each propagation path.
  • the path C is determined to be 20 dBm (when transmitting at 20 dBm, it can be received at -70 dBm, so to receive at -70 dBm, it should be transmitted at 20 dBm), and the variation in received power at the partner radio station ⁇ is the largest value.
  • the upper limit of the threshold of received power at the partner radio station ⁇ is ⁇ 55 dBm
  • the lower limit is determined to be ⁇ 85 dBm (ie, ⁇ 70 dBm ⁇ 15 dB).
  • the upper limit ( ⁇ 55 dBm) and the lower limit ( ⁇ 85 dBm) of the threshold value of the received power are set to the partner wireless station ⁇ (the transmission quality determination device 130) a plurality of times, for example, 10 times each using all propagation paths. Repeatedly notifies the partner wireless station ⁇ . At this time, it is desirable to notify the counterpart radio station ⁇ with the maximum transmission power that the radio station ⁇ can transmit.
  • the relay processing apparatus 100 of the wireless station ⁇ transmits the determined transmission power (10 dBm to the propagation path A, 0 dBm to the propagation path B, and 20 dBm to the propagation path C) to each of the wireless transmission / reception apparatuses 110, 111, and 112. Notice.
  • FIG. 10 shows an example of a procedure in which the wireless station ⁇ and the counterpart wireless station ⁇ autonomously adjust the packet error rate as the transmission quality or state measurement value.
  • the relay processing apparatus 100 of the wireless station ⁇ uses the propagation paths A (900), B (901), and C (902) to the counterpart wireless station ⁇ , and uses the same transmission speed (normal speed) for each propagation path.
  • the transmission rate when transmitting data is desirable for example, at 1 Mbps
  • a specific packet for example, a 1024-byte fixed length packet
  • the relay processing apparatus 100 of the partner radio station ⁇ receives, for example, 990 received specific packets from the propagation path A, 999 received from the propagation path B, and 900 received from the propagation path C.
  • the number of received packets in the three propagation paths A, B, and C is collected into one state measurement value data, and the state measurement value data is used a plurality of times, for example, 10 times each using all propagation paths. Repeatedly notifies the wireless station ⁇ . At this time, it is desirable to notify the wireless station ⁇ at the lowest transmission rate that the counterpart wireless station ⁇ can transmit.
  • the relay processing device 100 of the wireless station ⁇ receives the state measurement value data from the counterpart wireless station ⁇ , it determines the upper and lower limits of the threshold value of the state measurement value of each propagation path in the counterpart wireless station ⁇ .
  • the center value of the packet error rate at the partner radio station ⁇ is set to 10 ⁇ 6, and is determined in advance from 10 ⁇ 7 to 10 ⁇ 5 in consideration of disturbance.
  • the upper limit of the threshold of the packet error rate at the counterpart wireless station ⁇ is determined to be 10 ⁇ 5 and the lower limit is determined to be 10 ⁇ 7.
  • the upper limit (10 ⁇ 5) and the lower limit (10 ⁇ 7) of the threshold of the received power are set to the partner radio station ⁇ (the transmission quality determination device 130) using all the propagation paths. Repeated multiple times, for example, 10 times each, and notifies the counterpart wireless station ⁇ . At this time, it is desirable to notify the counterpart wireless station ⁇ at the lowest transmission rate at which the wireless station ⁇ can transmit.
  • the packet error rate is 10 ⁇ 2, so the same packet is used to set the packet error rate at the partner radio station ⁇ to 10 ⁇ 6. Is determined to be sent three times (10 -2 to the third power).
  • the packet error rate is 10 ⁇ 3, so the same packet can be used to set the packet error rate at partner radio station ⁇ to 10 ⁇ 6. Is determined to be sent two times (10 ⁇ 3 squared).
  • the packet error rate is 10 to the power of ⁇ 1. Therefore, in order to set the packet error rate at the partner radio station ⁇ to 10 to the power of ⁇ 6, the same packet is used. Is determined to be sent six times (10 -1 to the sixth power).
  • the relay processing apparatus 100 of the radio station ⁇ stores the determined number of packet transmissions (three transmissions for the propagation path A, two transmissions for the propagation path B, and six transmissions for the propagation path C). Each time a packet is transmitted to the counterpart wireless station ⁇ , the packet is continuously transmitted for the number of consecutive transmissions determined for each propagation path. A sequence number 8004 representing a transmission order (serial number) is recorded in each packet to be transmitted. When a certain packet is continuously transmitted a plurality of times, the sequence numbers of all the continuously transmitted packets may be the same number or different numbers.
  • the relay processing apparatus 100 of the counterpart wireless station ⁇ refers to the sequence number 8004, and transmits the packet transmitted after the sequence number of the latest packet received in the past from the wireless station ⁇ . If it is a sequence number, the sequence number is stored, the packet is relayed to the transmission line 1200, and the sequence of the packet that is the same as or earlier than the sequence number of the latest packet received in the past from the radio station ⁇ If the packet has a number, it may be discarded.
  • FIG. 11 shows a format example of a packet for notifying information between the radio station ⁇ and the counterpart radio station ⁇ . That is, the packet 8000 includes a preamble 8001 for transmitting a packet transmission start to a receiving-side radio station, and a header information unit 8002 on which an identifier (for example, a MAC address or an IP address) indicating the source radio station or the destination radio station is mounted.
  • an identifier for example, a MAC address or an IP address
  • the packet identifier 8003 indicating the packet contents (for example, transmission quality measurement packet, status notification packet, threshold notification packet, data transmission packet, etc.) and whether the plurality of packets received by the receiving wireless station are the same packet Alternatively, an error mounting a sequence number 8004 for distinguishing between different packets, a data part 8008 mounting a data body, and an error check sequence (for example, CRC-16 or CRC-32) for detecting a packet bit error or the like. It consists of a check unit 8009.
  • the transmission quality of each propagation path is measured by exchanging information between the transmission-side radio station and the reception-side radio station, and the transmission of the transmission-side radio station is performed. Since the method is determined, in addition to the effect of the first embodiment, there is an effect that the wireless station can autonomously determine the optimum transmission method.
  • the wireless station 1 on the data transmission side transmits the same data to all of the plurality of propagation paths A (900), B (901) and C (902), and the reception side wireless station 1
  • the station 1 selects from the data received from each propagation path and relays it to the transmission / reception apparatus 120.
  • the configuration of the communication system and the configuration of the radio station are the same as those in the first embodiment.
  • FIG. 5 shows a data transmission method that is a feature of the present embodiment.
  • the data 950 to be transmitted to the receiving side radio station 1 is divided into a plurality of pieces of fragment data a (960), b (961), and c (962).
  • the fragment data is mounted, for example, in the data portion of FIG. 11 together with identifiers (for example, “a”, “b”, “c” in FIG. 5) indicating the arrangement order of the fragment data, and propagation paths A (900), B, respectively.
  • (901) and C (902) are transmitted in a distributed manner, and the receiving side radio station 1 restores the original data 950 based on the identifier indicating the order of the fragment data.
  • the data is divided into fragment data or restored to the original data in the relay processing device 100 in the data relay device 10.
  • the fragment data (a Alternatively, only b or c) can be wiretapped, and the entire original data 950 cannot be restored, so that it is possible to prevent the data 950 from being wiretapped by a third party.
  • the wireless transmission / reception devices 110, 111, and 112 are used by the number of propagation paths A (900), B (901), and C (902).
  • radio transmission radio waves have different transmission directions (directivity) and planes of polarization
  • the plane of polarization may also be different. Therefore, by using one wireless transmission / reception device capable of controlling the transmission direction (directivity) and polarization plane of the transmission radio wave, and transmitting in different transmission directions (directivity) and polarization plane in time division, the first to third An effect equivalent to that of the embodiment can be obtained.
  • FIG. 7 shows the configuration of the communication system according to the first embodiment.
  • the wireless station 1 includes a data relay device 10 that relays data and an antenna 1105 that transmits and receives wireless data.
  • the antenna 1105 may be an array antenna in which a plurality of antennas are combined, for example.
  • the data relay device 10 has a function of transmitting and receiving data to and from the transmission path 1200 of communication means other than wireless.
  • the transmission path 1200 of communication means other than wireless may be a wired network such as an IEEE 802.3 compliant LAN.
  • the data relay apparatus 10 relays the data received from the transmission path 1200 to all or any of the propagation paths D (905), E (906), and F (907) configured by the wireless transmission path, and the propagation path It has a function of relaying data received from D (905), E (906), and F (907) to the transmission line 1200.
  • FIG. 8 shows a configuration example of the data relay device 10.
  • the data relay device 10 has a function of transmitting / receiving data to / from each of the propagation paths D (905), E (906), and F (907) configured by a wireless transmission path, and a function of measuring the state of each propagation path And a transmission / reception device 120 having a function of transmitting / receiving data to / from the transmission channel 1200.
  • the radio transmission / reception device 115 has a function of controlling the directivity and polarization plane of the transmission radio wave by controlling the phase of the transmission signal input to the antenna 1105.
  • the data relay device 10 outputs the data output from each wireless transmission / reception device 115 to the transmission line transmission / reception device 120, and also outputs the data output from the transmission line transmission / reception device 120 to each wireless transmission / reception device 115.
  • a processing apparatus 100 is provided.
  • the data relay device 10 collects the state of the propagation path output from each wireless transmission / reception device 115, determines the transmission quality of each propagation route, and outputs the result to the relay processing device 100.
  • Setting information input device 140 that outputs setting information input from the outside to relay processing device 100 and transmission quality determination device 130, and log information that accumulates log information that is a result of relay processing of relay processing device 100 and outputs the information to the outside A storage device 150 is provided.
  • a configuration example of the relay processing apparatus 100 is the same as that in FIG.
  • transmission data is transmitted from a transmitting-side radio station using a plurality of propagation paths.
  • the radio station on the receiving side monitors fluctuations in the communication quality of each propagation path, so that not only when the radio wave propagation environment around the transmission path has changed, but even when a cyber attack from a third party has occurred, Therefore, it is possible to provide a communication system capable of improving reliability and security.
  • the transmission path of the same transmission quality is used as a redundant path by adjusting the transmission quality of each propagation path to the same value between the transmitting and receiving radio stations.
  • Different transmission qualities can be determined according to the characteristics of the transmission path.
  • the radio station on the receiving side detects an abnormality in the propagation path using transmission quality determined according to the propagation path through which the received data has passed.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • Radio station 10: Data relay device, 100: Relay processing device, 110, 111, 112, 115 ... wireless transmission / reception devices, 120... Transmission line transmission / reception device, 130: Transmission quality judgment device, 140: Setting information input device, 150... Log information storage device, 1001... Central processing unit, 1002 ... Storage device, 1010, 1011, 1012, ... wireless transceiver interface, 1020: Transmission path transceiver interface, 1030: Transmission quality judgment device interface, 1040: Setting information input device interface, 1050: Log information storage device interface, 1100, 1101, 1102, 1105 ... antenna, 1200 ... transmission path, 8000 ... packet 8001 ... preamble 8002 ... header information part 8003 ... packet identifier 8004 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention addresses the problem of providing a communication system whereby reliability and security can be improved using a plurality of transmission paths. This communication system which solves the problem is characterized by being provided with, for instance: a transmission station that is provided with a transmission unit capable of transmitting communication data using a plurality of transmission paths having different characteristics; and a reception station that is provided with a reception unit capable of receiving the communication data from the transmission paths. The communication system is also characterized in that: the transmission station has a transmission processing unit that specifies transmission parameters and transmits the communication data such that the communication qualities of the transmission paths are at predetermined values at the reception station; and the reception station has a reception processing unit, which determines, when the communication data is received, whether the communication qualities of the received communication data deviated from the predetermined values, and which detects an abnormality of the transmission paths.

