WO2016067433A1 - Lens system and contact lens - Google Patents

Lens system and contact lens Download PDF

Info

Publication number
WO2016067433A1
WO2016067433A1 PCT/JP2014/078988 JP2014078988W WO2016067433A1 WO 2016067433 A1 WO2016067433 A1 WO 2016067433A1 JP 2014078988 W JP2014078988 W JP 2014078988W WO 2016067433 A1 WO2016067433 A1 WO 2016067433A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
refractive power
eye
wearer
pair
Prior art date
Application number
PCT/JP2014/078988
Other languages
French (fr)
Japanese (ja)
Inventor
武 奥村
英夫 水谷
香百合 鈴木
道明 斎藤
麻里子 坂木
則夫 金子
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2014/078988 priority Critical patent/WO2016067433A1/en
Publication of WO2016067433A1 publication Critical patent/WO2016067433A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the present invention relates to a lens system and a contact lens.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-243806
  • the lens system includes a pair of lenses that are directly attached to both eyes of the wearer, and a control unit that is carried by the wearer and controls the pair of lenses,
  • Each of the pair of lenses includes a lens body whose lens refractive power is variable based on control from the control unit, and a position sensor that detects and outputs a spatial position of the lens body.
  • the lens refractive power of the lens body of the pair of lenses is controlled based on the output of each position sensor of the lens.
  • the contact lens is a lens body that is directly attached to the eyeball of the wearer and has a variable lens refractive power, a control unit that makes the lens refractive power of the lens body variable, And a position sensor that detects and outputs a spatial positional relationship with respect to the eyes of the wearer of the lens body.
  • FIG. 1 is a schematic diagram of a lens system 10 according to a first embodiment.
  • 1 is a schematic diagram of a right-eye lens 101.
  • FIG. 2 is a schematic sectional view of a right-eye lens 101.
  • FIG. 2 is a functional block diagram of a right-eye lens 101.
  • FIG. It is a block diagram of the control apparatus 200 in 1st Embodiment.
  • FIG. 2 is a schematic explanatory diagram for explaining a first embodiment of a method for determining a refractive power of a lens 100; It is a flowchart from the positional information acquisition in 1st Embodiment to a focus adjustment. It is a block diagram of the control apparatus 200 in 2nd Embodiment.
  • FIG. 1 It is a schematic explanatory drawing explaining the calculation method of the convergence angle in 2nd Embodiment. It is a table which shows the relationship between the position of the target object 50 in 2nd Embodiment, and a convergence angle. It is a flowchart from the positional information acquisition in 2nd Embodiment to lens refractive power adjustment. It is a schematic explanatory drawing explaining 2nd Example of the determination method of the refractive power of the lens 100.
  • FIG. 1 is a schematic diagram of a lens system 10 according to the first embodiment.
  • the lens system 10 automatically adjusts the lens refractive power of the lens 100 attached to the eye of the wearer 20 so that the object 50 viewed by the wearer 20 is in focus.
  • the lens system 10 includes a lens 100 that is worn by the wearer 20 and a control device 200 that controls the lens 100 through wireless communication.
  • the lens 100 includes a right-eye lens 101 that is directly attached to the right eye 30 of the wearer 20 and a left-eye lens 102 that is directly attached to the left eye 40 of the wearer 20.
  • the control device 200 is a device that is carried by the wearer 20 and can be attached to the right ear of the wearer 20, for example, as shown in FIG.
  • the control device 200 may include a short-range wireless communication unit, and may include a wireless communication unit such as Bluetooth (registered trademark) instead of the short-range wireless communication unit. Further, the control device 200 controls the right-eye lens 101 and the left-eye lens 102 using the short-range wireless communication unit.
  • control device 200 has a built-in wireless power feeding device.
  • the control device 200 wirelessly supplies power to each of the right-eye lens 101 and the left-eye lens 102 using a wireless power supply device.
  • the control device 200 may include a power switch, and the power may be turned on / off by operating the power switch. Further, the control device 200 may be hung around the neck of the wearer 20 or attached to the clothes of the wearer 20 as long as it can be carried by the wearer 20 within a range that allows communication with the lens 100. Also good.
  • FIG. 2 is a schematic diagram of the right-eye lens 101.
  • the outer shape of the right-eye lens 101 is the same as that of a normal contact lens.
  • the right-eye lens 101 includes a lens body 110, a position sensor 130, a controller 140, a transmission / reception antenna 150, a power reception antenna 160, a power storage unit 170, a light amount sensor 180, and a wiring 190.
  • the front direction orthogonal to the Z axis is defined as the X axis plus direction
  • the right direction on the sheet orthogonal to the Z axis and the X axis is defined as the Y axis plus direction.
  • the coordinate axes are displayed so that the orientation of each figure can be understood with reference to the coordinate axes in FIG.
  • the lens body 110 includes a lens substrate 112 and a lens refractive power adjustment unit 120.
  • the lens substrate 112 is a transparent and circular plate.
  • the lens substrate 112 itself may or may not have lens power.
  • the refractive power of the lens refractive power adjustment unit 120 changes due to a change in applied voltage. Thereby, the lens refractive power adjustment unit 120 can change the lens refractive power of the right-eye lens 101.
  • the lens refractive power adjustment unit 120 is preferably circular and larger than the pupil 31 of the average wearer 20 right eye 30.
  • the position sensor 130 detects acceleration and angular velocity and outputs position information of the pupil 31 of the right eye 30.
  • the position sensor 130 is a MEMS and has a size of sub-millimeter square and a thickness of about a dozen microns.
  • the position sensor 130 is electrically connected to the power storage unit 170 and the transmission / reception antenna 150 via the wiring 190.
  • the position sensor 130 obtains spatial position coordinates by adding the movement amount obtained by integrating the acceleration twice to the initial position coordinates.
  • the initial position is set to the position and the direction when the eyes of the left and right eyes are made parallel by having the wearer 20 look at infinity at the start of use, for example.
  • the position coordinates of the pupil 31 are obtained by adding the relative position coordinates from the position sensor 130 to the pupil 31.
  • the initial position coordinates are reset when the power switch of the control device 200 is turned on, for example.
  • the relative position from the position sensor 130 to the center of the pupil 31 in a state where the wearer 20 wears the right eye lens 101 on the right eye 30 is measured in advance.
  • the controller 140 applies a voltage according to the voltage value information from the control device 200 to the lens refractive power adjustment unit 120 using the voltage of the power storage unit 170.
  • the controller 140 is electrically connected to the lens refractive power adjustment unit 120, the power storage unit 170, and the transmission / reception antenna 150 via the wiring 190.
  • the transmission / reception antenna 150 transmits / receives various information to / from the control device 200 using short-range communication means.
  • the transmission / reception antenna 150 may use wireless communication means such as Bluetooth (registered trademark) instead of the short-range communication means.
  • the transmitting / receiving antenna 150 is separated from the lens refractive power adjustment unit 120 and circulates around the outer periphery of the surface on the lens substrate 112 where the lens refractive power adjustment unit 120 is provided. Therefore, the transmitting / receiving antenna 150 does not contact the cornea of the right eye 30 and does not enter the field of view of the wearer 20.
  • the transmission / reception antenna 150 has an antenna length corresponding to communication with the control device 200.
  • the transmission / reception antenna 150 is electrically connected to the wiring 190 through the connection portion 152.
  • the power receiving antenna 160 receives power from the control device 200.
  • the power receiving antenna 160 circulates between the lens refractive power adjusting unit 120 on the lens substrate 112 and the transmitting / receiving antenna 150. Therefore, the power receiving antenna 160 does not contact the cornea of the right eye 30 and does not enter the field of view of the wearer 20.
  • the power receiving antenna 160 has an antenna length corresponding to the frequency of the power transmitted from the control device 200.
  • the power receiving antenna 160 may incorporate an electromagnetic induction coil, an electric field / magnetic resonance coil, or the like.
  • Power receiving antenna 160 is electrically connected to power storage unit 170.
  • the power storage unit 170 stores power generated by the electromagnetic waves received from the control device 200. If the wireless power feeding method from the control device 200 is a magnetic / magnetic resonance method, a direct current resonance method, or the like, the power storage unit 170 may include a resonance circuit. The power storage unit 170 supplies a DC voltage to a plurality of devices via the wiring 190.
  • the light quantity sensor 180 converts the light entering the right eye 30 of the wearer 20 into an electrical signal and outputs it. By using the light amount sensor 180, for example, intentional fine blink of the wearer 20 can be detected, and the calibration process of the right-eye lens 101 can be executed by the wearer 20.
  • the light quantity sensor 180 is electrically connected to the power storage unit 170 and the transmission / reception antenna 150 via the wiring 190.
  • the lens refractive power adjustment unit 120, the position sensor 130, the controller 140, the power storage unit 170, and the light amount sensor 180 are provided on the surface of the lens substrate 112 opposite to the surface in contact with the right eye 30. Therefore, none of the above contacts the cornea of the right eye 30.
  • the position sensor 130, the controller 140, the power storage unit 170, and the light amount sensor 180 are arranged in a region that is biased with respect to the center of the lens body 110.
  • the right-eye lens 101 has an asymmetric weight distribution around the optical axis of the lens body 110. More specifically, a region where the position sensor 130, the controller 140, the power storage unit 170, and the light amount sensor 180 are provided is heavier than other regions. Therefore, when the right eye lens 101 is attached to the right eye 30, the position sensor 130, the controller 140, the power storage unit 170, and the light amount sensor 180 come down due to gravity.
  • the control device 200 sets the state where the region is located below as the reference position of the right-eye lens 101.
  • FIG. 3 is a schematic cross-sectional view of the right-eye lens 101.
  • FIG. 3 is a schematic cross-sectional view of the right-eye lens 101 shown in FIG. 2 cut along the XZ plane so as to pass through the center. Some configurations are omitted.
  • the lens refractive power adjustment unit 120 includes a liquid crystal layer 121, a lens layer 123, a lens layer side electrode 125, a lens body side electrode 127, a polarizing film 128, and a sealing material 129.
  • the lens body side electrode 127 is a transparent electrode such as ITO.
  • the lens body side electrode 127 is disposed on the lens body 110.
  • the lens body side electrode 127 is electrically connected to the controller 140 via the wiring 190.
  • the lens layer 123 is a Fresnel lens in which an uneven surface is formed on the lens substrate 112 side and the opposite surface is formed smoothly.
  • the lens layer 123 is disposed in a state of being separated from the lens substrate 112 by the sealing material 129.
  • the lens layer side electrode 125 is a transparent electrode such as ITO.
  • the lens layer side electrode 125 is provided along the uneven surface of the lens layer 123.
  • the liquid crystal layer 121 is filled between the lens layer side electrode 125 and the lens body side electrode 127.
  • An example of the liquid crystal layer 121 is nematic liquid crystal. In this case, the liquid crystal molecules of the liquid crystal layer 121 are aligned in a homogeneous arrangement.
  • the sealing material 129 seals the liquid crystal layer 121 filled between the lens layer side electrode 125 and the lens body side electrode 127.
  • the polarizing film 128 is provided over the front surface of the lens layer 123 opposite to the surface on which the lens layer side electrode 125 is provided.
  • the polarizing film 128 has an optical axis arranged so as to block normal light and transmit abnormal light to the liquid crystal molecules of the liquid crystal layer 121.
  • the liquid crystal molecules of the liquid crystal layer 121 are continuously changed from the homogeneous arrangement to the homeotropic arrangement. Thereby, the refractive index of the extraordinary light incident on the liquid crystal layer 121 can be continuously changed, and the lens refractive power of the right-eye lens 101 can be continuously changed.
  • the difference in refractive index between the liquid crystal layer 121 and the lens layer 123 is set to zero.
  • the lens power of the right-eye lens 101 can be reduced to 0 as a whole when the applied voltage is 0V.
  • the difference in refractive index between the liquid crystal layer 121 and the lens layer 123 can be reduced to 0.2 when the applied voltage is 3V.
  • 5 diopters can be realized if the thickness of the liquid crystal layer 121 is about 5 ⁇ m. That is, according to the present embodiment, by adjusting the applied voltage, a nearby object can be imaged on the retina and can sufficiently function as a lens refractive power adjustment range in daily life.
  • the lens layer side electrode 125 and the lens body side electrode 127 may be circular hole pattern transparent electrodes having an opening at the center, and the lens layer 123 may be a smooth transparent substrate. Thereby, the same effect as the case where the lens layer 123 is formed into a Fresnel lens shape can be obtained.
  • a part of the wiring 190 is arranged in the external space of the lens substrate 112 for the purpose of easy explanation.
  • the wiring 190 is preferably arranged along the surface of the lens substrate 112 or along the surface opposite to the surface of the lens substrate 112 that contacts the eyeball of the wearer 20.
  • FIG. 4 is a functional block diagram of the lens 101 for the right eye. In FIG. 4, a part of the configuration is omitted.
  • the position sensor 130 transmits the position information of the pupil 31 of the right eye 30 of the wearer 20 detected every certain time to the transmitting / receiving antenna 150.
  • the position information is coordinate displacement information of the pupil 31 in the three-dimensional space.
  • the light amount sensor 180 transmits light amount information that enters the right eye 30 of the wearer 20 detected at regular intervals to the transmission / reception antenna 150.
  • the light amount information is electrical signal information obtained by converting light entering the right eye 30 according to the wavelength.
  • the transmission / reception antenna 150 receives position information and light amount information from the position sensor 130 and the light amount sensor 180, respectively, and transmits them to the transmission / reception unit 210 of the control device 200.
  • the transmission / reception antenna 150 transmits the voltage value information of the right-eye lens 101 and the left-eye lens 102 received from the transmission / reception unit 210 of the control device 200 to the controller 140.
  • the power receiving antenna 160 wirelessly receives power from the wireless power feeding unit 230 of the control device 200
  • the power receiving antenna 160 transmits the power to the power storage unit 170.
  • power storage unit 170 receives power from power receiving antenna 160
  • power storage unit 170 stores the power.
  • the controller 140 Based on the voltage value information of the right-eye lens 101 received by the transmitting / receiving antenna 150, the controller 140 applies a voltage to the lens layer side electrode 125 and the lens body side electrode 127 using the power stored in the power storage unit 170. .
  • the right-eye lens 101 has been described with reference to FIGS.
  • the left-eye lens 102 that is directly attached to the left eye 40 of the wearer 20 has the same configuration as the configuration of the right-eye lens 101 described here, and thus the description thereof is omitted.
  • the right-eye lens 101 and the left-eye lens 102 may have the same configuration, or may have different configurations such that the lens base material has different lens power.
  • FIG. 5 is a block diagram of the control device 200 according to the first embodiment. In FIG. 5, only the configuration necessary for the description is illustrated, and other configurations are omitted.
  • the control device 200 includes a transmission / reception unit 210, a pupil center distance calculation unit 214, a lens refractive power determination unit 216, a voltage value calculation unit 218, a memory 220, a memory 221, and a wireless power feeding unit 230.
  • the transmission / reception unit 210 receives position information and light amount information from the transmission / reception antennas 150 of the right-eye lens 101 and the left-eye lens 102 together with information specifying whether it is left or right.
  • the transmission / reception unit 210 transmits the voltage value information of the right eye lens 101 and the left eye lens 102 received from the voltage value calculation unit 218 to the transmission / reception antennas 150 of the right eye lens 101 and the left eye lens 102.
  • the pupil center distance calculation unit 214 determines the pupil center between the pupil 31 of the right eye 30 and the pupil 41 of the left eye 40 based on the position information of the right eye lens 101 and the left eye lens 102 received by the transmission / reception unit 210. Calculate the distance.
  • the lens refractive power determination unit 216 determines the lens refractive power of the compound lens obtained by combining the eyeball of the wearer 20 and the lens 100 from the pupil center distance calculated by the pupil center distance calculation unit 214.
  • the lens refractive power determination unit 216 refers to the memory 221 and determines whether or not the determined lens refractive power of the compound lens is outside a predetermined lens refractive power adjustable range.
  • the lens refractive power adjustable range is the range of lens refractive power that can be adjusted by the biological function of the eyeball itself of the wearer 20.
  • the lens refractive power adjustable range is measured by ophthalmology or the like and stored in the memory 221.
  • the lens refractive power adjustable range may be measured using the lens system 10.
  • the wearer 20 looks at the object 50 at a known distance, and the lens refractive power adjustment unit 120 sequentially changes the lens refractive power to determine whether the object 50 can be clearly recognized.
  • the lens refractive power adjustable range is measured by having it input to 20.
  • the lens refractive power determination unit 216 determines the lens refractive power to be given to the lens 100 when the calculated lens refractive power of the compound lens is outside the range. In this case, the lens refractive power determination unit 216 determines the lens refractive power of the compound lens so that the wearer 20 can clearly recognize the object 50, and uses the lens 100 as the corrected refractive power of the accommodation power of the wearer 20. Determine the refractive power. If it is not out of the range, the lens refractive power of the lens 100 is set to an initial value, that is, the corrected refractive power by the lens 100 is set to zero.
  • the lens refractive power adjustable range is preferably set for the right eye 30 and the left eye 40, respectively. In this case, the determination and the determination of the lens refractive power of the lens 100 are performed for each of the right eye 30 and the left eye 40.
  • the voltage value calculation unit 218 calculates the voltage values of the right-eye lens 101 and the left-eye lens 102 based on the lens refractive powers of the right-eye lens 101 and the left-eye lens 102 determined by the lens refractive power determination unit 216. calculate. In this case, the voltage value calculation unit 218 reads a function indicating the relationship between the lens refractive power of the compound lens and the voltage value applied by the lens refractive power adjustment unit 120 from the memory 220. The voltage value calculation unit 218 calculates each voltage value of the right-eye lens 101 and the left-eye lens 102 based on the function.
  • the voltage value calculation unit 218 transmits voltage value information indicating each voltage value of the right-eye lens 101 and the left-eye lens 102 to the transmission / reception unit 210.
  • the function is preset for each wearer 20 experimentally or by simulation, and stored in the memory 220, for example.
  • the wireless power feeding unit 230 includes an internal power source, and wirelessly transmits power to the power receiving antenna 160 of the lens 100.
  • the wireless power feeding method may be any method such as an electromagnetic induction method, a magnetic / magnetic resonance method, a radio wave reception method, a direct current resonance method, and an electric field coupling method.
  • FIG. 6 is a schematic explanatory view for explaining a first embodiment of a method for determining the refractive power of the lens 100.
  • the lens refractive power G is approximately determined based on the distance between the pupil centers of the right eye 30 and the left eye 40.
  • the lens refractive power G determined here is a combined lens refractive power as a whole compound lens by a combination of the right eye 30 and the right eye lens 101.
  • the line-of-sight direction and the face direction of the wearer 20 are both in the X-axis direction, and the object 50 is located at a distance a from the right eye 30 and the left eye 40. In other words, the object 50 is located in front of the wearer 20.
