WO2016062263A1 - 一种数据传输方法及站点 - Google Patents

一种数据传输方法及站点 Download PDF

Info

Publication number
WO2016062263A1
WO2016062263A1 PCT/CN2015/092576 CN2015092576W WO2016062263A1 WO 2016062263 A1 WO2016062263 A1 WO 2016062263A1 CN 2015092576 W CN2015092576 W CN 2015092576W WO 2016062263 A1 WO2016062263 A1 WO 2016062263A1
Authority
WO
WIPO (PCT)
Prior art keywords
obss
bss
timer
channel
station
Prior art date
Application number
PCT/CN2015/092576
Other languages
English (en)
French (fr)
Inventor
吕开颖
李楠
邢卫民
韩志强
孙波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15852650.9A priority Critical patent/EP3197197A4/en
Priority to US15/521,395 priority patent/US20170311352A1/en
Publication of WO2016062263A1 publication Critical patent/WO2016062263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • a data transmission method includes: when a station has data to be sent, using virtual channel detection to determine whether a site is in use in a basic service set BSS and a partial coverage BSS OBSS;
  • the backoff procedure in the OBSS multiplexing transmission of the starting or restoring station is performed;
  • the channel is monitored during the backoff of the multiplexed transmission until the end of the backoff process in the OBSS multiplex transmission begins to transmit data.
  • the method further comprises: setting one or more BSS timers in the station, and one or more OBSS timers.
  • the method further includes:
  • the station detects a preamble portion of the identifiable radio frame by using a fixed first channel detection threshold, receives the radio frame, and sets or updates or maintains the BSS attribution information and time information according to the received part or all of the radio frames.
  • the value of the BSS timer or the OBSS timer is not limited to the time difference between the two or more channels.
  • the BSS timer satisfies a preset update condition, the BSS timer is updated according to time information carried in the radio frame. value
  • the method further includes:
  • the determining, by using the virtual channel detection, whether the site is in use in the BSS to which the site belongs and in the OBSS includes:
  • the BSS timer is: BSS NAV, or BSS RID timer, or BSS NAV And BSS RID timers;
  • the OBSS timer is: OBSS NAV, or OBSS RID timer, or OBSS NAV and BSS RID timer.
  • the BSS timer is: BSS NAV
  • the OBSS timer is: OBSS NAV
  • the update condition is: when the time information carried in the received radio frame belonging to the BSS is greater than the value of the current BSS NAV, updating; when the received radio frame belonging to the BSS is carried in the time When the information is less than or equal to the value of the current BSS NAV, it remains unchanged; when the time information carried in the received radio frame belonging to the OBSS is greater than the value of the current OBSS NAV, the update is performed; when the received The time information carried in the radio frame of the OBSS is less than or equal to the value of the current OBSS NAV, and remains unchanged; or
  • the update condition is: when the received physical frame header in the radio frame belonging to the BSS carries the time information, updating the BSS RID timer; when the received radio frame belonging to the OBSS The OBSS RID timer is updated when the time information is carried in the physical frame header.
  • the BSS timer is set or updated or maintained according to the time information in the radio frame, and the second backoff is ended. process
  • the second backoff counter performs down counting.
  • the second backoff counter If the second backoff counter is not zero, it continues to determine whether the channel is idle according to the first channel detection threshold; if it is determined that the channel is busy according to the second channel detection threshold, suspending the first The down count of the second backoff counter, if all current BSS timers are zero, and at least one OBSS timer is greater than zero, continue to monitor the threshold according to the first channel, if at least one BSS timer is currently not zero or OBSS If the timers are all zero, the second backoff process is ended, and the first backoff process is resumed;
  • the second backoff counter When the second backoff counter is reduced to zero, if all BSS timers are zero and at least one OBSS timer is greater than zero, the backoff procedure in the OBSS multiplex transmission ends, the station timing according to the current OBSS The value of the device selects the appropriate frame exchange length to start transmitting data; if at least one BSS timer is greater than zero, or all OBSS timers are zero, the second backoff process is ended, and the first backoff process is resumed.
  • the station sets or updates or maintains the BSS timer according to the address information and the time information in the radio frame, and ends the second backoff process, and restores the first backoff procedure.
  • the method further includes:
  • the determining, by using the virtual channel detection, whether the site is in use in the BSS to which the site belongs and in the OBSS includes:
  • the BSS timer is: a network allocation vector NAV, or a response delay RID timer, or a NAV and RID timer;
  • the backoff process in the OBSS multiplexing transmission of the startup or recovery site includes:
  • the monitoring channel according to the fixed first channel detection threshold and the dynamically adjusted second channel detection threshold during the backoff of the OBSS multiplex transmission includes:
  • the threshold is determined according to the second channel. Whether the channel is idle, when the detected signal strength is less than the second channel detection threshold, setting the OBSS transmission process channel state "SR_CCA" to idle; if the received signal strength is greater than or equal to the second channel detection threshold, then setting The channel state "SR_CCA" of the OBSS transmission process is busy;
  • the station detects a valid preamble signal, determining whether the channel is idle according to the first channel detection threshold, and setting the OBSS transmission process channel state "SR_CCA" to be when the detected signal strength is less than the first channel detection threshold. Idle; when the detected signal strength is greater than or equal to the first channel detection threshold, the OBSS transmission process channel state "SR_CCA" is set to be busy;
  • the station If the station detects a valid preamble signal and determines that the received radio frame is a BSS radio frame, maintaining the OBSS transmission process channel state "SR_CCA" is busy;
  • the station detects a valid preamble signal and determines that the received radio frame is an OBSS radio frame, and the detected signal strength is greater than or equal to the second channel detection threshold, the channel state "SR_CCA" of the OBSS transmission process is kept busy. ;
  • the station detects a valid preamble signal and determines that the received radio frame is an OBSS radio frame, and the detected signal strength is less than the second channel detection threshold, the OBSS transmission process channel state "SR_CCA" is set to idle.
  • the backoff process in the OBSS multiplexing transmission includes:
  • Performing, by the station, a down-counting operation of the second backoff counter in the OBSS multiplexed transmission backoff process according to the OBSS transmission process channel state indication when the OBSS transmission process channel state "SR_CCA" indicates idle, The second backoff counter performs down counting, and continues the OBSS transmission multiplexing backoff procedure; when the OBSS transmission process channel state "SR_CCA" indicates busy, suspending the second backoff counter down counting, the OBSS The transport multiplexing backoff process is suspended.
  • the backoff process in the OBSS multiplexing transmission further includes:
  • the station determines that the channel is busy according to the second channel detection threshold and receives part or all of a new radio frame, determining that the station itself is not the target receiving station according to the address information in the radio frame, and according to the time in the radio frame Information, setting or updating or maintaining the BSS timer, and suspending or ending the second backoff process.
  • the ending of the backoff process in the OBSS multiplexing transmission begins to send data, including:
  • the second backoff counter When the second backoff counter is reduced to zero, if all BSS timers are zero and at least one OBSS timer is greater than zero, the backoff procedure in the OBSS multiplex transmission ends, the station timing according to the current OBSS The value of the device selects the appropriate frame exchange length to start transmitting data.
  • the first detecting module is configured to: when the station has data to be sent, use the virtual channel detection to determine that there is no station in the BSS to which the station belongs, and use the virtual channel to detect that the station in the OBSS service set has a channel in use. Send a start or resume notification to the processing module;
  • the processing module is configured to: receive a startup or recovery notification from the first detection module, start or restore a backoff procedure in the OBSS multiplexing transmission of the station, and notify the second detection module to monitor the channel during the backoff of the OBSS multiplexing transmission, until Determining, according to the monitoring result from the second detecting module, that the backoff process in the OBSS multiplexing transmission ends and starts transmitting data;
  • the second detecting module is configured to: receive the notification from the processing module, monitor the channel in the backoff process of the OBSS multiplex transmission according to the fixed first channel detection threshold and the dynamically adjusted second channel detection threshold, and send the monitoring result to Processing module.
  • the processing module is further configured to: detect a preamble portion of the identifiable radio frame by using a fixed first channel detection threshold, receive a radio frame, and obtain BSS attribution information and time according to the received part or all radio frames. Information, set or update or maintain the value of the BSS timer or OBSS timer set in the site.
  • processing module is configured to:
  • the BSS timer When the BSS attribution information is displayed as the BSS of the station that receives the radio frame, if the BSS timer satisfies the preset update condition, the BSS timer value is updated according to the time information carried in the radio frame;
  • the BSS attribution information is displayed as an OBSS of a station that receives a radio frame, if the OBSS timer satisfies a preset update condition, according to a time letter carried in the radio frame Update the value of the OBSS timer.
  • processing module is configured to:
  • the monitoring result from the second detecting module is that the channel is busy, and determining that the radio frame belongs to the OBSS, notifying the second detecting module to determine whether the channel is idle according to the second channel detecting threshold, when from the The monitoring result of the second detecting module is that the second backoff counter is down counted when the channel is idle; if the second backoff counter is not zero, the second detecting module is notified to determine whether the channel is idle according to the first channel detecting threshold;
  • the BSS attribution information is displayed as the BSS of the station receiving the radio frame, setting or updating or maintaining the BSS timer value according to the time information carried in the radio frame;
  • the BSS attribution information is displayed as the OBSS of the station that receives the radio frame, according to the signal strength of the preamble signal of the received radio frame, if the preset determination condition is met, setting according to the time information carried in the radio frame Or update or maintain the BSS timer value; if the preset judgment is not satisfied
  • the condition is set, or the OBSS timer value is set or updated according to the time information carried in the radio frame.
  • the first detecting module is configured to:
  • the OBSS timer is checked. When there is at least one timer greater than zero in the OBSS timer, it is determined that there is a channel in the OBSS of the station.
  • the BSS timer is: a network allocation vector NAV, or a response delay RID timer, or a NAV and RID timer;
  • the OBSS timer is: an OBSS multiplexing transmission timer.
  • the technical solution provided by the embodiment of the invention uses a timer to record the transmission time of the site frame exchange in the BSS, and improves the reliability of the multiplexing transmission through a complete and effective mechanism.
  • a timer to record the transmission time of the site frame exchange in the BSS, and improves the reliability of the multiplexing transmission through a complete and effective mechanism.
  • it ensures that the ongoing transmission of the BSS is not disturbed, and on the other hand, guarantees competition for all sites in the backoff process after starting the transmission multiplexing. Fairness.
  • FIG. 1 is a schematic diagram of a WLAN basic service set of the related art
  • FIG. 6 is a schematic diagram of first to fourth embodiments of a data transmission method according to the present invention.
  • FIG. 10 is a schematic diagram of an eighth embodiment of a data transmission method according to the present invention.
  • the BSS timer may be a BSS Network Allocation Vector (NAV), referred to as BSS NAV for short; or may be a BSS Response Indication Delay timer, referred to as a BSS RID timer; or may include a BSS NAV and a BSS RID timing. , and so on.
  • NAV BSS Network Allocation Vector
  • BSS RID timer BSS Response Indication Delay timer
  • the BSS attribution information includes at least one of the following: color (COLOR) bits, partial BSS identification information, MAC transmission address information, MAC reception address information, MAC BSS identification information, and incoming/to-network (DS) indication information.
  • the first channel detection threshold is a CCA threshold, which is usually a fixed setting according to the receiving sensitivity at the lowest modulation coding rate.
  • setting or updating or maintaining the value of the BSS timer or OBSS timer includes:
  • the BSS attribution information is displayed as the BSS to which the station receiving the radio frame belongs, if the station BSS timer satisfies the preset update condition, the value of the BSS timer of the station is updated according to the time information carried in the radio frame; when the BSS attribution information When the OBSS of the station that receives the radio frame is displayed, if the station OBSS timer satisfies the preset update condition, the value of the OBSS timer of the station is updated according to the time information carried in the radio frame.
  • the update condition is: the BSS timer is BSS NAV, and the OBSS timer is OBSS NAV, and the time information carried in the MAC frame header in the received radio frame belonging to the BSS/OBSS is greater than the current BSS NAV/OBSS NAV.
  • the BSS timer is a BSS RID timer
  • the OBSS timer is an OBSS RID timer, and is updated when the received physical time frame header in the radio frame belonging to the BSS/OBSS carries time information.
  • BSS RID timer / OBSS RID timer is a BSS RID timer
  • the value of the BSS timer or the OBSS timer may be set according to the time information carried in the radio frame; when the value of the BSS timer or the OBSS timer and the time carried in the radio frame The information is consistent and the value of the BSS timer or OBSS timer is kept unchanged.
  • the BSS timer may be: a network allocation vector NAV, or a response indication delay RID timer, or a NAV and RID timer;
  • the OBSS timer may be: an OBSS multiplexing transmission timing
  • the OBSS multiplexing multiplexing timer is set, updated, and maintained according to the time information carried in the OBSS radio frame whose received signal strength is lower than the second channel detection threshold.
  • the method further includes: when the BSS attribution information is displayed as a BSS to which the station that receives the radio frame belongs, setting or updating or maintaining the BSS timer value according to the time information carried in the radio frame;
  • the BSS attribution information is displayed as the OBSS of the station that receives the radio frame, according to the signal strength of the preamble signal of the received radio frame, if the preset determination condition is met, setting according to the time information carried in the radio frame Or updating or maintaining the BSS timer value; if the preset determination condition is not met, setting or updating or maintaining the OBSS timer value according to the time information carried in the radio frame.
  • the OBSS timer is checked. When there is at least one timer greater than zero in the OBSS timer, it is determined that there is a channel in the OBSS of the station.
  • the value of the OBSS timer is set according to the received time information carried by the OBSS radio frame that satisfies the OBSS transmission multiplexing condition, and the backoff procedure in the OBSS multiplexing transmission is started or restored, and the second backoff counter is counted down.
  • Step 302 Monitor the channel during the backoff process of the OBSS multiplex transmission according to the fixed first channel detection threshold and the dynamically adjusted second channel detection threshold until the end of the backoff process in the OBSS multiplex transmission begins to transmit data.
  • monitoring the channel during the backoff process of the OBSS multiplex transmission includes:
  • the station determines, according to the first channel detection threshold, whether the channel is idle. If the channel is idle, the second backoff counter is down counted. If the second backoff counter is not zero, the station continues to determine whether the channel is idle according to the first channel detection threshold.
  • the BSS attribution information carried in the radio frame is an OBSS:
  • the BSS timer is set or updated or maintained according to the time information in the radio frame, and the station started or restored in step 301 is ended.
  • Backoff in OBSS multiplexing transmission of the BSS to which it belongs The process is the second backoff process, and the first backoff process that is performed before the start of the backoff process in the OBSS multiplexing transmission suspended in step 301 is the first backoff process;
  • the radio frame belongs to the OBSS, set or update or maintain the OBSS timer according to time information in the radio frame, and determine whether the channel is idle according to the second channel detection threshold, and if the channel is idle, perform the second backoff counter.