Description

通信システムCommunications system
 本発明は、通信システムに関し、特に、信頼性向上、セキュリティ向上のための技術に関する。 The present invention relates to a communication system, and more particularly to a technique for improving reliability and security.
 本技術分野の背景技術として、特許第3930802号公報(特許文献1)がある。この公報では、送信側の端末で、マルチリンク通信の対象となるデータを分割し、当該分割したデータを複数の伝送路に振り分けて送信するとともに、受信側の端末で、前記複数の伝送路に振り分けて送信されたデータを受信し、当該受信したデータを結合するデータ伝送方法であって、伝送路ごとの伝送実績に基づいて、当該伝送路ごとにデータの送受信を制御し、その制御は、受信側の端末においては、伝送実績に基づいて伝送路に異常があると判定すると、当該伝送路が異常であることを示す信号を送信側の端末に送信させ、当該送信側の端末においては、当該異常であることを示す信号に基づいて、異常であると示された伝送路における分割したデータの送信を停止させると共に、異常であると示された伝送路を利用して所定パターンのデータを受信側の端末に送信させ、受信側の端末においては、受信した所定パターンのデータが正常である場合には、異常であると示された伝送路におけるデータの送信を再開させることを示す信号を送信側の端末に送信させ、送信側の端末においては、当該再開させることを示す信号に基づいて、異常であると示された伝送路における分割したデータの送信を再開させるデータ伝送システムが記載されている。
As a background art in this technical field, there is Japanese Patent No. 3930802 (Patent Document 1). In this publication, the transmission side terminal divides the data to be subjected to multilink communication, distributes the divided data to a plurality of transmission lines, and transmits the divided data to the plurality of transmission lines. It is a data transmission method for receiving data transmitted by distribution and combining the received data, and based on the transmission results for each transmission path, controls the transmission and reception of data for each transmission path, the control is In the receiving side terminal, if it is determined that there is an abnormality in the transmission path based on the transmission results, the transmission side terminal is caused to transmit a signal indicating that the transmission path is abnormal, and in the transmission side terminal, Based on the signal indicating the abnormality, the transmission of the divided data in the transmission path indicated to be abnormal is stopped, and a predetermined pattern is set using the transmission path indicated to be abnormal. Data is transmitted to the receiving terminal, and when the received data of the predetermined pattern is normal, the receiving terminal resumes data transmission on the transmission path indicated to be abnormal. A data transmission system for transmitting a signal to be transmitted to a terminal on the transmission side and resuming transmission of divided data on the transmission path indicated to be abnormal based on the signal indicating to be resumed in the terminal on the transmission side Is described.
特許第3930802号公報Japanese Patent No. 3930802
 特許文献1記載の技術は、送信データを分割して複数の分割データを生成し、前記複数の分割データを複数の伝送路に振り分け並行して伝送することにより伝送効率を向上させるものであり、異常が発生した伝送路は使用を取り止め、残りの正常な伝送路を使用して伝送を継続するものである。すなわち、各伝送路の通信品質に依存して、同時に使用できる伝送路の数、すなわち、単位時間当たりに伝送できるデータ量が変動する。 The technology described in Patent Document 1 is to improve transmission efficiency by dividing transmission data to generate a plurality of divided data, and distributing the plurality of divided data to a plurality of transmission paths in parallel. The transmission line in which an abnormality has occurred is discontinued and the transmission is continued using the remaining normal transmission lines. That is, depending on the communication quality of each transmission path, the number of transmission paths that can be used simultaneously, that is, the amount of data that can be transmitted per unit time varies.
 このような従来技術の伝送方法は、各伝送路の通信品質に依存して単位時間当たりに伝送できるデータ量が変動する伝送システムにおいて動画データのような大容量データをベストエフォートで伝送するには有効であるが、産業プラントなどで使用する制御データや監視データのような、少量ではあるが正しいデータを確実に伝送することを要求される高信頼なデータ伝送には適さないという問題点がある。 Such a conventional transmission method is used for best-effort transmission of large-capacity data such as moving image data in a transmission system in which the amount of data that can be transmitted per unit time varies depending on the communication quality of each transmission path. Although effective, there is a problem that it is not suitable for high-reliable data transmission that is required to reliably transmit a small amount of correct data, such as control data and monitoring data used in industrial plants. .
 また、本従来技術では、伝送システムが第三者からのサイバー攻撃を受け、ある伝送路を伝送中のデータが傍受されたり、改竄された成り済ましデータを送り付けられた場合のセキュリティ対策が取られておらず、制御データや監視データを伝送した場合にサイバー攻撃を防御できないという問題点もある。 In addition, in this conventional technology, security measures are taken when a transmission system is subjected to a cyber attack from a third party, and data being transmitted through a certain transmission path is intercepted or falsified spoofed data is sent. In addition, there is a problem that cyber attacks cannot be prevented when control data or monitoring data is transmitted.
 そこで、本発明では、複数の伝送路を使用して信頼性とセキュリティを向上させることのできる通信システムを提供することを課題とする。 Therefore, an object of the present invention is to provide a communication system that can improve reliability and security using a plurality of transmission paths.
 上記課題を解決するために、例えば、特許請求の範囲に記載の構成を採用する。 In order to solve the above problems, for example, the configuration described in the claims is adopted.
 本発明の特許請求の範囲は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、性質の異なる複数の伝送路を使用して通信データを送信可能な送信部を備えた送信局と、前記複数の伝送路から通信データを受信可能な受信部を備えた受信局と、を備え、前記送信局は、前記受信局における各伝送路の通信品質が所定の値になるように、送信パラメータを定めて通信データを送信する送信処理部を有し、前記受信局は、前記通信データを受信すると、受信した通信データの通信品質が前記所値を逸脱するか否かを判定して伝送路の異常を検出する受信処理部を有することを特徴とする。 The claims of the present invention include a plurality of means for solving the above-mentioned problems. For example, a transmission unit capable of transmitting communication data using a plurality of transmission paths having different properties is provided. A transmission station, and a reception station including a reception unit capable of receiving communication data from the plurality of transmission paths, wherein the transmission station has a predetermined value for the communication quality of each transmission path in the reception station. And a transmission processing unit for determining communication parameters and transmitting communication data. When the receiving station receives the communication data, the receiving station determines whether the communication quality of the received communication data deviates from the predetermined value. And a reception processing unit for detecting an abnormality in the transmission path.
 本発明によれば、複数の伝送路を使用して送信端末と受信端末が通信を行う通信システムにおいて、信頼性とセキュリティを向上させることのできる通信システムを提供することができる。 According to the present invention, it is possible to provide a communication system capable of improving reliability and security in a communication system in which a transmission terminal and a reception terminal communicate using a plurality of transmission paths.
本発明の1実施形態に係る通信システムの構成を示すブロック図である。1 is a block diagram illustrating a configuration of a communication system according to an embodiment of the present invention. 本発明の1実施形態に係る無線局およびデータ中継装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radio station and data relay apparatus which concern on one Embodiment of this invention. 本発明の1実施形態に係る中継処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the relay processing apparatus which concerns on one Embodiment of this invention. 本発明の1実施形態に係る通信システムにおいて伝搬経路の伝送品質を調整する手順の例を示す図である。It is a figure which shows the example of the procedure which adjusts the transmission quality of a propagation path in the communication system which concerns on one Embodiment of this invention. 本発明の1実施形態に係る通信システムにおいてデータを分散して伝送させる例を示す図である。It is a figure which shows the example which distributes and transmits data in the communication system which concerns on one Embodiment of this invention. 本発明の1実施形態に係る通信システムにおいてデータを分散して伝送させる例を示す図である。It is a figure which shows the example which distributes and transmits data in the communication system which concerns on one Embodiment of this invention. 本発明の1実施形態に係る通信システムの構成を示すブロック図である。1 is a block diagram illustrating a configuration of a communication system according to an embodiment of the present invention. 本発明の1実施形態に係る無線局およびデータ中継装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radio station and data relay apparatus which concern on one Embodiment of this invention. 本発明の1実施形態に係る通信システムにおいて伝搬経路の伝送品質を調整する手順の例を示す図である。It is a figure which shows the example of the procedure which adjusts the transmission quality of a propagation path in the communication system which concerns on one Embodiment of this invention. 本発明の1実施形態に係る通信システムにおいて伝搬経路の伝送品質を調整する手順の例を示す図である。It is a figure which shows the example of the procedure which adjusts the transmission quality of a propagation path in the communication system which concerns on one Embodiment of this invention. 本発明の1実施形態に係る通信システムにおいて無線局が送受信するパケットフォーマットの例を示す図である。It is a figure which shows the example of the packet format which a radio station transmits / receives in the communication system which concerns on one Embodiment of this invention.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 なお、以下、複数の伝搬経路として、伝搬経路の数が3個の場合を例に説明するが、伝搬経路の数が2個の場合でも4個以上の場合でも,伝搬経路の数に応じた同様の効果が得られることは自明である。 In the following, a case where the number of propagation paths is three will be described as an example of a plurality of propagation paths, but the number of propagation paths depends on the number of propagation paths regardless of whether the number of propagation paths is two or four or more. It is obvious that the same effect can be obtained.
第1の実施形態First embodiment
 第1の実施形態について説明する。 The first embodiment will be described.
 まず、第1の実施形態について説明する。 First, the first embodiment will be described.
 図1に、本第一実施形態に係る通信システムの構成を示す。 FIG. 1 shows a configuration of a communication system according to the first embodiment.
 図1に示すように、2個の無線局1の間に、3つの伝搬経路としてそれぞれ、A(900),B(901),C(902)を構成する。前記無線局1はデータを中継処理するデータ中継装置10と無線データを送受信するアンテナ1100、1101、1102から構成される。なお、データ中継装置10は無線以外の通信手段の伝送路1200との間でデータを送受信する機能を有している。無線以外の通信手段の伝送路1200とは、例えばIEEE802.3準拠LANなどの有線ネットワークでもよい。 As shown in FIG. 1, A (900), B (901), and C (902) are configured as three propagation paths between two radio stations 1, respectively. The wireless station 1 includes a data relay device 10 that relays data and antennas 1100, 1101, and 1102 that transmit and receive wireless data. Note that the data relay device 10 has a function of transmitting and receiving data to and from the transmission path 1200 of communication means other than wireless. The transmission path 1200 for communication means other than wireless may be a wired network such as an IEEE 802.3 compliant LAN.
 データ中継装置10は、伝送路1200から受信したデータを無線伝送路で構成された伝搬経路A(900),B(901),C(902)の全てあるいはいずれかに中継し、また、伝搬経路A(900),B(901),C(902)から受信したデータを伝送路1200へ中継する機能を持つ。 The data relay apparatus 10 relays the data received from the transmission path 1200 to all or any of the propagation paths A (900), B (901), and C (902) configured by the wireless transmission path, and the propagation path. It has a function of relaying data received from A (900), B (901), and C (902) to the transmission path 1200.