  • all distance units are calculated as meters [m].
  • the unit of the lens refractive power G is diopter [Dptr].
  • the right-eye lens 101 is mounted on the right eye 30 because functional elements such as a position sensor 130, a controller 140, a power storage unit 170, and a light amount sensor 180 are provided below and have an asymmetric weight distribution. In the state where it is done, it is almost at the reference position. Therefore, in this method, the relative position between the position of the pupil 31 of the right eye 30 of the wearer 20 and the position sensor 130 of the right-eye lens 101 can be regarded as known and constant. The same applies to the left eye 40.
  • the distance D between the center of each eyeball of the right eye 30 and the left eye 40 of the wearer 20 is constant regardless of the spatial position and orientation of the wearer 20, the orientation of the right eye 30, and the like. Further, the distance b from the pupil 31 of the right eye 30 of the wearer 20 to the imaging point on the retina is also constant. The distance b is substantially equal to the diameter of each eyeball.
  • the center-to-eye distance D is measured in advance using a measuring device, for example. Instead of this, the center-to-eye distance D may be measured using the lens system 10.
  • the position information is detected by the position sensors 130 and attached to the right eye 30 and the left eye 40, respectively.
  • the distance D between eyeball centers may be calculated.
  • the distance between the centers of the position sensors 130 is calculated from the position coordinates of the position sensor 130 of the right-eye lens 101 and the position sensor 130 of the left-eye lens 102, and the known positional relationship between the position sensor 130 and the pupils 31 and 41 is calculated. Then, the pupil center distance d is calculated.
  • the distance a is calculated by substituting the known values D and b into the relational expression (1) and substituting the center-to-center distance d calculated using each position sensor 130.
  • the lens refractive power G is defined as the reciprocal of the focal length.
  • the following relational expression (2) can be obtained for the lens refractive power of the entire compound lens by the combination of the right eye 30 and the right eye lens 101.
  • the lens refractive power G is determined by the following relational expression (3) by substituting the known value b into the relational expression (2) and the distance a calculated by the above expression.
  • the combined lens refractive power G is a value in the combined system of the right eye 30 and the right eye lens 101 of the wearer 20.
  • the refractive power of the composite system is expressed as the sum of the refractive power of the right eye 30 and the refractive power of the right-eye lens 101. Therefore, by measuring the refractive power of the right eye 30 in advance, the refractive power of the right-eye lens 101 that satisfies the combined refractive power corresponding to the combined lens refractive power G is changed from the combined refractive power of the right eye 30. It can be determined by subtracting the refractive power. The same applies to the left eye 40.
  • FIG. 7 is a flowchart from position information acquisition to focus adjustment in the first embodiment. Since the flow from the position information acquisition to the lens refractive power adjustment of the right-eye lens 101 and the left-eye lens 102 is the same, they will be collectively described as the lens 100.
  • the flow is started by setting the initial position of the position sensor 130.
  • the position sensor 130 of the lens 100 detects the position coordinates of the pupils 31 and 41 of the wearer 20 wearing the lens 100, and outputs it as position information (S101).
  • the lens 100 transmits the position information to the control device 200 via the transmission / reception antenna 150 (S102).
  • the control device 200 receives position information from the lens 100 via the transmission / reception unit 210 (S103).
  • the pupil center distance calculation unit 214 of the control device 200 calculates the center distance between the pupil 31 of the right eye 30 and the pupil 41 of the left eye 40 from the position information (S104).
  • the lens refractive power determination unit 216 of the control device 200 refers to the memory 221 and determines the refractive power of the lens 100 from the pupil center distance (S105).
  • the voltage value calculation unit 218 of the control device 200 refers to the memory 220 and calculates a voltage value to generate the refractive power of the lens 100 (S106).
  • the control device 200 transmits voltage value information indicating the voltage value from the transmission / reception unit 210 to the lens 100 (S107).
  • the lens 100 receives voltage value information from the control device 200 via the transmission / reception antenna 150 (S108). Based on the voltage value information, the controller 140 of the lens 100 applies a voltage to the lens layer side electrode 125 and the lens body side electrode 127 of the lens refractive power adjustment unit 120 to adjust the focus (S109). Specifically, the refractive power of the lens 100 that satisfies the refractive power of the synthetic system corresponding to the synthetic lens refractive power G, determined by the relational expression (3), is controlled by the applied voltage.
  • the flow is repeated until the control device is turned off. Accordingly, the lens refracting power of the lens 100 can be automatically adjusted so that the wearer 20 can focus accurately in accordance with the object distance that the wearer wants to see without being particularly conscious.
  • the composite lens refractive power G of the compound lens is determined by a simple method, and the appropriate right-eye lens 101 and left-eye lens 102 are determined.
  • Each lens refractive power can be set.
  • the refractive power of the compound lens in each of the right eye 30 and the left eye 40 is calculated by calculating the center distance d between the pupils of both eyes of the wearer 20.
  • it is not always necessary to calculate the inter-center distance d of the pupil it is also possible to calculate only the change in the inter-center distance d, and if the value related to the inter-center distance d of the pupil is calculated. good.
  • FIGS. 8 to 11 are diagrams for the second embodiment, and are explanatory diagrams regarding a method for determining the refractive power of the lens 100.
  • FIG. In the examples shown in FIGS. 8 to 11, it is assumed that the wearer 20 grasps the object 50 substantially in front, and the table stored in the memory 221 of the control device 200 is referred to, so that the binocular convergence angle can be easily calculated.
  • the refractive power of the lens 100 is determined.
  • FIG. 8 is a block diagram of the control device 200 according to the second embodiment. In FIG. 8, a part of the configuration is omitted.
  • the control device 200 includes a convergence angle calculation unit 215 instead of the pupil center distance calculation unit 214 described in FIG. Functions similar to the functions of the components described in FIG. 5 are denoted by the same reference numerals, and description thereof is omitted.
  • the convergence angle calculation unit 215 calculates the convergence angle formed by the right eye 30 and the left eye 40 from the position information of the right eye lens 101 and the left eye lens 102 received by the transmission / reception unit 210.
  • the lens refractive power determination unit 216 determines the refractive power of the lens 100 from the convergence angle information calculated by the convergence angle calculation unit 215.
  • FIG. 9 is a schematic explanatory diagram for explaining a method of calculating a convergence angle in the second embodiment.
  • the line-of-sight direction and the face direction of the wearer 20 are both in the X-axis direction, and the wearer 20 captures the object 50 substantially in front.
  • both ⁇ 1 and ⁇ 2 are 0, and when the wearer 20 is looking diagonally forward to the right, both ⁇ 1 and ⁇ 2 are positive. Thus, when the wearer 20 is looking forward diagonally to the left, both ⁇ 1 and ⁇ 2 are negative.
  • the rotations ⁇ 1 and ⁇ 2 that are the angle change amounts of the position sensors 130 are obtained from the position information of the position sensor 130 of the right-eye lens 101 and the position sensor 130 of the left-eye lens 102.
  • the convergence angle ⁇ created by the right eye 30 and the left eye 40 of the wearer 20 is expressed by the following relational expression (4) using the rotations ⁇ 1 and ⁇ 2.
  • the convergence angle ⁇ can be calculated from the rotations ⁇ 1 and ⁇ 2.
  • the calculated convergence angle ⁇ corresponds to the distance L to the object 50 that the wearer 20 of the lens 100 intends to visually recognize. That is, calculating the convergence angle ⁇ is calculating the distance L to the object 50, and the refractive power of the lens 100 is adjusted so that the object 50 at the calculated distance L is in focus. Just decide. Then, a case where the refractive power of the lens 100 is determined so as to focus on the object 50 at a short distance from the state where the eye of the wearer 20 is focused at infinity will be described.
  • the distance from the calculated convergence angle ⁇ to the object 50 is calculated, and the object 50 is obtained as a compound lens combining the eye of the wearer 20 and the lens 100.
  • the refractive power of the lens 100 is determined so as to focus on. Specifically, by selecting the convergence angle ⁇ closest to the calculated convergence angle ⁇ from the convergence angles ⁇ listed in the table, the distance L to the object 50 corresponding to the convergence angle ⁇ The refractive power of the lens 100 is determined. That is, the refractive power of the lens 100 is determined so as to focus on the distance L to the object 50 by changing the focal length of the lens 100 with respect to the eye focused at infinity.
  • FIG. 10 is a table showing the relationship between the convergence angle ⁇ , the distance L to the object 50, and the lens refractive power P of the lens 100 expressed in diopters in the second embodiment.
  • the distance L to the object 50 in the table is the distance L from the intermediate position of each eyeball center to the object 50 on the line connecting the eyeball centers of the right eye 30 and the left eye 40 illustrated in FIG.
  • the table lists the distance L to the object 50 corresponding to each convergence angle ⁇ and the lens refractive power P of the lens 100 expressed in diopters. For the purpose of simplifying the explanation, only six sets are listed in the table, but it is preferable that more sets are listed in the table. Thereby, the lens refractive power can be adjusted more accurately. Note that the distance L to the object 50 with respect to the other convergence angle ⁇ and the lens refractive power P of the lens 100 may be determined by interpolation based on each value of the convergence angle ⁇ given in FIG. .
  • the object distance L is obtained by detecting the convergence angle ⁇ .
  • the lens refractive power P to be borne by the lens 100 on the basis of the visual recognition state of the object at infinity is the reciprocal of the object distance L expressed in meters.
  • the refractive power P is 4 diopters.
  • the lens refractive power P in this case indicates a change corresponding to the distance with infinity as a reference, and this is given to the lens 100.
  • the distance L is the distance from the middle position of each eyeball center to the object 50
  • the distance L and the distance from the right-eye lens 101 or the left-eye lens 102 to the object 50 are somewhat different.
  • the shift can be ignored. Therefore, according to the determination method, by calculating the convergence angle and referring to the table stored in the memory 221 of the control device 200, the approximate distance to the object 50 can be easily determined, and the lens refractive power can be determined. Can be adjusted.
  • FIG. 11 is a flowchart from position information acquisition to lens refractive power adjustment in the second embodiment. Since the flow from the position information acquisition to the lens refractive power adjustment of the right-eye lens 101 and the left-eye lens 102 is the same, the lens 100 will be described together.
  • the flow is started by setting the initial position of the position sensor 130.
  • the position sensor 130 of the lens 100 detects the position coordinates of the pupils 31 and 41 of the wearer 20 wearing the lens 100 and outputs it as position information (S201).
  • the lens 100 transmits the position information to the control device 200 via the transmission / reception antenna 150 (S202).
  • Control device 200 receives position information from lens 100 via transmission / reception unit 210 (S203).
  • the convergence angle calculation unit 215 of the control device 200 calculates the convergence angle formed by the pupil 31 and the left eye 40 of the right eye 30 from the position information (S204).
  • the lens refractive power determination unit 216 of the control device 200 refers to the memory 221 storing the table shown in FIG. 10, and the distance L to the object 50 corresponding to the convergence angle and the lens refractive power P of the lens 100. Are determined (S205).
  • the voltage value calculation unit 218 of the control device 200 refers to the memory 220 and calculates a voltage value so as to generate the lens refractive power P of the lens 100 (S206).
  • step S207 to step S209 is the same as step S107 to step S109 demonstrated in FIG. 7, description is abbreviate
  • the lens refractive power of the lens 100 can be automatically adjusted by the left and right eyes in accordance with the wearer's viewpoint without the wearer 20 being particularly conscious.
  • the refractive power of the compound lens in each of the right eye 30 and the left eye 40 is calculated.
  • it is not always necessary to calculate the absolute value of the convergence angle ⁇ and the amount of change in the convergence angle ⁇ from a predetermined state can be calculated to determine the correction amount of the refractive power of the lens 100. Yes, it is only necessary to calculate a value related to the convergence angle ⁇ .
  • the wearer 20 grasps the object 50 substantially in front, the angle of convergence is calculated and the table stored in the memory 221 is referred to, so that the lens 100 can be easily obtained.
  • the wearer 20 can recognize a clear image of the object 50.
  • FIG. 12 is a schematic explanatory view for explaining a second embodiment of the method for determining the refractive power of the lens 100.
  • the face direction of the wearer 20 is in the X-axis direction, but the line-of-sight direction is not in the X-axis direction, and the wearer 20 grasps the object 50 diagonally right front.
  • each position sensor 130 As described above, the relative position of each position sensor 130 with respect to each of the right eye 30 and the left eye 40 is constant. Therefore, by detecting the positions of the position sensors 130, the positions of the pupil 31 of the right eye 30 and the pupil 41 of the left eye 40 can be detected.
  • the rotations ⁇ 1 and ⁇ 2 of the position sensors 130 are calculated.
  • the convergence angle ⁇ created by the right eye 30 and the left eye 40 of the wearer 20 is expressed by the following relational expression (6) using the rotations ⁇ 1 and ⁇ 2.
  • the convergence angle ⁇ can be calculated by calculating the rotations ⁇ 1 and ⁇ 2.
  • ⁇ 1 ′ ( ⁇ / 2) + ⁇ 1 (7)
  • the distance a1 and the distance a2 can be calculated from the rotations ⁇ 1 and ⁇ 2 by using the sine theorem. That is, the distance a1 and the distance a2 are expressed by the following relational expression (9) and relational expression (10) by using the relational expression (6), the relational expression (7), and the relational expression (8), respectively. .
  • A1 D ⁇ (sin (( ⁇ / 2) + ⁇ 1) / sin (
  • A2 D ⁇ (sin (( ⁇ / 2) ⁇ 2) / sin (
  • the distances a1 and a2 are calculated by substituting the known values D and b into the relational expression (9) and the relational expression (10) and substituting the rotations ⁇ 1 and ⁇ 2 calculated using the position sensors 130. Is done.
  • the rotations ⁇ 1 and ⁇ 2 can be calculated from the angle change amounts of the position sensors 130 of the right-eye lens 101 for the right eye 30 and the left-eye lens 102 for the left eye 40 based on the state at infinity as a reference (initial value).
  • the combined lens refractive powers G1 and G2 are determined. Based on the determined combined lens refractive power G1 and G2 of each compound lens in the right eye 30 and the left eye 40, the refractive power is determined in each of the right-eye lens 101 and the left-eye lens 102, as in the description of the other embodiments. .
  • the lens refractive power of the lens 100 is adjusted more accurately without assuming that the wearer 20 has caught the object 50 in the front, and the wearer 20 has a clear image of the object 50.
  • the image can be recognized.
  • the lens 100 has been described as a configuration that receives power from the wireless power feeding unit of the control device 200 by the power receiving antenna 160.
  • the lens 100 may include a power generation unit.
  • the power generation unit may be a solar power generation element that uses light incident on the eyes of the wearer 20, a power generation element that uses the blink of the eyes of the wearer 20, or the like.
  • the lens system 10 has been described as a configuration including the control device 200 separately from the lens 100.
  • the lens system 10 may be a single lens in which the control device 200 is incorporated.
  • the lens refractive power adjustment unit 120 has been described as a configuration in which the lens refractive power is continuously variable using a liquid crystal element.
  • the lens refractive power adjustment unit 120 may be configured to continuously change the lens refractive power using electrowetting.
  • the relative position from the position sensor 130 of the right eye lens 101 to the pupil 31 of the right eye 30 is constant when the wearer 20 wears the right eye lens 101 on the right eye 30.
  • the boundary between the cornea and the right eye lens 101 is filled with tears, and the relative distance from the position sensor 130 to the pupil 31 is completely fixed. It has not been. A slight shift occurs due to the movement of the right eye 30 or the opening / closing of the starboard. Therefore, the position sensor 130 outputs as if the right eye 30 moved even though the right eye 30 was not rotated due to congestion.
  • the angle also shifts.
  • the deviation angle is 1 mm / 12 mm radians, that is, 4.8 °. This amount corresponds to, for example, a shift of 1.2 Dptr from about infinity to about 1 m by diopter. Since this is a range that can be covered by the adjustment ability of the human eyeball itself, it is acceptable.
  • the position sensor 130 on the right-eye lens 101 is used.
  • the relative position between the pupil 31 and the pupil 31 is a value different from the known value. Therefore, when the right-eye lens 101 is displaced as described above, it is preferable to execute a calibration process and re-measure the relative position.
  • the calibration process may be started, for example, by causing the wearer 20 to execute a specific number of blinks and detecting the blink with the light amount sensor 180.
  • the calibration process may be started by using the position sensor 130.
  • the calibration process may be started based on the detection result of the position sensor 130 when the wearer 20 intentionally performs an eye movement that is not normally performed such as turning the eyes.
  • the case where the right-eye lens 101 of the right eye 30 is displaced has been described, but the same applies to the case where the left-eye lens 102 of the left eye 40 is displaced.
  • the wearer 20 looks at infinity, that is, by making the line of sight of the left and right eyeballs parallel, the amount of deviation of each position sensor 130 from a preset position with respect to the pupil is detected. . Then, the amount of deviation is set as a correction value so that correction is performed by the correction value for subsequent position detection.
  • the calibration process can be automatically executed by detecting the displacement of the position sensor 130 due to the opening / closing of the eyelid.
  • the lens refractive power can be automatically adjusted in accordance with the viewpoint of the wearer without being particularly conscious of the lens worn by the wearer.
  • the lens refractive power dysfunction caused by the wearer's adjustment disorder is corrected. You can also.
  • the refractive power can also be corrected by applying a bias in one direction that cancels the oblique and oblique directions in a prism shape.
  • the symptom appears when fatigue increases, it can be reduced by correcting according to the degree.
  • the voltage value applied by the lens refractive power adjustment unit 120 is calculated based on a function indicating the relationship between the lens refractive power of the compound lens and the voltage value of the lens refractive power adjustment unit 120.
  • a lookup table in which the lens refractive power of the compound lens and the voltage value of the lens refractive power adjustment unit 120 are numerically associated is stored in the memory 220, and the lens refractive power is based on the lookup table.
  • the voltage value applied by the adjustment unit 120 may be specified.
  • the lens refractive power determination unit 216 may determine the lens refractive power in the lens refractive power adjustment unit 120 from the lens refractive power of the compound lens.
  • the function or the look-up table is used to indicate the relationship between the lens refractive power in the lens refractive power adjustment unit 120 and the voltage value of the lens refractive power adjustment unit 120.
  • the visual acuity of the wearer 20 and information on the lens substrate 112 used to determine the lens refractive power of the lens refractive power adjustment unit 120 from the lens refractive power of the compound lens are stored in the memory 221 or the memory 220 in advance.
  • the lens refractive power determination unit 216 of the control device 200 has been described as a configuration that determines the lens refractive power of the compound lens.
  • the control device 200 may include a focal length calculation unit that calculates the focal length of the compound lens.