  • Down counting if the second backoff counter is not zero, continue to determine whether the channel is idle according to the first channel detection threshold; if it is determined that the channel is busy according to the second channel detection threshold, suspending the down counting of the second backoff counter; if all current BSS timings If the device is zero, and at least one OBSS timer is greater than zero, the channel is monitored according to the first channel detection threshold, otherwise the second backoff process is ended, and the first backoff process is resumed.
  • the backoff process in the OBSS multiplex transmission ends, determining whether all BSS timers are zero, and whether at least one OBSS timer is greater than zero, if all current BSS timers are zero, and At least one OBSS timer is greater than zero, the station selects the appropriate frame exchange length according to the value of the current OBSS timer to start transmitting data; if at least one BSS timer is greater than zero, or all OBSS timers are zero, then the end The second backoff process restores the first backoff process.
  • the second channel detection threshold is dynamically adjusted.
  • the signal strength of the AP of the BSS can be dynamically adjusted according to the station receiving the BSS, and the signal strength indication (RSSI) of the beacon frame of the AP can be received according to the station.
  • the pre-set redundancy is obtained by operation, such as receiving signal strength indication - margin (RSSI-Margin), or other information and methods.
  • the method further includes:
  • the station sets or updates or maintains the BSS timer according to the time information in the radio frame, and ends the backoff procedure in the OBSS multiplexing transmission of the station started or restored in step 301, that is, the second backoff procedure, and resumes the OBSS suspended in step 301.
  • the backoff process being performed before the start of the backoff process in the multiplex transmission is the first backoff process.
  • the method further includes: the station recovering the first backoff counter down counting process. include:
  • the radio frame belongs to the BSS, set or update or maintain the BSS timer according to the time information in the radio frame; suspend the down counting of the first backoff counter and receive the radio frame, and wait for the channel busy indication to be reset, that is, after the channel is idle, if the A backoff counter is not zero, and it is determined whether the channel is idle according to the first channel detection threshold;
  • the radio frame belongs to the OBSS, set or update or maintain an OBSS timer according to the address information and the time information in the radio frame;
  • the first backoff counter When the first backoff counter is reduced to zero, the first backoff process ends and the station begins transmitting data.
  • the second backoff process of the OBSS multiplex transmission is initiated or resumed.
  • step 302 may include:
  • the station When the station does not detect a valid preamble signal, determine whether the channel is idle according to the second channel detection threshold. When the detected signal strength is less than the second channel detection threshold, set the OBSS transmission process channel state "SR_CCA" to Idle, and down-count the second backoff counter. If the second backoff counter is not zero, continue the second backoff process; when the detected signal strength is greater than or equal to the second channel detection threshold, set the OBSS transmission process.
  • the channel state "SR_CCA" is busy, and the second backoff counter pauses to count down, that is, suspends the second backoff process;
  • the station detects a valid preamble signal, determining whether the channel is idle according to the first channel detection threshold, and setting when the detected signal strength is less than the first channel detection threshold.
  • the OBSS transmission process channel state "SR_CCA" is idle, and the second backoff counter is down counted. If the second backoff counter is not zero, the second backoff process is continued; when the detected signal strength is greater than or equal to the first
  • the channel state "SR_CCA" of the OBSS transmission process is set to be busy, and the second backoff counter pauses to count down, that is, the second backoff process is suspended;
  • the station If the station detects a valid preamble signal and determines that the received radio frame is a BSS radio frame according to the BSS attribution information carried in the radio frame, maintaining the OBSS transmission process channel state "SR_CCA" is busy, The second backoff counter pauses to count down, that is, suspends the second backoff process;
  • the station detects a valid preamble and determines that the received radio frame is an OBSS radio frame according to the BSS attribution information carried in the radio frame, and the detected signal strength is greater than or equal to the second channel detection threshold, then The OBSS transmission process channel state "SR_CCA" is busy, the second backoff counter pauses down counting, that is, suspends the second backoff process; if the detected signal strength is less than the second channel detection threshold, sets the OBSS transmission process channel state "SR_CCA" "Being idle, the second backoff counter performs down counting. If the second backoff counter is not zero, the second backoff process is continued.
  • FIG. 4 is a flowchart of an embodiment of a data transmission method according to the present invention. As shown in FIG. 4, in this embodiment, it is assumed that the station A belongs to the BSS, and the BSS NAV and the OBSS NAV are preset; step:
  • Step 404 Whether the station A has data to be sent, if yes, proceeds to step 405, otherwise returns to step 400 until there is data to be sent to step 405.
  • Step 414 Determine whether the OBSS counter is zero. If it is zero, go to step 415; otherwise, Go back to step 413.
  • Step 415 Site A ends the current OBSS transmission multiplexing. End this process.
  • Step 416 to step 417 Site A receives some or all of the radio frames, and determines whether the radio frame is successfully received. If successful, proceeds to step 418; otherwise, proceeds to step 422.
  • Step 418 Determine whether the received radio frame belongs to the OBSS. If it belongs to the OBSS, go to step 419; otherwise, go to step 420.
  • Step 419 The station A sets or updates or holds the OBSS timer according to the time information in the received radio frame, and then proceeds to step 421.
  • Step 420 Site A sets or updates or maintains the BSS timer according to the time information in the received radio frame. Then proceed to step 422.
  • Step 421 The station A uses the second channel detection threshold, such as CCA2, to determine whether the channel is idle. If the current channel is idle, the process returns to step 410; otherwise, the process proceeds to step 422.
  • CCA2 the second channel detection threshold
  • Step 422 Site A suspends the down counting process on the second backoff counter.
  • Step 423 If it is determined that all BSS timers are zero and at least one OBSS timer is greater than zero, return to step 409; otherwise, proceed to step 415.
  • FIG. 5 is a schematic structural diagram of a site of an embodiment of the present invention. As shown in FIG. 5, the first detecting module 51, the processing module 52, and the second detecting module 53 are included.
  • the first detecting module 51 is configured to: when the station has data to be sent, use the virtual channel detection to determine that there is no station in the BSS to which the station belongs, and use the virtual channel to detect that the station in the OBSS of the station uses the channel to the processing module. 52 sends a start or resume notification;
  • the processing module 52 is configured to: receive a startup or recovery notification from the first detection module 51, initiate or restore a backoff procedure in the OBSS multiplexing transmission of the station, and notify the second detection module 53 to monitor the backoff during the OBSS multiplexing transmission.
  • the channel until the end of the backoff process in the OBSS multiplex transmission is determined to start transmitting data based on the monitoring result from the second detecting module 53.
  • the second detecting module 53 is configured to: receive the notification from the processing module 52, monitor the channel in the backoff process of the OBSS multiplex transmission according to the fixed first channel detection threshold and the dynamically adjusted second channel detection threshold, and monitor the result Send to processing module 52.
  • the processing module 52 is further configured to: detect, by using a fixed first channel detection threshold, a preamble portion of the identifiable radio frame, that is, start receiving a radio frame, according to the BSS attribution information of the received part or all of the radio frames, Time information, set or update or maintain the value of the BSS timer or OBSS timer.
  • the BSS attribution information is displayed as the BSS of the station receiving the radio frame, if the BSS timer satisfies the preset update condition, the BSS timer value is updated according to the time information carried in the radio frame;
  • the BSS attribution information is displayed as the OBSS of the station receiving the radio frame, if the OBSS timer satisfies the preset update condition, the value of the OBSS timer is updated according to the time information carried in the radio frame.
  • the OBSS timer is: OBSS NAV, or OBSS RID timer, or OBSS NAV and BSS RID timer.
  • the first detecting module 51 is set to:
  • the second detecting module 53 When the monitoring result from the second detecting module 53 is that the channel is busy, and it is determined that the radio frame belongs to the OBSS, the second detecting module 53 is notified to monitor the channel according to the second channel detecting threshold, when the monitoring from the second detecting module 53 is performed.
  • the result is that when the channel is idle, the second backoff counter is down counted; if the second backoff counter is not zero, the second detecting module 53 is notified to monitor the channel according to the fixed first channel detection threshold;
  • the second detecting module 53 When the monitoring result from the second detecting module 53 is that the channel is busy, the down counting of the second backoff counter is suspended; when all the BSS timers of the station are zero, and at least one OBSS timer is greater than zero, the second detecting module 53 is notified according to A fixed first channel detection threshold monitors the channel;
  • the backoff process in the OBSS multiplex transmission ends; when all the BSS timers of the station are zero, and at least one OBSS timer is greater than zero, the appropriate frame exchange is selected according to the value of the current OBSS timer. The length begins to send data.
  • the processing module 52 is further configured to: resume the first backoff counter down counting operation. include:
  • processing module 52 is configured to:
  • the BSS attribution information is displayed as the BSS of the station receiving the radio frame, setting or updating or maintaining the BSS timer value according to the time information carried in the radio frame;
  • the BSS timer is: a network allocation vector NAV, or a response indicating a delayed RID timer, or a NAV and RID timer; the OBSS timer is: an OBSS multiplex transmission timer.
  • station A When station A receives a radio frame, it according to the BSS attribution information in the MAC frame header, such as the destination address, the sending address, the BSS address, the "to the network (To DS)" / “from the network (From DS)” information, determining whether the currently received radio frame is an OBSS radio frame, and acquiring the Duration information in the MAC frame header;
  • the BSS NAV is updated with the value of the Duration; if the currently received radio frame It is an OBSS radio frame, and when the value of Duration is greater than the current OBSS NAV, the OBSS NAV is updated with the value of Duration.
  • the virtual channel detection is first performed, that is, the BSS NAV is checked.
  • the BSS NAV is not zero, the channel is considered to be busy and the channel state is busy, and the listening state is maintained;
  • the BSS NAV of the station A is zero, and the OBSS NAV is greater than zero, the first backoff process currently being executed is suspended.
  • the first backoff process is a process of backoff according to a fixed channel detection threshold specified by the system;
  • an OBSS multiplexed transmission backoff process that is, a process of backoff according to both fixed and dynamic channel detection thresholds.
  • the dynamic channel detection threshold may be dynamically changed according to the signal of the Beacon receiving the system beacon frame of the station A, or dynamically changed according to other principles.
  • the second embodiment is used to describe how to enable the second backoff process of OBSS transmission multiplexing.
  • the site A is locally set with two timers, one is a BSS timer, or is called a BSS RID counter.
  • the other is an OBSS timer, or OBSS RID counter.
  • the virtual channel detection is first performed, that is, the BSS RID counter is checked.
  • the BSS RID counter is not zero, the channel is considered to be busy and the channel state is busy, and the listening state is maintained;
  • the site A BSS RID counter is zero, and the OBSS RID counter is greater than zero, the first currently executing is suspended.
  • the backoff process that is, the process of backoff based only on the fixed channel detection threshold specified by the system;
  • an OBSS multiplexed transmission backoff process that is, a process of backoff according to both fixed and dynamic channel detection thresholds.
  • the third embodiment is used to describe how to enable the second backoff process of OBSS transmission multiplexing.
  • the site A is locally provided with a BSS timer and an OBSS timer, wherein the BSS timer includes two sub-timers.
  • the BSS NAV and BSS RID counters respectively;
  • the OBSS timer includes two sub-timers, OBSS NAV and OBSS RID counter. According to the manners described in the first embodiment and the second embodiment, the above timers are respectively updated.
  • an OBSS multiplexed transmission backoff process that is, a process of backoff according to both fixed and dynamic channel detection thresholds.
  • the fourth embodiment is for describing the implementation of the backoff process of the OBSS multiplex transmission.
  • the station A detects the preamble of a radio frame through the fixed CCA detection threshold specified by the system, and continues to receive the radio frame, according to the header of the physical frame header.
  • the domain SIG information determine that this is an OBSS radio frame, and according to the time information in the signaling domain SIG information, the station A updates the OBSS timer, and the end point of the OBSS timer is the OBSS frame exchange shown in FIG. End point.
  • the dynamic CCA channel detection threshold may be obtained according to the signal strength RSSI of the AP's beacon frame received by the station A and the set redundancy, such as RSSI-Margin, or other information and methods.
  • Site A performs backoff based on both fixed and dynamic channel detection thresholds.
  • Site A first uses the fixed CCA channel detection threshold specified by the system for physical channel detection.
  • the channel starts detecting channels in each backoff slot after a specific interframe space, such as Distributed Coordinate Interframe Space (DIFS), or Point Coordinated Interframe Space (PIFS), or Arbitration Interframe Space (AIFS) is idle.
  • DIFS Distributed Coordinate Interframe Space
  • PIFS Point Coordinated Interframe Space
  • AIFS Arbitration Interframe Space
  • the OBSS multiplexed transmission backoff process counts down to zero, it is determined that the BSS timer of station A is zero at this time, and at this time, the OBSS timer of station A is greater than zero, and station A selects an appropriate one according to the value of the current local OBSS timer.
  • the frame exchange length begins to send data and ends the frame exchange before the end point of the OBSS timer.
  • the sixth embodiment is used to describe the implementation of the backoff process of the OBSS multiplex transmission.
  • the threshold detects the preamble of a radio frame, continues to receive the radio frame, and determines that the OBSS radio frame is determined according to the signaling domain SIG information of the physical frame header.
  • the station A updates the OBSS.
  • the end point of the timer, OBSS timer is the end point of the OBSS frame exchange shown in FIG.
  • the dynamic CCA channel detection threshold may be obtained according to the signal strength RSSI of the AP's beacon frame received by the station A and the set redundancy, such as RSSI-Margin, or other information and methods.
  • Site A is after the end point of the local BSS timer shown in Figure 8, when the OBSS timer is not zero, and the second backoff process is resumed.
  • station A selects the appropriate frame exchange length based on the value of the current local OBSS timer to begin transmitting data and ends the frame exchange before the OBSS timer end point.
  • Step 901 Site A detects the threshold listening channel by using the first channel, and receives some or all of the radio frames.
  • step 903 is performed; step 903, according to the dynamic channel detection threshold, that is, the second channel detection threshold, Whether the preamble channel strength of the radio frame is within a certain time (for example, 4 microseconds), the probability of 90% is greater than or equal to the threshold; if yes, step 905 is performed; if not, step 904 is performed;
  • Step 904 setting or updating or maintaining an OBSS timer, that is, an OBSS transmission multiplexing timer, according to the transmission duration information “Duration” or “TXOP Duration” carried in the radio frame;
  • Step 1008 The second backoff counter of the station A is counted down
  • Step 1013 Site A ends the OBSS multiplexing transmission.
  • Step 1015 determining the received radio frame according to the BSS attribution information carried in the radio frame, if it is a BSS radio frame, step 1016 is performed; if it is an OBSS radio frame, step 1006 is performed;
  • Site A checks the status of SR_CCA. If it is "idle”, the second backoff counter counts down; if it is "busy”, the second backoff counter pauses down.
  • the eleventh embodiment describes a pause and recovery process in the OBSS transmission multiplexing backoff process.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布一种数据传输方法及站点,包括站点有待发数据时,利用虚拟信道检测确定站点所属BSS内及OBSS内是否有站点在使用信道;在确定出站点所属BSS内没有站点使用信道,且站点所属OBSS内有站点使用信道时,启动或恢复站点的OBSS复用传输中的退避过程;根据固定的第一信道检测门限和动态调整的第二信道检测门限在OBSS复用传输中的退避过程中监听信道,直至OBSS复用传输中的退避过程结束开始发送数据。