 このデータ中継装置10の構成例を図2に示す。データ中継装置10は、無線伝送路で構成される各伝搬経路A(900),B(901),C(902)との間でデータを送受信する機能と前記各伝搬経路の状態を測定する機能とを持つそれぞれ無線送受信装置110、111、112と、伝送路1200との間でデータを送受信する機能を持つ伝送路送受信装置120を備える。さらに、各無線送受信装置110、111、112から出力されたデータを伝送路送受信装置120へ出力し、また、伝送路送受信装置120から出力されたデータを各無線送受信装置110、111、112へ出力する中継処理装置100を備えている。なお、前記無線送受信装置110、111、112としては、例えば、IEEE802.11やIEEE802.15などの通信規格に準拠した無線LANなどの無線ネットワークでもよいし、携帯電話網などの公衆無線通信網であってもよいし、独自方式の無線通信システムであってもよいし、またそれらが混在していてもよい。 An example of the configuration of the data relay device 10 is shown in FIG. The data relay apparatus 10 has a function of transmitting / receiving data to / from each of the propagation paths A (900), B (901), and C (902) configured by a wireless transmission path, and a function of measuring the state of each propagation path The wireless transmission / reception devices 110, 111, and 112 each having a transmission line transmission / reception device 120 having a function of transmitting / receiving data to / from the transmission line 1200. Further, the data output from each wireless transmission / reception device 110, 111, 112 is output to transmission line transmission / reception device 120, and the data output from transmission line transmission / reception device 120 is output to each wireless transmission / reception device 110, 111, 112. The relay processing device 100 is provided. The wireless transmission / reception devices 110, 111, and 112 may be wireless networks such as a wireless LAN compliant with communication standards such as IEEE 802.11 and IEEE 802.15, or public wireless communication networks such as a mobile phone network. It may be a unique wireless communication system or a mixture of them.
 さらに、データ中継装置10は、各無線送受信装置110、111、112が出力する伝搬経路の状態をそれぞれ収集し、各伝搬経路の伝送品質を判定し、その結果を中継処理装置100へ出力する伝送品質判定装置130と、外部から入力された設定情報を中継処理装置100と伝送品質判定装置130へ出力する設定情報入力装置140と、中継処理装置100の中継処理結果であるログ情報を蓄積して外部へ出力するログ情報蓄積装置150を備えている。 Further, the data relay device 10 collects the states of the propagation paths output by the wireless transmission / reception devices 110, 111, and 112, determines the transmission quality of each propagation route, and outputs the result to the relay processing device 100. The quality determination device 130, the setting information input device 140 that outputs setting information input from the outside to the relay processing device 100 and the transmission quality determination device 130, and log information that is the relay processing result of the relay processing device 100 are accumulated. A log information storage device 150 for outputting to the outside is provided.
 中継処理装置100の構成例を図3に示す。中継処理装置100は、中継処理を行う中央演算装置1001と、送受信データを一時的に記憶する記憶装置1002と、各無線送受信装置110、111、112との間でデータ転送を行うそれぞれ無線送受信装置インターフェース1010、1011、1012と、伝送路送受信装置120との間でデータ転送を行う伝送路送受信装置インターフェース1020と、伝送品質判定装置130との間でデータ転送を行う伝送品質判定装置インタフェース1030と、設定情報入力装置140との間でデータ転送を行う設定情報入力装置インタフェース1040と、ログ情報蓄積装置150との間でデータ転送を行うログ情報蓄積装置インタフェース1050とこれらを結ぶバス1090から構成される。 A configuration example of the relay processing apparatus 100 is shown in FIG. The relay processing device 100 includes a central processing unit 1001 that performs relay processing, a storage device 1002 that temporarily stores transmission / reception data, and wireless transmission / reception devices that perform data transfer between the wireless transmission / reception devices 110, 111, and 112. A transmission path transmission / reception apparatus interface 1020 for transferring data between the interfaces 1010, 1011, 1012 and the transmission path transmission / reception apparatus 120; a transmission quality determination apparatus interface 1030 for transferring data between the transmission quality determination apparatus 130; It comprises a setting information input device interface 1040 for transferring data to and from the setting information input device 140, a log information storage device interface 1050 for transferring data to and from the log information storage device 150, and a bus 1090 connecting them. .
 次に、無線局1の動作を示す。各無線送受信装置110、111、112はそれぞれ、自装置が対応する伝搬経路が他の伝搬経路との間で電波干渉が小さくなるように設定する。例えば、使用する周波数、あるいは変調方式、あるいは拡散符号、あるいは空間的な伝搬経路、あるいは無線プロトコル等が互いに異なるように設定すると良い。変調方式を異なるものに設定する例としては、(1)方式自体を異なるものにする方法として、例えば、直接拡散方式と周波数ホッピング方式、あるいはOFDM方式と周波数ホッピング方式などの異なる方式の組合せとする方法があり、(2)変調に用いるパラメータを異なるものにする方法として、例えば、直接拡散方式やOFDM方式で中心周波数を互いにずらして干渉を避けたり、周波数ホッピングでホッピングパターンを互いに異なるものにして干渉を避ける方法があり、(3)上記(1)と(2)を組み合わせる方法、などが考えられる。拡散符号を異なるものにする例としては、符号分割多重方式において拡散符号を伝搬経路毎に異なるものを使用する例が挙げられる。また空間的な伝搬経路を異なるものにする例としては、指向性アンテナにより電波送信方向を伝搬経路毎に異なるものにする例や、電波の偏波面を伝搬経路毎に異なるものにする例が挙げられる。無線媒体を異なるものにする例としては、電波無線と赤外線無線などのように伝搬経路毎に異なる媒体を用いる例が挙げられる。 Next, the operation of the radio station 1 is shown. Each of the wireless transmission / reception devices 110, 111, and 112 is set so that the radio wave interference between the propagation path corresponding to the own apparatus and another propagation path is reduced. For example, the frequency to be used, the modulation method, the spread code, the spatial propagation path, or the wireless protocol may be set to be different from each other. As an example of setting different modulation schemes, (1) For example, a combination of different schemes such as a direct spreading scheme and a frequency hopping scheme, or an OFDM scheme and a frequency hopping scheme, as a scheme for making the scheme itself different. (2) As a method of making the parameters used for modulation different, for example, the center frequency is shifted from each other in the direct spreading method or OFDM method to avoid interference, or the hopping pattern is made different from each other by frequency hopping. There is a method of avoiding interference, and (3) a method of combining (1) and (2) above can be considered. As an example of making the spreading code different, there is an example in which a different spreading code is used for each propagation path in the code division multiplexing system. Examples of making the spatial propagation path different include an example in which the radio wave transmission direction differs for each propagation path by a directional antenna, and an example in which the polarization plane of the radio wave differs for each propagation path. It is done. An example in which different wireless media are used is an example in which different media are used for each propagation path, such as radio wave radio and infrared radio.
 各無線送受信装置110、111、112は、伝搬経路の状態を常時あるいは定期的あるいは電源投入時などにデータ通信を開始するのに先立って測定する機能を備える。ここで伝搬経路の状態を表す値(以下、状態測定値と称す)とは、例えば、受信電波強度やデータのパケットエラー率、データのビットエラー率、データ往復遅延時間、データ到着間隔、単位時間当たりの受信データ量などが挙げられる。伝送品質判定装置130は、各無線送受信装置110、111、112が測定した前記伝搬経路の状態を表す前記状態測定値を収集する。伝送品質判定装置130は収集した前記状態測定値から、各伝搬経路の伝送品質を判定する。伝送品質の判定方法としては、例えば、前記状態測定値が、上限の閾値以下であり、かつ、下限の閾値以上であれば「正常」とし、それ以外は「異常」と判定する。伝送品質判定装置130は、異常を検出した伝送路から受信したデータを廃棄あるいは訂正する。前記閾値は、本通信システムのオペレータが設定情報入力装置140を介して伝送品質判定装置130へ設定してもよいし、中継処理装置100がデータ往復遅延時間やデータ到着間隔や単位時間当たりの受信データ量などの最大値や最小値や平均値を基に決定して伝送品質判定装置130へ設定してもよいし、伝送品質判定装置130が各無線送受信装置110、111、112から入力される状態測定値の最大値や最小値や平均値を基に決定してもよい。 Each wireless transmission / reception device 110, 111, 112 has a function of measuring the state of the propagation path at all times, periodically, or before starting data communication at the time of power-on. Here, the value indicating the state of the propagation path (hereinafter referred to as state measurement value) is, for example, received radio wave intensity, data packet error rate, data bit error rate, data round-trip delay time, data arrival interval, unit time The amount of received data per hit. The transmission quality judgment device 130 collects the state measurement values representing the state of the propagation path measured by the wireless transmission / reception devices 110, 111, and 112. The transmission quality judgment device 130 judges the transmission quality of each propagation path from the collected state measurement values. As a transmission quality determination method, for example, if the state measurement value is equal to or lower than the upper limit threshold and equal to or higher than the lower limit threshold, it is determined as “normal”, and otherwise determined as “abnormal”. The transmission quality judgment device 130 discards or corrects the data received from the transmission path where the abnormality is detected. The threshold may be set by the operator of the communication system to the transmission quality determination device 130 via the setting information input device 140, or the relay processing device 100 may receive data round-trip delay time, data arrival interval, or reception per unit time. It may be determined based on the maximum value, the minimum value, or the average value of the data amount and set in the transmission quality determination device 130, or the transmission quality determination device 130 is input from each of the wireless transmission / reception devices 110, 111, and 112. The determination may be made based on the maximum value, the minimum value, or the average value of the state measurement values.
 ここで、伝送品質判定装置130による伝送品質の判定方法の例を述べる。 Here, an example of a transmission quality determination method by the transmission quality determination apparatus 130 will be described.
 例えば、受信電波強度を状態測定値とした場合、上限の閾値を-60dBm、下限の閾値を-90dBmとし、データを受信した無線送受信装置が測定した受信電波強度が-75dBmや-89dBm(下限の閾値≦状態測定値≦上限の閾値)の場合は正常と判定し、-95dBm(状態測定値<下限の閾値)の場合や-50dBm(状態測定値>上限の閾値)の場合は異常と判定する。なお、前述の「状態測定値>上限の閾値」となる場合の例として、伝搬経路上の障害物が無くなり電波環境が変化した場合も考えられるが、その他に、伝搬経路上のある場所(送信側の無線局1より近い位置)から第三者が成り済ましの改竄データを送信した場合も考えられ、改竄データを排除するセキュリティ面からの効果もある。 For example, when the received radio wave intensity is a state measurement value, the upper limit threshold is set to −60 dBm, the lower limit threshold is set to −90 dBm, and the received radio wave intensity measured by the wireless transmission / reception apparatus receiving the data is −75 dBm or −89 dBm If threshold ≦ state measurement value ≦ upper limit threshold, it is determined as normal, and if −95 dBm (state measurement value <lower limit threshold) or −50 dBm (state measurement value> upper limit threshold), it is determined as abnormal. . As an example of the case where “state measurement value> upper limit threshold value” described above, there may be a case where an obstacle on the propagation path has disappeared and the radio wave environment has changed. It is also conceivable that a third party transmits falsified data impersonated from a position closer to the wireless station 1 on the side, and there is also a security effect that eliminates falsified data.
 データのパケットエラー率やビットエラー率を状態測定値とした場合、上限の閾値を10のマイナス1乗、下限の閾値を10のマイナス10乗とし、データを受信した無線送受信装置が測定したエラー率が0.01や0.001(下限の閾値≦状態測定値≦上限の閾値)の場合は正常と判定し、0.5(状態測定値>上限の閾値)の場合は異常と判定する。なお、前述の「状態測定値>上限の閾値」となる場合の例として、伝搬経路上の電波環境が変化した場合も考えられるが、その他に、伝搬経路上のある場所から第三者が妨害電波を送信した場合も考えられ、データ伝送を妨害された伝送経路を除外するセキュリティ面からの効果もある。 When the packet error rate or bit error rate of data is the state measurement value, the upper limit threshold is set to 10 minus 1 power, the lower limit threshold is set to 10 minus 10 power, and the error rate measured by the wireless transmission / reception apparatus that has received the data Is 0.01 or 0.001 (lower limit threshold ≦ state measurement value ≦ upper limit threshold), it is determined to be normal, and 0.5 (state measurement value> upper limit threshold) is determined to be abnormal. As an example of the case where “state measurement value> upper limit threshold value” described above, the radio wave environment on the propagation path may be changed. There may be a case where a radio wave is transmitted, and there is also a security effect that excludes a transmission path that interferes with data transmission.