Abstract

It is difficult to automatically adjust the refractive power of a contact lens so that an object viewed by a wearer of the contact lens can be focused. In the present invention, a lens system comprises: a pair of lenses, worn directly on the eyes of a wearer; and a control unit, carried by the wearer, for controlling the pair of lenses. Each lens in the pair of lenses includes a lens body capable of varying the refractive power of the lens on the basis of control by the control unit, and a position sensor for detecting and outputting the spatial position of the lens body. The control unit controls the refractive power of each lens body in the pair of lenses on the basis of the output from each position sensor in the pair of lenses.

Description

レンズシステム及びコンタクトレンズLens system and contact lens
 本発明は、レンズシステム及びコンタクトレンズに関する。 The present invention relates to a lens system and a contact lens.
 レンズ屈折力を可変とするレンズがある(例えば、特許文献1参照)。
 特許文献1 特開平9-243806
There is a lens whose lens refractive power is variable (see, for example, Patent Document 1).
Patent Document 1: Japanese Patent Laid-Open No. 9-243806
 しかしながら、コンタクトレンズにおいて、装着者が見ている対象物にピントが合うようにレンズの屈折力を自動調整することは困難である。 However, in a contact lens, it is difficult to automatically adjust the refractive power of the lens so that the object being viewed by the wearer is in focus.
 本発明の第1の態様においては、レンズシステムであって、装着者の両眼にそれぞれ直接装着される一対のレンズと、装着者に携帯され、一対のレンズを制御する制御部とを備え、一対のレンズのそれぞれは、制御部からの制御に基づいてレンズ屈折力が可変なレンズ本体と、レンズ本体の空間的な位置を検出して出力する位置センサとを有し、制御部は、一対のレンズのそれぞれの位置センサの出力に基づいて、一対のレンズのレンズ本体のレンズ屈折力を制御する。 In the first aspect of the present invention, the lens system includes a pair of lenses that are directly attached to both eyes of the wearer, and a control unit that is carried by the wearer and controls the pair of lenses, Each of the pair of lenses includes a lens body whose lens refractive power is variable based on control from the control unit, and a position sensor that detects and outputs a spatial position of the lens body. The lens refractive power of the lens body of the pair of lenses is controlled based on the output of each position sensor of the lens.
 本発明の第2の態様においては、コンタクトレンズであって、装着者の眼球に直接装着され、レンズ屈折力が可変なレンズ本体と、レンズ本体のレンズ屈折力を可変とする制御部と、前記レンズ本体の装着者の眼に対する空間的な位置関係を検出して出力する位置センサとを備える。 In a second aspect of the present invention, the contact lens is a lens body that is directly attached to the eyeball of the wearer and has a variable lens refractive power, a control unit that makes the lens refractive power of the lens body variable, And a position sensor that detects and outputs a spatial positional relationship with respect to the eyes of the wearer of the lens body.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
第1の実施形態にかかるレンズシステム10の概略図である。1 is a schematic diagram of a lens system 10 according to a first embodiment. 右目用レンズ101の概略図である。1 is a schematic diagram of a right-eye lens 101. FIG. 右目用レンズ101の概略断面図である。2 is a schematic sectional view of a right-eye lens 101. FIG. 右目用レンズ101の機能ブロック図である。2 is a functional block diagram of a right-eye lens 101. FIG. 第1の実施形態における制御装置200のブロック図である。It is a block diagram of the control apparatus 200 in 1st Embodiment. レンズ100の屈折力の決定方法の第1実施例を説明する概略説明図である。FIG. 2 is a schematic explanatory diagram for explaining a first embodiment of a method for determining a refractive power of a lens 100; 第1の実施形態における位置情報取得から焦点調整までのフロー図である。It is a flowchart from the positional information acquisition in 1st Embodiment to a focus adjustment. 第2の実施形態における制御装置200のブロック図である。It is a block diagram of the control apparatus 200 in 2nd Embodiment. 第2の実施形態における輻輳角の算出方法を説明する概略説明図である。It is a schematic explanatory drawing explaining the calculation method of the convergence angle in 2nd Embodiment. 第2の実施形態における対象物50の位置と輻輳角との関係を示すテーブルである。It is a table which shows the relationship between the position of the target object 50 in 2nd Embodiment, and a convergence angle. 第2の実施形態における位置情報取得からレンズ屈折力調整までのフロー図である。It is a flowchart from the positional information acquisition in 2nd Embodiment to lens refractive power adjustment. レンズ100の屈折力の決定方法の第2実施例を説明する概略説明図である。It is a schematic explanatory drawing explaining 2nd Example of the determination method of the refractive power of the lens 100. FIG.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、第1の実施形態にかかるレンズシステム10の概略図である。レンズシステム10は、装着者20が見ている対象物50にピントが合うように、当該装着者20の目に装着されたレンズ100のレンズ屈折力を自動で調整する。 FIG. 1 is a schematic diagram of a lens system 10 according to the first embodiment. The lens system 10 automatically adjusts the lens refractive power of the lens 100 attached to the eye of the wearer 20 so that the object 50 viewed by the wearer 20 is in focus.
 レンズシステム10は、装着者20の目に装着されるレンズ100と、無線通信でレンズ100を制御する制御装置200とを備える。また、レンズ100は、装着者20の右目30に直接装着される右目用レンズ101と、装着者20の左目40に直接装着される左目用レンズ102とを備える。 The lens system 10 includes a lens 100 that is worn by the wearer 20 and a control device 200 that controls the lens 100 through wireless communication. The lens 100 includes a right-eye lens 101 that is directly attached to the right eye 30 of the wearer 20 and a left-eye lens 102 that is directly attached to the left eye 40 of the wearer 20.
 制御装置200は、装着者20に携帯され、例えば図1に示されるように装着者20の右耳に取り付け可能な装置である。制御装置200は、近距離無線通信手段を備え、近距離無線通信手段に代えて、Bluetooth(登録商標)等の無線通信手段を備えてもよい。また、制御装置200は、近距離無線通信手段を用いて、右目用レンズ101および左目用レンズ102を制御する。 The control device 200 is a device that is carried by the wearer 20 and can be attached to the right ear of the wearer 20, for example, as shown in FIG. The control device 200 may include a short-range wireless communication unit, and may include a wireless communication unit such as Bluetooth (registered trademark) instead of the short-range wireless communication unit. Further, the control device 200 controls the right-eye lens 101 and the left-eye lens 102 using the short-range wireless communication unit.
 さらに、制御装置200は、ワイヤレス給電装置を内蔵している。制御装置200は、ワイヤレス給電装置を用いて、右目用レンズ101および左目用レンズ102のそれぞれにワイヤレスで給電する。 Furthermore, the control device 200 has a built-in wireless power feeding device. The control device 200 wirelessly supplies power to each of the right-eye lens 101 and the left-eye lens 102 using a wireless power supply device.
 制御装置200は電源スイッチを有し、当該電源スイッチの操作により電源がオン・オフされてもよい。また、制御装置200は、レンズ100と通信可能な範囲内で装着者20に携帯されるものであれば、装着者20の首に掛けられてもよいし、装着者20の着衣に取り付けられてもよい。 The control device 200 may include a power switch, and the power may be turned on / off by operating the power switch. Further, the control device 200 may be hung around the neck of the wearer 20 or attached to the clothes of the wearer 20 as long as it can be carried by the wearer 20 within a range that allows communication with the lens 100. Also good.
 図2は、右目用レンズ101の概略図である。右目用レンズ101の外形は、通常のコンタクトレンズと同様である。右目用レンズ101は、レンズ本体110と、位置センサ130と、コントローラ140と、送受信用アンテナ150と、受電用アンテナ160と、蓄電部170と、光量センサ180と、配線190とを備える。 FIG. 2 is a schematic diagram of the right-eye lens 101. The outer shape of the right-eye lens 101 is the same as that of a normal contact lens. The right-eye lens 101 includes a lens body 110, a position sensor 130, a controller 140, a transmission / reception antenna 150, a power reception antenna 160, a power storage unit 170, a light amount sensor 180, and a wiring 190.
 図示した座標軸に示すように、Z軸に直交する紙面手前方向をX軸プラス方向、Z軸およびX軸に直交する紙面右方向をY軸プラス方向とする。以降のいくつかの図においては、図2の座標軸を基準として、それぞれの図の向きがわかるように座標軸を表示する。 As shown in the coordinate axes shown in the drawing, the front direction orthogonal to the Z axis is defined as the X axis plus direction, and the right direction on the sheet orthogonal to the Z axis and the X axis is defined as the Y axis plus direction. In the following several figures, the coordinate axes are displayed so that the orientation of each figure can be understood with reference to the coordinate axes in FIG.
 レンズ本体110は、レンズ基板112と、レンズ屈折力調整部120とを備える。レンズ基板112は透明で円形の板状体である。レンズ基板112自体にレンズパワーがあってもよいし、なくてもよい。レンズ屈折力調整部120は、印加電圧の変化により屈折率が変化する。これにより、レンズ屈折力調整部120は、右目用レンズ101のレンズ屈折力を変化させることができる。レンズ屈折力調整部120は円形状であって、平均的な装着者20の右目30の瞳孔31よりも大きいことが好ましい。 The lens body 110 includes a lens substrate 112 and a lens refractive power adjustment unit 120. The lens substrate 112 is a transparent and circular plate. The lens substrate 112 itself may or may not have lens power. The refractive power of the lens refractive power adjustment unit 120 changes due to a change in applied voltage. Thereby, the lens refractive power adjustment unit 120 can change the lens refractive power of the right-eye lens 101. The lens refractive power adjustment unit 120 is preferably circular and larger than the pupil 31 of the average wearer 20 right eye 30.
 位置センサ130は、加速度や角速度を検出して、右目30の瞳孔31の位置情報を出力する。位置センサ130は、MEMSであって、大きさがサブミリ平方、厚さが十数ミクロン程度である。位置センサ130は、配線190を介して、蓄電部170および送受信用アンテナ150と電気的に接続される。 The position sensor 130 detects acceleration and angular velocity and outputs position information of the pupil 31 of the right eye 30. The position sensor 130 is a MEMS and has a size of sub-millimeter square and a thickness of about a dozen microns. The position sensor 130 is electrically connected to the power storage unit 170 and the transmission / reception antenna 150 via the wiring 190.
 位置センサ130は、初期位置座標に、加速度を2回積分することで得られる移動量を加算することで空間的な位置座標を得る。初期位置は、例えば、使用開始時などにおいて装着者20に無限遠をみてもらうことで左右の眼球の視線を平行にしたときの、当該位置および方向に設定する。さらに、位置センサ130から瞳孔31までの相対位置座標を加算することで、瞳孔31の位置座標を得る。上記初期位置座標は、例えば制御装置200の電源スイッチを入れたときにリセットされる。装着者20が右目用レンズ101を右目30に装着した状態における、位置センサ130から瞳孔31の中央までの相対位置は、予め測定しておく。 The position sensor 130 obtains spatial position coordinates by adding the movement amount obtained by integrating the acceleration twice to the initial position coordinates. The initial position is set to the position and the direction when the eyes of the left and right eyes are made parallel by having the wearer 20 look at infinity at the start of use, for example. Further, the position coordinates of the pupil 31 are obtained by adding the relative position coordinates from the position sensor 130 to the pupil 31. The initial position coordinates are reset when the power switch of the control device 200 is turned on, for example. The relative position from the position sensor 130 to the center of the pupil 31 in a state where the wearer 20 wears the right eye lens 101 on the right eye 30 is measured in advance.
 コントローラ140は、蓄電部170の電圧を用いて、制御装置200からの電圧値情報に応じた電圧を、レンズ屈折力調整部120に印加する。コントローラ140は、配線190を介して、レンズ屈折力調整部120、蓄電部170および送受信用アンテナ150と電気的に接続される。 The controller 140 applies a voltage according to the voltage value information from the control device 200 to the lens refractive power adjustment unit 120 using the voltage of the power storage unit 170. The controller 140 is electrically connected to the lens refractive power adjustment unit 120, the power storage unit 170, and the transmission / reception antenna 150 via the wiring 190.
 送受信用アンテナ150は、近距離通信手段を用いて、制御装置200との間で様々な情報を送受信する。送受信用アンテナ150は、近距離通信手段に代えて、Bluetooth(登録商標)等の無線通信手段を用いてもよい。 The transmission / reception antenna 150 transmits / receives various information to / from the control device 200 using short-range communication means. The transmission / reception antenna 150 may use wireless communication means such as Bluetooth (registered trademark) instead of the short-range communication means.
 送受信用アンテナ150は、レンズ屈折力調整部120と離間しており、レンズ基板112上のレンズ屈折力調整部120が設けられた面の外周を周回する。よって、送受信用アンテナ150は、右目30の角膜に接触せず、装着者20の視界に入らない。送受信用アンテナ150は、制御装置200との通信に応じたアンテナ長さを有する。送受信用アンテナ150は、接続部152を介して配線190と電気的に接続される。 The transmitting / receiving antenna 150 is separated from the lens refractive power adjustment unit 120 and circulates around the outer periphery of the surface on the lens substrate 112 where the lens refractive power adjustment unit 120 is provided. Therefore, the transmitting / receiving antenna 150 does not contact the cornea of the right eye 30 and does not enter the field of view of the wearer 20. The transmission / reception antenna 150 has an antenna length corresponding to communication with the control device 200. The transmission / reception antenna 150 is electrically connected to the wiring 190 through the connection portion 152.
 受電用アンテナ160は、制御装置200から電力を受信する。受電用アンテナ160は、レンズ基板112上のレンズ屈折力調整部120と送受信用アンテナ150との間を周回する。よって、受電用アンテナ160は、右目30の角膜に接触せず、装着者20の視界に入らない。受電用アンテナ160は、制御装置200から送信される電力の周波数に応じたアンテナ長さを有する。制御装置200の給電方式が電磁誘導方式、磁気・磁界共鳴方式、直流共鳴方式等であることに対応して、受電用アンテナ160は電磁誘導用コイル、電場・磁場共鳴用コイル等を組み込んでもよい。受電用アンテナ160は、蓄電部170に電気的に接続される。 The power receiving antenna 160 receives power from the control device 200. The power receiving antenna 160 circulates between the lens refractive power adjusting unit 120 on the lens substrate 112 and the transmitting / receiving antenna 150. Therefore, the power receiving antenna 160 does not contact the cornea of the right eye 30 and does not enter the field of view of the wearer 20. The power receiving antenna 160 has an antenna length corresponding to the frequency of the power transmitted from the control device 200. Corresponding to the power supply method of the control device 200 being an electromagnetic induction method, a magnetic / magnetic resonance method, a direct current resonance method, or the like, the power receiving antenna 160 may incorporate an electromagnetic induction coil, an electric field / magnetic resonance coil, or the like. . Power receiving antenna 160 is electrically connected to power storage unit 170.
 蓄電部170は、制御装置200から受信した電磁波により生じた電力を蓄える。制御装置200からのワイヤレス給電方式が磁気・磁界共鳴方式、直流共鳴方式等であれば、蓄電部170は共振回路等も備えても良い。蓄電部170は、配線190を介して、複数の機器に直流電圧を供給する。 The power storage unit 170 stores power generated by the electromagnetic waves received from the control device 200. If the wireless power feeding method from the control device 200 is a magnetic / magnetic resonance method, a direct current resonance method, or the like, the power storage unit 170 may include a resonance circuit. The power storage unit 170 supplies a DC voltage to a plurality of devices via the wiring 190.
 光量センサ180は、装着者20の右目30に入る光を電気信号に変換して出力する。光量センサ180を用いることにより、例えば装着者20の意図的な細かい瞬きを検出でき、装着者20の意思で右目用レンズ101のキャリブレーション処理を実行すること等ができる。光量センサ180は、配線190を介して蓄電部170および送受信用アンテナ150と電気的に接続される。 The light quantity sensor 180 converts the light entering the right eye 30 of the wearer 20 into an electrical signal and outputs it. By using the light amount sensor 180, for example, intentional fine blink of the wearer 20 can be detected, and the calibration process of the right-eye lens 101 can be executed by the wearer 20. The light quantity sensor 180 is electrically connected to the power storage unit 170 and the transmission / reception antenna 150 via the wiring 190.
 上記レンズ屈折力調整部120、位置センサ130、コントローラ140、蓄電部170および光量センサ180は、レンズ基板112上における右目30に接する面と反対の面に設けられる。よって、上記はいずれも右目30の角膜に接触しない。 The lens refractive power adjustment unit 120, the position sensor 130, the controller 140, the power storage unit 170, and the light amount sensor 180 are provided on the surface of the lens substrate 112 opposite to the surface in contact with the right eye 30. Therefore, none of the above contacts the cornea of the right eye 30.
 位置センサ130、コントローラ140、蓄電部170および光量センサ180はレンズ本体110の中心に対して偏った領域に配される。これにより、右目用レンズ101は、レンズ本体110の光軸周りに非対称な重量配分となる。より具体的には、位置センサ130、コントローラ140、蓄電部170および光量センサ180が設けられた領域は他の領域よりも重くなる。よって、右目30に右目用レンズ101が装着されているときに、重力によって、位置センサ130、コントローラ140、蓄電部170および光量センサ180が下に来る。制御装置200は当該領域が下方に位置した状態を右目用レンズ101の基準位置とする。 The position sensor 130, the controller 140, the power storage unit 170, and the light amount sensor 180 are arranged in a region that is biased with respect to the center of the lens body 110. As a result, the right-eye lens 101 has an asymmetric weight distribution around the optical axis of the lens body 110. More specifically, a region where the position sensor 130, the controller 140, the power storage unit 170, and the light amount sensor 180 are provided is heavier than other regions. Therefore, when the right eye lens 101 is attached to the right eye 30, the position sensor 130, the controller 140, the power storage unit 170, and the light amount sensor 180 come down due to gravity. The control device 200 sets the state where the region is located below as the reference position of the right-eye lens 101.
 図3は、右目用レンズ101の概略断面図である。図3は、図2で図示した右目用レンズ101を、中心を通るようにXZ平面で切断した場合の概略断面図である。一部の構成は省略して示した。 FIG. 3 is a schematic cross-sectional view of the right-eye lens 101. FIG. 3 is a schematic cross-sectional view of the right-eye lens 101 shown in FIG. 2 cut along the XZ plane so as to pass through the center. Some configurations are omitted.
 レンズ屈折力調整部120は、液晶層121と、レンズ層123と、レンズ層側電極125と、レンズ本体側電極127と、偏光フィルム128と、封止材129とを備える。 The lens refractive power adjustment unit 120 includes a liquid crystal layer 121, a lens layer 123, a lens layer side electrode 125, a lens body side electrode 127, a polarizing film 128, and a sealing material 129.
 レンズ本体側電極127は、例えばITO等の透明電極である。レンズ本体側電極127は、レンズ本体110上に配される。レンズ本体側電極127は、配線190を介してコントローラ140と電気的に接続されている。 The lens body side electrode 127 is a transparent electrode such as ITO. The lens body side electrode 127 is disposed on the lens body 110. The lens body side electrode 127 is electrically connected to the controller 140 via the wiring 190.
 レンズ層123は、レンズ基板112側に凸凹面が形成され、反対の面が平滑に形成された、フレネルレンズである。レンズ層123は、封止材129によりレンズ基板112と離間した状態で配置される。 The lens layer 123 is a Fresnel lens in which an uneven surface is formed on the lens substrate 112 side and the opposite surface is formed smoothly. The lens layer 123 is disposed in a state of being separated from the lens substrate 112 by the sealing material 129.
 レンズ層側電極125は、例えばITO等の透明電極である。レンズ層側電極125は、レンズ層123の凸凹面に沿って設けられる。 The lens layer side electrode 125 is a transparent electrode such as ITO. The lens layer side electrode 125 is provided along the uneven surface of the lens layer 123.
 液晶層121は、レンズ層側電極125とレンズ本体側電極127との間に充填される。液晶層121の一例はネマティック液晶である。この場合に、液晶層121の液晶分子は、ホモジニアス配列に配向処理される。封止材129は、レンズ層側電極125とレンズ本体側電極127との間に充填された液晶層121を封止する。 The liquid crystal layer 121 is filled between the lens layer side electrode 125 and the lens body side electrode 127. An example of the liquid crystal layer 121 is nematic liquid crystal. In this case, the liquid crystal molecules of the liquid crystal layer 121 are aligned in a homogeneous arrangement. The sealing material 129 seals the liquid crystal layer 121 filled between the lens layer side electrode 125 and the lens body side electrode 127.