Description

一种数据传输方法及站点 技术领域
本申请涉及但不限于无线局域网(WLAN)技术。
背景技术
随着WLAN网络的爆发性应用,一方面,WLAN网络的部署不断密集化,网络负载也随之不断加重;另一方面。随着网络的增多,WLAN网络覆盖重叠的情况也更加严重。WLAN网络的效率会出现明显下降的趋势,单纯提高速率并不能解决该问题。因此,IEEE标准组织成立了相关的任务小组致力于解决WLAN网络效率问题。其中,动态信道检测门限作为提高信道复用率,解决网络效率的一种备选技术,引起了广泛关注和研究。
WLAN中,一个接入点站点(AP,Access Point)以及与该AP相关联的多个非接入点站点(non-AP STA,non-AP Station)组成了一个基本服务集(BSS,Basic Service Set)。多个BSS之间覆盖部分重叠(OBSS,Overlapping BSS,也称为部分重叠BSS),如图1所示,图1为相关技术的WLAN基本服务集示意图。
目前,802.11支持物理载波检测和虚拟载波检测两种信道空闲判定方法,当虚拟载波检测和物理载波检测都判定信道空闲后,关联站点才能够进行竞争发送。其中,物理载波检测,是指空闲信道估计(CCA,Clear Channel Assessment)信道检测技术,即关联站点通过对媒介上的信号强度进行检测,并结合CCA门限值,判定信道是忙碌还是空闲。该CCA门限值通常是按照最低调制编码速率下的接收灵敏度固定设置的,以保证最大接收覆盖范围。虚拟载波检测,是指除了通信双方之外的第三方关联站点,在收到接收地址不是自己的无线帧时,根据无线帧中连续时间(Duration)域的值设置本地网络分配矢量(NAV,Network Allocation Vector)的值,NAV是一个计数器,当NAV不为零时,认为信道繁忙,不进行竞争发送。
在某些场景下,CCA门限值可以采用更为灵活的方式进行配置,以便更 高效地进行频率复用。图2为相关技术的OBSS传输复用实施例的示意图,如图2所示的场景,实线单箭头线表示无线帧发送给目标接收站点,虚线单箭头线表示无线帧信号到达第三方站点。尽管站点A和站点B可以分别成功地向各自的AP发送数据,但是,当站点A向AP1发送无线帧时,由于较保守的CCA门限值(如-82dBm),站点B监听到站点A的信号强度为-70dBm,大于CCA门限(-82dBm),认为信道忙,因此,站点B不可能向AP2发送无线帧,从而阻止了复用传输。
为此,业界提出了动态调整CCA门限的方式,比如,根据站点接收到自身所属BSS即本BSS的AP的信号强度动态调整其CCA门限值,使得站点A和站点B可以同时向其各自的AP发送数据,以进行信道复用传输。这种通过动态调整CCA门限的方式来达到实现复用传输的机制,在一些场景下可以有效地提高WLAN网络的效率。但是,相关技术中只是利用多个网络分配矢量(NAV)来简单保证传输不碰撞,却没有一套完整有效的机制来提高复用传输的可靠性。这样,当***中存在传统设备时,由于新设备采用了动态的信道检测门限更灵活、更高效地竞争信道,而传统设备不具备这一优势,因此存在对传统设备的公平性问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种数据传输方法及站点,能够通过完整、有效的机制,提高复用传输的可靠性。
一种数据传输方法,包括:站点有待发数据时,利用虚拟信道检测确定站点所属基本服务集BSS内及部分覆盖BSS OBSS内是否有站点在使用信道;
在确定出站点所属BSS内没有站点使用信道,且站点所属OBSS内有站点使用信道时,启动或恢复站点的OBSS复用传输中的退避过程;
根据固定的第一信道检测门限和动态调整的第二信道检测门限在OBSS 复用传输的退避过程中监听信道,直至OBSS复用传输中的退避过程结束开始发送数据。
可选地,该方法还包括:在所述站点中设置一个或一个以上BSS计时器,以及一个或一个以上OBSS计时器。
可选地,该方法还包括:
所述站点通过固定的第一信道检测门限检测到可识别的无线帧的前导部分,接收无线帧,根据接收到的部分或全部无线帧的BSS归属信息、时间信息,设置或更新或保持所述BSS计时器或所述OBSS计时器的值。
可选地,当所述BSS归属信息显示为接收无线帧的站点所属BSS时,如果所述BSS计时器满足预先设置的更新条件则根据所述无线帧中携带的时间信息更新所述BSS计时器值;
当所述BSS归属信息显示为接收无线帧的站点的OBSS时,如果所述OBSS计时器满足预先设置的更新条件,则根据所述无线帧中携带的时间信息更新所述OBSS计时器的值。
可选地,当所述BSS归属信息显示为接收无线帧的站点的OBSS时,该方法还包括:
根据所述动态调整的第二信道检测门限进行物理信道空闲检测;当所接收到的无线帧的前导信号的信号强度小于所述第二信道检测门限时,确定物理信道空闲。
可选地,所述利用虚拟信道检测确定站点所属BSS内及OBSS内是否有站点在使用信道包括:
检查所述BSS计时器,当BSS计时器中存在不为零的计时器时,确定所述站点所属BSS内有站点在使用信道,保持监听状态;
当所述BSS计时器为零时,确定所述站点所属BSS内没有站点在使用信道;
检查所述OBSS计时器,当OBSS计时器中至少有一个大于零的计时器时,确定所述站点的OBSS内有站点在使用信道。
可选地,所述BSS计时器为:BSS NAV,或BSS RID计时器,或BSS NAV 和BSS RID计时器;
所述OBSS计时器为:OBSS NAV,或OBSS RID计时器,或OBSS NAV和BSS RID计时器。
可选地,所述BSS计时器为:BSS NAV,所述OBSS计时器为:OBSS NAV时,
所述更新条件为:当所述接收到的属于本BSS的无线帧中携带的时间信息大于当前BSS NAV的值时,进行更新;当所述接收到的属于本BSS的无线帧中携带的时间信息小于或等于当前BSS NAV的值时,保持不变;当所述接收到的属于本OBSS的无线帧中携带的时间信息大于当前OBSS NAV的值时,进行更新;当所述接收到的属于本OBSS的无线帧中携带的时间信息小于或等于当前OBSS NAV的值时,保持不变;或者,
所述BSS计时器为:BSS RID计时器,所述OBSS计时器为:OBSS RID计时器,
所述更新条件为:当所述接收到的属于本BSS的无线帧中的物理帧头中携带有时间信息时,更新BSS RID计时器;当所述接收到的属于本OBSS的无线帧中的物理帧头中携带有时间信息时,更新OBSS RID计时器。
可选地,所述启动或恢复站点所属BSS的OBSS复用传输中的退避过程包括:
挂起所述OBSS复用传输中的退避过程启动前的正在执行的第一退避过程;同时,启动或恢复所述OBSS复用传输中的第二退避过程的第二退避计数器。
可选地,所述根据固定的第一信道检测门限和动态调整的第二信道检测门限在OBSS复用传输的退避过程中监听信道包括:
所述站点根据所述第一信道检测门限判断信道是否空闲,如果信道空闲,对所述第二退避计数器进行减计数,如果所述第二退避计数器不为零,继续根据所述第一信道检测门限判断信道是否空闲;
如果根据所述第一信道检测门限判断出信道忙且接收到一个新的无线帧的部分或全部,根据该无线帧中携带的BSS归属信息确定该无线帧的归属:
如果确定该无线帧归属于BSS,且根据无线帧中的地址信息确定站点自身不是目标接收站点,根据无线帧中时间信息,设置或更新或保持所述BSS计时器,且结束所述第二退避过程;
如果确定该无线帧归属于OBSS,根据无线帧中的时间信息,设置或更新或保持所述OBSS计时器,并根据所述第二信道检测门限判断信道是否空闲,如果信道空闲,对所述第二退避计数器进行减计数,如果所述第二退避计数器不为零,继续根据所述第一信道检测门限判断信道是否空闲;如果根据所述第二信道检测门限判断出信道忙,暂停所述第二退避计数器的减计数,如果当前所有BSS计时器为零,且至少有一个OBSS计时器大于零,则继续根据第一信道检测门限监听信道,如果当前至少有一个BSS计时器不为零或者OBSS计时器均为零,则结束第二退避过程,恢复第一退避过程;
当所述第二退避计数器减为零时,如果所有BSS计时器为零,且至少有一个OBSS计时器大于零,则所述OBSS复用传输中的退避过程结束,所述站点根据当前OBSS计时器的值选择合适的帧交换长度开始发送数据;如果至少有一个BSS计时器大于零,或所有OBSS计时器为零,则结束所述第二退避过程,恢复所述第一退避过程。
可选地,如果所述站点根据所述第一信道检测门限检测判断出信道忙,且成功接收到无线帧,但无法判断所述无线帧归属BSS还是归属OBSS,该方法还包括:
所述站点根据无线帧中地址信息、时间信息,设置或更新或保持BSS计时器,且结束所述第二退避过程,恢复所述第一退避过程。
可选地,所述结束第二退避过程,恢复第一退避过程后,该方法还包括:
所述站点恢复所述第一退避计数器减计数。
可选地,该方法还包括:
当所述BSS归属信息显示为接收无线帧的站点所属BSS时,根据所述无线帧中携带的时间信息设置或更新或保持所述BSS计时器值;
当所述BSS归属信息显示为接收无线帧的站点的OBSS时,根据所接收 到的无线帧的前导信号的信号强度,若满足预设判定条件,则根据所述无线帧中携带的时间信息设置或更新或保持BSS计时器值;若不满足所述预设判定条件,则根据所述无线帧中携带的时间信息设置或更新或保持OBSS计时器值。
可选地,所述预设判定条件为信号强度在预设时长范围内大于等于第二信道检测门限。
可选地,所述利用虚拟信道检测确定站点所属BSS内及OBSS内是否有站点在使用信道包括:
检查所述BSS计时器,当BSS计时器中存在不为零的计时器时,确定所述站点所属BSS或OBSS内有站点在使用信道;
当所述BSS计时器为零时,确定所述站点所属BSS内没有站点在使用信道;
检查所述OBSS计时器,当OBSS计时器中至少有一个大于零的计时器时,确定所述站点的OBSS内有站点在使用信道。
可选地,所述BSS计时器为:网络分配矢量NAV,或响应指示延迟RID计时器,或NAV和RID计时器;
所述OBSS计时器为:OBSS复用传输计时器,其中,OBSS复用传输计时器根据所接收到的信号强度低于第二信道检测门限的OBSS无线帧中携带的时间信息进行设置、更新、保持。
可选地,所述启动或恢复站点OBSS复用传输中的退避过程包括:
根据所接收到的满足OBSS传输复用条件的OBSS无线帧携带的时间信息设置OBSS计时器的值,启动或恢复OBSS复用传输中的退避过程,第二退避减计数器进行减计数。
所述根据固定的第一信道检测门限和动态调整的第二信道检测门限在OBSS复用传输的退避过程中监听信道包括:
当所述OBSS计时器的值不为零,且当前BSS计时器为零时,所述站点执行OBSS复用传输的退避过程并监听信道;
若所述站点未检测到有效的前导信号,则根据所述第二信道检测门限判 断信道是否空闲,当检测到的信号强度小于第二信道检测门限时,则设置OBSS传输过程信道状态”SR_CCA”为空闲;如果所接收到的信号强度大于或等于第二信道检测门限,则设置OBSS传输过程信道状态”SR_CCA”为忙;
若所述站点检测到了有效的前导信号,则根据所述第一信道检测门限判断信道是否空闲,当检测到的信号强度小于第一信道检测门限时,则设置OBSS传输过程信道状态”SR_CCA”为空闲;当检测到的信号强度大于或等于第一信道检测门限时,则设置OBSS传输过程信道状态”SR_CCA”为忙;
若所述站点检测到了有效的前导信号,并判断出所接收到的无线帧为本BSS无线帧,则保持OBSS传输过程信道状态”SR_CCA”为忙;
若所述站点检测到了有效的前导信号,并判断出所接收到的无线帧为OBSS无线帧,且检测到的信号强度大于等于第二信道检测门限,则保持OBSS传输过程信道状态”SR_CCA”为忙;
若所述站点检测到了有效的前导信号,并判断出所接收到的无线帧为OBSS无线帧,且检测到的信号强度小于第二信道检测门限,则设置OBSS传输过程信道状态”SR_CCA”为空闲。
可选地,所述OBSS复用传输中的退避过程包括:
所述站点根据所述OBSS传输过程信道状态指示执行OBSS复用传输退避过程中的第二退避减计数器的减计数操作,当所述OBSS传输过程信道状态”SR_CCA”指示为空闲时,对所述第二退避减计数器进行减计数,并继续所述OBSS传输复用退避过程;当所述OBSS传输过程信道状态”SR_CCA”指示为忙时,暂停所述第二退避减计数器减计数,所述OBSS传输复用退避过程暂停。
可选地,所述OBSS复用传输中的退避过程还包括:
如果所述站点根据所述第二信道检测门限判断出信道忙且接收到一个新的无线帧的部分或全部,根据无线帧中的地址信息确定站点自身不是目标接收站点,并根据无线帧中时间信息,设置或更新或保持所述BSS计时器,且挂起或结束所述第二退避过程。
可选地,所述OBSS复用传输中的退避过程结束开始发送数据包括:
当所述第二退避计数器减为零时,如果所有BSS计时器为零,且至少有一个OBSS计时器大于零,则所述OBSS复用传输中的退避过程结束,所述站点根据当前OBSS计时器的值选择合适的帧交换长度开始发送数据。
可选地,所述OBSS复用传输中的退避过程结束还包括:当所述OBSS计时器为零时,所述OBSS复用传输中的退避过程结束。
一种站点,包括第一检测模块、处理模块,以及第二检测模块;其中,
第一检测模块,设置为:在站点有待发数据时,利用虚拟信道检测确定出站点所属BSS内没有站点在使用信道,且利用虚拟信道检测确定站点的OBSS服务集内有站点在使用信道时,向处理模块发送启动或恢复通知;;
处理模块,设置为:接收来自第一检测模块的启动或恢复通知,启动或恢复站点的OBSS复用传输中的退避过程,通知第二检测模块在OBSS复用传输的退避过程中监听信道,直至根据来自第二检测模块的监测结果确定OBSS复用传输中的退避过程结束开始发送数据;
第二检测模块,设置为:接收来自处理模块的通知,根据固定的第一信道检测门限和动态调整的第二信道检测门限在OBSS复用传输的退避过程中监测信道,并将监测结果发送给处理模块。