 データ往復遅延時間を状態測定値とした場合、上限の閾値を100ミリ秒、下限の閾値を1ミリ秒とし、データを受信した無線送受信装置が測定したデータ往復遅延時間が10ミリ秒や50ミリ秒(下限の閾値≦状態測定値≦上限の閾値)の場合は正常と判定し、0.5ミリ秒(状態測定値<下限の閾値)の場合や200ミリ秒(状態測定値>上限の閾値)の場合は異常と判定する。なお、データ往復遅延時間の測定には、TCP/IPプロトコルのように、送信側から送信したデータに対して受信側から受信確認データが返信されてくるような通信手順が必要である。 When the data round-trip delay time is a state measurement value, the upper-limit threshold is 100 milliseconds, the lower-limit threshold is 1 millisecond, and the data round-trip delay time measured by the wireless transmission / reception apparatus that has received the data is 10 milliseconds or 50 milliseconds. Second (lower threshold ≤ state measurement ≤ upper threshold) is determined to be normal, and 0.5 milliseconds (state measurement <lower limit threshold) or 200 milliseconds (state measurement> upper threshold) ) Is determined to be abnormal. Note that the measurement of the data round-trip delay time requires a communication procedure in which reception confirmation data is returned from the reception side to the data transmitted from the transmission side, as in the TCP / IP protocol.
 データ到着間隔を状態測定値とした場合、例えば100ミリ秒周期で送信されるデータに対しては、上限の閾値を120ミリ秒、下限の閾値を80ミリ秒とし、データを受信した無線送受信装置が測定したデータ到着間隔が105ミリ秒や95ミリ秒(下限の閾値≦状態測定値≦上限の閾値)の場合は正常と判定し、50ミリ秒(状態測定値<下限の閾値)の場合や200ミリ秒(状態測定値>上限の閾値)の場合は異常と判定する。なお、前述の「状態測定値<下限の閾値」となる場合の例として、伝搬経路上のある場所から第三者が成り済ましの改竄データを送信した場合も考えられ、改竄データを排除するセキュリティ面からの効果もある。 When the data arrival interval is a state measurement value, for example, for data transmitted in a cycle of 100 milliseconds, the upper limit threshold is 120 milliseconds and the lower limit threshold is 80 milliseconds, and the wireless transmission / reception apparatus that has received the data If the measured data arrival interval is 105 milliseconds or 95 milliseconds (lower threshold value ≦ state measurement value ≦ upper threshold value), it is determined as normal, and if 50 ms (state measurement value <lower threshold value) In the case of 200 milliseconds (state measurement value> upper limit threshold value), it is determined as abnormal. In addition, as an example of the case where “state measurement value <lower limit threshold” described above, a case where a third party transmits falsified data impersonated from a certain place on the propagation path can be considered, and the security aspect of eliminating falsified data There is also an effect from.
 単位時間当たりの受信データ量を状態測定値とした場合、上限の閾値を1秒あたり1000バイト、下限の閾値を1秒あたり1バイトとし、データを受信した無線送受信装置が測定した受信データ量が1秒あたり100バイトや1秒あたり500バイト(下限の閾値≦状態測定値≦上限の閾値)の場合は正常と判定し、1秒あたり10000バイト(状態測定値>上限の閾値)の場合は異常と判定する。ここでデータ受信量は受信パケット数であってもよい。なお、前述の「状態測定値>上限の閾値」となる場合の例として、もちろん正規の伝送データ量が増加した場合も考えられるが、伝搬経路上のある場所から第三者が大量の偽データを送信したDoS(Denial of Service)攻撃の場合も考えられ、攻撃を受けて使用不能となった伝搬経路を排除するセキュリティ面からの効果もある。 When the amount of received data per unit time is used as a state measurement value, the upper limit threshold is 1000 bytes per second, the lower limit threshold is 1 byte per second, and the received data amount measured by the wireless transmission / reception apparatus receiving the data is 100 bytes per second or 500 bytes per second (lower limit threshold ≤ state measurement value ≤ upper limit threshold) is determined to be normal, and 10000 bytes per second (state measurement value> upper limit threshold) is abnormal Is determined. Here, the data reception amount may be the number of received packets. As an example of the case where “state measurement value> upper threshold value” described above, it is of course possible that the amount of legitimate transmission data increases. There is also a case of a DoS (Denial of Service) attack that transmits a message, and there is a security effect that eliminates a propagation path that has become unusable due to the attack.
 ここで、前記上限の閾値および下限の閾値は、必ずしも両方が必要ではなく、必要に応じていずれか一方のみであってもよい。 Here, both the upper limit threshold and the lower limit threshold are not necessarily required, and may be either one as necessary.
 また、状態測定値としては上述のものだけに制限されるものではなく、伝搬経路の状態を表すその他の値であってもよい。 Further, the state measurement values are not limited to those described above, and may be other values representing the state of the propagation path.
 また、伝送品質の判定は、一種類の状態測定値だけでもよいし、複数種類の状態測定値からの判定結果を組み合わせて決定してもよい。 Also, the transmission quality may be determined by using only one type of state measurement value or by combining determination results from a plurality of types of state measurement values.
 伝送品質判定装置130は、決定結果を中継処理装置100へ出力する。 The transmission quality judgment device 130 outputs the determination result to the relay processing device 100.
 次に、中継処理装置100がデータを送受信する方法について述べる。 Next, a method for the relay processing apparatus 100 to transmit and receive data will be described.
 中継処理装置100はデータを送受信する前に予め、データ受信側の無線局1の中継処理装置100との間で、各伝搬経路A(900),B(901),C(902)の伝送品質をそれぞれ決定する。決定する伝送品質は、受信側の無線局1がデータ受信時に計測する伝送品質であり、各伝搬経路の間で同等の値となるように、送信側の無線局1が調整してデータ送信する。前記決定する伝送品質とは、例えば、受信電波強度やデータエラー率、データ往復遅延時間、データ到着間隔、単位時間当たりのデータ受信量などが挙げられる。 Before transmitting / receiving data, the relay processing device 100 communicates with the relay processing device 100 of the radio station 1 on the data receiving side in advance for the transmission quality of each propagation path A (900), B (901), C (902). Respectively. The transmission quality to be determined is the transmission quality measured by the reception-side radio station 1 at the time of data reception, and the transmission-side radio station 1 adjusts and transmits data so as to have the same value between the propagation paths. . Examples of the transmission quality to be determined include received radio wave intensity, data error rate, data round-trip delay time, data arrival interval, and data reception amount per unit time.
 ここで、中継処理装置100による伝搬経路の伝送品質の決定方法の例を述べる。 Here, an example of a method for determining the transmission quality of the propagation path by the relay processing apparatus 100 will be described.
 例えば、受信電波強度を伝送品質とした場合、各伝搬経路により伝搬距離が異なることから、送信側の無線局1からの送信電力を各伝搬経路毎に調整し、受信側の無線局1での受信電力を複数の伝搬経路間で一定範囲内に収まるようにする。 For example, when the received radio wave intensity is the transmission quality, the propagation distance varies depending on each propagation path. Therefore, the transmission power from the transmission-side radio station 1 is adjusted for each propagation path, and the reception-side radio station 1 The received power is set within a certain range among a plurality of propagation paths.
 データエラー率を伝送品質とした場合、各伝搬経路によりノイズなどの電波環境が異なることから、送信側の無線局1から送信するデータの変調方式やデータ伝送速度、同一データの送信繰返し回数などを各伝搬経路毎に調整し、受信側の無線局1でのデータエラー率を複数の伝搬経路間で一定範囲内に収まるようにする。例えば、ノイズが少なく電波環境が良好な伝送路では、OFDM変調方式を使用してデータ伝送速度を54Mbps、送信繰返し回数(連送回数)は1回とし、ノイズが多く電波環境が悪い伝送路では、DSSS変調方式を使用してデータ伝送速度を1Mbps、送信繰返し回数(連送回数)は3回とする、などと決める。 When the data error rate is defined as transmission quality, the radio wave environment such as noise differs depending on each propagation path. Therefore, the modulation method and data transmission speed of the data transmitted from the wireless station 1 on the transmission side, the number of repeated transmissions of the same data, etc. Adjustment is made for each propagation path so that the data error rate in the radio station 1 on the receiving side falls within a certain range among a plurality of propagation paths. For example, in a transmission line with less noise and good radio wave environment, the OFDM transmission method is used, the data transmission rate is 54 Mbps, the number of transmission repetitions (number of continuous transmissions) is one, and in the transmission line with much noise and bad radio wave environment. The data transmission rate is set to 1 Mbps using the DSSS modulation method, and the number of transmission repetitions (number of continuous transmissions) is set to 3 times.
 データ往復遅延時間を伝送品質とした場合、送受信無線局間でTCP/IPプロトコルのように、送信側から送信したデータに対して受信側から受信確認データが返信されてくるような通信手順が必要であるが、各伝搬経路によりデータ伝搬遅延時間が異なるとすると、受信側の無線局1から返信する受信確認データの返信タイミングを各伝搬経路毎に調整し、送信側の無線局1で計測するデータ往復遅延時間を一定範囲内に収まるようにする。 If the data round-trip delay time is used as the transmission quality, a communication procedure is required so that reception confirmation data is returned from the receiving side to the data transmitted from the transmitting side, as in the TCP / IP protocol between the transmitting and receiving radio stations. However, if the data propagation delay time differs depending on each propagation path, the return timing of the reception confirmation data returned from the reception-side radio station 1 is adjusted for each propagation path and measured by the transmission-side radio station 1. Make the data round-trip delay time within a certain range.
 データ到着間隔を伝送品質とした場合、送信側の無線局1で各伝搬経路に送信するデータの送信間隔を等しくなるように送信する。 When the data arrival interval is defined as the transmission quality, the transmission side radio station 1 transmits the data so that the transmission intervals of the data transmitted to the respective propagation paths are equal.
 単位時間当たりのデータ受信量を伝送品質とした場合、送信側の無線局1で各伝搬経路に送信するデータ量を監視し、各伝搬経路を流れるデータ量が一定範囲内に収まるように、送信側の無線局1が各伝搬経路に送信する単位時間当たりのデータ量を調整する。ここでデータ量はパケット数であってもよい。 When the amount of data received per unit time is defined as transmission quality, the transmission side radio station 1 monitors the amount of data transmitted to each propagation path, and transmits so that the amount of data flowing through each propagation path is within a certain range. The amount of data per unit time that the wireless station 1 on the side transmits to each propagation path is adjusted. Here, the data amount may be the number of packets.
 なお、伝送品質としては上述のものだけに制限されるものではなく、伝搬経路の伝送品質を表すその他の値であってもよい。 It should be noted that the transmission quality is not limited to the above-described one, and may be other values representing the transmission quality of the propagation path.
 また、送受信無線機間で調整する伝送品質は、一種類だけでもよいし、複数種類を組み合わせて決定してもよい。 Also, the transmission quality adjusted between the transmitting and receiving radios may be only one type or may be determined by combining a plurality of types.