 偏光フィルム128は、レンズ層123のレンズ層側電極125が設けられた面と反対の面の前面に亘って設けられる。偏光フィルム128は、液晶層121の液晶分子に対して、通常光を遮光して異常光を透過するように光軸が配置される。 The polarizing film 128 is provided over the front surface of the lens layer 123 opposite to the surface on which the lens layer side electrode 125 is provided. The polarizing film 128 has an optical axis arranged so as to block normal light and transmit abnormal light to the liquid crystal molecules of the liquid crystal layer 121.
 レンズ層側電極125およびレンズ本体側電極127に印加する電圧を連続的に変化させることで、液晶層121の液晶分子はホモジニアス配列からホメオトロピック配列に連続的に変化する。これにより、液晶層121に入射する異常光の屈折率を連続的に変化させ、右目用レンズ101のレンズ屈折力を連続的に変化させることができる。 By continuously changing the voltage applied to the lens layer side electrode 125 and the lens body side electrode 127, the liquid crystal molecules of the liquid crystal layer 121 are continuously changed from the homogeneous arrangement to the homeotropic arrangement. Thereby, the refractive index of the extraordinary light incident on the liquid crystal layer 121 can be continuously changed, and the lens refractive power of the right-eye lens 101 can be continuously changed.
 レンズ層側電極125およびレンズ本体側電極127に印加する電圧が0Vの場合に、液晶層121とレンズ層123との屈折率差を0にする。これによって、印加電圧が0Vの状態で、右目用レンズ101のレンズパワーを全体として0にできる。また、印加電圧を3Vとした場合に、液晶層121とレンズ層123との屈折率差を0.2にできることが実験的にわかっている。この状態において、液晶層121の厚さを5μm程度とすれば、5ジオプトリを実現できることも実験的にわかっている。すなわち、本実施例によれば、上記の印加電圧を調整することで、近くの物体を網膜上に結像させることができ、日常生活のレンズ屈折力調整範囲として十分に機能できる。 When the voltage applied to the lens layer side electrode 125 and the lens body side electrode 127 is 0 V, the difference in refractive index between the liquid crystal layer 121 and the lens layer 123 is set to zero. As a result, the lens power of the right-eye lens 101 can be reduced to 0 as a whole when the applied voltage is 0V. Further, it is experimentally known that the difference in refractive index between the liquid crystal layer 121 and the lens layer 123 can be reduced to 0.2 when the applied voltage is 3V. In this state, it has been experimentally known that 5 diopters can be realized if the thickness of the liquid crystal layer 121 is about 5 μm. That is, according to the present embodiment, by adjusting the applied voltage, a nearby object can be imaged on the retina and can sufficiently function as a lens refractive power adjustment range in daily life.
 なお、レンズ層側電極125およびレンズ本体側電極127を、中央が開口している円形穴型パターン透明電極とし、レンズ層123を平滑な透明基板としても良い。これにより、レンズ層123をフレネルレンズ状とした場合と同様の効果が得られる。 The lens layer side electrode 125 and the lens body side electrode 127 may be circular hole pattern transparent electrodes having an opening at the center, and the lens layer 123 may be a smooth transparent substrate. Thereby, the same effect as the case where the lens layer 123 is formed into a Fresnel lens shape can be obtained.
 なお、図3においては、説明を容易にすることを目的として、配線190の一部をレンズ基板112の外部空間に配している。配線190はレンズ基板112の内部またはレンズ基板112上の装着者20の眼球に接する面と反対の面に沿って配されることが好ましい。 In FIG. 3, a part of the wiring 190 is arranged in the external space of the lens substrate 112 for the purpose of easy explanation. The wiring 190 is preferably arranged along the surface of the lens substrate 112 or along the surface opposite to the surface of the lens substrate 112 that contacts the eyeball of the wearer 20.
 図4は、右目用レンズ101の機能ブロック図である。図4では一部の構成は省略して示した。 FIG. 4 is a functional block diagram of the lens 101 for the right eye. In FIG. 4, a part of the configuration is omitted.
 位置センサ130は、一定時間ごとに検出した装着者20の右目30の瞳孔31の位置情報を、送受信用アンテナ150に送信する。位置情報は、立体空間内での瞳孔31の座標変位情報である。 The position sensor 130 transmits the position information of the pupil 31 of the right eye 30 of the wearer 20 detected every certain time to the transmitting / receiving antenna 150. The position information is coordinate displacement information of the pupil 31 in the three-dimensional space.
 光量センサ180は、一定時間ごとに検出した装着者20の右目30に入る光量情報を、送受信用アンテナ150に送信する。光量情報は、右目30に入る光を波長に応じて変換した電気信号情報である。 The light amount sensor 180 transmits light amount information that enters the right eye 30 of the wearer 20 detected at regular intervals to the transmission / reception antenna 150. The light amount information is electrical signal information obtained by converting light entering the right eye 30 according to the wavelength.
 送受信用アンテナ150は、位置センサ130および光量センサ180から、それぞれ位置情報および光量情報を受信し、制御装置200の送受信部210に送信する。送受信用アンテナ150は、制御装置200の送受信部210から受信した右目用レンズ101および左目用レンズ102の各電圧値情報を、コントローラ140に送信する。 The transmission / reception antenna 150 receives position information and light amount information from the position sensor 130 and the light amount sensor 180, respectively, and transmits them to the transmission / reception unit 210 of the control device 200. The transmission / reception antenna 150 transmits the voltage value information of the right-eye lens 101 and the left-eye lens 102 received from the transmission / reception unit 210 of the control device 200 to the controller 140.
 受電用アンテナ160は、制御装置200のワイヤレス給電部230から電力を無線で受信すると、蓄電部170に送信する。蓄電部170は、受電用アンテナ160から電力を受信すると、電力を蓄電する。 When the power receiving antenna 160 wirelessly receives power from the wireless power feeding unit 230 of the control device 200, the power receiving antenna 160 transmits the power to the power storage unit 170. When power storage unit 170 receives power from power receiving antenna 160, power storage unit 170 stores the power.
 コントローラ140は、送受信用アンテナ150が受信した右目用レンズ101の電圧値情報に基づき、蓄電部170に蓄電された電力を用いて、レンズ層側電極125およびレンズ本体側電極127に電圧を印加する。 Based on the voltage value information of the right-eye lens 101 received by the transmitting / receiving antenna 150, the controller 140 applies a voltage to the lens layer side electrode 125 and the lens body side electrode 127 using the power stored in the power storage unit 170. .
 以上、図2、3および4を用いて、右目用レンズ101について説明した。装着者20の左目40に直接装着される左目用レンズ102も、ここで説明した右目用レンズ101の構成と同じ構成を備えるので、説明を省略する。右目用レンズ101と左目用レンズ102とは同一の構成でもよいし、レンズ基材に異なるレンズパワーを持たせる等、互いに異なる構成を有していてもよい。 In the above, the right-eye lens 101 has been described with reference to FIGS. The left-eye lens 102 that is directly attached to the left eye 40 of the wearer 20 has the same configuration as the configuration of the right-eye lens 101 described here, and thus the description thereof is omitted. The right-eye lens 101 and the left-eye lens 102 may have the same configuration, or may have different configurations such that the lens base material has different lens power.
 図5は、第1の実施形態における制御装置200のブロック図である。図5では、説明に必要な構成だけを図示し、他の構成は省略している。制御装置200は、送受信部210と、瞳孔中心間距離算出部214と、レンズ屈折力決定部216と、電圧値算出部218と、メモリ220と、メモリ221と、ワイヤレス給電部230とを備える。 FIG. 5 is a block diagram of the control device 200 according to the first embodiment. In FIG. 5, only the configuration necessary for the description is illustrated, and other configurations are omitted. The control device 200 includes a transmission / reception unit 210, a pupil center distance calculation unit 214, a lens refractive power determination unit 216, a voltage value calculation unit 218, a memory 220, a memory 221, and a wireless power feeding unit 230.
 送受信部210は、右目用レンズ101および左目用レンズ102の各送受信用アンテナ150から、左右のいずれであるかを特定する情報とともに位置情報および光量情報を受信する。送受信部210は、電圧値算出部218から受信した右目用レンズ101および左目用レンズ102の各電圧値情報を、右目用レンズ101および左目用レンズ102の各送受信用アンテナ150に送信する。 The transmission / reception unit 210 receives position information and light amount information from the transmission / reception antennas 150 of the right-eye lens 101 and the left-eye lens 102 together with information specifying whether it is left or right. The transmission / reception unit 210 transmits the voltage value information of the right eye lens 101 and the left eye lens 102 received from the voltage value calculation unit 218 to the transmission / reception antennas 150 of the right eye lens 101 and the left eye lens 102.
 瞳孔中心間距離算出部214は、送受信部210により受信された右目用レンズ101および左目用レンズ102の各位置情報に基づいて、右目30の瞳孔31と左目40の瞳孔41との間の瞳孔中心間距離を算出する。 The pupil center distance calculation unit 214 determines the pupil center between the pupil 31 of the right eye 30 and the pupil 41 of the left eye 40 based on the position information of the right eye lens 101 and the left eye lens 102 received by the transmission / reception unit 210. Calculate the distance.
 レンズ屈折力決定部216は、瞳孔中心間距離算出部214で算出された瞳孔中心間距離から装着者20の眼球自体とレンズ100とを組み合わせた複合レンズのレンズ屈折力を決定する。レンズ屈折力決定部216は、メモリ221を参照し、決定した複合レンズのレンズ屈折力が、予め定められたレンズ屈折力調整可能範囲外にあるか否かを判断する。 The lens refractive power determination unit 216 determines the lens refractive power of the compound lens obtained by combining the eyeball of the wearer 20 and the lens 100 from the pupil center distance calculated by the pupil center distance calculation unit 214. The lens refractive power determination unit 216 refers to the memory 221 and determines whether or not the determined lens refractive power of the compound lens is outside a predetermined lens refractive power adjustable range.
 ここで、レンズ屈折力調整可能範囲は、装着者20の眼球自体の生体機能により調整できるレンズ屈折力の範囲である。レンズ屈折力調整可能範囲は、眼科等で測定されてメモリ221に格納される。当該レンズ屈折力調整可能範囲はレンズシステム10を用いて測定されてもよい。この場合に、既知の距離にある対象物50を装着者20に見てもらい、レンズ屈折力調整部120でレンズ屈折力を順次変えていき、明確に対象物50を認識できるかどうかを装着者20に入力してもらうことで、レンズ屈折力調整可能範囲を測定する。 Here, the lens refractive power adjustable range is the range of lens refractive power that can be adjusted by the biological function of the eyeball itself of the wearer 20. The lens refractive power adjustable range is measured by ophthalmology or the like and stored in the memory 221. The lens refractive power adjustable range may be measured using the lens system 10. In this case, the wearer 20 looks at the object 50 at a known distance, and the lens refractive power adjustment unit 120 sequentially changes the lens refractive power to determine whether the object 50 can be clearly recognized. The lens refractive power adjustable range is measured by having it input to 20.
 レンズ屈折力決定部216は、算出した複合レンズのレンズ屈折力が、当該範囲外にある場合は、レンズ100に与えるレンズ屈折力を決定する。この場合、レンズ屈折力決定部216は、装着者20が対象物50を鮮明に認識すべく複合レンズのレンズ屈折力を決定し、装着者20の眼の調節力の補正屈折力としてレンズ100の屈折力を決定する。当該範囲外にない場合は、レンズ100のレンズ屈折力を初期値、すなわち、レンズ100による補正屈折力をゼロにする。 The lens refractive power determination unit 216 determines the lens refractive power to be given to the lens 100 when the calculated lens refractive power of the compound lens is outside the range. In this case, the lens refractive power determination unit 216 determines the lens refractive power of the compound lens so that the wearer 20 can clearly recognize the object 50, and uses the lens 100 as the corrected refractive power of the accommodation power of the wearer 20. Determine the refractive power. If it is not out of the range, the lens refractive power of the lens 100 is set to an initial value, that is, the corrected refractive power by the lens 100 is set to zero.
 装着者20の右目30および左目40とは視力が異なることが多い。そこで、上記レンズ屈折力調整可能範囲は右目30と左目40とでそれぞれ設定されることが好ましい。この場合に、右目30および左目40の各々について当該判断と、レンズ100のレンズ屈折力の決定とが行われる。 The visual acuity is often different from the right eye 30 and the left eye 40 of the wearer 20. Therefore, the lens refractive power adjustable range is preferably set for the right eye 30 and the left eye 40, respectively. In this case, the determination and the determination of the lens refractive power of the lens 100 are performed for each of the right eye 30 and the left eye 40.
 電圧値算出部218は、レンズ屈折力決定部216で決定された、右目用レンズ101および左目用レンズ102の各レンズ屈折力に基づいて、右目用レンズ101および左目用レンズ102の各電圧値を算出する。この場合に電圧値算出部218は、複合レンズのレンズ屈折力とレンズ屈折力調整部120で印加される電圧値との関係を示す関数をメモリ220から読み出す。電圧値算出部218は、当該関数に基づいて、右目用レンズ101および左目用レンズ102の各電圧値を算出する。電圧値算出部218は、右目用レンズ101および左目用レンズ102の各電圧値を示す電圧値情報を送受信部210に送信する。当該関数は、例えば装着者20ごとに実験的にまたはシミュレーションにより予め設定されており、メモリ220に格納されている。 The voltage value calculation unit 218 calculates the voltage values of the right-eye lens 101 and the left-eye lens 102 based on the lens refractive powers of the right-eye lens 101 and the left-eye lens 102 determined by the lens refractive power determination unit 216. calculate. In this case, the voltage value calculation unit 218 reads a function indicating the relationship between the lens refractive power of the compound lens and the voltage value applied by the lens refractive power adjustment unit 120 from the memory 220. The voltage value calculation unit 218 calculates each voltage value of the right-eye lens 101 and the left-eye lens 102 based on the function. The voltage value calculation unit 218 transmits voltage value information indicating each voltage value of the right-eye lens 101 and the left-eye lens 102 to the transmission / reception unit 210. The function is preset for each wearer 20 experimentally or by simulation, and stored in the memory 220, for example.
 ワイヤレス給電部230は、内部電源を備え、レンズ100の受電用アンテナ160に電力を無線で送信する。ワイヤレス給電方式は、電磁誘導方式、磁気・磁界共鳴方式、電波受信方式、直流共鳴方式、電界結合方式等、いずれの方式であっても良い。 The wireless power feeding unit 230 includes an internal power source, and wirelessly transmits power to the power receiving antenna 160 of the lens 100. The wireless power feeding method may be any method such as an electromagnetic induction method, a magnetic / magnetic resonance method, a radio wave reception method, a direct current resonance method, and an electric field coupling method.
 図6は、レンズ100の屈折力の決定方法の第1実施例を説明する概略説明図である。図6に示す例は、右目30と左目40の瞳孔中心間距離に基づいて、近似的にレンズ屈折力Gを決定する。ここで決定されるレンズ屈折力Gは、右目30と右目用レンズ101との組み合わせによる複合レンズ全体としての合成レンズ屈折力である。なお、ここでの説明では、装着者20の視線方向および顔の向きが共にX軸方向にあり、右目30および左目40から等距離aの位置に対象物50があるとする。換言すると、装着者20の真正面に対象物50が位置するものとする。また、距離aを含め、以降の説明においては、距離の単位を全てメートル[m]として計算する。レンズ屈折力Gの単位は、ジオプトリ[Dptr]とする。 FIG. 6 is a schematic explanatory view for explaining a first embodiment of a method for determining the refractive power of the lens 100. In the example shown in FIG. 6, the lens refractive power G is approximately determined based on the distance between the pupil centers of the right eye 30 and the left eye 40. The lens refractive power G determined here is a combined lens refractive power as a whole compound lens by a combination of the right eye 30 and the right eye lens 101. In the description here, it is assumed that the line-of-sight direction and the face direction of the wearer 20 are both in the X-axis direction, and the object 50 is located at a distance a from the right eye 30 and the left eye 40. In other words, the object 50 is located in front of the wearer 20. In the following description including the distance a, all distance units are calculated as meters [m]. The unit of the lens refractive power G is diopter [Dptr].
 右目用レンズ101は、図2に例示するように、位置センサ130、コントローラ140、蓄電部170および光量センサ180などの機能素子が下方に設けられて非対称な重量配分を有するので、右目30に装着された状態で概ね上記基準位置にある。そこで、当該方法では、装着者20の右目30の瞳孔31の位置と、右目用レンズ101の位置センサ130との相対位置は既知であって一定であるとみなすことができる。左目40についても同様である。 As illustrated in FIG. 2, the right-eye lens 101 is mounted on the right eye 30 because functional elements such as a position sensor 130, a controller 140, a power storage unit 170, and a light amount sensor 180 are provided below and have an asymmetric weight distribution. In the state where it is done, it is almost at the reference position. Therefore, in this method, the relative position between the position of the pupil 31 of the right eye 30 of the wearer 20 and the position sensor 130 of the right-eye lens 101 can be regarded as known and constant. The same applies to the left eye 40.
 装着者20の右目30および左目40の各眼球中心間距離Dは、装着者20の空間的な位置、向き、右目30等の向きに関わらず一定である。また、装着者20の右目30の瞳孔31から網膜上の結像点までの距離bも一定である。当該距離bは、各眼球の直径に略等しい。眼球中心間距離Dは、例えば予め測定器を用いて測定される。これに代えて、当該レンズシステム10を用いて眼球中心間距離Dが測定されてもよい。この場合に例えば、右目用レンズ101と左目用レンズ102とを同じ位置に置いた状態から、各位置センサ130で各位置情報を検出しつつ、それぞれ右目30と左目40とに装着することで、眼球中心間距離Dが算出されてもよい。 The distance D between the center of each eyeball of the right eye 30 and the left eye 40 of the wearer 20 is constant regardless of the spatial position and orientation of the wearer 20, the orientation of the right eye 30, and the like. Further, the distance b from the pupil 31 of the right eye 30 of the wearer 20 to the imaging point on the retina is also constant. The distance b is substantially equal to the diameter of each eyeball. The center-to-eye distance D is measured in advance using a measuring device, for example. Instead of this, the center-to-eye distance D may be measured using the lens system 10. In this case, for example, from the state where the right-eye lens 101 and the left-eye lens 102 are placed at the same position, the position information is detected by the position sensors 130 and attached to the right eye 30 and the left eye 40, respectively. The distance D between eyeball centers may be calculated.
 右目用レンズ101の位置センサ130および左目用レンズ102の位置センサ130の各位置座標から、各位置センサ130の中心間距離を算出し、位置センサ130と瞳孔31、41との既知の位置関係から、瞳孔の中心間距離dを算出する。 The distance between the centers of the position sensors 130 is calculated from the position coordinates of the position sensor 130 of the right-eye lens 101 and the position sensor 130 of the left-eye lens 102, and the known positional relationship between the position sensor 130 and the pupils 31 and 41 is calculated. Then, the pupil center distance d is calculated.
 右目30および左目40の眼球中心および対象物50を頂点とする三角形を考える。眼球を真球であって眼球中心を中心としてXY平面内をZ軸と平行な軸周りに回転すると考えれば、瞳孔31、41および対象物50を頂点とする三角形は上記三角形と相似になる。よって、下記の関係式(1)が得られる。 Consider a triangle whose apexes are the center of the eyeballs of the right eye 30 and the left eye 40 and the object 50. If it is considered that the eyeball is a true sphere and rotates around the axis parallel to the Z axis around the center of the eyeball, the triangle having the pupils 31 and 41 and the object 50 as vertices is similar to the above triangle. Therefore, the following relational expression (1) is obtained.
 a=bd/[2(D-d)]・・・(1) A = bd / [2 (Dd)] (1)
 上記関係式(1)に、既知の値Dおよびbを代入し、各位置センサ130を用いて算出された中心間距離dを代入することで、距離aが算出される。 The distance a is calculated by substituting the known values D and b into the relational expression (1) and substituting the center-to-center distance d calculated using each position sensor 130.
 ここで、レンズ屈折力Gは、焦点距離の逆数として定義される。レンズの公式を変形することによって、右目30と右目用レンズ101との組み合わせによる複合レンズ全体としてのレンズ屈折力について下記の関係式(2)が得られる。 Here, the lens refractive power G is defined as the reciprocal of the focal length. By changing the lens formula, the following relational expression (2) can be obtained for the lens refractive power of the entire compound lens by the combination of the right eye 30 and the right eye lens 101.
 (1/a)+(1/b)=G・・・(2) (1 / a) + (1 / b) = G (2)
 上記関係式(2)に、既知の値bを代入し、上記の式で算出された距離aを代入することで、レンズ屈折力Gが、下記の関係式(3)により決定される。 The lens refractive power G is determined by the following relational expression (3) by substituting the known value b into the relational expression (2) and the distance a calculated by the above expression.
 G=(2D-d)/bd・・・(3) G = (2D-d) / bd (3)