可选地,所述处理模块还设置为:通过固定的第一信道检测门限检测到可识别的无线帧的前导部分,接收无线帧,根据接收到的部分或全部无线帧的BSS归属信息、时间信息,设置或更新或保持所述站点中设置的BSS计时器或OBSS计时器的值。
可选地,所述处理模块是设置为:
当所述BSS归属信息显示为接收无线帧的站点所属BSS时,如果所述BSS计时器满足预先设置的更新条件,则根据所述无线帧中携带的时间信息更新所述BSS计时器值;
当所述BSS归属信息显示为接收无线帧的站点的OBSS时,如果所述OBSS计时器满足预先设置的更新条件,则根据所述无线帧中携带的时间信 息更新所述OBSS计时器的值。
可选地,所述处理模块是设置为:
挂起所述OBSS复用传输启动前的正在执行的第一退避过程;同时启动或恢复所述OBSS复用传输的第二退避计数器;通知所述第二检测模块对信道进行监测,当来自所述第二检测模块的监测结果为信道空闲时,对第二退避计数器进行减计数;如果第二退避计数器不为零,通知所述第二检测模块根据所述第一信道检测门限判断信道是否空闲;
当来自所述第二检测模块的检测结果为信道忙时,且确定该无线帧归属于BSS,结束所述第二退避过程;
当来自所述第二检测模块的监测结果为信道忙时,且确定该无线帧归属于OBSS,通知所述第二检测模块根据所述第二信道检测门限判断信道是否空闲,当来自所述第二检测模块的监测结果为信道空闲时,对第二退避计数器进行减计数;如果第二退避计数器不为零,通知所述第二检测模块根据所述第一信道检测门限判断信道是否空闲;
当来自所述第二检测模块的监测结果为信道忙时,暂停第二退避计数器的减计数;当站点所有BSS计时器为零,且至少有一个OBSS计时器大于零,通知所述第二检测模块根据第一信道检测门限监听信道;
当第二退避计数器为零时,结束所述第二退避过程,当站点所有BSS计时器为零,且至少有一个OBSS计时器大于零,根据当前OBSS计时器的值选择合适的帧交换长度开始发送数据。
可选地,在所述结束第二退避过程,恢复第一退避过程时,所述处理模块还设置为:恢复第一退避计数器减计数操作。
可选地,所述处理模块是设置为:
当所述BSS归属信息显示为接收无线帧的站点所属BSS时,根据所述无线帧中携带的时间信息设置或更新或保持所述BSS计时器值;
当所述BSS归属信息显示为接收无线帧的站点的OBSS时,根据所接收到的无线帧的前导信号的信号强度,若满足预设判定条件,则根据所述无线帧中携带的时间信息设置或更新或保持BSS计时器值;若不满足所述预设判 定条件,则根据所述无线帧中携带的时间信息设置或更新或保持OBSS计时器值。
可选地,所述预设判定条件为信号强度在预设时长范围内大于等于第二信道检测门限。
可选地,所述第一检测模块是设置为:
检查所述BSS计时器,当BSS计时器中存在不为零的计时器时,确定所述站点所属BSS或OBSS内有站点在使用信道;
当所述BSS计时器为零时,确定所述站点所属BSS内没有站点在使用信道;
检查所述OBSS计时器,当OBSS计时器中至少有一个大于零的计时器时,确定所述站点的OBSS内有站点在使用信道。
可选地,所述BSS计时器为:网络分配矢量NAV,或响应指示延迟RID计时器,或NAV和RID计时器;所述OBSS计时器为:OBSS复用传输计时器。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
与相关技术相比,本申请技术方案包括站点有待发数据时,利用虚拟信道检测确定站点所属BSS内是否有站点在使用信道;在站点所属BSS内没有站点使用信道时,启动或恢复站点所属BSS的OBSS复用传输中的退避过程;根据固定的第一信道检测门限和动态调整的第二信道检测门限对OBSS复用传输中的退避过程进行监测,直至OBSS复用传输中的退避过程结束开始发送数据。本发明实施例提供的技术方案,利用计时器记录BSS内站点帧交换的传输时间,通过完整、有效的机制,提高了复用传输的可靠性。一方面,在提高频率复用的机会的同时,确保了正在进行的本BSS的传输不受干扰,同时,另一方面,保证了在启动传输复用后的退避过程中对所有站点的竞争的公平性。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为相关技术的WLAN基本服务集示意图;
图2为相关技术的OBSS传输复用实施例的示意图;
图3为本发明实施例数据传输方法的流程图;
图4为本发明实施例数据传输方法的实施例的流程图;
图5为本发明实施例站点的组成结构示意图;
图6为本发明数据传输方法的第一~四实施例的示意图;
图7为本发明数据传输方法的第五实施例的示意图;
图8为本发明数据传输方法的第六实施例的示意图;
图9为本发明数据传输方法的第七实施例的示意图;
图10为本发明数据传输方法的第八实施例的示意图;
图11为本发明数据传输方法的第九实施例的示意图。
本发明的实施方式
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图3为本发明实施例数据传输方法的流程图,如图3所示,包括:
步骤300:站点有待发数据时,利用虚拟信道检测确定站点所属BSS内及OBSS内是否有站点在使用信道。
在站点中,预先设置有一个或一个以上BSS计时器,和一个或一个以上OBSS计时器。比如,
BSS计时器可以是BSS网络分配矢量(NAV),简称为BSS NAV;也可以是BSS响应指示延迟(Response Indication Delay)计时器,简称为BSS RID计时器;还可以是包括BSS NAV和BSS RID计时器,等等。
OBSS计时器可以是OBSS网络分配矢量(NAV),简称为OBSS NAV; 也可以是OBSS响应指示延迟(Response Indication Delay)计时器,简称为OBSS RID计时器;还可以是包括OBSS NAV和OBSS RID计时器;等等。
本步骤中的利用虚拟信道检测确定站点所属BSS内是否有站点在使用信道包括:检查BSS计时器,比如:检查BSS NAV,或BSS RID计时器,或BSS NAV和BSS RID计时器,当BSS计时器中存在不为零的计时器时,确定站点所属BSS内有站点在使用信道,虚拟信道检测可以置信道状态为忙,保持监听状态;当BSS计时器为零即所有BSS计时器均为零时,确定站点所属BSS内没有站点在使用信道。
本步骤中的利用虚拟信道检测确定站点的OBSS内是否有站点在使用信道包括:检查OBSS计时器,比如:检查OBSS NAV,或OBSS RID计时器,或OBSS NAV和OBSS RID计时器,当OBSS计时器中存在不为零的计时器时,确定站点的OBSS内有站点在使用信道。本步骤之前还包括:站点通过固定的第一信道检测门限检测到可识别的无线帧的前导部分,即开始接收无线帧,根据接收到的部分或全部无线帧的BSS归属信息、时间信息,设置或更新或保持BSS计时器或OBSS计时器的值。其中,BSS归属信息包括以下至少一个:颜色(COLOR)比特、部分BSS识别信息、MAC发送地址信息、MAC接收地址信息、MAC BSS识别信息、来自/去往网络(DS)指示信息。
其中,第一信道检测门限为CCA门限值,通常是按照最低调制编码速率下的接收灵敏度固定设置。
其中,设置或更新或保持BSS计时器或OBSS计时器的值包括:
当BSS归属信息显示为接收无线帧的站点所属BSS时,如果站点BSS计时器满足预先设置的更新条件,则根据无线帧中携带的时间信息更新该站点的BSS计时器的值;当BSS归属信息显示为接收无线帧的站点所属OBSS时,如果站点OBSS计时器满足预先设置的更新条件,则根据无线帧中携带的时间信息更新该站点的OBSS计时器的值。
其中,更新条件为:BSS计时器为BSS NAV,OBSS计时器为OBSS NAV,当接收到的属于本BSS/OBSS的无线帧中的MAC帧头中携带的时间信息大于当前BSS NAV/OBSS NAV的值时,进行更新,否则保持不变;或者,更 新条件还可以为:BSS计时器为BSS RID计时器,OBSS计时器为OBSS RID计时器,当接收到的属于本BSS/OBSS的无线帧中的物理帧头中携带有时间信息时,就更新BSS RID计时器/OBSS RID计时器。
当BSS归属信息显示为接收无线帧的站点的OBSS时,该方法还包括:根据动态调整的第二信道检测门限进行物理信道空闲检测;当所接收到的无线帧的前导信号的信号强度小于第二信道检测门限时,确定物理信道空闲。
当BSS计时器或OBSS计时器为首次设置时,可以根据无线帧中携带的时间信息设置BSS计时器或OBSS计时器的值;当BSS计时器或OBSS计时器的值与无线帧中携带的时间信息一致,保持BSS计时器或OBSS计时器的值不变。
在本发明另外一实施例中,所述BSS计时器可以是:网络分配矢量NAV,或响应指示延迟RID计时器,或NAV和RID计时器;所述OBSS计时器可以是:OBSS复用传输计时器,即OBSS传输复用时长,OBSS复用传输计时器根据所接收到的信号强度低于第二信道检测门限的OBSS无线帧中携带的时间信息进行设置、更新、保持。
在步骤300之前还可包括:当所述BSS归属信息显示为接收无线帧的站点所属BSS时,根据所述无线帧中携带的时间信息设置或更新或保持所述BSS计时器值;
当所述BSS归属信息显示为接收无线帧的站点的OBSS时,根据所接收到的无线帧的前导信号的信号强度,若满足预设判定条件,则根据所述无线帧中携带的时间信息设置或更新或保持BSS计时器值;若不满足所述预设判定条件,则根据所述无线帧中携带的时间信息设置或更新或保持OBSS计时器值。
其中,该预设判定条件可以是信号强度在预设时长范围内大于等于第二信道检测门限。
本步骤中,利用虚拟信道检测确定站点所属BSS内及OBSS内是否有站点在使用信道可采用如下方式:
检查所述BSS计时器,当BSS计时器中存在不为零的计时器时,确定所 述站点所属BSS或OBSS内有站点在使用信道;
当所述BSS计时器为零时,确定所述站点所属BSS内没有站点在使用信道;
检查所述OBSS计时器,当OBSS计时器中至少有一个大于零的计时器时,确定所述站点的OBSS内有站点在使用信道。
步骤301:在确定出站点所属BSS内没有站点使用信道时,且站点所属OBSS中有站点使用信道时,启动或恢复站点的OBSS复用传输中的退避过程。本步骤包括:挂起OBSS复用传输中的退避过程启动前的正在执行的退避过程,也称为第一退避过程;与此同时,开始OBSS复用传输中的退避过程,也称为第二退避过程或OBSS复用传输退避过程,即站点启动或恢复OBSS复用传输退避计数器,也称为第二退避计数器。在本发明另一个实施例中,步骤301可以包括:
根据所接收到的满足OBSS传输复用条件的OBSS无线帧携带的时间信息设置OBSS计时器的值,启动或恢复OBSS复用传输中的退避过程,第二退避减计数器减计数。
步骤302:根据固定的第一信道检测门限和动态调整的第二信道检测门限在OBSS复用传输的退避过程中监测信道,直至OBSS复用传输中的退避过程结束开始发送数据。
本步骤中,在OBSS复用传输的退避过程中监测信道包括:
站点根据第一信道检测门限判断信道是否空闲,如果信道空闲,对第二退避计数器进行减计数,如果第二退避计数器不为零,继续根据第一信道检测门限判断信道是否空闲;
如果根据第一信道检测门限判断出信道忙且接收到一个新的无线帧的部分或全部,判断该无线帧中携带的BSS归属信息是否为OBSS:
如果确定该无线帧归属于BSS且根据无线帧中的地址信息确定站点自身不是目标接收站点,根据无线帧中时间信息,设置或更新或保持BSS计时器,且结束步骤301中启动或恢复的站点所属BSS的OBSS复用传输中的退避过 程即第二退避过程,恢复步骤301中挂起的OBSS复用传输中的退避过程启动前的正在执行的退避过程即第一退避过程;
如果确定该无线帧归属于OBSS,根据无线帧中的时间信息,设置或更新或保持所述OBSS计时器,并根据第二信道检测门限判断信道是否空闲,如果信道空闲,对第二退避计数器进行减计数,如果第二退避计数器不为零,继续根据第一信道检测门限判断信道是否空闲;如果根据第二信道检测门限判断出信道忙,暂停第二退避计数器的减计数;如果当前所有BSS计时器为零,且至少有一个OBSS计时器大于零,则继续根据第一信道检测门限监听信道,否则结束第二退避过程,恢复第一退避过程。
当第二退避计数器减为零时,OBSS复用传输中的退避过程结束,判断所有BSS计时器是否为零,且是否至少有一个OBSS计时器大于零,如果当前所有BSS计时器为零,且至少有一个OBSS计时器大于零,站点根据当前OBSS计时器的值选择合适的帧交换长度开始发送数据;如果若至少有一个BSS计时器大于零,或所有OBSS计时器为零,则结束所述第二退避过程,恢复所述第一退避过程。
其中,第二信道检测门限是动态调整的,比如可以根据站点接收到自身所属BSS即本BSS的AP的信号强度动态调整的,可以根据站点接收AP的信标帧的信号强度指示(RSSI)以及预先设置的冗余量进行运算获得,例如接收信号强度指示-余量(RSSI-Margin),或者其它信息和方式获得。
其中,根据第一信道检测门限或第二信道检测门限判断信道是否空闲包括:如果前导信号的能量低于第一信道检测门限或第二信道检测门限,判断出信道为空闲,并可置信道状态为空闲。
本步骤中,如果站点根据第一信道检测门限检测判断出信道忙,且成功接收到无线帧,但是,无法判断BSS归属信息,该方法还包括:
站点根据无线帧中时间信息,设置或更新或保持BSS计时器,且结束步骤301中启动或恢复的站点的OBSS复用传输中的退避过程即第二退避过程,恢复步骤301中挂起的OBSS复用传输中的退避过程启动前的正在执行的退避过程即第一退避过程。
当结束第二退避过程,恢复第一退避过程后,该方法还包括:站点恢复第一退避计数器减计数过程。包括:
根据第一信道检测门限判断信道是否空闲,如果信道空闲,对第一退避计数器进行减计数,如果第一退避计数器不为零,继续根据第一信道检测门限判断信道是否空闲;
如果根据第一信道检测门限判断出信道忙且接收到一个新的无线帧的部分或全部,判断该无线帧中携带的BSS归属信息是否为OBSS:
如果确定该无线帧归属于BSS,根据无线帧中时间信息,设置或更新或保持BSS计时器;暂停第一退避计数器的减计数并接收无线帧,待信道忙指示复位即信道空闲后,如果第一退避计数器不为零,继续根据第一信道检测门限判断信道是否空闲;