 上述の伝送品質の調整は、本通信システムのオペレータが、設定情報入力装置140を介して、中継処理装置100に設定する。 The above transmission quality adjustment is set in the relay processing apparatus 100 by the operator of the communication system via the setting information input apparatus 140.
 さて、中継処理装置100はデータの送信先の無線局1の中継処理装置100との間で、各伝搬経路A(900),B(901),C(902)の伝送品質をそれぞれ決定した後、送信順序を表す通番を付加した同じデータを、各伝搬経路にそれぞれ送信する。受信側の無線局1では、伝送品質判定装置130が各伝搬経路において、受信データの状態測定値から受信データの正常あるいは異常を判定し、中継処理装置100は正常判定のデータのみ伝送路送受信装置120に出力し、異常判定のデータは廃棄する。ただし、複数の伝搬経路から同じ通番が付加された正常判定のデータを受信した場合は、例えば、一番先に受信したデータを伝送路送受信装置120に出力し、その後受信したデータは廃棄してもよい。 After the relay processing device 100 determines the transmission quality of each of the propagation paths A (900), B (901), and C (902) with the relay processing device 100 of the wireless station 1 that is the data transmission destination. The same data to which a serial number indicating the transmission order is added is transmitted to each propagation path. In the radio station 1 on the receiving side, the transmission quality determining device 130 determines normality or abnormality of the received data from the measured state value of the received data in each propagation path, and the relay processing device 100 transmits only the normally determined data to the transmission path transmitting / receiving device. It outputs to 120 and discards the data of abnormality determination. However, when normal determination data to which the same serial number is added from a plurality of propagation paths is received, for example, the data received first is output to the transmission / reception device 120, and then the received data is discarded. Also good.
 したがって、上述した第1の実施形態によれば、たとえ個々の伝搬経路A(900),B(901),C(902)が本来異なる性質を持つものであっても、送受信無線局間で各伝搬経路の伝送品質を同等の値に調整することにより、同じ伝送品質の伝搬経路を冗長化したものとして使用することができ、送受信無線局間のデータ伝送の信頼性を向上させることができる。さらに、複数の伝搬経路の間で伝送品質が閾値の上限あるいは下限を逸脱した伝搬経路が発生した場合、第三者によるサイバー攻撃を受けたと判断して、当該伝搬経路から受信したデータを廃棄し、他の伝搬経路から受信したデータを使用することにより、攻撃を排除して通信システム自体のセキュリティ強度を高めることができる。 Therefore, according to the above-described first embodiment, even if the individual propagation paths A (900), B (901), and C (902) have inherently different properties, each transmission / reception radio station has a different nature. By adjusting the transmission quality of the propagation path to an equivalent value, the propagation path having the same transmission quality can be used as a redundant one, and the reliability of data transmission between the transmitting and receiving radio stations can be improved. Furthermore, if a propagation path whose transmission quality deviates from the upper limit or lower limit of the threshold occurs among multiple propagation paths, it is determined that a third party has received a cyber attack, and the data received from the propagation path is discarded. By using data received from other propagation paths, attacks can be eliminated and the security strength of the communication system itself can be increased.
第2の実施形態Second embodiment
 上述の第1の実施形態では、各伝搬経路の伝送品質の調整は、本通信システムのオペレータが、設定情報入力装置140を介して、中継処理装置100に設定していた。しかし、電波伝搬環境が時々刻々変化するような伝搬経路では、その都度オペレータが設定するのが難しい場合もある。 In the above-described first embodiment, the transmission quality of each propagation path is adjusted by the operator of the communication system in the relay processing device 100 via the setting information input device 140. However, in a propagation path in which the radio wave propagation environment changes from moment to moment, it may be difficult for the operator to set each time.
 そこで、第2の実施形態では、送信側と受信側の双方の無線局1の中継処理装置100が自律的に各伝搬経路の伝送品質を調整する方法を述べる。 Therefore, in the second embodiment, a method will be described in which the relay processing device 100 of the radio station 1 on both the transmission side and the reception side autonomously adjusts the transmission quality of each propagation path.
 通信システムの構成や無線局の構成は第1の実施形態と同様である。各伝搬経路の伝送品質を調整する手順の例を図4に示す。 The configuration of the communication system and the configuration of the radio station are the same as those in the first embodiment. An example of the procedure for adjusting the transmission quality of each propagation path is shown in FIG.
 無線局1の中継処理装置100は、データ受信側の無線局1(以下、相手無線局と称す)に対して、電源投入後の立ち上げ時あるいはデータ送信開始の前に、各伝搬経路A(900),B(901),C(902)を使用して特定データを複数回送信する。前記特定データとは、例えば「1,0,1,0,1,0,・・・」というある固定長の符号列であってもよいし、特定のビット列が記載された複数の調整用パケットであってもよい。 The relay processing device 100 of the wireless station 1 transmits each propagation path A (with respect to the wireless station 1 on the data receiving side (hereinafter referred to as a counterpart wireless station) at the time of start-up after power-on or before starting data transmission. 900), B (901), and C (902) are used to transmit specific data a plurality of times. The specific data may be a fixed-length code string such as “1, 0, 1, 0, 1, 0,...”, Or a plurality of adjustment packets in which specific bit strings are described. It may be.
 一方、相手無線局1の中継処理装置100は、前記特定データを受信すると、3個の伝搬経路A,B,Cにおける状態測定値をまとめて一つの状態測定値データとし、前記状態測定値データを全伝搬経路を使用して無線局1へ通知する。 On the other hand, when the relay processing apparatus 100 of the counterpart wireless station 1 receives the specific data, the state measurement values in the three propagation paths A, B, and C are combined into one state measurement value data, and the state measurement value data To the radio station 1 using all the propagation paths.
 無線局1の中継処理装置100は、相手無線局1から前記状態測定値データを受信すると、相手無線局1における各伝搬経路の状態測定値の閾値の上限と下限あるいはそのどちらか一方を決定し、相手無線局1(の伝送品質判定装置130)へ通知する。 When the relay processing apparatus 100 of the wireless station 1 receives the state measurement value data from the counterpart wireless station 1, the relay processing apparatus 100 determines an upper limit and / or a lower limit of a state measurement value of each propagation path in the counterpart radio station 1. Then, the other radio station 1 (the transmission quality judgment device 130) is notified.
 このとき、無線局1の中継処理装置100は、相手無線局1の各状態測定値が前記閾値の上限と下限の間に収まるように、無線局1からの送信方法を決定し、送信電力や変調方式、データ伝送速度などの無線特性関連の情報は各無線送受信装置110、111、112に通知する。 At this time, the relay processing device 100 of the wireless station 1 determines a transmission method from the wireless station 1 so that each state measurement value of the counterpart wireless station 1 falls between the upper limit and the lower limit of the threshold, and transmission power and Information related to wireless characteristics such as modulation scheme and data transmission rate is notified to each of the wireless transmission / reception devices 110, 111, and 112.
 なお、無線局1と相手無線局1との間で双方向通信を行う場合は、上述の動作の後、無線局1と相手無線局1の役割を入れ替え同様の動作を実施する。 In addition, when two-way communication is performed between the radio station 1 and the partner radio station 1, the same operation is performed after the above-described operation by switching the roles of the radio station 1 and the partner radio station 1.
 次に、各伝搬経路の伝送品質を調整する手順の具体的な例を図9に示す。図9は、無線局αと相手無線局βが、伝送品質や状態測定値として受信電力を自律的に調整する手順を示す例である。 Next, a specific example of the procedure for adjusting the transmission quality of each propagation path is shown in FIG. FIG. 9 is an example showing a procedure in which the radio station α and the counterpart radio station β autonomously adjust the received power as transmission quality and state measurement values.
 無線局αの中継処理装置100は、相手無線局βに対して、各伝搬経路A(900),B(901),C(902)を使用して、各伝搬経路とも同じ送信電力、例えば20dBmで、特定データ「1,0,1,0,1,0,1,0」という8ビットの符号列を複数回、例えば100回ずつ送信する。一方、相手無線局βの中継処理装置100は、前記特定データを、例えば、伝搬経路Aからは-60dBm±10dBで受信し、伝搬経路Bからは-50dBm±5dBで受信し、伝搬経路Cからは-70dBm±15dBで受信したとすると、3個の伝搬経路A,B,Cにおける前記各受信電力をまとめて一つの状態測定値データとし、前記状態測定値データを全伝搬経路を使用して複数回、例えばそれぞれ10回ずつ繰り返して無線局αへ通知する。このとき、相手無線局βが送信可能な最大送信電力で無線局αへ通知するのが望ましい。 The relay processing device 100 of the wireless station α uses the propagation paths A (900), B (901), and C (902) to the counterpart wireless station β, and uses the same transmission power for each propagation path, for example, 20 dBm. Then, the 8-bit code string of the specific data “1, 0, 1, 0, 1, 0, 1, 0” is transmitted a plurality of times, for example, 100 times. On the other hand, the relay processing apparatus 100 of the counterpart wireless station β receives the specific data from the propagation path A, for example, at −60 dBm ± 10 dB, from the propagation path B at −50 dBm ± 5 dB, and from the propagation path C. Is received at −70 dBm ± 15 dB, the received power in the three propagation paths A, B, and C is combined into one state measurement value data, and the state measurement value data is used for all propagation paths. It is notified to the radio station α by repeating a plurality of times, for example, 10 times each. At this time, it is desirable to notify the radio station α with the maximum transmission power that the counterpart radio station β can transmit.
 無線局αの中継処理装置100は、相手無線局βから前記状態測定値データを受信すると、相手無線局βにおける各伝搬経路の状態測定値の閾値の上限と下限を決定する。例えば、相手無線局βにおける受信電力の中心値を各伝搬経路とも70dBmとなるように、無線局αの送信電力を、伝搬経路Aへは10dBm(20dBmで送信すると-60dBmで受信できるから、-70dBmで受信するためには10dBmで送信すればよい)、伝搬経路Bへは0dBm(20dBmで送信すると-50dBmで受信できるから、-70dBmで受信するためには0dBmで送信すればよい)、伝搬経路Cへは20dBm(20dBmで送信すると-70dBmで受信できるから、-70dBmで受信するためには20dBmで送信すればよい)と決め、相手無線局βにおける受信電力の変動が最も大きい値である伝搬経路経路Cの±15dBを考慮して、相手無線局βにおける受信電力の閾値の上限を-55dBm、下限を-85dBm(すなわち-70dBm±15dB)と決める。そして、相手無線局β(の伝送品質判定装置130)に対して、受信電力の前記閾値の上限(-55dBm)と下限(-85dBm)を、全伝搬経路を使用して複数回、例えばそれぞれ10回ずつ繰り返して相手無線局βへ通知する。このとき、無線局αが送信可能な最大送信電力で相手無線局βへ通知するのが望ましい。 When the relay processing device 100 of the wireless station α receives the state measurement value data from the counterpart wireless station β, it determines the upper and lower limits of the threshold value of the state measurement value of each propagation path in the counterpart wireless station β. For example, the transmission power of the radio station α can be received at 10 dBm (20 dBm when transmitted at 20 dBm) to the propagation path A so that the center value of the received power at the partner radio station β is 70 dBm for each propagation path. To receive at 70 dBm, it is only necessary to transmit at 10 dBm), and to propagation path B is 0 dBm (since it is transmitted at 20 dBm, it can be received at −50 dBm, so to receive at −70 dBm, it is only necessary to transmit at 0 dBm). The path C is determined to be 20 dBm (when transmitting at 20 dBm, it can be received at -70 dBm, so to receive at -70 dBm, it should be transmitted at 20 dBm), and the variation in received power at the partner radio station β is the largest value. Taking into account ± 15 dB of the propagation path C, the upper limit of the threshold of received power at the partner radio station β is −55 dBm, The lower limit is determined to be −85 dBm (ie, −70 dBm ± 15 dB). Then, the upper limit (−55 dBm) and the lower limit (−85 dBm) of the threshold value of the received power are set to the partner wireless station β (the transmission quality determination device 130) a plurality of times, for example, 10 times each using all propagation paths. Repeatedly notifies the partner wireless station β. At this time, it is desirable to notify the counterpart radio station β with the maximum transmission power that the radio station α can transmit.