 ここで、合成レンズ屈折力Gは、上述の通り、装着者20の右目30と右目用レンズ101との合成系での値である。合成系の屈折力は、右目30の屈折力と右目用レンズ101の屈折力との和として表される。従って、右目30の屈折力を予め測定しておくことで、この合成レンズ屈折力Gに対応する合成系の屈折力を満たす右目用レンズ101の屈折力を、合成系の屈折力から右目30の屈折力を減算して決定できる。左目40についても同様である。 Here, as described above, the combined lens refractive power G is a value in the combined system of the right eye 30 and the right eye lens 101 of the wearer 20. The refractive power of the composite system is expressed as the sum of the refractive power of the right eye 30 and the refractive power of the right-eye lens 101. Therefore, by measuring the refractive power of the right eye 30 in advance, the refractive power of the right-eye lens 101 that satisfies the combined refractive power corresponding to the combined lens refractive power G is changed from the combined refractive power of the right eye 30. It can be determined by subtracting the refractive power. The same applies to the left eye 40.
 図7は、第1の実施形態における位置情報取得から焦点調整までのフロー図である。右目用レンズ101および左目用レンズ102の位置情報取得からレンズ屈折力調整までの流れは同じなので、まとめてレンズ100として説明する。 FIG. 7 is a flowchart from position information acquisition to focus adjustment in the first embodiment. Since the flow from the position information acquisition to the lens refractive power adjustment of the right-eye lens 101 and the left-eye lens 102 is the same, they will be collectively described as the lens 100.
 まず、例えば制御装置200の電源スイッチがオンになった時点で、位置センサ130の初期位置を設定することにより、フローを開始する。レンズ100の位置センサ130は、レンズ100が装着された装着者20の瞳孔31、41の位置座標を検出し、位置情報として出力する(S101)。レンズ100は、送受信用アンテナ150を介して制御装置200に当該位置情報を送信する(S102)。 First, for example, when the power switch of the control device 200 is turned on, the flow is started by setting the initial position of the position sensor 130. The position sensor 130 of the lens 100 detects the position coordinates of the pupils 31 and 41 of the wearer 20 wearing the lens 100, and outputs it as position information (S101). The lens 100 transmits the position information to the control device 200 via the transmission / reception antenna 150 (S102).
 制御装置200は、送受信部210を介してレンズ100から位置情報を受信する(S103)。制御装置200の瞳孔中心間距離算出部214は、当該位置情報から右目30の瞳孔31および左目40の瞳孔41の中心間距離を算出する(S104)。制御装置200のレンズ屈折力決定部216は、メモリ221を参照し、当該瞳孔中心間距離からレンズ100の屈折力を決定する(S105)。制御装置200の電圧値算出部218は、メモリ220を参照し、レンズ100の屈折力を生ずるべく電圧値を算出する(S106)。制御装置200は、送受信部210から当該電圧値を示す電圧値情報をレンズ100に送信する(S107)。 The control device 200 receives position information from the lens 100 via the transmission / reception unit 210 (S103). The pupil center distance calculation unit 214 of the control device 200 calculates the center distance between the pupil 31 of the right eye 30 and the pupil 41 of the left eye 40 from the position information (S104). The lens refractive power determination unit 216 of the control device 200 refers to the memory 221 and determines the refractive power of the lens 100 from the pupil center distance (S105). The voltage value calculation unit 218 of the control device 200 refers to the memory 220 and calculates a voltage value to generate the refractive power of the lens 100 (S106). The control device 200 transmits voltage value information indicating the voltage value from the transmission / reception unit 210 to the lens 100 (S107).
 レンズ100は、送受信用アンテナ150を介して制御装置200から電圧値情報を受信する(S108)。レンズ100のコントローラ140は、当該電圧値情報に基づいて、レンズ屈折力調整部120のレンズ層側電極125およびレンズ本体側電極127に電圧を印加し、焦点を調整する(S109)。具体的には、上記関係式(3)で決定される、合成レンズ屈折力Gに対応した合成系の屈折力を満たすレンズ100の屈折力を、印加電圧によって制御する。 The lens 100 receives voltage value information from the control device 200 via the transmission / reception antenna 150 (S108). Based on the voltage value information, the controller 140 of the lens 100 applies a voltage to the lens layer side electrode 125 and the lens body side electrode 127 of the lens refractive power adjustment unit 120 to adjust the focus (S109). Specifically, the refractive power of the lens 100 that satisfies the refractive power of the synthetic system corresponding to the synthetic lens refractive power G, determined by the relational expression (3), is controlled by the applied voltage.
 以後、例えば制御装置の電源がオフになるまで、当該フローを繰り返す。これにより、装着者20が特に意識することなく、装着者の見ようとする物体距離に対応して正確にフォーカスが合うようにレンズ100のレンズ屈折力を自動調整することができる。 Thereafter, for example, the flow is repeated until the control device is turned off. Accordingly, the lens refracting power of the lens 100 can be automatically adjusted so that the wearer 20 can focus accurately in accordance with the object distance that the wearer wants to see without being particularly conscious.
 以上、装着者20が対象物50を意図的に正面に捉えたと仮定することにより、簡便な方法で複合レンズの合成レンズ屈折力Gを決定し、適切な右目用レンズ101および左目用レンズ102の各レンズ屈折力を設定することができる。なお、第1の実施形態においては、図2に示したように、装着者20の両眼の瞳孔の中心間距離dを算出することによって、右目30および左目40のそれぞれで複合レンズの屈折力を決定することとしたが、瞳孔の中心間距離dを常に算出する必要はなく、中心間距離dの変化のみを算出することも可能であり、瞳孔の中心間距離dに関する値を算出すれば良い。 As described above, assuming that the wearer 20 intentionally captures the object 50 in front, the composite lens refractive power G of the compound lens is determined by a simple method, and the appropriate right-eye lens 101 and left-eye lens 102 are determined. Each lens refractive power can be set. In the first embodiment, as shown in FIG. 2, the refractive power of the compound lens in each of the right eye 30 and the left eye 40 is calculated by calculating the center distance d between the pupils of both eyes of the wearer 20. However, it is not always necessary to calculate the inter-center distance d of the pupil, it is also possible to calculate only the change in the inter-center distance d, and if the value related to the inter-center distance d of the pupil is calculated. good.
 図8から図11は、いずれも第2実施形態についての図であり、レンズ100の屈折力の決定方法に関する説明図である。図8から図11に示す例において、装着者20が対象物50を略正面で捉えたと仮定し、制御装置200のメモリ221に記憶されたテーブルを参照することで、両眼の輻輳角から簡便にレンズ100の屈折力を決定する。 8 to 11 are diagrams for the second embodiment, and are explanatory diagrams regarding a method for determining the refractive power of the lens 100. FIG. In the examples shown in FIGS. 8 to 11, it is assumed that the wearer 20 grasps the object 50 substantially in front, and the table stored in the memory 221 of the control device 200 is referred to, so that the binocular convergence angle can be easily calculated. The refractive power of the lens 100 is determined.
 図8は、第2の実施形態における制御装置200のブロック図である。図8において、一部の構成は省略している。制御装置200は、図5で説明した瞳孔中心間距離算出部214に代えて、輻輳角算出部215を備える。図5で説明した各構成の各機能と類似の機能については、同じ参照番号を付して説明を省略する。 FIG. 8 is a block diagram of the control device 200 according to the second embodiment. In FIG. 8, a part of the configuration is omitted. The control device 200 includes a convergence angle calculation unit 215 instead of the pupil center distance calculation unit 214 described in FIG. Functions similar to the functions of the components described in FIG. 5 are denoted by the same reference numerals, and description thereof is omitted.
 輻輳角算出部215は、送受信部210で受信された、右目用レンズ101および左目用レンズ102の各位置情報から右目30および左目40の作る輻輳角を算出する。レンズ屈折力決定部216は、輻輳角算出部215で算出された輻輳角情報から、レンズ100の屈折力を決定する。 The convergence angle calculation unit 215 calculates the convergence angle formed by the right eye 30 and the left eye 40 from the position information of the right eye lens 101 and the left eye lens 102 received by the transmission / reception unit 210. The lens refractive power determination unit 216 determines the refractive power of the lens 100 from the convergence angle information calculated by the convergence angle calculation unit 215.
 図9は、第2の実施形態における輻輳角の算出方法を説明する概略説明図である。図示の例では、装着者20の視線方向および顔の向きは共にX軸方向にあり、装着者20が対象物50を略正面で捉える場合を示している。 FIG. 9 is a schematic explanatory diagram for explaining a method of calculating a convergence angle in the second embodiment. In the illustrated example, the line-of-sight direction and the face direction of the wearer 20 are both in the X-axis direction, and the wearer 20 captures the object 50 substantially in front.
 図示した座標軸に示すように、上述したX軸、Y軸、Z軸に加え、装着者20の右目30および左目40のそれぞれにおける新たな変数θ1、θ2の基準を定める。XY平面における右目30の回旋中心を中心軸とし、紙面に向かって時計回り方向をプラス方向とし、X軸方向をθ1=0として、右目30の回転θ1をとる。また、XY平面における左目40の回旋中心を中心軸とし、紙面に向かって時計回り方向をプラス方向とし、X軸方向をθ2=0として、左目40の回転θ2をとる。従って、XY平面において、装着者20がX軸方向の無限遠を見ているとき、θ1およびθ2は共に0となり、装着者20が右斜め前方を見ているときは、θ1およびθ2は共にプラスとなり、装着者20が左斜め前方を見ているときは、θ1およびθ2は共にマイナスとなる。 As shown in the coordinate axes shown in the figure, in addition to the X axis, Y axis, and Z axis described above, criteria for new variables θ1 and θ2 in the right eye 30 and the left eye 40 of the wearer 20 are determined. The rotation center of the right eye 30 in the XY plane is the central axis, the clockwise direction toward the paper surface is the positive direction, the X-axis direction is θ1 = 0, and the rotation θ1 of the right eye 30 is taken. Further, the rotation center of the left eye 40 on the XY plane is the central axis, the clockwise direction toward the paper surface is the positive direction, the X-axis direction is θ2 = 0, and the rotation θ2 of the left eye 40 is taken. Therefore, on the XY plane, when the wearer 20 is looking at infinity in the X-axis direction, both θ1 and θ2 are 0, and when the wearer 20 is looking diagonally forward to the right, both θ1 and θ2 are positive. Thus, when the wearer 20 is looking forward diagonally to the left, both θ1 and θ2 are negative.
 右目用レンズ101の位置センサ130および左目用レンズ102の位置センサ130の各位置情報から、各位置センサ130の角度変化量である回転θ1およびθ2を得る。装着者20の右目30および左目40が作る輻輳角Θは、回転θ1およびθ2を用いて、下記の関係式(4)で表される。 The rotations θ1 and θ2 that are the angle change amounts of the position sensors 130 are obtained from the position information of the position sensor 130 of the right-eye lens 101 and the position sensor 130 of the left-eye lens 102. The convergence angle Θ created by the right eye 30 and the left eye 40 of the wearer 20 is expressed by the following relational expression (4) using the rotations θ1 and θ2.
 Θ=|θ1-θ2|・・・(4) Θ = | θ1-θ2 | (4)
 従って、上記関係式(4)を用いれば、回転θ1およびθ2から、輻輳角Θを算出することができる。 Therefore, using the relational expression (4), the convergence angle Θ can be calculated from the rotations θ1 and θ2.
 ここで、算出した輻輳角Θは、レンズ100の装着者20が視認しようとする対象物50までの距離Lに対応している。即ち、輻輳角Θを算出することは、対象物50までの距離Lを算出することであり、その算出した距離Lにある対象物50に複合レンズの焦点が合うようにレンズ100の屈折力を決定すればよい。そして、装着者20の眼の焦点が無限遠に合っている状態を基準として、その状態から近距離の対象物50にフォーカスを合せるべくレンズ100の屈折力を決定する場合を説明する。 Here, the calculated convergence angle Θ corresponds to the distance L to the object 50 that the wearer 20 of the lens 100 intends to visually recognize. That is, calculating the convergence angle Θ is calculating the distance L to the object 50, and the refractive power of the lens 100 is adjusted so that the object 50 at the calculated distance L is in focus. Just decide. Then, a case where the refractive power of the lens 100 is determined so as to focus on the object 50 at a short distance from the state where the eye of the wearer 20 is focused at infinity will be described.
 制御装置200のメモリ221に記憶されたテーブルを参照し、算出した輻輳角Θから対象物50までの距離を算出し、装着者20の眼とレンズ100とを組み合わせた複合レンズとしてこの対象物50にフォーカスすべくレンズ100の屈折力を決定する。具体的には、テーブルに列挙された輻輳角Θのうち、算出した輻輳角Θに最も近い値の輻輳角Θを選択することで、当該輻輳角Θに対応する対象物50までの距離Lとレンズ100の屈折力とを決定する。すなわち、無限遠にフォーカスしている眼に対して、レンズ100の焦点距離を変えて、その対象物50までの距離Lにフォーカスすべくレンズ100の屈折力を決定する。 With reference to the table stored in the memory 221 of the control device 200, the distance from the calculated convergence angle Θ to the object 50 is calculated, and the object 50 is obtained as a compound lens combining the eye of the wearer 20 and the lens 100. The refractive power of the lens 100 is determined so as to focus on. Specifically, by selecting the convergence angle Θ closest to the calculated convergence angle Θ from the convergence angles Θ listed in the table, the distance L to the object 50 corresponding to the convergence angle Θ The refractive power of the lens 100 is determined. That is, the refractive power of the lens 100 is determined so as to focus on the distance L to the object 50 by changing the focal length of the lens 100 with respect to the eye focused at infinity.
 図10は、第2の実施形態における輻輳角Θ、対象物50までの距離L、および、ジオプターで表記したレンズ100のレンズ屈折力Pの関係を示すテーブルである。テーブルにおける対象物50までの距離Lは、図9を用いて図示した、右目30および左目40の各眼球中心間を結ぶ線上における各眼球中心の中間位置から対象物50までの距離Lである。テーブルには、各輻輳角Θに対応する対象物50までの距離Lとジオプターで表記したレンズ100のレンズ屈折力Pが列挙されている。説明を簡単にする目的で、テーブルには6つの組のみを列挙しているが、更に多くの組がテーブルに列挙されていることが好ましい。これにより、より正確にレンズ屈折力を調整することができる。なお、図10に与えられた輻輳角Θの各値に基づき、内挿することでその他の輻輳角Θに対する対象物50までの距離Lとレンズ100のレンズ屈折力Pとを決定しても良い。 FIG. 10 is a table showing the relationship between the convergence angle Θ, the distance L to the object 50, and the lens refractive power P of the lens 100 expressed in diopters in the second embodiment. The distance L to the object 50 in the table is the distance L from the intermediate position of each eyeball center to the object 50 on the line connecting the eyeball centers of the right eye 30 and the left eye 40 illustrated in FIG. The table lists the distance L to the object 50 corresponding to each convergence angle Θ and the lens refractive power P of the lens 100 expressed in diopters. For the purpose of simplifying the explanation, only six sets are listed in the table, but it is preferable that more sets are listed in the table. Thereby, the lens refractive power can be adjusted more accurately. Note that the distance L to the object 50 with respect to the other convergence angle Θ and the lens refractive power P of the lens 100 may be determined by interpolation based on each value of the convergence angle Θ given in FIG. .
 なお、このテーブルは、図9における眼球間中心距離Dを代表的な値の68mmとして作成してある。このとき、図9から分かるように、輻輳角Θと、対象物50までの距離L、そして眼球間中心距離Dとの間には、下記の関係式(5)の関係がある。 Note that this table is created with the interocular center distance D in FIG. 9 as a representative value of 68 mm. At this time, as can be seen from FIG. 9, the following relational expression (5) exists between the convergence angle Θ, the distance L to the object 50, and the interocular center distance D.
 L × tan(Θ/2)=D/2・・・(5) L x tan (Θ / 2) = D / 2 (5)
 眼球間中心距離Dは既知であるから、輻輳角Θの検出によって物体距離Lが求められる。この物体距離Lの対象物50に焦点を合わせる場合、無限遠物体の視認状態を基準としてレンズ100が負担すべきレンズ屈折力Pは、メートル表記の物体距離Lの逆数となる。例えば、物体距離Lが0.25mの場合、屈折力Pは4ジオプターとなる。換言すれば、この場合のレンズ屈折力Pは、無限遠を基準として距離に応じた変化分を示しており、それをレンズ100に与えることになる。 Since the interocular center distance D is known, the object distance L is obtained by detecting the convergence angle Θ. When focusing on the object 50 having the object distance L, the lens refractive power P to be borne by the lens 100 on the basis of the visual recognition state of the object at infinity is the reciprocal of the object distance L expressed in meters. For example, when the object distance L is 0.25 m, the refractive power P is 4 diopters. In other words, the lens refractive power P in this case indicates a change corresponding to the distance with infinity as a reference, and this is given to the lens 100.
 上記の通り、距離Lは各眼球中心の中間位置から対象物50までの距離であるので、距離Lと右目用レンズ101または左目用レンズ102から対象物50までの距離とは多少ずれが生じる。しかしながら、焦点深度を考慮すれば、当該ずれは無視できる。従って、当該決定方法によれば、輻輳角を算出し、制御装置200のメモリ221に記憶された当該テーブルを参照することで、簡便に対象物50までのおおよその距離を判断でき、レンズ屈折力を調節することができる。 As described above, since the distance L is the distance from the middle position of each eyeball center to the object 50, the distance L and the distance from the right-eye lens 101 or the left-eye lens 102 to the object 50 are somewhat different. However, if the depth of focus is taken into account, the shift can be ignored. Therefore, according to the determination method, by calculating the convergence angle and referring to the table stored in the memory 221 of the control device 200, the approximate distance to the object 50 can be easily determined, and the lens refractive power can be determined. Can be adjusted.
 図11は、第2の実施形態における位置情報取得からレンズ屈折力調整までのフロー図である。右目用レンズ101および左目用レンズ102の位置情報取得からレンズ屈折力調整までの流れは同じなので、レンズ100としてまとめて説明する。 FIG. 11 is a flowchart from position information acquisition to lens refractive power adjustment in the second embodiment. Since the flow from the position information acquisition to the lens refractive power adjustment of the right-eye lens 101 and the left-eye lens 102 is the same, the lens 100 will be described together.
 まず、例えば制御装置200の電源スイッチがオンになった時点で、位置センサ130の初期位置を設定することにより、フローを開始する。レンズ100の位置センサ130は、レンズ100が装着された装着者20の瞳孔31、41の位置座標を検出し、位置情報として出力する(S201)。レンズ100は、送受信用アンテナ150を介して制御装置200に当該位置情報を送信する(S202)。 First, for example, when the power switch of the control device 200 is turned on, the flow is started by setting the initial position of the position sensor 130. The position sensor 130 of the lens 100 detects the position coordinates of the pupils 31 and 41 of the wearer 20 wearing the lens 100 and outputs it as position information (S201). The lens 100 transmits the position information to the control device 200 via the transmission / reception antenna 150 (S202).
 制御装置200は、送受信部210を介してレンズ100から位置情報を受信する(S203)。制御装置200の輻輳角算出部215は、当該位置情報から右目30の瞳孔31および左目40が作る輻輳角を算出する(S204)。制御装置200のレンズ屈折力決定部216は、図10に示したテーブルを格納しているメモリ221を参照し、当該輻輳角に対応する対象物50までの距離Lとレンズ100のレンズ屈折力Pとを決定する(S205)。そして、制御装置200の電圧値算出部218は、メモリ220を参照し、レンズ100のレンズ屈折力Pを生ずるべく電圧値を算出する(S206)。以降、ステップS207からステップS209までは、図7で説明したステップS107からステップS109までと同じなので、説明を省略する。 Control device 200 receives position information from lens 100 via transmission / reception unit 210 (S203). The convergence angle calculation unit 215 of the control device 200 calculates the convergence angle formed by the pupil 31 and the left eye 40 of the right eye 30 from the position information (S204). The lens refractive power determination unit 216 of the control device 200 refers to the memory 221 storing the table shown in FIG. 10, and the distance L to the object 50 corresponding to the convergence angle and the lens refractive power P of the lens 100. Are determined (S205). Then, the voltage value calculation unit 218 of the control device 200 refers to the memory 220 and calculates a voltage value so as to generate the lens refractive power P of the lens 100 (S206). Henceforth, since step S207 to step S209 is the same as step S107 to step S109 demonstrated in FIG. 7, description is abbreviate | omitted.
 以上のフローは、例えば制御装置の電源がオフになるまでを繰り返す。これにより、装着者20が特に意識することなく、装着者の視点に対応して、左右の眼でレンズ100のレンズ屈折力を自動調整することができる。なお、第2実施形態においては、図9に示したように、装着者20の両眼によって形成される輻輳角Θを算出することによって、右目30および左目40のそれぞれで複合レンズの屈折力を決定することとしたが、必ずしも輻輳角Θの絶対値を算出する必要はなく、所定状態からの輻輳角Θの変化量を算出してレンズ100の屈折力の補正量を決定することも可能であり、輻輳角Θの関する値を算出できれば良い。 The above flow is repeated until, for example, the control device is turned off. Accordingly, the lens refractive power of the lens 100 can be automatically adjusted by the left and right eyes in accordance with the wearer's viewpoint without the wearer 20 being particularly conscious. In the second embodiment, as shown in FIG. 9, by calculating the convergence angle Θ formed by both eyes of the wearer 20, the refractive power of the compound lens in each of the right eye 30 and the left eye 40 is calculated. However, it is not always necessary to calculate the absolute value of the convergence angle Θ, and the amount of change in the convergence angle Θ from a predetermined state can be calculated to determine the correction amount of the refractive power of the lens 100. Yes, it is only necessary to calculate a value related to the convergence angle Θ.