如果确定该无线帧归属于OBSS,根据无线帧中地址信息、时间信息,设置或更新或保持OBSS计时器;
当第一退避计数器减为零时,第一退避过程结束,站点开始发送数据。
在结束第二退避过程,恢复第一退避过程的处理中,如果站点所有BSS计时器为零,且至少有一个OBSS计时器大于零,启动或恢复OBSS复用传输的第二退避过程。
在本发明的另外一个实施例中,步骤302可以包括:
当所述OBSS计时器的值不为零,且当前BSS计时器为零时,所述站点执行OBSS复用传输的退避过程并监听信道;
所述站点未检测到有效的前导信号时,根据所述第二信道检测门限判断信道是否空闲,当检测到的信号强度小于第二信道检测门限时,则设置OBSS传输过程信道状态”SR_CCA”为空闲,并对所述第二退避计数器进行减计数,如果所述第二退避计数器不为零,继续第二退避过程;当检测到的信号强度大于等于第二信道检测门限时,设置OBSS传输过程信道状态”SR_CCA”为忙,所述第二退避计数器暂停减计数,即暂停第二退避过程;
如果所述站点检测到了有效的前导信号,则根据所述第一信道检测门限判断信道是否空闲,当检测到的信号强度小于第一信道检测门限时,则设置 OBSS传输过程信道状态”SR_CCA”为空闲,并对所述第二退避计数器进行减计数,如果所述第二退避计数器不为零,继续第二退避过程;当检测到的信号强度大于等于第一信道检测门限时,设置OBSS传输过程信道状态”SR_CCA”为忙,所述第二退避计数器暂停减计数,即暂停第二退避过程;
如果所述站点检测到了有效的前导信号,并根据该无线帧中携带的BSS归属信息确定所接收到的无线帧为本BSS无线帧,则保持OBSS传输过程信道状态”SR_CCA”为忙,所述第二退避计数器暂停减计数,即暂停第二退避过程;
如果所述站点检测到了有效的前导信号,并根据该无线帧中携带的BSS归属信息确定所接收到的无线帧为OBSS无线帧,且检测到的信号强度大于等于第二信道检测门限,则保持OBSS传输过程信道状态”SR_CCA”为忙,所述第二退避计数器暂停减计数,即暂停第二退避过程;若检测到的信号强度小于第二信道检测门限,则设置OBSS传输过程信道状态”SR_CCA”为空闲,所述第二退避计数器进行减计数,如果所述第二退避计数器不为零,继续第二退避过程。
当所述第二退避计数器减为零时,如果所有BSS计时器为零,且至少有一个OBSS计时器大于零,则所述OBSS复用传输中的退避过程结束,所述站点根据当前OBSS计时器的值选择合适的帧交换长度开始发送数据。
当所述OBSS计时器为零时,所述OBSS复用传输中的退避过程结束,所述第二退避计数器清零。
本发明实施例提供的技术方案,利用计时器记录BSS内站点帧交换的传输时间,通过完整、有效的机制,提高了复用传输的可靠性。一方面,在提高频率复用的机会的同时,确保了正在进行的本BSS的传输不受干扰,同时,另一方面,保证了在启动传输复用后的退避过程中对所有站点的竞争的公平性。
图4为本发明数据传输方法的实施例的流程图,如图4所示,本实施例中,假设站点A属于BSS,预先设置有BSS NAV和OBSS NAV;包括以下 步骤:
步骤400:站点A利用第一信道检测门限如CCA1,监听信道并接收部分或全部无线帧。
步骤401:站点A判断接收到的无线帧是否属于OBSS,如果属于OBSS,进入步骤402;如果属于BSS,进入步骤403。
步骤402:站点A根据接收到的无线帧中时间信息,设置或更新或保持OBSS计时器,之后进入步骤404。
步骤403:站点A根据接收到的无线帧中时间信息,设置或更新或保持BSS计时器。
步骤404:站点A是否有数据待发送,如果有,进入步骤405,否则返回步骤400,直到有数据待发送进入步骤405。
步骤405~步骤406:站点A检查所有BSS计时器和OBSS计时器,本实施例中即检查BSS NAV和OBSS NAV,如果BSS NAV为零且OBSS NAV不为零,进入步骤407;否则返回步骤400。
步骤407~步骤408:站点A启动或恢复OBSS复用传输的第二退避过程,站点A挂起第一退避过程,开始第二退避过程,并设置第二退避计数器。
步骤409:站点A利用第一信道检测门限如CCA1判断信道是否为空闲,如果当前信道空闲,则进入步骤410;否则进入步骤416。
步骤410:站点A对第二退避计数器进行减计数处理。
步骤411:判断第二退避计数器是否为零,如果为零,进入步骤412;否则返回步骤409。
步骤412:判断BSS计时器即BSS NAV是否为零,如果为零且至少一个OBSS计时器大于零,进入步骤413;否则进入步骤415。这里也可以不用判断,即本步骤可以省略。
步骤413:站点A发起无线帧交换,即根据当前OBSS计时器的值选择合适的帧交换长度开始发送数据。
步骤414:判断OBSS计数器是否为零,如果为零,进入步骤415;否则, 返回步骤413。
步骤415:站点A结束本次OBSS传输复用。结束本流程。
步骤416~步骤417:站点A接收部分或全部无线帧,并判断无线帧是否接收成功,如果成功,进入步骤418;否则进入步骤422。
步骤418:判断接收到的无线帧是否属于OBSS,如果属于OBSS,进入步骤419;否则进入步骤420。
步骤419:站点A根据接收到的无线帧中时间信息,设置或更新或保持OBSS计时器,之后进入步骤421。
步骤420:站点A根据接收到的无线帧中时间信息,设置或更新或保持BSS计时器。之后进入步骤422。
步骤421:站点A利用第二信道检测门限如CCA2判断信道是否为空闲,如果当前信道空闲,则返回步骤410;否则进入步骤422。
步骤422:站点A暂停对第二退避计数器的减计数处理。
步骤423:判断所有BSS计时器均为零且至少一个OBSS计时器大于零时,返回步骤409;否则进入步骤415。
图5为本发明实施例站点的组成结构示意图,如图5所示,包括第一检测模块51、处理模块52,以及第二检测模块53;其中,
第一检测模块51,设置为:站点有待发数据时,利用虚拟信道检测确定出站点所属BSS内没有站点在使用信道,且利用虚拟信道检测确定站点的OBSS内有站点在使用信道,向处理模块52发送启动或恢复通知;;
处理模块52,设置为:接收来自第一检测模块51的启动或恢复通知,启动或恢复站点的OBSS复用传输中的退避过程,通知第二检测模块53对OBSS复用传输的退避过程中监测信道,直至根据来自第二检测模块53的监测结果确定OBSS复用传输中的退避过程结束开始发送数据。
第二检测模块53,设置为:接收来自处理模块52的通知,根据固定的第一信道检测门限和动态调整的第二信道检测门限在OBSS复用传输的退避过程中监测信道,并将监测结果发送给处理模块52。
其中,第处理模块52,还设置为:通过固定的第一信道检测门限检测到可识别的无线帧的前导部分,即开始接收无线帧,根据接收到的部分或全部无线帧的BSS归属信息、时间信息,设置或更新或保持BSS计时器或OBSS计时器的值。
在本发明一实施例中,所述处理模块52是设置为:
当所述BSS归属信息显示为接收无线帧的站点所属BSS时,如果所述BSS计时器满足预先设置的更新条件,则根据所述无线帧中携带的时间信息更新所述BSS计时器值;当所述BSS归属信息显示为接收无线帧的站点的OBSS时,如果所述OBSS计时器满足预先设置的更新条件,则根据所述无线帧中携带的时间信息更新所述OBSS计时器的值。
所述BSS计时器为:BSS NAV,或BSS RID计时器,或BSS NAV和BSS RID计时器;
所述OBSS计时器为:OBSS NAV,或OBSS RID计时器,或OBSS NAV和BSS RID计时器。
第一检测模块51是设置为:
检查所述BSS计时器,当BSS计时器中存在不为零的计时器时,确定所述站点所属BSS内有站点在使用信道;
当所述BSS计时器为零时,确定所述站点所属BSS内没有站点在使用信道;
检查所述OBSS计时器,当OBSS计时器中至少有一个大于零的计时器时,确定所述站点的OBSS内有站点在使用信道。
本发明一实施例的站点中,处理模块52,是设置为:
挂起OBSS复用传输中的退避过程启动前的正在执行的退避过程,也称为第一退避过程;同时启动或恢复OBSS复用传输退避计数器,也称为第二退避计数器,通知第二检测模块53根据固定的第一信道检测门限对信道进行监测,当来自第二检测模块53的监测结果为信道空闲时,对第二退避计数器进行减计数;如果第二退避计数器不为零,通知第二检测模块53根据固定的第一信道检测门限对信道进行监测;
当来自第二检测模块53的检测结果为信道忙时,且确定该无线帧归属于BSS,结束第二退避过程,恢复第一退避过程;
当来自第二检测模块53的监测结果为信道忙时,且确定该无线帧归属于OBSS,通知第二检测模块53根据第二信道检测门限对信道进行监测,当来自第二检测模块53的监测结果为信道空闲时,对第二退避计数器进行减计数;如果第二退避计数器不为零,通知第二检测模块53根据固定的第一信道检测门限对信道进行监测;
当来自第二检测模块53的监测结果为信道忙时,暂停第二退避计数器的减计数;当站点所有BSS计时器为零,且至少有一个OBSS计时器大于零,通知第二检测模块53根据固定的第一信道检测门限对信道进行监测;
当第二退避计数器为零时,OBSS复用传输中的退避过程结束;当站点所有BSS计时器为零,且至少有一个OBSS计时器大于零,根据当前OBSS计时器的值选择合适的帧交换长度开始发送数据。
在结束第二退避过程,恢复第一退避过程时,处理模块52还设置为:恢复第一退避计数器减计数操作。包括:
通知第二检测模块53根据固定的第一信道检测门限对信道进行监测,当来自第二检测模块53的监测结果为信道空闲时,对第一退避计数器进行减计数,如果第一退避计数器不为零,通知第二检测模块53根据固定的第一信道检测门限对信道进行监测;
当第二检测模块53检测结果为信道忙时,且确定该无线帧归属于BSS,暂停第一退避计数器的减计数并接收无线帧,待信道忙指示复位即信道空闲后,如果第一退避计数器不为零,通知第二检测模块53根据固定的第一信道检测门限对信道进行监测;
当第一退避计数器减为零时,第一退避过程结束,站点开始发送数据。
在结束第二退避过程,恢复第一退避过程的处理中,如果站点BSS计时器为零,且至少有一个OBSS计时器大于零,处理模块52还设置为:启动或恢复OBSS复用传输的第二退避过程。
在本发明另一实施例中,所述处理模块52是设置为:
当所述BSS归属信息显示为接收无线帧的站点所属BSS时,根据所述无线帧中携带的时间信息设置或更新或保持所述BSS计时器值;
当所述BSS归属信息显示为接收无线帧的站点的OBSS时,根据所接收到的无线帧的前导信号的信号强度,若满足预设判定条件,则根据所述无线帧中携带的时间信息设置或更新或保持BSS计时器值;若不满足所述预设判定条件,则根据所述无线帧中携带的时间信息设置或更新或保持OBSS计时器值。
可选地,所述预设判定条件为信号强度在预设时长范围内大于等于第二信道检测门限。
所述第一检测模块51是设置为:
检查所述BSS计时器,当BSS计时器中存在不为零的计时器时,确定所述站点所属BSS或OBSS内有站点在使用信道;
当所述BSS计时器为零时,确定所述站点所属BSS内没有站点在使用信道;
检查所述OBSS计时器,当OBSS计时器中至少有一个大于零的计时器时,确定所述站点的OBSS内有站点在使用信道。
所述BSS计时器为:网络分配矢量NAV,或响应指示延迟RID计时器,或NAV和RID计时器;所述OBSS计时器为:OBSS复用传输计时器。
下面结合几个实施例对本发明实施例的OBSS复用传输过程进行详细描述。
第一实施例,用于描述如何启用OBSS传输复用的第二退避过程。图6为本发明数据传输方法的第一实施例的示意图,如图6所示,假设站点A本地设置有两个计时器,一个为BSS计时器,或称为BSS NAV,另一个为OBSS计时器,或称为OBSS NAV。
当站点A接收到一个无线帧时,根据MAC帧头中的BSS归属信息,比如目标地址、发送地址、BSS地址、“去往网络(To DS)”/“来自网络(From  DS)”信息,确定当前接收到的无线帧是否为OBSS无线帧,同时,获取MAC帧头中的Duration信息;
如果当前接收到的无线帧是BSS无线帧,并假设其接收目标地址为非站点A的地址,且Duration的值大于当前BSS NAV时,利用Duration的值更新BSS NAV;如果当前收到的无线帧是OBSS无线帧,且Duration的值大于当前OBSS NAV时,利用Duration的值更新OBSS NAV。
当站点A有数据待发送时,首先进行虚拟信道检测,即检查BSS NAV。当BSS NAV不为零时,认为信道忙并置信道状态为忙,保持监听状态;当站点A的BSS NAV为零时,且OBSS NAV大于零,则挂起当前正在执行的第一退避过程,其中,第一退避过程为依据***规定的固定的信道检测门限进行退避的过程;
与此同时,启动或恢复一个新的第二退避过程,称为OBSS复用传输退避过程,即依据固定的和动态的两种信道检测门限进行退避的过程。其中,动态的信道检测门限可以是根据站点A接收***信标帧Beacon的信号强调动态变化的,或者依据其它原则动态变化的。
第二实施例,用于描述如何启用OBSS传输复用的第二退避过程,如图6所示,假设站点A本地设置有两个计时器,一个为BSS计时器,或称为BSS RID counter,另一个为OBSS计时器,或称为OBSS RID counter。
当站点A接收到一个无线帧,获取物理帧头信令域中BSS归属信息,比如COLOR比特,和/或部分BSS识别信息(Partial BSSID),判断该无线帧是本BSS传输的无线帧还是OBSS传输的无线帧,同时,通过物理帧头信令域中的无线帧长度信息和/或响应指示延迟信息,更新BSS RID counter或OBSS RID counter。
当站点A有数据待发送时,首先进行虚拟信道检测,即检查BSS RID counter。当BSS RID counter不为零时,认为信道忙并置信道状态为忙,保持监听状态;当站点A BSS RID counter为零时,且OBSS RID counter大于零时,则挂起当前正在执行的第一退避过程,即仅依据***规定的固定的信道检测门限进行退避的过程;