 また、無線局αの中継処理装置100は、決定した前記送信電力(伝搬経路Aへは10dBm、伝搬経路Bへは0dBm、伝搬経路Cへは20dBm)を各無線送受信装置110、111、112に通知する。 In addition, the relay processing apparatus 100 of the wireless station α transmits the determined transmission power (10 dBm to the propagation path A, 0 dBm to the propagation path B, and 20 dBm to the propagation path C) to each of the wireless transmission / reception apparatuses 110, 111, and 112. Notice.
 なお、無線局1と相手無線局1との間で双方向通信を行う場合は、上述の動作の後、無線局1と相手無線局1の役割を入れ替え同様の動作を実施する。 In addition, when two-way communication is performed between the radio station 1 and the partner radio station 1, the same operation is performed after the above-described operation by switching the roles of the radio station 1 and the partner radio station 1.
 次に、各伝搬経路の伝送品質を調整する手順の別の具体的な例を図10に示す。図10は、無線局αと相手無線局βが、伝送品質や状態測定値としてパケットエラー率を自律的に調整する手順を示す例である。 Next, another specific example of the procedure for adjusting the transmission quality of each propagation path is shown in FIG. FIG. 10 shows an example of a procedure in which the wireless station α and the counterpart wireless station β autonomously adjust the packet error rate as the transmission quality or state measurement value.
 無線局αの中継処理装置100は、相手無線局βに対して、各伝搬経路A(900),B(901),C(902)を使用して、各伝搬経路とも同じ伝送速度(通常のデータを送信する時の伝送速度が望ましい)、例えば1Mbpsで、特定パケット(例えば1024バイト固定長パケット)を複数回、例えば1000回ずつ送信する。一方、相手無線局βの中継処理装置100は、前記特定パケットを、例えば、伝搬経路Aからは990個受信し、伝搬経路Bからは999個受信し、伝搬経路Cからは900個受信したとすると、3個の伝搬経路A,B,Cにおける前記各受信パケット数をまとめて一つの状態測定値データとし、前記状態測定値データを全伝搬経路を使用して複数回、例えばそれぞれ10回ずつ繰り返して無線局αへ通知する。このとき、相手無線局βが送信可能な最低伝送速度で無線局αへ通知するのが望ましい。 The relay processing apparatus 100 of the wireless station α uses the propagation paths A (900), B (901), and C (902) to the counterpart wireless station β, and uses the same transmission speed (normal speed) for each propagation path. The transmission rate when transmitting data is desirable), for example, at 1 Mbps, a specific packet (for example, a 1024-byte fixed length packet) is transmitted a plurality of times, for example, 1000 times. On the other hand, the relay processing apparatus 100 of the partner radio station β receives, for example, 990 received specific packets from the propagation path A, 999 received from the propagation path B, and 900 received from the propagation path C. Then, the number of received packets in the three propagation paths A, B, and C is collected into one state measurement value data, and the state measurement value data is used a plurality of times, for example, 10 times each using all propagation paths. Repeatedly notifies the wireless station α. At this time, it is desirable to notify the wireless station α at the lowest transmission rate that the counterpart wireless station β can transmit.
 無線局αの中継処理装置100は、相手無線局βから前記状態測定値データを受信すると、相手無線局βにおける各伝搬経路の状態測定値の閾値の上限と下限を決定する。例えば、相手無線局βにおけるパケットエラー率の中心値を10の-6乗とし、外乱も考慮して10の-7乗以上10の-5乗以下と予め決めておく。相手無線局βにおけるパケットエラー率の閾値の上限を10の-5乗、下限を10の-7乗と決める。そして、相手無線局β(の伝送品質判定装置130)に対して、受信電力の前記閾値の上限(10の-5乗)と下限(10の-7乗)を、全伝搬経路を使用して複数回、例えばそれぞれ10回ずつ繰り返して相手無線局βへ通知する。このとき、無線局αが送信可能な最低伝送速度で相手無線局βへ通知するのが望ましい。 When the relay processing device 100 of the wireless station α receives the state measurement value data from the counterpart wireless station β, it determines the upper and lower limits of the threshold value of the state measurement value of each propagation path in the counterpart wireless station β. For example, the center value of the packet error rate at the partner radio station β is set to 10 −6, and is determined in advance from 10 −7 to 10 −5 in consideration of disturbance. The upper limit of the threshold of the packet error rate at the counterpart wireless station β is determined to be 10 −5 and the lower limit is determined to be 10 −7. Then, the upper limit (10 −5) and the lower limit (10 −7) of the threshold of the received power are set to the partner radio station β (the transmission quality determination device 130) using all the propagation paths. Repeated multiple times, for example, 10 times each, and notifies the counterpart wireless station β. At this time, it is desirable to notify the counterpart wireless station β at the lowest transmission rate at which the wireless station α can transmit.
 次に、伝搬経路Aにおいては特定パケット1000個中990個受信できたためパケットエラー率は10の-2乗なので、相手無線局βにおけるパケットエラー率を10の-6乗とするためには同じパケットを3連送すると決める(10-2の3乗)。同様に、伝搬経路Bにおいては特定パケット1000個中999個受信できたためパケットエラー率は10の-3乗なので、相手無線局βにおけるパケットエラー率を10の-6乗とするためには同じパケットを2連送すると決める(10-3の2乗)。同様に、伝搬経路Cにおいては特定パケット1000個中900個受信できたためパケットエラー率は10の-1乗なので、相手無線局βにおけるパケットエラー率を10の-6乗とするためには同じパケットを6連送すると決める(10-1の6乗)。 Next, since 990 out of 1000 specific packets can be received on the propagation path A, the packet error rate is 10 −2, so the same packet is used to set the packet error rate at the partner radio station β to 10 −6. Is determined to be sent three times (10 -2 to the third power). Similarly, in propagation path B, 999 out of 1000 specific packets can be received, so the packet error rate is 10 −3, so the same packet can be used to set the packet error rate at partner radio station β to 10 −6. Is determined to be sent two times (10 −3 squared). Similarly, since 900 of 1000 specific packets can be received on the propagation path C, the packet error rate is 10 to the power of −1. Therefore, in order to set the packet error rate at the partner radio station β to 10 to the power of −6, the same packet is used. Is determined to be sent six times (10 -1 to the sixth power).
 なお、無線局1と相手無線局1との間で双方向通信を行う場合は、上述の動作の後、無線局1と相手無線局1の役割を入れ替え同様の動作を実施する。 In addition, when two-way communication is performed between the radio station 1 and the partner radio station 1, the same operation is performed after the above-described operation by switching the roles of the radio station 1 and the partner radio station 1.
 無線局αの中継処理装置100は、決定した前記パケット連送回数(伝搬経路Aへは3連送、伝搬経路Bへは2連送、伝搬経路Cへは6連送)を記憶しておき、相手無線局βへパケットを送信する度に伝搬経路ごとに決めた前記連送回数だけパケットを連送する。送信する個々のパケットには送信順序(通番)を表すシーケンス番号8004を記録しておく。ある一つのパケットを複数回連送するとき、前記連送する全てのパケットのシーケンス番号を同一の番号にしてもよいし、異なる番号にしてもよい。 The relay processing apparatus 100 of the radio station α stores the determined number of packet transmissions (three transmissions for the propagation path A, two transmissions for the propagation path B, and six transmissions for the propagation path C). Each time a packet is transmitted to the counterpart wireless station β, the packet is continuously transmitted for the number of consecutive transmissions determined for each propagation path. A sequence number 8004 representing a transmission order (serial number) is recorded in each packet to be transmitted. When a certain packet is continuously transmitted a plurality of times, the sequence numbers of all the continuously transmitted packets may be the same number or different numbers.
 一方、相手無線局βの中継処理装置100は、無線局αからパケットを受信すると、シーケンス番号8004を参照し、無線局αから過去に受信した最新のパケットのシーケンス番号より後に送信されたパケットのシーケンス番号であれば、前記シーケンス番号を記憶して前記パケットを伝送路1200へ中継し、無線局αから過去に受信した最新のパケットのシーケンス番号と同一かあるいはそれ以前に送信されたパケットのシーケンス番号を持つパケットであれば廃棄してもよい。 On the other hand, when receiving the packet from the wireless station α, the relay processing apparatus 100 of the counterpart wireless station β refers to the sequence number 8004, and transmits the packet transmitted after the sequence number of the latest packet received in the past from the wireless station α. If it is a sequence number, the sequence number is stored, the packet is relayed to the transmission line 1200, and the sequence of the packet that is the same as or earlier than the sequence number of the latest packet received in the past from the radio station α If the packet has a number, it may be discarded.
 ここで、無線局αと相手無線局β間で情報を通知するためのパケットのフォーマット例を図11に示す。すなわち、パケット8000は、パケット送信開始を受信側の無線局に伝えるプリアンブル8001と、送信元無線局や送信先無線局を示す識別子(例えばMACアドレスやIPアドレスなど)を搭載するヘッダ情報部8002と、パケットの内容(例えば伝送品質測定用パケット、状態通知用パケット、閾値通知用パケット、データ伝送用パケットなど)を表すパケット識別子8003と、受信側無線局で受信した複数のパケットが同一のパケットかあるいは異なるパケットかを区別するためのシーケンス番号8004と、データ本体を搭載するデータ部8008と、パケットのビットエラーなどを検出するエラーチェックシーケンス(例えばCRC-16やCRC-32など)を搭載するエラーチェック部8009からなる。 Here, FIG. 11 shows a format example of a packet for notifying information between the radio station α and the counterpart radio station β. That is, the packet 8000 includes a preamble 8001 for transmitting a packet transmission start to a receiving-side radio station, and a header information unit 8002 on which an identifier (for example, a MAC address or an IP address) indicating the source radio station or the destination radio station is mounted. The packet identifier 8003 indicating the packet contents (for example, transmission quality measurement packet, status notification packet, threshold notification packet, data transmission packet, etc.) and whether the plurality of packets received by the receiving wireless station are the same packet Alternatively, an error mounting a sequence number 8004 for distinguishing between different packets, a data part 8008 mounting a data body, and an error check sequence (for example, CRC-16 or CRC-32) for detecting a packet bit error or the like. It consists of a check unit 8009.
 したがって、上述した第2の実施形態によれば、送信側の無線局と受信側の無線局の間で情報をやり取りすることにより各伝搬経路の伝送品質を測定し、送信側の無線局の送信方法を決定するため、第1の実施形態の効果に加えて、無線局が自律的に最適な送信方法を決定できるという効果がある。 Therefore, according to the second embodiment described above, the transmission quality of each propagation path is measured by exchanging information between the transmission-side radio station and the reception-side radio station, and the transmission of the transmission-side radio station is performed. Since the method is determined, in addition to the effect of the first embodiment, there is an effect that the wireless station can autonomously determine the optimum transmission method.