 以上、図8から11の例によれば、装着者20が対象物50を略正面で捉えた場合、輻輳角を算出してメモリ221に記憶されたテーブルを参照することで、簡便にレンズ100のレンズ屈折力を調整し、装着者20に対象物50の鮮明な像を認識させることができる。 As described above, according to the examples of FIGS. 8 to 11, when the wearer 20 grasps the object 50 substantially in front, the angle of convergence is calculated and the table stored in the memory 221 is referred to, so that the lens 100 can be easily obtained. By adjusting the lens refractive power, the wearer 20 can recognize a clear image of the object 50.
 図12は、レンズ100の屈折力の決定方法の第2実施例を説明する概略説明図である。図示の例では、装着者20の顔の向きはX軸方向にあるが視線方向はX軸方向にはなく、装着者20が対象物50を右斜め前方で捉える場合を示している。 FIG. 12 is a schematic explanatory view for explaining a second embodiment of the method for determining the refractive power of the lens 100. In the illustrated example, the face direction of the wearer 20 is in the X-axis direction, but the line-of-sight direction is not in the X-axis direction, and the wearer 20 grasps the object 50 diagonally right front.
 上述の通り、各位置センサ130は右目30および左目40のそれぞれに対して相対位置が一定である。従って、各位置センサ130の各位置を検出することで、右目30の瞳孔31および左目40の瞳孔41の各位置を検出することができる。 As described above, the relative position of each position sensor 130 with respect to each of the right eye 30 and the left eye 40 is constant. Therefore, by detecting the positions of the position sensors 130, the positions of the pupil 31 of the right eye 30 and the pupil 41 of the left eye 40 can be detected.
 図9と同様、図示した座標軸に示すように、X軸、Y軸、Z軸に加え、変数θ1、θ2の基準を定める。 As in FIG. 9, as shown in the illustrated coordinate axes, in addition to the X-axis, Y-axis, and Z-axis, criteria for variables θ1 and θ2 are determined.
 右目用レンズ101の位置センサ130および左目用レンズ102の位置センサ130の各位置情報から、各位置センサ130の回転θ1およびθ2を算出する。装着者20の右目30および左目40が作る輻輳角Θは、回転θ1およびθ2を用いて、下記の関係式(6)で表される。 From the position information of the position sensor 130 of the right eye lens 101 and the position sensor 130 of the left eye lens 102, the rotations θ1 and θ2 of the position sensors 130 are calculated. The convergence angle Θ created by the right eye 30 and the left eye 40 of the wearer 20 is expressed by the following relational expression (6) using the rotations θ1 and θ2.
 Θ=|θ1-θ2|・・・(6) Θ = | θ1-θ2 | ... (6)
 従って、上記関係式(6)を用いれば、回転θ1およびθ2を算出することで、輻輳角Θを算出することができる。 Therefore, if the relational expression (6) is used, the convergence angle Θ can be calculated by calculating the rotations θ1 and θ2.
 右目30および左目40の眼球中心および対象物50を頂点とする仮想上の三角形を考える。右目30の眼球中心における三角形の内角をθ1′とし、左目40の眼球中心における三角形の内角をθ2′とする。θ1′およびθ2′は、それぞれθ1およびθ2を用いて、それぞれ下記の関係式(7)、関係式(8)で表される。 Consider a hypothetical triangle whose apexes are the eyeball centers of the right eye 30 and the left eye 40 and the object 50. The interior angle of the triangle at the center of the eyeball of the right eye 30 is θ1 ′, and the interior angle of the triangle at the center of the eyeball of the left eye 40 is θ2 ′. θ1 ′ and θ2 ′ are expressed by the following relational expressions (7) and (8), respectively using θ1 and θ2.
 θ1′=(π/2)+θ1・・・(7) Θ1 ′ = (π / 2) + θ1 (7)
 θ2′=(π/2)-θ2・・・(8) Θ2 ′ = (π / 2) −θ2 (8)
 距離a1および距離a2は、正弦定理を用いることで、回転θ1およびθ2から算出することができる。すなわち、距離a1および距離a2は、上記関係式(6)、関係式(7)および関係式(8)を用いることにより、それぞれ下記の関係式(9)、関係式(10)で表される。 The distance a1 and the distance a2 can be calculated from the rotations θ1 and θ2 by using the sine theorem. That is, the distance a1 and the distance a2 are expressed by the following relational expression (9) and relational expression (10) by using the relational expression (6), the relational expression (7), and the relational expression (8), respectively. .
 a1=D×(sin((π/2)+θ1)/sin(|θ1-θ2|))-b/2・・・(9) A1 = D × (sin ((π / 2) + θ1) / sin (| θ1-θ2 |)) − b / 2 (9)
 a2=D×(sin((π/2)-θ2)/sin(|θ1-θ2|))-b/2・・・(10) A2 = D × (sin ((π / 2) −θ2) / sin (| θ1−θ2 |)) − b / 2 (10)
 上記関係式(9)および関係式(10)に、既知の値Dおよびbを代入し、各位置センサ130を用いて算出された回転θ1およびθ2を代入することで、距離a1およびa2が算出される。回転θ1およびθ2は、無限遠を見た状態を基準(初期値)として、右目30の右目用レンズ101および左目40の左目用レンズ102の各位置センサ130の角度変化量からそれぞれ算出できる。 The distances a1 and a2 are calculated by substituting the known values D and b into the relational expression (9) and the relational expression (10) and substituting the rotations θ1 and θ2 calculated using the position sensors 130. Is done. The rotations θ1 and θ2 can be calculated from the angle change amounts of the position sensors 130 of the right-eye lens 101 for the right eye 30 and the left-eye lens 102 for the left eye 40 based on the state at infinity as a reference (initial value).
 次に、当該状態における右目30および左目40における各複合レンズの合成レンズ屈折力G1およびG2を決定する。ここで、レンズの公式を変形することによって、下記の関係式(11)および関係式(12)が得られる。 Next, the combined lens refractive powers G1 and G2 of each compound lens in the right eye 30 and the left eye 40 in this state are determined. Here, the following relational expressions (11) and (12) are obtained by modifying the lens formula.
 (1/a1)+(1/b)=G1・・・(11) (1 / a1) + (1 / b) = G1 (11)
 (1/a2)+(1/b)=G2・・・(12) (1 / a2) + (1 / b) = G2 (12)
 上記関係式(11)および関係式(12)に、既知の値bを代入し、上記の関係式(9)および関係式(10)で算出された距離a1および距離a2をそれぞれ代入することで、合成レンズ屈折力G1およびG2が決定される。決定した右目30および左目40における各複合レンズの合成レンズ屈折力G1およびG2に基づいて、他の実施形態の説明と同様に、右目用レンズ101および左目用レンズ102のそれぞれで屈折力を決定する。 By substituting the known value b into the relational expression (11) and the relational expression (12) and substituting the distance a1 and the distance a2 calculated by the relational expression (9) and the relational expression (10), respectively. The combined lens refractive powers G1 and G2 are determined. Based on the determined combined lens refractive power G1 and G2 of each compound lens in the right eye 30 and the left eye 40, the refractive power is determined in each of the right-eye lens 101 and the left-eye lens 102, as in the description of the other embodiments. .
 以上、図12の例によれば、装着者20が対象物50を正面で捉えたと仮定することなく、より正確にレンズ100のレンズ屈折力を調整し、装着者20に対象物50の鮮明な像を認識させることができる。 As described above, according to the example of FIG. 12, the lens refractive power of the lens 100 is adjusted more accurately without assuming that the wearer 20 has caught the object 50 in the front, and the wearer 20 has a clear image of the object 50. The image can be recognized.
 本実施形態の説明において、レンズ100は、制御装置200のワイヤレス給電部から受電用アンテナ160によって受電する構成として説明した。レンズ100は、発電部を備えても良い。発電部は、装着者20の目に入射する光を利用した太陽光発電素子や、装着者20の目の瞬きを利用した動力発電素子等であっても良い。 In the description of the present embodiment, the lens 100 has been described as a configuration that receives power from the wireless power feeding unit of the control device 200 by the power receiving antenna 160. The lens 100 may include a power generation unit. The power generation unit may be a solar power generation element that uses light incident on the eyes of the wearer 20, a power generation element that uses the blink of the eyes of the wearer 20, or the like.
 本実施形態の説明において、レンズシステム10は、レンズ100と別個に制御装置200を備える構成として説明した。レンズシステム10は、制御装置200が組み込まれたレンズ単体であっても良い。 In the description of the present embodiment, the lens system 10 has been described as a configuration including the control device 200 separately from the lens 100. The lens system 10 may be a single lens in which the control device 200 is incorporated.
 本実施形態の説明において、レンズ屈折力調整部120は、液晶素子を用いて連続的にレンズ屈折力を可変とする構成として説明した。レンズ屈折力調整部120は、エレクトロウェッティングを利用して、連続的にレンズ屈折力を可変とする構成としても良い。 In the description of this embodiment, the lens refractive power adjustment unit 120 has been described as a configuration in which the lens refractive power is continuously variable using a liquid crystal element. The lens refractive power adjustment unit 120 may be configured to continuously change the lens refractive power using electrowetting.
 本実施形態の説明において、装着者20が右目30に右目用レンズ101を装着した状態において、右目用レンズ101の位置センサ130から右目30の瞳孔31までの相対位置は一定であるものとして説明した。しかしながら、右目30の角膜が右目用レンズ101で覆われている場合には、角膜と右目用レンズ101との境界は涙で満たされ、位置センサ130から瞳孔31までの上記相対距離は完全に固定されていない。右目30の移動や、右瞼の開閉などにより若干のずれが生じる。従って、輻輳による右目30の回転が行われていないのに、あたかも右目30が動いたように位置センサ130は出力してしまう。 In the description of the present embodiment, it is assumed that the relative position from the position sensor 130 of the right eye lens 101 to the pupil 31 of the right eye 30 is constant when the wearer 20 wears the right eye lens 101 on the right eye 30. . However, when the cornea of the right eye 30 is covered with the right eye lens 101, the boundary between the cornea and the right eye lens 101 is filled with tears, and the relative distance from the position sensor 130 to the pupil 31 is completely fixed. It has not been. A slight shift occurs due to the movement of the right eye 30 or the opening / closing of the starboard. Therefore, the position sensor 130 outputs as if the right eye 30 moved even though the right eye 30 was not rotated due to congestion.
 右目30の眼球は丸いので、右目用レンズ101上の位置センサ130が、例えば眼球表面に沿って1mm移動した場合は角度もずれることになる。この場合、眼球の直径は24mm程度であるので、ずれる角度は1mm/12mmラジアン、すなわち、4.8°となる。この量は、例えば無限遠から1m程度、ジオプターにして1.2Dptrずれたことに相当する。これは、人間の眼球自身が持つ調節能力でカバーできる範囲ではあるので、許容できる。 Since the eyeball of the right eye 30 is round, when the position sensor 130 on the right-eye lens 101 moves, for example, 1 mm along the eyeball surface, the angle also shifts. In this case, since the diameter of the eyeball is about 24 mm, the deviation angle is 1 mm / 12 mm radians, that is, 4.8 °. This amount corresponds to, for example, a shift of 1.2 Dptr from about infinity to about 1 m by diopter. Since this is a range that can be covered by the adjustment ability of the human eyeball itself, it is acceptable.
 ただし、頻繁に瞼の開閉を行ったり、時間が経ったりすると上記のずれが大きくなるので、図7および図11の動作に先立って、キャリブレーション処理を実行することが好ましい。右目用レンズ101の中央が瞳孔31上に位置しない場合、すなわち、右目用レンズ101が右目30の角膜上で動いてずれてしまっている様な場合には、右目用レンズ101上の位置センサ130と瞳孔31との相対位置は既知の値とは異なる値となる。そこで、この様に右目用レンズ101のずれが生じている場合には、キャリブレーション処理を実行して、当該相対位置を再測定することが好ましい。当該キャリブレーション処理は、例えば装着者20に特定回数の瞬きを実行させ、光量センサ180で当該瞬きを検出することで、開始されてもよい。これに代えて、位置センサ130を用いることにより、キャリブレーション処理を開始しても良い。例えば、装着者20が目を回す等の普段行わないような目の動きを意図的に行った場合に、位置センサ130の検出結果に基づいて、キャリブレーション処理が開始されてもよい。なお、上記の説明では右目30の右目用レンズ101にずれが生じた場合を説明したが、左目40の左目用レンズ102にずれが生じた場合も同様である。 However, if the bag is frequently opened and closed or the time passes, the above-described deviation becomes large. Therefore, it is preferable to execute the calibration process prior to the operations shown in FIGS. When the center of the right-eye lens 101 is not located on the pupil 31, that is, when the right-eye lens 101 moves and shifts on the cornea of the right eye 30, the position sensor 130 on the right-eye lens 101 is used. The relative position between the pupil 31 and the pupil 31 is a value different from the known value. Therefore, when the right-eye lens 101 is displaced as described above, it is preferable to execute a calibration process and re-measure the relative position. The calibration process may be started, for example, by causing the wearer 20 to execute a specific number of blinks and detecting the blink with the light amount sensor 180. Instead, the calibration process may be started by using the position sensor 130. For example, the calibration process may be started based on the detection result of the position sensor 130 when the wearer 20 intentionally performs an eye movement that is not normally performed such as turning the eyes. In the above description, the case where the right-eye lens 101 of the right eye 30 is displaced has been described, but the same applies to the case where the left-eye lens 102 of the left eye 40 is displaced.
 上記キャリブレーション処理は、まず、装着者20が無限遠を見る、すなわち、左右の眼球の視線を平行にすることで、瞳孔に対する予め設定された位置からの各位置センサ130のずれ量を検出する。そして、当該ずれ量を補正値として、以降の位置検出に補正値分だけ補正するように設定する。 In the calibration process, first, the wearer 20 looks at infinity, that is, by making the line of sight of the left and right eyeballs parallel, the amount of deviation of each position sensor 130 from a preset position with respect to the pupil is detected. . Then, the amount of deviation is set as a correction value so that correction is performed by the correction value for subsequent position detection.
 位置センサ130から固視微動の状態を検出し、眼球の輻輳角を推定して、上記ずれ量を検出しても良い。これにより、固視微動の状態と輻輳角との関係に個人差がある場合にも、正確に初期値を再設定できる。また、瞳の開閉の前後で位置センサ130の値が短時間に大きく変動した場合は、その変動量を上記補正値としても良い。これにより、装着者20が意識的にキャリブレーション処理を実行させなくとも、瞼の開閉による位置センサ130のずれを検知して、自動でキャリブレーション処理を実行できる。 It is also possible to detect the above-mentioned deviation amount by detecting the state of fixation fixation from the position sensor 130 and estimating the convergence angle of the eyeball. As a result, even when there is an individual difference in the relationship between the fixation micromotion state and the convergence angle, the initial value can be accurately reset. Further, when the value of the position sensor 130 greatly fluctuates in a short time before and after the opening / closing of the pupil, the fluctuation amount may be set as the correction value. Thus, even if the wearer 20 does not consciously execute the calibration process, the calibration process can be automatically executed by detecting the displacement of the position sensor 130 due to the opening / closing of the eyelid.
 以上、本実施形態によれば、装着者の目に装着するレンズにおいて、装着者が特に意識することなく、装着者の視点に対応してレンズ屈折力を自動調整することができる。また、老眼、あるいは白内障手術後の調節障害を治療することを目的とした機能性眼科用装置(機能性コンタクトレンズ)において、装着者の調節障害に伴って生じるレンズ屈折力の機能不全を補正することもできる。 As described above, according to the present embodiment, the lens refractive power can be automatically adjusted in accordance with the viewpoint of the wearer without being particularly conscious of the lens worn by the wearer. In addition, in functional ophthalmic devices (functional contact lenses) intended to treat presbyopia or post-cataract adjustment disorders, the lens refractive power dysfunction caused by the wearer's adjustment disorder is corrected. You can also.
 ところで、眼球を動かす筋肉に異常をきたした場合などに、距離に応じた輻輳角が保たれずに左右の視線がずれてしまうことがある。この状態を斜位や斜視と呼び、通常は手術で治したり、プリズムが入ったメガネで補正したりする。本実施形態によれば、屈折力をプリズム状に斜位・斜視を打ち消す一方向にバイアスをかけることで補正することもできる。なお、疲労が増した際にその症状が発現する場合は、その都度程度に応じて補正することで軽減が可能である。 By the way, when an abnormality occurs in the muscle that moves the eyeball, the right and left lines of sight may be shifted without maintaining the convergence angle corresponding to the distance. This state is called oblique or strabismus and is usually cured by surgery or corrected with glasses with prisms. According to the present embodiment, the refractive power can also be corrected by applying a bias in one direction that cancels the oblique and oblique directions in a prism shape. In addition, when the symptom appears when fatigue increases, it can be reduced by correcting according to the degree.
 なお、上記実施形態において、複合レンズのレンズ屈折力とレンズ屈折力調整部120の電圧値と関係を示す関数に基づいて、レンズ屈折力調整部120で印加される電圧値が算出された。これに代えて、複合レンズのレンズ屈折力とレンズ屈折力調整部120の電圧値とが数値的に関連付けられたルックアップテーブルがメモリ220に格納され、当該ルックアップテーブルに基づいて、レンズ屈折力調整部120で印加される電圧値が特定されてもよい。さらに他の例として、レンズ屈折力決定部216は、複合レンズのレンズ屈折力からレンズ屈折力調整部120でのレンズ屈折力を決定してもよい。この場合には上記関数またはルックアップテーブルは、レンズ屈折力調整部120でのレンズ屈折力とレンズ屈折力調整部120の電圧値との関係を示すものを用いる。さらにこの場合には複合レンズのレンズ屈折力からレンズ屈折力調整部120のレンズ屈折力を決定するのに用いる、装着者20の視力、レンズ基板112の情報がメモリ221またはメモリ220に予め格納される。 In the above embodiment, the voltage value applied by the lens refractive power adjustment unit 120 is calculated based on a function indicating the relationship between the lens refractive power of the compound lens and the voltage value of the lens refractive power adjustment unit 120. Instead, a lookup table in which the lens refractive power of the compound lens and the voltage value of the lens refractive power adjustment unit 120 are numerically associated is stored in the memory 220, and the lens refractive power is based on the lookup table. The voltage value applied by the adjustment unit 120 may be specified. As yet another example, the lens refractive power determination unit 216 may determine the lens refractive power in the lens refractive power adjustment unit 120 from the lens refractive power of the compound lens. In this case, the function or the look-up table is used to indicate the relationship between the lens refractive power in the lens refractive power adjustment unit 120 and the voltage value of the lens refractive power adjustment unit 120. In this case, the visual acuity of the wearer 20 and information on the lens substrate 112 used to determine the lens refractive power of the lens refractive power adjustment unit 120 from the lens refractive power of the compound lens are stored in the memory 221 or the memory 220 in advance. The
 以上の本実施形態の説明において、制御装置200のレンズ屈折力決定部216は複合レンズのレンズ屈折力を決定する構成として説明した。レンズ屈折力決定部216に代えて、制御装置200は複合レンズの焦点距離を算出する焦点距離算出部を備えていても良い。 In the above description of the present embodiment, the lens refractive power determination unit 216 of the control device 200 has been described as a configuration that determines the lens refractive power of the compound lens. Instead of the lens refractive power determination unit 216, the control device 200 may include a focal length calculation unit that calculates the focal length of the compound lens.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10 レンズシステム、20 装着者、30 右目、31、41 瞳孔、40 左目、50 対象物、100 レンズ、101 右目用レンズ、102 左目用レンズ、110 レンズ本体、112 レンズ基板、120 レンズ屈折力調整部、121 液晶層、123 レンズ層、125 レンズ層側電極、127 レンズ本体側電極、128 偏光フィルム、129 封止材、130 位置センサ、140 コントローラ、150 送受信用アンテナ、152 接続部、160 受電用アンテナ、170 蓄電部、180 光量センサ、190 配線、200 制御装置、210 送受信部、214 瞳孔中心間距離算出部、215 輻輳角算出部、216 レンズ屈折力決定部、218 電圧値算出部、220、221 メモリ、230 ワイヤレス給電部 10 lens system, 20 wearer, 30 right eye, 31, 41 pupil, 40 left eye, 50 object, 100 lens, 101 right eye lens, 102 left eye lens, 110 lens body, 112 lens substrate, 120 lens refractive power adjustment unit , 121 liquid crystal layer, 123 lens layer, 125 lens layer side electrode, 127 lens body side electrode, 128 polarizing film, 129 sealing material, 130 position sensor, 140 controller, 150 transmission / reception antenna, 152 connection part, 160 power receiving antenna , 170 power storage unit, 180 light quantity sensor, 190 wiring, 200 control device, 210 transmission / reception unit, 214 pupil center distance calculation unit, 215 convergence angle calculation unit, 216 lens refractive power determination unit, 218 voltage value calculation unit, 220, 221 Memory, 23 Wireless power supply unit