与此同时,启动或恢复一个新的第二退避过程,称为OBSS复用传输退避过程,即依据固定的和动态的两种信道检测门限进行退避的过程。
第三实施例,用于描述如何启用OBSS传输复用的第二退避过程,如图6所示,假设站点A本地设置有BSS计时器和OBSS计时器,其中BSS计时器包括两个子计时器,分别为BSS NAV和BSS RID counter;OBSS计时器包括两个子计时器,分别为OBSS NAV和OBSS RID counter。根据第一实施例和第二实施例所描述的方式,分别对上述计时器进行更新。
当站点A有数据待发送时,首先进行虚拟信道检测,即检查上述计时器:当BSS NAV或BSS RID counter不为零时,认为信道忙并置信道状态为忙,保持监听状态;当BSS NAV和BSS RID counter均为零时,且BSS NAV和BSS RID counter中至少有一个大于零时,则挂起当前正在执行的第一退避过程,即仅依据***规定的固定的信道检测门限进行退避的过程;
与此同时,启动或恢复一个新的第二退避过程,称为OBSS复用传输退避过程,即依据固定的和动态的两种信道检测门限进行退避的过程。
第四实施例,用于描述OBSS复用传输的退避过程的实现。根据第一实施例~第三实施例的描述,如图6所示,假设站点A通过***规定的固定CCA检测门限检测到一个无线帧的前导信号,继续接收无线帧,根据物理帧头的信令域SIG信息判断出此为一个OBSS无线帧,并根据信令域SIG信息中的时间信息,站点A更新了OBSS计时器,OBSS计时器的结束点为图6中所示的OBSS帧交换的结束点。
同时,假设本实施例中,根据动态的CCA信道检测门限判断出前导信号的能量低于此信道检测门限,因此置信道状态为空闲。其中,动态的CCA信道检测门限可以根据站点A接收AP的信标帧的信号强度RSSI以及设定的冗余量进行运算获得,比如RSSI-Margin,或者其它信息和方式获得。
由于站点A检查本地BSS计时器不为零,继续使用***规定的固定CCA检测门限监听信道,直到本地BSS计时器减计数到零,即图6中所示的BSS计时器的结束点,且此时站点A的OBSS计时器大于零,即启动或恢复OBSS复用传输过程:
首先,站点A依据固定的和动态的两种信道检测门限进行退避。站点A首先使用***规定的固定的CCA信道检测门限进行物理信道检测。信道在一段特定帧间间隔内,比如分布协调帧间间隔(DIFS),或点协调帧间间隔(PIFS),或仲裁帧间间隔(AIFS)空闲后,开始在每个退避时隙检测信道,如果退避时隙空闲,则OBSS复用传输退避计数器进行一次减计数;站点A继续使用固定的CCA信道检测门限在接下来每个退避时隙内进行物理信道检测,直到OBSS复用传输退避计数器减计数到零。
OBSS复用传输退避过程减计数到零后,判断此时站点A的BSS计时器均为零,且此时站点A的OBSS计时器大于零,站点A根据当前本地OBSS计时器的值选择合适的帧交换长度开始发送数据,并在OBSS计时器结束点之前结束帧交换。
第五实施例,用于描述OBSS复用传输的退避过程的实现,根据第一实施例~第三实施例,如图7所述,假设站点A通过***规定的固定CCA检测门限检测到一个无线帧的前导信号,继续接收无线帧,根据物理帧头的信令域SIG信息判断出此为一个OBSS无线帧。根据信令域SIG信息中的时间信息,站点A更新了OBSS计时器,OBSS计时器的结束点为图7中所示的OBSS帧交换的结束点。
同时,假设本实施例中,根据动态的CCA信道检测门限判断出前导信号的能量低于此信道检测门限,因此置信道为空闲状态。其中,动态的CCA信道检测门限可以根据站点A接收AP的信标帧的信号强度RSSI以及设定的冗余量进行运算获得,比如RSSI-Margin,或者其它信息和方式获得。
由于站点A检查本地BSS计时器不为零,继续使用***规定的固定CCA检测门限监听信道。在本地BSS计时器到零之前,即图7中所示的BSS计时器的结束点之前,站点通过***规定的固定CCA检测门限检测到一个新的无线帧的前导,并根据无线帧的SIG信息判断出该无线帧归属于本BSS,且根据SIG信息中的时间信息更新了本地BSS计时器到图7中所示的新的结束点。此时BSS计时器的值不为零,因此站点A不启动OBSS复用传输过程。
第六实施例,用于描述OBSS复用传输的退避过程的实现,根据第一实施例~第三实施例,如图8所示,假设站点A通过***规定的固定CCA检测 门限检测到一个无线帧的前导信号,继续接收无线帧,根据物理帧头的信令域SIG信息判断出此为一个OBSS无线帧,根据信令域SIG信息中的时间信息,站点A更新了OBSS计时器,OBSS计时器的结束点为图8中所示的OBSS帧交换的结束点。
同时,本实施例中,假设根据动态的CCA信道检测门限判断出前导信号的能量低于此信道检测门限,因此置信道为空闲状态。其中,动态的CCA信道检测门限可以根据站点A接收AP的信标帧的信号强度RSSI以及设定的冗余量进行运算获得,比如RSSI-Margin,或者其它信息和方式获得。
由于站点A检查本地BSS计时器不为零,继续使用***规定的固定CCA检测门限监听信道,直到本地BSS计时器减计数到零,即图8中所示的BSS计时器的结束点,此时OBSS计时器不为零,即启动或恢复OBSS复用传输过程:
首先,站点A启动或恢复第二退避过程,依据固定的和动态的两种信道检测门限进行退避。站点A使用***规定的固定的CCA信道检测门限进行物理信道检测。信道在一段特定帧间间隔,比如DIFS、或PIFS、或AIFS内空闲后,开始在每个退避时隙检测信道,退避时隙空闲,则第二退避计数器进行一次减计数;站点A继续使用固定的CCA信道检测门限在接下来每个退避时隙内进行物理信道检测。
在第二退避计数器减计数到零之前,站点A通过***规定的固定的CCA信道检测门限检测到一个新的无线帧的前导信号,并根据接收到的SIG信息判断出该无线帧归属为本BSS,且根据SIG信息中的时间信息更新了本地BSS计时器到图8中所示的新的结束点。第二退避计数器暂停减计数,直到的本地BSS计时器为零。
站点A在图8中所示的本地BSS计时器的结束点之后,此时OBSS计时器不为零,恢复第二退避过程。当第二退避计数器继续减计数到零,站点A根据当前本地OBSS计时器的值选择合适的帧交换长度开始发送数据,并在OBSS计时器结束点之前结束帧交换。
第七实施例,用于描述BSS及OBSS计时器的设置,更新,保持过程,如图9所示,假设站点A本地设置有两个计时器,一个为BSS计时器,或称为网络分配矢量NAV,另一个为OBSS计时器,或称为OBSS复用计时器。
步骤901:站点A利用第一信道检测门限监听信道,并接收部分或全部无线帧。
步骤902:站点A根据无线帧中携带的BSS归属信息,例如物理帧头中的“BSS Color”颜色信息,BSS标识信息,目标地址、发送地址、BSS MAC地址、“去往网络(To DS)”/“来自网络(From DS)”等信息,确定当前接收的无线帧是否为OBSS无线帧。如果确定当前接收的无线帧为本BSS所属时,执行步骤905,如果确定当前接收的无线帧为OBSS所属时,执行步骤903;步骤903,根据动态信道检测门限,即第二信道检测门限,判断该无线帧的前导preamble信道强度是否在一定时间内(例如4微秒)内90%概率大于或等于此门限;如果是,执行步骤905,如果否,则执行步骤904;
步骤904,根据无线帧中携带的传输持续时间信息“Duration”或“TXOP Duration”,设置或更新或保持OBSS计时器,即OBSS传输复用计时器;
步骤905:根据无线帧中携带的传输持续时间信息“Duration”或“TXOP Duration”,设置或更新或保持BSS计时器NAV。
第八实施例,用于描述OBSS复用传输退避过程,如图10所示,
步骤1001:判断站点A是否有数据发送,如果站点A有数据待发送时,执行步骤1002;
步骤1002:进行虚拟信道检测,即检查BSS及OBSS计时器,本例中为NAV及OBSS复用计时器。
步骤1003:判断是否是所有BSS计时器均为零且至少一个OBSS计时器大于零,如果是,则执行步骤1004,如果否,则返回步骤1002;
步骤1004:站点A挂起当前正在执行的第一退避过程,启动或恢复OBSS复用传输退避过程,称为第二退避过程,其中,第一退避过程仅依据***规定的固定的第一信道检测门限进行退避;第二退避过程依据固定的第一信道 检测门限和动态的第二信道检测门限进行退避。动态的第二信道检测门限可以是根据站点A接收***信标帧Beacon的信号强度及其它参数动态变化的,或者依据其它原则动态变化的。
步骤1005:当第二退避过程开始后,站点A继续监听信道,判断是否检测到有效的前导信号,若未检测到有效的前导信号,执行步骤1006,若检测到有效的前导信号,执行步骤1014;
步骤1006,按照第二信道检测门限判断信道是否空闲,若检测到的信号强度小于第二信道检测门限时,则信道空闲,执行步骤1007;若当检测到的信号强度大于或等于第二信道检测门限时,则信道忙,则执行步骤1016;
步骤1007,设置OBSS传输过程信道状态”SR_CCA”为空闲;
步骤1008:站点A的第二退避计数器减计数;
步骤1009:站点A检查第二退避计数器是否为零,若为零,则执行步骤1010;若不为零,则返回执行步骤1005;
步骤1010:判断是否满足条件:BSS计时器NAV为零且OBSS复用计时器大于零。若满足条件,则执行步骤1011;若不满足该条件,则执行步骤1013;
步骤1011:发起无线帧交换;
步骤1012:判断OBSS复用计时器是否减为零,若是,则执行步骤1013;若否,则继续执行步骤1011;
步骤1013:站点A结束OBSS复用传输。
步骤1014,根据第一信道检测门限判断信道是否空闲,当检测到的信号强度小于第一信道检测门限时,则执行步骤1007;当检测到的信号强度大于或等于第一信道检测门限时,则执行步骤1015;
步骤1015,根据该无线帧中携带的BSS归属信息确定所接收到的无线帧,若为本BSS无线帧,则执行步骤1016;若为OBSS无线帧,则执行步骤1006;
步骤1016,设置OBSS传输过程信道状态”SR_CCA”为忙,第二退避计数器暂停减计数,即暂停第二退避过程.。
第九实施例,结合第八实施例,描述一种OBSS传输复用退避过程的启动过程,如图11所示。站点A监听信道,利用第一信道检测门限值-82dBm检测到一个有效的前导信号,根据无线帧中的物理信令域中携带的BSS归属信息,本例中为BSS color信息,确定该无线帧为OBSS无线帧。同时,利用第二信道检测门限值进一步判断信道是否空闲,其中,第二信道检测门限值大于第一信道检测门限值。本例中该无线帧的前导信号强度小于第二信道检测门限值,因此站点A的BSS计时器NAV保持原有值,OBSS复用计时器设置为该无线帧信令域中携带的传输持续时间信息(TXOP Duration,传输机会持续时间)或者该无线帧的时长信息。
当站点A检查BSS计时器NAV值为零时,若此时OBSS复用计时器大于零,站点A启动复用退避过程,即第二退避过程,并随机设置第二退避计数器的值,开始进行减计数,直到站点A第二退避计时器减计数到零时,开始进行OBSS复用传输。
第十实施例,述一种OBSS传输复用退避过程中的信道监听及退避减计数过程。
站点A执行OBSS传输复用过程中进行信道监听。
当站点A未检测到有效的前导信号时,利用第二信道检测门限值判断信道是否空闲,并设置OBSS信道复用过程的信道状态“SR_CCA”。当检测到的信号强度大于等于第二信道检测门限值时,则设置SR_CCA状态为“忙”;否则设置SR_CCA状态为“空闲”。
当站点A检测到有效的前导信号时,利用第一信道检测门限值判断信道是否空闲,并设置OBSS信道复用过程的信道状态“SR_CCA”。当检测到的信号强度小于第一信道检测门限值时,则设置SR_CCA状态为“空闲”;当检测到的信号强度大于等于第一信道检测门限值时,则进一步接收无线帧,如果根据无线帧中的BSS归属信息判断出该无线帧为BSS无线帧或无法判断BSS归属信息,则保持SR_CCA状态为“忙”;如果为OBSS无线帧,且检测到的信号强度大于等于第二信道检测门限值,则保持SR_CCA状态为“忙”; 如果为OBSS无线帧,且检测到的信号强度小于第二信道检测门限值,则设置SR_CCA状态为“空闲”。
站点A检查SR_CCA的状态,若为“空闲”,则第二退避计数器进行减计数;若为“忙”,则第二退避计数器暂停减计数。
第十一实施例,描述一种OBSS传输复用退避过程中的暂停和恢复过程。
站点A执行OBSS传输复用退避过程中进行信道监听,当站点A探测到一个有效的前导信号,并根据无线帧中携带的BSS归属信息确定该无线帧为本BSS无线帧或者为信号强度大于等于第二信道检测门限的OBSS无线帧时,暂停OBSS传输退避过程,并根据无线帧中携带的时间信息,如TXOP duration,若TXOP duration大于当前BSS计时器NAV的值,则更新当前BSS计时器NAV的值。
站点A检查BSS计时器NAV和OBSS计时器的值,若BSS计时器NAV减为零,且OBSS计时器为非零,则站点A恢复OBSS复用退避过程,根据SR_CCA的状态指示继续执行第二退避计数器减计数,直到站点A第二退避计时器减计数到零时,开始进行OBSS复用传输;若OBSS计时器减为零,则停止当前OBSS复用退避过程。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如***、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例提供的技术方案,利用计时器记录BSS内站点帧交换的传输时间,通过完整、有效的机制,提高了复用传输的可靠性。一方面,在提高频率复用的机会的同时,确保了正在进行的本BSS的传输不受干扰,同时,另一方面,保证了在启动传输复用后的退避过程中对所有站点的竞争的公平性。