第3の実施形態Third embodiment
 上述の第1の実施形態では、データを送信する側の無線局1は複数の伝搬経路A(900),B(901),C(902)全てに同一のデータを送信し、受信側の無線局1において、各伝搬経路から受信したデータの中から選択して伝送路送受信装置120へ中継していた。この方法では、ある一つの伝搬経路を傍受されるだけで、データを盗聴されてしまう恐れがある。 In the first embodiment described above, the wireless station 1 on the data transmission side transmits the same data to all of the plurality of propagation paths A (900), B (901) and C (902), and the reception side wireless station 1 The station 1 selects from the data received from each propagation path and relays it to the transmission / reception apparatus 120. With this method, there is a risk that data will be wiretapped only by intercepting a certain propagation path.
 そこで、第3の実施形態では、ある特定の伝搬経路を傍受されるだけでは、データを盗聴される恐れがないデータの送信方法について述べる。 Therefore, in the third embodiment, a data transmission method is described in which there is no possibility of eavesdropping on data only by intercepting a specific propagation path.
 通信システムの構成や無線局の構成は第1の実施形態と同様である。 The configuration of the communication system and the configuration of the radio station are the same as those in the first embodiment.
 本実施形態において特徴となるデータの送信方法を図5に示す。 FIG. 5 shows a data transmission method that is a feature of the present embodiment.
 図5において、送信側無線局1において、受信側無線局1へ送信するデータ950を複数の断片データa(960)、b(961)、c(962)に分割する。前記断片データは、断片データの並び順を示した識別子(例えば図5における「a」「b」「c」)とともに、例えば図11のデータ部に搭載され、それぞれ伝搬経路A(900),B(901),C(902)へ分散して送信され、受信側無線局1において、前記断片データの並び順を示した識別子をもとに元のデータ950が復元される。各無線局において、データを断片データに分割したり、元のデータに復元したりするのはデータ中継装置10内の中継処理装置100において実施する。 In FIG. 5, in the transmitting side radio station 1, the data 950 to be transmitted to the receiving side radio station 1 is divided into a plurality of pieces of fragment data a (960), b (961), and c (962). The fragment data is mounted, for example, in the data portion of FIG. 11 together with identifiers (for example, “a”, “b”, “c” in FIG. 5) indicating the arrangement order of the fragment data, and propagation paths A (900), B, respectively. (901) and C (902) are transmitted in a distributed manner, and the receiving side radio station 1 restores the original data 950 based on the identifier indicating the order of the fragment data. In each wireless station, the data is divided into fragment data or restored to the original data in the relay processing device 100 in the data relay device 10.
 このように、複数の伝搬経路にデータを分散させて伝送させることにより、ある特定の伝搬経路(AあるいはBあるいはC)上で第三者に傍受されデータを盗聴されても、断片データ(aあるいはbあるいはc)しか盗聴できず、元のデータ950全体を復元することができないため、第三者にデータ950を盗聴されることを防止できる。 As described above, by distributing data to a plurality of propagation paths and transmitting the data, even if a third party intercepts the data on a specific propagation path (A, B, or C) and sniffs the data, the fragment data (a Alternatively, only b or c) can be wiretapped, and the entire original data 950 cannot be restored, so that it is possible to prevent the data 950 from being wiretapped by a third party.
 なお、図5に示す方法では、ある伝搬経路、例えば、伝搬経路Aが妨害電波やDoS攻撃などで攻撃されると、受信側無線局1において断片データa(960)が受信できず、元のデータ950が復元できない。そのため、図6に示すように、複数の断片データを、例えばaとc(963)、bとc(964)、cとa(965)、などのように組み合わせて各伝搬経路に送信することにより、ある伝搬経路が攻撃されてその伝搬経路から断片データが受信できなくても、他の伝搬経路からの断片データにより元のデータ950が復元できる。 In the method shown in FIG. 5, when a certain propagation path, for example, propagation path A is attacked by a jamming wave or DoS attack, the receiving side radio station 1 cannot receive the fragment data a (960), Data 950 cannot be restored. Therefore, as shown in FIG. 6, a plurality of pieces of fragment data are combined and transmitted to each propagation path, for example, a and c (963), b and c (964), c and a (965), etc. Thus, even if a certain propagation path is attacked and fragment data cannot be received from the propagation path, the original data 950 can be restored from the fragment data from other propagation paths.
 したがって、上述した第3の実施形態によれば、複数の伝搬経路にデータを分散させて伝送させることにより、第三者からの盗聴や妨害に強い通信システムを構築できる。 Therefore, according to the above-described third embodiment, it is possible to construct a communication system that is resistant to eavesdropping and obstruction by a third party by distributing and transmitting data to a plurality of propagation paths.
第4の実施形態Fourth embodiment
 これまでの第1乃至第3の実施形態では、無線送受信装置110、111、112は伝搬経路A(900),B(901),C(902)の数だけ使用していた。一方、無線通信の電波は送信時の送信方向(指向性)や偏波面が異なれば、伝搬経路や物体での反射特性が異なる場合もあり、受信側の無線局における受信電波の受信方向や受信偏波面も異なる場合がある。そこで、送信電波の送信方向(指向性)や偏波面を制御可能な無線送受信装置1個を用い、時分割に異なる送信方向(指向性)や偏波面で送信することにより、第1乃至第3の実施形態と同等の効果を得ることが可能である。 In the first to third embodiments so far, the wireless transmission / reception devices 110, 111, and 112 are used by the number of propagation paths A (900), B (901), and C (902). On the other hand, if radio transmission radio waves have different transmission directions (directivity) and planes of polarization, the reflection characteristics of propagation paths and objects may differ. The plane of polarization may also be different. Therefore, by using one wireless transmission / reception device capable of controlling the transmission direction (directivity) and polarization plane of the transmission radio wave, and transmitting in different transmission directions (directivity) and polarization plane in time division, the first to third An effect equivalent to that of the embodiment can be obtained.
 図7に、本第一実施形態に係る通信システムの構成を示す。 FIG. 7 shows the configuration of the communication system according to the first embodiment.
 図7に示すように、2個の無線局1の間に、送信電波の送信方向(指向性)や偏波面が異なる3つの伝搬経路としてそれぞれD(905),E(906),F(907)を構成する。前記無線局1はデータを中継処理するデータ中継装置10と無線データを送受信するアンテナ1105から構成される。アンテナ1105は、例えば複数のアンテナを組み合わせたアレイアンテナであってもよい。なお、データ中継装置10は無線以外の通信手段の伝送路1200との間でデータを送受信する機能を有している。無線以外の通信手段の伝送路1200とは、例えばIEEE802.3準拠LAN等の有線ネットワークでもよい。 As shown in FIG. 7, D (905), E (906), and F (907) are transmitted between two wireless stations 1 as three propagation paths having different transmission directions (directivity) and polarization planes of transmission radio waves, respectively. ). The wireless station 1 includes a data relay device 10 that relays data and an antenna 1105 that transmits and receives wireless data. The antenna 1105 may be an array antenna in which a plurality of antennas are combined, for example. Note that the data relay device 10 has a function of transmitting and receiving data to and from the transmission path 1200 of communication means other than wireless. The transmission path 1200 of communication means other than wireless may be a wired network such as an IEEE 802.3 compliant LAN.
 データ中継装置10は、伝送路1200から受信したデータを無線伝送路で構成された伝搬経路D(905),E(906),F(907)の全てあるいはいずれかに中継し、また、伝搬経路D(905),E(906),F(907)から受信したデータを伝送路1200へ中継する機能を持つ。 The data relay apparatus 10 relays the data received from the transmission path 1200 to all or any of the propagation paths D (905), E (906), and F (907) configured by the wireless transmission path, and the propagation path It has a function of relaying data received from D (905), E (906), and F (907) to the transmission line 1200.
 このデータ中継装置10の構成例を図8に示す。データ中継装置10は、無線伝送路で構成される各伝搬経路D(905),E(906),F(907)との間でデータを送受信する機能と前記各伝搬経路の状態を測定する機能とを持つそれぞれ無線送受信装置115と、伝送路1200との間でデータを送受信する機能を持つ伝送路送受信装置120を備える。無線送受信装置115は、アンテナ1105へ入力する送信信号の位相を制御することにより、送信電波の指向性や偏波面を制御する機能を持つ。 FIG. 8 shows a configuration example of the data relay device 10. The data relay device 10 has a function of transmitting / receiving data to / from each of the propagation paths D (905), E (906), and F (907) configured by a wireless transmission path, and a function of measuring the state of each propagation path And a transmission / reception device 120 having a function of transmitting / receiving data to / from the transmission channel 1200. The radio transmission / reception device 115 has a function of controlling the directivity and polarization plane of the transmission radio wave by controlling the phase of the transmission signal input to the antenna 1105.
 さらに、データ中継装置10は、各無線送受信装置115から出力されたデータを伝送路送受信装置120へ出力し、また、伝送路送受信装置120から出力されたデータを各無線送受信装置115へ出力する中継処理装置100を備えている。 Further, the data relay device 10 outputs the data output from each wireless transmission / reception device 115 to the transmission line transmission / reception device 120, and also outputs the data output from the transmission line transmission / reception device 120 to each wireless transmission / reception device 115. A processing apparatus 100 is provided.
 データ中継装置10は、各無線送受信装置115が出力する伝搬経路の状態をそれぞれ収集し、各伝搬経路の伝送品質を判定し、その結果を中継処理装置100へ出力する伝送品質判定装置130と、外部から入力された設定情報を中継処理装置100と伝送品質判定装置130へ出力する設定情報入力装置140と、中継処理装置100の中継処理結果であるログ情報を蓄積して外部へ出力するログ情報蓄積装置150を備えている。 The data relay device 10 collects the state of the propagation path output from each wireless transmission / reception device 115, determines the transmission quality of each propagation route, and outputs the result to the relay processing device 100. Setting information input device 140 that outputs setting information input from the outside to relay processing device 100 and transmission quality determination device 130, and log information that accumulates log information that is a result of relay processing of relay processing device 100 and outputs the information to the outside A storage device 150 is provided.
 中継処理装置100の構成例は図3と同様である。 A configuration example of the relay processing apparatus 100 is the same as that in FIG.
 このように、無線局1の構成や伝搬経路の構成方法は異なるが、その他の機能、動作、効果は、前述の第1乃至第3の実施形態と同様である。 As described above, although the configuration of the radio station 1 and the configuration method of the propagation path are different, other functions, operations, and effects are the same as those in the first to third embodiments.
 したがって、上述した第4の実施形態によれば、無線局1の構成を簡略化したうえで、前述の第1乃至第3の実施形態と同様の効果を得ることができる。 Therefore, according to the above-described fourth embodiment, it is possible to obtain the same effects as those of the above-described first to third embodiments while simplifying the configuration of the radio station 1.
 以上のように、第1の実施形態~第4の実施形態では、複数の伝搬経路を用いて送信側の無線局から送信データを送信する。そして、受信側の無線局では、各伝搬経路の通信品質の変動を監視することによって、伝送路周辺の電波伝搬環境が変化した場合に限らず、第三者からサイバー攻撃された場合でも、確実に正しいデータを伝送することができるため、信頼性とセキュリティを向上させることのできる通信システムを提供することができる。 As described above, in the first to fourth embodiments, transmission data is transmitted from a transmitting-side radio station using a plurality of propagation paths. In addition, the radio station on the receiving side monitors fluctuations in the communication quality of each propagation path, so that not only when the radio wave propagation environment around the transmission path has changed, but even when a cyber attack from a third party has occurred, Therefore, it is possible to provide a communication system capable of improving reliability and security.