Claims (11)

  1.  装着者の両眼にそれぞれ直接装着される一対のレンズと、
     前記装着者に携帯され、前記一対のレンズを制御する制御部と
    を備えるレンズシステムであって、
     前記一対のレンズのそれぞれは、
     前記制御部からの制御に基づいてレンズ屈折力が可変なレンズ本体と、
     前記レンズ本体の空間的な位置を検出して出力する位置センサと
    を有し、
     前記制御部は、前記一対のレンズのそれぞれの前記位置センサの出力に基づいて、前記一対のレンズの前記レンズ本体の前記レンズ屈折力を制御するレンズシステム。
    A pair of lenses directly attached to both eyes of the wearer;
    A lens system that is carried by the wearer and includes a control unit that controls the pair of lenses;
    Each of the pair of lenses is
    A lens body whose lens refractive power is variable based on control from the control unit;
    A position sensor that detects and outputs a spatial position of the lens body,
    The said control part is a lens system which controls the said lens refractive power of the said lens main body of the said pair of lens based on the output of the said position sensor of each of a said pair of lens.
  2.  前記制御部は、前記一対のレンズのそれぞれの前記位置センサの出力に基づいて、右目および左目の作る輻輳角に関する値を算出し、前記輻輳角に関する値に対応する距離に基づいて、前記一対のレンズのそれぞれの前記レンズ本体の前記レンズ屈折力を制御する請求項1に記載のレンズシステム。 The control unit calculates a value related to a convergence angle formed by the right eye and the left eye based on outputs of the position sensors of the pair of lenses, and based on a distance corresponding to the value related to the convergence angle, The lens system according to claim 1, wherein the lens refractive power of each lens body of each lens is controlled.
  3.  前記制御部は、前記一対のレンズのそれぞれの前記位置センサの出力に基づいて、前記両眼の瞳孔の中心間距離に関する値を算出し、前記中心間距離に関する値に対応する距離に基づいて、前記一対のレンズの前記レンズ本体の前記レンズ屈折力を制御する請求項1に記載のレンズシステム。 The control unit calculates a value related to the center-to-center distance of the pupils of both eyes based on the output of each position sensor of the pair of lenses, and based on the distance corresponding to the value related to the center-to-center distance, The lens system according to claim 1, wherein the lens refractive power of the lens body of the pair of lenses is controlled.
  4.  前記制御部は、前記距離が予め定められた範囲外にある場合に、前記距離に基づいて前記レンズ屈折力を制御する請求項3に記載のレンズシステム。 4. The lens system according to claim 3, wherein the control unit controls the lens refractive power based on the distance when the distance is outside a predetermined range.
  5.  前記一対のレンズのそれぞれは、前記レンズ本体の光軸周りに非対称な重量配分を有し、
     前記制御部は、前記重量配分における他よりも重量が大きい領域が下方に位置した状態を前記一対のレンズのそれぞれの基準位置とする請求項1から4のいずれか1項に記載のレンズシステム。
    Each of the pair of lenses has an asymmetric weight distribution around the optical axis of the lens body,
    5. The lens system according to claim 1, wherein the control unit sets, as a reference position of each of the pair of lenses, a state in which a region having a greater weight than the others in the weight distribution is positioned below.
  6.  前記位置センサは、前記他よりも重量が大きい領域に配される請求項5に記載のレンズシステム。 6. The lens system according to claim 5, wherein the position sensor is disposed in a region having a weight greater than that of the other.
  7.  前記一対のレンズのそれぞれは、
     前記制御部から無線で電力の供給を受ける給電用アンテナと、
     前記給電用アンテナに供給された電力を蓄電する蓄電部と
    をさらに備え、
     前記蓄電部は、前記他よりも重量が大きい領域に配される請求項6に記載のレンズシステム。
    Each of the pair of lenses is
    A power feeding antenna that receives power from the control unit wirelessly;
    A power storage unit that stores power supplied to the power feeding antenna;
    The lens system according to claim 6, wherein the power storage unit is arranged in a region that is heavier than the others.
  8.  前記給電用アンテナは前記レンズ本体の外側に配される請求項7に記載のレンズシステム。 The lens system according to claim 7, wherein the power feeding antenna is disposed outside the lens body.
  9.  装着者の眼球に直接装着されるコンタクトレンズであって、
     レンズ屈折力が可変なレンズ本体と、
     前記レンズ本体のレンズ屈折力を可変とする制御部と、
     前記レンズ本体の前記装着者の眼に対する空間的な位置関係を検出して出力する位置センサと
    を備えるコンタクトレンズ。
    A contact lens directly attached to the wearer's eye,
    A lens body with variable lens refractive power;
    A control unit that makes the lens refractive power of the lens body variable;
    A contact lens comprising: a position sensor that detects and outputs a spatial positional relationship of the lens body with respect to the eye of the wearer.
  10.  前記レンズ本体の周囲に配される受電用アンテナおよび蓄電部を更に備える請求項9に記載のコンタクトレンズ。 The contact lens according to claim 9, further comprising a power receiving antenna and a power storage unit arranged around the lens body.
  11.  前記位置センサの検出信号を外部装置に発信し、外部装置から前記制御部への信号を受信する送受信用アンテナを更に備える請求項9または10に記載のコンタクトレンズ。 The contact lens according to claim 9 or 10, further comprising a transmission / reception antenna that transmits a detection signal of the position sensor to an external device and receives a signal from the external device to the control unit.
PCT/JP2014/078988 2014-10-30 2014-10-30 Lens system and contact lens WO2016067433A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078988 WO2016067433A1 (en) 2014-10-30 2014-10-30 Lens system and contact lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078988 WO2016067433A1 (en) 2014-10-30 2014-10-30 Lens system and contact lens

Publications (1)

Publication Number Publication Date
WO2016067433A1 true WO2016067433A1 (en) 2016-05-06

Family

ID=55856817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078988 WO2016067433A1 (en) 2014-10-30 2014-10-30 Lens system and contact lens

Country Status (1)

Country Link
WO (1) WO2016067433A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281835A1 (en) * 2021-07-05 2023-01-12 ソニーグループ株式会社 Contact lens
WO2023171661A1 (en) * 2022-03-07 2023-09-14 ViXion株式会社 Lens control device, ocular lens device, eyeglasses, and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249902A (en) * 1999-03-02 2000-09-14 Japan Science & Technology Corp Automatic focusing spectacles
JP2012506758A (en) * 2008-10-28 2012-03-22 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Apparatus and method for activating components of an exciting ophthalmic lens
JP2013156632A (en) * 2012-01-26 2013-08-15 Johnson & Johnson Vision Care Inc Ophthalmologic lens assembly having built-in antenna structure
JP2013207665A (en) * 2012-03-29 2013-10-07 Nikon Corp Spectacles for stereoscopic vision and adjusting method of the same
JP2014021500A (en) * 2012-07-18 2014-02-03 Johnson & Johnson Vision Care Inc Neuromuscular sensing for variable-optic electronic ophthalmic lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249902A (en) * 1999-03-02 2000-09-14 Japan Science & Technology Corp Automatic focusing spectacles
JP2012506758A (en) * 2008-10-28 2012-03-22 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Apparatus and method for activating components of an exciting ophthalmic lens
JP2013156632A (en) * 2012-01-26 2013-08-15 Johnson & Johnson Vision Care Inc Ophthalmologic lens assembly having built-in antenna structure
JP2013207665A (en) * 2012-03-29 2013-10-07 Nikon Corp Spectacles for stereoscopic vision and adjusting method of the same
JP2014021500A (en) * 2012-07-18 2014-02-03 Johnson & Johnson Vision Care Inc Neuromuscular sensing for variable-optic electronic ophthalmic lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281835A1 (en) * 2021-07-05 2023-01-12 ソニーグループ株式会社 Contact lens
WO2023171661A1 (en) * 2022-03-07 2023-09-14 ViXion株式会社 Lens control device, ocular lens device, eyeglasses, and control method

Similar Documents

Publication Publication Date Title
JP6588464B2 (en) Vision correction glasses and method of measuring subjective refraction by a wearer of the glasses
US10634934B2 (en) Method for determining a geometrical parameter of an eye of a subject
US20170123233A1 (en) Continuous Autofocusing Eyewear
WO2019077442A1 (en) Spectacles with electrically-tunable lenses controllable by an external system
JP2008537608A (en) Extraocular vision prosthesis with adaptive focus
JP6422954B2 (en) Adjusting the focal length
US11625095B2 (en) Gaze sensors and display elements for detection of gaze vectors and user control at headset
JP2014071230A (en) Image display device, control method, program, and recording medium
US10353219B1 (en) Device, method and system to provide accommodation during a stereoscopic display
EP2947500A1 (en) Display device
CN109426007A (en) Optical lens for correcting eyesight
ES2932157T3 (en) Determination of a refractive error of an eye
WO2016067433A1 (en) Lens system and contact lens
JP2020500689A (en) Vision training device for cognitive correction
JP7168285B2 (en) Vision training device for improving fusion function
JP2013207665A (en) Spectacles for stereoscopic vision and adjusting method of the same
KR102183398B1 (en) Ocular muscle training method and system
WO2016002296A1 (en) Optical control device and optical control method
KR102370455B1 (en) Head mount display device
GB2458495A (en) Contact lens with multiple pinholes
WO2019220347A2 (en) Vergence detection method and system
JP5652973B1 (en) How to make a binocular loupe
ES2900406T3 (en) Progressive ophthalmic lenses
KR102211520B1 (en) Method, system and computer program for measuring and training the amplitude of the eye with improved accuracy
CN110520788B (en) Optical device adapted to be worn by a wearer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14904861

Country of ref document: EP

Kind code of ref document: A1