Claims (23)

  1. 一种数据传输方法,包括:站点有待发数据时,利用虚拟信道检测确定站点所属基本服务集BSS内及部分覆盖BSS OBSS内是否有站点在使用信道;
    在确定出站点所属BSS内没有站点使用信道,且站点所属OBSS内有站点使用信道时,启动或恢复站点的OBSS复用传输中的退避过程;
    根据固定的第一信道检测门限和动态调整的第二信道检测门限在OBSS复用传输的退避过程中监听信道,直至OBSS复用传输中的退避过程结束开始发送数据。
  2. 根据权利要求1所述的数据传输方法,还包括:在所述站点中设置一个或一个以上BSS计时器,以及一个或一个以上OBSS计时器。
  3. 根据权利要求2所述的数据传输方法,还包括:
    所述站点通过固定的第一信道检测门限检测到可识别的无线帧的前导部分,接收无线帧,根据接收到的部分或全部无线帧的BSS归属信息、时间信息,设置或更新或保持所述BSS计时器或所述OBSS计时器的值。
  4. 根据权利要求3所述的数据传输方法,其中,当所述BSS归属信息显示为接收无线帧的站点所属BSS时,如果所述BSS计时器满足预先设置的更新条件,则根据所述无线帧中携带的时间信息更新所述BSS计时器值;
    当所述BSS归属信息显示为接收无线帧的站点的OBSS时,如果所述OBSS计时器满足预先设置的更新条件,则根据所述无线帧中携带的时间信息更新所述OBSS计时器的值。
  5. 根据权利要求3所述的数据传输方法,其中,当所述BSS归属信息显示为接收无线帧的站点的OBSS时,该方法还包括:
    根据所述动态调整的第二信道检测门限进行物理信道空闲检测;当所接收到的无线帧的前导信号的信号强度小于所述第二信道检测门限时,确定物理信道空闲。
  6. 根据权利要求4所述的数据传输方法,其中,所述利用虚拟信道检测 确定站点所属BSS内及OBSS内是否有站点在使用信道包括:
    检查所述BSS计时器,当BSS计时器中存在不为零的计时器时,确定所述站点所属BSS内有站点在使用信道,保持监听状态;
    当所述BSS计时器为零时,确定所述站点所属BSS内没有站点在使用信道;
    检查所述OBSS计时器,当OBSS计时器中至少有一个大于零的计时器时,确定所述站点的OBSS内有站点在使用信道。
  7. 根据权利要求2所述的数据传输方法,其中,所述BSS计时器为:BSS网络分配矢量NAV,或BSS响应指示延迟RID计时器,或BSS NAV和BSS RID计时器;
    所述OBSS计时器为:OBSS NAV,或OBSS RID计时器,或OBSS NAV和BSS RID计时器。
  8. 根据权利要求4所述的数据传输方法,其中,
    所述BSS计时器为:BSS NAV,所述OBSS计时器为:OBSS NAV时,
    所述更新条件为:当所述接收到的属于本BSS的无线帧中携带的时间信息大于当前BSS NAV的值时,进行更新;当所述接收到的属于本BSS的无线帧中携带的时间信息小于或等于当前BSS NAV的值时,保持不变;当所述接收到的属于本OBSS的无线帧中携带的时间信息大于当前OBSS NAV的值时,进行更新;当所述接收到的属于本OBSS的无线帧中携带的时间信息小于或等于当前OBSS NAV的值时,保持不变;
    或者,
    所述BSS计时器为:BSS RID计时器,所述OBSS计时器为:OBSS RID计时器时,
    所述更新条件为:当所述接收到的属于本BSS的无线帧中的物理帧头中携带有时间信息时,更新BSS RID计时器;当所述接收到的属于本OBSS的无线帧中的物理帧头中携带有时间信息时,更新OBSS RID计时器。
  9. 根据权利要求2或3所述的数据传输方法,其中,所述启动或恢复站点OBSS复用传输中的退避过程包括:
    挂起所述OBSS复用传输中的退避过程启动前的正在执行的第一退避过程;同时,启动或恢复所述OBSS复用传输中的第二退避过程的第二退避计数器。
  10. 根据权利要求9所述的数据传输方法,其中,所述根据固定的第一信道检测门限和动态调整的第二信道检测门限在OBSS复用传输的退避过程中监听信道包括:
    所述站点根据所述第一信道检测门限判断信道是否空闲,如果信道空闲,对所述第二退避计数器进行减计数,如果所述第二退避计数器不为零,继续根据所述第一信道检测门限判断信道是否空闲;
    如果根据所述第一信道检测门限判断出信道忙且接收到一个新的无线帧的部分或全部,根据该无线帧中携带的BSS归属信息确定该无线帧的归属:
    如果确定该无线帧归属于BSS,且根据无线帧中的地址信息确定站点自身不是目标接收站点,根据无线帧中时间信息,设置或更新或保持所述BSS计时器,且结束所述第二退避过程;
    如果确定该无线帧归属于OBSS,根据无线帧中的时间信息,设置或更新或保持所述OBSS计时器,并根据所述第二信道检测门限判断信道是否空闲,如果信道空闲,对所述第二退避计数器进行减计数,如果所述第二退避计数器不为零,继续根据所述第一信道检测门限判断信道是否空闲;如果根据所述第二信道检测门限判断出信道忙,暂停所述第二退避计数器的减计数,如果当前所有BSS计时器为零,且至少有一个OBSS计时器大于零,则继续根据第一信道检测门限监听信道,如果当前至少有一个BSS计时器不为零或者OBSS计时器均为零,则结束第二退避过程,恢复第一退避过程;
    当所述第二退避计数器减为零时,如果所有BSS计时器为零,且至少有一个OBSS计时器大于零,则所述OBSS复用传输中的退避过程结束,所述站点根据当前OBSS计时器的值选择合适的帧交换长度开始发送数据;如果至少有一个BSS计时器大于零,或所有OBSS计时器为零,则结束所述第二退避过程,恢复所述第一退避过程。
  11. 根据权利要求10所述的数据传输方法,其中,如果所述站点根据 所述第一信道检测门限检测判断出信道忙,且成功接收到无线帧,但无法判断所述无线帧归属BSS还是归属OBSS,该方法还包括:
    所述站点根据无线帧中地址信息、时间信息,设置或更新或保持BSS计时器,且结束所述第二退避过程,恢复所述第一退避过程。
  12. 根据权利要求9或10所述的数据传输方法,其中,所述结束第二退避过程,恢复第一退避过程后,该方法还包括:
    所述站点恢复所述第一退避计数器减计数。
  13. 根据权利要求3所述的数据传输方法,该方法还包括:
    当所述BSS归属信息显示为接收无线帧的站点所属BSS时,根据所述无线帧中携带的时间信息设置或更新或保持所述BSS计时器值;
    当所述BSS归属信息显示为接收无线帧的站点的OBSS时,根据所接收到的无线帧的前导信号的信号强度,若满足预设判定条件,则根据所述无线帧中携带的时间信息设置或更新或保持BSS计时器值;若不满足所述预设判定条件,则根据所述无线帧中携带的时间信息设置或更新或保持OBSS计时器值。
  14. 根据权利要求13所述的数据传输方法,其中,所述预设判定条件为信号强度在预设时长范围内大于等于第二信道检测门限。
  15. 根据权利要求13所述的数据传输方法,其中,所述利用虚拟信道检测确定站点所属BSS内及OBSS内是否有站点在使用信道包括:
    检查所述BSS计时器,当BSS计时器中存在不为零的计时器时,确定所述站点所属BSS或OBSS内有站点在使用信道;
    当所述BSS计时器为零时,确定所述站点所属BSS内没有站点在使用信道;
    检查所述OBSS计时器,当OBSS计时器中至少有一个大于零的计时器时,确定所述站点的OBSS内有站点在使用信道。
  16. 根据权利要求13所述的数据传输方法,其中,
    所述BSS计时器为:网络分配矢量NAV,或响应指示延迟RID计时器, 或NAV和RID计时器;
    所述OBSS计时器为:OBSS复用传输计时器,其中,OBSS复用传输计时器根据所接收到的信号强度低于第二信道检测门限的OBSS无线帧中携带的时间信息进行设置、更新、保持。
  17. 根据权利要求13所述的数据传输方法,其中,所述根据固定的第一信道检测门限和动态调整的第二信道检测门限在OBSS复用传输的退避过程中监听信道包括:
    当所述OBSS计时器的值不为零,且当前BSS计时器为零时,所述站点执行OBSS复用传输的退避过程并监听信道;
    若所述站点未检测到有效的前导信号,则根据所述第二信道检测门限判断信道是否空闲,当检测到的信号强度小于第二信道检测门限时,则设置OBSS传输过程信道状态为空闲;如果所接收到的信号强度大于或等于第二信道检测门限,则设置OBSS传输过程信道状态为忙;
    若所述站点检测到了有效的前导信号,则根据所述第一信道检测门限判断信道是否空闲,当检测到的信号强度小于第一信道检测门限时,则设置OBSS传输过程信道状态为空闲;当检测到的信号强度大于或等于第一信道检测门限时,则设置OBSS传输过程信道状态为忙;
    若所述站点检测到了有效的前导信号,并判断出所接收到的无线帧为本BSS无线帧,则保持OBSS传输过程信道状态为忙;
    若所述站点检测到了有效的前导信号,并判断出所接收到的无线帧为OBSS无线帧,且检测到的信号强度大于等于第二信道检测门限,则保持OBSS传输过程信道状态为忙;
    若所述站点检测到了有效的前导信号,并判断出所接收到的无线帧为OBSS无线帧,且检测到的信号强度小于第二信道检测门限,则设置OBSS传输过程信道状态为空闲。
  18. 根据权利要求17所述的数据传输方法,其中,所述OBSS复用传输中的退避过程包括:
    所述站点根据所述OBSS传输过程信道状态指示执行OBSS复用传输退 避过程中的第二退避减计数器的减计数操作,当所述OBSS传输过程信道状态指示为空闲时,对所述第二退避减计数器进行减计数,继续第二退避过程;当所述OBSS传输过程信道状态指示为忙时,暂停所述第二退避减计数器减计数。
  19. 根据权利要求17所述的数据传输方法,其中,所述OBSS复用传输中的退避过程还包括:
    如果所述站点根据所述第二信道检测门限判断出信道忙且接收到一个新的无线帧的部分或全部,根据无线帧中的地址信息确定站点自身不是目标接收站点,并根据无线帧中时间信息,设置或更新或保持所述BSS计时器,且挂起或结束所述第二退避过程。
  20. 根据权利要求18所述的数据传输方法,其中,所述OBSS复用传输中的退避过程结束开始发送数据包括:
    当所述第二退避计数器减为零时,如果所有BSS计时器为零,且至少有一个OBSS计时器大于零,则所述OBSS复用传输中的退避过程结束,所述站点根据当前OBSS计时器的值选择合适的帧交换长度开始发送数据。
  21. 根据权利要求18所述的数据传输方法,其中,所述OBSS复用传输中的退避过程结束还包括:当所述OBSS计时器为零时,所述OBSS复用传输中的退避过程结束。
  22. 一种站点,包括:第一检测模块、处理模块,以及第二检测模块;其中,
    第一检测模块,设置为:在站点有待发数据时,利用虚拟信道检测确定出站点所属BSS内没有站点在使用信道,且利用虚拟信道检测确定站点的OBSS服务集内有站点在使用信道时,向处理模块发送启动或恢复通知;;
    处理模块,设置为:接收来自第一检测模块的启动或恢复通知,启动或恢复站点的OBSS复用传输中的退避过程,通知第二检测模块在OBSS复用传输的退避过程中监听信道,直至根据来自第二检测模块的监测结果确定OBSS复用传输中的退避过程结束开始发送数据;
    第二检测模块,设置为:接收来自处理模块的通知,根据固定的第一信 道检测门限和动态调整的第二信道检测门限在OBSS复用传输的退避过程中监测信道,并将监测结果发送给处理模块。
  23. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-21任一项的方法。
PCT/CN2015/092576 2014-10-23 2015-10-22 一种数据传输方法及站点 WO2016062263A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15852650.9A EP3197197A4 (en) 2014-10-23 2015-10-22 Data transmission method and station
US15/521,395 US20170311352A1 (en) 2014-10-23 2015-10-22 Data transmission method and station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410571221.4 2014-10-23
CN201410571221.4A CN105592476B (zh) 2014-10-23 2014-10-23 一种数据传输方法及站点

Publications (1)

Publication Number Publication Date
WO2016062263A1 true WO2016062263A1 (zh) 2016-04-28

Family

ID=55760312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092576 WO2016062263A1 (zh) 2014-10-23 2015-10-22 一种数据传输方法及站点

Country Status (4)

Country Link
US (1) US20170311352A1 (zh)
EP (1) EP3197197A4 (zh)
CN (1) CN105592476B (zh)
WO (1) WO2016062263A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165513A (ja) * 2019-07-04 2019-09-26 株式会社東芝 無線通信装置および無線通信方法
KR20200003071A (ko) * 2017-04-28 2020-01-08 지티이 코포레이션 채널 접속 방법 및 장치, 및 기억매체
US11412545B2 (en) 2016-09-20 2022-08-09 Toshiba Electronic Devices & Storage Corporation Wireless communication device, wireless communication terminal, and wireless communication method
US12041652B2 (en) 2017-04-28 2024-07-16 Zte Corporation Channel access method and device, and storage medium

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9973319B2 (en) * 2014-11-21 2018-05-15 Mediatek Inc. Network Allocation Vector Improvement for Wireless Networks
EP4311361A3 (en) * 2015-01-09 2024-05-01 InterDigital Patent Holdings, Inc. Bss-color enhanced transmission in wlans (bss-cet)
CN105101432B (zh) * 2015-05-29 2018-09-14 珠海市魅族科技有限公司 一种无线通信方法及设备
US10356819B2 (en) * 2015-08-05 2019-07-16 Apple Inc. Spatial-reuse enhancement in RTS and CTS
EP3332512B1 (en) * 2015-08-06 2020-02-19 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for listening based transmission
US10595341B2 (en) * 2015-08-12 2020-03-17 Lg Electronics Inc. NAV operation method in wireless LAN system and station apparatus for same
CN111787626B (zh) * 2015-12-08 2024-02-02 华为技术有限公司 一种数据传输保护方法及其装置
CN108924945B (zh) 2015-12-25 2019-08-06 华为技术有限公司 一种接入方法及装置
US11089628B2 (en) * 2016-04-22 2021-08-10 Lg Electronics Inc. Heterogeneous network allocation vector (NAV)-based communication in wireless LAN system
US20170311329A1 (en) * 2016-04-25 2017-10-26 Qualcomm Incorporated Reconciling different spatial reuse modes
US20170359821A1 (en) * 2016-06-10 2017-12-14 Qualcomm Incorporated Method and apparatus for reusing over obss txop
CN107645788A (zh) * 2016-07-22 2018-01-30 中兴通讯股份有限公司 一种空间复用传输的方法及装置
WO2018076487A1 (zh) * 2016-10-28 2018-05-03 华为技术有限公司 一种识别接收帧的基本服务集bss归属的方法和设备
WO2018105191A1 (ja) * 2016-12-07 2018-06-14 ソニー株式会社 通信装置、通信方法およびプログラム
US11197319B1 (en) * 2020-05-18 2021-12-07 Hewlett Packard Enterprise Development Lp Enhanced spatial reuse of radio spectrum in WLAN operation
US11683835B2 (en) 2021-04-02 2023-06-20 Hewlett Packard Enterprise Development Lp Spatial reuse for high priority traffic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253784A (zh) * 2005-08-31 2008-08-27 摩托罗拉公司 动态调整cca门限的***和方法
CN102457971A (zh) * 2010-10-29 2012-05-16 中兴通讯股份有限公司 信道调整方法及装置
CN103181213A (zh) * 2010-11-05 2013-06-26 英特尔公司 无线通信网络中的带宽调适技术
CN103686940A (zh) * 2012-09-10 2014-03-26 中兴通讯股份有限公司 无线通信中的快速接入和控制
CN103797885A (zh) * 2011-06-24 2014-05-14 奥林奇公司 发送数据分组的方法、以及对应的站和计算机程序

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093831A2 (en) * 2001-05-15 2002-11-21 Koninklijke Philips Electronics N.V. Overlapping network allocation vector (onav) for avoiding collision in the ieee 802.00 wlan operating under hcf
WO2015112780A1 (en) * 2014-01-24 2015-07-30 Mediatek Singapore Pte. Ltd. Adaptive cca and tx power level adjustment for dense deployment of wireless networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253784A (zh) * 2005-08-31 2008-08-27 摩托罗拉公司 动态调整cca门限的***和方法
CN102457971A (zh) * 2010-10-29 2012-05-16 中兴通讯股份有限公司 信道调整方法及装置
CN103181213A (zh) * 2010-11-05 2013-06-26 英特尔公司 无线通信网络中的带宽调适技术
CN103797885A (zh) * 2011-06-24 2014-05-14 奥林奇公司 发送数据分组的方法、以及对应的站和计算机程序
CN103686940A (zh) * 2012-09-10 2014-03-26 中兴通讯股份有限公司 无线通信中的快速接入和控制

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3197197A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412545B2 (en) 2016-09-20 2022-08-09 Toshiba Electronic Devices & Storage Corporation Wireless communication device, wireless communication terminal, and wireless communication method
US11903028B2 (en) 2016-09-20 2024-02-13 International Semiconductor Group Wireless communication device, wireless communication terminal, and wireless communication method
KR20200003071A (ko) * 2017-04-28 2020-01-08 지티이 코포레이션 채널 접속 방법 및 장치, 및 기억매체
KR102315800B1 (ko) * 2017-04-28 2021-10-21 지티이 코포레이션 채널 접속 방법 및 장치, 및 기억매체
US11265913B2 (en) 2017-04-28 2022-03-01 Zte Corporation Channel access method and device, and storage medium
US12041652B2 (en) 2017-04-28 2024-07-16 Zte Corporation Channel access method and device, and storage medium
JP2019165513A (ja) * 2019-07-04 2019-09-26 株式会社東芝 無線通信装置および無線通信方法
JP7015806B2 (ja) 2019-07-04 2022-02-03 株式会社東芝 無線通信装置および無線通信方法

Also Published As

Publication number Publication date
CN105592476A (zh) 2016-05-18
EP3197197A1 (en) 2017-07-26
US20170311352A1 (en) 2017-10-26
CN105592476B (zh) 2021-05-11
EP3197197A4 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
WO2016062263A1 (zh) 一种数据传输方法及站点
WO2021008502A1 (zh) 多链路通信方法和装置
US10674539B2 (en) System and method for managing contention in a wireless communications system
EP2966924B1 (en) Service data transmission processing, transmission method and device
EP3139680B1 (en) Channel access method, system and computer readable storage medium
US10581582B2 (en) Wireless communication method and wireless communication device for configuring broadband link
TW201713086A (zh) 用於空間重用的退避機制技術
CN106550478B (zh) 一种多用户传输网络分配矢量设置方法和装置
CN102067634A (zh) 用于无线局域网中多播传送的基于竞争的介质预约方法和装置
KR102148315B1 (ko) 웨이크업 프레임 전송 방법, 및 노드 웨이크업 후에 제1 프레임을 전송하기 위한 방법, 디바이스 및 장비
WO2016192510A1 (zh) 一种信道接入方法、站点和***
EP3145237A1 (en) Processing method for dynamic channel detection, station, and access point device
WO2017143849A1 (zh) 一种休眠控制方法及相关设备
WO2016107358A1 (zh) 数据传输方法和站点
WO2018014713A1 (zh) 一种空间复用传输的方法及装置
EP3226643B1 (en) Data transmission method and station
WO2018121177A1 (zh) 空间复用的方法及装置
EP3456139B1 (en) A communications device and methods therein for providing an improved channel access procedure
CN106488580B (zh) 竞争接入方法、竞争接入装置、站点及竞争接入***
CN103327640B (zh) 无线局域网中多播传送的基于竞争的介质预约方法和装置
WO2016049886A1 (zh) 一种信道共享的方法、装置和***
CN111787626B (zh) 一种数据传输保护方法及其装置
CN107613518B (zh) 一种网络分配矢量值设置方法及装置
JP6151219B2 (ja) 無線基地局装置および無線通信方法
WO2016107597A1 (zh) 一种数据传输方法及站点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852650

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015852650

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15521395

Country of ref document: US