 また、上記の実施例では、送受信無線局間で各伝搬経路の伝送品質を同等の値に調整することにより、同じ伝送品質の伝搬経路を冗長化したものとして使用する例を説明したが、それぞれの伝送路の特性に応じて異なる伝送品質を定めることもできる。その場合には、受信側の無線局では、受信したデータが経由してきた伝搬経路応じて定められた伝送品質を用いて、当該伝搬経路の異常を検出する。 Also, in the above embodiment, an example has been described in which the transmission path of the same transmission quality is used as a redundant path by adjusting the transmission quality of each propagation path to the same value between the transmitting and receiving radio stations. Different transmission qualities can be determined according to the characteristics of the transmission path. In that case, the radio station on the receiving side detects an abnormality in the propagation path using transmission quality determined according to the propagation path through which the received data has passed.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
1・・・無線局、
10・・・データ中継装置、
100・・・中継処理装置、
110、111、112、115・・・無線送受信装置、
120・・・伝送路送受信装置、
130・・・伝送品質判定装置、
140・・・設定情報入力装置、
150・・・ログ情報蓄積装置、
1001・・・中央演算装置、
1002・・・記憶装置、
1010、1011、1012・・・無線送受信装置インタフェース、
1020・・・伝送路送受信装置インタフェース、
1030・・・伝送品質判定装置インタフェース、
1040・・・設定情報入力装置インタフェース、
1050・・・ログ情報蓄積装置インタフェース、
1100、1101、1102、1105・・・アンテナ、
1200・・・伝送路、
8000・・・パケット
8001・・・プリアンブル
8002・・・ヘッダ情報部
8003・・・パケット識別子
8004・・・シーケンス番号
8008・・・データ部
8009・・・エラーチェック部
900、901、902、905、906、907・・・伝搬経路、
950・・・送信データ
951・・・受信データ
960、961、962、963、964、965・・・分割したデータ
1 ... Radio station,
10: Data relay device,
100: Relay processing device,
110, 111, 112, 115 ... wireless transmission / reception devices,
120... Transmission line transmission / reception device,
130: Transmission quality judgment device,
140: Setting information input device,
150... Log information storage device,
1001... Central processing unit,
1002 ... Storage device,
1010, 1011, 1012, ... wireless transceiver interface,
1020: Transmission path transceiver interface,
1030: Transmission quality judgment device interface,
1040: Setting information input device interface,
1050: Log information storage device interface,
1100, 1101, 1102, 1105 ... antenna,
1200 ... transmission path,
8000 ... packet 8001 ... preamble 8002 ... header information part 8003 ... packet identifier 8004 ... sequence number 8008 ... data part 8009 ... error check part 900, 901, 902, 905, 906, 907 ... propagation path,
950 ... transmission data 951 ... reception data 960, 961, 962, 963, 964, 965 ... divided data

Claims (8)

  1.  性質の異なる複数の伝送路を使用して通信データを送信可能な送信部を備えた送信局と、
     前記複数の伝送路から通信データを受信可能な受信部を備えた受信局と、を備え、
     前記送信局は、前記受信局における各伝送路の通信品質が所定の値になるように、送信パラメータを定めて通信データを送信する送信処理部を有し、
     前記受信局は、前記通信データを受信すると、受信した通信データの通信品質が前記所値を逸脱するか否かを判定して伝送路の異常を検出する受信処理部を有する、通信システム。
    A transmission station including a transmission unit capable of transmitting communication data using a plurality of transmission paths having different properties;
    A receiving station including a receiving unit capable of receiving communication data from the plurality of transmission paths,
    The transmitting station has a transmission processing unit that determines communication parameters and transmits communication data so that the communication quality of each transmission path at the receiving station is a predetermined value.
    When the receiving station receives the communication data, the receiving station includes a reception processing unit that determines whether or not the communication quality of the received communication data deviates from the predetermined value and detects an abnormality in the transmission path.
  2.  請求項1に記載の通信システムであって、
     前記所定の値とは、通信品質の上限の閾値と下限の閾値を定め、前記上限の閾値以下でありかつ前記下限の閾値以上の値である、ことを特徴とする通信システム。
    The communication system according to claim 1,
    The predetermined value defines an upper limit threshold and a lower limit threshold of communication quality, and is a value equal to or lower than the upper limit threshold and equal to or higher than the lower limit threshold.
  3.  請求項1に記載の通信システムであって、
     通信品質とは、受信電波強度、データのパケットエラー率、データのビットエラー率、データの往復遅延時間、データの到着間隔時間、単位時間当たりの受信データ量のいずれかを含む、ことを特徴とする通信システム。
    The communication system according to claim 1,
    Communication quality includes any of received radio wave strength, data packet error rate, data bit error rate, data round-trip delay time, data arrival interval time, and received data amount per unit time. Communication system.
  4.  請求項1に記載の通信システムであって、
     前記送信処理部は、送信電力、データの変調方式、データの伝送速度、同一データの繰返し送信回数、データの送信間隔時間、単位時間当たりの送信データ量、電波送信方向の指向性、送信電波の偏波角度、のいずれかが前記所定の値になるように送信パラメータを定める、ことを特徴とする通信システム。
    The communication system according to claim 1,
    The transmission processing unit includes transmission power, data modulation method, data transmission speed, number of times the same data is repeatedly transmitted, data transmission interval time, amount of transmission data per unit time, directivity in radio wave transmission direction, transmission radio wave A communication system, wherein a transmission parameter is determined so that one of the polarization angles becomes the predetermined value.
  5.  請求項1に記載の通信システムであって、
     前記送信局及び前記受信局は、データ送信を行う前に、前記複数の伝送路を使用して通信品質を測定するための符号を互いに送受信することにより、各伝送路が予め所定の通信品質になるように送信局からの送信方法を決定する、ことを特徴とする通信システム。
    The communication system according to claim 1,
    Before transmitting data, the transmitting station and the receiving station mutually transmit and receive codes for measuring communication quality using the plurality of transmission paths, so that each transmission path has a predetermined communication quality in advance. A communication system characterized by determining a transmission method from a transmission station.
  6.  請求項1に記載の通信システムであって、
     前記送信局は、前記複数の伝送路のそれぞれに同一のデータを送信する、ことを特徴とする通信システム。
    The communication system according to claim 1,
    The communication system, wherein the transmission station transmits the same data to each of the plurality of transmission paths.
  7.  請求項1に記載の通信システムであって、
     前記送信局は、通信データを複数の断片に分割し、分割した通信データを異なる伝送路を介して送信する、ことを特徴とする通信システム。
    The communication system according to claim 1,
    The transmission station divides communication data into a plurality of fragments, and transmits the divided communication data via different transmission paths.
  8.  請求項1において、
     前記送信部または前記受信部は、互いに性質の異なる伝送路を使用して無線信号を送信または受信する複数のアンテナから構成される、ことを特徴とする通信システム。
    In claim 1,
    The transmission unit or the reception unit includes a plurality of antennas that transmit or receive radio signals using transmission paths having different properties.
PCT/JP2014/079014 2014-10-31 2014-10-31 Communication system WO2016067437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079014 WO2016067437A1 (en) 2014-10-31 2014-10-31 Communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079014 WO2016067437A1 (en) 2014-10-31 2014-10-31 Communication system

Publications (1)

Publication Number Publication Date
WO2016067437A1 true WO2016067437A1 (en) 2016-05-06

Family

ID=55856821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079014 WO2016067437A1 (en) 2014-10-31 2014-10-31 Communication system

Country Status (1)

Country Link
WO (1) WO2016067437A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129582A (en) * 2017-02-06 2018-08-16 株式会社デンソー Vehicle communication device
JP2019525558A (en) * 2016-07-01 2019-09-05 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Round trip time skew control method and apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007242A (en) * 2002-05-31 2004-01-08 Toshiba Corp Radio communication equipment and radio communication method
JP2004336720A (en) * 2003-04-18 2004-11-25 Matsushita Electric Ind Co Ltd Transmitter and receiver
JP2011524093A (en) * 2007-10-30 2011-08-25 ラムバス・インコーポレーテッド Technique for identifying angle of arrival in a communication system
JP2013507071A (en) * 2009-10-02 2013-02-28 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus for performing transmit power control of multi-antenna transmission in uplink
WO2013084338A1 (en) * 2011-12-08 2013-06-13 富士通株式会社 Wireless base station, wireless communication system, transmitting power control method, and wireless terminal
WO2014097358A1 (en) * 2012-12-19 2014-06-26 富士通株式会社 Radio communication apparatus and radio communication method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007242A (en) * 2002-05-31 2004-01-08 Toshiba Corp Radio communication equipment and radio communication method
JP2004336720A (en) * 2003-04-18 2004-11-25 Matsushita Electric Ind Co Ltd Transmitter and receiver
JP2011524093A (en) * 2007-10-30 2011-08-25 ラムバス・インコーポレーテッド Technique for identifying angle of arrival in a communication system
JP2013507071A (en) * 2009-10-02 2013-02-28 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus for performing transmit power control of multi-antenna transmission in uplink
WO2013084338A1 (en) * 2011-12-08 2013-06-13 富士通株式会社 Wireless base station, wireless communication system, transmitting power control method, and wireless terminal
WO2014097358A1 (en) * 2012-12-19 2014-06-26 富士通株式会社 Radio communication apparatus and radio communication method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019525558A (en) * 2016-07-01 2019-09-05 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Round trip time skew control method and apparatus
US10944678B2 (en) 2016-07-01 2021-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Round trip time skew control methods and arrangements
JP2018129582A (en) * 2017-02-06 2018-08-16 株式会社デンソー Vehicle communication device

Similar Documents

Publication Publication Date Title
Tramarin et al. On the use of IEEE 802.11 n for industrial communications
Zhai et al. Physical carrier sensing and spatial reuse in multirate and multihop wireless ad hoc networks
RU2579622C2 (en) Apparatus and methods for media access control header compression
Sundaresan et al. Routing in ad-hoc networks with MIMO links
JP5391830B2 (en) Radio base station apparatus, communication system, and data transfer method
Rentschler et al. Towards a reliable parallel redundant WLAN black channel
JP5529267B2 (en) Method, apparatus and system for transferring frames in a wireless communication system
JP2006254505A (en) Method of transmission via wireless link
KR20040111002A (en) A radio telecommunications network, a station, and a method of sending packets of data
US20100234036A1 (en) Communication apparatus and communication method
EP2706695A2 (en) Wireless communication system, base station, and wireless communication method
US9794951B2 (en) Wireless communication device
KR102665409B1 (en) Method and apparatus for splitting data in multi-connectivity
JP3563421B2 (en) Wireless communication device
WO2016067437A1 (en) Communication system
JP2013085135A (en) Network terminal device and data transmission method
CN112187654A (en) Shunting method for multi-connection communication
Kilberg et al. Experimental evaluation of low-latency diversity modes in IEEE 802.15. 4 networks
Nardini et al. Performance evaluation of TCP-based traffic over direct communications in LTE-Advanced
CN110637446B (en) TCP proxy device assisted communication method and device in wireless communication
Ritola et al. 5g standalone network’s reliability, one-way latency and packet loss rate analysis for urllc implementation
Leccadito et al. Investigating encrypted ieee 802.15. 4 and digimesh communications for small unmanned systems
Meer et al. An energy efficient hybrid interference-resilient frame fragmentation for wireless sensor networks
Oba et al. Data Rates Performance Analysis of Point to Multi-Point Wireless Link in University of Ilorin Campus
Golan et al. Experimental performance evaluation of the narrowband VHF tactical IP radio in test-bed environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP